WO2017131451A1 - Drone - Google Patents

Drone Download PDF

Info

Publication number
WO2017131451A1
WO2017131451A1 PCT/KR2017/000917 KR2017000917W WO2017131451A1 WO 2017131451 A1 WO2017131451 A1 WO 2017131451A1 KR 2017000917 W KR2017000917 W KR 2017000917W WO 2017131451 A1 WO2017131451 A1 WO 2017131451A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned flying
battery
flexible
flying device
power
Prior art date
Application number
PCT/KR2017/000917
Other languages
French (fr)
Korean (ko)
Inventor
노승윤
정상동
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2017131451A1 publication Critical patent/WO2017131451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • B64D27/353
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plant to propellers or rotors; Arrangements of transmissions
    • B64D35/02Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the type of power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/32Supply or distribution of electrical power generated by fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/60UAVs characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an unmanned flying device, and relates to an unmanned flying device that can fly indoors or in the atmosphere.
  • an unmanned flying apparatus includes a control system for flight control and an unmanned aerial vehicle that performs a flight according to a flight control signal transmitted from a control system at a remote location, and acquires various local data and transmits it to a control system.
  • the unmanned aerial vehicle is equipped with electronic equipment including a camera unit, a sensor module, a communication module, and the like, and is remotely controlled or autonomous. That is, the unmanned aerial vehicle may be directly remotely controlled by the user, or when the operator preprograms points to be passed by the unmanned aerial vehicle, the unmanned aerial vehicle may fly by adjusting the flight trajectory to reach the point.
  • such an unmanned flying device is mounted with a rectangular solid battery to drive the above-described electronic equipment.
  • the weight of such a solid battery increases as the storage capacity increases. Therefore, when the battery having a high capacity is mounted, the weight of the portion on which the battery is mounted is relatively concentrated compared to other portions, so that the direction of the unmanned flying device may not be changed quickly.
  • the weight of the unmanned flying device is also increased by increasing the weight of the battery, the power consumption is increased, thereby reducing the overall running time.
  • the present invention has been made in view of the above, and an object thereof is to provide an unmanned flying device capable of reducing the weight of a battery and distributing the weight of the battery.
  • the present invention to solve the above problems the body portion; A plurality of power generators connected to the body and generating power for flight; A plurality of connection portions connecting the body portion and the power generation portion; And a power supply unit supplying power for driving the power generation unit, wherein the power supply unit is a plate-shaped flexible battery that is built in at least one side of the plurality of connection units.
  • the flexible battery may include a plurality of flexible batteries having the same weight and may be built in the plurality of connection units, respectively.
  • the body portion may include an accommodating portion which is open at one side and drawn inward.
  • it may further include a plurality of supports coupled to the body portion having a predetermined length.
  • the apparatus may further include a plurality of fastening units which are coupled to each of the free ends of the plurality of supports and detached from the object to be transferred.
  • the flexible battery an electrode assembly; And an exterior member encapsulating the electrode assembly together with an electrolyte solution, wherein the electrode assembly and the exterior member may be formed to coincide with each other so that a pattern for contraction and relaxation in the longitudinal direction may match each other.
  • the pattern may be formed on the entire length of the flexible battery, and may be locally formed on the length of a part of the entire length of the flexible battery.
  • the fuselage portion including the main blade fixedly coupled in the horizontal direction; And a power supply unit embedded in the fuselage to supply power for driving the controller, wherein the power supply comprises at least one flexible battery wound at least once around an axial direction of the fuselage. to provide.
  • the flexible battery may be provided in plural numbers arranged along the axial direction of the body portion, and the plurality of flexible batteries may be electrically connected to each other.
  • each of the flexible batteries arranged along the axial direction of the fuselage may be a battery connection body connected in parallel with each other after the plurality of flexible batteries are arranged in a straight line.
  • At least two flexible batteries of the plurality of flexible batteries constituting the battery connector may be disposed such that terminals thereof face each other.
  • the main wing includes a plurality of solar panels are arranged on the outer surface, the power supply may be charged through the power generated from the solar panel.
  • the unmanned aerial vehicle may further include at least one camera unit for capturing an external image.
  • a plurality of flexible batteries are distributed in each of the connecting portions or distributed in the longitudinal direction of the fuselage, so that the weight of the battery is not concentrated compared to the conventional unmanned flying device in which a solid solid battery is disposed in the body portion. Can be. Accordingly, the flight direction of the unmanned aerial vehicle can be changed more easily.
  • the unmanned flying apparatus includes a flexible battery which is lighter in weight than the storage capacity of the solid battery, so that the overall weight can be reduced, thereby reducing power consumption and increasing flight time.
  • the unmanned flying device according to the present invention can increase the space utilization of the body portion because it does not require a space for mounting a solid solid battery of the prior art.
  • a communication module or various electronic devices for compressing and transmitting an image captured by a camera unit in real time may be further mounted on the body.
  • the unmanned flying apparatus may prevent the flexible battery from being damaged or deteriorated through the pattern even when the connection part is repeatedly bent by an external force when the flexible battery is built in the connection part.
  • FIG. 1 is a view showing an unmanned flying device according to an embodiment of the present invention
  • FIG. 2 is a view showing an unmanned flying device according to another embodiment of the present invention.
  • FIG. 3 is a view showing an unmanned flying device according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing a connection relationship between a control unit and various electronic units in the unmanned flying apparatus according to the present invention
  • FIG. 5 is a schematic view showing a flexible battery that can be applied to the unmanned flying apparatus according to the present invention.
  • FIG. 6 is an exemplary view illustrating various patterns applied to an electrode assembly and an exterior member in a flexible battery applied to an unmanned flying device according to the present invention, illustrating various intervals between adjacent valleys or mountains,
  • FIG. 7 is an enlarged view showing the detailed configuration of a flexible battery applied to the unmanned flying device according to the present invention.
  • FIG. 8 is a view showing an unmanned flying device according to another embodiment of the present invention.
  • FIG. 9 is a view showing a connection relationship of the flexible battery that can be applied to FIG.
  • FIG. 10 is a view showing another connection relationship of the flexible battery that can be applied to FIG. 8,
  • FIG. 11 is a view illustrating one flexible battery of FIG. 9; FIG.
  • FIG. 12 is a view showing an extract of one battery connector in FIG. 10, and
  • FIG. 13 is a view illustrating a state in which a solar cell panel is applied to FIG. 7.
  • the unmanned flying apparatus 100, 200, 200 ′ includes a body 110, a power generator 120, a connection 130, and a power supply S as shown in FIGS. 1 to 3. Include.
  • the body 110 may include a circuit board (not shown) capable of overall control of the unmanned flying device 100.
  • the material of the body 110 may be plastic or metal, but is not limited thereto.
  • the power generator 120 may be connected to the body 110 to generate power for the flight of the body 110.
  • the power generator 120 may include a housing 121, a motor 122, and a propeller 123.
  • the housing 121 may be fixedly coupled to the body portion 110 via the connection portion 130.
  • a power generator 120 may be one, but may be provided in plurality so as to be free to change direction, the plurality of power generator 120 may be disposed at an equal angle to each other.
  • the unmanned flight apparatus 100, 200, 200 ′ when the unmanned flight apparatus 100, 200, 200 ′ according to an embodiment of the present invention includes four power generators 120, the four power generators 120 may be configured based on the body 110. It may be arranged to achieve an angle of °.
  • the unmanned aerial vehicle 100, 200, 200 ′ when the unmanned aerial vehicle 100, 200, 200 ′ includes three power generators 120, the three power generators 120 may have an angle of 120 ° based on the body 110. It can be arranged to achieve.
  • the material of the housing 121 may be the same material as the body part 110, but is not limited thereto.
  • the material of the housing 121 may be a material different from that of the body part 110.
  • the motor 122 is driven by using the power supplied from the power supply unit S, and may be disposed inside the housing 121, and the rotation shaft of the motor 122 is upward from the housing 121. Or downwards. However, the rotating shaft of the motor 122 may be advantageously exposed upward from the housing 121 to prevent interference with the ground during takeoff and landing.
  • the propeller 123 may be fixedly coupled to the rotating shaft of the motor 122. Accordingly, when the motor 122 is driven, lift force or propulsion force is generated while the propeller 123 is rotated, so that the unmanned flying device 100, 200, 200 ′ may fly. In addition, when the unmanned flying device 100 includes a plurality of power generators 120, the flight direction may be varied according to the output difference of the propellers 123 included in each of the power generators 120. .
  • connection portion 130 connects the body part 110 and the power generation part 120.
  • the material of the connection portion 130 may be the same as the material of the body portion 110, for example.
  • the shape of the connection unit 130 may be, for example, a pipe shape, but is not limited thereto.
  • the cable that can be electrically connected to the inside of the connection portion 130 may be disposed.
  • One end of the cable may be connected to a circuit board of the body portion 110, and the other end thereof may be connected to the power generator 120.
  • the cable is not necessarily disposed inside the connecting portion 130, the circuit board and the power generating unit 120 is mutually through an electrode pattern (not shown) formed on the inner surface of the connecting portion 130. It may be electrically connected.
  • the power supply unit S is for supplying power for driving the motor 122.
  • the power supply S may be a plate-shaped flexible battery 140, and may be embedded in at least one of the plurality of connection units 130.
  • the flexible battery 140 may be provided in plural so as to constitute a high capacity power supply S and implement overall weight balancing, and may be embedded in the plurality of connection units 130.
  • all of the flexible batteries 140 embedded in the plurality of connection units 130 may have the same weight and may have the same storage capacity.
  • each of the flexible batteries 140 built in the plurality of connection units 130 has the same weight, and thus, the inside of the body part 110. Compared to a conventional unmanned flying device in which a solid solid battery is built in, the weight of the battery can be distributed without being concentrated in a local position.
  • a light weight can be realized by configuring the power supply unit S through the flexible battery 140 which is relatively light in weight.
  • the weight of a solid battery having a storage capacity of 4000mAh is about 1kg, while the weight of the flexible battery 140 having a storage capacity of 1000mAh is about 30g.
  • the unmanned aerial vehicle 100, 200, 200 ′ according to an embodiment of the present invention has the same storage capacity of 4000 mAh as that of a conventional solid battery when four flexible batteries 140 having a storage capacity of 1000 mAh are connected in parallel.
  • the total weight of the battery can be reduced to around 120g.
  • the unmanned aerial vehicle 100, 200, 200 ′ according to an embodiment of the present invention comprises a power supply S through a plurality of flexible batteries 140 that are relatively lighter in weight than the solid battery so that the solid battery is mounted.
  • the weight can be significantly reduced as compared to the conventional unmanned flying device. Through this, it is possible to reduce the total weight of the unmanned flying device (100, 200, 200 ') to reduce the power consumption by weight reduction, so that the overall flight time even if the total storage capacity of the power supply (S) is the same as the conventional unmanned flying device Can be increased.
  • the flexible battery 140 is embedded in the side of the connection unit 130 adjacent to the power generation unit 120, the flexible battery 140 is electrically compared with the unmanned flying device 100 in which the battery is located inside the body unit 110.
  • the voltage drop can be reduced by minimizing the paths through which power consumption can be reduced.
  • the unmanned flight apparatus 100, 200, 200 ′ when the unmanned flight apparatus 100, 200, 200 ′ according to an embodiment of the present invention needs to replace any one of the plurality of flexible batteries 140, the unmanned flight device 100, 200, 200 ′ may be replaced without replacing all of the plurality of flexible batteries 140. Maintenance costs can be reduced by only replacing the batteries that are needed.
  • the above-mentioned body portion 110 side may include a controller 190 for the overall control of the unmanned flying device (100, 200, 200 ').
  • a controller may be in the form of a chipset mounted on a circuit board (not shown).
  • the controller 190 may be a microprocessor, and may control the overall operation of the other electronic unit as well as the driving of the power generator 120.
  • the controller 190 may individually control the rotational force of the motor 122 included in the plurality of power generation units 120 according to the flight trajectory of the unmanned flight apparatus 100, 200, 200 ′.
  • the plurality of power generators 120 may be changed in various directions of flight of the unmanned flying apparatuses 100, 200, and 200 ′ according to the difference in the rotational force generated by the motor 122.
  • the unmanned flying apparatus 100, 200, 200 ′ may move forward or rotate according to the rotation speed of each motor 122.
  • the unmanned aerial vehicle 100, 200, 200 ′ may vertically rise or descend.
  • the flying method of the unmanned flying device 100, 200, 200 ′ is not limited thereto, and it is understood that various types of flying such as forward, backward, and rotation are possible by adjusting the outputs of the plurality of motors 122.
  • the unmanned flying apparatus 100, 200, 200 ′ may include a plurality of support units 160 as illustrated in FIGS. 1 to 3.
  • the plurality of support parts 160 may be formed in a stick shape so that one end may be coupled to one side of the body part 110 and the free end may be disposed downward.
  • the receiving part 111 having one side open to the body part 110 and formed inwardly is formed.
  • the accommodation part 111 may be in the form of a receiving groove having an upper portion, and a transfer object to be transported may be mounted on the receiving part 111 side.
  • the transfer object may be directly inserted into the receiving portion 111, or may be in the form of the storage member 150 is inserted into the receiving portion 111 in a state stored in a separate storage member 150.
  • the storage member 150 may be configured to have a size substantially the same as that of the accommodation portion 111, thereby preventing the storage member 150 from being separated from the accommodation portion 111 during transportation. It is possible to prevent the transfer object from being damaged.
  • the unmanned flying apparatus 200 ′ may further include a plurality of fastening units 170 as shown in FIG. 3.
  • the plurality of fastening units 170 may be coupled to the free ends of the plurality of support parts 160, and the case 10 in which a transfer object is accommodated may be detachably coupled to the fastening unit 170. That is, when the transfer object is a relatively larger size than the accommodating part 111, the case 10 in which the transfer object is stored through the fastening unit 170 is fastened so that the transfer object is stored in the case 10. It may be transferred in a state.
  • the case 10 has a coupling groove 11 may be formed on the upper side to facilitate the coupling with the fastening unit 170.
  • the coupling groove 11 may be formed to be introduced into a size that the fastening unit 170 can be accommodated.
  • the case 10 and the fastening unit 170 may be fixed through the fixing pin 12, but is not limited thereto.
  • the storage member 150 and the case 10 side may be provided with a cover (not shown) that can be opened and closed to insert or take out the transfer object.
  • the unmanned flying device 300, 400 may be a fixed wing type unmanned flying device including a fuselage 310, wings and power supply (S).
  • At least one wing 321 and 322 for generating lift force is fixedly coupled to the fuselage 310 as illustrated in FIGS. 8 and 13. Can be.
  • the wing portion may include a main wing 321 coupled to the body portion 310 in a horizontal direction and at least one tail wing 322 formed on the end side of the body portion 310,
  • the main wings 321 may be provided in pairs and coupled to both sides of the fuselage 310, or may be composed of one member and coupled to an upper side of the fuselage 310.
  • the configuration of the wing is not limited thereto, and the tail wing 322 may be omitted, or a separate auxiliary wing (not shown) may be formed on the main wing 321 side.
  • the fuselage 310 may be equipped with a power transmission unit such as a propeller driven by a motor so as to obtain a propulsion force for the flight, it may be found that the glider method without using a propeller. Since the structure of the flying device implemented in a fixed wing system as described above is well known, a detailed description thereof will be omitted.
  • the fuselage 310 may include a controller 190 for controlling the overall operation of the unmanned aerial vehicle 300, 400, and the controller 190 may receive the driving power through the power supply S. Can be.
  • the controller 190 may be a chipset type mounted on the circuit board 192 as described above.
  • the controller 190 may be a microprocessor and control the overall operation of various electronic units mounted on the fuselage 310.
  • the unmanned flying apparatus 300 or 400 may have a form in which a power supply S for providing driving power to the controller 190 is embedded in the fuselage 310, and the power supply unit ( S) may be configured of at least one flexible battery 140.
  • the power supply unit S may be embedded in the fuselage 310 as shown in FIGS. 8 and 13, and a plurality of flexible batteries 140 arranged along the longitudinal direction of the fuselage 310. ) May be electrically connected to each other.
  • the flexible battery 140 may be arranged to be electrically connected to each other along an axial direction parallel to the longitudinal direction of the fuselage 310, and each of the flexible batteries 140 may include the fuselage ( It may be disposed in the form of winding one or more times around the axial direction of 310.
  • the plurality of flexible batteries 140 constituting the power supply unit S are arranged along the longitudinal direction of the fuselage 310 to distribute the total weight of the battery. Can be.
  • the weight of the battery may be distributed over the entire length of the fuselage 310 without being concentrated in a local position, compared to a conventional unmanned flying device in which a solid solid battery is built in the fuselage.
  • the overall weight of the battery constituting the power supply (S) is distributed along the longitudinal direction of the fuselage 310, the overall control such as attitude control or direction control of the unmanned flying device (300,400) through the controller 190
  • the control operation can be made quickly and accurately.
  • the weight reduction may be realized by configuring the power supply unit S through the flexible battery 140 that is relatively lighter than the conventional unmanned flying device that uses a solid solid battery.
  • the plurality of flexible batteries 140 embedded in the fuselage 310 may all have the same weight, and may have the same storage capacity.
  • the flexible battery 140 is not limited thereto, and may have different weights or different power storage capacities according to positions of the fuselage 310 to be installed.
  • the power supply S includes a plurality of flexible batteries 140 arranged along the axial direction of the fuselage 310 in parallel with each other via two cables 191a and 191b.
  • a high capacitance storage capacity can be realized. That is, the pair of positive electrode terminals 145b and the negative electrode terminal 145a formed in each of the flexible batteries 140 may connect the positive electrode terminals 145b to the positive electrode terminals 145b, respectively, via the cables 191a and 191b.
  • the terminal 145a may have a form in which the cathode terminals 145b are connected to each other.
  • the plurality of flexible batteries 140 arranged along the longitudinal direction of the fuselage 310 may be connected in parallel to each other to realize high capacity storage capacity as well as overall weight distribution.
  • the two cables 191a and 191b may be electrically connected to one end of a circuit board 192 constituting the controller 190 or a separate circuit board electrically connected to the controller 190.
  • the power supply unit S may have a form in which a plurality of battery connectors B arranged along the axial direction of the fuselage 310 are electrically connected to each other.
  • the battery connector B may have a form in which a plurality of flexible batteries 140 are arranged in the longitudinal direction and connected in parallel to each other via cables 191c and 191d.
  • at least two flexible batteries 140 of the plurality of flexible batteries 140 constituting the battery connector B may be disposed such that a pair of electrode terminals 145a and 145b face each other, thereby providing a plurality of flexible batteries ( The overall length of the cables 191c and 191d for electrically connecting the 140 may be reduced.
  • the arrangement relationship of the plurality of flexible batteries 140 constituting the battery connector B is not limited thereto, and may be appropriately changed according to the formation position and structure of the pair of electrode terminals 145a and 145b. Let's find out.
  • each of the flexible batteries constituting the battery connection (B) may have a relatively short length compared to the total length L1 of the flexible battery of FIG. 9 (see FIGS. 11 and 12).
  • the flexible battery is recharged by an externally supplied power source. If the battery connection (B) consisting of a flexible battery having a relatively short length (L2) can be charged faster than the flexible battery having a relatively long length (L1).
  • the battery connection (B) may be in the form of each other through a separate housing (not shown), a separate reinforcing member (not shown) in a position corresponding to the pair of electrode terminals (145a, 145b) If a plurality of flexible batteries constituting the battery connector B may be arranged in series, the plurality of flexible batteries may be arranged in series.
  • connection method of the flexible battery constituting the power supply unit S is not limited thereto, and a plurality of flexible batteries arranged along the axial direction of the fuselage 310 when a product to be applied requires high power. 140 may be connected in series with each other.
  • the power supply unit (S) it is noted that one flexible battery may be implemented in the form of a spiral wound a plurality of times along the longitudinal direction of the body portion (310).
  • the unmanned flying device 400 when the unmanned flying device according to the present invention is implemented as a fixed wing type unmanned flying device, the unmanned flying device 400 includes a charging means for recharging the power supply (S) as shown in FIG. can do.
  • the charging means may be a solar panel 330 for producing power using solar light, the solar panel 330 may be disposed on one surface of the main wing 321.
  • the installation position of the solar cell panel 330 is not limited thereto, and it may be found that the solar cell panel 330 may also be disposed on the fuselage 310.
  • the unmanned flying device 400 generates power through the solar panel 330 and recharges the consumed power of the flexible battery 140 constituting the power supply unit S, thereby reducing power consumption. It can be reused without replacing the battery.
  • the driving time of the unmanned flying device 400 may be further increased by charging the flexible battery 140 by using the power produced by the solar panel 330 during operation.
  • the unmanned aerial vehicle 100, 200, 200 ′, 300, 400 may include at least one camera unit 180 for capturing an image of the ground or the surroundings.
  • various sensors 194 may be included to collect or detect various information about the state of the unmanned aerial vehicle 100, 200, 200 ′, 300 and 400 and the surrounding environment.
  • the sensors 194 may include a gyro sensor, a geomagnetic sensor, a gravity sensor, an altitude sensor, a tilt sensor, a humidity sensor, a wind sensor, an air flow sensor, a temperature sensor, an acoustic sensor, an illumination sensor, and the like.
  • Various sensors can be installed as appropriate.
  • the camera unit 180 and the sensors 194 may be controlled through the controller 190 as shown in FIG. 4.
  • the controller 190 transmits an image captured by the camera unit 180 or communicates for transmitting and receiving data such as flight information of the unmanned aerial vehicle 100, 200, 200 ′, 300, 400 or a control command transmitted from the outside.
  • Module 196 may be included.
  • the unmanned flying device 100, 200, 200 ′, 300, 400 according to the present invention may further include various electronic devices applied to a known unmanned flying device.
  • the flexible battery 140 for configuring the power supply unit (S) described above in the unmanned flying device (100,200,200 ', 300,400) according to the present invention may include an electrode assembly 141 and the exterior material (147, 148)
  • the electrode assembly 141 may be encapsulated in the exterior materials 147 and 148 together with the electrolyte.
  • the flexible battery 140 applied to the present invention may be in the form of a plate having flexibility, but patterns 146 and 149 for contraction and relaxation in the longitudinal direction may be formed.
  • the electrode assembly 141 and the exterior members 147 and 148 may be provided with patterns 146 and 149 for contraction and relaxation in the longitudinal direction, respectively, and are formed on the exterior members 147 and 148.
  • the pattern 149 and the second pattern 146 formed on the electrode assembly 141 may be formed to have the same directivity.
  • the deformation amount of the substrate itself constituting the electrode assembly 141 and the exterior materials 147 and 148 is prevented or minimized, the deformation amount of the substrate itself that may occur in the bent portion may be minimized even when banding is generated or embedded in the bent state. It is possible to prevent the electrode assembly 141 and the exterior members 147 and 148 from being damaged or deteriorated in performance.
  • first pattern 149 and the second pattern 146 may be disposed such that the first pattern 149 and the second pattern 146 coincide with each other as well as the same directionality. This is to allow the same behavior to always occur between the first pattern 149 and the second pattern 146.
  • the flexible battery 140 according to the present invention is disposed such that the first pattern 149 and the second pattern 146 formed on the electrode assembly 141 and the exterior members 147 and 148 respectively correspond to each other. Even if bending or bending in the longitudinal direction occurs, the electrode assembly 141 and the exterior members 147 and 148 may always maintain a uniform interval or contact state with respect to the entire length. As a result, since the electrolyte encapsulated together with the electrode assembly 141 is uniformly distributed over the entire length, performance of the battery may be prevented from being lowered.
  • each of the peaks and valleys of the first pattern 149 and the second pattern 146 may be formed in a direction parallel to the width direction of the exterior members 147 and 148 and the electrode assembly 141.
  • Each of the peaks and valleys may be alternately disposed along the length direction of the exterior members 147 and 148 and the electrode assembly 141.
  • the ridges and valleys constituting the first pattern 149 and the second pattern 146 are located at the same positions as the peaks and valleys between the peaks and the valleys, so that the first pattern 149 and the second pattern ( 146 may coincide with each other.
  • the peaks and valleys of the first pattern 149 and the second pattern 146 in a direction parallel to a straight line parallel to the width direction of the exterior members 147 and 148 and the electrode assembly 141. It may be formed, and the peaks and valleys may be repeatedly arranged along the longitudinal direction.
  • the patterns 146 and 149 may be continuously formed in a direction parallel to the width direction of the electrode assembly 141 and the exterior members 147 and 148 and may be formed discontinuously, and the electrode assembly 141. ) And the exterior materials 147 and 148, or may be partially formed in some of the entire length.
  • the ridges and valleys may be provided to have a cross section including at least one selected from an arc cross section including a semicircle, a polygonal cross section including a triangle or a square, and an arc cross section and a polygonal cross section.
  • the hills and valleys of may be provided to have the same pitch and width, but may be provided to have different pitches and widths.
  • the flexible battery 140 when the flexible battery 140 is embedded in the connection unit 130 as shown in FIGS. 1 to 3, stress is applied by the wind or the speed change during the operation of the unmanned aerial vehicle 100, 200, 200 ′ and thus the connection unit 130. ) May cause vibration or minute bending. Accordingly, the flexible battery 140 embedded in the connection unit 130 may also be bent or curved, but the amount of change in length is canceled through the patterns 146 and 149 to prevent the flexible battery 140 from being damaged or deteriorated. Can be.
  • the amount of length change that may occur in the bent portion through the patterns 146 and 149 is offset. By doing so, it is possible to prevent the performance of the flexible battery 140 from being lowered.
  • first pattern 149 and the second pattern 146 may be formed to have the same spacing or spacing between the ridges adjacent to each other, or may have different intervals, the same interval and different The spacing may be provided in a combined form.
  • first pattern 149 formed on the exterior members 147 and 148 may be formed on the entire surface of the exterior members 147 and 148, but may be partially formed.
  • the electrode assembly 141 is encapsulated with an electrolyte in the exterior materials 147 and 148, and includes an anode 142, a cathode 144, and a separator 143 as shown in FIG. 7.
  • the positive electrode 142 may include a positive electrode current collector 142a and a positive electrode active material 142b
  • the negative electrode 144 may include a negative electrode current collector 144a and a negative electrode active material 144b.
  • the current collector 142a and the negative electrode current collector 144a may be implemented in the form of a sheet of a plate having a predetermined area.
  • the positive electrode 142 and the negative electrode 144 may be pressed or deposited or coated on one surface or both surfaces of each of the current collector (142a, 144a).
  • the active materials 142b and 144b may be provided with respect to the entire areas of the current collectors 142a and 144a or partially provided with respect to a partial area.
  • the positive electrode current collector 142a and the negative electrode current collector 144a may be provided with a negative electrode terminal 145a and a positive electrode terminal 145b, respectively, for electrical connection from each body to an external device.
  • the positive electrode terminal 145b and the negative electrode terminal 145a may extend from the positive electrode current collector 142a and the negative electrode current collector 144a to protrude to one side of the exterior materials 147 and 148, and the exterior materials 147, 148 may be exposed on the surface.
  • the positive electrode active material 142b and the negative electrode active material 144b may contain a PTFE (Polytetrafluoroethylene) component. This is to prevent the positive electrode active material 142b and the negative electrode active material 144b from being peeled or cracks from the current collectors 142a and 144a during bending.
  • PTFE Polytetrafluoroethylene
  • the separator 143 disposed between the anode 142 and the cathode 144 may include a nanofiber web layer 143b on one or both surfaces of the nonwoven fabric layer 143a.
  • the nanofiber web layer 143b may be a nanofiber containing at least one selected from polyacrylonitrile nanofibers and polyvinylidene fluoride nanofibers.
  • the nanofiber web layer 143b may be composed of only polyacrylonitrile nanofibers to secure radioactive and uniform pore formation.
  • the exterior members 147 and 148 are formed of a plate-shaped member having a predetermined area, and are intended to protect the electrode assembly 141 from external force by accommodating the electrode assembly 141 and the electrolyte therein.
  • the exterior member (147, 148) is provided with a pair of the first exterior member 147 and the second exterior member 148, the electrolyte and the electrode assembly 141 accommodated therein by being sealed through an adhesive along the rim. To prevent exposure to the outside and leakage to the outside.
  • the exterior members 147 and 148 may be sealed by an adhesive after the first exterior member 147 and the second exterior member 148 are formed of two members, and the edges constituting the sealing part may be all sealed by an adhesive member. The remaining portion that is made and folded in half along the width direction or the longitudinal direction may be sealed through the adhesive.
  • the unmanned flying device (100,200,200 ', 300,400) according to the present invention described above can be used for purposes such as military, commercial, research, etc., it can also be used for leisure that the operation is controlled through the user's remote controller operation.

Abstract

A drone is provided. The drone according to one embodiment of the present invention comprises: a body portion; a plurality of power generation units connected to the body portion so as to generate power enabling flight of the body portion; a plurality of connection portions for connecting the body portion and the power generation units; and a plurality of flexible batteries, which are respectively embedded in the plurality of connection portions and supply power to the power generation units.

Description

무인 비행 장치Drone
본 발명은 무인 비행 장치에 관한 것으로, 실내 또는 대기 중에서 비행할 수 있는 무인 비행 장치에 관한 것이다.The present invention relates to an unmanned flying device, and relates to an unmanned flying device that can fly indoors or in the atmosphere.
항공 기술 및 통신 기술의 급격한 발전에 따라 탐사 및 정찰 등을 목적으로 하는 무인 비행 장치의 개발이 활발하게 이루어지고 있다. 이러한 무인 비행 장치의 개발은 인간이 직접 탑승하여 수행하기에 위험하거나 어려운 작업도 가능하게 하는 이점을 가져왔다.With the rapid development of aviation technology and communication technology, the development of unmanned flying devices for exploration and reconnaissance, etc. has been actively conducted. The development of such unmanned flying devices has the advantage of enabling dangerous or difficult tasks for humans to board themselves.
일반적으로, 무인 비행 장치는 비행 제어를 위한 제어 시스템과, 원격지에서 제어 시스템으로부터 전송되는 비행 제어 신호에 따라 비행을 수행하여 각종 현지 데이터를 취득하여 제어 시스템으로 송신하는 무인 비행체로 이루어진다. 무인 비행체는 카메라 유닛, 센서 모듈, 통신 모듈 등을 포함하는 전자 장비를 탑재하고 있으며, 원격 조종되거나 또는 자율 운항한다. 즉, 무인 비행 장치는 사용자에 의해 직접 원격 조종되거나, 운용자가 무인 비행체가 지나가야 할 지점들을 미리 프로그래밍하면, 무인 비행체가 그 지점에 도달하기 위해 스스로 비행 궤도를 조절하여 비행하기도 한다. In general, an unmanned flying apparatus includes a control system for flight control and an unmanned aerial vehicle that performs a flight according to a flight control signal transmitted from a control system at a remote location, and acquires various local data and transmits it to a control system. The unmanned aerial vehicle is equipped with electronic equipment including a camera unit, a sensor module, a communication module, and the like, and is remotely controlled or autonomous. That is, the unmanned aerial vehicle may be directly remotely controlled by the user, or when the operator preprograms points to be passed by the unmanned aerial vehicle, the unmanned aerial vehicle may fly by adjusting the flight trajectory to reach the point.
한편, 이러한 무인 비행 장치는 상술한 전자 장비를 구동하기 위하여 각형의 고형 배터리가 탑재된다. 그러나, 이와 같은 각형의 고형 배터리는 축전용량이 증가할수록 그 무게 역시 증가한다. 따라서, 고용량을 갖는 배터리를 탑재하는 경우 배터리가 탑재된 부분의 무게가 다른 부분에 비하여 상대적으로 집중되므로 무인 비행 장치의 방향 전환이 신속하게 이루어지지 않을 수 있다.On the other hand, such an unmanned flying device is mounted with a rectangular solid battery to drive the above-described electronic equipment. However, the weight of such a solid battery increases as the storage capacity increases. Therefore, when the battery having a high capacity is mounted, the weight of the portion on which the battery is mounted is relatively concentrated compared to other portions, so that the direction of the unmanned flying device may not be changed quickly.
더불어, 배터리 무게의 증가에 의해 무인 비행 장치의 무게 역시 증가되므로 소모 전력이 증가되어 전체적인 운행시간이 단축되는 문제점이 있다.In addition, since the weight of the unmanned flying device is also increased by increasing the weight of the battery, the power consumption is increased, thereby reducing the overall running time.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 배터리의 무게를 감소시키고 배터리의 무게를 분산시킬 수 있는 무인 비행 장치를 제공하는데 그 목적이 있다.The present invention has been made in view of the above, and an object thereof is to provide an unmanned flying device capable of reducing the weight of a battery and distributing the weight of the battery.
상술한 과제를 해결하기 위하여 본 발명은 몸체부; 상기 몸체부에 연결되고 비행을 위한 동력을 발생시키는 복수 개의 동력 발생부; 상기 몸체부와 동력 발생부를 연결하는 복수 개의 연결부; 및 상기 동력 발생부를 구동하기 위한 전원을 공급하는 전원공급부;를 포함하고, 상기 전원공급부는 상기 복수 개의 연결부 중 적어도 어느 일측에 내장되는 판상의 플렉서블 배터리인 무인 비행 장치를 제공한다.The present invention to solve the above problems the body portion; A plurality of power generators connected to the body and generating power for flight; A plurality of connection portions connecting the body portion and the power generation portion; And a power supply unit supplying power for driving the power generation unit, wherein the power supply unit is a plate-shaped flexible battery that is built in at least one side of the plurality of connection units.
또한, 상기 플렉서블 배터리는 동일한 무게를 갖는 복수 개로 구비되어 상기 복수 개의 연결부에 각각 내장될 수 있다.In addition, the flexible battery may include a plurality of flexible batteries having the same weight and may be built in the plurality of connection units, respectively.
또한, 상기 몸체부는 일측이 개방되고 내측으로 인입형성되는 수용부를 포함할 수 있다.In addition, the body portion may include an accommodating portion which is open at one side and drawn inward.
또한, 상기 몸체부에 결합되고 소정의 길이를 갖는 복수 개의 지지부를 더 포함할 수 있다.In addition, it may further include a plurality of supports coupled to the body portion having a predetermined length.
또한, 상기 복수 개의 지지부의 자유단 각각에 결합되어 이송 대상물에 탈착되는 복수 개의체결 유닛을 더 포함할 수 있다.The apparatus may further include a plurality of fastening units which are coupled to each of the free ends of the plurality of supports and detached from the object to be transferred.
또한, 상기 플렉서블 배터리는, 전극조립체; 및 상기 전극조립체를 전해액과 함께 봉지하는 외장재;를 포함하고, 상기 전극조립체 및 외장재는 길이방향에 대한 수축 및 이완을 위한 패턴이 서로 일치하도록 각각 형성될 수 있다.In addition, the flexible battery, an electrode assembly; And an exterior member encapsulating the electrode assembly together with an electrolyte solution, wherein the electrode assembly and the exterior member may be formed to coincide with each other so that a pattern for contraction and relaxation in the longitudinal direction may match each other.
또한, 상기 패턴은 상기 플렉서블 배터리의 전체길이에 형성될 수 있고, 상기 플렉서블 배터리의 전체길이 중 일부의 길이에 국부적으로 형성될 수 있다.In addition, the pattern may be formed on the entire length of the flexible battery, and may be locally formed on the length of a part of the entire length of the flexible battery.
한편, 본 발명은, 수평한 방향으로 고정결합되는 주날개를 포함하는 동체부; 및 상기 동체부에 내장되어 제어부의 구동을 위한 전원을 공급하는 전원공급부;를 포함하고, 상기 전원공급부는 상기 동체부의 축방향을 중심으로 1회 이상 권취되는 적어도 하나의 플렉서블 배터리인 무인 비행 장치를 제공한다.On the other hand, the present invention, the fuselage portion including the main blade fixedly coupled in the horizontal direction; And a power supply unit embedded in the fuselage to supply power for driving the controller, wherein the power supply comprises at least one flexible battery wound at least once around an axial direction of the fuselage. to provide.
또한, 상기 플렉서블 배터리는 상기 동체부의 축방향을 따라 배열되는 복수 개로 구비되고, 상기 복수 개의 플렉서블 배터리는 서로 전기적으로 연결될 수 있다.In addition, the flexible battery may be provided in plural numbers arranged along the axial direction of the body portion, and the plurality of flexible batteries may be electrically connected to each other.
또한, 상기 동체부의 축방향을 따라 배열되는 각각의 플렉서블 배터리는 복수 개의 플렉서블 배터리가 일직선상에 배열된 후 서로 병렬연결된 배터리 연결체일 수 있다.In addition, each of the flexible batteries arranged along the axial direction of the fuselage may be a battery connection body connected in parallel with each other after the plurality of flexible batteries are arranged in a straight line.
또한, 상기 배터리 연결체를 구성하는 복수 개의 플렉서블 배터리 중 적어도 두 개의 플렉서블 배터리는 단자가 서로 마주하도록 배치될 수 있다.In addition, at least two flexible batteries of the plurality of flexible batteries constituting the battery connector may be disposed such that terminals thereof face each other.
또한, 상기 주날개는 외면에 배열되는 복수 개의 태양전지판넬을 포함하고, 상기 전원공급부는 상기 태양전지판넬로부터 생성된 전력을 통해 충전될 수 있다.In addition, the main wing includes a plurality of solar panels are arranged on the outer surface, the power supply may be charged through the power generated from the solar panel.
또한, 상기 무인 비행 장치는, 외부의 영상을 촬영하기 위한 적어도 하나의 카메라 유닛을 더 포함할 수 있다.In addition, the unmanned aerial vehicle may further include at least one camera unit for capturing an external image.
본 발명에 의하면, 복수 개의 플렉서블 배터리가 연결부 각각에 분산 배치되거나 동체부의 길이방향을 따라 분산배치됨으로써 몸체부에 각형의 고형 배터리가 배치된 종래의 무인 비행 장치에 비하여 배터리의 무게가 집중되지 않고 분산될 수 있다. 이에 따라, 무인 비행 장치의 비행 방향 전환이 더욱 용이하게 이루어질 수 있다.According to the present invention, a plurality of flexible batteries are distributed in each of the connecting portions or distributed in the longitudinal direction of the fuselage, so that the weight of the battery is not concentrated compared to the conventional unmanned flying device in which a solid solid battery is disposed in the body portion. Can be. Accordingly, the flight direction of the unmanned aerial vehicle can be changed more easily.
또한, 본 발명에 따른 무인 비행 장치는 고형 배터리보다 축전 용량 대비 무게가 가벼운 플렉서블 배터리를 포함함으로써, 전체적인 무게를 감소시킬 수 있으므로 전력 소비가 감소되어 비행 시간을 증가시킬 수 있다.In addition, the unmanned flying apparatus according to the present invention includes a flexible battery which is lighter in weight than the storage capacity of the solid battery, so that the overall weight can be reduced, thereby reducing power consumption and increasing flight time.
더욱이, 본 발명에 따른 무인 비행 장치는 종래에 비하여 각형의 고형 배터리를 탑재하기 위한 공간이 불필요하므로 몸체부의 공간활용도를 높일 수 있다. 예를 들어, 상기 몸체부에 카메라 유닛에서 촬영된 영상을 실시간으로 압축하여 전송하기 위한 통신모듈이나 다양한 전자 장비들이 추가로 탑재될 수 있다.In addition, the unmanned flying device according to the present invention can increase the space utilization of the body portion because it does not require a space for mounting a solid solid battery of the prior art. For example, a communication module or various electronic devices for compressing and transmitting an image captured by a camera unit in real time may be further mounted on the body.
또한, 본 발명에 따른 무인 비행 장치는 플렉서블 배터리가 연결부에 내장되는 경우 외력에 의해 연결부가 반복적으로 밴딩되더라도 패턴을 통해 플렉서블 배터리가 파손되거나 성능이 저하되는 것을 방지할 수 있다.In addition, the unmanned flying apparatus according to the present invention may prevent the flexible battery from being damaged or deteriorated through the pattern even when the connection part is repeatedly bent by an external force when the flexible battery is built in the connection part.
도 1은 본 발명의 일 실시예에 따른 무인 비행 장치를 나타낸 도면,1 is a view showing an unmanned flying device according to an embodiment of the present invention,
도 2는 본 발명의 다른 실시예에 따른 무인 비행 장치를 나타낸 도면,2 is a view showing an unmanned flying device according to another embodiment of the present invention;
도 3은 본 발명의 또 다른 실시예에 따른 무인 비행 장치를 나타낸 도면,3 is a view showing an unmanned flying device according to another embodiment of the present invention;
도 4는 본 발명에 따른 무인 비행 장치에서 제어부와 다양한 전자유닛과의 연결관계를 나타낸 블럭도,4 is a block diagram showing a connection relationship between a control unit and various electronic units in the unmanned flying apparatus according to the present invention;
도 5는 본 발명에 따른 무인 비행 장치에 적용될 수 있는 플렉서블 배터리를 나타낸 개략도,5 is a schematic view showing a flexible battery that can be applied to the unmanned flying apparatus according to the present invention;
도 6은 본 발명에 따른 무인 비행 장치에 적용되는 플렉서블 배터리에서 전극조립체와 외장재에 적용되는 다양한 패턴을 나타낸 예시도로서, 서로 이웃하는 골부 또는 산부들간의 다양한 간격을 나타낸 도면,FIG. 6 is an exemplary view illustrating various patterns applied to an electrode assembly and an exterior member in a flexible battery applied to an unmanned flying device according to the present invention, illustrating various intervals between adjacent valleys or mountains,
도 7은 본 발명에 따른 무인 비행 장치에 적용되는 플렉서블 배터리의 세부구성을 나타낸 확대도,7 is an enlarged view showing the detailed configuration of a flexible battery applied to the unmanned flying device according to the present invention,
도 8은 본 발명의 또 다른 실시예에 따른 무인 비행 장치를 나타낸 도면,8 is a view showing an unmanned flying device according to another embodiment of the present invention;
도 9는 도 8에 적용될 수 있는 플렉서블 배터리의 연결관계를 나타낸 도면,9 is a view showing a connection relationship of the flexible battery that can be applied to FIG.
도 10은 도 8에 적용될 수 있는 플렉서블 배터리의 또 다른 연결관계를 나타낸 도면,10 is a view showing another connection relationship of the flexible battery that can be applied to FIG. 8,
도 11은 도 9에서 하나의 플렉서블 배터리를 발췌한 도면,FIG. 11 is a view illustrating one flexible battery of FIG. 9; FIG.
도 12는 도 10에서 하나의 배터리 연결체를 발췌한 도면, 그리고,12 is a view showing an extract of one battery connector in FIG. 10, and
도 13은 도 7에 태양전지패널이 적용된 상태를 나타낸 도면이다.FIG. 13 is a view illustrating a state in which a solar cell panel is applied to FIG. 7.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 도 1 내지 도 3에 도시된 바와 같이 몸체부(110), 동력 발생부(120), 연결부(130) 및 전원공급부(S)를 포함한다.The unmanned flying apparatus 100, 200, 200 ′ according to an embodiment of the present invention includes a body 110, a power generator 120, a connection 130, and a power supply S as shown in FIGS. 1 to 3. Include.
상기 몸체부(110)는 무인 비행 장치(100)의 전반적인 제어를 할 수 있는 회로기판(미도시)을 포함할 수 있다. 상기 몸체부(110)의 소재는 플라스틱 또는 금속일 수 있으나, 이에 한정하지는 않는다.The body 110 may include a circuit board (not shown) capable of overall control of the unmanned flying device 100. The material of the body 110 may be plastic or metal, but is not limited thereto.
상기 동력 발생부(120)는 상기 몸체부(110)에 연결되어 상기 몸체부(110)의 비행을 위한 동력을 발생시킬 수 있다. 일례로, 상기 동력 발생부(120)는 하우징(121), 모터(122) 및 프로펠러(123)를 포함할 수 있다.The power generator 120 may be connected to the body 110 to generate power for the flight of the body 110. For example, the power generator 120 may include a housing 121, a motor 122, and a propeller 123.
이때, 상기 하우징(121)은 상기 연결부(130)를 매개로 상기 몸체부(110)에 고정 결합될 수 있다. 이와 같은 동력 발생부(120)는 하나일 수 있으나, 자유로운 방향전환이 가능하도록 복수 개로 구비될 수 있으며, 복수 개의 동력 발생부(120)는 서로 등각도로 배치될 수 있다.In this case, the housing 121 may be fixedly coupled to the body portion 110 via the connection portion 130. Such a power generator 120 may be one, but may be provided in plurality so as to be free to change direction, the plurality of power generator 120 may be disposed at an equal angle to each other.
일례로, 본 발명의 일실시예에 따른 무인 비행 장치(100,200,200')가 4개의 동력 발생부(120)를 포함하는 경우 4개의 동력 발생부(120)는 상기 몸체부(110)를 기준으로 90°의 각도를 이루도록 배치될 수 있다. 도면에는 도시하지는 않았으나, 상기 무인 비행 장치(100,200,200')가 3개의 동력 발생부(120)를 포함하는 경우, 3개의 동력 발생부(120)는 몸체부(110)를 기준으로 120°의 각도를 이루도록 배치될 수 있다.For example, when the unmanned flight apparatus 100, 200, 200 ′ according to an embodiment of the present invention includes four power generators 120, the four power generators 120 may be configured based on the body 110. It may be arranged to achieve an angle of °. Although not shown in the drawing, when the unmanned aerial vehicle 100, 200, 200 ′ includes three power generators 120, the three power generators 120 may have an angle of 120 ° based on the body 110. It can be arranged to achieve.
상기 하우징(121)의 소재는 몸체부(110)와 동일한 소재일 수 있으나, 이에 한정하는 것은 아니며, 상기 하우징(121)의 소재는 몸체부(110)와 상이한 소재일 수도 있다.The material of the housing 121 may be the same material as the body part 110, but is not limited thereto. The material of the housing 121 may be a material different from that of the body part 110.
상기 모터(122)는 상기 전원공급부(S)에서 공급되는 전원을 이용하여 구동되는 것으로, 상기 하우징(121)의 내부에 배치될 수 있으며, 상기 모터(122)의 회전축은 하우징(121)으로부터 상방 또는 하방으로 노출될 수 있다. 다만, 상기 모터(122)의 회전축은 이륙 및 착륙시 지면과의 간섭을 방지할 수 있도록 하우징(121)으로부터 상방으로 노출되는 것이 유리할 수 있다.The motor 122 is driven by using the power supplied from the power supply unit S, and may be disposed inside the housing 121, and the rotation shaft of the motor 122 is upward from the housing 121. Or downwards. However, the rotating shaft of the motor 122 may be advantageously exposed upward from the housing 121 to prevent interference with the ground during takeoff and landing.
상기 프로펠러(123)는 상기 모터(122)의 회전축에 고정 결합될 수 있다. 이에 따라, 상기 모터(122)가 구동되면, 프로펠러(123)가 회전되면서 양력 또는 추진력이 발생됨으로써 무인 비행 장치(100,200,200')가 비행될 수 있다. 또한, 상기 무인 비행 장치(100)는 상기 동력 발생부(120)가 복수 개로 구비되는 경우 각각의 동력 발생부(120)에 포함된 프로펠러(123)들의 출력 차이에 따라 비행 방향이 가변될 수 있다.The propeller 123 may be fixedly coupled to the rotating shaft of the motor 122. Accordingly, when the motor 122 is driven, lift force or propulsion force is generated while the propeller 123 is rotated, so that the unmanned flying device 100, 200, 200 ′ may fly. In addition, when the unmanned flying device 100 includes a plurality of power generators 120, the flight direction may be varied according to the output difference of the propellers 123 included in each of the power generators 120. .
상기 복수 개의 연결부(130)는 상기 몸체부(110)와 동력 발생부(120)를 연결한다. 상기 연결부(130)의 소재는 일례로 몸체부(110)의 소재와 동일할 수 있다. 더불어, 상기 연결부(130)의 형상은 일례로 파이프 형상일 수 있으나, 이에 한정하지는 않는다. The plurality of connection parts 130 connect the body part 110 and the power generation part 120. The material of the connection portion 130 may be the same as the material of the body portion 110, for example. In addition, the shape of the connection unit 130 may be, for example, a pipe shape, but is not limited thereto.
상기 연결부(130)의 내부에는 전기적으로 연결할 수 있는 케이블이 배치될 수 있다. 상기 케이블의 일단은 몸체부(110)의 회로기판에 연결되고, 타단은 상기 동력 발생부(120)에 연결될 수 있다.The cable that can be electrically connected to the inside of the connection portion 130 may be disposed. One end of the cable may be connected to a circuit board of the body portion 110, and the other end thereof may be connected to the power generator 120.
한편, 상기 연결부(130)의 내부에 반드시 케이블이 배치되는 것으로 한정하지는 않으며, 상기 연결부(130)의 내측면에 형성된 전극 패턴(미도시)를 통해 상기 회로기판과 동력 발생부(120)가 서로 전기적으로 연결될 수도 있다.On the other hand, the cable is not necessarily disposed inside the connecting portion 130, the circuit board and the power generating unit 120 is mutually through an electrode pattern (not shown) formed on the inner surface of the connecting portion 130. It may be electrically connected.
상기 전원공급부(S)는 상기 모터(122)를 구동하기 위한 전원을 공급하기 위한 것이다. 이때, 본 발명에 따른 무인 비행 장치(100,200,200')는 상기 전원공급부(S)가 판상의 플렉서블 배터리(140)일 수 있으며, 상기 복수 개의 연결부(130) 중 적어도 어느 하나에 내장될 수 있다.The power supply unit S is for supplying power for driving the motor 122. In this case, in the unmanned flying apparatus 100, 200, 200 ′ according to the present invention, the power supply S may be a plate-shaped flexible battery 140, and may be embedded in at least one of the plurality of connection units 130.
바람직하게는, 상기 플렉서블 배터리(140)는 고용량의 전원공급부(S)를 구성하고 전체적인 무게 밸런싱을 구현할 수 있도록 복수 개로 구비되어 상기 복수 개의 연결부(130)에 모두 내장될 수 있다.Preferably, the flexible battery 140 may be provided in plural so as to constitute a high capacity power supply S and implement overall weight balancing, and may be embedded in the plurality of connection units 130.
이와 같은 경우, 상기 복수 개의 연결부(130)에 내장되는 플렉서블 배터리(140)는 모두 동일한 무게를 가질 수 있으며, 서로 동일한 축전 용량을 가질 수 있다.In this case, all of the flexible batteries 140 embedded in the plurality of connection units 130 may have the same weight and may have the same storage capacity.
이에 따라, 본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 상기 복수 개의 연결부(130)에 각각 내장되는 각각의 플렉서블 배터리(140)가 동일한 무게를 가짐으로써, 몸체부(110) 내부에 각형의 고형배터리가 내장되던 종래의 무인 비행 장치에 비하여 배터리의 무게가 국부적인 위치에 집중되지 않고 분산될 수 있다.Accordingly, in the unmanned flying apparatus 100, 200, 200 ′ according to the exemplary embodiment of the present invention, each of the flexible batteries 140 built in the plurality of connection units 130 has the same weight, and thus, the inside of the body part 110. Compared to a conventional unmanned flying device in which a solid solid battery is built in, the weight of the battery can be distributed without being concentrated in a local position.
더불어, 각형의 고형배터리를 사용하던 종래의 무인 비행 장치에 비하여 상대적으로 무게가 가벼운 플렉서블 배터리(140)를 통해 전원공급부(S)를 구성함으로써 경량화를 구현할 수 있다.In addition, compared to the conventional unmanned flying device that uses a solid solid battery, a light weight can be realized by configuring the power supply unit S through the flexible battery 140 which is relatively light in weight.
통상적으로, 4000mAh의 축전 용량을 갖는 고형 배터리의 무게는 대략 1㎏ 정도이나, 1000mAh의 축전 용량을 갖는 플렉서블 배터리(140)의 무게는 대략 30g 정도이다. Typically, the weight of a solid battery having a storage capacity of 4000mAh is about 1kg, while the weight of the flexible battery 140 having a storage capacity of 1000mAh is about 30g.
이에 따라, 본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 1000mAh의 축전 용량을 갖는 4개의 플렉서블 배터리(140)를 서로 병렬연결하는 경우 종래의 고형 배터리와 동일한 4000mAh의 축전 용량을 가지나 배터리 전체의 무게를 대략 120g 정도로 감소시킬 수 있다. Accordingly, the unmanned aerial vehicle 100, 200, 200 ′ according to an embodiment of the present invention has the same storage capacity of 4000 mAh as that of a conventional solid battery when four flexible batteries 140 having a storage capacity of 1000 mAh are connected in parallel. The total weight of the battery can be reduced to around 120g.
이로 인해, 본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 고형 배터리에 비하여 상대적으로 무게가 가벼운 복수 개의 플렉서블 배터리(140)를 통해 전원공급부(S)를 구성함으로써 고형 배터리가 탑재된 종래의 무인 비행 장치에 비하여 무게를 현저하게 감소시킬 수 있다. 이를 통해, 무인 비행 장치(100,200,200')의 전체무게를 감소시킬 수 있음으로써 무게 감소에 의한 전력 소비를 줄일 수 있어 전원공급부(S)의 전체 축전용량이 종래의 무인 비행 장치와 동일하더라도 전체적인 비행시간을 증가시킬 수 있다.For this reason, the unmanned aerial vehicle 100, 200, 200 ′ according to an embodiment of the present invention comprises a power supply S through a plurality of flexible batteries 140 that are relatively lighter in weight than the solid battery so that the solid battery is mounted. The weight can be significantly reduced as compared to the conventional unmanned flying device. Through this, it is possible to reduce the total weight of the unmanned flying device (100, 200, 200 ') to reduce the power consumption by weight reduction, so that the overall flight time even if the total storage capacity of the power supply (S) is the same as the conventional unmanned flying device Can be increased.
뿐만 아니라, 상기 플렉서블 배터리(140)가 상기 동력 발생부(120)에 인접한 연결부(130) 측에 내장됨으로써, 상기 몸체부(110) 내부에 배터리가 위치된 무인 비행 장치(100)와 비교하여 전기가 이동되는 경로를 최소화함으로써 전압 강하를 감소시킬 수 있으므로 전력 소비를 절감할 수 있다.In addition, since the flexible battery 140 is embedded in the side of the connection unit 130 adjacent to the power generation unit 120, the flexible battery 140 is electrically compared with the unmanned flying device 100 in which the battery is located inside the body unit 110. The voltage drop can be reduced by minimizing the paths through which power consumption can be reduced.
그리고, 본 발명의 일실시예에 따른 무인 비행 장치(100,200,200')는 상기 복수 개의 플렉서블 배터리(140) 중 어느 하나의 교체가 필요한 경우, 상기 복수 개의 플렉서블 배터리(140) 모두를 교체하지 않고 교체가 필요한 배터리만을 교체할 수 있음으로써 유지비용을 절감할 수 있다.In addition, when the unmanned flight apparatus 100, 200, 200 ′ according to an embodiment of the present invention needs to replace any one of the plurality of flexible batteries 140, the unmanned flight device 100, 200, 200 ′ may be replaced without replacing all of the plurality of flexible batteries 140. Maintenance costs can be reduced by only replacing the batteries that are needed.
한편, 전술한 몸체부(110) 측에는 무인 비행 장치(100,200,200')의 전반적인 제어를 위한 제어부(190)가 포함될 수 있다. 이와 같은 제어부는 회로기판(미도시)에 실장된 칩셋 형태일 수 있다. 일례로, 상기 제어부(190)는 마이크로프로세서(microprocessor)일 수 있으며, 상기 동력 발생부(120)의 구동은 물론 다른 전자유닛의 전반적인 동작을 제어할 수 있다. On the other hand, the above-mentioned body portion 110 side may include a controller 190 for the overall control of the unmanned flying device (100, 200, 200 '). Such a controller may be in the form of a chipset mounted on a circuit board (not shown). For example, the controller 190 may be a microprocessor, and may control the overall operation of the other electronic unit as well as the driving of the power generator 120.
구체적으로, 상기 제어부(190)는 무인 비행 장치(100,200,200')의 비행 궤적에 따라서 복수 개의 동력 발생부(120)에 포함된 모터(122)의 회전력을 개별적으로 제어할 수 있다. 이로 인해, 상기 복수 개의 동력 발생부(120)는 모터(122)에서 발생되는 회전력의 차이에 따라 무인 비행 장치(100,200,200')의 비행 방향이 다양하게 변경될 수 있다.Specifically, the controller 190 may individually control the rotational force of the motor 122 included in the plurality of power generation units 120 according to the flight trajectory of the unmanned flight apparatus 100, 200, 200 ′. Thus, the plurality of power generators 120 may be changed in various directions of flight of the unmanned flying apparatuses 100, 200, and 200 ′ according to the difference in the rotational force generated by the motor 122.
일례로, 본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 각각의 모터(122)의 회전수에 따라 전진하거나 회전할 수 있다. 또한, 복수 개의 모터(122)들의 출력이 동일하게 증가하거나 감소하는 경우 무인 비행 장치(100,200,200')는 수직 상승하거나 수직 하강할 수 있다. 그러나 상기 무인 비행 장치(100,200,200')의 비행 방식을 이에 한정하는 것은 아니며 복수 개의 모터(122)의 출력을 조절함으로써 전진, 후진, 회전 등 다양한 방식의 비행이 가능함을 밝혀둔다.For example, the unmanned flying apparatus 100, 200, 200 ′ according to an embodiment of the present invention may move forward or rotate according to the rotation speed of each motor 122. In addition, when the output of the plurality of motors 122 increases or decreases equally, the unmanned aerial vehicle 100, 200, 200 ′ may vertically rise or descend. However, the flying method of the unmanned flying device 100, 200, 200 ′ is not limited thereto, and it is understood that various types of flying such as forward, backward, and rotation are possible by adjusting the outputs of the plurality of motors 122.
한편, 본 발명의 일 실시예에 따른 무인 비행 장치(100,200,200')는 도 1 내지 도 3에 도시된 바와 같이 복수 개의 지지부(160)를 포함할 수 있다. 상기 복수 개의 지지부(160)는 스틱(stick) 형상으로 이루어져서 일단이 상기 몸체부(110)의 일측에 결합될 수 있으며, 자유단부가 하방을 향하도록 배치될 수 있다.Meanwhile, the unmanned flying apparatus 100, 200, 200 ′ according to an embodiment of the present invention may include a plurality of support units 160 as illustrated in FIGS. 1 to 3. The plurality of support parts 160 may be formed in a stick shape so that one end may be coupled to one side of the body part 110 and the free end may be disposed downward.
또한, 본 발명의 일 실시예에 따른 무인 비행 장치(200,200')는 도 2 및 도 3에 도시된 바와 같이 상기 몸체부(110)에 일측이 개방되고 내측으로 인입형성되는 수용부(111)가 형성될 수 있다. 일례로, 상기 수용부(111)는 상부가 개방된 수용홈의 형태일 수 있으며, 상기 수용부(111) 측에 운반하고자 하는 이송 대상물이 탑재될 수 있다.In addition, in the unmanned flying apparatus 200, 200 ′ according to the embodiment of the present invention, as shown in FIGS. 2 and 3, the receiving part 111 having one side open to the body part 110 and formed inwardly is formed. Can be formed. For example, the accommodation part 111 may be in the form of a receiving groove having an upper portion, and a transfer object to be transported may be mounted on the receiving part 111 side.
여기서, 상기 이송 대상물은 상기 수용부(111)에 직접 삽입될 수도 있고, 별도의 보관 부재(150)에 수납된 상태에서 상기 보관 부재(150)가 상기 수용부(111)에 삽입되는 형태일 수도 있다. 이와 같은 경우, 상기 보관 부재(150)는 상기 수용부(111)와 대략 동일한 크기를 갖도록 구성됨으로써 운반시 상기 보관 부재(150)가 수용부(111)로부터 이탈되는 것을 방지할 수 있으며, 외부 환경으로부터 이송 대상물이 훼손되는 것을 방지할 수 있다.Here, the transfer object may be directly inserted into the receiving portion 111, or may be in the form of the storage member 150 is inserted into the receiving portion 111 in a state stored in a separate storage member 150. have. In this case, the storage member 150 may be configured to have a size substantially the same as that of the accommodation portion 111, thereby preventing the storage member 150 from being separated from the accommodation portion 111 during transportation. It is possible to prevent the transfer object from being damaged.
더불어, 본 발명의 일 실시예에 따른 무인 비행 장치(200')는 도 3에 도시된 바와 같이 복수 개의 체결 유닛(170)을 더 포함할 수 있다. 상기 복수 개의 체결 유닛(170)은 상기 복수 개의 지지부(160)의 자유단부 측에 결합될 수 있으며, 이송 대상물이 수용된 케이스(10)가 상기 체결유닛(170)에 착탈가능하게 결합될 수 있다. 즉, 상기 이송 대상물이 상기 수용부(111)보다 상대적으로 큰 크기일 경우 상기 체결유닛(170)을 통해 이송 대상물이 수납된 케이스(10)가 체결됨으로써 상기 이송 대상물이 케이스(10)에 수납된 상태로 이송될 수도 있다.In addition, the unmanned flying apparatus 200 ′ according to an embodiment of the present invention may further include a plurality of fastening units 170 as shown in FIG. 3. The plurality of fastening units 170 may be coupled to the free ends of the plurality of support parts 160, and the case 10 in which a transfer object is accommodated may be detachably coupled to the fastening unit 170. That is, when the transfer object is a relatively larger size than the accommodating part 111, the case 10 in which the transfer object is stored through the fastening unit 170 is fastened so that the transfer object is stored in the case 10. It may be transferred in a state.
이러한 케이스(10)는 상기 체결 유닛(170)과의 결합이 용이하도록 상측에 결합홈(11)이 형성될 수 있다. 상기 결합홈(11)은 체결 유닛(170)이 수용될 수 있는 크기로 인입되게 형성될 수 있다. 이때, 상기 케이스(10)와 상기 체결 유닛(170)은 고정핀(12)을 통해 고정할 수 있으나, 이에 한정하지는 않는다. 더불어, 상기 체결 유닛(170)을 공지의 다양한 형태로 변경하여 이송 대상물 자체가 상기 체결 유닛(170)에 체결될 수도 있음을 밝혀둔다. 더하여, 상기 보관 부재(150) 및 케이스(10) 측에는 상기 이송 대상물을 삽입하거나 꺼낼 수 있도록 개폐가능한 덮개(미도시)가 구비될 수 있다.The case 10 has a coupling groove 11 may be formed on the upper side to facilitate the coupling with the fastening unit 170. The coupling groove 11 may be formed to be introduced into a size that the fastening unit 170 can be accommodated. At this time, the case 10 and the fastening unit 170 may be fixed through the fixing pin 12, but is not limited thereto. In addition, by changing the fastening unit 170 to a variety of known forms that the transfer object itself may be fastened to the fastening unit 170. In addition, the storage member 150 and the case 10 side may be provided with a cover (not shown) that can be opened and closed to insert or take out the transfer object.
한편, 본 발명에 따른 무인 비행 장치(300,400)는 동체부(310), 날개부 및 전원공급부(S)를 포함하는 고정익 형태의 무인 비행 장치일 수 있다.On the other hand, the unmanned flying device 300, 400 according to the present invention may be a fixed wing type unmanned flying device including a fuselage 310, wings and power supply (S).
즉, 본 실시예에 따른 무인 비행 장치(300,400)는 도 8 및 도 13에 도시된 바와 같이 양력을 발생시키기 위한 적어도 하나의 날개부(321,322)가 상기 동체부(310)에 고정결합된 형태일 수 있다.That is, in the unmanned flying apparatuses 300 and 400 according to the present exemplary embodiment, at least one wing 321 and 322 for generating lift force is fixedly coupled to the fuselage 310 as illustrated in FIGS. 8 and 13. Can be.
여기서, 상기 날개부는 상기 동체부(310)에 수평한 방향으로 결합되는 주날개(321)와 상기 동체부(310)의 단부측에 형성되는 적어도 하나의 꼬리날개(322)를 포함할 수 있으며, 상기 주날개(321)는 한 쌍으로 구비되어 상기 동체부(310)의 양 측부에 결합될 수도 있고 하나의 부재로 이루어져 상기 동체부(310)의 상부 측에 결합될 수도 있다. 그러나, 상기 날개부의 구성을 이에 한정하는 것은 아니며 상기 꼬리날개(322)는 생략될 수도 있고, 주날개(321) 측에 별도의 보조날개(미도시)가 형성될 수도 있다.Here, the wing portion may include a main wing 321 coupled to the body portion 310 in a horizontal direction and at least one tail wing 322 formed on the end side of the body portion 310, The main wings 321 may be provided in pairs and coupled to both sides of the fuselage 310, or may be composed of one member and coupled to an upper side of the fuselage 310. However, the configuration of the wing is not limited thereto, and the tail wing 322 may be omitted, or a separate auxiliary wing (not shown) may be formed on the main wing 321 side.
더불어, 상기 동체부(310)는 비행을 위한 추진력을 얻을 수 있도록 모터에 의해 구동되는 프로펠러와 같은 동력전달부가 장착될 수도 있으며, 프로펠러를 사용하지 않는 글라이더 방식일 수도 있음을 밝혀둔다. 이와 같이 고정익 방식으로 구현되는 비행 장치의 구조는 공지의 내용이므로 상세한 설명은 생략하기로 한다.In addition, the fuselage 310 may be equipped with a power transmission unit such as a propeller driven by a motor so as to obtain a propulsion force for the flight, it may be found that the glider method without using a propeller. Since the structure of the flying device implemented in a fixed wing system as described above is well known, a detailed description thereof will be omitted.
상기 동체부(310)는 무인 비행 장치(300,400)의 전반적인 동작을 제어를 할 수 있는 제어부(190)를 포함할 수 있으며, 상기 제어부(190)는 전원공급부(S)를 통해 구동전원을 제공받을 수 있다. The fuselage 310 may include a controller 190 for controlling the overall operation of the unmanned aerial vehicle 300, 400, and the controller 190 may receive the driving power through the power supply S. Can be.
여기서, 상기 제어부(190)는 전술한 실시예에서 설명한 바와 회로기판(192)에 실장된 칩셋 형태일 수 있다. 더불어, 상기 제어부(190)는 마이크로프로세서(microprocessor)일 수 있으며, 상기 동체부(310)에 장착되는 다양한 전자유닛의 전반적인 동작을 제어할 수 있다.In this case, the controller 190 may be a chipset type mounted on the circuit board 192 as described above. In addition, the controller 190 may be a microprocessor and control the overall operation of various electronic units mounted on the fuselage 310.
이때, 본 실시예에 따른 무인 비행 장치(300,400)는 상기 제어부(190) 측으로 구동전원을 제공하기 위한 전원공급부(S)가 상기 동체부(310)에 내장된 형태일 수 있으며, 상기 전원공급부(S)는 적어도 하나의 플렉서블 배터리(140)로 구성될 수 있다.In this case, the unmanned flying apparatus 300 or 400 according to the present embodiment may have a form in which a power supply S for providing driving power to the controller 190 is embedded in the fuselage 310, and the power supply unit ( S) may be configured of at least one flexible battery 140.
즉, 상기 전원공급부(S)는 도 8 및 도 13에 도시된 바와 같이 상기 동체부(310)에 내장될 수 있으며, 상기 동체부(310)의 길이방향을 따라 배열된 복수 개의 플렉서블 배터리(140)가 서로 전기적으로 연결된 형태일 수 있다.That is, the power supply unit S may be embedded in the fuselage 310 as shown in FIGS. 8 and 13, and a plurality of flexible batteries 140 arranged along the longitudinal direction of the fuselage 310. ) May be electrically connected to each other.
일례로, 상기 플렉서블 배터리(140)는 상기 동체부(310)의 길이방향과 평행한 축방향을 따라 복수 개가 서로 전기적으로 연결되도록 배열될 수 있으며, 각각의 플렉서블 배터리(140)는 상기 동체부(310)의 축방향을 중심으로 1회 이상 권취되는 형태로 배치될 수 있다.For example, the flexible battery 140 may be arranged to be electrically connected to each other along an axial direction parallel to the longitudinal direction of the fuselage 310, and each of the flexible batteries 140 may include the fuselage ( It may be disposed in the form of winding one or more times around the axial direction of 310.
이에 따라, 본 실시예에서의 무인 비행 장치(300,400)는 전원공급부(S)를 구성하는 복수 개의 플렉서블 배터리(140)가 동체부(310)의 길이방향을 따라 배열됨으로써 배터리의 전체무게가 분산될 수 있다. Accordingly, in the unmanned flying apparatuses 300 and 400 according to the present exemplary embodiment, the plurality of flexible batteries 140 constituting the power supply unit S are arranged along the longitudinal direction of the fuselage 310 to distribute the total weight of the battery. Can be.
즉, 동체부 내부에 각형의 고형배터리가 내장되던 종래의 무인 비행 장치에 비하여 배터리의 무게가 국부적인 위치에 집중되지 않고 동체부(310)의 전체길이에 대하여 분산될 수 있다.That is, the weight of the battery may be distributed over the entire length of the fuselage 310 without being concentrated in a local position, compared to a conventional unmanned flying device in which a solid solid battery is built in the fuselage.
이를 통해, 전원공급부(S)를 구성하는 배터리의 전체무게가 동체부(310)의 길이방향을 따라 분산됨으로써 상기 제어부(190)를 통한 무인 비행 장치(300,400)의 자세 제어나 방향 제어와 같은 전반적인 제어동작이 신속하고 정확하게 이루어질 수 있다. Through this, the overall weight of the battery constituting the power supply (S) is distributed along the longitudinal direction of the fuselage 310, the overall control such as attitude control or direction control of the unmanned flying device (300,400) through the controller 190 The control operation can be made quickly and accurately.
더불어, 전술한 실시예에서 설명한 바와 같이 각형의 고형배터리를 사용하던 종래의 무인 비행 장치에 비하여 상대적으로 무게가 가벼운 플렉서블 배터리(140)를 통해 전원공급부(S)를 구성함으로써 경량화를 구현할 수 있다. 이를 통해, 무인 비행 장치(300,400)의 전체무게를 감소시킬 수 있음으로써 무게 감소에 의한 전력 소비를 줄일 수 있어 전원공급부(S)의 전체 축전용량이 종래의 무인 비행 장치와 동일하더라도 전체적인 비행시간을 증가시킬 수 있다.In addition, as described in the above-described embodiment, the weight reduction may be realized by configuring the power supply unit S through the flexible battery 140 that is relatively lighter than the conventional unmanned flying device that uses a solid solid battery. Through this, it is possible to reduce the total weight of the unmanned flying device (300,400) to reduce the power consumption by weight reduction, so that the overall flight time even if the total storage capacity of the power supply (S) is the same as the conventional unmanned flying device Can be increased.
여기서, 상기 동체부(310)에 내장되는 상기 복수 개의 플렉서블 배터리(140)는 모두 동일한 무게를 가질 수 있으며, 서로 동일한 축전 용량을 가질 수도 있다. 그러나 상기 플렉서블 배터리(140)를 이에 한정하는 것은 아니며 설치되는 동체부(310)의 위치에 따라 서로 다른 무게를 가질 수도 있고 서로 다른 축전 용량을 가질 수도 있다.Here, the plurality of flexible batteries 140 embedded in the fuselage 310 may all have the same weight, and may have the same storage capacity. However, the flexible battery 140 is not limited thereto, and may have different weights or different power storage capacities according to positions of the fuselage 310 to be installed.
한편, 상기 전원공급부(S)는 도 9에 도시된 바와 같이 상기 동체부(310)의 축방향을 따라 배열되는 복수 개의 플렉서블 배터리(140)가 두 개의 케이블(191a,191b)을 매개로 서로 병렬연결됨으로써 고용량의 축전 용량을 구현할 수 있다. 즉, 각각의 플렉서블 배터리(140)에 형성된 한 쌍의 양극단자(145b) 및 음극단자(145a)는 케이블(191a)(191b)을 매개로 양극단자(145b)는 양극단자(145b)끼리, 음극단자(145a)는 음극단자(145b)끼리 연결되는 형태일 수 있다.Meanwhile, as illustrated in FIG. 9, the power supply S includes a plurality of flexible batteries 140 arranged along the axial direction of the fuselage 310 in parallel with each other via two cables 191a and 191b. By being connected, a high capacitance storage capacity can be realized. That is, the pair of positive electrode terminals 145b and the negative electrode terminal 145a formed in each of the flexible batteries 140 may connect the positive electrode terminals 145b to the positive electrode terminals 145b, respectively, via the cables 191a and 191b. The terminal 145a may have a form in which the cathode terminals 145b are connected to each other.
이를 통해, 상기 동체부(310)의 길이방향을 따라 배열되는 복수 개의 플렉서블 배터리(140)가 서로 병렬연결됨으로써 전체적인 무게 분산과 더불어 고용량의 축전 용량을 구현할 수 있다.Through this, the plurality of flexible batteries 140 arranged along the longitudinal direction of the fuselage 310 may be connected in parallel to each other to realize high capacity storage capacity as well as overall weight distribution.
여기서, 상기 두 개의 케이블(191a,191b)은 일단부가 상기 제어부(190)를 구성하는 회로기판(192) 또는 상기 제어부(190)와 전기적으로 연결되는 별도의 회로기판과 전기적으로 연결될 수 있다.Here, the two cables 191a and 191b may be electrically connected to one end of a circuit board 192 constituting the controller 190 or a separate circuit board electrically connected to the controller 190.
다른 예로써, 상기 전원공급부(S)는 도 10에 도시된 바와 같이 상기 동체부(310)의 축방향을 따라 배열되는 복수 개의 배터리 연결체(B)가 서로 전기적으로 연결된 형태일 수 있다. 이때, 상기 배터리 연결체(B)는 복수 개의 플렉서블 배터리(140)가 길이방향으로 배열된 후 케이블(191c,191d)을 매개로 서로 병렬연결된 형태일 수 있다. 더불어, 상기 배터리 연결체(B)를 구성하는 복수 개의 플렉서블 배터리(140) 중 적어도 두 개의 플렉서블 배터리(140)는 한 쌍의 전극단자(145a,145b)가 서로 마주하도록 배치됨으로써 복수 개의 플렉서블 배터리(140)를 전기적으로 연결하기 위한 케이블(191c,191d)의 전체길이를 줄일 수 있다. 그러나, 상기 배터리 연결체(B)를 구성하는 복수 개의 플렉서블 배터리(140)의 배치관계를 이에 한정하는 것은 아니며, 한 쌍의 전극단자(145a,145b)의 형성위치 및 구조에 따라 적절하게 변경될 수 있음을 밝혀둔다.As another example, the power supply unit S may have a form in which a plurality of battery connectors B arranged along the axial direction of the fuselage 310 are electrically connected to each other. In this case, the battery connector B may have a form in which a plurality of flexible batteries 140 are arranged in the longitudinal direction and connected in parallel to each other via cables 191c and 191d. In addition, at least two flexible batteries 140 of the plurality of flexible batteries 140 constituting the battery connector B may be disposed such that a pair of electrode terminals 145a and 145b face each other, thereby providing a plurality of flexible batteries ( The overall length of the cables 191c and 191d for electrically connecting the 140 may be reduced. However, the arrangement relationship of the plurality of flexible batteries 140 constituting the battery connector B is not limited thereto, and may be appropriately changed according to the formation position and structure of the pair of electrode terminals 145a and 145b. Let's find out.
한편, 도 10에 예시된 각각의 배터리 연결체(B)와 도 9에 예시된 각각의 플렉서블 배터리가 서로 동일한 축전용량 및 전체길이를 갖는 경우, 배터리 연결체(B)를 구성하는 각각의 플렉서블 배터리의 전체길이(L2)는 도 9의 플렉서블 배터리의 전체길이(L1)에 비하여 상대적으로 짧은 길이를 가질 수 있다(도 11 및 도 12 참조) 이로 인해, 외부로부터 공급되는 전원을 통해 플렉서블 배터리가 재충전되는 경우 상대적으로 짧은 길이(L2)를 갖는 플렉서블 배터리로 이루어진 배터리 연결체(B)는 상대적으로 긴 길이(L1)를 갖는 플렉서블 배터리에 비하여 빠른 시간에 충전될 수 있다.On the other hand, when each of the battery connection (B) illustrated in FIG. 10 and each of the flexible battery illustrated in FIG. 9 have the same storage capacity and total length, each of the flexible batteries constituting the battery connection (B) The overall length L2 of FIG. 9 may have a relatively short length compared to the total length L1 of the flexible battery of FIG. 9 (see FIGS. 11 and 12). Thus, the flexible battery is recharged by an externally supplied power source. If the battery connection (B) consisting of a flexible battery having a relatively short length (L2) can be charged faster than the flexible battery having a relatively long length (L1).
여기서, 상기 배터리 연결체(B)는 별도의 하우징(미도시)을 통해 서로 일 형태일 수 있고, 한 쌍의 전극단자(145a,145b)와 대응되는 위치에 별도의 보강부재(미도시)가 배치될 수도 있으며, 고출력을 구현하고자 하는 경우 상기 배터리 연결체(B)를 구성하는 복수 개의 플렉서블 배터리는 서로 직렬연결된 형태일 수도 있다.Here, the battery connection (B) may be in the form of each other through a separate housing (not shown), a separate reinforcing member (not shown) in a position corresponding to the pair of electrode terminals (145a, 145b) If a plurality of flexible batteries constituting the battery connector B may be arranged in series, the plurality of flexible batteries may be arranged in series.
그러나, 상기 전원공급부(S)를 구성하는 플렉서블 배터리의 연결방식을 이에 한정하는 것은 아니며, 적용되는 제품이 고출력을 요구하는 경우 상기 동체부(310)의 축방향을 따라 배열되는 복수 개의 플렉서블 배터리(140)는 서로 직렬연결될 수도 있다. 더불어, 상기 전원공급부(S)는 하나의 플렉서블 배터리가 상기 동체부(310)의 길이방향을 따라 나선형으로 복수 회 권취된 형태로 구현될 수도 있음을 밝혀둔다.However, the connection method of the flexible battery constituting the power supply unit S is not limited thereto, and a plurality of flexible batteries arranged along the axial direction of the fuselage 310 when a product to be applied requires high power. 140 may be connected in series with each other. In addition, the power supply unit (S) it is noted that one flexible battery may be implemented in the form of a spiral wound a plurality of times along the longitudinal direction of the body portion (310).
한편, 본 발명에 따른 무인 비행 장치가 고정익 형태의 무인 비행 장치로 구현되는 경우, 상기 무인 비행 장치(400)는 도 13에 도시된 바와 같이 상기 전원공급부(S)를 재충전하기 위한 충전수단을 포함할 수 있다. 일례로, 상기 충전수단은 태양광을 이용하여 전력을 생산하는 태양전지판넬(330)일 수 있으며, 상기 태양전지판넬(330)은 상기 주날개(321)의 일면에 배치될 수 있다. 그러나, 상기 태양전지판넬(330)의 설치위치를 이에 한정하는 것은 아니며, 동체부(310) 측에도 배치될 수도 있음을 밝혀둔다.On the other hand, when the unmanned flying device according to the present invention is implemented as a fixed wing type unmanned flying device, the unmanned flying device 400 includes a charging means for recharging the power supply (S) as shown in FIG. can do. For example, the charging means may be a solar panel 330 for producing power using solar light, the solar panel 330 may be disposed on one surface of the main wing 321. However, the installation position of the solar cell panel 330 is not limited thereto, and it may be found that the solar cell panel 330 may also be disposed on the fuselage 310.
이를 통해, 상기 무인 비행 장치(400)는 상기 태양전지판넬(330)을 통해 전력을 생산하여 상기 전원공급부(S)를 구성하는 플렉서블 배터리(140)의 소모된 전원을 재충전함으로써 전원이 소모된 플렉서블 배터리를 교체하지 않고 재사용이 가능할 수 있다. 더불어, 운행 중 상기 태양전지판넬(330)을 통해 생산된 전력을 이용하여 플렉서블 배터리(140)의 충전이 이루어질 수 있음으로써 무인 비행 장치(400)의 운행시간을 더욱 늘릴 수 있다.Through this, the unmanned flying device 400 generates power through the solar panel 330 and recharges the consumed power of the flexible battery 140 constituting the power supply unit S, thereby reducing power consumption. It can be reused without replacing the battery. In addition, the driving time of the unmanned flying device 400 may be further increased by charging the flexible battery 140 by using the power produced by the solar panel 330 during operation.
한편, 상술한 본 발명에 따른 무인 비행 장치(100,200,200',300,400)는 지상 또는 주변의 영상을 촬영하기 위한 적어도 하나의 카메라 유닛(180)이 포함될 수 있다. 더불어, 무인 비행 장치(100,200,200',300,400)의 상태 및 주변 환경에 대한 다양한 정보를 수집하거나 감지하기 위한 다양한 센서들(194)이 포함될 수 있다.Meanwhile, the unmanned aerial vehicle 100, 200, 200 ′, 300, 400 according to the present invention may include at least one camera unit 180 for capturing an image of the ground or the surroundings. In addition, various sensors 194 may be included to collect or detect various information about the state of the unmanned aerial vehicle 100, 200, 200 ′, 300 and 400 and the surrounding environment.
일례로, 상기 센서들(194)은 자이로 센서, 지자계 센서, 중력 센서, 고도 센서, 기울기 센서, 습도 센서, 풍력감지센서, 공기흐름 감지센서, 온도 센서, 음향센서, 조도센서 등과 같은 공지의 다양한 센서들이 적절하게 설치될 수 있다. 이와 같은 카메라 유닛(180) 및 센서들(194)은 도 4에 도시된 바와 같이 상기 제어부(190)를 통해 제어될 수 있다.For example, the sensors 194 may include a gyro sensor, a geomagnetic sensor, a gravity sensor, an altitude sensor, a tilt sensor, a humidity sensor, a wind sensor, an air flow sensor, a temperature sensor, an acoustic sensor, an illumination sensor, and the like. Various sensors can be installed as appropriate. The camera unit 180 and the sensors 194 may be controlled through the controller 190 as shown in FIG. 4.
또한, 상기 제어부(190)는 상기 카메라 유닛(180)에서 촬영된 영상을 전송하거나 무인 비행 장치(100,200,200',300,400)의 운항 정보와 같은 데이터나 외부로부터 전송되는 제어 명령을 송,수신하기 위한 통신 모듈(196)을 포함할 수 있다. 더불어, 본 발명에 따른 무인 비행 장치(100,200,200',300,400)는 공지의 무인 비행 장치에 적용되는 다양한 전자 장비들이 추가로 탑재될 수 있다.In addition, the controller 190 transmits an image captured by the camera unit 180 or communicates for transmitting and receiving data such as flight information of the unmanned aerial vehicle 100, 200, 200 ′, 300, 400 or a control command transmitted from the outside. Module 196 may be included. In addition, the unmanned flying device 100, 200, 200 ′, 300, 400 according to the present invention may further include various electronic devices applied to a known unmanned flying device.
한편, 본 발명에 따른 무인 비행 장치(100,200,200',300,400)에서 상술한 전원공급부(S)를 구성하기 위한 플렉서블 배터리(140)는 전극조립체(141) 및 외장재(147, 148)를 포함할 수 있으며, 상기 전극조립체(141)가 전해액과 함께 외장재(147, 148)의 내부에 봉지된 형태일 수 있다.On the other hand, the flexible battery 140 for configuring the power supply unit (S) described above in the unmanned flying device (100,200,200 ', 300,400) according to the present invention may include an electrode assembly 141 and the exterior material (147, 148) The electrode assembly 141 may be encapsulated in the exterior materials 147 and 148 together with the electrolyte.
이때, 본 발명에 적용되는 플렉서블 배터리(140)는 유연성을 갖는 판상의 형태일 수 있으나, 길이방향에 대한 수축 및 이완을 위한 패턴(146,149)이 형성될 수 있다.In this case, the flexible battery 140 applied to the present invention may be in the form of a plate having flexibility, but patterns 146 and 149 for contraction and relaxation in the longitudinal direction may be formed.
즉, 상기 전극조립체(141) 및 외장재(147, 148)는 길이방향에 대해 수축 및 이완을 위한 패턴(146, 149)이 각각 구비될 수 있으며, 상기 외장재(147, 148)에 형성되는 제1패턴(149)과 상기 전극조립체(141)에 형성되는 제2패턴(146)이 서로 동일한 방향성을 갖도록 형성될 수 있다.That is, the electrode assembly 141 and the exterior members 147 and 148 may be provided with patterns 146 and 149 for contraction and relaxation in the longitudinal direction, respectively, and are formed on the exterior members 147 and 148. The pattern 149 and the second pattern 146 formed on the electrode assembly 141 may be formed to have the same directivity.
이를 통해, 상기 전극조립체(141) 및 외장재(147, 148)를 구성하는 기재 자체의 변형량이 방지되거나 최소화되므로 밴딩이 발생하거나 휘어진 상태로 내장되더라도 휘어지는 부분에서 일어날 수 있는 기재 자체의 변형량이 최소화됨으로써 전극조립체(141) 및 외장재(147, 148)가 파손되거나 성능이 저하되는 것을 방지할 수 있다.Through this, since the deformation amount of the substrate itself constituting the electrode assembly 141 and the exterior materials 147 and 148 is prevented or minimized, the deformation amount of the substrate itself that may occur in the bent portion may be minimized even when banding is generated or embedded in the bent state. It is possible to prevent the electrode assembly 141 and the exterior members 147 and 148 from being damaged or deteriorated in performance.
이때, 상기 제1패턴(149) 및 제2패턴(146)은 서로 동일한 방향성뿐만 아니라 제1패턴(149)과 제2패턴(146)이 서로 일치하도록 배치될 수 있다. 이는, 상기 제1패턴(149)과 제2패턴(146)이 항상 동일한 거동이 일어날 수 있도록 하기 위함이다.In this case, the first pattern 149 and the second pattern 146 may be disposed such that the first pattern 149 and the second pattern 146 coincide with each other as well as the same directionality. This is to allow the same behavior to always occur between the first pattern 149 and the second pattern 146.
이와 같이, 본 발명에 적용되는 플렉서블 배터리(140)는 상기 전극조립체(141) 및 외장재(147, 148)에 각각 형성되는 제1패턴(149) 및 제2패턴(146)이 서로 일치하도록 배치됨으로써 길이방향에 대한 휘어짐이나 밴딩이 발생하더라도 상기 전극조립체(141)와 외장재(147, 148)가 전체 길이에 대하여 항상 균일한 간격 또는 접촉상태를 유지할 수 있다. 이를 통해, 상기 전극조립체(141)와 함께 봉지되는 전해액이 전체 길이에 대하여 균일하게 분포됨으로써 배터리로서의 성능이 저하되는 것을 방지할 수 있다.As described above, the flexible battery 140 according to the present invention is disposed such that the first pattern 149 and the second pattern 146 formed on the electrode assembly 141 and the exterior members 147 and 148 respectively correspond to each other. Even if bending or bending in the longitudinal direction occurs, the electrode assembly 141 and the exterior members 147 and 148 may always maintain a uniform interval or contact state with respect to the entire length. As a result, since the electrolyte encapsulated together with the electrode assembly 141 is uniformly distributed over the entire length, performance of the battery may be prevented from being lowered.
이를 위해, 상기 제1패턴(149) 및 제2패턴(146)은 각각의 산부 및 골부가 상기 외장재(147, 148) 및 전극조립체(141)의 폭방향과 평행한 방향으로 형성될 수 있으며, 각각의 산부 및 골부는 상기 외장재(147, 148) 및 전극조립체(141)의 길이방향을 따라 교대로 배치될 수 있다. 더불어, 상기 제1패턴(149) 및 제2패턴(146)을 구성하는 산부 및 골부는 산부는 산부끼리, 골부는 골부끼리 서로 동일한 위치에 배치됨으로써 상기 제1패턴(149) 및 제2패턴(146)이 서로 합치될 수 있다.To this end, each of the peaks and valleys of the first pattern 149 and the second pattern 146 may be formed in a direction parallel to the width direction of the exterior members 147 and 148 and the electrode assembly 141. Each of the peaks and valleys may be alternately disposed along the length direction of the exterior members 147 and 148 and the electrode assembly 141. In addition, the ridges and valleys constituting the first pattern 149 and the second pattern 146 are located at the same positions as the peaks and valleys between the peaks and the valleys, so that the first pattern 149 and the second pattern ( 146 may coincide with each other.
구체적으로 설명하면, 상기 제1패턴(149) 및 제2패턴(146)의 산부 및 골부는 상기 외장재(147, 148) 및 전극조립체(141)의 폭방향과 평행한 직선에 대하여 평행한 방향으로 형성될 수 있으며, 길이방향을 따라 상기 산부 및 골부가 반복적으로 배치될 수 있다.Specifically, the peaks and valleys of the first pattern 149 and the second pattern 146 in a direction parallel to a straight line parallel to the width direction of the exterior members 147 and 148 and the electrode assembly 141. It may be formed, and the peaks and valleys may be repeatedly arranged along the longitudinal direction.
이때, 상기 패턴(146, 149)은 상기 전극조립체(141) 및 외장재(147, 148)의 폭방향과 평행한 방향으로 연속적으로 형성될 수 있고 비연속적으로 형성될 수도 있으며, 상기 전극조립체(141) 및 외장재(147, 148)의 전체 길이에 형성될 수도 있고 전체길이 중 일부 길이에 부분적으로 형성될 수도 있다.In this case, the patterns 146 and 149 may be continuously formed in a direction parallel to the width direction of the electrode assembly 141 and the exterior members 147 and 148 and may be formed discontinuously, and the electrode assembly 141. ) And the exterior materials 147 and 148, or may be partially formed in some of the entire length.
여기서, 상기 산부 및 골부는 반원을 포함하는 호형단면, 삼각이나 사각을 포함하는 다각단면 및 호형단면과 다각단면이 상호 조합된 단면 중 선택된 1종 이상을 포함하는 단면을 갖도록 구비될 수 있으며, 각각의 산부 및 골부는 동일한 피치 및 폭을 갖도록 구비될 수도 있지만 서로 다른 피치 및 폭을 갖도록 구비될 수도 있다.Here, the ridges and valleys may be provided to have a cross section including at least one selected from an arc cross section including a semicircle, a polygonal cross section including a triangle or a square, and an arc cross section and a polygonal cross section. The hills and valleys of may be provided to have the same pitch and width, but may be provided to have different pitches and widths.
이를 통해, 상기 외장재(147, 148) 및 전극조립체(141)가 사용과정에서 밴딩이 발생하거나 휘어진 상태로 내장되더라도 상기 패턴(146, 149)을 통해 기재 자체에 가해지는 피로도를 줄일 수 있다.As a result, even when the exterior members 147 and 148 and the electrode assembly 141 are embedded in a bending or bent state during use, fatigue applied to the substrate itself through the patterns 146 and 149 may be reduced.
즉, 상기 플렉서블 배터리(140)가 도 1 내지 도 3에 도시된 바와 같이 연결부(130)에 내장되는 경우 무인 비행 장치(100,200,200')의 운항 중 바람이나 속도변화에 의해 응력이 가해져 상기 연결부(130)가 진동이나 미세한 휘어짐이 발생할 수 있다. 이에 따라, 상기 연결부(130)에 내장된 플렉서블 배터리(140) 역시 밴딩되거나 휘어질 수 있으나 상기 패턴(146,149)을 통해 길이변화량이 상쇄됨으로써 플렉서블 배터리(140)가 파손되거나 성능이 저하되는 것을 방지할 수 있다.That is, when the flexible battery 140 is embedded in the connection unit 130 as shown in FIGS. 1 to 3, stress is applied by the wind or the speed change during the operation of the unmanned aerial vehicle 100, 200, 200 ′ and thus the connection unit 130. ) May cause vibration or minute bending. Accordingly, the flexible battery 140 embedded in the connection unit 130 may also be bent or curved, but the amount of change in length is canceled through the patterns 146 and 149 to prevent the flexible battery 140 from being damaged or deteriorated. Can be.
또한, 상기 플렉서블 배터리(140)가 도 9 및 도 13에 도시된 바와 같이 동체부(310)에 내장되어 휘어진 상태로 배치된다 하더라도 상기 패턴(146,149)을 통해 휘어진 부분에서 발생할 수 있는 길이변화량을 상쇄시킴으로써 플렉서블 배터리(140)의 성능이 저하되는 것을 방지할 수 있다.In addition, even if the flexible battery 140 is disposed in the bent state by being embedded in the fuselage 310 as illustrated in FIGS. 9 and 13, the amount of length change that may occur in the bent portion through the patterns 146 and 149 is offset. By doing so, it is possible to prevent the performance of the flexible battery 140 from being lowered.
한편, 상기 제1패턴(149) 및 제2패턴(146)은 서로 이웃하는 산부간의 간격 또는 골부간의 간격이 동일한 간격으로 형성될 수도 있고 서로 다른 간격을 갖도록 구비될 수도 있으며, 동일한 간격과 서로 다른 간격이 조합된 형태로 구비될 수도 있다.On the other hand, the first pattern 149 and the second pattern 146 may be formed to have the same spacing or spacing between the ridges adjacent to each other, or may have different intervals, the same interval and different The spacing may be provided in a combined form.
더불어, 상기 외장재(147, 148)에 형성되는 제1패턴(149)은 상기 외장재(147, 148) 표면 전체에 형성될 수도 있지만 부분적으로 형성될 수도 있다.In addition, the first pattern 149 formed on the exterior members 147 and 148 may be formed on the entire surface of the exterior members 147 and 148, but may be partially formed.
상기 전극조립체(141)는 상기 외장재(147, 148)의 내부에 전해액과 함께 봉지되는 것으로, 도 7에 도시된 바와 같이 양극(142), 음극(144) 및 분리막(143)을 포함한다.The electrode assembly 141 is encapsulated with an electrolyte in the exterior materials 147 and 148, and includes an anode 142, a cathode 144, and a separator 143 as shown in FIG. 7.
상기 양극(142)은 양극집전체(142a) 및 양극 활물질(142b)을 포함할 수 있고, 상기 음극(144)은 음극집전체(144a) 및 음극 활물질(144b)을 포함할 수 있으며, 상기 양극집전체(142a) 및 음극집전체(144a)는 소정의 면적을 갖는 판상의 시트형태로 구현될 수 있다.The positive electrode 142 may include a positive electrode current collector 142a and a positive electrode active material 142b, and the negative electrode 144 may include a negative electrode current collector 144a and a negative electrode active material 144b. The current collector 142a and the negative electrode current collector 144a may be implemented in the form of a sheet of a plate having a predetermined area.
즉, 상기 양극(142) 및 음극(144)은 각각의 집전체(142a, 144a)의 일면 또는 양면에 활물질(142b, 144b)이 압착 또는 증착되거나 도포될 수 있다. 이때, 상기 활물질(142b, 144b)은 집전체(142a, 144a)의 전체면적에 대하여 구비될 수도 있고 일부 면적에 대하여 부분적으로 구비될 수도 있다.That is, the positive electrode 142 and the negative electrode 144 may be pressed or deposited or coated on one surface or both surfaces of each of the current collector (142a, 144a). In this case, the active materials 142b and 144b may be provided with respect to the entire areas of the current collectors 142a and 144a or partially provided with respect to a partial area.
또한, 상기 양극집전체(142a) 및 음극집전체(144a)는 각각의 몸체로부터 외부장치와의 전기적인 연결을 위한 음극단자(145a) 및 양극단자(145b)가 각각 형성될 수 있다. 여기서, 상기 양극단자(145b) 및 음극단자(145a)는 상기 양극집전체(142a) 및 음극집전체(144a)로부터 연장되어 외장재(147, 148)의 일측에 돌출될 수도 있고, 외장재(147, 148)의 표면상에 노출될 수도 있다.In addition, the positive electrode current collector 142a and the negative electrode current collector 144a may be provided with a negative electrode terminal 145a and a positive electrode terminal 145b, respectively, for electrical connection from each body to an external device. Here, the positive electrode terminal 145b and the negative electrode terminal 145a may extend from the positive electrode current collector 142a and the negative electrode current collector 144a to protrude to one side of the exterior materials 147 and 148, and the exterior materials 147, 148 may be exposed on the surface.
이때, 상기 양극 활물질(142b) 및 음극 활물질(144b)은 PTFE(Polytetrafluoroethylene) 성분을 함유할 수 있다. 이는, 밴딩시 상기 양극 활물질(142b) 및 음극 활물질(144b)이 각각의 집전체(142a, 144a)로부터 박리되거나 크랙이 발생하는 것을 방지하기 위함이다.In this case, the positive electrode active material 142b and the negative electrode active material 144b may contain a PTFE (Polytetrafluoroethylene) component. This is to prevent the positive electrode active material 142b and the negative electrode active material 144b from being peeled or cracks from the current collectors 142a and 144a during bending.
한편, 상기 양극(142)과 음극(144) 사이에 배치되는 분리막(143)은 부직포층(143a)의 일면 또는 양면에 나노섬유웹층(143b)을 포함할 수 있다.Meanwhile, the separator 143 disposed between the anode 142 and the cathode 144 may include a nanofiber web layer 143b on one or both surfaces of the nonwoven fabric layer 143a.
여기서, 상기 나노섬유웹층(143b)은 폴리아크릴로니트릴(polyacrylonitrile) 나노섬유 및 폴리비닐리덴 플루오라이드(polyvinylidene fluoride) 나노섬유 중에서 선택된 1종 이상을 함유한 나노섬유일 수 있다.Here, the nanofiber web layer 143b may be a nanofiber containing at least one selected from polyacrylonitrile nanofibers and polyvinylidene fluoride nanofibers.
바람직하게는, 상기 나노섬유웹층(143b)은 방사성 및 균일한 기공형성을 확보하기 위해 폴리아크릴니트릴 나노섬유만으로 구성될 수 있다. Preferably, the nanofiber web layer 143b may be composed of only polyacrylonitrile nanofibers to secure radioactive and uniform pore formation.
상기 외장재(147, 148)는 일정면적을 갖는 판상의 부재로 이루어지며, 내부에 상기 전극조립체(141) 및 전해액을 수용함으로써 외력으로부터 상기 전극조립체(141)를 보호하기 위한 것이다.The exterior members 147 and 148 are formed of a plate-shaped member having a predetermined area, and are intended to protect the electrode assembly 141 from external force by accommodating the electrode assembly 141 and the electrolyte therein.
이를 위해, 상기 외장재(147, 148)는 한 쌍의 제1외장재(147) 및 제2외장재(148)로 구비되고, 테두리를 따라 접착제를 통해 밀봉됨으로써 내부에 수용된 상기 전해액 및 전극조립체(141)가 외부로 노출되는 것을 방지하고 외부로 누설되는 것을 방지하게 된다.To this end, the exterior member (147, 148) is provided with a pair of the first exterior member 147 and the second exterior member 148, the electrolyte and the electrode assembly 141 accommodated therein by being sealed through an adhesive along the rim. To prevent exposure to the outside and leakage to the outside.
이러한 외장재(147, 148)는 상기 제1외장재(147) 및 제2외장재(148)가 두 개의 부재로 이루어진 후 상기 밀봉부를 구성하는 테두리측이 모두 접착제를 통해 밀봉될 수도 있고, 하나의 부재로 이루어지고 폭방향 또는 길이방향을 따라 반으로 접힌 후 맞접하는 나머지 부분이 접착제를 통해 밀봉될 수도 있다.The exterior members 147 and 148 may be sealed by an adhesive after the first exterior member 147 and the second exterior member 148 are formed of two members, and the edges constituting the sealing part may be all sealed by an adhesive member. The remaining portion that is made and folded in half along the width direction or the longitudinal direction may be sealed through the adhesive.
한편, 상술한 본 발명에 따른 무인 비행 장치(100,200,200',300,400)는 군사용, 상업용, 연구용 등과 같은 목적으로 사용될 수 있으며, 사용자의 리모트 콘트롤러 조작을 통해 동작이 제어되는 레저용으로 사용될 수도 있다.On the other hand, the unmanned flying device (100,200,200 ', 300,400) according to the present invention described above can be used for purposes such as military, commercial, research, etc., it can also be used for leisure that the operation is controlled through the user's remote controller operation.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.

Claims (15)

  1. 몸체부;Body portion;
    상기 몸체부에 연결되고 비행을 위한 동력을 발생시키는 복수 개의 동력 발생부;A plurality of power generators connected to the body and generating power for flight;
    상기 몸체부와 동력 발생부를 연결하는 복수 개의 연결부; 및A plurality of connection portions connecting the body portion and the power generation portion; And
    상기 동력 발생부를 구동하기 위한 전원을 공급하는 전원공급부;를 포함하고,And a power supply unit supplying power for driving the power generation unit.
    상기 전원공급부는 상기 복수 개의 연결부 중 적어도 어느 일측에 내장되는 판상의 플렉서블 배터리인 무인 비행 장치.The power supply unit is an unmanned flying device is a plate-shaped flexible battery that is built in at least one side of the plurality of connection parts.
  2. 제 1항에 있어서,The method of claim 1,
    상기 플렉서블 배터리는 동일한 무게를 갖는 복수 개로 구비되어 상기 복수 개의 연결부에 각각 내장되는 무인 비행 장치.The flexible battery is provided with a plurality of having the same weight is embedded in the plurality of connection units, respectively.
  3. 제 1항에 있어서,The method of claim 1,
    상기 몸체부는 일측이 개방되고 내측으로 인입형성되는 수용부를 포함하는 무인 비행 장치.The body portion is an unmanned flying device including a receiving portion which is open at one side and drawn inward.
  4. 제 1항에 있어서,The method of claim 1,
    상기 몸체부에 결합되고 소정의 길이를 갖는 복수 개의 지지부를 더 포함하는 무인 비행 장치.And a plurality of supports coupled to the body and having a predetermined length.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 복수 개의 지지부의 자유단 각각에 결합되어 이송 대상물에 탈착되는 복수 개의체결 유닛을 더 포함하는 무인 비행 장치.And a plurality of fastening units coupled to each of the free ends of the plurality of supports and detached from the object to be transported.
  6. 제1항에 있어서,The method of claim 1,
    상기 플렉서블 배터리는,The flexible battery,
    전극조립체; 및Electrode assembly; And
    상기 전극조립체를 전해액과 함께 봉지하는 외장재;를 포함하고,Includes; an outer material for encapsulating the electrode assembly with an electrolyte solution,
    상기 전극조립체 및 외장재는 길이방향에 대한 수축 및 이완을 위한 패턴이 서로 일치하도록 각각 형성되는 무인 비행 장치.The electrode assembly and the exterior member are each unmanned flying device is formed so that the pattern for contraction and relaxation in the longitudinal direction to match each other.
  7. 제 6항에 있어서,The method of claim 6,
    상기 패턴은 상기 플렉서블 배터리의 전체길이에 형성되거나, 상기 플렉서블 배터리의 전체길이 중 일부의 길이에 국부적으로 형성되는 무인 비행 장치.The pattern is formed on the entire length of the flexible battery, or unmanned flying device is formed locally on the length of a portion of the entire length of the flexible battery.
  8. 수평한 방향으로 고정결합되는 주날개를 포함하는 동체부; 및A fuselage unit including a main wing fixedly coupled in a horizontal direction; And
    상기 동체부에 내장되어 제어부의 구동을 위한 전원을 공급하는 전원공급부;를 포함하고,And a power supply unit built in the fuselage to supply power for driving the control unit.
    상기 전원공급부는 상기 동체부의 축방향을 중심으로 1회 이상 권취되는 적어도 하나의 플렉서블 배터리인 무인 비행 장치.And the power supply unit is at least one flexible battery wound one or more times around the axial direction of the fuselage unit.
  9. 제 8항에 있어서,The method of claim 8,
    상기 플렉서블 배터리는 상기 동체부의 축방향을 따라 배열되는 복수 개로 구비되고, 상기 복수 개의 플렉서블 배터리는 서로 전기적으로 연결되는 무인 비행 장치.The flexible battery is provided with a plurality of arranged along the axial direction of the fuselage, the plurality of flexible batteries are electrically connected to each other.
  10. 제 9항에 있어서,The method of claim 9,
    상기 동체부의 축방향을 따라 배열되는 각각의 플렉서블 배터리는 복수 개의 플렉서블 배터리가 일직선상에 배열된 후 서로 전기적으로 병렬연결된 배터리 연결체인 무인 비행 장치.And each of the flexible batteries arranged along the axial direction of the fuselage is a battery connection electrically connected in parallel to each other after a plurality of flexible batteries are arranged in a straight line.
  11. 제 10항에 있어서,The method of claim 10,
    상기 배터리 연결체를 구성하는 복수 개의 플렉서블 배터리 중 적어도 두 개의 플렉서블 배터리는 단자가 서로 마주하도록 배치되는 무인 비행 장치.And at least two flexible batteries of the plurality of flexible batteries constituting the battery connector are arranged such that terminals thereof face each other.
  12. 제 8항에 있어서,The method of claim 8,
    상기 주날개는 외면에 배열되는 복수 개의 태양전지판넬을 포함하고, 상기 전원공급부는 상기 태양전지판넬로부터 생성된 전력을 통해 충전되는 무인 비행 장치.The main wing includes a plurality of solar panels are arranged on the outer surface, the power supply unit is unmanned flying device is charged through the power generated from the solar panel.
  13. 제 8항에 있어서,The method of claim 8,
    상기 무인 비행 장치는,The unmanned flying device,
    외부의 영상을 촬영하기 위한 적어도 하나의 카메라 유닛을 더 포함하는 무인 비행 장치.The unmanned flying apparatus further comprising at least one camera unit for capturing an external image.
  14. 제 8항에 있어서,The method of claim 8,
    상기 플렉서블 배터리는,The flexible battery,
    전극조립체; 및Electrode assembly; And
    상기 전극조립체를 전해액과 함께 봉지하는 외장재;를 포함하고,Includes; an outer material for encapsulating the electrode assembly with an electrolyte solution,
    상기 전극조립체 및 외장재는 길이방향에 대한 수축 및 이완을 위한 패턴이 서로 일치하도록 각각 형성되는 무인 비행 장치.The electrode assembly and the exterior member are each unmanned flying device is formed so that the pattern for contraction and relaxation in the longitudinal direction to match each other.
  15. 제 14항에 있어서,The method of claim 14,
    상기 패턴은 상기 플렉서블 배터리의 전체길이에 형성되거나, 상기 플렉서블 배터리의 전체길이 중 일부의 길이에 국부적으로 형성되는 무인 비행 장치.The pattern is formed on the entire length of the flexible battery, or unmanned flying device is formed locally on the length of a portion of the entire length of the flexible battery.
PCT/KR2017/000917 2016-01-26 2017-01-25 Drone WO2017131451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160009626 2016-01-26
KR10-2016-0009626 2016-01-26

Publications (1)

Publication Number Publication Date
WO2017131451A1 true WO2017131451A1 (en) 2017-08-03

Family

ID=59398593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000917 WO2017131451A1 (en) 2016-01-26 2017-01-25 Drone

Country Status (2)

Country Link
KR (1) KR101916151B1 (en)
WO (1) WO2017131451A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020051688A1 (en) * 2018-09-11 2020-03-19 Hanna Mark Holbrook Pilotless transportation aerial-vehicle having distributed-batteries and powering method therefor
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11374214B2 (en) 2017-07-31 2022-06-28 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11569490B2 (en) 2017-07-31 2023-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive
US20230303274A1 (en) * 2021-07-13 2023-09-28 Sonin Hybrid, LLC Systems and Methods for Controlling Engine Speed and/or Pitch of Propulsion Members for Aerial Vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO344274B1 (en) * 2018-01-17 2019-10-21 Griff Aviation As An unmanned aerial vehicle having rotating wing lift generating means, advantageously a multicopter with a unitary main fuselage and foldable rotor arms.
CN108297950B (en) * 2018-01-17 2024-03-22 西安工业大学 Crawler-type off-road vehicle carrying unmanned aerial vehicle and method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
KR101042200B1 (en) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Unmanned flying vehicle made with pcb
KR20120040454A (en) * 2010-10-19 2012-04-27 주식회사 엘지화학 Cable-type secondary battery
KR20120046092A (en) * 2010-11-01 2012-05-09 주식회사 아모그린텍 Separator with heat resistance, rechargeable battery using the same and method of manufacturing the same
US20130285440A1 (en) * 2012-02-15 2013-10-31 Microlink Devices, Inc. Integration of high-efficiency, lightweight solar sheets onto unmanned aerial vehicle for increased endurance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189784B1 (en) * 2013-08-30 2020-12-11 삼성전자주식회사 Flexible electronic device
FR3020763B1 (en) * 2014-05-06 2016-06-03 Parrot QUADRICOPTERE TYPE ROTARY SAILING WHEEL HAVING REMOVABLE PROPERTY PROTECTION BUMPERS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172773A (en) * 2004-12-13 2006-06-29 Ngk Spark Plug Co Ltd Thin battery
KR101042200B1 (en) * 2010-09-02 2011-06-16 드림스페이스월드주식회사 Unmanned flying vehicle made with pcb
KR20120040454A (en) * 2010-10-19 2012-04-27 주식회사 엘지화학 Cable-type secondary battery
KR20120046092A (en) * 2010-11-01 2012-05-09 주식회사 아모그린텍 Separator with heat resistance, rechargeable battery using the same and method of manufacturing the same
US20130285440A1 (en) * 2012-02-15 2013-10-31 Microlink Devices, Inc. Integration of high-efficiency, lightweight solar sheets onto unmanned aerial vehicle for increased endurance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888152B2 (en) 2016-03-15 2024-01-30 Honda Motor Co., Ltd. System and method of producing a composite product
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11735705B2 (en) 2017-05-24 2023-08-22 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11374214B2 (en) 2017-07-31 2022-06-28 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US11569490B2 (en) 2017-07-31 2023-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11489147B2 (en) 2017-09-15 2022-11-01 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11616221B2 (en) 2017-09-15 2023-03-28 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
WO2020051688A1 (en) * 2018-09-11 2020-03-19 Hanna Mark Holbrook Pilotless transportation aerial-vehicle having distributed-batteries and powering method therefor
US11772794B2 (en) 2018-09-11 2023-10-03 Mark Holbrook Hanna Pilotless transportation aerial-vehicle having distributed-batteries and powering method therefor
US20210261253A1 (en) * 2018-09-11 2021-08-26 Mark Holbrook Hanna Pilotless transportation aerial-vehicle having distributed-batteries and powering method therefor
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US20230303274A1 (en) * 2021-07-13 2023-09-28 Sonin Hybrid, LLC Systems and Methods for Controlling Engine Speed and/or Pitch of Propulsion Members for Aerial Vehicles

Also Published As

Publication number Publication date
KR101916151B1 (en) 2018-11-07
KR20170089421A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2017131451A1 (en) Drone
WO2016199995A1 (en) Propeller unit deployment-type unmanned aerial vehicle
EP3795474B1 (en) Unmanned aerial vehicle
WO2020017938A1 (en) Drone station
WO2019103407A1 (en) Fuel cell power pack for drone and method for monitoring state information thereof
WO2017155348A1 (en) Vertical takeoff and landing aircraft
JP6830187B2 (en) Electric rotary wing unmanned aerial vehicle with multiple connected aircraft
CN106005386A (en) Ducted unmanned aerial vehicle for combinable clusters
JP2016074257A (en) Flight body system and composite cable used for the flight body system
WO2018086227A1 (en) Unmanned aerial vehicle
CN111573461A (en) Elevator maintenance system
WO2017074073A1 (en) Energy harvesting apparatus using triboelectricity
CN107201843A (en) A kind of integrated system set for unmanned plane
CN205793009U (en) Inspection system for distribution network
WO2017215200A1 (en) Wirelessly-chargeable unmanned aerial vehicle
WO2017086639A1 (en) Aircraft
WO2021261658A1 (en) Charging connection device for drone
WO2021187686A1 (en) Electromagnetic propulsion device
WO2017191972A2 (en) Smartphone self-charging apparatus
CN204979221U (en) There is asynchronous multiaxis aircraft of rope
CN105048545B (en) Photovoltaic quadrotor
CN210101983U (en) Six rotor unmanned aerial vehicle
WO2024058565A1 (en) Apparatus for preventing drone battery degradation caused by momentary high output exceeding rating, and operation method therefor
US20230264822A1 (en) Detachable power supply for UAV
EP4225643A1 (en) Conveyor arrangement for aerial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744572

Country of ref document: EP

Kind code of ref document: A1