WO2017138388A1 - 衣服型電子機器、および衣服型電子機器の製造方法 - Google Patents

衣服型電子機器、および衣服型電子機器の製造方法 Download PDF

Info

Publication number
WO2017138388A1
WO2017138388A1 PCT/JP2017/003201 JP2017003201W WO2017138388A1 WO 2017138388 A1 WO2017138388 A1 WO 2017138388A1 JP 2017003201 W JP2017003201 W JP 2017003201W WO 2017138388 A1 WO2017138388 A1 WO 2017138388A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electronic device
type electronic
wiring
insulating
Prior art date
Application number
PCT/JP2017/003201
Other languages
English (en)
French (fr)
Inventor
義哲 権
石丸 園子
達彦 入江
万紀 木南
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017566585A priority Critical patent/JP6973087B2/ja
Priority to KR1020187026137A priority patent/KR20180114114A/ko
Priority to CN202210462743.5A priority patent/CN114762543A/zh
Priority to CN201780010946.8A priority patent/CN108601409A/zh
Priority to US16/076,766 priority patent/US10869391B2/en
Priority to EP17750113.7A priority patent/EP3415021A4/en
Publication of WO2017138388A1 publication Critical patent/WO2017138388A1/ja
Priority to US17/021,431 priority patent/US11357104B2/en
Priority to JP2021171307A priority patent/JP2022025092A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • A41D1/005Garments adapted to accommodate electronic equipment with embedded cable or connector
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/04Vests, jerseys, sweaters or the like
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/256Wearable electrodes, e.g. having straps or bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0191Using tape or non-metallic foil in a process, e.g. during filling of a hole with conductive paste

Definitions

  • the present invention relates to a clothes-type wearable electronic device used by incorporating an electronic function or an electric function into clothes, and more specifically, a clothes-type electronic device having a stretchable electric wiring and having a natural wearing feeling, It relates to the manufacturing method.
  • wearable electronic devices intended to use electronic devices having input / output, arithmetic and communication functions in close proximity to or close to the body have been developed.
  • devices having an accessory-type outer shape such as a wristwatch, glasses, and earphones, and textile integrated devices in which electronic functions are incorporated into clothes are known.
  • An example of such a textile integrated device is disclosed in Patent Document 1.
  • Electronic equipment requires electrical wiring for power supply and signal transmission.
  • the electrical wiring is required to be stretchable in accordance with the stretchable clothes.
  • electrical wiring made of metal wires or metal foils is not practically elastic, so the metal wires or metal foils are placed in a corrugated or repeated horseshoe shape to give a pseudo expansion / contraction function.
  • the method is used.
  • wiring can be formed by regarding the metal wire as an embroidery thread and sewing it onto clothes.
  • a method of forming a wiring by etching a metal foil is a general method for producing a printed wiring board.
  • Non-Patent Document 1 A technique is known in which a metal foil is bonded to a stretchable resin sheet, and corrugated wiring is formed by a technique similar to that of a printed wiring board to make a pseudo stretchable wiring.
  • This method is to give a pseudo expansion / contraction characteristic by torsional deformation of the corrugated wiring part.
  • the metal foil since the metal foil also changes in the thickness direction due to torsional deformation, When used, it was very uncomfortable and unpleasant.
  • permanent plastic deformation occurs in the metal foil, and there is a problem in the durability of the wiring.
  • Conductive particles such as silver particles, carbon particles, carbon nanotubes and elastomers such as stretchable urethane resin, natural rubber, synthetic rubber, solvent, etc. are kneaded to form a paste, directly on clothes or stretchable film base
  • the wiring is printed and drawn in combination with a material.
  • a conductive composition composed of conductive particles and a stretchable binder resin can realize a stretchable conductor.
  • the conductive composition obtained from such a paste is such that the resin binder part deforms when subjected to external force, and the electrical conductivity is maintained within a range where the electrical chain of the conductive particles is not interrupted. is there.
  • the specific resistance observed macroscopically is higher than that of metal wires and metal foils, but because the composition itself has elasticity, there is no need to adopt a shape such as corrugated wiring, and the wiring width and thickness. Since there is a high degree of freedom, it is practically possible to realize a low resistance wiring compared to a metal wire.
  • Patent Document 2 discloses a technique for suppressing a decrease in conductivity at the time of elongation by combining silver particles and silicone rubber and further covering the conductive film on the silicone rubber substrate with silicone rubber.
  • Patent Document 3 discloses a combination of silver particles and a polyurethane emulsion, and it is said that a conductive film having high conductivity and high elongation can be obtained. Further, many examples have been proposed in which characteristics are improved by combining high aspect ratio conductive particles such as carbon nanotubes and silver fillers.
  • Patent Document 4 discloses a technique for directly forming electrical wiring on clothes using a printing method.
  • electrical wiring requires an insulating substrate or base layer, a patterned conductor layer, and an insulating cover coat layer. Furthermore, in a wearable electronic device, particularly in wiring used for measuring the human body potential by wearing it on the human body, an electrode that directly contacts the human body surface may be required. According to examples of plates and membrane circuits, it is common knowledge that an electrode surface layer is provided that is plated with noble metal, tin, solder, or the like, or that covers a conductor layer with carbon paste or the like using carbon as a conductive filler. is there.
  • the underlayer, the conductor layer, the insulating cover layer, and the electrode surface layer each have a unique pattern shape, and each layer has a thickness necessary for expressing its function.
  • unevenness is generated as a step on the surface of the printed wiring. This is the same whether it is a printed circuit board that forms a pattern mainly by a subtractive method or a membrane circuit that forms a pattern by an additive method.
  • FIG. 1 is a schematic view showing a cross section of a conventional printed wiring.
  • 1. To the substrate 2. Underlayer, 3. conductor layer; By sequentially repeating printing to drying and curing in the order of the insulating coating layer, a wiring having the cross-sectional structure shown here can be obtained.
  • there is no insulating cover coat the portion where the conductor layer is exposed is the electrode portion, and the portion covered with the insulating cover coat is the wiring portion.
  • FIG. 2 is a schematic diagram when an electrode surface layer is provided in a conventional printed wiring. In any case, it can be understood that a step is generated at the boundary between the wiring portion and the electrode portion, and unevenness as a step is generated on the surface of the electric wiring.
  • the unevenness of the step on the surface of such printed wiring is not a big problem in general electronic devices, but in the wiring of clothes-type wearable electronic devices, especially inside the clothing and directly touching the human body surface This can cause discomfort and uncomfortable feelings when wearing clothes, and can interfere with the natural wearing feeling.
  • the inhibition of the natural wearing feeling due to the unevenness of the step on the surface of the wiring is the same in the stretchable wiring using metal wiring and the wiring using conductive fibers.
  • electrode parts and wiring parts that come into contact with the human body surface work in environments that get wet with water, such as subjects who are particularly exercising, subjects who work in high-temperature and high-humidity environments, and those involved in shipping and fishing.
  • the electrode surface and the wiring portion surface stick to the sweated body surface with sweat, resulting in a very unpleasant wearing feeling.
  • the inhibition of the wearing feeling that the wiring surface or electrode surface sticks to the body surface and becomes uncomfortable is the same in the expansion wiring using the metal wiring and the wiring using the conductive fiber.
  • a screen printing method is generally used to form electrical wiring and electrodes using a conductive paste.
  • screen printing a pattern is formed by transferring ink or paste to the substrate side through the screen in a state where the screen plate is in contact with the substrate to be printed.
  • an output composed of a plurality of layers such as an underlayer, a conductor layer, an insulating cover layer, and an electrode surface layer as required in the present invention is required for the plate material to come into contact with the printing material.
  • a drying and curing process for that layer is necessary to go through a drying and curing process for that layer.
  • the base material in the clothes-type electronic device is a flexible base material that is easily deformed by an external force, such as a woven fabric, a knitted fabric, a non-woven fabric, and a stretchable film or sheet, alignment of each layer becomes very difficult. .
  • the present inventor finds that this uncomfortable feeling is at the boundary between the electrode surface where the conductor layer or the electrode surface layer is exposed and the wiring portion covered with the insulating cover layer. Ascertain that the step is the main cause, In addition, as a result of intensive studies to solve such problems, the present inventors have found that such discomfort can be greatly reduced by the surface shape of the electrical wiring, Further, the inventors have devised to solve the above problems by using a transfer method, and have reached the following invention.
  • a clothes-type electronic device having an electric wiring including a conductor layer, an insulating cover layer, and an insulating base layer in a portion in contact with the body surface, wherein the step between the electrode portion and the wiring portion of the electric wiring is substantially Clothes-type electronic equipment characterized by the absence.
  • a clothes-type electronic device having an electrical wiring as set forth in [1], comprising electrical wiring including a conductor layer, an insulating cover layer, an insulating base layer, and an electrode surface layer.
  • a clothes-type electronic device having an electrical wiring including at least a conductor layer, an insulating cover layer, and an insulating base layer in a portion contacting the body surface, wherein the surface of the wiring portion of the electrical wiring has a textured unevenness.
  • a clothes-type electronic device comprising: [6] The clothes-type electronic device having an electrical wiring according to [5], comprising electrical wiring including at least a conductor layer, an insulating cover layer, an insulating base layer, and an electrode surface layer. [7] In [5] or [6], in the textured unevenness of the surface of the wiring portion, the repetition pitch of the unevenness is 0.06 mm or more and 12 mm or less on at least an arbitrary straight line The clothes-type electronic device described.
  • the conductive function of the conductor layer and the insulating function of the insulating cover layer and the insulating base layer can be deformed to a stretch rate of 10% or more without substantially impairing [5] to [9] ]
  • the clothes-type electronic device in any one of. It is.
  • a method for manufacturing a clothes-type electronic device having an electrical wiring including at least a conductor layer, an insulating cover layer, and an insulating base layer, and an ink or a paste-like material on a first substrate having releasability A method of manufacturing a garment-type electronic device including a step of printing and laminating an insulating cover layer, a conductor layer, and an insulating base layer in this order to produce an electrical wiring and transferring it to a fabric to be a second substrate.
  • a method of manufacturing a clothes-type electronic device having an electrical wiring including at least a conductor layer, an insulating cover layer, an insulating underlayer, and an electrode surface layer, and an ink or a paste on a first substrate having releasability Including an insulating cover layer, an electrode surface layer, a conductor layer, and an insulating underlayer using a sheet-like material in the order of printing and laminating to produce an electrical wiring and transferring it to a fabric as a second substrate Type electronic device manufacturing method.
  • a method of manufacturing a clothes-type electronic device having an electrical wiring including at least a conductor layer, an insulating cover layer, an insulating underlayer, and an electrode surface layer, and an ink or paste applied to a first substrate having releasability Including a step of forming an electrical wiring by sequentially printing and laminating an electrode surface layer, an insulating cover layer, a conductor layer, and an insulating base layer in the order of the electrode-shaped material, and transferring it to the fabric as the second base material Type electronic device manufacturing method.
  • a method for manufacturing a clothes-type electronic device according to claim 1. [15] From [11] to [14], wherein the conductive function of the conductor layer and the insulating function of the insulating cover layer and the insulating base layer can be deformed to a stretch rate of 10% or more without substantially impairing. ] The manufacturing method of the clothes type electronic device in any one of. [16] The clothes-type electronic device according to any one of [11] to [15], wherein the first base material having releasability has stripe-shaped or cloth-shaped irregularities on a surface thereof. Production method.
  • the electrical wiring used in the clothes-type electronic device of the present invention substantially eliminates a step at the boundary between the electrode surface where the conductor layer or electrode surface layer is exposed and the wiring portion covered with the insulating cover layer.
  • a natural feeling of wearing is realized by greatly reducing the uncomfortable feeling when wearing the clothes-type electronic device.
  • the step at the boundary between the wiring part and the non-wiring part is covered with the base layer and the cover layer and is a gentle step.
  • the cover layer is made of the same material in both the high and low steps, the tactile discomfort is small.
  • the boundary between the electrode portion and the wiring portion is made of different materials.
  • the electrode part is composed of a conductor part having electronic conductivity such as metal or carbon, and the thermal conductivity of this part is high.
  • One insulating cover layer is made of an organic material and has low thermal conductivity.
  • the insulating cover part is not raised with respect to the electrode part. Can be smoothly connected to each other, as well as discrete parts and connectors for connecting to modules. Improvement of the contact state of the human body surface leads to detection accuracy of the biological signal.
  • the connector part since the outer shape of the connector can be covered with the insulating cover part, it is possible to eliminate the exposure of the electrode surface. Since the mounting part is flat without a step, it is possible to attach a connector part without forcibly deforming the electrode part at the time of attachment, and the excellent effect of improving the reliability of the connection part can be obtained. .
  • the thickness in the electrical wiring section is different in each part, when tension is applied to the electrical wiring, the elongation rate of the thick part is small, the elongation rate of the thin part is large, the load is locally increased, and the overall Although there is a possibility of shortening the material life, in the present invention, since the step in the electric wiring portion is substantially small, such a variation in the elongation rate hardly occurs, and as a result, the product life can be extended.
  • the electrical wiring used in the clothes-type electronic device of the present invention reduces the discomfort at the time of wearing by preventing the electrical wiring part from sticking to the body surface due to moisture by providing textured irregularities on the surface. It is.
  • the contact area may be reduced and the detection accuracy may be reduced. Since the deformation of the skin follows the unevenness of the electrode surface on the flexible human body surface, the decrease in the contact area is not as great as it looks, and the electrode surface is uneven to reduce discomfort during sweating. It has been found that the act of attaching does not necessarily lead to a decrease in detection accuracy.
  • an electrical wiring made of a flexible material the deformation of the body direction and the deformation of the electrode side are synergistic and a more reliable contact state is obtained. More preferably, by using an electric wiring having stretchability that can be expanded and contracted, the electrode side is also macroscopically deformed into a free-form surface, so that the contact state between the electrode surface and the body surface is further ensured.
  • the unevenness on the surface reduces the mechanical strength of the electrical wiring portion and impairs the durability of the clothes-type electronic device.
  • the durability is not significantly reduced, but rather is improved.
  • the present inventors believe that the surface irregularities substantially give the bellows structure to the wiring portion, and thus the structure is flexible and stretchable.
  • the unevenness height difference and the repetition pitch preferably given in the present invention exceed the total thickness of the wiring part depending on the conditions, and the durability improving effect by the bellows structure becomes more remarkable.
  • the degree of freedom of deformation of the wiring part is further increased in terms of structure and material, and further by using the electrical wiring having stretchability.
  • the degree of freedom of the part is increased and the durability is further improved. In particular, since the degree of freedom of deformation in the compression direction is increased, improvement in washing durability is expected.
  • each layer necessary for electrical wiring is formed on an intermediate medium for release having sufficient dimensional stability, so that the alignment of each layer is higher than when printing directly on a fabric. Allows for accuracy. Furthermore, by using the manufacturing method of the present invention, it is possible to substantially eliminate the step between the electrode portion and the wiring yield.
  • the electrode part and the wiring leading to the electrode are formed of the same conductive material, the wiring part is formed with an insulating cover layer, and the electrode part is formed with an electrode surface layer.
  • a step is generated at the boundary between the wiring portion and the electrode portion. In the present invention, this step can be substantially eliminated, and the uncomfortable feeling when wearing the obtained clothes-type electronic device can be greatly reduced. With this action, a natural feeling of wear can be obtained in the clothes-type electronic device manufactured by the manufacturing method of the present invention.
  • the insulating cover portion is not raised with respect to the electrode portion, Contact between the electrode and the surface of the human body, as well as discrete parts and connectors for connecting to the module can be smoothly performed. Improvement of the contact state of the human body surface leads to detection accuracy of the biological signal.
  • the connector part since the outer shape of the connector can be covered with the insulating cover part, it is possible to eliminate the exposure of the electrode surface. Since the mounting part is flat without a step, it is possible to attach a connector part without forcibly deforming the electrode part at the time of attachment, and the excellent effect of improving the reliability of the connection part can be obtained. .
  • the thickness in the electrical wiring section is different in each part, when tension is applied to the electrical wiring, the elongation rate of the thick part is small, the elongation rate of the thin part is large, the load is locally increased, and the overall Although there is a risk of shortening the material life, in the present invention, since the step in the electric wiring portion is substantially small, such a variation in the elongation rate is unlikely to occur. As a result, the product life can be extended.
  • the pattern can be transferred to the electric wiring, and an electric wiring having a three-dimensional pattern on the surface can be obtained.
  • the cloth shape for the three-dimensional pattern it is possible to greatly reduce the difference in tactile sensation between the part with wiring and the part without wiring, which can greatly contribute to improving the wearing feeling of the clothes-type electronic device.
  • Base material (fabric) 2. 2. Insulating underlayer Stretchable conductor composition layer (stretchable conductor layer) 4). Elastic cover layer (insulation cover layer) 5). Stretchable carbon layer (electrode surface layer) 6). Adhesive layer (insulating underlayer) 10. Temporary support (release indicator)
  • FIG. 3 is a schematic diagram of a cross section when there is no electrode surface layer in the electrical wiring of the present invention.
  • the conductor layer functions as an electrode as it is.
  • FIG. 1 which is a cross section of the conventional electric wiring
  • the surface of the electrode and the insulating cover layer have the same height, so that the surface of the electric wiring is not uneven.
  • FIG. 3 are the schematic diagrams of a cross section in the case where there is an electrode surface layer in the electrical wiring of the present invention.
  • the electrode surface layer and the insulating cover layer have the same height, so that there is no unevenness on the surface of the electric wiring.
  • the electrical wiring in the present invention is flexible.
  • the flexible electrical wiring of this invention is implement
  • the flexible electrical wiring of the present invention is preferably made of a stretchable material having stretchability, and the electrical wiring preferably has stretchability in addition to flexibility.
  • a part of the garment part of the garment-type electronic device or a fabric constituting the whole can be used as the substrate.
  • the fabric include woven fabrics, knitted fabrics, and non-woven fabrics.
  • a resin coat, a coated fabric impregnated with a resin, and the like can be used as a substrate.
  • a synthetic rubber sheet represented by Neoprene (registered trademark) can also be used as a substrate.
  • the fabric used in the present invention has stretchability capable of repeatedly expanding and contracting 10% or more.
  • the base material of the present invention preferably has a breaking elongation of 50% or more.
  • the base material of the present invention may be a cloth base, a ribbon or a tape, a braid or a net, or a sheet of cloth cut from the cloth.
  • the fabric is a woven fabric, for example, plain weave, twill weave, satin weave, etc.
  • the fabric is a knitted fabric, for example, flat knitting and deformation thereof, Kanoko knitting, Amunsen knitting, lace knitting, eyelet knitting, splicing net, pile knitting, rib knitting, turtle knitting, blister knitting, Milan rib knitting, Double Pique, Single Pique, Tilted, Helicon, Ponchi Roman, Basket, Tricot, Half Tricot, Satin Tricot, Double Tricot, Quinns Cord, Stripe / Soccer, Russell, Examples include tulle mesh knitting and variations and combinations thereof.
  • the fabric may be a nonwoven fabric made of elastomer fibers.
  • the underlayer of the present invention is a layer that bears insulation on the substrate side of the wiring portion.
  • the insulation includes mechanical, chemical, and biological insulation in addition to electrical insulation, and requires a function of insulating the conductor layer from moisture, chemical substances, and biological substances that permeate the base material.
  • the underlayer of the present invention is preferably a flexible polymer material.
  • a so-called rubber or elastomer material can be used.
  • a resin material for forming a conductor layer described later can be used.
  • the underlayer of the present invention preferably has a stretchability that can be repeatedly expanded and contracted by 10% or more.
  • the underlayer of the present invention preferably has a breaking elongation of 50% or more. Further, the underlayer of the present invention preferably has a tensile elastic modulus of 10 to 500 MPa.
  • the undercoat layer of the present invention is preferably applied to the substrate via a coating liquid, an immersion liquid, a liquid form such as a printing ink or a printing paste, or a slurry state. In order to make the material for the underlayer into a liquid form or a slurry state, it may be dissolved and dispersed in a solvent. It is within the scope of the present invention to add a known leveling agent, thixotropic agent or the like for adjustment of printability and the like.
  • the solvent is appropriately selected from solvents that can be used in the conductive paste described later.
  • the precursor of the material forming the underlayer is a liquid
  • it is difficult for the material for the underlayer of the present invention to pass through a liquid state or a slurry state it can be processed into a film or a sheet by, for example, melt extrusion or press molding, and attached to the base material with an adhesive or the like. Is possible. Further, after processing into a film or sheet in a precursor state, it can be solidified by a predetermined reaction to obtain a film or sheet.
  • the conductor layer of the present invention refers to a layer made of a material having a specific resistance of 1 ⁇ 10 0 ⁇ cm or less.
  • the conductor layer of the present invention preferably has stretchability.
  • the stretchability in the present invention means that it can repeatedly expand and contract by 10% or more.
  • the conductor layer of the present invention preferably has a breaking elongation of 50% or more by itself.
  • the conductor layer of the present invention preferably has a tensile elastic modulus of 10 to 500 MPa.
  • a material having such stretchability is called a stretchable conductor composition.
  • the stretchable conductor composition can be obtained through a conductive paste described below.
  • a conductive paste which is one of means for realizing the constituent elements of the present invention will be described.
  • the conductive paste is composed of at least conductive particles, preferably non-conductive particles to be added, a stretchable resin, and a solvent.
  • the conductive particles of the present invention are particles having a particle diameter of 100 ⁇ m or less made of a substance having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less.
  • Examples of the material having a specific resistance of 1 ⁇ 10 ⁇ 1 ⁇ cm or less include metals, alloys, carbon, doped semiconductors, conductive polymers, and the like.
  • the conductive particles preferably used in the present invention are metals such as silver, gold, platinum, palladium, copper, nickel, aluminum, zinc, lead and tin, alloy particles such as brass, bronze, white copper and solder, and silver-coated copper. Hybrid particles, metal-plated polymer particles, metal-plated glass particles, metal-coated ceramic particles, and the like can be used.
  • the main use is to use 90% by mass or more of the conductive particles.
  • the amorphous aggregated powder is a three-dimensional aggregate of spherical or irregularly shaped primary particles.
  • Amorphous agglomerated powders and flaky powders are preferable because they have a specific surface area larger than that of spherical powders and the like and can form a conductive nitrate work even with a low filling amount. Since the amorphous agglomerated powder is not in a monodispersed form, the particles are in physical contact with each other, so that it is easy to form a conductive nitrate work.
  • the particle size of the flaky powder is not particularly limited, but those having an average particle size (50% D) measured by a dynamic light scattering method of 0.5 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 15 ⁇ m, it becomes difficult to form fine wiring, and clogging occurs in the case of screen printing. When the average particle size is less than 0.5 ⁇ m, it is impossible to make contact between particles at low filling, and the conductivity may deteriorate.
  • the particle size of the amorphous aggregated powder is not particularly limited, but those having an average particle size (50% D) measured by a light scattering method of 1 to 20 ⁇ m are preferable. More preferably, it is 3 to 12 ⁇ m. When the average particle diameter exceeds 20 ⁇ m, the dispersibility is lowered and it becomes difficult to form a paste. When the average particle size is less than 1 ⁇ m, the effect as an agglomerated powder is lost, and good conductivity may not be maintained with low filling.
  • the non-conductive particles in the present invention are particles made of an organic or inorganic insulating material.
  • the inorganic particles of the present invention are added for the purpose of improving printing properties, stretching properties, and coating surface properties, and include inorganic particles such as silica, titanium oxide, talc, and alumina, and microgels made of resin materials. Available.
  • barium sulfate particles can be preferably used as non-conductive particles.
  • the barium sulfate particles of the present invention dwarf barium sulfate, which is a ground product of barite mineral called natural barite, and so-called precipitated barium sulfate produced by a chemical reaction can be used.
  • precipitated barium sulfate which can easily control the particle diameter.
  • the average particle diameter determined by the dynamic light scattering method of the barium sulfate particles preferably used is 0.01 to 18 ⁇ m, more preferably 0.05 to 8 ⁇ m, still more preferably 0.2 to 3 ⁇ m.
  • grains of this invention are surface-treated with the hydroxide and / or oxide of one or both of Al and Si.
  • the hydroxide and / or oxide of one or both of Al and Si adhere to the surface of the barium sulfate particles.
  • the amount of adhesion is preferably 0.5 to 50, more preferably 2 to 30, with respect to the barium element 100 in terms of the element ratio by fluorescent X-ray analysis.
  • the average particle size of the barium sulfate particles is preferably smaller than the average particle size of the conductive particles.
  • the number average particle diameter of the conductive particles is preferably 1.5 times or more of the number average particle diameter of the barium sulfate particles, more preferably 2.4 times or more, and more preferably 4.5 times or more. Even more preferred.
  • the average particle diameter of the barium sulfate particles exceeds this range, the unevenness of the obtained coating film surface becomes large, and the coating film tends to break when stretched.
  • the average particle diameter of the barium sulfate particles is smaller than this range, the effect of improving the stretch durability is small, the viscosity of the paste is high, and it becomes difficult to manufacture the paste.
  • the blending amount of the barium sulfate particles in the present invention is 2 to 30% by mass, more preferably 3 to 20% by mass, still more preferably 4 to 15% by mass with respect to the total of the conductive particles and the barium sulfate particles.
  • the blending amount of the barium sulfate particles exceeds this range, the conductivity of the obtained coating film surface is lowered.
  • the blending amount of the barium sulfate particles is smaller than this range, the effect of improving the stretch durability is hardly exhibited.
  • Examples of the flexible resin in the present invention include thermoplastic resins, thermosetting resins, rubbers and the like having an elastic modulus of 1 to 1000 MPa, and rubbers are preferable in order to exhibit film stretchability.
  • rubber urethane rubber, acrylic rubber, silicone rubber, butadiene rubber, nitrile group-containing rubber such as nitrile rubber and hydrogenated nitrile rubber, isoprene rubber, sulfurized rubber, styrene butadiene rubber, butyl rubber, chlorosulfonated polyethylene rubber, ethylene propylene
  • examples include rubber and vinylidene fluoride copolymer.
  • nitrile group-containing rubber chloroprene rubber, and chlorosulfonated polyethylene rubber are preferable, and nitrile group-containing rubber is particularly preferable.
  • the range of elastic modulus is preferably 3 to 600 MPa, more preferably 10 to 500 MPa, and still more preferably 30 to 300 MPa.
  • the rubber containing a nitrile group is not particularly limited as long as it is a rubber or elastomer containing a nitrile group, but nitrile rubber and hydrogenated nitrile rubber are preferable.
  • Nitrile rubber is a copolymer of butadiene and acrylonitrile. If the amount of bound acrylonitrile is large, the affinity with metal increases, but the rubber elasticity contributing to stretchability decreases conversely. Accordingly, the amount of bound acrylonitrile in the acrylonitrile butadiene copolymer rubber is preferably 18 to 50% by mass, and particularly preferably 40 to 50% by mass.
  • the blending amount of the flexible resin in the present invention is 7 to 35% by mass, preferably 9 to 28% by mass, more preferably based on the total of the conductive particles, preferably the non-conductive particles and the flexible resin to be added. Is 12 to 20% by mass.
  • an epoxy resin can be blended with the conductive paste of the present invention.
  • a preferable epoxy resin in the present invention is a bisphenol A type epoxy resin or a phenol novolac type epoxy resin.
  • an epoxy resin curing agent can be blended.
  • a known amine compound, polyamine compound, or the like may be used as the curing agent.
  • the curing agent is preferably blended in an amount of 5 to 50% by weight, more preferably 10 to 30% by weight, based on the epoxy resin.
  • the blending amount of the epoxy resin and the curing agent is 3 to 40% by mass, preferably 5 to 30% by mass, and more preferably 8 to 24% by mass with respect to the total resin components including the flexible resin.
  • the conductive paste of the present invention contains a solvent.
  • the solvent in the present invention is water or an organic solvent.
  • the content of the solvent should be appropriately investigated according to the viscosity required for the paste, and is not particularly limited.
  • the organic solvent used in the present invention having a preferred mass ratio preferably has a boiling point of 100 ° C. or higher and lower than 300 ° C., more preferably 130 ° C. or higher and lower than 280 ° C. If the boiling point of the organic solvent is too low, the solvent volatilizes during the paste manufacturing process or use of the paste, and there is a concern that the component ratio of the conductive paste is likely to change. On the other hand, if the boiling point of the organic solvent is too high, the amount of residual solvent in the dry cured coating film increases, and there is a concern that the reliability of the coating film is reduced.
  • organic solvent in the present invention examples include cyclohexanone, toluene, xylene, isophorone, ⁇ -butyrolactone, benzyl alcohol, Exube Chemicals Solvesso 100, 150, 200, propylene glycol monomethyl ether acetate, terpionol, butyl glycol acetate, diamylbenzene , Triamylbenzene, n-dodecanol, diethylene glycol, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dibutyl ether, diethylene glycol monoacetate, triethylene glycol diacetate, triethylene glycol, triethylene glycol Monomethylether , Triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol, tetraethylene glycol monobutyl ether, trip
  • AF Solvent No. 4 (boiling point: 240 to 265 ° C.), No. 5 (boiling point: 275 to 306 ° C.), No. 6 (boiling point: 296 to 317 ° C.) manufactured by Nippon Oil Corporation No. 7, (boiling point: 259-282 ° C.), and No. 0 solvent H (boiling point: 245-265 ° C.), etc., and two or more of them may be included if necessary.
  • Such an organic solvent is appropriately contained so that the conductive silver paste has a viscosity suitable for printing or the like.
  • the paste for forming a stretchable conductor of the present invention is a dispersing machine such as conductive particles, barium sulfate particles, stretchable resin, solvent as a dissolver, three roll mill, self-revolving mixer, attritor, ball mill, sand mill, etc. Can be obtained by mixing and dispersing.
  • the paste for forming a stretchable conductor of the present invention is provided with known organic and inorganic additives such as imparting printability, color tone adjustment, leveling, antioxidants, ultraviolet absorbers and the like within the scope of the invention. Can be blended.
  • the insulating cover of this invention is a layer which bears the insulation of the surface side of a wiring part.
  • the insulation includes mechanical, chemical, and biological insulation in addition to electrical insulation, and requires a function of insulating the conductor layer from moisture, chemical substances, and biological substances that permeate the base material.
  • the insulating cover layer of the present invention is preferably a flexible polymeric material.
  • As the flexible polymer material a so-called rubber or elastomer material can be used.
  • a resin material for forming a conductor layer can be used.
  • the insulating cover layer of the present invention preferably has stretchability capable of repeatedly expanding and contracting 10% or more.
  • the insulating cover layer of the present invention preferably has a breaking elongation of 50% or more.
  • the insulating cover layer of the present invention preferably has a tensile modulus of 10 to 500 MPa.
  • the insulating cover layer of the present invention is preferably applied to the substrate via a coating liquid, an immersion liquid, or a liquid form such as printing ink or printing paste, or a slurry state.
  • the insulating cover layer material may be dissolved and dispersed in a solvent to form a liquid form or slurry. It is within the scope of the present invention to add a known leveling agent, thixotropic agent or the like for adjustment of printability and the like.
  • the solvent is appropriately selected from solvents that can be used for the conductive paste.
  • the precursor of the material forming the insulating cover layer is a liquid
  • the case where an ultraviolet curable resin or the like is used corresponds to this case.
  • the material for the insulating cover layer of the present invention is difficult to pass through in a liquid state or a slurry state
  • the substrate is processed into a film or a sheet by, for example, melt extrusion or press molding, and externally processed into an appropriate shape. It is also possible to affix with an adhesive.
  • the electrode surface layer in the present invention is literally a layer used when the electrode surface is covered with a material different from the wiring part.
  • the electrode surface layer noble metal plating such as gold, platinum, rhodium, solder plating, tin plating, or the like can be used.
  • the electrode surface layer of the present invention preferably has stretchability capable of repeatedly expanding and contracting 10% or more.
  • the electrode surface layer of the present invention preferably has a breaking elongation of 50% or more.
  • the electrode surface layer of the present invention preferably has a tensile modulus of 10 to 500 MPa.
  • the electrode surface layer can be formed using a carbon paste having stretchability.
  • the conductive particles of the conductive paste forming the conductor layer may be considered as those limited to conductive carbon.
  • the blending amount of the conductive particles since the specific gravity of the carbon particles is smaller than that of the metal and the specific surface area is large, it is preferable that the blending is performed by reducing it to about half to 1/8 of the mass% of the metal powder. .
  • Other conditions for obtaining the carbon paste, the dispersion method, and the like are the same as those of the conductive paste.
  • the fact that there is substantially no step at the boundary between the electrode part and the wiring part of the electric wiring means that the thick part and the thin part of the wiring do not have a clear boundary and a change in height difference of at least 50 ⁇ m occurs
  • the thickness changes with the width of the region being 1.0 mm or more, preferably 2.0 mm or more, and more preferably 3.0 mm or more.
  • Such a variation in the thickness of the boundary portion may be obtained by a profile in a non-contact type thickness system.
  • the wiring part is affixed together with the fabric as a base material in a state where tension is applied in the surface direction to such an extent that no clear sagging occurs, and an optical type What is necessary is just to obtain a profile with a thickness gauge. If the boundary step is within this range, it can be said that there is substantially no step because the tactile feel does not feel the presence of the step.
  • the wiring portion of the clothes-type electronic device of the present invention can be deformed to an elongation ratio of 10% or more without substantially impairing the conductive function of the conductor layer and the insulating function of the insulating cover layer and the insulating base layer.
  • a wiring portion of a clothes-type electronic device may be cut out, and the conductive function and insulating function before and after being stretched to 10% by a tensile tester may be compared.
  • the conductive function is evaluated by the resistance value of the wiring, and the conductive function is maintained as long as the resistance value in a state where the expansion is 10% is 100 times or less than the resistance value when the expansion is 0%.
  • the insulating underlayer is extended to 10% and then returned to 0%, it is determined that the insulating function is maintained if there is no separation from the substrate.
  • the insulating cover layer it is determined that the insulating function is maintained if there is no crack that can be visually confirmed in a state of 10% elongation.
  • the conductor layer, the insulating cover layer, and the insulating underlayer of the present invention preferably each have a breaking elongation of 50% or more and a tensile elastic modulus of 10 to 500 MPa.
  • the elongation at break and tensile modulus of each layer can be determined by applying a paste material constituting each layer to a predetermined thickness on a release sheet, peeling off after drying, and conducting a tensile test.
  • the fabric shape in the present invention means a shape in which an elevation difference exists in the Z-axis direction according to a specific law on an XY two-dimensional plane, and preferably at least in two directions on the XY plane (not necessarily orthogonal) (Not necessary) A shape with regular repetition. Although the repetition period may be random, it is necessary to satisfy at least the average repetition pitch defined in the present invention.
  • the fabric shape preferably used in the present invention is literally a shape imitating an actual fabric transfer, or a repeated pattern of fabric or a repeated pattern of knitted fabric.
  • the fabric shape may be a regular woven fabric, a knitted fabric, or a non-woven fabric with unclear regularity, or any fabric texture.
  • a woven fabric for example, plain weave, twill weave, satin weave, etc. can be exemplified.
  • the repetition pitch of the unevenness may be 0.2 mm or more and 12 mm or less on an arbitrary straight line drawn on the wiring surface.
  • the repeating pitch is preferably in the range of 0.5 mm to 9 mm, more preferably 1.0 mm to 8 mm, further preferably 1.6 mm to 7 mm, and further preferably 2.4 mm to 6 mm. If the repeat pitch is out of the predetermined range, the tactile effect is poor.
  • the height difference between the concave portion and the convex portion is preferably 7 ⁇ m or more and 2500 ⁇ m or less. Further, the height difference is preferably 15 ⁇ m or more and 1500 ⁇ m or less, more preferably 25 ⁇ m or more and 900 ⁇ m or less, and further preferably 48 ⁇ m or more and 600 ⁇ m or less. If the height difference between the concave and convex portions is outside the predetermined range, the tactile effect will be poor.
  • Such unevenness on the surface of the electric wiring portion may be obtained by a profile using a non-contact thickness system. More specifically, using a wide double-sided tape on a flat plate, the wiring part is affixed together with the fabric as a base material in a state where tension is applied in the surface direction to such an extent that no clear sagging occurs, and an optical type What is necessary is just to obtain a profile with a thickness gauge. If the boundary step is within this range, it can be said that there is substantially no step because the tactile feel does not feel the presence of the step. In the present invention, it is preferable to use a three-dimensional measuring function of a laser microscope as an optical thickness meter.
  • a portion where the conductor layer is exposed is an electrode portion, and a portion covered with the insulating cover layer is a wiring portion.
  • a method of superposing a very thin insulating cover layer on a conductor layer can be exemplified. If the thickness of the conductor layer is 50 ⁇ m or more and the thickness of the insulating cover layer is less than 10 ⁇ m, no step difference will be felt tactilely, so that it can be considered that there is substantially no step.
  • a base layer, a conductor layer, an insulating cover layer, and an electrode surface layer as necessary are sequentially laminated and printed on a substrate, dried and cured, and then the softening temperature of each layer
  • a method of performing pressure molding processing at the above temperature can be exemplified. Since this method requires a relatively high temperature process, applicable substrates may be limited.
  • an electrical wiring having substantially no step can be obtained by using the transfer method described below.
  • the transfer method in the present invention is an electric wiring by printing a predetermined wiring pattern, insulating pattern, etc. in the order of the electrode surface layer, the insulating cover layer, the conductor layer, and the base layer on an intermediate medium, and then transferring it to the fabric as the base material. Can be obtained.
  • a hot melt layer can be formed on a wiring pattern printed on an intermediate medium in advance as a base layer and then transferred to a fabric.
  • a hot melt layer may be provided in advance on the fabric side as an image receiving layer.
  • thermoplastic urethane resin or a flexible resin similar to the binder component of the stretchable conductor composition of the present invention can be used.
  • a so-called release sheet such as a polymer film or paper having a release layer on the surface may be used as the intermediate medium.
  • a film, sheet, plate, or the like having a surface made of a difficult-to-adhere material such as a fluorine resin, a silicone resin, or polyimide can be used.
  • metal plate such as stainless steel, hard chrome-plated steel plate, or aluminum plate.
  • a base layer, a conductor layer, an insulating cover layer, and optionally an electrode surface layer are sequentially laminated and printed on a substrate, and in the process of drying, or
  • An example is a method of embossing at a temperature equal to or higher than the softening temperature of each layer after drying and curing.
  • the embossing method include press processing for pressing an embossing die or an embossing roller method for pressing an embossing roller. These methods are preferably used when the repetition pitch is 3 mm or more, preferably 2 mm or more, and a relatively large repetition pitch is used. In addition, these methods can be preferably used when applied to a case where the uneven height difference is 300 ⁇ m or more, preferably 600 ⁇ m or more. In these methods, since a relatively high temperature process is required, applicable substrates may be limited.
  • an electric wiring having a fabric-shaped unevenness on the surface can be easily obtained by forming a reverse pattern of the fabric-shaped unevenness on an intermediate medium in the transfer method in advance.
  • the intermediate medium in which the reverse pattern of the fabric-shaped unevenness is formed in advance can be formed by embossing when a thermoplastic film is used as the intermediate medium.
  • a plate material such as metal or resin
  • a predetermined cloth shape may be read with a three-dimensional scanner and cut with a three-dimensional processing machine.
  • in order to produce an intermediate medium in which a reversed pattern of fabric-shaped irregularities is formed in a laboratory for example, a fabric having a desired fabric shape is attached to a plate material, and a release material is sprayed on the surface of the fabric.
  • the transfer intermediate medium for molding in which the reversal pattern of the fabric shape to be used is formed in the direction can be obtained by applying the above and applying the mold-forming silicone resin to the entire surface and peeling off after the effect.
  • the resistance value of the wiring, and the wiring resistance value when returned to the initial state were measured.
  • the initial resistance value is R0
  • the resistance value when 10% stretched is R10
  • Rv ⁇ 100 the conductive function is maintained as “ ⁇ ”, and when Rv> 100, the conductive function. Loss “x”.
  • ⁇ Measurement of wiring resistance The resistance value of the wiring was measured using a milliohm meter manufactured by Agilent Technologies.
  • ⁇ Step> A part including the electrode part and the wiring part was cut into a 50 mm ⁇ 100 mm rectangle from the clothes-type electronic device to obtain a test piece. Using a double-sided tape with a width of 50 mm, paste the test piece with a 10 mm-thick wiring part together with the fabric as the base material so that no sagging occurs, and then apply it from the electrode part to the wiring part with an optical thickness gauge. The thickness profile was determined.
  • ⁇ A feeling of wearing> Ten adult male subjects were used as subjects, wearing clothes with electrical wiring created in the example, and performing radio exercises 1 and 2 while performing electrocardiogram measurements. About the wearing feeling during that period, 5 points of “good touch” and 1 point of “bad touch” were evaluated, and an average of 10 people gave 4 or more to ⁇ , 3 to less than 4 ⁇ 2 or more and less than 3 was evaluated as ⁇ , and less than 2 was evaluated as ⁇ .
  • a part including the electrode part and the wiring part was cut into a 50 mm ⁇ 100 mm rectangle from the clothes-type electronic device to obtain a test piece.
  • a double-sided tape with a width of 50 mm attach the 10 mm thick wiring part together with the fabric as the base material so that no sagging occurs, and then observe the test piece with the Keyence laser microscope VK-X200.
  • the obtained data was processed by the analysis application for VK-X100 / X200, and the height difference of the unevenness was obtained. The height difference was measured for five concave portions and averaged.
  • a 0.5 mm memory scale was placed on the test piece in a random direction, and the uneven pitch was measured. In the measurement, an average of pitch intervals for 10 repetitions was first obtained, and the same operation was performed a total of 5 times in another direction selected at random, and an average value of five average values was further obtained to obtain a repetition pitch.
  • ⁇ A feeling of wearing> A half marathon was carried out with 10 adult male subjects as subjects, wearing clothes with electrical wiring created in the examples, and performing electrocardiogram measurements. About the wearing feeling during that period, 5 points of “good touch” and 1 point of “bad touch” were evaluated, and an average of 10 people gave 4 or more to ⁇ , 3 to less than 4 ⁇ 2 or more and less than 3 was evaluated as ⁇ , and less than 2 was evaluated as ⁇ .
  • ⁇ Position misalignment> Using a registration mark provided in advance in each layer, a positional deviation between the conductor layer and the insulating cover layer was measured using a length measuring device capable of measuring in units of ⁇ m.
  • the registration marks are aligned with the square screen plate used for printing, and are provided in the portions corresponding to the four corners of the required printing pattern.At the time of printing, at least one registration mark is set so that it matches, and printing is performed.
  • the vector amount was calculated from the amount of deviation in the XY directions at each of the four corners, and the average of the absolute values of the four vector amounts was determined.
  • Salt and dilute sulfuric acid are added to the resulting latex for aggregation and filtration, and the resin is redispersed in deionized water in a volume of 20 times the volume ratio of deionized water, and washed by repeating filtration. And dried in the air to obtain a synthetic rubber resin R1.
  • Table 1 shows the evaluation results of the resulting synthetic rubber resin R1. Thereafter, the same operation was carried out by changing charged raw materials, polymerization conditions, washing conditions, etc., and resin materials R2 to R4 shown in Table 1 were obtained.
  • the abbreviations in the table are as follows.
  • NBR acrylonitrile butadiene rubber
  • NBIR acrylonitrile-isoprene rubber (isoprene 10% by mass)
  • amorphous silver powder 1 was agglomerated silver powder G-35 manufactured by DOWA Electronics, average particle size 6.0 ⁇ m
  • amorphous silver powder 2 was agglomerated aggregated silver powder G-35 manufactured by DOWA Electronics. Aggregated silver powder having an average particle diameter of 2.1 ⁇ m obtained in the above manner.
  • the composition was changed in accordance with Tables 2a and 2b to obtain the carbon paste CB1 for the electrode surface layer, the pastes CC1 and CC2 for the underlayer, and the insulating cover layer. 2b. Shown in In addition, about CC1 and CC2 which do not contain a solid particle, the resin component was melt
  • Example 1 A clothes-type electronic device for electrocardiogram measurement was manufactured by the transfer method shown in FIG. First, carbon paste CB1 which becomes an electrode surface layer was screen-printed in a predetermined pattern on a release PET film having a thickness of 125 ⁇ m, and then dried and cured. Next, the insulating paste CC1 serving as an insulating cover layer was screen-printed in a predetermined pattern and dried and cured.
  • the electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm.
  • the insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor.
  • the circular electrodes are similarly printed with carbon paste.
  • the thickness of the carbon paste layer is 25 ⁇ m in terms of dry film thickness, and the insulating cover layer is 15 ⁇ m.
  • the electrode portion and the wiring portion are screen-printed using the silver paste AG1 as a conductor layer, and dried under predetermined conditions. Cured.
  • the electrode part was circular with a diameter of 32 mm, the wiring part was 10 mm wide, and the dry thickness on the insulating cover layer was adjusted to 30 ⁇ m. Furthermore, the base layer is adjusted to a dry thickness of 20 ⁇ m using the same CC1 as the insulating cover layer, screen-printed and dried, and then the base layer is printed again under the same conditions, and the drying time is adjusted to adjust the solvent content. As a result, the surface tackiness was left so that 25% by mass remained, and printed electric wiring having transferability was obtained.
  • the transferable printed electrical wiring obtained by the above process is superimposed on a predetermined part of a sports shirt made of knitted fabric turned upside down, pressed at room temperature to temporarily bond the printed electrical wiring to the backside of the sports shirt, and release
  • the PET film was peeled off, the sports shirt was hung on a hanger, and further dried at 115 ° C. for 30 minutes to obtain a sports shirt with electrical wiring.
  • the wiring pattern is shown in FIG. 7, and the layout of the wiring pattern with respect to the shirt is shown in FIG.
  • the resulting sports shirt with electrical wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further with a stretchable conductor with a width of 10 mm from the circular electrode to the center of the posterior neck. Electrical wiring is formed on the inside.
  • the wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
  • a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
  • a heart rate sensor WHS-2 made by Union Tool through a stainless steel hook, and receive heart rate data with an Apple smartphone incorporating the app “myBeat” dedicated to the heart rate sensor WHS-2.
  • a sports shirt incorporating a heart rate measurement function was produced as described above.
  • the subject was made to wear this shirt, and radio exercises 1 and 2 were continuously performed, and electrocardiographic data during that time was acquired.
  • the obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was.
  • the same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. Tables 3 and 4 show the results.
  • Example 5 The sports shirt of the knitted fabric used in Example 1 was turned upside down, put in a formwork so that no wrinkles were formed on the back, and fixed by hitting pins on both shoulders and left and right hems of the shirt.
  • a sports shirt having the same wiring pattern as that of the example was manufactured by the direct printing method shown in FIG.
  • the underlayer was screen-printed with CC paste in a predetermined pattern, dried under predetermined conditions, printed again under the same conditions, and dried and cured. Subsequently, printing and drying were repeated in the order of the conductor layer, the insulating cover layer, and the electrode surface layer to obtain an electrical wiring.
  • a hook was attached to the obtained sports shirt in the same manner as in the example, a heart rate sensor WHS-2 manufactured by Union Tool Co., Ltd. was connected, and evaluation was performed in the same manner. Tables 3 and 4 show the results. Shown in
  • Comparative Example 1 the wiring part was disconnected when first worn, and electrocardiographic data could not be obtained.
  • Comparative Example 2 initial electrocardiographic data acquisition was possible without problems, but noise increased under the assumption that radio exercises were performed, and data could not be acquired during the second radio exercises.
  • Comparative Examples 3 to 5 it was possible to obtain data until the end, but in Comparative Example 5 where the initial specific resistance was relatively large, the resistance value at the time of expansion was 100 times the initial resistance value in the 100-times repeated extension test. It became "x" evaluation.
  • Example 1 of production of intermediate medium for mold release> A 500 mesh plain weave stainless steel screen is carefully attached to a 12 mm thick plywood board with a 15 mm high dam with double-sided adhesive tape, and PVA glue is used as a release agent, and half of the screen in the thickness direction when dried. A considerable amount necessary for burying was applied, naturally dried for 20 hours, and further dried at 70 ° C. for 2 hours in a dry oven. Next, a two-component curable silicone resin was poured so that the thickness was approximately 5 mm, and cured at room temperature for 24 hours. After curing, the silicone resin was peeled off to obtain a plain weave pattern uneven transfer mold 1. Hereinafter, the same operation was performed using stainless screens and polyester screens having different mesh numbers. The transfer mold shown in FIG.
  • Example 2 of production of intermediate medium for mold release> A tricot-fabric fabric is attached to a 12mm-thick plywood board with a double-sided adhesive tape and a dam with a height of 15mm around it. The mixture was naturally dried for 20 hours, and further dried at 70 ° C. for 2 hours in a dry oven. Next, a two-component curable silicone resin was poured so that the thickness was approximately 5 mm, and cured at room temperature for 24 hours. After curing, the silicone resin was peeled off to obtain a transfer pattern of unevenness of the tricot knitted fabric. Thereafter, the same operation was performed by changing the knitted fabric. The transfer mold shown in FIG.
  • ⁇ Embossed mold production example> A part of the plain weave screen used in the production example of the release intermediate medium is read with a 3D scanner and processed into digital data. After the negative / positive of the unevenness is reversed, the repetition pitch of the unevenness and the height difference are set to a predetermined value. It was deformed to a value and molded with a 3D printer.
  • a mold release agent was applied to the obtained molded body, then 5 sheets of glass cloth impregnated with room temperature curing epoxy resin were stacked, the whole was put in a thick futon compression bag, and the inside of the bag was decompressed with a vacuum cleaner, After 24 hours, the cured FRP part was removed, and then the back side of the cured FRP was filled with a thermosetting putty and flattened to obtain an embossed mold. In the same manner, molding is performed while changing the repetition pitch and the height difference of the unevenness.
  • Examples by transfer method comparative examples> (Examples 101 to 120, Comparative Examples 101 to 108)
  • a clothes-type electronic device for electrocardiogram measurement was manufactured by the transfer method shown in FIG. Table 5.
  • carbon paste CB1 which becomes an electrode surface layer was screen-printed with a predetermined pattern on the transfer mold 4 shown in FIG.
  • the insulating paste CC1 serving as an insulating cover layer was screen-printed in a predetermined pattern and dried and cured.
  • the electrode surface layer for electrocardiogram measurement is a circle with a diameter of 30 mm.
  • the insulating cover layer has a donut shape with an inner diameter of 30 mm and an outer diameter of 36 mm at the electrode portion, the wiring portion extending from the electrode has a width of 14 mm, and the end of the wiring portion has a diameter of 10 mm to attach a hook for connection with the sensor.
  • the circular electrodes are similarly printed with carbon paste.
  • the carbon paste layer has a dry film thickness of 25 ⁇ m, and the insulating cover layer has a thickness of 30 ⁇ m.
  • the electrode part and the wiring part were screen-printed using silver paste AG1 used as a conductor layer, and dried and cured under predetermined conditions.
  • the electrode part was circular with a diameter of 32 mm, the wiring part was 10 mm wide, and the dry thickness on the insulating cover layer was adjusted to 40 ⁇ m.
  • the base layer is adjusted to a dry thickness of 40 ⁇ m using the same CC1 as the insulating cover layer, screen-printed and dried, the base layer is printed again under the same conditions, the drying time is adjusted, and the solvent content is adjusted. As a result, the surface tackiness was left so that 25% by mass remained, and printed electric wiring having transferability was obtained.
  • the transferable printed electrical wiring obtained by the above process is overlaid on a predetermined portion of a sports shirt made of knit fabric turned over, and pressed at room temperature to temporarily bond the printed electrical wiring to the backside of the sports shirt.
  • the sports shirt was hung on a hanger and further dried at 115 ° C. for 30 minutes to obtain a sports shirt with electric wiring having a plain woven pattern on the surface.
  • the resulting sports shirt with electrical wiring has a circular electrode with a diameter of 30 mm at the intersection of the left and right posterior axillary lines and the seventh rib, and further with a stretchable conductor with a width of 10 mm from the circular electrode to the center of the posterior neck. Electrical wiring is formed on the inside.
  • the wiring extending from the left and right electrodes to the center of the rear neck has a gap of 5 mm at the center of the neck, and both are not short-circuited.
  • a stainless steel hook is attached to the surface side of the central end of the rear neck, and a stretchable conductor composition layer using a conductive thread twisted with a thin metal wire to ensure electrical continuity with the wiring part on the back side And a stainless steel hook were electrically connected.
  • a sports shirt incorporating a heart rate measurement function was produced as described above. The wiring pattern is shown in FIG. 7, and the layout of the wiring pattern with respect to the shirt is shown in FIG.
  • the subject wore this shirt, ran a half marathon distance, and acquired electrocardiographic data during that time.
  • the obtained electrocardiogram data has low noise, high resolution, and quality that can be analyzed from the heartbeat interval change, electrocardiogram waveform, etc., as the electrocardiogram mental state, physical condition, fatigue level, sleepiness, tension level, etc. It was.
  • the same shirt was worn by 10 subjects, and the feeling of wearing was evaluated. The results are shown in Table 6a, Table 6b, Table 6c.
  • Examples by direct printing method + embossing, comparative examples> A clothes-type electronic device for electrocardiogram measurement was manufactured by the direct printing method shown in FIG.
  • the sports shirt of the knitted fabric used in Example 101 was turned upside down and put in a mold so that no wrinkles were formed on the back, and pins were fixed to both the shoulders and the right and left hems of the shirt.
  • a sports shirt having the same wiring pattern as that of the example was manufactured by the direct printing method shown in FIG.
  • the underlayer was screen-printed with CC paste in a predetermined pattern, dried under predetermined conditions, printed again under the same conditions, and dried and cured. Subsequently, printing and drying were repeated in the order of the conductor layer, the insulating cover layer, and the electrode surface layer to obtain an electrical wiring.
  • Examples by transfer method + embossing, comparative examples> Using the release PET film instead of the transfer mold, electrical wiring is formed by the transfer method shown in FIG. 6, and then embossing is performed using a predetermined emboss mold to produce a garment-type electronic device for electrocardiogram measurement. , Evaluated in the same way. The results are shown in Table 6a, Table 6b, Table 6c, Table 7a, Table 7b, and Table 7c.
  • Comparative Example 1 is a case where a conductor layer with poor flexibility is used, and there is no problem with the wearing feeling, but the durability against expansion and contraction is poor.
  • Comparative Example 102 and Comparative Example 104 are cases where the fabric shape processing was not performed on the wiring surface, and there is a problem in the wearing feeling. In particular, it can be interpreted that the flat wiring surface sticks to the skin and the discomfort increases in the exercise with intense perspiration such as long distance running.
  • Comparative Example 103 is an example of a conductor layer with poor flexibility and has a problem in stretch durability. Although Example 110 has some problems in stretch durability, it can be seen that the feeling of wearing and washing durability are improved, and that when the unevenness is provided, the durability against stretch is slightly improved. Comparative Example 105 is a case where a surface pattern of a so-called high mesh plain woven fabric is used, but the effect of improving the wearing feeling is not seen because both the repeated pitch of the unevenness and the height difference are too small. On the contrary, Comparative Example 106 is a case where it is too large, the effect of improving the feeling of wear is poor, and there is a slight problem in stretch durability.
  • Comparative Example 107 is a case where the uneven height difference is small, and the effect of improving the feeling of wear is poor.
  • the comparative example 108 is a case where the uneven height difference is large. It can be interpreted that if the unevenness due to embossing is too large, the conductor layer is likely to break.
  • Example of production using an intermediate medium for mold release having fabric-shaped irregularities (Examples 201 to 205) A 150 mesh plain woven stainless steel screen is carefully attached to a 12 mm thick china plywood with a 15 mm high dam with double-sided adhesive tape, and PVA glue is used as a release agent. A considerable amount necessary for burying was applied, naturally dried for 20 hours, and further dried at 70 ° C. for 2 hours in a dry oven. Next, a two-component curable silicone resin was poured so that the thickness was approximately 5 mm, and cured at room temperature for 24 hours. After curing, the silicone resin was peeled off to obtain a plain weave pattern uneven transfer mold. Table 8 below shows the transfer mold obtained by changing to the release PET film of Example 1. Electrical wiring was produced with the contents shown in FIG. The results are shown in Table 8. Shown in
  • Example of production using an intermediate medium for release having striped irregularities A release intermediate medium having stripe-shaped unevenness was produced using a 3D printer. The stripe period was 2 mm, the concavo-convex repetition was a sine wave, and the amplitude was 50 ⁇ m. The transfer mold having stripe-shaped unevenness obtained by changing to the release PET film of Example 1 was used, and Table 8 below. Electrical wiring was produced with the contents shown in FIG. The results are shown in Table 8. Shown in
  • Example 201 The sports shirt of the knitted fabric used in Example 1 was turned upside down, put in a formwork so that no wrinkles were formed on the back, and fixed by hitting pins on both shoulders and left and right hems of the shirt.
  • a sports shirt having the same wiring pattern as that of the example was manufactured by the direct printing method shown in FIG.
  • the base layer is screen-printed with CC paste in a predetermined pattern, removed from the mold and dried under predetermined conditions, and set again in the mold, in the order of conductor layer, insulating cover layer, and electrode surface layer.
  • Each of the printing, removing the mold, drying, and fixing the mold was repeated to obtain electrical wiring.
  • a hook was attached to the obtained sports shirt in the same manner as in the example, a heart rate sensor WHS-2 manufactured by Union Tool Co., Ltd. was connected, and evaluation was performed in the same manner. The results are shown in Table 8. Shown in Table 8.
  • Comparative Example 201 the wiring misalignment was very large, the wiring according to the present invention was very thick, and the overlap margin of each layer was set to about 2 mm. However, no major problem occurred, but the wiring width was 1 mm. In the case of a comparatively thin line that cuts off, the deviation exceeds the wiring width, so that it is obvious that the electric wiring according to the design cannot be formed.
  • the clothes-type electronic device has an electrical wiring composed of a stretchable electrode surface layer, a stretchable insulating cover layer and a base layer, and a stretchable conductor layer. Furthermore, since there is substantially no step at the boundary between the electrode part and the wiring part, it has excellent characteristics that achieve both good electrical characteristics and good wearing feeling. A good wearing feeling can be achieved in a more natural state without causing mental noise resulting from poor comfort, especially when seeking the wearer's mental state based on physical physical data such as electrocardiogram data. Therefore, it can be said that there is a big objection in the application of such clothes-type electronic devices.
  • the electrode surface layer having elasticity, the insulating cover layer and the underlayer having elasticity, and the elasticity provides an excellent clothes-type electronic device that has both good electrical characteristics and good wearing feeling, having an electrical wiring composed of a conductive layer having substantially no step at the boundary between the electrode part and the wiring part. be able to.
  • the present invention is not limited to the application examples illustrated in the present embodiment, but is a sensor in which information on the human body, that is, biopotentials such as myoelectric potential and cardiac potential, biological information such as body temperature, pulse, blood pressure, etc. are provided on clothes.
  • Wearable device for detection, or clothing incorporating an electrical heating device wearable device incorporating a sensor for measuring clothing pressure, clothing for measuring body size using clothing pressure or displacement detection, It can be widely applied to sock-type devices for measuring the pressure on the soles.
  • the stretchable wiring without a surface step acts in a good direction for connection with components and connectors
  • the present invention is a wiring portion such as clothes, tents, bags, etc. in which flexible solar cell modules are integrated in textiles.
  • Such wearable devices can be applied not only to the human body but also to animals such as pets and livestock, or mechanical devices having a telescopic part, a bent part, etc. It can also be used as electrical wiring for systems that are connected. It is also useful as a wiring material for implant devices to be embedded in the body.
  • the clothes-type electronic device of the present invention can collect physical physical data and vital data as a wearable terminal, and can communicate the obtained data as an electrical signal to the outside. It becomes an input means for a system that provides useful information. Furthermore, if an actuator is installed in the clothes-type electronic device of the present invention, it can be applied to an auxiliary function of movement such as a powered suit. Furthermore, the system of the system for detecting and diagnosing physical problems such as various diseases by comprehensively analyzing physical physical data and mental information obtained from vital data using the clothes-type electronic device of the present invention. Can be used as a terminal.
  • the clothes-type electronic device of the present invention has a good feeling of wearing and does not feel uncomfortable due to wearing, so it is possible to acquire high-quality vital data. It can also be used as a data collection device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Outerwear In General, And Traditional Japanese Garments (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】伸縮性導体組成物を用いた電気配線を備える衣服型の電子機器において、着用時の違和感を減じた衣服型電子機器を提供する。 【解決手段】衣服型電子機器の体表面に接する部分において、導体がむき出しになった電極部と、絶縁カバーコートが設けられた配線部との境界の段差を、実質的に無くすることにより、着用時の違和感を低減された、自然な着用感の衣服型電子機器を得る。さらに表面に布目の凹凸を付与することにより、さらに自然な着用感を得る。このような衣服型電子機器は印刷転写法により作成することができる。

Description

衣服型電子機器、および衣服型電子機器の製造方法
 本発明は、電子機能ないし電気機能を衣服に組み込んで使用する衣服型のウェアラブル電子機器に関し、さらに詳しくは、伸縮性を有する電気配線を有し、自然な着用感のある衣服型電子機器と、その製造方法に関する。
 昨今、入出力、演算、通信機能を有する電子機器を身体に極近接、ないしは密着した状態で使用することを意図したウェアラブル電子機器が開発されている。ウェアラブル電子機器には腕時計、メガネ、イヤホンのようなアクセサリ型の外形を有する機器、衣服に電子機能を組み込んだテキスタイル集積型機器が知られている。かかるテキスタイル集積型機器の一例が特許文献1に開示されている。
 電子機器には、電力供給用や信号伝送用の電気配線が必要である。特にテキスタイル集積型ウェアラブル電子機器には、伸縮する衣服に合わせて電気配線にも伸縮性が求められる。通常、金属線や金属箔からなる電気配線には、本質的に実用的な伸縮性は無いため、金属線や金属箔を波形、あるいは繰り返し馬蹄形に配置して、擬似的に伸縮機能を持たせる手法が用いられている。
 金属線の場合には、金属線を刺繍糸と見なして、衣服に縫い付けることにより配線形成が可能である。しかしながら、かかる手法が大量生産に向いていないことは自明である。
 金属箔のエッチングにより配線を形成する手法は、プリント配線板の製法として一般的である。金属箔を伸縮性のある樹脂シートに貼り合わせ、プリント配線板と同様の手法で波形配線を形成して、擬似的に伸縮性配線とする手法が知られている。(非特許文献1参照)かかる手法は波形配線部の捻れ変形により擬似的に伸縮特性を持たせるものであるが、捻れ変形により金属箔が厚さ方向にも変異するため、衣服の一部として用いると、非常に違和感のある着用感となり好ましいものではなかった。また洗濯時のような過度な変形を受けた場合には金属箔に永久塑性変形が生じ、配線の耐久性にも問題があった。
 伸縮性の導体配線を実現する手法として、特殊な導電ペーストを用いる方法が提案されている。銀粒子、カーボン粒子、カーボンナノチューブ等の導電性粒子と伸縮性を持つウレタン樹脂などのエラストマー、天然ゴム、合成ゴム、溶剤などを混練してペースト状とし、衣服に直接、ないし伸縮性のフィルム基材などと組み合わせて配線を印刷描画するものである。
 導電粒子と伸縮性バインダー樹脂とからなる導電性組成物は、巨視的には伸縮可能な導体を実現することができる。かかるペーストから得られる導電性組成物は、微視的に見れば、外力を受けた際に樹脂バインダー部変形し、導電性粒子の電気的連鎖が途切れない範囲で導電性が維持されるものである。巨視的に観察される比抵抗は、金属線や金属箔に比較すると高い値であるが、組成物自体が伸縮性を持つために波形配線などの形状を採る必要が無く、配線幅と厚さには自由度が高いため実用的には金属線に比較して低抵抗な配線を実現可能である。
 特許文献2では、銀粒子とシリコ-ンゴムを組合せ、シリコーンゴム基板上の導電性膜をさらにシリコーンゴムで被覆することにより、伸長時の導電率低下を抑制する技術が開示されている。特許文献3には銀粒子とポリウレタンエマルジョンの組合せが開示されており、高導電率でかつ高伸長率の導電膜が得られるとされている。さらにカーボンナノチューブや銀フィラーなど、高アスペクト比の導電性粒子を組み合わせて特性改善を試みた例も多々提案されている。
 特許文献4では、印刷法を用いて電気配線を衣服に直接的に形成する技術が開示されている。
特開平2-234901号公報 特開2007-173226号公報 特開2012-54192号公報 特許第3723565号公報
 一般的なプリント配線板やメンブレン回路におけるプリント配線から容易に類推できるように、電気配線には絶縁性の基板ないし下地層、パターニングされた導体層、さらに絶縁カバーコート層が必要である。さらに、ウェアラブル電子機器においては、特に人体に装着して人体電位を測定するような用途に用いられる配線においては、人体表面に直接接触する電極が必要となる場合があり、かかる電極表面はプリント配線板やメンブレン回路の例によれば、貴金属ないし錫、ハンダ等でメッキされるか、あるいはカーボンを導電フィラーに用いたカーボンペースト等で導体層を被覆する電極表面層が設けられるのが技術常識である。
 かかる下地層、導体層、絶縁カバー層、電極表面層は各々固有のパターン形状を有しており、また各々の層はそれぞれの機能発現に必要な厚さを有している。各々の層が重なり合う結果、プリント配線の表面には段差として凹凸が生じる。これは主にサブトラクティブ法でパターン形成を行うプリント配線板であっても、アディティブ法でパターン形成を行うメンブレン回路であっても同じである。
 図1は従来のプリント配線の断面を示した模式図である。1.基材に、2.下地層、3.導体層、4.絶縁コート層の順で、順次印刷~乾燥硬化を繰り返すことにより、ここに示した断面構造を有する配線を得ることができる。ここに絶縁カバーコートが無く、導体層がむき出しになっている部分が電極部、絶縁カバーコートでおおわれている部分が配線部となる。
 図2は従来のプリント配線において電極表面層を設けた場合の模式図である。いずれの場合でも配線部と電極部との境目に段差が生じ、電気配線の表面に段差としての凹凸が生じることが理解できる。
 かかるプリント配線の表面の段差の凹凸は、一般的な電子機器では大きな問題とはならないが、衣服型のウェアラブル電子機器の、特に衣服の内側に形成され、人体表面に直接的に接する配線においては、衣服着用時の違和感、不快感の原因となり、自然な着用感を阻害する原因となり得るものである。
 もちろん、かかる配線表面の段差の凹凸に起因する自然な着用感の阻害は、金属配線を用いた伸縮配線や、導電性繊維を用いた配線においても同様である。
 一方で、人体表面に接触する電極部や配線部は、特に激しい運動中の被験者や、高温高湿環境などで作業する被験者、さらに海運や漁業関係者のように水に濡れる環境で作業を行う被験者にとっては、発汗した身体表面に、電極表面や配線部表面が汗で張り付くために、非常に不快な着用感となる、という問題がある。
 もちろん、かかる配線表面や電極表面が、身体表面に張り付いて不快になるという着用感の阻害は、金属配線を用いた伸縮配線や、導電性繊維を用いた配線においても同様である。
 導電性のペーストを利用して電気配線や電極を形成するには一般にスクリーン印刷法が用いられている。スクリーン印刷ではスクリーン版が被印刷物である基材に接触した状態で、スクリーンを通してインクないしペーストが基材側に移行することでパターン形成が行われる。版材が被印刷物に接触するために、本発明で要求されるような、下地層、導体層、絶縁カバー層、電極表面層等の複数の層から構成されるアウトプットが必要な場合には一層印刷する毎に、その層の乾燥硬化工程を経る必要がある。一般的なリジッドな基材であれば、乾燥硬化時に加えられる基材の熱収縮、あるいは線膨張のヒステリシス、加熱により発生する吸放湿による寸法変化などに一応の対策は必要であるが、基材が大きく変形する温度域を用いなければ、ほぼ問題なく各層の重ね印刷が可能で有り、位置合わせについてもあらかじめ基材の寸法変化を予想するなどの手法との組み合わせにより工学的に問題ないレベルまで交差を減ずることができる。
 しかしながら、衣服型電子機器における基材は、織物、編物、不織布、伸縮性のフィルムないしシートのような、外力により容易に変形する柔軟基材であるため、各層の位置合わせが非常に困難となる。これらの問題の解決には仮の固定台に基材を貼り付けて印刷と乾燥硬化を繰り返す手法が考えられるが、固定台の熱容量分、加熱冷却に時間とエネルギーを要することになり、またハンドリング性などの観点からも好ましい方法ではない。
 本発明者は、かかる目的を達成するために鋭意検討した結果、かかる違和感は、導体層ないし電極表面層がむき出しになっている電極表面と絶縁カバー層でおおわれている配線部分との境目にある段差が主原因であることを突き止め、
 また、本発明者は、かかる問題を解決するために鋭意検討した結果、このような不快感は、電気配線の表面形状により大幅に低減することができることを見いだし、
 また転写手法を用いることにより上記の問題を解決することを考案し、以下の発明に到達した。
 すなわち、本発明は以下の構成である。、
[1]導体層、絶縁カバー層、絶縁下地層を含む電気配線を体表面に接する部分に有する衣服型電子機器であって、該電気配線の電極部と配線部の境界の段差が実質的に無いことを特徴とする衣服型電子機器。
[2]導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有することを特徴とする前記[1]記載の電気配線を有する衣服型電子機器。
[3]前記導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする[1]または[2]のいずれかに記載の衣服型電子機器。
[4]前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする[1]から[3]のいずれかに記載の衣服型電子機器。
[5]少なくとも、導体層、絶縁カバー層、絶縁下地層を含む電気配線を体表面に接触する部分に有する衣服型電子機器であって、該電気配線の配線部の表面が布目形状の凹凸を有することを特徴とする衣服型電子機器。
[6]少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有することを特徴とする[5]記載の電気配線を有する衣服型電子機器。
[7]前記配線部の表面が有する布目状の凹凸において、凹凸の繰り返しピッチが、少なくとも任意の直線上において0.06mm以上、12mm以下である事を特徴とする[5]または[6]に記載の衣服型電子機器。
[8]前記配線部の表面が有する布目状の凹凸において、凹部と凸部との高低差が7μm以上2500μm以下である事を特徴とする[5]から[7]のいずれかに記載の衣服型電子機器。
[9]前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする[5]から[8]のいずれかにいずれかに記載の衣服型電子機器。
[10] 導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする[5]から[9]のいずれかに記載の衣服型電子機器。
である。
[11] 少なくとも、導体層、絶縁カバー層、絶縁下地層を含む電気配線を有する衣服型電子機器の製造方法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、絶縁カバー層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
[12] 少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有する衣服型電子機器の製法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、絶縁カバー層、電極表面層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
[13] 少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有する衣服型電子機器の製法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、電極表面層、絶縁カバー層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
[14] 前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする[11]から[13]のいずれかに記載の衣服型電子機器の製造方法。
[15] 導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする[11]から[14]のいずれかに記載の衣服型電子機器の製造方法。
[16] 前記離型性のある第一の基材が、表面にストライプ形状または布地形状の凹凸を有することを特徴とする[11]から[15]のいずれかに記載の衣服型電子機器の製造方法。
本発明の衣服型電子機器に用いられる電気配線は、導体層ないし電極表面層がむき出しになっている電極表面と絶縁カバー層でおおわれている配線部分との境目にある段差を実質的に無くすることにより、衣服型電子機器の着用時の違和感を大幅に軽減することにより、自然な着用感を実現したものである。
 段差は、配線部と非配線部との間にも存在するが、配線部と非配線部との境界の段差は、下地層、カバー層により被覆されており、緩やかな段差になっている点、ならびに、段差の高い部分と低い部分の双方が同じ素材であるカバー層であるため触感上の違和感が小さい。
しかしながら電極部と配線部との境界には、それぞれが異なる素材で構成されているという本質的な差が存在する。特に電極部は、金属ないしカーボンのように電子伝導性を有する導体部分で構成されており、この部分の熱伝導率は高い。一方の絶縁カバー層は有機素材であるため熱伝導率は低い。本発明者らは、電極と配線の形状の工夫を種々行った結果、衣服着用時の違和感は、電極部と絶縁カバー部の段差と、熱伝導性の差との相乗効果によって生じていることを突き止め、境界部の段差を無くすることにより、着用時の違和感を大幅に減ずることができることを見いだした。
さらに加えて、本発明の電気配線の電極部と配線部の境界の段差を実質的に無くした衣服型電子機器においては、電極部に対して絶縁カバー部盛り上がっていないため、電極と人体表面との接触、ならびにディスクリートな部品や、モジュールと接続するためのコネクタとの接合もスムースに行える。
人体表面の接触状態の改善は、生体信号の検知確度につながる。また、コネクタ部においては、コネクタの外形を絶縁カバー部にかぶせることができるため、電極表面の露出を無くすることが可能となる。取り付け部分が段差無く平面であるため、さらに取り付け時に電極部に無理な変形を強いることなくコネクタ部品を取り付けることが可能となり、接続部の信頼性が改善されるという優れた効果を得ることができる。
電気配線部内の厚さが各部で異なった場合、電気配線に張力が加わった場合に厚い部分の伸び率が小さく、薄い部分の伸び率が大きくなり、局所的に負荷が大きくなって全体的な材料寿命を縮めてしまう恐れがあるが、本発明では電気配線部内の段差が実質的に小さいために、このような伸び率のばらつきが生じにくく、結果として製品寿命を延ばすことができる。
本発明の衣服型電子機器に用いられる電気配線は、表面に布目形状の凹凸を設けることによって、湿潤による電気配線部の身体表面への張り付きを防ぐことにより、着用時の不快感を低減するものである。
しかしながら、電気配線表面に凹凸を付ける行為は、直観的には電極と体表面への接触機会を減じるため、身体からの信号検出を困難とすることが懸念される。元々、リジッドな電極材料を用いた場合には、平坦な電極表面と自由曲面である身体表面の接触は本質的に良くはない。実際的には身体側が変形することにより、電極表面と身体表面の接触が行われているわけであるが、身体表面に不自然な変形を与える状態は、すなわち違和感を生じ、必ずしも心地よい状態であるとは云えない。
電極表面に凹凸を付けると、被検体が平面であれば、たしかに接触面積が小さくなり検出精度が落ちる場合がある。本発明者らは、柔軟な人体表面においては、皮膚の変形が電極表面の凹凸に追従するため、接触面積の低下は、見た目ほど大きくはなく、発汗時不快感低減のために電極方面に凹凸を付ける行為が、必ずしも検出精度の低下には繋がらないことを見出した。
さらに本発明では、フレキシブルな材料によって構成された電気配線を用いることにより、身体方面の変形と、電極側の変形が相乗して、より確実な接触状態となる。さらに好ましくは伸縮可能なストレッチャビリティを有する電気配線を用いることにより、電極側も巨視的に自由曲面的に変形するため、電極表面と身体表面の接触状態がさらに確実な状態となる。
また、表面に凹凸を設けることにより、電気配線部分の機械的な強度が低下し、衣服型電子機器の耐久性が損なわれることが懸念される。しかしながら本発明者らの検討によれば、凹凸を形成しても顕著な耐久性の低下は起こらず、むしろ向上することが判明している。本発明者らは、表面凹凸が、配線部分に実質的に蛇腹構造を付与するため、構造的に屈曲性と伸縮性が発言するためであると考えている。本発明で好ましく与えられる凹凸の高低差や繰り返しピッチは、条件によっては配線部の総厚さを越え、蛇腹構造による耐久性改善効果はさらに顕著となる。
さらに本発明では、フレキシブルな材料によって構成された電気配線を用いることにより、配線部分の変形自由度が構造的にも素材的にもさらに上がり、さらにストレッチャビリティを有する電気配線を用いることによりさらに配線部分の自由度が上がり、耐久性がさらに改善される。特に圧縮方向の変形自由度が上がるため、洗濯耐久性の向上が期待される。
本発明の製造方法では、電気配線に必要な各層を、十分な寸法安定性を有する離型用の中間媒体上に形成するため、布地に直接印刷する場合に比較して各層の位置合わせが高精度に可能となる。
さらに本発明の製造方法を用いることにより、電極部分と配線得分の段差を実質的に無くすることが可能となる。衣服型電子機器に限らず、一般のプリント配線においては、電極部分と電極に至る配線を同じ導電材料で形成し、配線部分には絶縁カバー層、電極部分には電極表面層を形成するため、配線部分と電極部分の境界に段差が生じる。本発明ではこの段差を実質的に無くすることができ、得られる衣服型電子機器の着用時の違和感を大幅に軽減することができる。この作用により、本発明の製造方法で製造される衣服型電子機器では自然な着用感を得ることができる。
さらに加えて、本発明の製造方法によって得られる電気配線の電極部と配線部の境界の段差を実質的に無くした衣服型電子機器においては、電極部に対して絶縁カバー部盛り上がっていないため、電極と人体表面との接触、ならびにディスクリートな部品や、モジュールと接続するためのコネクタとの接合もスムースに行える。
人体表面の接触状態の改善は、生体信号の検知確度につながる。また、コネクタ部においては、コネクタの外形を絶縁カバー部にかぶせることができるため、電極表面の露出を無くすることが可能となる。取り付け部分が段差無く平面であるため、さらに取り付け時に電極部に無理な変形を強いることなくコネクタ部品を取り付けることが可能となり、接続部の信頼性が改善されるという優れた効果を得ることができる。
電気配線部内の厚さが各部で異なった場合、電気配線に張力が加わった場合に厚い部分の伸び率が小さく、薄い部分の伸び率が大きくなり、局所的に負荷が大きくなって全体的な材料寿命を縮めてしまう恐れがあるが、本発明では電気配線部内の段差が実質的に小さいために、このような伸び率のばらつきが生じにくく、特に急な段差が無いことにより伸び率の酷暑的な変化が抑えられるため結果として製品寿命を延ばすことができる。
さらに本発明では、中間媒体の表面にあらかじめ所定の立体パターンを形成しておくことにより、そのパターンを電気配線に転写でき、表面に立体パターンを有する電気配線を得ることができる。立体パターンに布地形状を用いることにより、配線がある部分と配線がない部分の触感差を大きく減ずることが可能となり、衣服型電子機器の着用感向上に大きな寄与を得ることができる。
は、従来の電気配線において電極表面層が無い場合の断面を示した模式図である。 は、従来の電気配線において電極表面層を設けた場合の断面を示した模式図である。 は、本発明の電気配線において電極表面層が無い場合の断面を示した模式図である。 は、本発明の電気配線において電極表面層を設けた場合の断面を示した模式図である。 は、従来の電気配線の製法を示す模式工程図である。 は、本発明の電気配線の製法の一例を示す模式工程図である。 は、本発明の電気配線パターンの一例である。 は、図7の配線例のスポーツシャツへの配置位置を示した模式図である。
1.基材(ファブリック)
2.絶縁下地層
3.伸縮性導体組成物層(伸縮性導体層)
4.伸縮性カバー層(絶縁カバー層)
5.伸縮性カーボン層(電極表面層)
6.接着層(絶縁下地層)
10.仮支持体(離型指示体)
以下、本発明を図により説明する。
図3は、本発明の電気配線において、電極表面層が無い場合の断面の模式図である。本例では、導体層がそのまま電極として機能している。従来の電気配線の断面である図1と比較すると、電極表面と絶縁カバー層が同じ高さになるため電気配線表面の凹凸は生じない。
 図4.は本発明の電気配線において、電極表面層がある場合の断面の模式図である。従来の電気配線において電極表面層がある場合の図3と比較すると、電極表面層と絶縁カバー層が同じ高さになるため電気配線表面の凹凸は生じない。
 本発明における電気配線はフレキシブルであることが自明である。本発明のフレキシブル電気配線は、電気配線を構成する導体層、絶縁カバー層、絶縁下地層、電極表面層として、それぞれが柔軟性を有する材料により構成されることで実現される。さらに本発明のフレキシブル電気配線は、伸縮性を有するストレッチャブル材料で構成されることが好ましく、電気配線がフレキシビリティに加えてストレッチャビリティを有する事が好ましい。
 以下、電気配線を構成する各層について説明する。
 本発明において基材として用いることができるのは衣服型電子機器の衣服部分の一部、もしくは、全体を構成する布帛である。布帛としては織物、編み物、不織布を例示することができ、さらにこれらに樹脂コート、樹脂含浸したコート布なども基材として用いることができる。また、ネオプレン(登録商標)に代表される合成ゴムシート等も基材として用いることができる。本発明で用いられる布帛は繰り返し10%以上の伸縮が可能なストレッチャビリティを有する事が好ましい。また本発明の基材は50%以上の破断伸度を有する事が好ましい。本発明の基材は布元反でもよく、また、リボン、テープ状でも良く、組紐、網組でもよく、元反からカットされた枚葉の布でも良い。
布帛が織物の場合、例えば平織、綾織、朱子織、等を例示できる。布帛が編み物の場合、例えば平編み、およびその変形、鹿の子編、アムンゼン編、レース編、アイレット編、添え糸網、パイル編、リブ網、リップル編、亀甲編、ブリスター編、ミラノ・リブ編、ダブルピケ編、シングル・ピケ編み、斜文編、ヘリボーン編、ポンチローマ編、バスケット編、トリコット編、ハーフ・トリコット編、サテントリコット編、ダブルトリコット編、クインズコード編、ストライプ・サッカー編、ラッセル編、チュールメッシュ編、およびこれらの変形・組み合わせを例示できる。布帛はエラストマー繊維などからなる不織布であっても良い。
 本発明の下地層は、配線部の基材側の絶縁を担う層である。ここに絶縁とは電気絶縁に加え、機械的、化学的、生物学的な絶縁を含み、基材を透過してくる水分や化学物質、生体物質から導体層を絶縁する機能が必要である。
 本発明の下地層は好ましくは、柔軟な高分子材料である。柔軟な高分子材料としては所謂ゴム、エラストマーと呼ばれる材料を使用できる。本発明のかかるゴム、エラストマーとしては、後述する導体層を形成するための樹脂材料を使用することができる。
本発明の下地層は繰り返し10%以上の伸縮が可能なストレッチャビリティを有する事が好ましい。また本発明の下地層は50%以上の破断伸度を有する事が好ましい。さらに本発明の下地層は引っ張り弾性率が10~500MPaであることが好ましい。
 本発明の下地層は、コーティング液、浸漬液、あるいは印刷インク、印刷ペースト等の液状形態、ないしスラリー状態を介して基材上に適用されることが好ましい。下地層用材料を液状形態ないしスラリー状態にするには溶剤へ溶解分散すれば良い。印刷適性等の調整のために、公知のレベリング剤、チキソ性付与剤などを配合することは本発明の範囲内である。溶剤としては後述する導電ペーストに用いることができる溶剤等の中から適宜選択される。
 本発明において、特殊なケースとして、下地層を形成する材料の前駆体が液体である場合には、前駆体を用いて層形成し、しかるべき反応を経て、下地層を形成することも可能である。
 本発明の下地層用の材料が、液体状態ないしスラリー状態を介することが困難な場合、例えば溶融押出、プレス成形で、フィルムまたはシート状に加工して基材に接着剤などで貼り付けることも可能である。また前駆体状態でフィルムないしシートに加工した後に所定の反応により固体化してフィルムないしシートを得ることもできる。
 本発明の導体層は、比抵抗が1×100Ωcm以下の材料で構成されている層を云う。本発明の導体層はストレッチャビリティを有する事が好ましい。本発明に於けるストレッチャビリティとは、繰り返し10%以上の伸縮が可能であることを云う。さらに本発明の導体層は、導体層単独で50%以上の破断伸度を有する事が好ましい。さらに本発明の導体層は引っ張り弾性率が10~500MPaであることが好ましい。このようなストレッチャビリテイを有する材料を伸縮性導体組成物と呼ぶ。
 伸縮性導体組成物は、以下に述べる導電ペーストを介して得ることができる。以下、本発明の構成要素の実現手段の一つである導電性ペーストについて説明する。導電性ペーストは、少なくとも導電粒子、好ましくは加えられる非導電性粒子、伸縮性樹脂、溶剤から構成される。
 本発明の導電性粒子は、比抵抗が1×10-1Ωcm以下の物質からなる、粒子径が100μm以下の粒子である。比抵抗が1×10-1Ωcm以下の物質としては、金属、合金、カーボン、ドーピングされた半導体、導電性高分子などを例示することができる。本発明で好ましく用いられる導電性粒子は銀、金、白金、パラジウム、銅、ニッケル、アルミニウム、亜鉛、鉛、錫などの金属、黄銅、青銅、白銅、半田などの合金粒子、銀被覆銅のようなハイブリッド粒、さらには金属メッキした高分子粒子、金属メッキしたガラス粒子、金属被覆したセラミック粒子などを用いることができる。
 本発明ではフレーク状銀粒子ないし不定形凝集銀粉を主体に用いることが好ましい。なお、ここに主体に用いるとは導電性粒子の90質量%以上用いることである。不定形凝集粉とは球状もしくは不定形状の1次粒子が3次元的に凝集したものである。不定形凝集粉およびフレーク状粉は球状粉などよりも比表面積が大きいことから低充填量でも導電性ネートワークを形成できるので好ましい。不定形凝集粉は単分散の形態ではないので、粒子同士が物理的に接触していることから導電性ネートワークを形成しやすいので、さらに好ましい。
 フレーク状粉の粒子径は特に限定されないが、動的光散乱法により測定した平均粒子径(50%D)が0.5~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が15μmを超えると微細配線の形成が困難になり、スクリーン印刷などの場合は目詰まりが生じる。平均粒子径が0.5μm未満の場合、低充填では粒子間で接触できなくなり、導電性が悪化する場合がある。
 不定形凝集粉の粒子径は特に限定されないが、光散乱法により測定した平均粒子径(50%D)が1~20μmであるものが好ましい。より好ましくは3~12μmである。平均粒子径が20μmを超えると分散性が低下してペースト化が困難になる。平均粒子径が1μm未満の場合、凝集粉としての効果が失われ、低充填では良導電性を維持できなくなる場合がある。
 本発明における非導電性粒子とは、有機ないし無機の絶縁性物質からなる粒子である。本発明の無機粒子は印刷特性の改善、伸縮特性の改善、塗膜表面性の改善を目的に添加され、シリカ、酸化チタン、タルク、アルミナ、等の無機粒子、樹脂材料からなるマイクロゲル等を利用できる。
 本発明では好ましくは非導電性粒子とし硫酸バリウム粒子を用いることができる。本発明の硫酸バリウム粒子としては、天然の重晶石と呼ばれるバライト鉱物の粉砕品である簸性硫酸バリウムと、化学反応で製造されるいわゆる沈降性硫酸バリウムを使用することができる。本発明では粒子径の制御が行いやすい沈降性硫酸バリウムを用いることが好ましい。好ましく用いられる硫酸バリウム粒子の動的光散乱法によって求められる平均粒子径は、0.01~18μm、さらに好ましくは0.05~8μm、なおさらに好ましくは0.2~3μmである。また本発明の硫酸バリウム粒子は、、Al、Siの一方または両方の水酸化物及び/又は酸化物によって表面処理されていることが好ましい。かかる表面処理により硫酸バリウム粒子の表面にAl、Siの一方または両方の水酸化物及び/又は酸化物が付着する。これらの付着量は蛍光X線分析による元素比率にてバリウム元素100に対して0.5~50であることが好ましく、2~30であることがさらに好ましい。
 硫酸バリウム粒子の平均粒子径は、導電性粒子の平均粒子径より小さいことが好ましい。導電性粒子の数平均粒子径は、硫酸バリウム粒子の数平均粒子径の1.5倍以上であることが好ましく2.4倍以上より大きいことをさらに好ましく、4.5倍以上であることが、なおさらに好ましい。硫酸バリウム粒子の平均粒子径がこの範囲を超えると得られる塗膜表面の凹凸が大きくなり、伸張した際に塗膜が破断するきっかけとなりやすい。一方、硫酸バリウム粒子の平均粒子径がこの範囲より小さいと、伸縮耐久性改善効果が小さく、またペーストの粘度が高くなり、ペースト製作が困難となる。
 本発明における硫酸バリウム粒子の配合量は、導電性粒子と硫酸バリウム粒子の合計に対して2~30質量%であり、さらに3~20質量%が好ましく、なおさらに4~15質量%が好ましい。硫酸バリウム粒子の配合量がこの範囲を超えると得られる塗膜表面の導電性が低下する。一方、硫酸バリウム粒子の配合量がこの範囲より小さいと、伸縮耐久性改善効果が発現しにくくなる。
 本発明における柔軟性樹脂とは、弾性率が、1~1000MPaの、熱可塑性樹脂、熱硬化性樹脂、ゴムなどが挙げられるが、膜の伸縮性を発現させるためには、ゴムが好ましい。ゴムとしては、ウレタンゴム、アクリルゴム、シリコーンゴム、ブタジエンゴム、ニトリルゴムや水素化ニトリルゴムなどのニトリル基含有ゴム、イソプレンゴム、硫化ゴム、スチレンブタジエンゴム、ブチルゴム、クロロスルホン化ポリエチレンゴム、エチレンプロピレンゴム、フッ化ビニリデンコポリマーなどが挙げられる。この中でも、ニトリル基含有ゴム、クロロプレンゴム、クロロスルホン化ポリエチレンゴムが好ましく、ニトリル基含有ゴムが特に好ましい。本発明で好ましい弾性率の範囲は3~600MPaであり、さらに好ましく10~500MPa、なお好ましくは30~300MPaの範囲である。
 ニトリル基を含有するゴムは、ニトリル基を含有するゴムやエラストマーであれば特に限定されないが、ニトリルゴムと水素化ニトリルゴムが好ましい。ニトリルゴムはブタジエンとアクリロニトリルの共重合体であり、結合アクリロニトリル量が多いと金属との親和性が増加するが、伸縮性に寄与するゴム弾性は逆に減少する。従って、アクリロニトリルブタジエン共重合体ゴム中の結合アクリロニトリル量は18~50質量%が好ましく、40~50質量%が特に好ましい。
 本発明における柔軟性樹脂の配合量は、導電粒子と、好ましくは加えられる非導電性粒子と柔軟性樹脂の合計に対して7~35質量%であり、好ましくは9~28質量%、さらに好ましくは12~20質量%である。
 また、本発明の導電ペーストにはエポキシ樹脂を配合できる。本発明で好ましいエポキシ樹脂はビスフェノールA型エポキシ樹脂ないしはフェノールノボラック型エポキシ樹脂である。エポキシ樹脂を配合する場合、エポキシ樹脂の硬化剤を配合できる。硬化剤としては公知のアミン化合物、ポリアミン化合物などを用いればよい。硬化剤はエポキシ樹脂に対して5~50質量%配合することが好ましく、10~30質量%がさらに好ましい。またエポキシ樹脂と硬化剤の配合量は、柔軟性樹脂を含めた全樹脂成分に対して3~40質量%、好ましくは5~30質量%、さらに好ましくは8~24質量%である。
 本発明の導電ペーストは、溶剤を含有する。本発明における溶剤は、水または有機溶剤である。溶剤の含有量は、ペーストに求められる粘性によって適宜調査されるべきであるため、特に限定はされないが、概ね導電性粒子、硫酸バリウム粒子と柔軟性樹脂の合計質量を100した場合に30~80質量比が好ましい
本発明に使用される有機溶剤は、沸点が100℃以上、300℃未満であることが好ましく、より好ましくは沸点が130℃以上、280℃未満である。有機溶剤の沸点が低すぎると、ペースト製造工程やペースト使用に際に溶剤が揮発し、導電性ペーストを構成する成分比が変化しやすい懸念がある。一方で、有機溶剤の沸点が高すぎると、乾燥硬化塗膜中の残溶剤量が多くなり、塗膜の信頼性低下を引き起こす懸念がある。
 本発明における有機溶剤としては、シクロヘキサノン、トルエン、キシレン、イソホロン、γ-ブチロラクトン、ベンジルアルコール、エクソン化学製のソルベッソ100,150,200、プロピレングリコールモノメチルエーテルアセテート、ターピオネール、ブチルグリコールアセテート、ジアミルベンゼン、トリアミルベンゼン、n-ドデカノール、ジエチレングリコール、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジブチルエーテル、ジエチレングリコールモノアセテート、トリエチレングリコールジアセテート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコール、テトラエチレングリコールモノブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートなどが挙げられる。また、石油系炭化水素類としては、新日本石油社製のAFソルベント4号(沸点:240~265℃)、5号(沸点:275~306℃)、6号(沸点:296~317℃)、7号(沸点:259~282℃)、および0号ソルベントH(沸点:245~265℃)なども挙げられ、必要に応じてそれらの2種以上が含まれてもよい。このような有機溶剤は、導電性銀ペーストが印刷などに適した粘度となるように適宜含有される。
本発明の伸縮性導体形成用ペーストは、材料である導電性粒子、硫酸バリウム粒子、伸縮性樹脂、溶剤をディゾルバー、三本ロールミル、自公転型混合機、アトライター、ボールミル、サンドミルなどの分散機により混合分散することにより得ることができる。
 本発明の伸縮性導体形成用ペーストには、発明の内容を損なわない範囲で、印刷適性の付与、色調の調整、レベリング、酸化防止剤、紫外線吸収剤などの公知の有機、無機の添加剤を配合することができる。
 本発明の絶縁カバーは、配線部の表面側の絶縁を担う層である。ここに絶縁とは電気絶縁に加え、機械的、化学的、生物学的な絶縁を含み、基材を透過してくる水分や化学物質、生体物質から導体層を絶縁する機能が必要である。
 本発明の絶縁カバー層は好ましくは、柔軟な高分子材料である。柔軟な高分子材料としては所謂ゴム、エラストマーと呼ばれる材料を使用できる。本発明のかかるゴム、エラストマーとしては、導体層を形成するための樹脂材料を使用することができる。
本発明の絶縁カバー層は繰り返し10%以上の伸縮が可能なストレッチャビリティを有する事が好ましい。また本発明の絶縁カバー層は50%以上の破断伸度を有する事が好ましい。さらに本発明の絶縁カバー層は引っ張り弾性率が10~500MPaであることが好ましい。
 本発明の絶縁カバー層は、コーティング液、浸漬液、あるいは印刷インク、印刷ペースト等の液状形態、ないしスラリー状態を介して基材上に適用されることが好ましい。絶縁カバー層用材料を液状形態ないしスラリー状態にするには溶剤へ溶解分散すれば良い。印刷適性等の調整のために、公知のレベリング剤、チキソ性付与剤などを配合することは本発明の範囲内である。溶剤としては導電ペーストに用いることができる溶剤等の中から適宜選択される。
 本発明において、特殊なケースとして、絶縁カバー層を形成する材料の前駆体が液体である場合には、前駆体を用いて層形成し、しかるべき反応を経て、下地層を形成することも可能である。紫外線硬化型樹脂などを用いる場合が、このケースに該当する。
 本発明の絶縁カバー層用の材料が、液体状態ないしスラリー状態を介することが困難な場合、例えば溶融押出、プレス成形で、フィルムまたはシート状に加工し、しかるべき形状に外形加工した後に基材に接着剤などで貼り付けることも可能である。
 本発明における電極表面層とは文字通り、電極表面を配線部とは異なる材料で被覆する場合に用いる層である。電極表面層としては金、白金、ロジウム等の貴金属めっき、ハンダメッキ、錫メッキなどを用いることができる。
本発明の電極表面層は繰り返し10%以上の伸縮が可能なストレッチャビリティを有する事が好ましい。また本発明の電極表面層は50%以上の破断伸度を有する事が好ましい。さらに本発明の電極表面層は引っ張り弾性率が10~500MPaであることが好ましい。
このように電極部にも伸縮特性が要求される場合には、ストレッチャビリティを有するカーボンペーストを用いて電極表面層を形成することができる。
本発明におけるカーボンペーストは、導体層を形成する導電ペーストの導電粒子を導電性カーボンに限定した物と考えて差し支えない。ただし、導電粒子の配合量に関しては、カーボン粒子の比重が金属に比して小さく、比表面積が大きいため、金属粉の質量%のさらに半分ないし8分の1程度に減じて配合することが好ましい。カーボンペーストを得るための他の条件、分散方法などは導電ペーストと同様である。
本発明において電気配線の電極部と配線部の境界の段差が実質的に無いとは、配線の厚い部分と薄い部分とが明瞭な境界を有さず、少なくとも50μmの高低差の変化が生じる遷移領域の幅が1.0mm以上、好ましくは2.0mm以上、さらに好ましくは3.0mm以上の幅をもって厚さが変化することを云う。このような境界部分の厚さ変動は、非接触式の厚さ系にてプロファイルを求めれば良い。より具体的には、平板に幅広の両面テープを用いて配線部分を基材である布帛ごと、明瞭なたるみが生じない程度に面方向にテンションをかけた状態で貼り付けて試料とし、光学式の厚さ計にてプロファイルを求めれば良い。境界段差がこの範囲であれば触感上段差の存在を感じないため実質的に段差を有さないと云うことができる。
 本発明の衣服型電子機器の配線部分は、導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることが好ましい。より具体的には、衣服型電子機器の配線部分を切り出し、引っ張り試験器により伸張度10%に伸ばした前後の導電機能、絶縁機能を比較すれば良い。導電機能は、配線の抵抗値で評価し、伸張度0%の際の抵抗値に対し、伸張度10%に伸ばした状態での抵抗値が100倍以下であれば導電機能は維持されているとする。絶縁下地層は伸張度10%に伸ばした後に伸張度0%に戻した状態で、基材との剥離が生じていなければ絶縁機能を維持していると判断する。また絶縁カバー層については伸張度10%の状態において目視確認できるクラックが生じていなければ、絶縁機能を維持していると判断する。
 本発明の、導体層、絶縁カバー層、絶縁下地層は、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることが好ましい。各層の破断伸度、引っ張り弾性率は、各層を構成するペースト材料を離型シート上に所定の膜厚に塗布し、乾燥後に剥離して、引っ張り試験を行うことによって求めることができる。
本発明は、電気配線の配線部の表面に布目形状の凹凸を付与することができる。本発明における布地形状とは、X-Y二次元平面に、Z軸方向に高低差が特定の法則に従って存在する形状を意味し、好ましくは少なくともX-Y平面上の二方向に(必ずしも直交する必要は無い)規則的繰り返しを伴う形状を云う。繰り返し周期がランダムであっても良いが、少なくとも本発明で規定する平均繰り返しピッチを満たすことが必要である。本発明で好ましく用いられる布地形状は、文字通り実際の布地の転写、ないし布地の繰り返しパターン、編地の繰り返しパターンを模して作られた形状である。
布地形状としては、規則性のある織物、編み物、あるいは規則性が不明瞭な不織布、いずれの布地の布目であっても良い。織物の場合には、例えば平織、綾織、朱子織、等を例示できる。編み物の場合、例えば平編み、およびその変形、鹿の子編、アムンゼン編、レース編、アイレット編、添え糸網、パイル編、リブ網、リップル編、亀甲編、ブリスター編、ミラノ・リブ編、ダブルピケ編、シングル・ピケ編み、斜文編、ヘリボーン編、ポンチローマ編、バスケット編、トリコット編、ハーフ・トリコット編、サテントリコット編、ダブルトリコット編、クインズコード編、ストライプ・サッカー編、ラッセル編、チュールメッシュ編、およびこれらを変形・組み合わせた編み物などの布地を例示できる。
かかる前記配線部の表面が有する布地状の凹凸において、規則性がある布目の場合、その凹凸の繰り返しピッチが、配線表面に引いた任意の直線上において0.2mm以上、12mm以下である事が好ましい。繰り返しピッチは0.5mm以上9mm以下の範囲が好ましく、さらに1.0mm以上8mm以下が好ましく、さらに1.6mm以上7mm以下が好ましく、さらに2.4mm以上6mm以下が好ましい。繰り返しピッチが所定の範囲外であると、触感上の効果が乏しくなる。
本発明の布地状の凹凸において、凹部と凸部との高低差は7μm以上2500μm以下である事が好ましい。さらに高低差は15μm以上1500μm以下である事が好ましく、さらに25μm以上900μm以下が好ましく、さらに48μm以上600μm以下が好ましい。凹部と凸部の高低差はが所定の範囲外であると触感上の効果が乏しくなる。
このような電気配線部表面の凹凸はは、非接触式の厚さ系にてプロファイルを求めれば良い。より具体的には、平板に幅広の両面テープを用いて配線部分を基材である布帛ごと、明瞭なたるみが生じない程度に面方向にテンションをかけた状態で貼り付けて試料とし、光学式の厚さ計にてプロファイルを求めれば良い。境界段差がこの範囲であれば触感上段差の存在を感じないため実質的に段差を有さないと云うことができる。本発明では光学式の厚さ計としてレーザー顕微鏡の三次元測定機能を用いることが好ましい。
 
 本発明における、電極部と配線部の境界の段差が実質的に無い電気配線を実現する手段について説明する。本発明では、導体層が露出している部分を電極部、絶縁カバー層で覆われている部分を配線部とする。
 本発明の段差の無い電気配線を実現する手段として、極めて薄い絶縁カバー層を導体層に重ねる手法を例示できる。導体層の厚さが50μm以上であり、絶縁カバー層の厚さが10μm未満であれば触感的に段差を感じないため、実質的に段差が無いと見なすことができる。
 本発明の段差の無い電気配線を実現する手段として、基材上に下地層、導体層、絶縁カバー層、必要に応じて電極表面層を順次積層印刷し、乾燥硬化した後に、各層の軟化温度以上の温度にて加圧成形処理をする手法を例示することができる。この方法においては比較的高温プロセスを要するため、適用できる基材が限定される場合がある。
 本発明では以下に述べる転写法を用いることによって、実質的に段差の無い電気配線を得ることができる。
 本発明における転写法とは、電極表面層、絶縁カバー層、導体層、下地層の順に所定の配線パターン、絶縁パターンなどを中間媒体に印刷した後に基材である布帛に転写することにより電気配線を得ることができる。さらに易転写性を求める場合には下地層としてホットメルト層をあらかじめ中間媒体上に印刷された配線パターンの上に形成した後、布帛に転写することができる。さらに布帛側にホットメルト層を受像層としてあらかじめ設けておいてもよい。かかるホットメルト層には熱可塑性のウレタン樹脂、あるいは本発明の伸縮性導体組成物のバインダー成分と同様の柔軟性樹脂を用いることができる。
 この場合の中間媒体には離型層を表面に有する高分子フィルム、紙などのいわゆる離型シートを用いても良い。またフッ素樹脂、シリコーン樹脂、ポリイミドなどの難接着な素材からなる表面を有するフィルム、シート、板などを用いることができる。またステンレススチール、硬質クロムメッキした鋼板、アルミニウム板などの金属板を用いることも可能である。
 本発明の表面に布目形状の凹凸を有する電気配線を実現する手段として、基材上に下地層、導体層、絶縁カバー層、必要に応じて電極表面層を順次積層印刷し、乾燥途上、ないし乾燥硬化した後に、各層の軟化温度以上の温度にてエンボス加工を行う方法を例示できる。エンボス加工の手法としてはエンボス型を押し当てるプレス加工ないしはエンボスローラーを押し当てるエンボスローラー法を例示できる。これらの方法は、好ましくは繰り返しピッチが3mm以上、好ましくは2mm以上の比較的繰り返しピッチが広い場合に好ましく用いることができる。またこれらの方法は、凹凸の高低差が300μm以上、好ましくは600μm以上の比較的高低差が大きな場合に適用する場合に好ましく用いることができる。なおこれらの方法においては比較的高温プロセスを要するため、適用できる基材が限定される場合がある。
 本発明では、転写法における中間媒体に、あらかじめ布地形状の凹凸の反転パターンを形成しておくことにより、容易に表面に布地形状の凹凸を有する電気配線を得ることができる。
 本発明における、あらかじめ布地形状の凹凸の反転パターンを形成した中間媒体は、中間媒体として熱可塑性のフィルムを用いる場合にはエンボス加工にて作成することができる。また金属、樹脂などの板材を用いる場合には、所定の布地形状を三次元スキャナで読み取り、三次元加工機で切削加工すればよい。また昨今実用化が進んでいる3Dプリンターを用いて作製しても良い。
本発明において、実験室的に、布地形状の凹凸の反転パターンを形成した中間媒体を製作するには、たとえば、用いたい布地形状を有する布地を板材に貼り付け、布地表面に離型材をスプレーなどで塗布し、型取り用のシリコーン樹脂を全面に塗布し効果後に剥離することにより、用いたい布地形状の反転パターンが方面に形成された成形用の転写中間媒体を得ることができる。
 以下、実施例を示し、本発明をより詳細かつ具体的に説明する。なお実施例中の評価結果などは以下の方法にて測定した。
<ニトリル量>
 得られた樹脂材料をNMR分析して得られた組成比から、モノマーの質量比による質量%に換算した。
<ムーニー粘度>
 島津製作所製 SMV-300RT「ムーニービスコメータ」を用いて測定した。
<平均粒子径>
堀場製作所製の光散乱式粒径分布測定装置LB-500を用いて測定した。
<弾性率、破断伸度>
 各材料を離型シート上に乾燥厚さ100±10μmとなるようにコーティングし、所定の条件で乾燥硬化させた後、離型シートごとISO 527-2-1Aにて規定されるダンベル型に打ち抜き、試験片とした。測定時には離型シートから各材料のシートを剥離して、ISO 527-1に規定された方法で引っ張り試験を行って求めた。
<電気配線部の伸縮特性>
 製作した衣服型電子機器の電気配線部分を、電極部は除き、配線の直線部分が長さ100mmとなるように切り取り試験片とした。試験片において配線部分が基材の布帛から剥離していないこと、絶縁カバー層表面にクラックなどは無いことを目しにて確認した後、配線の抵抗値を測定できるように端部の絶縁カバー層を削り落として抵抗測定器の端子と接続し、伸張させる部分が有効長さ50mmとなるようにクリップを絶縁加工した引っ張り試験機にセットし、初期抵抗値と、所定の伸張度とした際の抵抗値、さらに初期状態に戻したときの配線抵抗値を測定した。
 初期抵抗値をR0、10%伸張時の抵抗値をR10とし、抵抗変化率Rv=R10/R0 を求め、Rv≦100の場合を導電機能維持として「○」、Rv>100の場合を導電機能喪失「×」とした。試験後に電気配線の絶縁カバー層に目視確認できるクラックが生じていない場合を絶縁機能維持として「○」、クラックが生じた場合に絶縁機能喪失年tえ「×」とした。さらに、試験後に基材と下地層との剥離が生じていない場合に絶縁機能維持として「○」、剥離が生じていた場合には絶縁機能喪失として「×」とした。
 同様の評価を10%伸張し1秒維持した後に初期状態に戻し1秒保持、を100回繰り返した後にも行った。
<配線の抵抗測定>
 配線の抵抗値をアジレントテクノロージ社製ミリオームメーターを用いて測定した。
<段差>
衣服型電子機器から電極部と配線部を含む部分を50mm×100mmの矩形に切り取って試験片とした。試験片を幅50mmの両面テープを用いて厚さ10mmの配線部分を基材である布帛ごと、たるみが生じないように貼り付け、次いで、光学式の厚さ計にて電極部から配線部にかけての厚さプロファイルを求めた。
電極部と配線部の境界の電極側5mmから配線側5mmまでの間の10mmについての傾きの絶対値が高低差/測定長(10mm)=50/3000未満であれば「◎」、50/3000以上~50/2000未満であれば「○」、50/2000以上50/1000未満であれば△、50/1000以上であれば「×」とした。
<着用感>
 成人男性10名を被験者とし、実施例で作成した電気配線付きの衣服を着用し、心電計測を行いながら、ラジオ体操第1と、ラジオ体操第2を続けて実施した。その間の着用感について、「触感が良い」を5点、「触感が悪い」を1点として、五段階の官能評価を行い、10人の平均において、4以上を◎、3以上4未満を○、2以上3未満を△、2未満を×とした。
<布地形状の凹凸高低差と繰り返しピッチ>
衣服型電子機器から電極部と配線部を含む部分を50mm×100mmの矩形に切り取って試験片とした。試験片を幅50mmの両面テープを用いて厚さ10mmの配線部分を基材である布帛ごと、たるみが生じないように貼り付け、次いで、キーエンス社製のレーザー顕微鏡VK-X200により試験片を観察し、得られたデータを、VK-X100/X200用解析アプリケーションによりデータ処理し、凹凸の高低差を求めた。なお高低差は5個所の凹部について測定し、平均した。続いて試験片の上に、無作為の方向となるように0.5mmメモリのスケールを置き、凹凸繰り返しピッチを測定した。測定は、まず10回の繰り返しについてのピッチ間隔の平均を求め、同様の操作を無作為に選択した別の方向について計5回行い、五つの平均値のさらに平均値を求め繰り返しピッチとした。
<着用感>
 成人男性10名を被験者とし、実施例で作成した電気配線付きの衣服を着用し、心電計測を行いながら、ハーフマラソンを実施した。その間の着用感について、「触感が良い」を5点、「触感が悪い」を1点として、五段階の官能評価を行い、10人の平均において、4以上を◎、3以上4未満を○、2以上3未満を△、2未満を×とした。
<洗濯耐久性>
 ウェアを40cm×50cmの角形洗濯ネットに入れ、JIS L 0217(繊維製品の取扱いに関する表示記号およびその表示方法)の洗い方103に規定するJIS C 9606(電気洗濯機)の規格に適合する遠心式絞り装置付きの標準洗濯容量、標準水量の家庭洗濯機を使用し、洗剤なしで15分間の洗濯を行い、10分間の脱水後に取り出して室内にて陰干しした後に配線部の導通有無を確認し、導通が確認できた場合を○、断線ないし導通が不安定になっていた場合を×とした。
<位置合わせズレ>
 あらかじめ各層に設けた位置合わせ用のトンボマークを用いて、導体層と絶縁カバー層との位置ズレを、μm単位で測定できる測長機を用いて測定した。トンボマークは印刷に用いた四角形のスクリーン版に合わせ、必要な印刷パターンの四隅に相当する部分に設けており、印刷時に少なくとも一個のトンボマークは合致するようにセットして、印刷を行い、各四隅の各々のXY方向のズレ量からベクトル量を求め、4点のベクトル量の絶対値の平均値を求めた。
[製造例]
<合成ゴム材料の重合>
攪拌機、水冷ジャケットを備えたステンレス鋼製の反応容器に
 ブタジエン     54質量部
 アクリロニトリル  46質量部
 脱イオン水    270質量部
 ドデシルベンゼンスルホン酸ナトリウム 0.5質量部
 ナフタレンスルホン酸ナトリウム縮合物 2.5質量部
 t-ドデシルメルカプタン       0.3質量部
 トリエタノールアミン         0.2質量部
 炭酸ナトリウム            0.1質量部
を仕込み、窒素を流しながら浴温度を15℃に保ち、静かに攪拌した。次いで 過硫酸カリウム0.3質量部を脱イオン水19.7質量部に溶解した水溶液を30分間かけて滴下し、さらに20時間反応を継続した後、ハイドロキノン0.5質量部を脱イオン水19.5質量部に溶解した水溶液を加えて重合停止操作を行った。
 次いで、未反応モノマーを留去させるために、まず反応容器内を減圧し、さらにスチームを導入して未反応モノマーを回収し、NBRからなる合成ゴムラテックス(L1)を得た。得られたラテックスに食塩と希硫酸を加えて凝集・濾過し、樹脂に対する体積比20倍量の脱イオン水を5回に分けて樹脂を脱イオン水に再分散、濾過を繰り返すことで洗浄し、空気中にて乾燥して合成ゴム樹脂R1を得た。
得られた合成ゴム樹脂R1の評価結果を表1に示す。
以下仕込み原料、重合条件、洗浄条件などを変えて同様に操作を行い、表1に示す樹脂材料R2~R4を得た。なお、表中の略号は以下の通りである。
NBR:アクロニトリルブタジエンゴム
NBIR:アクリロニトリル-イソプレンゴム(イソプレン10質量%)
SBR:スチレンブタジエンゴム(スチレン/ブタジエン=50/50質量%)
Figure JPOXMLDOC01-appb-T000001
 
[製造例]
 エポキシ当量175~195の液状ビスフェノールA型エポキシ樹脂1.5質量部、製造例にて得られた伸縮性樹脂(R1)10質量部、潜在性硬化剤[味の素ファインケミカル株式会社製 商品名アミキュアPN23] 0.5質量部、をイソホロン30質量部と混合攪拌して溶解させバインダー樹脂組成物A1を得た。次いでバインダー樹脂組成物A1に、平均粒子径6μmの微細フレーク状銀粉[福田金属箔粉工業社製 商品名Ag-XF301]58.0質量部を加えて均一に混合し、三本ロールミルにて分散することにより導電ペーストAG1を得た。得られた導電ペーストAG1の評価結果を表2a、表2bに示す。
 以下、材料を変えて配合を行い、表2a、表2bに示す導電ペーストAG2~AG6を得た。評価結果を同様に表2a、表2bに示す。
なお、表2a、表2bにおいて無定型銀粉1はDOWAエレクトロニクス社製の凝集銀粉G-35、平均粒子径6.0μm、無定型銀粉2はDOWAエレクトロニクス社製の凝集銀粉G-35を湿式分級して得た平均粒子径2.1μmの凝集銀粉である。
 以下、導電ペーストと同様に、表2a、表2bに従って配合を変え、電極表面層用のカーボンペーストCB1、下地層、絶縁カバー層用のペーストCC1、CC2を得た、評価結果を表2a、表2b.に示す。なお固体粒子を含まないCC1、CC2については樹脂成分を溶剤に溶解してペーストとした。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
(実施例1)
 図6に示す転写法により、心電図測定用の衣服型電子機器を製作した。
 厚さ125μmの離型PETフィルムに、まず電極表面層となるカーボンペーストCB1を所定のパターンにてスクリーン印刷し、乾燥硬化した。次いで絶縁カバー層となる絶縁ペーストCC1を所定のパターンにスクリーン印刷し、乾燥硬化した。心電測定用の電極表面層は直径30mmの円形である。また絶縁カバー層は電極部において内径が30mm、外径が36mmのドーナツ状であり電極から伸びる配線部は幅14mmで、配線部の終端には、センサとの接続用ホックを取り付けるために直径10mmの円形電極が同様にカーボンペーストで印刷されている。カーボンペースト層の厚さは乾燥膜厚で25μmであり、絶縁カバー層は15μm、である
 次いで、導体層となる銀ペーストAG1を用いて電極部と配線部をスクリーン印刷し、所定の条件で乾燥硬化した。電極部は直径32mmの円形、配線部は幅10mmであり、絶縁カバー層上での乾燥厚さが30μmとなるように調整した。さらに下地層を絶縁カバー層と同じCC1を用いて乾燥厚さが20μmとなるように調整してスクリーン印刷し乾燥し、さらにもう一度同条件で下地層を印刷し、乾燥時間を調整して溶剤分が25質量%残存するようにして表面タック性を残し、転写性のある印刷電気配線を得た。
 次いで、以上の工程により得られた転写性の印刷電気配線を裏返したニット生地から成るスポーツシャツの所定部分に重ね、室温でプレスして印刷電気配線をスポーツシャツの裏側に仮接着し、離型PETフィルムを剥離し、スポーツシャツをハンガーに掛けて、さらに115℃にて30分間乾燥し、電気配線付きスポーツシャツを得た。配線パターンを図7に、シャツに対する配線パターンの配置を図8に示す。
 得られた電気配線付きスポーツシャツは、左右の後腋窩線上と第7肋骨との交差点に直径30mmの円形電極があり、さらに円形電極から後頸部中央までの幅10mmの伸縮性のある導体による電気配線が内側に形成されている。なお左右の電極から後頸部中央に伸びる配線は、頸部中央にて5mmのギャップを持ち、両者は短絡されていない。
 続いて、後頸部中央端の表面側にステンレススチール製のホックを取り付け、裏側の配線部と電気的導通を確保するために金属細線を撚り込んだ導電糸を用いて伸縮性導体組成物層とステンレススチール製ホックとを電気的に接続した。
 ステンレススチール製ホックを介して、ユニオンツール社製の心拍センサWHS-2を接続し、同心拍センサWHS-2専用のアプリ「myBeat」を組み込んだアップル社製スマートホンで心拍データを受信し、画面表示できるように設定した。以上のようにして心拍計測機能を組み込んだスポーツシャツを作製した。
 本シャツを被験者に着用させ、ラジオ体操第1、ラジオ体操第2を連続して行い、その間の心電データを取得した。得られた心電データはノイズが少なく、高解像度で、心電図としてメンタルな状態、体調、疲労度、眠気、緊張度合いなどを心拍間隔の変化、心電波形などから解析可能な品位を有していた。同じシャツを10名の被験者に着用して貰い、着用感を評価した。結果を表3、表4.に示す。
 着用試験に用いたスポーツシャツと同条件で製作したスポーツシャツから、所定の試験片を切り取り、電極部/配線部境界の段差評価、10%伸縮1回、および100回について配線の導電性、絶縁カバー層の絶縁性、下地層の絶縁性、それぞれの維持性能を評価した。結果を表3、表4.に示す。
以下同様に表3、表4に示す構成により.実施例2~6、比較例1~2のスポーツシャツ製作し、同様に評価した。結果を表3、表4.に示す。
(比較例3~5)
 実施例1に用いたニット地のスポーツシャツを裏返し、型枠に、背面にしわが入らないように入れてシャツの両肩と左右の裾にピンを打って固定した。
 次いで、図5に示す直接印刷法にて実施例と同じ配線パターンのスポーツシャツを製作した。まず、所定のパターンにて下地層をCCペーストでスクリーン印刷し、所定の条件で乾燥し、さらにもう一度同条件で印刷し、乾燥硬化した。次いで、導体層、絶縁カバー層、電極表面層の順で各々印刷、乾燥を繰り返し、電気配線を得た。得られたスポーツシャツに実施例と同様にホックを取り付け、ユニオンツール社製の心拍センサWHS-2を接続し、以下同様に評価を行った。結果を表3、表4.に示す。
 なお、比較例1に置いては、最初の着用時に配線部の断線が生じ、心電データを得ることができなかった。比較例2においては初期の心電データ取得は問題なく行えたが、ラジオ体操を行っている仮定でノイズが増加し、ラジオ体操第2の途中でデータを取得することができなくなった。比較例3~5では、最後までデータ取得が可能であったが、初期の比抵抗が比較的大きい比較例5においては100回繰り返し伸張試験において、伸張時の抵抗値が初期抵抗値の100倍を超え、「×」評価となった。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
<離型用中間媒体の製作例1>
 500メッシュの平織りステンレススクリーンを両面粘着テープにて注意に高さ15mmのダムを設けた厚さ12mmのシナ合板に貼り付け、離型剤としてPVA糊を、乾燥時にスクリーンの厚さ方向に半分が埋没するために必要な相当量を塗り、20時間の自然乾燥を行い、さらにドライオーブンにて70℃2時間の乾燥を行った。次いで、二液硬化型のシリコーン樹脂を厚さが概ね5mmとなるように流し込み、室温24時間かけて硬化した。硬化後にシリコーン樹脂を剥がし、平織り柄の凹凸の転写型1を得た。
 以下、メッシュ数の異なるステンレススクリーン、ポリエステルスクリーンを用いて同様に操作を行い表5.に示す転写型を得た。
<離型用中間媒体の製作例2>
 トリコット織りのファブリックを両面粘着テープにて周囲に高さ15mmのダムを設けた厚さ12mmのシナ合板に貼り付け、離型剤兼毛羽抑え剤としてPVA糊を織物に十分に浸透するように塗り、20時間の自然乾燥を行い、さらにドライオーブンにて70℃2時間の乾燥を行った。次いで、二液硬化型のシリコーン樹脂を厚さが概ね5mmとなるように流し込み、室温24時間かけて硬化した。硬化後にシリコーン樹脂を剥がし、トリコット編地の凹凸の転写型を得た。
 以下、編み地を替えて同様の操作を行い表5.に示す転写型を得た。
<エンボス型の製作例>
 離型用中間媒体の製作例に用いた平織りスクリーンの一部を3Dスキャナで読み取ってデジタルデータに加工し、凹凸のネガ/ポジを反転させた上で凹凸の繰り返しピッチおよび、高低差さを所定の値になるように変形させ、3Dプリンタにて成型した。ついで得られた成型体に離型剤を塗布し、次いで室温硬化のエポキシ樹脂を含浸させたガラスクロスを5枚重ね、全体を厚手の布団圧縮袋に入れて袋内を掃除機で減圧し、24時間後に取り出し、硬化したFRP部分を取り外した、ついで硬化したFRPの背面側を熱硬化型のパテで埋めて平らにし、エンボス型を得た。
以下同様に、凹凸の繰り返しピッチおよび高低差を変えて成型を行い、表5.に示すエンボス型を得た。
Figure JPOXMLDOC01-appb-T000006
 
<転写法による実施例、比較例>
(実施例101~120、比較例101~108)
図6に示す転写法により、心電図測定用の衣服型電子機器を製作した。
 表5.に示す転写型4に、まず電極表面層となるカーボンペーストCB1を所定のパターンにてスクリーン印刷し、乾燥硬化した。次いで絶縁カバー層となる絶縁ペーストCC1を所定のパターンにスクリーン印刷し、乾燥硬化した。心電測定用の電極表面層は直径30mmの円形である。また絶縁カバー層は電極部において内径が30mm、外径が36mmのドーナツ状であり電極から伸びる配線部は幅14mmで、配線部の終端には、センサとの接続用ホックを取り付けるために直径10mmの円形電極が同様にカーボンペーストで印刷されている。カーボンペースト層の厚さは乾燥膜厚で25μmであり、絶縁カバー層は30μmである
 次いで、導体層となる銀ペーストAG1を用いて電極部と配線部をスクリーン印刷し、所定の条件で乾燥硬化した。電極部は直径32mmの円形、配線部は幅10mmであり、絶縁カバー層上での乾燥厚さが40μmとなるように調整した。さらに下地層を絶縁カバー層と同じCC1を用いて乾燥厚さが40μmとなるように調整してスクリーン印刷し乾燥し、さらにもう一度同条件で下地層を印刷し、乾燥時間を調整して溶剤分が25質量%残存するようにして表面タック性を残し、転写性のある印刷電気配線を得た。
 次いで、以上の工程により得られた転写性の印刷電気配線を裏返したニット生地から成るスポーツシャツの所定部分に重ね、室温でプレスして印刷電気配線をスポーツシャツの裏側に仮接着し、転写型を剥離し、スポーツシャツをハンガーに掛けて、さらに115℃にて30分間乾燥し、表面に平織形状のパターンを有する電気配線付きスポーツシャツを得た。
 得られた電気配線付きスポーツシャツは、左右の後腋窩線上と第7肋骨との交差点に直径30mmの円形電極があり、さらに円形電極から後頸部中央までの幅10mmの伸縮性のある導体による電気配線が内側に形成されている。なお左右の電極から後頸部中央に伸びる配線は、頸部中央にて5mmのギャップを持ち、両者は短絡されていない。
 続いて、後頸部中央端の表面側にステンレススチール製のホックを取り付け、裏側の配線部と電気的導通を確保するために金属細線を撚り込んだ導電糸を用いて伸縮性導体組成物層とステンレススチール製ホックとを電気的に接続した。
 ステンレススチール製ホックを介して、ユニオンツール社製の心拍センサWHS-2を接続し、同心拍センサWHS-2専用のアプリ「myBeat」を組み込んだアップル社製スマートホンで心拍データを受信し、画面表示できるように設定した。以上のようにして心拍計測機能を組み込んだスポーツシャツを作製した。配線パターンを図7に、シャツに対する配線パターンの配置を図8に示す。
 本シャツを被験者に着用させ、ハーフマラソンの距離を走り、その間の心電データを取得した。得られた心電データはノイズが少なく、高解像度で、心電図としてメンタルな状態、体調、疲労度、眠気、緊張度合いなどを心拍間隔の変化、心電波形などから解析可能な品位を有していた。同じシャツを10名の被験者に着用して貰い、着用感を評価した。結果を表6a、表6b、表6c.に示す。
 着用試験に用いたスポーツシャツと同条件で製作したスポーツシャツから、所定の試験片を切り取り、電極部/配線部境界の段差評価、10%伸縮1回、および100回について配線の導電性、絶縁カバー層の絶縁性、下地層の絶縁性、それぞれの維持性能を評価した。結果を表6a、表6b、表6c、表7a、表7b、表7cに示す。
以下同様に表6a、表6b、表6c、表7a、表7b、表7cに示す構成によりスポーツシャツ製作し、同様に評価した。結果を表6a、表6b、表6c、表7a、表7b、表7cに示す。
<直接印刷法+エンボス加工による実施例、比較例>
図5に示す直接印刷法により、心電図測定用の衣服型電子機器を製作した。
 実施例101に用いたニット地のスポーツシャツを裏返し、型枠に、背面にしわが入らないように入れてシャツの両肩と左右の裾にピンを打って固定した。
 次いで、図5に示す直接印刷法にて実施例と同じ配線パターンのスポーツシャツを製作した。まず、所定のパターンにて下地層をCCペーストでスクリーン印刷し、所定の条件で乾燥し、さらにもう一度同条件で印刷し、乾燥硬化した。次いで、導体層、絶縁カバー層、電極表面層の順で各々印刷、乾燥を繰り返し、電気配線を得た。
<エンボス加工>
 厚さ3mmのシリコーンゴムシートに得られた電気配線付きシャツを配線面が上になるように置き、さらに表5に示すエンボス型4を重ね、90℃に加熱したホットプレート上に乗せて加圧し、配線面にエンボス型の凹凸を転写した。
エンボス加工後のスポーツシャツに実施例と同様にホックを取り付け、ユニオンツール社製の心拍センサWHS-2を接続し、心拍計測機能を組み込んだスポーツシャツを得た。以下同様に評価を行った。結果を表6a、表6b、表6c、表7a、表7b、表7cに示す。
<転写法+エンボス加工による実施例、比較例>
離型PETフィルムを転写型の代わりに用いて図6に示す転写法により電気配線を形成し、次いで所定のエンボス型を用いてエンボス加工を行うことにより心電図測定用の衣服型電子機器を製作し、同様に評価した。結果を表6a、表6b、表6c、表7a、表7b、表7cに示す。
 なお、表6a、表6b、表6c、表7a、表7b、表7cにおいて使用型の欄に離型PETとエンボス型の両方が示してある例が、転写法とエンボス加工との組み合わせとなる。
 比較例1は柔軟性の乏しい導体層を用いた場合であり、着用感には問題ないが、伸縮に対する耐久性に乏しい。比較例102、比較例104は配線表面に布地形状加工を行わなかった場合であり、着用感に問題がある。特に長距離走などの発汗が激しい運動においては平坦な配線表面が皮膚に張り付き不快感が大きくなると解釈できる。比較例103はいずれも柔軟性の乏しい導体層の例であり伸縮耐久性に問題がある。実施例110は伸縮耐久性に多少問題はあるが、着用感ならびに洗濯耐久性が改善されており、凹凸を付けた場合は若干伸縮に対する耐久性が改善されていることが読み取れる。比較例105は、所謂ハイメッシュな平織布の表面パターンを用いた場合であるが、凹凸の繰り返しピッチ、高低差ともに小さすぎて着用感を改善する効果がみられない。比較例106は逆に大きすぎる場合であり、着用感の改善効果が乏しく、さらに伸縮耐久性に若干問題がある。比較例107は凹凸高低差が小さい場合であり、着用感の改善効果が乏しい。比較例108は逆に凹凸高低差が大なる場合である。エンボス加工による凹凸が大きすぎると導体層の断線が生じやすくなると解釈できる。
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
<布地形状の凹凸を有する離型用中間媒体を使った作製例>
(実施例201~205)
150メッシュの平織りステンレススクリーンを両面粘着テープにて注意に高さ15mmのダムを設けた厚さ12mmのシナ合板に貼り付け、離型剤としてPVA糊を、乾燥時にスクリーンの厚さ方向に半分が埋没するために必要な相当量を塗り、20時間の自然乾燥を行い、さらにドライオーブンにて70℃2時間の乾燥を行った。次いで、二液硬化型のシリコーン樹脂を厚さが概ね5mmとなるように流し込み、室温24時間かけて硬化した。硬化後にシリコーン樹脂を剥がし、平織り柄の凹凸の転写型を得た。
実施例1の離型PETフィルムに変えて得られた転写型を用い、以下表8.に示す内容にて電気配線を作製し、以下同様に評価した。結果を表8.に示す。
<ストライプ状の凹凸を有する離型用中間媒体を使った作製例>
3Dプリンタを用いてストライプ状凹凸を有する離型用中間媒体を作製した。ストライプの周期は2mm、凹凸繰り返しは正弦波で振幅は50μmとした。
実施例1の離型PETフィルムに変えて得られたストライプ状凹凸を有する転写型を用い、以下表8.に示す内容にて電気配線を作製し、以下同様に評価した。結果を表8.に示す。
(比較例201)
 実施例1に用いたニット地のスポーツシャツを裏返し、型枠に、背面にしわが入らないように入れてシャツの両肩と左右の裾にピンを打って固定した。
 次いで、図5に示す直接印刷法にて実施例と同じ配線パターンのスポーツシャツを製作した。まず、所定のパターンにて下地層をCCペーストでスクリーン印刷し、型枠から外して所定の条件で乾燥し、さらにもう一度型枠にセットし、導体層、絶縁カバー層、電極表面層の順で各々印刷、型枠外し、乾燥、型枠固定を繰り返し、電気配線を得た。得られたスポーツシャツに実施例と同様にホックを取り付け、ユニオンツール社製の心拍センサWHS-2を接続し、以下同様に評価を行った。結果を表8.に示す。
 比較例201においては、配線のズレが非常に大きく、本発明の配線が非常に太く、各層の重ね合わせのマージンも2mm程度に設定していたために大きな問題は生じなかったが、配線幅が1mmを切るような比較的細線の場合には、ずれが配線幅を上回っているために、設計に沿った電気配線が形成できないことは自明である。
Figure JPOXMLDOC01-appb-T000013
 
 以上、示してきたように、本発明における衣服型電子機器は伸縮性を有する電極表面層、伸縮性を有する絶縁カバー層と下地層、伸縮性を有する導体層からなる電気配線を有しており、さらに電極部と配線部との境界部分の段差が実質的に無いため、良好な電気特性と良好な着用感を両立した優れた特性を有する。
 良好な着用感は、特に心電データなどの身体物理データを元に、着用者のメンタルな状態を求める場合において、着心地の悪さからくるメンタル的なノイズを生じること無く、より自然な状態でのメンタル評価が可能となることから、このような衣服型電子機器の応用面において大きな異議があると云える。
 さらに、以上、示してきたように、本発明の衣服型電子機器の製造方法によれば、位置合わせ精度良く、伸縮性を有する電極表面層、伸縮性を有する絶縁カバー層と下地層、伸縮性を有する導体層からなる電気配線を有し、さらに電極部と配線部との境界部分の段差が実質的に無い、良好な電気特性と良好な着用感を両立した優れた衣服型電子機器を得ることができる。
本発明は、本実施例にて例示した用途例に限定されず、人体の持つ情報、すなわち筋電位、心電位などの生体電位、体温、脈拍、血圧などの生体情報を衣服に設けたセンサなど検知するためのウェアラブル装置や、あるいは、電気的な温熱装置を組み込んだ衣服、衣服圧を測定するためのセンサを組み込んだウェアラブル装置、衣服圧ないし変位検知を利用して身体サイズを計測するウェア、足裏の圧力を測定するための靴下型装置などに広く応用できる。また表面段差の無い伸縮可能な配線は、部品、コネクタ類との接続についても良い方向に作用するため、本発明は、フレキシブルな太陽電池モジュールをテキスタイルに集積した衣服、テント、バッグなどの配線部、関節部を有する低周波治療器、温熱療養機などの配線部、屈曲度のセンシング部などに応用可能である。かかるウェアラブル装置は、人体を対象にするのみならず、ペットや家畜などの動物、あるいは伸縮部、屈曲部などを有する機械装置にも応用可能であり、ロボット義手、ロボット義足など機械装置と人体と接続して用いるシステムの電気配線としても利用できる。また体内に埋設してしようするインプラントデバイスの配線材料としても有用である。
 またさらに本発明の衣服型電子機器は、ウェアラブルな端末として身体の物理データ、バイタルデータ収集し、得られたデータを電気信号として外部に通信可能であり、個人別のデータを集計するとともに特定個人に有用な情報を提供するシステムのための入力手段となる。またさらに本発明の衣服型電子機器にアクチュエータを仕込めば、パワードスーツのような運動の補助機能にも応用できる。なお、さらに本発明の衣服型電子機器を用いて身体の物理データ、とバイタルデータから得られるメンタル情報などを総合的に解析して、種々の疾病などの身体の不具合を検知、診断するシステムの端末として用いる事が出来る。本発明の衣服型電子機器は、着用感が良く、着用による違和感がないため、高品位なバイタルデータ取得が可能であり、身体的な不具合だけでなく、精神的な不具合の検知、診断システムのためのデータ収集装置としても利用可能である。
 

Claims (16)

  1.  導体層、絶縁カバー層及び絶縁下地層を含む電気配線を体表面に接する部分に有する衣服型電子機器であって、該電気配線の電極部と配線部の境界の段差が実質的に無いことを特徴とする衣服型電子機器。
  2.  導体層、絶縁カバー層、絶縁下地層及び電極表面層を含む電気配線を有することを特徴とする請求項1項記載の電気配線を有する衣服型電子機器。
  3.  導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする請求項1または2のいずれかに記載の衣服型電子機器。
  4.  前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする請求項1から3のいずれかに記載の衣服型電子機器。
  5.  少なくとも、導体層、絶縁カバー層、絶縁下地層を含む電気配線を体表面に接触する部分に有する衣服型電子機器であって、該電気配線の配線部の表面が布目形状の凹凸を有することを特徴とする衣服型電子機器。
  6.  少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有することを特徴とする請求項5項記載の電気配線を有する衣服型電子機器。
  7.  前記配線部の表面が有する布目状の凹凸において、凹凸の繰り返しピッチが、少なくとも任意の一本の直線上において0.06mm以上、12mm以下である事を特徴とする請求項5または6に記載の衣服型電子機器。
  8.  前記配線部の表面が有する布目状の凹凸において、凹部と凸部との高低差が7μm以上2500μm以下である事を特徴とする請求項5から7のいずれかに記載の衣服型電子機器。
  9.  前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする請求項5から8のいずれかに記載の衣服型電子機器。
  10.  導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする請求項5から9のいずれかに記載の衣服型電子機器。
  11.  少なくとも、導体層、絶縁カバー層、絶縁下地層を含む電気配線を有する衣服型電子機器の製造方法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、絶縁カバー層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
  12.  少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有する衣服型電子機器の製法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、絶縁カバー層、電極表面層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
  13.  少なくとも、導体層、絶縁カバー層、絶縁下地層、電極表面層を含む電気配線を有する衣服型電子機器の製法であって、離型性を有する第一の基材に、インクないしペースト状の材料を用いて、電極表面層、絶縁カバー層、導体層、絶縁下地層の順で順次印刷積層して電気配線を作製し、第二の基材となる布帛に転写する工程を含む衣服型電子機器の製造方法。
  14.  前記、導体層、絶縁カバー層、絶縁下地層が、それぞれ破断伸度50%以上であり、引っ張り弾性率が10~500MPaであることを特徴とする請求項11から13のいずれかに記載の衣服型電子機器の製造方法。
  15.  導体層の導電機能および、絶縁カバー層と絶縁下地層の絶縁機能を、実質的に損なうこと無く、伸張率10%以上に変形させることができることを特徴とする請求項11から14のいずれかに記載の衣服型電子機器の製造方法。
  16.  前記離型性のある第一の基材が、表面にストライプ形状または布地形状の凹凸を有することを特徴とする請求項11から15のいずれかに記載の衣服型電子機器の製造方法。
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2017/003201 2016-02-12 2017-01-30 衣服型電子機器、および衣服型電子機器の製造方法 WO2017138388A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017566585A JP6973087B2 (ja) 2016-02-12 2017-01-30 衣服型電子機器、および衣服型電子機器の製造方法
KR1020187026137A KR20180114114A (ko) 2016-02-12 2017-01-30 의복형 전자 기기, 및 의복형 전자 기기의 제조방법
CN202210462743.5A CN114762543A (zh) 2016-02-12 2017-01-30 服装型电子设备及服装型电子设备的制造方法
CN201780010946.8A CN108601409A (zh) 2016-02-12 2017-01-30 服装型电子设备及服装型电子设备的制造方法
US16/076,766 US10869391B2 (en) 2016-02-12 2017-01-30 Garment-type electronic device and method for producing same
EP17750113.7A EP3415021A4 (en) 2016-02-12 2017-01-30 ELECTRONIC WEARABLE DEVICE AND METHOD FOR PRODUCING AN ELECTRONIC WEARABLE DEVICE
US17/021,431 US11357104B2 (en) 2016-02-12 2020-09-15 Garment-type electronic device and method for producing same
JP2021171307A JP2022025092A (ja) 2016-02-12 2021-10-20 衣服型電子機器

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2016-024716 2016-02-12
JP2016024717 2016-02-12
JP2016-024718 2016-02-12
JP2016024718 2016-02-12
JP2016024716 2016-02-12
JP2016-024717 2016-02-12
JP2016-225146 2016-11-18
JP2016-225147 2016-11-18
JP2016225146 2016-11-18
JP2016225145 2016-11-18
JP2016225147 2016-11-18
JP2016-225145 2016-11-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/076,766 A-371-Of-International US10869391B2 (en) 2016-02-12 2017-01-30 Garment-type electronic device and method for producing same
US17/021,431 Division US11357104B2 (en) 2016-02-12 2020-09-15 Garment-type electronic device and method for producing same

Publications (1)

Publication Number Publication Date
WO2017138388A1 true WO2017138388A1 (ja) 2017-08-17

Family

ID=59563771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003201 WO2017138388A1 (ja) 2016-02-12 2017-01-30 衣服型電子機器、および衣服型電子機器の製造方法

Country Status (7)

Country Link
US (2) US10869391B2 (ja)
EP (1) EP3415021A4 (ja)
JP (2) JP6973087B2 (ja)
KR (1) KR20180114114A (ja)
CN (2) CN114762543A (ja)
TW (1) TWI712370B (ja)
WO (1) WO2017138388A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109121288A (zh) * 2018-09-28 2019-01-01 广东南海启明光大科技有限公司 一种柔性印刷电路板及其制备方法
JP2019123959A (ja) * 2018-01-15 2019-07-25 東洋紡株式会社 衣類
WO2019188311A1 (ja) * 2018-03-28 2019-10-03 ニプロ株式会社 生体用電極パッド、生体信号処理装置およびそれらの組合せ
WO2019246042A1 (en) * 2018-06-18 2019-12-26 Dupont Electronics, Inc. Polymer thick film dielectric paste composition
WO2020196790A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 繊維シート、並びに、それを用いた積層体、回路基板および電子基板
JPWO2020084981A1 (ja) * 2018-10-22 2021-04-08 東洋紡株式会社 デバイス連結体の製造方法、及び、デバイス連結体
AT523233A1 (de) * 2019-12-04 2021-06-15 Adaptive Regelsysteme Ges M B H Intelligentes Kleidungsstück mit Kontaktelektrode
EP3711664A4 (en) * 2017-11-17 2021-08-18 Toyobo Co., Ltd. CLOTHING FOR MEASURING BIOLOGICAL INFORMATION AND STRETCHABLE LAMINATE SHEET
EP3771299A4 (en) * 2018-03-19 2021-12-01 Fujikura Ltd. EXTENSIBLE CIRCUIT BOARD AND METHOD OF MANUFACTURING EXTENSIBLE CIRCUIT BOARD
WO2021241532A1 (ja) * 2020-05-25 2021-12-02 パナソニックIpマネジメント株式会社 発光シート、並びに、それを用いた表示装置および殺菌装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114762543A (zh) * 2016-02-12 2022-07-19 东洋纺株式会社 服装型电子设备及服装型电子设备的制造方法
JP6973372B2 (ja) * 2016-03-09 2021-11-24 東洋紡株式会社 伸縮性導体シート及び伸縮性導体シート形成用ペースト
US20220175292A1 (en) * 2017-03-01 2022-06-09 CB Innovations, LLC Screen Printed Electrodes For An Electrocardiogram Article
EP3697181A4 (en) * 2017-10-12 2021-09-01 Dai Nippon Printing Co., Ltd. PRINTED CIRCUIT BOARD AND ITS MANUFACTURING PROCESS
WO2019073839A1 (ja) * 2017-10-13 2019-04-18 東洋紡株式会社 伸縮性積層シート、伸縮性積層シートの製造方法および生体情報計測用衣服
WO2019130477A1 (ja) 2017-12-27 2019-07-04 株式会社Xenoma テキスタイル用伸縮性配線テープ、及びウェアラブルデバイス、及び配線付きテキスタイルの製造方法
US10772200B2 (en) * 2017-12-28 2020-09-08 Wave Company Co., Ltd. Fabric coated with functional silicone rubber
WO2020095833A1 (ja) 2018-11-06 2020-05-14 積水ポリマテック株式会社 伸縮配線部材
WO2020190802A1 (en) * 2019-03-15 2020-09-24 Intel Corporation Compression techniques
EP3951035A4 (en) * 2019-03-29 2023-05-10 Toyobo Co., Ltd. GARMENT
EP3949847A4 (en) * 2019-03-29 2023-01-04 Toyobo Co., Ltd. GARMENT
GB201904831D0 (en) 2019-04-05 2019-05-22 Bio Medical Res Limited Electrical insulation in garments
FR3095651B1 (fr) * 2019-05-02 2021-12-03 Univ De Pau Et Des Pays De L’Adour Particules nanocomposites conductrices étirables
GB2583754B (en) * 2019-05-09 2022-10-26 Conductive Transfers Ltd Conductive transfer
CN114188070B (zh) * 2021-12-08 2024-03-19 成都科威尔博新材料科技有限公司 一种可穿戴电极贴片及其制备方法
CN114543649A (zh) * 2022-01-11 2022-05-27 华南理工大学 一种弹力绳织物基底拉伸传感器、设备及制造方法
WO2023186235A1 (en) * 2022-03-29 2023-10-05 Coloplast A/S Printed electrode assembly
DE102022110523A1 (de) * 2022-04-29 2023-11-02 Ntt New Textile Technologies Gmbh Elektrode für ein Bekleidungsstück, einen Gurt oder eine Bandage

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234901A (ja) 1989-03-09 1990-09-18 Fujii Process Kk 電気回路付き衣料
JP2002035141A (ja) * 2000-07-31 2002-02-05 Yasutake Hichi 生体用電極、生体用電極の製造方法、生体用電極付き着衣、心電図測定器、低周波治療器又は高周波治療器
JP3723565B2 (ja) 2003-10-21 2005-12-07 広瀬 秀男 電子衣料
JP2007173226A (ja) 2005-11-28 2007-07-05 Osaka Univ ゴム材料およびゴム材料の製造方法
JP2008536542A (ja) * 2005-03-16 2008-09-11 テクストロニクス, インク. テキスタイルを基体とする電極
JP2009510276A (ja) * 2005-09-30 2009-03-12 テクストロニクス, インク. 3つの電極を有する生理学的モニター着用可能物
JP2012054192A (ja) 2010-09-03 2012-03-15 Bayer Material Science Ag 伸縮性配線を有する導電部材
WO2015115441A1 (ja) * 2014-01-28 2015-08-06 日本電信電話株式会社 生体信号検出衣料
JP2016000364A (ja) * 2015-10-05 2016-01-07 日本電信電話株式会社 導電体、生体電極、及び生体信号測定装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207341A (ja) 1990-01-08 1991-09-10 Dainippon Printing Co Ltd フィルム電極
JP2001168095A (ja) * 1999-12-07 2001-06-22 Nec Corp 半導体装置及びその半導体装置の製造方法
JP4522405B2 (ja) * 2004-04-22 2010-08-11 積水化成品工業株式会社 ゲル粘着組成物
US8900970B2 (en) 2006-04-28 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a flexible substrate
FI120482B (fi) * 2006-06-08 2009-11-13 Suunto Oy Anturointijärjestely
KR100863064B1 (ko) * 2007-08-03 2008-10-13 한국전자통신연구원 생체 신호 측정용 의복 및 그 제조 방법
EP2196142A4 (en) * 2007-09-25 2012-02-29 Nihon Kohden Corp ELECTRODE PLATE AND METHOD FOR PRODUCING THE ELECTRODE PLATE
JP2009188114A (ja) * 2008-02-05 2009-08-20 Three M Innovative Properties Co フレキシブルプリント回路基板の接続方法及び当該方法で得られる電子機器
US9808196B2 (en) * 2010-11-17 2017-11-07 Smart Solutions Technologies, S.L. Sensors
US9386684B2 (en) * 2012-03-20 2016-07-05 Molex, Llc Physical contact layer for body-worn leadware using selective deposition
EP2850421A4 (en) * 2012-05-10 2016-01-20 Univ California EXTRACORPOREAL ELECTROCHEMICAL SENSORS
BR112014028810A2 (pt) * 2012-05-25 2017-06-27 Koninklijke Philips Nv cabo para uso em medições de biopotenciais em um ambiente de ressonância magnética (rm), e aparelho de medição de biopotencial
CN202681916U (zh) * 2012-06-13 2013-01-23 北京山海树科技有限公司 一种用于人体成分测试仪的检测设备
DK2679107T3 (en) * 2012-06-29 2015-09-21 Smart Solutions Technologies S L Electronic textile device
US10034382B2 (en) * 2013-06-10 2018-07-24 Nanyang Technology University Method of manufacturing a flexible and/or stretchable electronic device
WO2015138515A1 (en) * 2014-03-10 2015-09-17 L.I.F.E. Corporation S.A. Physiological monitoring garments
TW201540206A (zh) * 2014-04-25 2015-11-01 Phihong Technology Co Ltd 一種具有控制器之電熱衣/褲
TW201600033A (zh) * 2014-06-25 2016-01-01 飛宏科技股份有限公司 一種具有矽橡膠電熱片之電熱衣/褲及其配飾
WO2016019223A1 (en) * 2014-08-01 2016-02-04 Western Michigan University Research Foundation Self-supported electronic devices
US10588569B2 (en) * 2015-01-14 2020-03-17 Toyobo Co., Ltd. Conductive fabric
WO2016114298A1 (ja) * 2015-01-14 2016-07-21 東洋紡株式会社 伸縮性電極および配線シート、生体情報計測用インターフェス
KR102562579B1 (ko) * 2016-01-13 2023-08-01 도요보 가부시키가이샤 신축성 도체 조성물, 신축성 도체 형성용 페이스트, 신축성 도체 조성물로 이루어지는 배선을 갖는 의복 및 그의 제조 방법
CN114762543A (zh) * 2016-02-12 2022-07-19 东洋纺株式会社 服装型电子设备及服装型电子设备的制造方法
JP6863363B2 (ja) * 2016-03-08 2021-04-21 東洋紡株式会社 伸縮性導体シート、接着性のある伸縮性導体シート、布帛上への伸縮性導体からなる配線の形成方法
JP6973372B2 (ja) * 2016-03-09 2021-11-24 東洋紡株式会社 伸縮性導体シート及び伸縮性導体シート形成用ペースト
EP3430924A4 (en) * 2016-03-16 2019-11-20 Toyobo Co., Ltd. INTELLIGENT DEVICE THAT CAN BE USED

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234901A (ja) 1989-03-09 1990-09-18 Fujii Process Kk 電気回路付き衣料
JP2002035141A (ja) * 2000-07-31 2002-02-05 Yasutake Hichi 生体用電極、生体用電極の製造方法、生体用電極付き着衣、心電図測定器、低周波治療器又は高周波治療器
JP3723565B2 (ja) 2003-10-21 2005-12-07 広瀬 秀男 電子衣料
JP2008536542A (ja) * 2005-03-16 2008-09-11 テクストロニクス, インク. テキスタイルを基体とする電極
JP2009510276A (ja) * 2005-09-30 2009-03-12 テクストロニクス, インク. 3つの電極を有する生理学的モニター着用可能物
JP2007173226A (ja) 2005-11-28 2007-07-05 Osaka Univ ゴム材料およびゴム材料の製造方法
JP2012054192A (ja) 2010-09-03 2012-03-15 Bayer Material Science Ag 伸縮性配線を有する導電部材
WO2015115441A1 (ja) * 2014-01-28 2015-08-06 日本電信電話株式会社 生体信号検出衣料
JP2016000364A (ja) * 2015-10-05 2016-01-07 日本電信電話株式会社 導電体、生体電極、及び生体信号測定装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711664A4 (en) * 2017-11-17 2021-08-18 Toyobo Co., Ltd. CLOTHING FOR MEASURING BIOLOGICAL INFORMATION AND STRETCHABLE LAMINATE SHEET
JP2019123959A (ja) * 2018-01-15 2019-07-25 東洋紡株式会社 衣類
JP7108413B2 (ja) 2018-01-15 2022-07-28 東洋紡株式会社 衣類
US11337304B2 (en) 2018-03-19 2022-05-17 Fujikura Ltd. Stretchable wiring board and method for manufacturing stretchable wiring board
EP3771299A4 (en) * 2018-03-19 2021-12-01 Fujikura Ltd. EXTENSIBLE CIRCUIT BOARD AND METHOD OF MANUFACTURING EXTENSIBLE CIRCUIT BOARD
JPWO2019188311A1 (ja) * 2018-03-28 2021-07-15 ニプロ株式会社 生体用電極パッド、生体信号処理装置およびそれらの組合せ
WO2019188311A1 (ja) * 2018-03-28 2019-10-03 ニプロ株式会社 生体用電極パッド、生体信号処理装置およびそれらの組合せ
JP7335228B2 (ja) 2018-03-28 2023-08-29 ニプロ株式会社 生体用電極パッドと生体信号処理装置との組合せ
US11064605B2 (en) 2018-06-18 2021-07-13 Dupont Electronics, Inc. Polymer thick film dielectric paste composition
WO2019246042A1 (en) * 2018-06-18 2019-12-26 Dupont Electronics, Inc. Polymer thick film dielectric paste composition
CN109121288A (zh) * 2018-09-28 2019-01-01 广东南海启明光大科技有限公司 一种柔性印刷电路板及其制备方法
JPWO2020084981A1 (ja) * 2018-10-22 2021-04-08 東洋紡株式会社 デバイス連結体の製造方法、及び、デバイス連結体
CN113573885A (zh) * 2019-03-27 2021-10-29 松下知识产权经营株式会社 纤维片以及使用其的层叠体、电路基板及电子基板
JPWO2020196790A1 (ja) * 2019-03-27 2020-10-01
WO2020196790A1 (ja) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 繊維シート、並びに、それを用いた積層体、回路基板および電子基板
JP7445831B2 (ja) 2019-03-27 2024-03-08 パナソニックIpマネジメント株式会社 繊維シート、並びに、それを用いた積層体、回路基板および電子基板
AT523233A1 (de) * 2019-12-04 2021-06-15 Adaptive Regelsysteme Ges M B H Intelligentes Kleidungsstück mit Kontaktelektrode
WO2021241532A1 (ja) * 2020-05-25 2021-12-02 パナソニックIpマネジメント株式会社 発光シート、並びに、それを用いた表示装置および殺菌装置

Also Published As

Publication number Publication date
EP3415021A4 (en) 2019-10-09
JP2022025092A (ja) 2022-02-09
JP6973087B2 (ja) 2021-11-24
US10869391B2 (en) 2020-12-15
US20190053372A1 (en) 2019-02-14
JPWO2017138388A1 (ja) 2018-12-06
TW201731401A (zh) 2017-09-16
CN108601409A (zh) 2018-09-28
EP3415021A1 (en) 2018-12-19
TWI712370B (zh) 2020-12-11
US20210007223A1 (en) 2021-01-07
CN114762543A (zh) 2022-07-19
KR20180114114A (ko) 2018-10-17
US11357104B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2017138388A1 (ja) 衣服型電子機器、および衣服型電子機器の製造方法
TWI736572B (zh) 伸縮性導體組成物、伸縮性導體形成用糊劑、具有由伸縮性導體組成物構成之配線的衣服及其製造方法
US20220363849A1 (en) Stretchable conductor sheet and paste for forming stretchable conductor sheet
JP6766869B2 (ja) ウェアラブル・スマート・デバイス
WO2018074402A1 (ja) 伸縮性導体シート、伸縮性配線、伸縮性配線付き布帛、および導電性回復方法
JP6926500B2 (ja) 衣服型電子機器
JP2017144239A (ja) 衣服型電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020187026137

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017750113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750113

Country of ref document: EP

Effective date: 20180912