WO2017132979A1 - 油气低温冷凝吸附回收*** - Google Patents

油气低温冷凝吸附回收*** Download PDF

Info

Publication number
WO2017132979A1
WO2017132979A1 PCT/CN2016/073613 CN2016073613W WO2017132979A1 WO 2017132979 A1 WO2017132979 A1 WO 2017132979A1 CN 2016073613 W CN2016073613 W CN 2016073613W WO 2017132979 A1 WO2017132979 A1 WO 2017132979A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oil
unit
tank
liquid separation
Prior art date
Application number
PCT/CN2016/073613
Other languages
English (en)
French (fr)
Inventor
杨亚鹏
Original Assignee
深圳市尚佳能源网络有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚佳能源网络有限责任公司 filed Critical 深圳市尚佳能源网络有限责任公司
Priority to PCT/CN2016/073613 priority Critical patent/WO2017132979A1/zh
Priority to CN201680046113.2A priority patent/CN108136309B/zh
Publication of WO2017132979A1 publication Critical patent/WO2017132979A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents

Definitions

  • the present invention relates to the field of oil and gas recovery processing technology, and in particular to an oil and gas low temperature condensation adsorption recovery system.
  • the recovered oil and gas usually contains air and moisture.
  • the methods used for the recovery of oil and gas are
  • the technical problem to be solved by the present invention is to provide a low-temperature condensation adsorption recovery system for oil and gas with good separation effect.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: providing a low-temperature condensing adsorption recovery system for oil and gas, comprising a first-stage condensing unit for initial condensation of oil and gas incoming materials, and an oil and gas incoming material after initial condensation; a water separation unit for separating oil and water, a secondary condensing unit for secondary condensation of oil and water separated by oil and water, a gas-liquid separation unit for performing low temperature gas-liquid separation of secondary condensed oil and gas, and the gas-liquid separation unit
  • the separated oil is sent to the secondary condensing unit for cold heat exchange to reheat the rewarming line, and the oil and gas separation unit for separating the oil after the rewarming is performed;
  • the primary condensing unit, the water separating unit, the secondary condensing unit, and the gas-liquid separating unit are sequentially connected by a connecting line, and the secondary condensing unit and the gas-liquid separating unit are interconnected by the rewarming pipeline to form a rewarming circuit.
  • the oil and gas separation unit is connected to the secondary condensing unit to receive the rewarmed oil.
  • the water separation unit includes a water dividing tank connected to the oil and gas outlet end of the first-stage condensing unit, a first drain pipe connecting the bottom of the water-discharging tank, and a connecting water dividing tank Outlet Describe the oil outlet pipe of the oil output separated in the water tank;
  • the feeding port is located at an upper end of the water dividing tank
  • the discharging port is located at a lower end of the water dividing tank; the air outlet of the top of the water dividing tank and the first of the secondary condensing unit The oil and gas inlet ends are connected.
  • the gas-liquid separation unit includes a gas-liquid separation tank; the upper end of the gas-liquid separation tank is provided with a feed port connected to the first oil and gas outlet end of the secondary condensation unit, The lower end of the gas-liquid separation tank is provided with a discharge port for outputting the oil separated in the gas-liquid separation tank, and the top of the gas-liquid separation tank is provided with a gas for separation in the gas-liquid separation tank.
  • Outlet the upper end of the gas-liquid separation tank is provided with a feed port connected to the first oil and gas outlet end of the secondary condensation unit, The lower end of the gas-liquid separation tank is provided with a discharge port for outputting the oil separated in the gas-liquid separation tank, and the top of the gas-liquid separation tank is provided with a gas for separation in the gas-liquid separation tank.
  • One end of the rewarming pipeline is connected to the discharge port of the gas-liquid separation tank, and the other end is connected to the second oil and gas inlet end of the second-stage condensing unit.
  • the gas-liquid separation unit further includes a second drain pipe connecting the bottom of the gas-liquid separation tank.
  • the oil and gas separation unit comprises an oil and gas separation tank, and an upper end of the oil and gas separation tank is provided with a liquid inlet connected to a second oil and gas outlet end of the secondary condensation unit, the oil and gas separation tank The lower end is provided with a discharge port for the oil output in the oil and gas separation tank, and the top of the oil and gas separation tank is provided with an air outlet for outputting the gas in the oil and gas separation tank; the oil and gas separation tank and the The secondary condensing unit is sequentially connected to the rewarming line.
  • the oil and gas separation unit further comprises a third sewage pipe connected to the bottom of the oil and gas separation tank.
  • the oil and gas cryogenic condensation adsorption recovery system further comprises a drying unit connected between the water separation unit and the second-stage condensing unit to dry oil and water separated by oil-water separation;
  • the drying unit comprises one or more drying tanks; a plurality of the drying tanks are connected in parallel or in series.
  • the oil and gas cryogenic condensation adsorption recovery system further comprises an adsorption unit that connects the gas-liquid separation unit and performs adsorption treatment on the gas separated by the gas-liquid separation unit;
  • the adsorption unit comprises one or more adsorption tanks; a plurality of the adsorption tanks are connected in parallel or in series.
  • the oil and gas cryogenic condensation adsorption recovery system further comprises a gas pipeline for conveying the gas separated by the gas-liquid separation unit to the secondary condensation unit and/or the first condensation unit for cold and heat exchange.
  • the gas line communicates with the adsorption unit, the secondary condensation unit and/or the primary condensation unit, and the gas-liquid separation unit.
  • the oil and gas cryogenic condensation adsorption recovery system further comprises a gas source pipeline connecting the gas source to access the high pressure gas; the gas source pipeline connecting the gas pipeline, the adsorption unit, the first condensation unit, and the second Level
  • the condensing unit is interconnected by the gas line and the connecting pipeline to form a rewarming backflushing circuit, and the high temperature gas is connected to the gas source pipeline to backflush the residual impurities in the rewarming backflushing circuit to the adsorption unit, and adsorbed Recycled after treatment.
  • the oil and gas low-temperature condensation adsorption recovery system of the invention re-condenses the recovered oil and gas to separate oil, gas and moisture, and the separation effect is good, and finally the separated normal temperature oil liquid can be conveniently recycled, and the gas can be conveniently recycled.
  • the gas content is almost zero and can be released to the atmosphere, reducing the problem of environmental pollution.
  • FIG. 1 is a block diagram showing the structure of an oil and gas cryogenic condensation adsorption recovery system according to an embodiment of the present invention.
  • an oil and gas cryogenic condensation adsorption recovery system is used for treating oil and gas recovered from a refinery, a gas station, and the like.
  • the oil and gas cryogenic condensation adsorption recovery system comprises a first-stage condensing unit 10, a water separating unit 30, a secondary condensing unit 20, a gas-liquid separating unit 40, a rewarming line 50, and an oil-gas separation unit 60; a-stage condensing unit 10, a water separating unit 30.
  • the secondary condensing unit 20 and the gas-liquid separating unit 40 are sequentially connected through a connecting line, and the secondary condensing unit 20 and the gas-liquid separating unit 40 are interconnected by a rewarming line 50 to form a rewarming circuit.
  • the primary condensing unit 10 performs initial condensation on the oil and gas incoming material
  • the water separating unit 30 performs oil-water separation on the oil and gas incoming material after the initial condensation
  • the secondary condensing unit 20 performs secondary oil and gas separation after oil-water separation.
  • Condensation the gas-liquid separation unit 40 performs low-temperature gas-liquid separation on the secondary condensed oil and gas
  • the rewarming line 50 transfers the oil separated by the gas-liquid separation unit 40 to the secondary condensing unit 20 for cold-heat exchange for rewarming.
  • the oil separation unit 60 is connected to the secondary condensing unit 20 to receive the rewarmed oil, which will pass through The oil after rewarming is separated by oil and gas, and the oil after rewarming and separation can be recycled.
  • both the primary condensing unit 10 and the secondary condensing unit 20 may include a heat exchanger.
  • the primary condensing unit 10 and the secondary condensing unit 20 are connected to a refrigerant circulation device 90 through which the refrigerant circulates through heat exchange with the oil and gas.
  • the refrigerant circulation device 90 may include a cooperating compressor, a radiator, a throttle valve, a low temperature heat exchanger, a dry filter, a temperature controlled frequency converter, a separation tank, and the like.
  • the refrigerant is a mixture of propane, isopentane, or freon, such as R14 and R134a.
  • the first condensing unit 10 is provided with a passage for the passage of oil and gas.
  • the first condensing unit 10 is provided with an oil inlet end and an oil and gas outlet end respectively connected to the passage, and the oil and gas inlet end can be connected to the feed line 100. It is used for receiving oil and gas incoming materials, and the oil and gas incoming materials are heat-exchanged with the refrigerant in the primary condensing unit 10 and then outputted from the oil and gas outlet end.
  • the primary condensing unit 10 preferably condenses the hydrocarbon feed to 2-4 ° C to separate the moisture in the oil and gas feed from the oil and gas.
  • the water separation unit 30 liquefies the oil and gas (oil, oil, and water) after the initial condensation, and most of the moisture in the oil and gas feed can be separated and discharged in the water separation unit 30.
  • the water separation unit 30 may include a water separation tank 31, a first drain pipe 32 that discharges water separated in the water separator tank 31, and the oil discharge pipe 33 that outputs the oil separated in the water separator tank 31.
  • the water dividing tank 31 is provided with a feed port, a discharge port and an air outlet.
  • the feed port is preferably located at the upper end of the water separator tank 31.
  • the feed port of the water separator tank 31 is connected to the oil and gas outlet end of the first-stage condensing unit 10 through the first connecting line 101, and the oil and gas incoming material after the initial condensation enters through the feed port.
  • the first drain pipe 32 is connected to the water.
  • the water separated in the water dividing tank 31 is discharged; the first drain pipe 32 is also used for draining and emptying.
  • the discharge port is located at the lower end of the water dividing tank 31, and the oil discharge pipe 33 is connected to the discharge port of the water dividing tank 31 to output the oil separated in the water dividing tank 31.
  • the first sewage pipe 32 and the oil discharge pipe 33 are respectively provided with valves for controlling the respective opening and closing, and the internal passages of the first sewage pipe 32 and the oil discharge pipe 33 are respectively closed by valves after undraining and oil discharge.
  • the air outlet is located at the top of the water dividing tank 31, and is discharged through the water and oil separated oil to be sent to the second-stage condensing unit 20.
  • the gas outlet may be connected to the first oil and gas inlet end of the secondary condensing unit 20 to deliver the oil and gas to the secondary condensing unit 20.
  • the oil and gas cryogenic condensation adsorption recovery system further includes a connection between the water separation unit 30 and the secondary cooling
  • the drying unit 70 between the condensing units 20 is used for drying the oil and water separated by oil and water; the oil and gas is dried by the drying unit 70 and then sent to the secondary condensing unit 20 for secondary condensation. Since the drying unit 70 is disposed at the first stage to condense and separate the water, the load of the drying unit 70 is reduced, so that the desiccant of the drying unit 70 does not need to be frequently desorbed and regenerated, and the desorption regeneration as much as possible can prolong the desiccant life. Reduce the workload of people and save energy.
  • the drying unit 70 includes one or more drying tanks 71; the plurality of drying tanks 71 may be connected in parallel or in series.
  • the drying unit 70 comprises two drying tanks 71 in parallel, one as the primary drying tank and the other as the standby drying tank.
  • the gas outlet of the water dividing tank 31 is connected to the inlet of the bottom of the drying tank 71 through the second connecting line 102, and the outlet of the top of the drying tank 71 is connected to the first oil inlet end of the secondary condensing unit 20 through the third connecting line 103.
  • the oil and water separated by the oil-water separation passes through the drying tank 71 from the bottom up, is dried, and is sent to the secondary condensing unit 20.
  • the inlet and the outlet of the drying tank 71 are respectively provided with valves for controlling the opening and closing of the inlet and the outlet respectively.
  • the second condensing unit 20 is provided with a first passage for the passage of oil and gas, and the second condensing unit 20 is provided with a first oil and gas inlet end and a first oil and gas outlet end respectively connected to the first passage, and the oil and gas passes through the first After the oil and gas inlet end enters the first passage and exchanges heat with the refrigerant, it is output through the first oil and gas outlet end.
  • the secondary condensing unit 20 recondenses the oil and gas to about -50 ° C to achieve gas-liquid separation in the oil and gas.
  • the heat exchanger of the secondary condensing unit 20 can be selected from a plate-fin heat exchanger to better condense the oil and gas to about -50 °C.
  • the first oil and gas outlet end of the secondary condensing unit 20 is connected to the gas-liquid separation unit 40 through the fourth connecting line 104 to transport the secondary condensed oil and gas to the gas-liquid separation unit 40.
  • the gas-liquid separation unit 40 performs low-temperature gas-liquid separation of the oil after secondary condensation to separate the gas and the oil.
  • the gas-liquid separation unit 40 may include a gas-liquid separation tank 41.
  • the upper end of the gas-liquid separation tank 41 is provided with a feed port connected to the first oil and gas outlet end of the secondary condensing unit 20, and the secondary condensed oil and gas enters the gas-liquid separation tank 41 through the feed port.
  • the lower end of the gas-liquid separation tank 41 is provided with a discharge port for discharging the oil separated from the gas-liquid separation tank 41;
  • the top of the gas-liquid separation tank 41 is provided with an outlet port for separating the gas in the gas-liquid separation tank 41. discharge.
  • the inner top of the gas-liquid separation tank 41 is also provided with a wire mesh demister to improve the separation effect.
  • the gas-liquid separation unit 40 may further include a second drain pipe 42 connected to the bottom of the gas-liquid separation tank 41 to discharge water, sewage, and the like in the gas-liquid separation tank 41.
  • the second drain pipe 42 discharges moisture.
  • the second drain pipe 42 is provided with a valve for controlling its opening and closing. After the drain pipe is closed, the internal passage of the second drain pipe 42 is closed by the valve.
  • the temperature of the secondary condensation is extremely low (about -50 ° C)
  • the temperature of the gas and the oil after the secondary condensation and the gas-liquid separation is extremely low, in order to raise the temperature of the oil
  • the oil is sent to the secondary condensing unit 20 through the rewarming line 50, and the oil is again subjected to cold and heat exchange with the refrigerant, and the temperature at the same time for recovering heat is increased.
  • the secondary condensing unit 20 is provided with a second passage for the passage of oil and gas, and the secondary condensing unit 20 is provided with a second oil inlet end and a second oil and gas outlet end respectively communicating with the second passage.
  • One end of the rewarming line 50 is connected to the discharge port of the gas-liquid separation tank 41, and the other end is connected to the second oil and gas inlet end of the secondary condensing unit 20.
  • the oil enters the second passage through the discharge port and the second oil inlet end, and is cooled and exchanged with the refrigerant and then output through the second oil and gas outlet end.
  • the oil and gas separation unit 60 receives the rewarmed oil, and separates the oil after the rewarming, and the separated oil can be recycled, for example, recovered into an oil storage tank.
  • the oil and gas separation unit 60 may include an oil and gas separation tank 61; the oil and gas separation tank 61, the secondary condensation unit 20 and the rewarming line 50 are sequentially connected.
  • the upper end of the oil and gas separation tank 61 is provided with a liquid inlet, and the inlet port is connected to the second oil and gas outlet end of the secondary condensation unit 20 through the fifth connection line 105; the lower end of the oil separation tank 61 is provided with a discharge port
  • the oil is discharged from the oil and gas separation tank 61; the oil outlet pipe can be connected to the oil storage tank at the discharge port.
  • the top of the oil and gas separation tank 61 is also provided with an air outlet for the oil and gas outputted from the oil separation tank 61, and the gas can be output to the storage tank for storage or sent to the tank to replenish the tank pressure.
  • Valves can be respectively installed at the inlet, outlet and outlet of the oil and gas separation tank 61 to control the opening and closing of each port.
  • the inner top of the oil and gas separation tank 61 may also be provided with a wire mesh demister to improve the separation effect.
  • the oil and gas separation unit 60 may further include a third drain pipe 62 connected to the bottom of the oil and gas separation tank 61 to discharge water and residual heavy oil in the oil and gas separation tank 61.
  • the third sewage pipe 62 is respectively provided with a valve for controlling its opening and closing, and the internal passage of the third sewage pipe 62 is closed through the valve without discharging the sewage.
  • the oil and gas low-temperature condensation adsorption recovery system further includes performing gas separation from the gas-liquid separation unit 40.
  • Adsorption treatment unit 80 The adsorption unit 80 is connected to the gas-liquid separation unit 40, receives the gas separated by the gas-liquid separation unit 40, and further adsorbs the separated gas to adsorb the residue. After the combustible gas is discharged to the atmosphere, the gas content in the last exhaust gas is almost zero, which reduces environmental pollution.
  • the adsorption unit 80 includes one or more adsorption tanks 81 into which gas enters from the inlet of the adsorption tank 81, and which is discharged after the adsorption treatment.
  • the plurality of adsorption cans 81 can be connected in parallel or in series.
  • the adsorption unit 80 comprises two adsorption tanks 81 connected in parallel, one as a primary adsorption tank and the other as a backup adsorption tank.
  • the adsorption tank 8 1 may be provided with activated carbon to adsorb the gas, and/or a separation membrane to filter the gas.
  • the heat recoverable heat recovery system further includes a gas line that delivers the gas separated by the gas-liquid separation unit 40 to the secondary condensing unit 20 and/or the primary condensing unit 10 for cold and heat exchange.
  • the gas line communicates with the adsorption unit 80, the secondary condensation unit 20 and/or the primary condensation unit 10, and the gas-liquid separation unit 40.
  • the gas separated by the gas-liquid separation is sent from the gas outlet of the gas-liquid separation tank 41 to the gas line, into the secondary condensing unit 20 and/or the first-stage condensing unit 10, and the temperature is increased after the cold-heat exchange with the refrigerant.
  • the temperature is rewarmed; the rewarmed gas is sent to the adsorption unit 80 for adsorption treatment.
  • the primary condensing unit 10 and the secondary condensing unit 20 are arranged in series, and the gas sequentially passes through the secondary condensing unit 20 and the primary condensing unit 10, after two times of rewarming. It is sent to the adsorption unit 80.
  • the gas line includes a first gas pipe 1 connected between the secondary condensing unit 20 and the gas-liquid separation unit 40, a second gas pipe 2 connected between the secondary condensing unit 20 and the primary condensing unit 10, and A third gas conduit 3 is connected between the primary condensing unit 10 and the adsorption unit 80.
  • the first condensing unit 10 and the second condensing unit 20 are respectively provided with gas passages for gas to pass through and exchange heat with the refrigerant; the two ends of the first gas conduit 1 are respectively connected to the gas outlets and the secondary of the gas-liquid separation tank 41.
  • the two ends of the second gas pipe 2 are respectively connected to the outlet end of the gas passage of the secondary condensing unit 20 and the inlet end of the gas passage of the primary condensing unit 10, the third gas Both ends of the pipe 3 are connected to the outlet end of the gas passage of the primary condensing unit 10 and the inlet of the adsorption tank 81.
  • the gas output from the gas-liquid separation tank 41 enters the secondary condensing unit 20 through the first gas pipe 1 for initial rewarming, and then enters the primary condensing unit 10 through the second gas pipe 2 for secondary rewarming, and finally passes through the third gas.
  • the pipe 3 enters the adsorption tank 81.
  • the oil and gas cryogenic condensation adsorption recovery system may further include a connection gas source to access the high pressure
  • the gas source line 4 of the gas the gas source is a gas such as nitrogen which is non-polluting and does not react with oil and gas.
  • the gas source line 4 is connected to the gas line, and the adsorption unit 80, the first condensing unit 10, and the second condensing unit 20 are interconnected by a gas line and a connecting line to form a rewarming backflushing circuit, and the high pressure gas is connected through the gas source line 4
  • the residual impurities in the temperature backflushing circuit are backflushed to the adsorption unit 80, and are recovered after the adsorption treatment.
  • the gas source line 4 is preferably connected to a gas line between the adsorption unit 80 and the primary condensing unit 10.
  • the first gas pipe 1 is connected to the fourth connecting line 104 between the secondary condensing unit 20 and the gas-liquid separating unit 40 through the first pipe 11, thereby achieving communication between the first gas pipe 1 and the connecting line 105; the primary condensing unit 10
  • the oil and gas outlet end is connected to the first oil and gas inlet end of the secondary condensing unit 20 through the second conduit 12, so that the fourth connecting line 104 is connected to the second conduit 12 through the secondary condensing unit 20; the inlet of the adsorption tank 81 passes through the third
  • the pipe 13 is connected to the oil and gas inlet end of the primary condensing unit 10, so that the adsorption tank 81, the third pipe 13, the second pipe 12, the first pipe 11, the first gas pipe 1, the second gas pipe 2, and the third gas pipe 3
  • the gas source line 4 is sequentially connected to form a backflushing circuit.
  • the gas outlet of the gas liquid separation tank 41 is closed, the valve on the first connecting line 101 between the first condensing unit 10 and the water separating unit 30 is closed, and the first condensing unit is broken. 10 and communication between the water separation unit 30; closing the valve on the third connection line 103 between the drying unit 70 and the secondary condensation unit 20, breaking the communication between the drying unit 70 and the secondary condensation unit 20.
  • the high pressure gas enters the rewarranting backflushing circuit from the gas source line 4, and sequentially passes through the third gas pipe 3, the second gas pipe 2, the first gas pipe 1, the first pipe 11, the second pipe 12, and the third
  • the pipe 13 is in the adsorption tank 81, and the residual impurities in the rewarmed back-blowing circuit are blown into the adsorption tank 81, and are discharged and recovered after the adsorption treatment.
  • the oil and gas recovery treatment ⁇ restores the communication between the primary condensing unit 10 and the water separation unit 30, the communication between the drying unit 70 and the secondary condensing unit 20, and closes the first conduit 11, the second conduit 12, and
  • the valve on the third pipe 13 is used to break the pipes; the units are connected to each other, and the oil and gas incoming materials are gradually passed through for corresponding treatment.
  • the above-mentioned feed line 100, connecting line (including the first connecting line 101 to the fifth connecting line 105), the rewarming line 50, the gas line, and each of the pipes can be respectively provided with valves, through control The opening and closing of the valve controls the switching of the oil and gas between the corresponding units.
  • the connecting pipeline, the feeding pipeline 100, the rewarming pipeline 50, the gas pipeline and the valves on each pipeline can be manually controlled or electronically controlled to realize remote monitoring and management.
  • the pipelines connecting the pipeline, each pipeline, the feed pipeline 100, the rewarming pipeline 50, and the gas pipeline are all formed of metal pipes, and a flame arrester is provided on one or more of the pipelines to prevent oil and gas from deflagrating.
  • each unit and each line of the oil-gas low-temperature condensation adsorption system are anti-static grounded, and static electricity is eliminated to improve safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种油气低温冷凝吸附回收***,包括一级冷凝单元(10)、水分离单元(30)、二级冷凝单元(20)、气液分离单元(40)、复温管线(50)以及油气分离单元(60);一级冷凝单元(10)、水分离单元(30)、二级冷凝单元(20)和气液分离单元(40)通过连接管线依次连接,二级冷凝单元(20)和气液分离单元(40)通过复温管线(50)互连形成复温回路,油气分离单元(60)连接二级冷凝单元(20)。

Description

油气氐温冷凝吸附回收***
技术领域
[0001] 本发明涉及油气回收处理技术领域, 尤其涉及一种油气低温冷凝吸附回收*** 背景技术
[0002] 在炼油厂、 加油站等场所, 通常会有油气挥发出来。 为了防止油气外泄对环境 造成污染, 需要将油气回收处理。
[0003] 回收的油气中通常都会含有空气和水分, 目前对油气的回收处理采用的方法有
: 吸收法、 吸附法、 冷凝法和膜分离法。 上述的各种方式较为单一, 难以彻底 地将油气、 空气和水分分离幵来。
技术问题
[0004] 本发明要解决的技术问题在于, 提供一种分离效果好的油气低温冷凝吸附回收 ***。
问题的解决方案
技术解决方案
[0005] 本发明解决其技术问题所采用的技术方案是: 提供一种油气低温冷凝吸附回收 ***, 包括对油气来料进行初次冷凝的一级冷凝单元、 对经过初次冷凝后的油 气来料进行油水分离的水分离单元、 对经过油水分离后的油气进行二次冷凝的 二级冷凝单元、 对经过二次冷凝后的油气进行低温气液分离的气液分离单元、 将所述气液分离单元分离出的油液输送至所述二级冷凝单元进行冷热交换以复 温的复温管线、 以及将经过复温后的油液进行油气分离的油气分离单元;
[0006] 所述一级冷凝单元、 水分离单元、 二级冷凝单元和气液分离单元通过连接管线 依次连接, 所述二级冷凝单元和气液分离单元通过所述复温管线互连形成复温 回路, 所述油气分离单元连接所述二级冷凝单元, 以接收经过复温的油液。
[0007] 优选地, 所述水分离单元包括进料口连接所述一级冷凝单元的油气出口端的分 水罐、 连接所述分水罐底部的第一排污管、 以及连接所述分水罐出料口以将所 述分水罐内分离出的油液输出的出油管;
[0008] 所述进料口位于所述分水罐的上端, 所述出料口位于所述分水罐的下端; 所述 分水罐顶部的出气口与所述二级冷凝单元的第一油气进口端相连接。
[0009] 优选地, 所述气液分离单元包括气液分离罐; 所述气液分离罐的上端设有与所 述二级冷凝单元的第一油气出口端相连接的进料口, 所述气液分离罐的下端设 有供所述气液分离罐内分离出的油液输出的出料口, 所述气液分离罐的顶部设 有供所述气液分离罐内分离出的气体排出的出气口;
[0010] 所述复温管线的一端连接所述气液分离罐的出料口, 另一端连接所述二级冷凝 单元的第二油气进口端。
[0011] 优选地, 所述气液分离单元还包括连接所述气液分离罐底部的第二排污管。
[0012] 优选地, 所述油气分离单元包括油气分离罐, 所述油气分离罐的上端设有与所 述二级冷凝单元的第二油气出口端相连接的进液口, 所述油气分离罐的下端设 有供所述油气分离罐内的油液输出的出料口, 所述油气分离罐的顶部设有供所 述油气分离罐内的气体输出的出气口; 所述油气分离罐、 所述二级冷凝单元与 所述复温管线依次相连接。
[0013] 优选地, 所述油气分离单元还包括连接所述油气分离罐底部的第三排污管。
[0014] 优选地, 该油气低温冷凝吸附回收***还包括连接在所述水分离单元和所述二 级冷凝单元之间、 对经过油水分离后的油气进行干燥的干燥单元;
[0015] 所述干燥单元包括一个或多个干燥罐; 多个所述干燥罐并联或串联。
[0016] 优选地, 该油气低温冷凝吸附回收***还包括连接所述气液分离单元、 对所述 气液分离单元分离出的气体进行吸附处理的吸附单元;
[0017] 所述吸附单元包括一个或多个吸附罐; 多个所述吸附罐并联或串联。
[0018] 优选地, 该油气低温冷凝吸附回收***还包括将所述气液分离单元分离出的气 体输送至所述二级冷凝单元和 /或一级冷凝单元进行冷热交换的气体管线, 所述 气体管线连通所述吸附单元、 所述二级冷凝单元和 /或一级冷凝单元、 以及气液 分离单元。
[0019] 优选地, 该油气低温冷凝吸附回收***还包括连接气源以接入高压气体的气源 管线; 所述气源管线连接所述气体管线, 所述吸附单元、 一级冷凝单元、 二级 冷凝单元通过所述气体管线和连接管线互连形成复温反吹回路, 通过所述气源 管线接入高压气体将所述复温反吹回路内杂质残留反吹至所述吸附单元, 经吸 附处理后回收。
发明的有益效果
有益效果
[0020] 本发明的油气低温冷凝吸附回收***, 将回收的油气进行二次冷凝以分离油液 、 气体和水分, 分离效果好, 最后分离出的常温油液可方便的回收利用, 气体 中可燃气含量几乎为零, 可排放至大气, 减少对环境造成污染的问题。
对附图的简要说明
附图说明
[0021] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0022] 图 1是本发明一实施例的油气低温冷凝吸附回收***的结构框图。
本发明的实施方式
[0023] 为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对照附图详细说 明本发明的具体实施方式。
[0024] 如图 1所示, 本发明一实施例的油气低温冷凝吸附回收***, 用于对炼油厂、 加油站等场所回收的油气进行处理。 该油气低温冷凝吸附回收***包括一级冷 凝单元 10、 水分离单元 30、 二级冷凝单元 20、 气液分离单元 40、 复温管线 50以 及油气分离单元 60; —级冷凝单元 10、 水分离单元 30、 二级冷凝单元 20和气液 分离单元 40通过连接管线依次连接, 二级冷凝单元 20和气液分离单元 40通过复 温管线 50互连形成复温回路。
[0025] 其中, 一级冷凝单元 10对油气来料进行初次冷凝, 水分离单元 30对经过初次冷 凝后的油气来料进行油水分离, 二级冷凝单元 20对经过油水分离后的油气进行 二次冷凝, 气液分离单元 40对经过二次冷凝后的油气进行低温气液分离, 复温 管线 50将气液分离单元 40分离出的油液输送至二级冷凝单元 20进行冷热交换以 复温; 油气分离单元 60连接二级冷凝单元 20, 以接收经过复温的油液, 将经过 复温后的油液进行油气分离, 复温分离后的油液即可回收利用。
[0026] 具体地, 一级冷凝单元 10和二级冷凝单元 20均可包括换热器。 一级冷凝单元 10 和二级冷凝单元 20均连接冷媒循环装置 90, 通过冷媒在其中循环通过与油气进 行热交换。 冷媒循环装置 90可包括相配合的压缩机、 散热器、 节流阀、 低温换 热器、 干燥过滤器、 温控变频器、 分离罐等。 冷媒采用丙烷、 异戊烷、 或氟里 昂 R14、 R134a等混合冷剂。
[0027] 一级冷凝单元 10内设有供油气来料通过的通道, 一级冷凝单元 10上设有分别连 通该通道的油气进口端和油气出口端, 油气进口端可接进料管线 100, 用于接收 油气来料, 油气来料在一级冷凝单元 10内与冷媒热交换后从油气出口端输出。 该一级冷凝单元 10优选将油气来料冷凝至 2-4°C, 以将油气来料中的水分与油气 分离。
[0028] 水分离单元 30将经过初次冷凝后的油气来料 (含油液、 油气和水) 进行油水分 离, 油气来料中大部分的水分可在该水分离单元 30中分离排出。 该水分离单元 3 0可包括分水罐 31、 将分水罐 31内分离出的水等排出的第一排污管 32、 以及将分 水罐 31内分离出的油液输出的出油管 33。
[0029] 分水罐 31上设有进料口、 出料口和出气口。 进料口优选位于分水罐 31的上端, 分水罐 31的进料口通过第一连接管线 101连接一级冷凝单元 10的油气出口端, 经 过初次冷凝后的油气来料通过进料口进入分水罐 31内。 由于水的密度大于油液 , 在分水罐 31内, 冷凝后的水分处于内底部, 油气 (或含部分冷凝的油液) 则 位于水分的上方; 因此, 第一排污管 32连接在分水罐 31底部, 将分水罐 31内分 离出的水排出; 该第一排污管 32还用于排污清空。 出料口位于分水罐 31的下端 , 出油管 33连接在分水罐 31出料口以将分水罐 31内分离出的油液输出。 第一排 污管 32、 出油管 33上分别设有控制各自通断的阀门, 在不排水、 出油吋, 分别 通过阀门将第一排污管 32、 出油管 33的内部通道封闭。
[0030] 出气口则位于分水罐 31的顶部, 可供经水、 油液分离后的油气排出以输送至二 级冷凝单元 20。 该出气口可与二级冷凝单元 20的第一油气进口端相连接, 以将 油气输送至二级冷凝单元 20。
[0031] 进一步地, 该油气低温冷凝吸附回收***还包括连接在水分离单元 30和二级冷 凝单元 20之间的干燥单元 70, 干燥单元 70用于对经过油水分离后的油气进行干 燥; 油气经过干燥单元 70进行干燥后再输送至二级冷凝单元 20进行二次冷凝。 由于干燥单元 70设置在一级冷凝并分水之后, 减小了干燥单元 70的负荷, 使干 燥单元 70的干燥剂不需要频繁脱附再生, 尽可能少的脱附再生可延长干燥剂寿 命, 减少人的工作量, 还节能。
[0032] 作为选择, 该干燥单元 70包括一个或多个干燥罐 71 ; 多个干燥罐 71可并联或串 联。 优选地, 干燥单元 70包括两个并联的的干燥罐 71, 一个作为主干燥罐, 另 一个作为备用干燥罐。
[0033] 分水罐 31的出气口通过第二连接管线 102连接干燥罐 71底部的进口, 干燥罐 71 顶部的出口通过第三连接管线 103连接二级冷凝单元 20的第一油气进口端。 经过 油水分离后的油气自下而上地通过干燥罐 71, 干燥后输送至二级冷凝单元 20。 可以理解地, 干燥罐 71的进口和出口处分别设有阀门, 分别控制进口、 出口的 启闭。
[0034] 二级冷凝单元 20内设有供油气通过的第一通道, 二级冷凝单元 20上设有分别连 通该第一通道的第一油气进口端和第一油气出口端, 油气通过该第一油气进口 端进入第一通道与冷媒热交换后, 通过第一油气出口端输出。 该二级冷凝单元 2 0将油气再冷凝至 -50°C左右, 实现油气中的气液分离。 二级冷凝单元 20的换热器 可选用板翅式换热器, 以更好将油气冷凝至 -50°C左右。
[0035] 二级冷凝单元 20的第一油气出口端通过第四连接管线 104连接气液分离单元 40 , 以将二次冷凝后的油气输送至气液分离单元 40。
[0036] 气液分离单元 40将经过二次冷凝后的油气进行低温气液分离, 以分离出气体和 油液。 该气液分离单元 40可包括气液分离罐 41。 气液分离罐 41的上端设有进料 口, 与二级冷凝单元 20的第一油气出口端相连接, 二次冷凝后的油气通过该进 料口进入气液分离罐 41。 气液分离罐 41的下端设有出料口, 供气液分离罐 41内 分离出的油液输出; 气液分离罐 41的顶部设有出气口, 供气液分离罐 41内分离 出的气体排出。 气液分离罐 41的内顶部还设有丝网除沫器, 以提高分离效果。
[0037] 另外, 气液分离单元 40还可包括连接气液分离罐 41底部的第二排污管 42, 以将 气液分离罐 41内的水、 污水等排出。 在气液分离罐 41内有水分的情况下, 可通 过该第二排污管 42将水分排出。 第二排污管 42上设有控制其通断的阀门, 在不 排水吋, 通过阀门将第二排污管 42的内部通道封闭。
[0038] 由于二次冷凝的温度极低 (-50°C左右) , 因此经过二次冷凝及气液分离后的 气体、 油液的温度也极低, 为了将油液的温度升高, 本发明中, 通过复温管线 5 0将油液输送至二级冷凝单元 20, 使油液再次与冷媒进行冷热交换, 在回收热量 的同吋温度得到升高。
[0039] 对应地, 二级冷凝单元 20内设有供油气通过的第二通道, 二级冷凝单元 20上设 有分别连通该第二通道的第二油气进口端和第二油气出口端。 复温管线 50的一 端连接气液分离罐 41的出料口, 另一端连接二级冷凝单元 20的第二油气进口端 。 油液通过出料口、 第二油气进口端进入第二通道, 与冷媒冷热交换后通过第 二油气出口端输出。
[0040] 油气分离单元 60接收经过复温的油液, 将经过复温后的油液进行油气分离, 分 离后的油液即可回收利用, 如回收至储油罐内。 该油气分离单元 60可包括油气 分离罐 61 ; 油气分离罐 61、 二级冷凝单元 20与复温管线 50依次相连接。
[0041] 油气分离罐 61的上端设有进液口, 进液口通过第五连接管线 105与二级冷凝单 元 20的第二油气出口端相连接; 油气分离罐 61的下端设有出料口, 供油气分离 罐 61内的油液输出; 该出料口处可连接出油管至储油罐。 另外, 油气分离罐 61 的顶部还设有出气口, 供油气分离罐 61内挥发出来的油气输出, 气体可输出至 储气罐存储或送至油罐补充油罐压力。 油气分离罐 61的进液口、 出料口和出气 口处可分别设置阀门, 以控制各口处的启闭。 油气分离罐 61的内顶部还可设有 丝网除沫器, 提高分离效果。
[0042] 油气分离单元 60进一步还可包括连接油气分离罐 61底部的第三排污管 62, 以将 油气分离罐 61内的水、 残留的重油排出。 第三排污管 62上分别设有控制其通断 的阀门, 在不排污吋通过阀门将第三排污管 62的内部通道封闭。
[0043] 进一步地, 为防止因油气分离单元排出的气体中仍含有少量的可燃气 (油气) 对大气造成污染, 该油气低温冷凝吸附回收***还包括对气液分离单元 40分离 出的气体进行吸附处理的吸附单元 80。 吸附单元 80连接气液分离单元 40, 接收 气液分离单元 40分离出的气体, 对分离后的气体进一步吸附处理, 以吸附残余 的可燃气后再排放至大气, 使得最后排出的气体中可燃气含量几乎为零, , 减 少对环境造成污染。
[0044] 吸附单元 80包括一个或多个吸附罐 81, 气体从吸附罐 81的进口进入其中, 经吸 附处理后出出口输出。 多个吸附罐 81可并联或串联。 优选地, 吸附单元 80包括 两个并联的的吸附罐 81, 一个作为主吸附罐, 另一个作为备用吸附罐。 吸附罐 8 1内可设置活性炭对气体进行吸附、 和 /或分离膜对气体进行过滤。
[0045] 进一步地, 由于二次冷凝的温度极低 (-50°C左右) , 因此经过二次冷凝及气 液分离后的气体的温度也极低, 为了将气体的温度升高, 同吋可回收热量, 该 油气低温冷凝吸附回收***还包括将气液分离单元 40分离出的气体输送至二级 冷凝单元 20和 /或一级冷凝单元 10进行冷热交换的气体管线。
[0046] 气体管线连通吸附单元 80、 二级冷凝单元 20和 /或一级冷凝单元 10、 以及气液 分离单元 40。 经气液分离后的气体从气液分离罐 41的出气口输送至气体管线内 , 进入二级冷凝单元 20和 /或一级冷凝单元 10内, 与冷媒进行冷热交换后温度升 高, 得到复温; 复温后的气体再输送至吸附单元 80进行吸附处理。
[0047] 本实施例中, 如图 1中所示, 一级冷凝单元 10和二级冷凝单元 20串联设置, 气 体依次通过二级冷凝单元 20和一级冷凝单元 10, 经过两次复温后输送至吸附单 元 80。
[0048] 气体管线包括连接在二级冷凝单元 20和气液分离单元 40之间的第一气体管道 1 、 连接在二级冷凝单元 20和一级冷凝单元 10之间的第二气体管道 2、 以及连接在 一级冷凝单元 10和吸附单元 80之间的第三气体管道 3。 一级冷凝单元 10和二级冷 凝单元 20内分别设有气体通道供气体通过并与冷媒进行冷热交换; 第一气体管 道 1的两端分别连接在气液分离罐 41的出气口和二级冷凝单元 20的气体通道的进 口端上, 第二气体管道 2的两端分别连接在二级冷凝单元 20的气体通道的出口端 和一级冷凝单元 10的气体通道的进口端上, 第三气体管道 3的两端连接在一级冷 凝单元 10的气体通道的出口端和吸附罐 81的进口上。 从气液分离罐 41输出的气 体经第一气体管道 1进入二级冷凝单元 20进行初次复温, 再经过第二气体管道 2 进入一级冷凝单元 10进行二次复温, 最后通过第三气体管道 3进入吸附罐 81。
[0049] 进一步地, 在油气回收处理后, 各个管线和冷凝单元的换热器内会有重烃或冰 粒等杂质残留, 为了保持该回收***管线的洁净度, 避免杂质残留的积聚影响 后续的回收处理, 作为一种优选实施方式, 该油气低温冷凝吸附回收***还可 包括连接气源以接入高压气体的气源管线 4; 所述的气源为氮气等无污染且不会 与油气反应的气体。 该气源管线 4连接气体管线, 吸附单元 80、 一级冷凝单元 10 、 二级冷凝单元 20通过气体管线和连接管线互连形成复温反吹回路, 通过气源 管线 4接入高压气体将复温反吹回路内的杂质残留反吹至吸附单元 80, 经吸附处 理后回收。
[0050] 参考图 1, 气源管线 4优选连接在吸附单元 80和一级冷凝单元 10之间的气体管线
(第三气体管道 3) 上。 第一气体管道 1通过第一管道 11连接二级冷凝单元 20和 气液分离单元 40之间的第四连接管线 104, 从而实现第一气体管道 1和连接管线 1 05的连通; 一级冷凝单元 10的油气出口端通过第二管道 12连接二级冷凝单元 20 的第一油气进口端, 从而第四连接管线 104通过二级冷凝单元 20和第二管道 12相 连通; 吸附罐 81的进口通过第三管道 13连接一级冷凝单元 10的油气进口端, 从 而吸附罐 81、 第三管道 13、 第二管道 12、 第一管道 11、 第一气体管道 1、 第二气 体管道 2、 第三气体管道 3和气源管线 4依次连通, 形成反吹回路。
[0051] 接入高压气体进行反吹前, 将气液分离罐 41出气口关闭, 关闭一级冷凝单元 10 和水分离单元 30之间第一连接管线 101上的阀门, 断幵一级冷凝单元 10和水分离 单元 30之间的连通; 关闭干燥单元 70和二级冷凝单元 20之间的第三连接管线 103 上的阀门, 断幵干燥单元 70和二级冷凝单元 20之间的连通。 反吹吋, 高压气体 从气源管线 4进入复温反吹回路, 依次通过第三气体管道 3、 第二气体管道 2、 第 一气体管道 1、 第一管道 11、 第二管道 12、 第三管道 13至吸附罐 81, 复温反吹回 路中的杂质残留被吹至吸附罐 81内, 经吸附处理后排出、 回收处理。
[0052] 油气回收处理吋, 则恢复一级冷凝单元 10和水分离单元 30之间的连通、 干燥单 元 70和二级冷凝单元 20之间的连通, 关闭第一管道 11、 第二管道 12和第三管道 1 3上的阀门, 以断幵该些管道; 各单元之间相连通, 供油气来料逐步通过进行相 应处理。
[0053] 可以理解地, 上述的进料管线 100、 连接管线 (包括第一连接管线 101至第五连 接管线 105) 、 复温管线 50、 气体管线以及各管道上分别可设有阀门, 通过控制 阀门的启闭控制油气在对应单元之间的通断。 连接管线、 进料管线 100、 复温管 线 50、 气体管线和各管道上的阀门可手动控制, 也可电控, 实现远程监控管理
[0054] 连接管线、 各管道、 进料管线 100、 复温管线 50及气体管线等管线均由金属管 形成, 并且在其中一种或多种管线上设有阻火器, 防止油气爆燃。 另外, 该油 气低温冷凝吸附回收***的各单元、 各管线等均防静电接地, 及吋消除静电, 提高安全性。
[0055] 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本 发明说明书及附图内容所作的等效结构或等效流程变换, 或直接或间接运用在 其他相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
[权利要求 1] 一种油气低温冷凝吸附回收***, 其特征在于, 包括对油气来料进行 初次冷凝的一级冷凝单元 (10) 、 对经过初次冷凝后的油气来料进行 油水分离的水分离单元 (30) 、 对经过油水分离后的油气进行二次冷 凝的二级冷凝单元 (20) 、 对经过二次冷凝后的油气进行低温气液分 离的气液分离单元 (40) 、 将所述气液分离单元 (40) 分离出的油液 输送至所述二级冷凝单元 (20) 进行冷热交换以复温的复温管线 (50 ) 、 以及将经过复温后的油液进行油气分离的油气分离单元 (60) ; 所述一级冷凝单元 (10) 、 水分离单元 (30) 、 二级冷凝单元 (20) 和气液分离单元 (40) 通过连接管线依次连接, 所述二级冷凝单元 ( 20) 和气液分离单元 (40) 通过所述复温管线 (50) 互连形成复温回 路, 所述油气分离单元 (60) 连接所述二级冷凝单元 (20) , 以接收 经过复温的油液。
[权利要求 2] 根据权利要求 1所述的油气低温冷凝吸附回收***, 其特征在于, 所 述水分离单元 (30) 包括进料口连接所述一级冷凝单元 (10) 的油气 出口端的分水罐 (31) 、 连接所述分水罐 (31) 底部的第一排污管 ( 32) 、 以及连接所述分水罐 (31) 出料口以将所述分水罐 (31) 内分 离出的油液输出的出油管 (33) ;
所述进料口位于所述分水罐 (31) 的上端, 所述出料口位于所述分水 罐 (31) 的下端; 所述分水罐 (31) 顶部的出气口与所述二级冷凝单 元 (20) 的第一油气进口端相连接。
[权利要求 3] 根据权利要求 1所述的油气低温冷凝吸附回收***, 其特征在于, 所 述气液分离单元 (40) 包括气液分离罐 (41) ; 所述气液分离罐 (41 ) 的上端设有与所述二级冷凝单元 (20) 的第一油气出口端相连接的 进料口, 所述气液分离罐 (41) 的下端设有供所述气液分离罐 (41) 内分离出的油液输出的出料口, 所述气液分离罐 (41) 的顶部设有供 所述气液分离罐 (41) 内分离出的气体排出的出气口;
所述复温管线 (50) 的一端连接所述气液分离罐 (41) 的出料口, 另 一端连接所述二级冷凝单元 (20) 的第二油气进口端。
根据权利要求 3所述的油气低温冷凝吸附回收***, 其特征在于, 所 述气液分离单元 (40) 还包括连接所述气液分离罐 (41) 底部的第二 排污管 (42) 。
根据权利要求 3所述的油气低温冷凝吸附回收***, 其特征在于, 所 述油气分离单元 (60) 包括油气分离罐 (61) , 所述油气分离罐 (61 ) 的上端设有与所述二级冷凝单元 (20) 的第二油气出口端相连接的 进液口, 所述油气分离罐 (61) 的下端设有供所述油气分离罐 (61) 内的油液输出的出料口, 所述油气分离罐 (61) 的顶部设有供所述油 气分离罐 (61) 内的气体输出的出气口; 所述油气分离罐 (61) 、 所 述二级冷凝单元 (20) 与所述复温管线 (50) 依次相连接。
根据权利要求 5所述的油气低温冷凝吸附回收***, 其特征在于, 所 述油气分离单元 (60) 还包括连接所述油气分离罐 (61) 底部的第三 排污管 (62) 。
根据权利要求 1-6任一项所述的油气低温冷凝吸附回收***, 其特征 在于, 该油气低温冷凝吸附回收***还包括连接在所述水分离单元 ( 30) 和所述二级冷凝单元 (20) 之间、 对经过油水分离后的油气进行 干燥的干燥单元 (70) ;
所述干燥单元 (70) 包括一个或多个干燥罐 (71) ; 多个所述干燥罐
(71) 并联或串联。
根据权利要求 1-6任一项所述的油气低温冷凝吸附回收***, 其特征 在于, 该油气低温冷凝吸附回收***还包括连接所述气液分离单元 ( 40) 、 对所述气液分离单元 (40) 分离出的气体进行吸附处理的吸附 单元 (80) ;
所述吸附单元 (80) 包括一个或多个吸附罐 (81) ; 多个所述吸附罐
(81) 并联或串联。
根据权利要求 8所述的油气低温冷凝吸附回收***, 其特征在于, 该 油气低温冷凝吸附回收***还包括将所述气液分离单元 (40) 分离出 的气体输送至所述二级冷凝单元 (20) 和 /或一级冷凝单元 (10) 进 行冷热交换的气体管线, 所述气体管线连通所述吸附单元 (80) 、 所 述二级冷凝单元 (20) 和 /或一级冷凝单元 (10) 、 以及气液分离单 元 (40) 。
[权利要求 10] 根据权利要求 9所述的油气低温冷凝吸附回收***, 其特征在于, 该 油气低温冷凝吸附回收***还包括连接气源以接入高压气体的气源管 线 (4) ; 所述气源管线 (4) 连接所述气体管线, 所述吸附单元 (80 ) 、 一级冷凝单元 (10) 、 二级冷凝单元 (20) 通过所述气体管线和 连接管线互连形成复温反吹回路, 通过所述气源管线 (4) 接入高压 气体将所述复温反吹回路内杂质残留反吹至所述吸附单元 (80) , 经 吸附处理后回收。
PCT/CN2016/073613 2016-02-05 2016-02-05 油气低温冷凝吸附回收*** WO2017132979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/073613 WO2017132979A1 (zh) 2016-02-05 2016-02-05 油气低温冷凝吸附回收***
CN201680046113.2A CN108136309B (zh) 2016-02-05 2016-02-05 油气低温冷凝吸附回收***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073613 WO2017132979A1 (zh) 2016-02-05 2016-02-05 油气低温冷凝吸附回收***

Publications (1)

Publication Number Publication Date
WO2017132979A1 true WO2017132979A1 (zh) 2017-08-10

Family

ID=59499329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073613 WO2017132979A1 (zh) 2016-02-05 2016-02-05 油气低温冷凝吸附回收***

Country Status (2)

Country Link
CN (1) CN108136309B (zh)
WO (1) WO2017132979A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4384696A (en) * 1995-02-01 1996-08-21 Bresch Entsorgung Gmbh Process for condensing adsorbable and desorbable gases and device for implementing it
US5740682A (en) * 1994-02-13 1998-04-21 Ram Lavie Method for the recovery of organic vapors
CN101462688A (zh) * 2007-12-18 2009-06-24 天津开发区贰加壹米兰环保科技有限公司 加油站光电互补吸收冷凝吸附变频油气回收法
CN101721833A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 冷凝-吸附回收净化含烃废气的方法
CN102196843A (zh) * 2008-10-27 2011-09-21 三菱电机株式会社 汽油蒸气回收装置
CN102899064A (zh) * 2012-11-05 2013-01-30 陈玲海 油气回收***
CN104128065A (zh) * 2014-08-14 2014-11-05 中膜科技(苏州)有限公司 一种冷凝油气膜法油气回收装置
CN105214439A (zh) * 2015-09-14 2016-01-06 清本环保工程(杭州)有限公司 油气回收处理装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK168395B1 (da) * 1992-01-30 1994-03-21 Anker Jarl Jacobsen Fremgangsmåde til rensning af en blanding af luft og dampe fra letflygtig råolie under genvinding af carbonhydriderne og anlæg til brug ved fremgangsmåden
CN203342421U (zh) * 2013-01-23 2013-12-18 海湾环境科技(北京)股份有限公司 改善油气回收***使用寿命的冷凝吸附***
CN103394267B (zh) * 2013-08-06 2015-07-29 广东申菱空调设备有限公司 一种结合冷凝和吸附的油气回收装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5740682A (en) * 1994-02-13 1998-04-21 Ram Lavie Method for the recovery of organic vapors
AU4384696A (en) * 1995-02-01 1996-08-21 Bresch Entsorgung Gmbh Process for condensing adsorbable and desorbable gases and device for implementing it
CN101462688A (zh) * 2007-12-18 2009-06-24 天津开发区贰加壹米兰环保科技有限公司 加油站光电互补吸收冷凝吸附变频油气回收法
CN102196843A (zh) * 2008-10-27 2011-09-21 三菱电机株式会社 汽油蒸气回收装置
CN101721833A (zh) * 2008-10-28 2010-06-09 中国石油化工股份有限公司 冷凝-吸附回收净化含烃废气的方法
CN102899064A (zh) * 2012-11-05 2013-01-30 陈玲海 油气回收***
CN104128065A (zh) * 2014-08-14 2014-11-05 中膜科技(苏州)有限公司 一种冷凝油气膜法油气回收装置
CN105214439A (zh) * 2015-09-14 2016-01-06 清本环保工程(杭州)有限公司 油气回收处理装置及方法

Also Published As

Publication number Publication date
CN108136309A (zh) 2018-06-08
CN108136309B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
JP7145530B2 (ja) 空気を冷媒とする深冷凝縮によるVOCs回収システム
US20110259044A1 (en) Method and apparatus for producing liquefied natural gas
CN100584431C (zh) 气体状烃的处理、回收方法
CN108043064B (zh) 一种VOCs回收工艺及***
CN110420536A (zh) 罐顶VOCs回收及氮气再利用***及方法
CN109224756A (zh) 一种使用深冷冷凝法回收VOCs的撬装***
WO2009118876A1 (ja) ガス状炭化水素の処理・回収装置及び方法
CN112870754A (zh) 一种多级冷凝+吸附+返舱的处理量可调的油气回收装置
JP2021159816A (ja) 二酸化炭素の分離・回収システム
CN212141530U (zh) 小型车载式VOCs回收处理设备
US20120000242A1 (en) Method and apparatus for storing liquefied natural gas
US8845786B2 (en) Method for purifying a gas stream including mercury
WO2017132979A1 (zh) 油气低温冷凝吸附回收***
CN111346396A (zh) 油气处理***及处理方法
CN111036040A (zh) 一种集冷凝-吸附的VOCs循环回收***及回收工艺
CN115738576A (zh) 含挥发性有机物尾气处理***和尾气处理过程
CN205825584U (zh) 一种智能化的轻质汽油转换装置
CN212467608U (zh) 一种车载移动式油田放空气回收***中的净化单元
CN205360967U (zh) 低温油气回收***的复温反吹***
JP4786593B2 (ja) Voc冷却回収装置
CN113440886A (zh) 高压深冷组合式VOCs气体回收装置及回收方法
CN111589267A (zh) 车载移动式油田放空气回收***中的净化单元及其净化方法
TWI471166B (zh) Recovery device and method for gas - like hydrocarbon
JP2008279377A (ja) Voc冷却回収装置
JPS586116B2 (ja) 低温液化ガス運搬船からの置換パ−ジガスの処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/01/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16888804

Country of ref document: EP

Kind code of ref document: A1