WO2017132980A1 - 油气低温回收装置 - Google Patents

油气低温回收装置 Download PDF

Info

Publication number
WO2017132980A1
WO2017132980A1 PCT/CN2016/073614 CN2016073614W WO2017132980A1 WO 2017132980 A1 WO2017132980 A1 WO 2017132980A1 CN 2016073614 W CN2016073614 W CN 2016073614W WO 2017132980 A1 WO2017132980 A1 WO 2017132980A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
gas
adsorption
gas cryogenic
tank
Prior art date
Application number
PCT/CN2016/073614
Other languages
English (en)
French (fr)
Inventor
杨亚鹏
Original Assignee
深圳市尚佳能源网络有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚佳能源网络有限责任公司 filed Critical 深圳市尚佳能源网络有限责任公司
Priority to PCT/CN2016/073614 priority Critical patent/WO2017132980A1/zh
Publication of WO2017132980A1 publication Critical patent/WO2017132980A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents

Definitions

  • the present invention relates to the field of oil and gas recovery processing technology, and in particular, to an oil and gas low temperature recovery device.
  • the recovery of oil and gas is 1: 1-1.2 (that is, adding one liter of oil will return 1 to 1.2 liters of oil and gas back to the tank), so when oil and gas
  • the pressure of the tank will increase.
  • the tank reaches a certain pressure, the tank will be relieved.
  • the pressure relief of oil tanks at most gas stations is that the gas in the tank is directly discharged into the air, which will pollute the environment.
  • the technical problem to be solved by the present invention is to provide a solution for the problem of the oil and gas cryogenic recovery device that can be flexibly installed and used.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: providing a low-temperature oil and gas recovery device for connecting an oil tank, which comprises a gas-carbon cryogenic separation tower for gas-liquid separation treatment of oil and gas, and a gas to be separated An adsorption unit that performs an adsorption treatment, and a refrigeration unit; the refrigeration unit is connected to the oil and gas cryogenic separation tower, and forms a condensation field in the oil and gas cryogenic separation tower that gradually decreases in temperature from the lower portion to the upper portion; [0007]
  • the lower portion of the oil and gas cryogenic separation tower is provided with a feed port for receiving the oil and gas, and the upper portion of the oil and gas cryogenic separation tower is provided with a gas outlet for outputting gas separated by condensation; The gas outlets are connected.
  • the oil and gas cryogenic separation tower comprises a plurality of spaced-apart trays from a lower portion to an upper portion, and a refrigeration conduit of the refrigeration unit sequentially passes through each of the trays, the refrigeration unit A refrigerant flows from the upper portion of the oil and gas cryogenic separation tower to the lower portion in the refrigeration duct.
  • the refrigeration duct is also coiled on the tray to form a refrigeration coil.
  • the bottom of the oil and gas cryogenic separation tower is provided with a receiving portion for accommodating the oil separated by condensation, and the receiving portion is located below the feeding port;
  • the receiving portion communicates with the mouth of the upper portion of the oil and gas cryogenic separation tower and is provided with a check valve for preventing oil from flowing back
  • the mouth of the receiving portion is provided with a liquid collecting swash plate
  • the oil and gas cryogenic separation tower is further provided with a liquid discharge port that communicates with the accommodating portion.
  • the oil and gas cryogenic recovery device further comprises a reflux tank connected between the top of the oil and gas cryogenic separation column and the adsorption unit.
  • the adsorption unit comprises at least two adsorption tanks which are superposed on each other and communicate with each other; one end of the adsorption tank is provided with a first mating structure, and the other end is provided with a chamber of another adsorption tank a second mating structure in which the first mating structure is adapted; in each of the two adsorbing tanks stacked, a first mating structure of the adsorbing tank cooperates with a second mating structure of the other of the adsorbing tanks ;
  • the adsorption tank located at the bottom is connected to the gas outlet of the oil and gas cryogenic separation tower through a rewarming pipeline.
  • one end of the adsorption tank is connected with a first communication tube, and the other end is connected with a second communication tube that is sleevedly engaged with the first communication tube of another of the adsorption cans;
  • the second communication tube of the adsorption tank located above is sleeved with the first communication tube of the adsorption tank located below.
  • the first mating structure is a step protruding from one end of the canister, and the second mating structure is a groove formed at the other end of the canister; each of the two stacked In the adsorption tank, the step of one of the adsorption tanks fits in the groove of the other of the adsorption tanks.
  • the step and the first communication tube are disposed at the same end of the adsorption can, the first connection a through pipe penetrating the step and communicating with the inside of the adsorption tank; the groove and the second communication tube are disposed at the same end of the adsorption tank, and the second communication tube penetrates the bottom surface of the groove and communicates with the Inside the canister; or,
  • the step and the second communication tube are disposed at the same end of the adsorption tank, the second communication tube penetrates the step and communicates with the interior of the adsorption tank; the groove and the first The communication tube is disposed at the same end of the adsorption tank, and the first communication tube penetrates the bottom surface of the groove and communicates with the inside of the adsorption tank.
  • the adsorption unit further includes a U-shaped tube, and one end of the U-shaped tube is connected to the first communication tube of the adsorption tank at the top.
  • the outer peripheral side surface of the canister is provided with a lifting portion for lifting or lowering the canister.
  • the adsorption unit further includes a support frame disposed at a periphery of the superposed adsorption can.
  • the oil and gas low-temperature recovery device of the invention is suitable for connecting various small and medium-sized oil tanks and the like, and the oil and gas recovery condensing adsorption treatment is convenient to use, and the oil and gas recovery and separation effect is good, and the recovered normal temperature oil can be added to the oil. Reuse of cans and prevent oil and gas leakage from polluting the environment, and also eliminate the safety hazards caused by oil and gas leakage during gas stations and transportation.
  • FIG. 1 is a schematic structural view of an oil and gas cryogenic recovery device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the adsorption unit of FIG. 1;
  • FIG. 3 is a schematic structural view of the adsorption can of FIG. 2;
  • FIG. 4 is a schematic structural view of another embodiment of the adsorption unit of FIG. 1;
  • FIG. 5 is a schematic structural view of an oil and gas cryogenic recovery device according to another embodiment of the present invention.
  • an oil and gas cryogenic recovery device configured to connect an oil tank to receive oil and gas in the oil tank for recycling.
  • the oil and gas cryogenic recovery device comprises an oil and gas cryogenic separation tower 10 for gas-liquid separation treatment of oil and gas, an adsorption unit 20 for adsorbing the separated gas, and a refrigeration unit 30; the refrigeration unit 30 is connected to the oil and gas cryogenic separation tower 10, and A condensation field in which the temperature gradually decreases from the lower portion to the upper portion is formed in the low-temperature separation column 10 of the oil and gas.
  • the lower part of the oil and gas cryogenic separation tower 10 is provided with a feed port for receiving oil and gas (not shown), and the oil and gas cryogenic separation tower
  • the upper portion of 10 is provided with a gas outlet (not shown) for outputting the gas separated by condensation; the adsorption unit 20 is connected to the gas outlet.
  • the oil and gas enters the oil and gas cryogenic separation tower 10 from the lower part, and the condensation field which gradually decreases in temperature, the oil which forms the liquid by cooling can fall to the bottom of the oil and gas cryogenic separation tower 10 for storage or output, and the gas which cannot be liquefied in the oil and gas rises to the low temperature of oil and gas.
  • the upper portion of the separation column 10 is output from the gas outlet to the adsorption unit 20 to perform adsorption treatment. Condensation fields with gradually decreasing temperatures can better separate the oil and gas.
  • the oil and gas cryogenic separation tower 10 can be directly connected to the breathing valve connected to the oil tank, or can be connected to the top of the oil tank through a pipeline; when the oil tank tank is super-high exhaust gas, the discharged oil and gas directly enters the oil and gas cryogenic separation tower.
  • the oil and gas inlet side of the oil and gas cryogenic recovery device does not need to be provided with a power device, so that the oil and gas does not need to be pressurized by the power device and then enters the oil and gas cryogenic separation tower 10, so as to avoid the oil and gas concentration in the compression process is high to the explosion limit range. And caused an explosion.
  • the oil and gas cryogenic separation column 10 includes a plurality of spaced-apart trays 11 from the lower portion to the upper portion. After entering the oil and gas cryogenic separation column 10 from the feed port, the oil and gas flows through the respective trays 11 from the bottom to the top.
  • the tray 11 can be provided with 6-20 layers.
  • the inside of the oil and gas cryogenic separation tower 10 can also be provided with a uniform distributor above the feed inlet to ensure uniform airflow rise and enhance mass transfer heat transfer.
  • a mesh filter demister is arranged in front of the gas outlet of the oil and gas cryogenic separation tower 10 to prevent the gas belt liquid and enhance the separation effect.
  • the refrigeration unit 30 mainly includes a compressor 31, a refrigerant pipe 32, and a capillary 33, wherein the refrigerant flowing therein is preferably a rl 34a and rl 4 (or isobutane and propane) mixed refrigerant.
  • One end of the refrigeration duct 32 is connected to the output end of the compressor 31 through a capillary 33, and the capillary 33 is used for throttling refrigeration; the other end of the refrigeration duct 32 is connected to the input end of the compressor 31; and the compressor 31 is used as a power unit to drive the refrigerant in the refrigeration
  • the conduit 32 and the compressor 31 are circulated.
  • the refrigeration duct 32 sequentially passes through each of the trays 11 in the oil and gas cryogenic separation tower 10, and the refrigerant flows from the upper portion of the oil and gas cryogenic separation tower 10 to the lower portion in the refrigeration conduit 32, so that the tray 11 is from top to bottom.
  • the temperature gradually increases.
  • the oil and gas flows through the respective trays 11 in the oil and gas cryogenic separation column 10 and exchanges heat with the refrigerant, and the temperature is lowered.
  • the refrigeration duct 32 is also coiled on the tray 11 to form a refrigeration coil 321, thereby increasing the contact area with the tray 11, and improving the condensation effect of the oil and gas.
  • a cooling coil can be provided on each tray 11 or a cooling coil can be provided only on a portion of the tray 11. The specific setting can be made according to actual conditions.
  • the cooling coil 321 may be of a fin type or a plate type structure, or fins may be provided on the outer circumference of the cooling coil 321 to increase the cooling area.
  • the condensation field formed by the refrigeration unit 20 in the low-temperature separation tower 10 of the oil and gas has the highest bottom temperature and can be normal temperature.
  • the top temperature is the lowest, can be as low as -58 °C (operating temperature -42 °C or so).
  • the bottom of the oil and gas cryogenic separation column 10 is provided with a receiving portion 12 for accommodating the oil separated by condensation.
  • the accommodating portion 12 is located below the feed port, and the two are separated from each other to prevent the entered oil and gas from being mixed into the accommodating portion 12.
  • the check port 13 of the upper portion of the accommodating portion 12 that communicates with the upper portion of the oil and gas cryogenic separation column 10 is provided with a check valve 13 so that the oil that has entered the accommodating portion 12 does not pass through the check valve 13 Go up.
  • the mouth of the accommodating portion 12 is further provided with a liquid collecting swash plate 14, and the condensed oil can fall into the accommodating portion 12 through the check valve plate 13 along the liquid swash plate 14.
  • the oil and gas cryogenic separation column 10 is further provided with a liquid discharge port that communicates with the accommodating portion 12 for outputting liquid such as oil stored in the accommodating portion 12.
  • the output oil can be stored directly in the tank or reprocessed.
  • the adsorption unit 20 includes at least two adsorption tanks 21, and at least two adsorption tanks 21 are superposed on each other and connected to each other to form an integral adsorption unit 20 for performing adsorption treatment on the gas passing therethrough.
  • one end of the adsorption tank 21 is provided with a first mating structure, and the other end is provided with a second mating structure that is matched with the first mating structure of the other adsorbent tank 21; each of the two adsorption tanks 21 that are superposed
  • the first mating structure of one of the canisters 21 cooperates with the second mating structure of the other canister 21.
  • one end of the adsorption tank 21 is connected with a first communication tube 211, and the other end is connected with a second communication tube 212 that is sleeve-fitted with the first communication tube 211 of the other adsorption tank 21;
  • the second communication pipe 212 of the adsorption can 21 located above and the first communication pipe of the adsorption can 21 located below 211 sockets.
  • the phase communication between the two adsorption tanks 21 is realized by the communication between the first communication pipe 211 and the second communication pipe 212, and the gas can be sequentially passed through the inside of the adsorption can 21 to be adsorbed.
  • the sleeved engagement of the first communication tube 211 and the second communication tube 212 also makes the connection of the two connections relatively sealed and is less prone to air leakage.
  • the first communication pipe 211 is connected to the upper end of the adsorption can 21, and the second communication pipe 212 is connected to the lower end of the adsorption can 21.
  • the first mating structure is a step 213 protruding from the end of the adsorption can 21, and the second mating structure is a recess formed at the other end of the canister 21.
  • the groove 214 in each of the two adsorption tanks 21 stacked, the step 213 of one adsorption tank 21 is fitted in the groove 214 of the other adsorption tank 21, so that the two adsorption tanks 21 are firmly and sealed.
  • the first mating structure and the second mating structure may be a structure such as a snap-fit, a clip, or the like that cooperate with each other, as long as a stable connection between the canisters 21 can be achieved.
  • the step 213 and the first communication tube 211 are disposed at the same end of the adsorption can 21, the first communication tube 211 penetrates the step 213 and communicates with the inside of the adsorption can 21; the groove 214 and the second The communication pipe 212 is disposed at the same end of the adsorption can 21, and the second communication pipe 212 penetrates the bottom surface of the groove 214 and communicates with the inside of the adsorption can 21.
  • the length of the second communicating pipe 212 is preferably not greater than the depth of the groove 214 so as not to protrude from the bottom surface of the canister 21 to keep the bottom of the canister 21 flattened.
  • the step 213 may be disposed at the same end of the adsorption can 21 with the second communication tube 212, and the second communication tube 212 penetrates the step 213 and communicates with the interior of the adsorption can 20;
  • a communication tube 21 1 is disposed at the same end of the adsorption tank 21, and the first communication tube 211 penetrates the bottom surface of the recess 214 and communicates with the inside of the adsorption tank 21.
  • the length of the first communication tube 211 is preferably not greater than the depth of the groove 214.
  • the canister 21 may include a can body 201, and a cylindrical homogenizer 022 disposed in the can body 201.
  • the homogenizer 202 is filled with activated carbon for adsorption.
  • the end surface of one end of the homogenizer 202 is provided with a plurality of through holes to form an air inlet hole; the end of the air inlet hole of the homogenizer 202 faces the bottom of the inner side of the can body 201, and the gas enters the can body 201 and passes through The air intake holes rise evenly through the activated carbon.
  • the other end surface of the homogenizer 202 is provided with a through hole, and an air hole is formed.
  • the air outlet is in communication with the first communication tube 211, and the gas passing through the activated carbon is concentrated through the air outlet and then transmitted from the first communication tube 211. Out of the can 201.
  • the step 213 is detachably disposed at one end of the canister 21 to open or close one end of the canister 21.
  • the activated carbon crucible needs to be replaced, the step 213 is removed from the can body 201, and the can body 201 is placed, and the activated carbon can be replaced.
  • the step 213 can be fixed to the can 201 of the canister 21 by screwing or screwing.
  • the adsorption unit 20 uses a crucible, and a plurality of (for example, three) adsorption cans 21 are stacked up and down by the cooperation of the step 213 and the groove 214, and the first communication tube 211 of the adsorption can 21 is located below and above.
  • the second communication tube 212 of the canister 21 is sleeved to achieve communication between the adsorption cans 21.
  • the second communication pipe 212 of the lowermost adsorption tank 21 forms an intake port of the adsorption unit 20, and the first communication pipe 211 of the uppermost adsorption can 21 forms an air outlet of the adsorption unit 20; the gas from the oil and gas cryogenic separation column 10
  • the intake port is sent to the adsorption tank 21, passes through each of the adsorption tanks 21 in order, and is discharged from the air outlet.
  • the upper adsorption tank 21 is lifted by a lifting device or manually, and is separated from the lowermost adsorption tank 21, and the lowermost portion is The adsorption tank 21 is taken out, the other adsorption tank 21 is moved downward, and another new adsorption tank 21 is superposed on the uppermost side to form a new adsorption tank to be used continuously to ensure the adsorption effect.
  • the adsorption tank 21 which is adsorbed and saturated can be collectively subjected to desorption treatment, so that the adsorption tank 21 can be reused, and waste of resources is reduced.
  • the outer peripheral side of the canister 21 is provided with a lifting portion 22 for lifting or lowering the canister 21; the lifting portion 22 may include one of a hook, a handle and a hanging chain Kind or more.
  • the adsorption unit 20 may further include a U-shaped tube 23, one end of which is connected to the first communication tube 211 of the uppermost adsorption can 21, as shown in Fig. 1.
  • the U-shaped tube 23 can also be replaced with other shape tubes.
  • the adsorption unit 20 further includes a support frame 24 disposed on the periphery of the stacked adsorption can 21; the superposed adsorption can 21 is protected by the support frame 24.
  • the support frame 24 may include a plurality of pillars 241 that are spaced apart from each other at the periphery of the canister 21, and a plurality of crossbars 242 for supporting the canister 21.
  • the plurality of rails 242 are respectively The corresponding adsorption tank 21 is connected between the adjacent two pillars 241.
  • the outer peripheral side surface of the canister 21 may be provided with a support portion supported on the cross bar 242.
  • the support portion can be formed by the lifting portion 22; when the lifting portion 22 is The hand protrudes from the structure ⁇ and can be used as a support.
  • the crossbar 242 is detachably coupled between the pillars 241. After the adsorption can 21 is replaced, the cross bar 242 around the canister 21 to be taken out is removed, allowing a large space to be made to facilitate the entry and exit of the canister 21.
  • the adsorption tank 21 located at the lowermost portion is connected to the gas outlet of the oil and gas cryogenic separation column 10 through the rewarming pipe 40; the rewarming pipe 40 is connected to the intake port of the adsorption unit 20 (bottommost)
  • the second communication pipe 212) of the adsorption tank 21 has the other end connected to the gas outlet of the oil and gas cryogenic separation column 10.
  • the temperature of the gas outputted by the condensing separation of the oil and gas cryogenic separation column 10 is relatively low, and flows along the rewarming pipe 40 before the output to the adsorption unit 20, so that the temperature gradually rises above 0 °C.
  • the rewarming duct 40 comprises a tube body and a heat sink disposed on the outer circumference of the tube, and the arrangement of the heat sink increases the heat exchange area between the gas in the tube body and the outside air to improve the heat exchange effect.
  • the oil and gas low temperature recovery device uses ⁇ , and connects the gas valve of the oil tank to the top of the oil tank or the oil tank.
  • the oil vaporized or recovered in the oil tank is transported through the pipeline 50 to the oil and gas cryogenic separation tower 10,
  • the upper part passes through the condensation field and flows to the top of the oil and gas cryogenic separation tower 10.
  • the oil and gas is cooled during the gradual ascending process, and the hydrocarbon substance is condensed into a liquid and left on the tray 11, and after being collected, it falls to the bottom of the low-temperature separation tower 10 of the oil and gas, and is stored in the accommodating portion 12.
  • an oil and gas cryogenic recovery apparatus includes an oil and gas cryogenic separation tower 10, an adsorption unit 20, and a refrigeration unit 30, an oil and gas cryogenic separation tower 10, an adsorption unit 20, and a refrigeration unit 30.
  • an oil and gas cryogenic separation tower 10 includes an oil and gas cryogenic separation tower 10, an adsorption unit 20, and a refrigeration unit 30, an oil and gas cryogenic separation tower 10, an adsorption unit 20, and a refrigeration unit 30.
  • the oil and gas cryogenic recovery device of the embodiment further includes an overhead reflux tank 50 connected between the oil and gas cryogenic separation column 10 and the adsorption unit 20 for separating the oil and gas at a low temperature.
  • the air bubbles in the gas output from the column 10 are separated and returned to the oil and gas cryogenic separation column 10, and the removed gas is then sent from the overhead reflux tank 50 to the adsorption unit 20.
  • the overhead reflux tank 50 includes a can body and a demister disposed in the can body.
  • the inlet of the overhead reflux tank 50 is connected to the gas outlet of the oil-gas cryogenic separation column 10 through a pipe, and the liquid outlet outlet at the bottom of the reflux can 50 is connected through another pipe.
  • the temperature separation column 10 is such that a loop is formed between the overhead reflux tank 50 and the oil-gas cryogenic separation column 10 by pipe interconnection.
  • the outlet of the overhead reflux tank 50 is connected to the adsorption unit 20 through a rewarming conduit 40.
  • the top reflux tank 50 uses helium, and the gas output from the oil-gas cryogenic separation column 10 enters the top reflux tank 50 through the inlet, further performs gas-liquid separation, and the gas rises from the top outlet to be sent to the adsorption unit 20, liquid The sinking is then output through the lower liquid outlet to flow back into the cryogenic separation column 10.
  • the overall oil and gas cryogenic recovery device of the present invention can be compactly installed compared with the existing oil and gas recovery processing system, and is convenient for flexible installation and use, and is suitable for connecting a tank of a tanker or a gas recovery type gas station. It is especially suitable for all kinds of small and medium-sized oil tanks. It will recycle oil and gas, have good separation effect of oil and gas, prevent oil and gas from polluting the environment, and eliminate the safety hazard caused by oil and gas leakage during gas station and transportation. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

一种油气低温回收装置,包括油气低温分离塔(10)、吸附单元(20)以及制冷单元(30);制冷单元(30)连接油气低温分离塔(10),并使油气低温分离塔(10)内形成从下部到上部温度逐渐递减的冷凝场;油气低温分离塔(10)的下部设有进料口,油气低温分离塔(10)的上部设有气体出口;吸附单元(20)与气体出口相连接。该油气低温回收装置适用于连接各种油品存储设备,分离效果好,防止油气外泄污染环境,也消除了由于油气外泄所带来的安全隐患。

Description

说明书 发明名称:油气氐温回收装置
技术领域
[0001] 本发明涉及油气回收处理技术领域, 尤其涉及一种油气低温回收装置。
背景技术
[0002] 在加油站、 油罐车等场所, 在加油过程、 运输过程中通常会有油气挥发出来。
其中, 在加油的过程中会有油气进入油罐, 由于加油量: 回收油气为 1 : 1-1.2 ( 即加一升油会有 1升到 1.2升的油气回到油罐) , 所以当油气进入油罐量大于加油 量吋, 油罐压力势必会升高, 当油罐达到一定压力吋, 油罐就会泄压。 现在大 部分加油站的油罐泄压是罐内气体直接向空气中排放, 会污染环境, 当油气聚 集吋还会有火灾和***的危险。
[0003] 此外, 夏季油罐车在运送油品 (如汽油) 吋, 由于环境温度高, 油品在运输过 程中势必会蒸发, 导致油罐压力升高, 当压力升高到一定值吋, 就会往空气中 泄放, 污染环境, 且泄放的气体中含有大量可燃烃类, 油气遇到火花就会有起 火危险, 甚至有引起油罐***的危险。
[0004] 因此, 有必要设计一种可灵活应用在加油站、 油罐车等场所的油气处理装置, 将油气回收处理, 防止油气外泄。
技术问题
[0005] 本发明要解决的技术问题在于, 提供一种可灵活安装使用的油气低温回收装置 问题的解决方案
技术解决方案
[0006] 本发明解决其技术问题所采用的技术方案是: 提供一种油气低温回收装置, 用 于连接油罐, 其包括对油气进行气液分离处理的油气低温分离塔、 将分离出来 的气体进行吸附处理的吸附单元、 以及制冷单元; 所述制冷单元连接所述油气 低温分离塔, 并使所述油气低温分离塔内形成从下部到上部温度逐渐递减的冷 凝场; [0007] 所述油气低温分离塔的下部设有接收所述油气的进料口, 所述油气低温分离塔 的上部设有将经冷凝分离出来的气体输出的气体出口; 所述吸附单元与所述气 体出口相连接。
[0008] 优选地, 所述油气低温分离塔内从下部到上部包括多层间隔设置的塔盘, 所述 制冷单元的制冷管道依次绕覆经过每一层所述塔盘, 所述制冷单元的制冷剂在 所述制冷管道内从所述油气低温分离塔内上部流向下部。
[0009] 优选地, 所述制冷管道还在所述塔盘上盘绕形成制冷盘管。
[0010] 优选地, 所述油气低温分离塔内底部设有容置经冷凝分离出来的油液的容置部 , 所述容置部位于所述进料口下方;
[0011] 所述容置部连通所述油气低温分离塔内上部的幵口设有防止油液回流的逆止阀
[0012] 优选地, 所述容置部的幵口设有集液斜板;
[0013] 所述油气低温分离塔上还设有连通所述容置部的液体排放口。
[0014] 优选地, 该油气低温回收装置还包括连接在所述油气低温分离塔顶部和吸附单 元之间的回流罐。
[0015] 优选地, 所述吸附单元包括至少两个上下叠合且相连通的吸附罐; 所述吸附罐 的一端设有第一配合结构, 另一端设有与另一所述吸附罐的所述第一配合结构 相适配的第二配合结构; 叠合的每两个所述吸附罐中, 一所述吸附罐的第一配 合结构与另一所述吸附罐的第二配合结构相配合;
[0016] 位于最下方的所述吸附罐通过复温管道连接所述油气低温分离塔的气体出口。
[0017] 优选地, 所述吸附罐的一端连接有第一连通管, 另一端连接有与另一所述吸附 罐的所述第一连通管套接配合的第二连通管; 上下叠合的两个所述吸附罐中, 位于上方的所述吸附罐的第二连通管与位于下方的所述吸附罐的第一连通管套 接配合。
[0018] 优选地, 所述第一配合结构为凸出在所述吸附罐一端的台阶, 所述第二配合结 构为形成在所述吸附罐另一端的凹槽; 叠合的每两个所述吸附罐中, 一所述吸 附罐的台阶配合在另一所述吸附罐的凹槽内。
[0019] 优选地, 所述台阶与所述第一连通管设置在所述吸附罐的同一端, 所述第一连 通管贯穿所述台阶并连通所述吸附罐内部; 所述凹槽与所述第二连通管设置在 所述吸附罐的同一端, 所述第二连通管贯穿所述凹槽底面并连通所述吸附罐内 部; 或者,
[0020] 所述台阶与所述第二连通管设置在所述吸附罐的同一端, 所述第二连通管贯穿 所述台阶并连通所述吸附罐内部; 所述凹槽与所述第一连通管设置在所述吸附 罐的同一端, 所述第一连通管贯穿所述凹槽底面并连通所述吸附罐内部。
[0021] 优选地, 所述吸附单元还包括 U形管, 所述 U形管一端连接在位于最上方的所 述吸附罐的所述第一连通管上。
[0022] 优选地, 所述吸附罐的外周侧面设有用于将该吸附罐提起或放下的提放部。
[0023] 优选地, 所述吸附单元还包括设置在叠合的所述吸附罐***的支撑架。
发明的有益效果
有益效果
[0024] 本发明的油气低温回收装置, 适用于连接各种中小型号油罐等油品存储设备, 将油气回收冷凝吸附处理, 使用方便, 油气回收分离效果好, 回收的常温油品 可以加入油罐再利用, 并防止油气外泄污染环境, 也消除了在加油站和运输过 程中由于油气外泄所带来的安全隐患。
对附图的简要说明
附图说明
[0025] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0026] 图 1是本发明一实施例的油气低温回收装置的结构示意图;
[0027] 图 2是图 1中吸附单元一实施例的结构示意图;
[0028] 图 3是图 2中吸附罐的结构示意图;
[0029] 图 4是图 1中吸附单元另一实施例的结构示意图;
[0030] 图 5是本发明另一实施实例的油气低温回收装置的结构示意图。
本发明的实施方式
[0031] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0032] 如图 1所示, 本发明一实施例的油气低温回收装置, 用于连接油罐, 以接收油 罐内的油气进行回收处理。 该油气低温回收装置包括对油气进行气液分离处理 的油气低温分离塔 10、 将分离出来的气体进行吸附处理的吸附单元 20、 以及制 冷单元 30; 制冷单元 30连接油气低温分离塔 10, 并使油气低温分离塔 10内形成 从下部到上部温度逐渐递减的冷凝场。
[0033] 油气低温分离塔 10的下部设有接收油气的进料口 (未图示) , 油气低温分离塔
10的上部设有将经冷凝分离出来的气体输出的气体出口 (未图示) ; 吸附单元 2 0与气体出口相连接。 油气从下部进入油气低温分离塔 10, 经过温度逐渐降低的 冷凝场, 经冷却形成液体的油液可落到油气低温分离塔 10的底部存储或输出, 油气中不能液化的气体则上升到油气低温分离塔 10的上部, 从气体出口输出至 吸附单元 20, 进行吸附处理。 温度逐渐降低的冷凝场, 可更好地对油气进行冷 凝分离。
[0034] 其中, 油气低温分离塔 10可直接与连接油罐的呼吸阀连接, 也可通过管道连接 油罐的顶部; 当油罐罐压超高排气吋, 排出的油气直接进入油气低温分离塔。 该油气低温回收装置的油气进入侧不需设置动力装置, 从而油气不需动力装置 的增压再进入油气低温分离塔 10, 这样避免油气和空气的混合物在压缩过程中 油气浓度高至***极限范围而引起***。
[0035] 油气低温分离塔 10内从下部到上部包括多层间隔设置的塔盘 11, 油气从进料口 进入油气低温分离塔 10后, 自下而上流经各个塔盘 11。 塔盘 11可设有 6-20层。
[0036] 油气低温分离塔 10内部于进料口上方还可设有均匀分布器, 保证气流均匀上升 , 增强传质传热效果。 油气低温分离塔 10的气体出口前设有丝网过滤除沫器, 防止气带液, 增强分离效果。
[0037] 制冷单元 30主要包括压缩机 31、 制冷管道 32和毛细管 33, 其中流通的制冷剂优 选 rl34a和 rl4(或异丁烷和丙烷) 混合冷剂。 制冷管道 32的一端通过毛细管 33连接 压缩机 31的输出端, 毛细管 33起节流制冷作用; 制冷管道 32的另一端连接压缩 机 31的输入端; 压缩机 31作为动力装置, 驱使制冷剂在制冷管道 32和压缩机 31 内流通。 [0038] 制冷管道 32在油气低温分离塔 10内依次绕覆经过每一层塔盘 11, 制冷剂在制冷 管道 32内从油气低温分离塔 10内上部流向下部, 使得塔盘 11从上至下温度逐渐 升高。 油气在油气低温分离塔 10内流经各个塔盘 11并与制冷剂进行热交换, 温 度降低。
[0039] 优选地, 制冷管道 32还在塔盘 11上盘绕形成制冷盘管 321, 从而增大与塔盘 11 的接触面积, 提高油气的冷凝效果。 每一个塔盘 11上均可都设置制冷盘管 321, 也可只在部分塔盘 11上设置制冷盘管 321, 具体可根据实际情况设置。 进一步地 , 制冷盘管 321可为翅片式或板式结构、 或者在制冷盘管 321外周设翅片, 增大 制冷面积。
[0040] 油气低温分离塔 10内通过制冷单元 20形成的冷凝场, 底部温度最高, 可为常温
(运行温度 20°C) , 顶部温度最低, 可低至 -58°C左右 (运行温度 -42°C左右) 。 另外, 油气低温分离塔 10内底部设有容置部 12, 容置经冷凝分离出来的油液。 容置部 12位于进料口下方, 两者相隔幵, 避免进入的油气混入容置部 12。
[0041] 为了防止油液回流, 容置部 12的连通油气低温分离塔 10内上部的幵口设有逆止 阀 13, 从而进入落入容置部 12的油液不会通过逆止阀 13往上流。
[0042] 另外, 容置部 12的幵口还设有集液斜板 14, 冷凝的油液可沿着集液斜板 14, 通 过逆止阀板 13落入容置部 12。 油气低温分离塔 10上还设有连通容置部 12的液体 排放口, 用于将容置部 12内存储的油液等液体输出。 该输出的油液可直接存至 油罐内或再处理等。
[0043] 吸附单元 20包括至少两个吸附罐 21, 至少两个吸附罐 21上下叠合且相连通, 形 成一整体的吸附单元 20, 对通过其中的气体进行吸附处理。
[0044] 其中, 吸附罐 21的一端设有第一配合结构, 另一端设有与另一吸附罐 21的第一 配合结构相适配的第二配合结构; 叠合的每两个吸附罐 21中, 一吸附罐 21的第 一配合结构与另一吸附罐 21的第二配合结构相配合。 通过第一配合结构和第二 配合结构的相配合, 使得吸附罐 21之间稳固叠合一起, 不易脱离。
[0045] 结合图 1、 2, 吸附罐 21的一端连接有第一连通管 211, 另一端连接有与另一吸 附罐 21的第一连通管 211套接配合的第二连通管 212; 上下叠合的两个吸附罐 21 中, 位于上方的吸附罐 21的第二连通管 212与位于下方的吸附罐 21的第一连通管 211套接配合。 通过第一连通管 211和第二连通管 212的相连通, 实现两个吸附罐 21的相连通, 气体可依次通过吸附罐 21内部以吸附处理。 第一连通管 211和第二 连通管 212的套接配合, 还使得两者连接较为密封, 不易漏气。 以图 1、 图 2中吸 附罐 21放置方向为例, 第一连通管 211连接在吸附罐 21的上端, 第二连通管 212 连接在吸附罐 21的下端。
[0046] 具体地, 如图 2、 3所示, 在本实施例中, 第一配合结构为凸出在吸附罐 21—端 的台阶 213, 第二配合结构为形成在吸附罐 21另一端的凹槽 214; 叠合的每两个 吸附罐 21中, 一吸附罐 21的台阶 213配合在另一吸附罐 21的凹槽 214内, 实现两 个吸附罐 21的稳固且密封叠合。 叠合吋, 将一吸附罐 21的台阶 213与另一吸附罐 21的凹槽 214配合, 即可将两个吸附罐 21叠合起来, 拆分吋反之即可, 操作简单
[0047] 在其他实施例中, 第一配合结构和第二配合结构可为相互配合的搭扣、 固定夹 等结构, 只要能实现吸附罐 21之间的稳固连接均可。
[0048] 进一步地, 在本实施例中, 台阶 213与第一连通管 211设置在吸附罐 21的同一端 , 第一连通管 211贯穿台阶 213并连通吸附罐 21内部; 凹槽 214与第二连通管 212 设置在吸附罐 21的同一端, 第二连通管 212贯穿凹槽 214底面并连通吸附罐 21内 部。 第二连通管 212的长度优选不大于凹槽 214的深度, 以不凸出吸附罐 21底面 , 保持吸附罐 21叠合后底部的平整。
[0049] 当然, 在其他实施例中, 台阶 213可与第二连通管 212设置在吸附罐 21的同一端 , 第二连通管 212贯穿台阶 213并连通吸附罐 20内部; 凹槽 214可与第一连通管 21 1设置在吸附罐 21的同一端, 第一连通管 211贯穿凹槽 214底面并连通吸附罐 21内 部。 该种方式中, 第一连通管 211的长度优选不大于凹槽 214的深度。
[0050] 参考图 2, 吸附罐 21可包括罐体 201、 以及设置在罐体 201内的圆柱状的均布器 2 02。 均布器 202内填充活性炭以进行吸附。
[0051] 优选地, 均布器 202的一端端面设有多个通孔, 形成进气孔; 均布器 202的进气 孔所在一端朝向罐体 201内底部, 气体进入罐体 201后, 通过进气孔均匀上升通 过活性炭。 均布器 202的另一端端面设有一个通孔, 形成出气孔, 该出气孔与第 一连通管 211连通, 经过活性炭后的气体通过出气孔集中后从第一连通管 211输 出罐体 201。
[0052] 为方便吸附罐 21内活性炭的更换, 台阶 213可拆卸设置在吸附罐 21的一端上, 幵放或封闭吸附罐 21的一端。 需要更换活性炭吋, 将台阶 213自罐体 201上取下 , 幵放罐体 201, 即可进行活性炭的更换等。 台阶 213可通过螺纹配合或螺钉紧 固等方式固定在吸附罐 21的罐体 201上。
[0053] 该吸附单元 20使用吋, 通过台阶 213和凹槽 214的配合将多个 (如三个) 吸附罐 21上下叠合起来, 且位于下方的吸附罐 21的第一连通管 211与上方的吸附罐 21的 第二连通管 212套接, 实现吸附罐 21之间相连通。 最下方的吸附罐 21的第二连通 管 212形成吸附单元 20的进气口, 最上方的吸附罐 21的第一连通管 211形成吸附 单元 20的出气口; 来自油气低温分离塔 10的气体从进气口输送至吸附罐 21内, 依次经过每一个吸附罐 21后从出气口排出。
[0054] 根据回收的油气量, 当最下方的吸附罐 21吸附饱和吋, 通过起吊设备或人工将 上方的吸附罐 21—并提起, 使其与最下方的吸附罐 21脱离, 将该最下方的吸附 罐 21取出, 其它的吸附罐 21下移, 再将另一个新的吸附罐 21叠合到最上方, 以 组成新的吸附罐继续使用, 以保证吸附效果。 吸附饱和的吸附罐 21可集中进行 脱附处理, 使吸附罐 21能重复利用, 减少资源浪费。
[0055] 为方便提放吸附罐 21, 吸附罐 21的外周侧面设有用于将该吸附罐 21提起或放下 的提放部 22; 提放部 22可包括吊钩、 把手和吊链中的一种或多种。
[0056] 另外, 为防止雨水、 灰尘等落入吸附罐 21内。 吸附单元 20还可包括 U形管 23, 一端连接在位于最上方的吸附罐 21的第一连通管 211上, 如图 1中所示。 当然, U 形管 23也可以采用其它形状管代替。
[0057] 进一步地, 如图 4所示, 吸附单元 20还包括设置在叠合的吸附罐 21***的支撑 架 24; 通过支撑架 24对叠合的吸附罐 21起到保护的作用。
[0058] 作为一种实施方式, 该支撑架 24可包括数根相间隔立设在吸附罐 21***的支柱 241、 以及数根用于支撑吸附罐 21的横杆 242, 数根横杆 242分别对应吸附罐 21连 接在相邻的两根支柱 241之间。 对应地, 吸附罐 21的外周侧面可设有支撑在横杆 242上的支撑部。 当吸附罐 21设置在支撑架 24内吋, 支撑部可抵靠在横杆 242上 方, 保持吸附罐 21的叠合状态。 该支撑部可由提放部 22形成; 当提放部 22为把 手等凸出结构吋, 可作为支撑部使用。
[0059] 优选地, 横杆 242可拆卸连接在支柱 241之间。 在更换吸附罐 21吋, 将需要取出 的吸附罐 21周围的横杆 242拆下, 让位出较大空间以方便吸附罐 21的进出。
[0060] 进一步地, 吸附单元 20中, 位于最下方的吸附罐 21通过复温管道 40连接油气低 温分离塔 10的气体出口; 复温管道 40—端连接吸附单元 20的进气口 (最下方的 吸附罐 21的第二连通管 212) , 另一端连接油气低温分离塔 10的气体出口。 油气 低温分离塔 10经冷凝分离而输出的气体温度较低, 在输出至吸附单元 20前, 沿 复温管道 40流动使得温度逐渐升高至 0°C以上。
[0061] 其中, 复温管道 40包括管体以及设置在管体外周上的散热片, 散热片的设置增 大管体内气体与外部空气的热交换面积, 提高换热效果。
[0062] 参考图 1, 油气低温回收装置使用吋, 通过管道 50连接油罐的呼吸阀或油罐的 顶部, 油罐内挥发或回收的油气通过管道 50输送至油气低温分离塔 10, 自下而 上经过冷凝场, 流至油气低温分离塔 10内顶部。 其中, 油气在逐渐上升过程中 被冷却, 其中的烃类物质凝结成液体留在塔盘 11上, 集聚后落到油气低温分离 塔 10底部, 进入容置部 12保存。 油气中混有的不能液化的氧气、 氮气等气体继 续上升从油气低温分离塔 10的气体出口排出, 通过复温管道 40逐渐复温后从底 部进入吸附单元 20, 经吸附罐 21吸附处理, 气体中未被液化的少量烃类被活性 炭吸附, 其余的气体 (含极微量甲烷) 从吸附单元 20顶部排出。
[0063] 如图 5所示, 本发明另一实施例的油气低温回收装置, 包括油气低温分离塔 10 、 吸附单元 20以及制冷单元 30, 油气低温分离塔 10、 吸附单元 20和制冷单元 30 的结构及设置等均可参照上述图 1所示实施例中相关所述, 在此不再赘述。
[0064] 与图 1所示实施例不同的是: 本实施例的油气低温回收装置还包括连接在油气 低温分离塔 10和吸附单元 20之间的塔顶回流罐 50, 用于将油气低温分离塔 10输 出的气体中的气沫分离出并回流到油气低温分离塔 10内, 去除气沫后的气体再 从塔顶回流罐 50输送至吸附单元 20。
[0065] 塔顶回流罐 50包括罐体以及设置在罐体内的除沫器。
[0066] 具体地, 如图 5中所示, 塔顶回流罐 50的进口通过一管道连接油气低温分离塔 1 0的气体出口, 塔顶回流罐 50底部的液体出液体出口通过另一管道连接至油气低 温分离塔 10, 从而塔顶回流罐 50和油气低温分离塔 10之间通过管道互连形成一 个回路。 而塔顶回流罐 50的出口则通过复温管道 40连接吸附单元 20。
[0067] 塔顶回流罐 50使用吋, 油气低温分离塔 10输出的气体通过进口进入塔顶回流罐 50内, 进一步进行气液分离, 气体上升从顶部的出口输出以输送至吸附单元 20 , 液体则下沉通过下部液体出口输出以流回油气低温分离塔 10内。
[0068] 综上, 本发明的油气低温回收装置, 整体体积可较于现有的油气回收处理*** 小型化设置, 方便灵活安装使用, 适用于连接油罐车或油气回收型加油站的油 罐, 特别适用于各种中小型号的油罐, 将油气回收处理, 油气回收分离效果好 , 防止油气外泄污染环境, 也消除了在加油站和运输过程中由于油气外泄所带 来的安全隐患。
[0069] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
一种油气低温回收装置, 用于连接油罐, 其特征在于, 包括对油气进 行气液分离处理的油气低温分离塔 (10) 、 将分离出来的气体进行吸 附处理的吸附单元 (20) 、 以及制冷单元 (30) ; 所述制冷单元 (30 ) 连接所述油气低温分离塔 (10) , 并使所述油气低温分离塔 (10) 内形成从下部到上部温度逐渐递减的冷凝场;
所述油气低温分离塔 (10) 的下部设有接收所述油气的进料口, 所述 油气低温分离塔 (10) 的上部设有将经冷凝分离出来的气体输出的气 体出口; 所述吸附单元 (20) 与所述气体出口相连接。
根据权利要求 1所述的油气低温回收装置, 其特征在于, 所述油气低 温分离塔 (10) 内从下部到上部包括多层间隔设置的塔盘 (11) , 所 述制冷单元 (30) 的制冷管道 (32) 依次绕覆经过每一层所述塔盘 ( 11) , 所述制冷单元 (30) 的制冷剂在所述制冷管道 (32) 内从所述 油气低温分离塔 (10) 内上部流向下部。
根据权利要求 2所述的油气低温回收装置, 其特征在于, 所述制冷管 道 (32) 还在所述塔盘 (11) 上盘绕形成制冷盘管 (321) 。
根据权利要求 1所述的油气低温回收装置, 其特征在于, 所述油气低 温分离塔 (10) 内底部设有容置经冷凝分离出来的油液的容置部 (12 ) , 所述容置部 (12) 位于所述进料口下方;
所述容置部 (12) 连通所述油气低温分离塔 (10) 内上部的幵口设有 防止油液回流的逆止阀 (13) 。
根据权利要求 4所述的油气低温回收装置, 其特征在于, 所述容置部
(12) 的幵口设有集液斜板 (14) ;
所述油气低温分离塔 (10) 上还设有连通所述容置部 (12) 的液体排 放口。
根据权利要求 1所述的油气低温回收装置, 其特征在于, 该油气低温 回收装置还包括连接在所述油气低温分离塔 (10) 和吸附单元 (20) 之间的塔顶回流罐 (50) 。 [权利要求 7] 根据权利要求 1-6任一项所述的油气低温回收装置, 其特征在于, 所 述吸附单元 (20) 包括至少两个上下叠合且相连通的吸附罐 (21) ; 所述吸附罐 (21) 的一端设有第一配合结构, 另一端设有与另一所述 吸附罐 (21) 的所述第一配合结构相适配的第二配合结构; 叠合的每 两个所述吸附罐 (21) 中, 一所述吸附罐 (21) 的第一配合结构与另 一所述吸附罐 (21) 的第二配合结构相配合;
位于最下方的所述吸附罐 (21) 通过复温管道 (40) 连接所述油气低 温分离塔 (10) 的气体出口。
[权利要求 8] 根据权利要求 7所述的油气低温回收装置, 其特征在于, 所述吸附罐
(21) 的一端连接有第一连通管 (211) , 另一端连接有与另一所述 吸附罐 (21) 的所述第一连通管 (211) 套接配合的第二连通管 (212 ) ; 上下叠合的两个所述吸附罐 (21) 中, 位于上方的所述吸附罐 ( 21) 的第二连通管 (212) 与位于下方的所述吸附罐 (21) 的第一连 通管 (211) 套接配合。
[权利要求 9] 根据权利要求 8所述的油气低温回收装置, 其特征在于, 所述第一配 合结构为凸出在所述吸附罐 (21) —端的台阶 (213) , 所述第二配 合结构为形成在所述吸附罐 (21) 另一端的凹槽 (214) ; 叠合的每 两个所述吸附罐 (21) 中, 一所述吸附罐 (21) 的台阶 (213) 配合 在另一所述吸附罐 (21) 的凹槽 (214) 内。
[权利要求 10] 根据权利要求 9所述的油气低温回收装置, 其特征在于, 所述台阶 (2
13) 与所述第一连通管 (211) 设置在所述吸附罐 (21) 的同一端, 所述第一连通管 (211) 贯穿所述台阶 (213) 并连通所述吸附罐 (21 ) 内部; 所述凹槽 (214) 与所述第二连通管 (212) 设置在所述吸附 罐 (21) 的同一端, 所述第二连通管 (212) 贯穿所述凹槽 (214) 底 面并连通所述吸附罐 (21) 内部; 或者,
所述台阶 (213) 与所述第二连通管 (212) 设置在所述吸附罐 (21) 的同一端, 所述第二连通管 (212) 贯穿所述台阶 (213) 并连通所述 吸附罐 (21) 内部; 所述凹槽 (214) 与所述第一连通管 (211) 设置 在所述吸附罐 (21) 的同一端, 所述第一连通管 (211) 贯穿所述凹 槽 (214) 底面并连通所述吸附罐 (21) 内部。
[权利要求 11] 根据权利要求 8所述的油气低温回收装置, 其特征在于, 所述吸附单 元 (20) 还包括 U形管 (23) , 所述 U形管 (23) —端连接在位于最 上方的所述吸附罐 (21) 的所述第一连通管 (211) 上。
[权利要求 12] 根据权利要求 7所述的油气低温回收装置, 其特征在于, 所述吸附罐
(21) 的外周侧面设有用于将该吸附罐 (21) 提起或放下的提放部
[权利要求 13] 根据权利要求 7所述的油气低温回收装置, 其特征在于, 所述吸附单 元 (20) 还包括设置在叠合的所述吸附罐 (21) ***的支撑架 (24)
PCT/CN2016/073614 2016-02-05 2016-02-05 油气低温回收装置 WO2017132980A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073614 WO2017132980A1 (zh) 2016-02-05 2016-02-05 油气低温回收装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073614 WO2017132980A1 (zh) 2016-02-05 2016-02-05 油气低温回收装置

Publications (1)

Publication Number Publication Date
WO2017132980A1 true WO2017132980A1 (zh) 2017-08-10

Family

ID=59500454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073614 WO2017132980A1 (zh) 2016-02-05 2016-02-05 油气低温回收装置

Country Status (1)

Country Link
WO (1) WO2017132980A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4384696A (en) * 1995-02-01 1996-08-21 Bresch Entsorgung Gmbh Process for condensing adsorbable and desorbable gases and device for implementing it
US5740682A (en) * 1994-02-13 1998-04-21 Ram Lavie Method for the recovery of organic vapors
CN101462688A (zh) * 2007-12-18 2009-06-24 天津开发区贰加壹米兰环保科技有限公司 加油站光电互补吸收冷凝吸附变频油气回收法
CN101721833A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 冷凝-吸附回收净化含烃废气的方法
CN102196843A (zh) * 2008-10-27 2011-09-21 三菱电机株式会社 汽油蒸气回收装置
CN102899064A (zh) * 2012-11-05 2013-01-30 陈玲海 油气回收***
CN204073774U (zh) * 2014-09-25 2015-01-07 南京都乐制冷设备有限公司 一种苯类有机蒸汽回收装置
CN104324580A (zh) * 2014-10-22 2015-02-04 中国石油化工股份有限公司 一种挥发性有机溶剂冷凝回收装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740682A (en) * 1994-02-13 1998-04-21 Ram Lavie Method for the recovery of organic vapors
AU4384696A (en) * 1995-02-01 1996-08-21 Bresch Entsorgung Gmbh Process for condensing adsorbable and desorbable gases and device for implementing it
CN101462688A (zh) * 2007-12-18 2009-06-24 天津开发区贰加壹米兰环保科技有限公司 加油站光电互补吸收冷凝吸附变频油气回收法
CN102196843A (zh) * 2008-10-27 2011-09-21 三菱电机株式会社 汽油蒸气回收装置
CN101721833A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 冷凝-吸附回收净化含烃废气的方法
CN102899064A (zh) * 2012-11-05 2013-01-30 陈玲海 油气回收***
CN204073774U (zh) * 2014-09-25 2015-01-07 南京都乐制冷设备有限公司 一种苯类有机蒸汽回收装置
CN104324580A (zh) * 2014-10-22 2015-02-04 中国石油化工股份有限公司 一种挥发性有机溶剂冷凝回收装置

Similar Documents

Publication Publication Date Title
JP4510454B2 (ja) 圧力容器から蒸気及びガスを吸収する方法
CN204294073U (zh) 一种VOCs挥发气回收利用装置
CN101342427B (zh) 一种油气回收方法
EP0046472A1 (en) Process and apparatus for recovering hydrocarbons from air-hydrocarbon vapor mixtures
CN202279687U (zh) 一种油气回收装置
CN207722586U (zh) 一种实现VOCs零排放和回收利用氮气的装置
US9034086B2 (en) Ventless tank system
CN202516336U (zh) 储罐区排放气处理***
CN202295966U (zh) 油气回收装置
CN107789956A (zh) 一种实现内浮顶罐夹层气VOCs零排放、去除氧气及回收利用氮气的装置
CN1935319B (zh) 利用加热解吸的油气吸收回收方法及装置
EP3033567A2 (en) Sorption store with improved heat transfer
CN111171867A (zh) 一种油气回收方法
CN201735206U (zh) 一种冷却吸附的油气回收装置
WO2017132980A1 (zh) 油气低温回收装置
KR20120136196A (ko) 원유 운반선의 휘발성 유기 화합물 배출 감소 장치
CN205360968U (zh) 油气低温回收装置
JP2008303795A (ja) ガソリンベーパ回収用吸脱着塔
JP2009000646A (ja) ガソリンベーパ回収容器
CN111171868A (zh) 一种油气回收装置
CN109126180A (zh) 一种有机物回收利用的***及其工作流程
CN105771552A (zh) 一种油气回收装置及其回收方法
CN213355644U (zh) 一种挥发性有机液体节能减排储罐
CN104436980B (zh) 处理挥发性有机化合物废气的方法和设备
CN108654313A (zh) 原油轮的油气回收装置及回收方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16888805

Country of ref document: EP

Kind code of ref document: A1