WO2017130526A1 - 燃料噴射弁の制御装置 - Google Patents

燃料噴射弁の制御装置 Download PDF

Info

Publication number
WO2017130526A1
WO2017130526A1 PCT/JP2016/083876 JP2016083876W WO2017130526A1 WO 2017130526 A1 WO2017130526 A1 WO 2017130526A1 JP 2016083876 W JP2016083876 W JP 2016083876W WO 2017130526 A1 WO2017130526 A1 WO 2017130526A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection valve
fuel
fuel injection
control device
fluid
Prior art date
Application number
PCT/JP2016/083876
Other languages
English (en)
French (fr)
Inventor
知幸 保坂
泰介 杉井
石井 英二
助川 義寛
猿渡 匡行
一浩 押領司
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201680070156.4A priority Critical patent/CN108291493B/zh
Priority to EP16888111.8A priority patent/EP3409932B1/en
Priority to US16/073,021 priority patent/US20190040814A1/en
Publication of WO2017130526A1 publication Critical patent/WO2017130526A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/10Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air having secondary air added to the fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/41Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories characterised by the arrangement of the recirculation passage in relation to the engine, e.g. to cylinder heads, liners, spark plugs or manifolds; characterised by the arrangement of the recirculation passage in relation to specially adapted combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/102Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the spark plug being placed offset the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • F02B23/105Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder the fuel is sprayed directly onto or close to the spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D2041/3881Common rail control systems with multiple common rails, e.g. one rail per cylinder bank, or a high pressure rail and a low pressure rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for a fuel injection valve used in an internal combustion engine such as a gasoline engine.
  • Patent Document 1 describes a technique in which two fuel injection valves are provided per cylinder, the first fuel injection valve is used during homogeneous combustion, and the second fuel injection valve is used during stratified combustion.
  • Patent Document 1 discloses a technique that uses a fuel injection valve with a large static flow of the fuel injection valve during homogeneous combustion, and uses a fuel injection valve with a small static flow and short penetration during stratified combustion.
  • In-cylinder injection engines have a homogeneous combustion mode in which fuel is injected during the intake stroke when operating at a high load to form a homogeneous mixture in the cylinder and burned, and a compression stroke when the load is relatively low.
  • a stratified combustion mode is known in which fuel is injected at a later stage and a rich air-fuel mixture is stratified and burned around the spark plug.
  • the air-fuel ratio in the entire cylinder is burned at an air-fuel ratio larger than the stoichiometric air-fuel ratio, so in order to ignite stably, it is necessary to arrange fuel of an appropriate concentration around the spark plug. For this reason, a fuel injection valve and an ignition plug are arranged close to the center of the upper part of the combustion chamber, fuel is injected from the fuel injection valve toward the vicinity of the electrode of the ignition plug, and this fuel is ignited by the ignition plug.
  • a guide system has been devised. In this method, since the distance from the injection point to the spark plug is close, the required spray reach distance is very small. For this reason, a fuel injection valve with small spray penetration (penetration) is required.
  • Patent Document 1 In the technology disclosed in Patent Document 1, two fuel injection valves are provided per cylinder, the first fuel injection valve having a long penetration is used during homogeneous combustion, and the second fuel injection valve having a short penetration is stratified. By using it at the time of combustion, an optimal spray can be formed in each of the homogeneous combustion mode and the stratified combustion mode, and high performance can be obtained.
  • the strength of the tumble flow changes depending on the engine speed.
  • the moving speed of the piston is fast, and the flow rate of the gas flowing into the cylinder per unit time increases, so that the tumble flow becomes strong. For this reason, spraying with a long penetration is required in order not to flow in the tumble flow.
  • an object of the present invention is to provide a fuel injection valve capable of forming a homogeneous air-fuel mixture and its control device in homogeneous combustion at low engine speed.
  • a control device for a fuel injection valve is configured separately from a fuel injection valve, is provided with a fluid injection valve having a function of injecting fluid, and fuel is supplied from the fuel injection valve. After controlling to inject, it provided the control part which controls a fluid injection valve to inject the fluid from a fluid injection valve and to stir the fuel injected from the fuel injection valve.
  • a homogeneous air-fuel mixture can be formed in homogeneous combustion at low engine speed.
  • Other configurations, operations, and effects of the present invention will be described in detail in the following examples.
  • a fuel injection valve control apparatus according to a first embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 is a diagram showing an outline of the configuration of a cylinder injection engine. The basic operation of the direct injection engine will be described with reference to FIG.
  • a combustion chamber 104 is formed by a cylinder head 101, a cylinder block 102, and a piston 103 inserted into the cylinder block 102, and an intake pipe 105 and an exhaust pipe 106 are branched into two toward the fuel chamber 104. It is connected.
  • An intake valve 107 is provided at the opening of the intake pipe 105, and an exhaust valve 108 is provided at the opening of the exhaust pipe 106, and operates so as to open and close by a cam operation method.
  • the piston 103 is connected to the crankshaft 115 via a connecting rod 114, and the engine speed can be detected by the crank angle sensor 116.
  • the value of the rotational speed is sent to an ECU (Engine Control Unit) 118.
  • a cell motor (not shown) is connected to the crankshaft 115, and when starting the engine, the crankshaft 115 can be rotated and started by the cell motor.
  • the cylinder block 102 is provided with a water temperature sensor 117 and can detect the temperature of engine coolant (not shown). The temperature of the engine cooling water is sent to the ECU 118.
  • FIG. 1 shows only one cylinder, but a collector (not shown) is provided upstream of the intake pipe 105 to distribute air to each cylinder.
  • An air flow sensor and a throttle valve are provided upstream of the collector, and the amount of air taken into the fuel chamber 104 can be adjusted by the opening of the throttle valve.
  • Fuel is stored in the fuel tank 109 and sent to the high-pressure fuel pump 111 by the feed pump 110.
  • the feed pump 110 boosts the fuel to about 0.3 MPa and sends it to the high-pressure fuel pump 111.
  • the fuel boosted by the high pressure fuel pump 111 is sent to the common rail 112.
  • the high pressure fuel pump 111 boosts the fuel to about 30 MPa and sends it to the common rail 112.
  • a fuel pressure sensor 113 is provided on the common rail 112 to detect the fuel pressure. The value of the fuel pressure is sent to the ECU 118.
  • FIG. 2 is a view showing the configuration of the cylinder injection section in the cylinder center section.
  • a fuel injection valve 119 is provided at the upper part in the axial direction of the cylinder and at the center in the radial direction. Furthermore, the fluid injection valve 121 is provided in the radial side surface portion.
  • the spark plug 120 is provided in the vicinity of the exhaust pipe 106.
  • the ECU 118 can monitor the signal of the sensor and control the operation of devices such as the fuel injection valve 119, the spark plug 120, and the high-pressure fuel pump 111.
  • the ROM of the ECU 118 set values of various devices corresponding to commonly used engine speed, water temperature, and air-fuel ratio are recorded as map data.
  • FIG. 3 is a diagram showing an outline of the fuel injection valve according to the present embodiment.
  • the fuel is supplied from the fuel supply port 200 and supplied into the fuel injection valve.
  • the electromagnetic fuel injection valve 119 shown in FIG. 3 is a normally closed electromagnetic drive type, and the fuel is sealed when there is no energization.
  • the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.
  • fuel injection is started.
  • the energy given as the fuel pressure is converted into kinetic energy and injected into the fuel injection hole vacated at the lower end of the fuel injection valve.
  • the injected fuel is atomized by the shearing force with the atmosphere to form a fuel spray 201.
  • FIG. 4 is an enlarged cross-sectional view of the lower end portion of the fuel injection valve, which includes a seat member 202 and a valve body 203.
  • the seat member 202 includes a valve seat surface 204 and a plurality of fuel injection holes 205.
  • the valve seat surface 204 and the valve body 203 extend symmetrically about the valve body central axis 206.
  • the fuel passes through the gap between the seat member 202 and the valve body 203 and is injected from the injection hole 205.
  • the fuel is injected in the direction of the nozzle hole shaft 207 and atomized by a shearing force with the gas.
  • the nozzle form of the fuel injection valve 119, the fuel pressure, and the like are set so that the Sauter average particle diameter of the injected fuel droplets is approximately 30 ⁇ m or less.
  • FIG. 5 is a flowchart of the injection control according to the present embodiment.
  • the combustion mode indicated by the control S01 is determined.
  • the combustion mode is determined from the engine torque and the rotational speed by the combustion mode map shown in FIG.
  • the control S08 and subsequent steps are performed in the normal stratified combustion mode. If the homogeneous combustion mode is determined, the rotational speed is determined in control S02. If the rotational speed is not more than the predetermined number, control S03 and subsequent steps are performed. In other cases, control S06 and subsequent steps are performed in the normal homogeneous combustion mode.
  • control S03 injection is performed from the fluid injection valve after injection from the fuel injection valve in the intake stroke. After injection is performed from the fluid injection valve in the intake stroke in control S03, ignition is performed by control S05 in the latter half of the compression stroke.
  • FIG. 7 is a schematic diagram of current pulses for operating the fuel injection valve and the fluid injection valve in the present embodiment.
  • the internal combustion engine according to the present embodiment is provided with a fluid injection valve that is configured separately from the fuel injection valve and has a function of injecting fluid.
  • FIG. 8 is a view showing a combustion chamber of the internal combustion engine according to this embodiment.
  • the fuel chamber 104 is provided with a fluid injection valve 121 separate from the fuel injection valve 119 as a stirring mechanism, and the drive of the fluid injection valve 121 is controlled by the ECU 118.
  • the ECU 118 includes a CPU (Central Processing Unit), and controls the fuel injection valve 119 to inject fuel according to a command from the ECU 118 (control unit), and then injects fluid from the fluid injection valve 121. Then, the fuel injection valve 119 and the fluid injection valve 121 are controlled to agitate the fuel injected from the fuel injection valve.
  • CPU Central Processing Unit
  • the CPU (control unit) of the ECU 118 controls the fuel injection valve 119 to inject fuel into the combustion chamber 104 by the control S03 shown in FIG. At this time, penetration L A spray 300 injected from the fuel injection valve, it is preferable to set the penetration and injection timing so as not to adhere to the wall surface. At low speed, since the tumble flow in the cylinder is weak, the spray 300 is not flowed by the tumble flow but drifts in the cylinder.
  • the CPU (control unit) of the ECU 118 controls the fluid injection valve 121 by the control S04 to inject the fluid into the combustion chamber 104.
  • the injected fluid 302 agitates the spray 300 injected from the fuel injection valve and forms a homogeneous air-fuel mixture in the combustion chamber 104.
  • the fuel is agitated in the combustion chamber by injecting the fluid injection valve after being delayed from the fuel injection valve. Thereby, even when the air flow in the cylinder is slow, a homogeneous air-fuel mixture can be formed.
  • a homogeneous air-fuel mixture can be formed in homogeneous combustion at a low engine speed.
  • the CPU (control unit) of the ECU 118 controls the spark plug 120 by the control S05 shown in FIG. 5 to ignite by spark ignition, and burns the air-fuel mixture in the combustion chamber 104.
  • the internal combustion engine provided with the spark plug is described as an example.
  • the effect of the present embodiment can be similarly obtained in a compression self-ignition internal combustion engine that does not include the spark plug.
  • a present Example does not limit the position of a fuel injection valve, it can inject a fuel in a wider range by arrange
  • the fluid injection valve 121 is provided on the side surface to form a vertical vortex 303 in the cylinder.
  • the spray 300 injected from the fuel injection valve 119 can be suitably agitated.
  • the distance between the fluid injection valve 121 and the wall surface as much as possible, when the fluid injected from the fluid injection valve 121 is fuel, the amount of fuel adhering to the wall surface can be reduced.
  • the tumble flow forms a vortex in the longitudinal direction, and this vortex forms a homogeneous mixture in the cylinder.
  • the fluid jet valve 121 can form a vertical vortex to form a homogeneous mixture as obtained at high rotation. it can.
  • the fuel injection valve 119 is attached to the upper part of the internal combustion engine, and the fluid injection valve 121 is attached to the side surface of the internal combustion engine, so that the homogeneity of the air-fuel mixture can be increased.
  • the effect of the invention does not limit the arrangement of the fuel injection valve and the arrangement of the spark plug.
  • the effects of the invention are effective even when the fuel injection valve 119 and the fluid injection valve 121 are arranged in reverse.
  • at least one spray direction may be directed to the ignition plug in order to improve combustion stability during stratified combustion.
  • the fuel injection timing is set to 60 deg, for example, where the top dead center is 0 deg. That is, the CPU (control unit) of the ECU 118 controls the fuel injection valve 119 to inject fuel while the piston is lowered, and then injects fluid from the fluid injection valve 121 and the fuel injected from the fuel injection valve.
  • the fuel injection valve 119 and the fluid injection valve 121 are controlled to agitate the fuel.
  • the piston moving direction 305 the fluid flows downward into the cylinder, and the flow of the fluid 302 can be assisted.
  • the vertical vortex 303 in the cylinder is strengthened, and the spray 300 injected from the fuel injection valve 119 can be suitably stirred.
  • the injection hole axis of the fuel injection valve 119 and the injection hole axis of the fluid injection valve 121 intersect each other on the spark plug side with respect to the piston in a state where the piston is at the bottom dead center. That is, as shown in FIG. 8, it is preferable that the intersection 304 exists on the spark plug side with respect to the piston. Further, when the fluid 302 has an angle ⁇ 2 , it is preferable that an intersection exists within the range of the angle ⁇ 2 . When the intersection exists, the fluid 302 ejected from the fluid ejection valve collides with the spray 300. When the fluid 302 collides with the spray 300, the exchange of momentum occurs, and the fuel is more appropriately stirred in the cylinder. From the above, a homogeneous air-fuel mixture can be suitably formed.
  • the fluid injection valve described above may be a fuel injection valve for agitation separate from the fuel injection valve, and the CPU (control unit) of the ECU 118 controls the fuel injection for agitation with respect to the penetration of the spray from the fuel injection valve. It is good to control so that the penetration of the spray from a valve may become long. Thereby, the effect of the same invention is acquired.
  • FIG. 9 is a schematic diagram showing a general relationship between the injection speed and the penetration. When the injection speeds V A and V B have a relationship of V A ⁇ V B , the penetration is L A ⁇ L B. For this reason, the penetration increases when the injection speed is high.
  • FIG. 10 is a schematic diagram showing the relationship between the kinetic energy of the fluid and the ejection speed. When the injection speed V A and V B is related to V A ⁇ V B, the kinetic energy of the fluid becomes E A ⁇ E B.
  • the spray 300 injected from the fuel injection valve 119 is the kinetic energy of the fluid 302 (the stirring fuel spray 302 in this embodiment) injected from the fluid injection valve 121 (the stirring fuel injection valve in this embodiment).
  • the kinetic energy of the spray 300 injected from the fuel injection valve 119 is larger than that, the fluid flows downward into the cylinder, and the vertical vortex 303 is formed, so that the fuel is injected from the fuel injection valve 119.
  • the spray 300 can be stirred to form a homogeneous mixture in the cylinder.
  • FIG. 11 is a flowchart of the injection control according to the present embodiment, and is the same diagram as FIG.
  • control S13 after injecting from the fuel injection valve 119 in the intake stroke, fluid is injected from the stirring fuel injection valve in control S14.
  • the injected spray 302 agitates the spray 300 injected from the fuel injection valve 119 and forms a homogeneous air-fuel mixture in the combustion chamber 104.
  • FIG. 12 shows the relationship between the current pulse for operating the fuel injection valve 119 and the stirring fuel injection valve 121 and the piston position.
  • Time T 1 is the injection start time of the fuel injection valve 119
  • time T 2 is the injection start time of the fuel injection valve 121.
  • Time T 2 in FIG. 11 by controlling such that in the vicinity of the piston bottom dead center, it is possible to reduce the adhesion of fuel to the wall surface.
  • the injection timing of the fuel injection valve 121 is, for example, between -20 deg and +20 deg from the bottom dead center. With the above control, it is possible to achieve both reduction in the amount of fuel adhering to the wall surface and air flow enhancement in the cylinder.
  • the injection timings of the time T 1 and the time T 2 are not limited to the intake stroke, but in order to sufficiently perform mixing and vaporization, it is desirable that the injection is performed in the intake stroke when the piston is descending.
  • the penetration length of the fuel injection valve 121 be optimized so as to increase the homogeneity within a range where it does not adhere to the piston.
  • the fuel spray 302 is set so that the penetration is shortened, so that the adhesion to the piston and cylinder wall surfaces is reduced.
  • the penetration L B is set as the distance from the fuel injection valve to the piston at a certain crank angle ⁇ , the homogeneity of the air-fuel mixture can be increased while suitably suppressing adhesion.
  • FIG. 13 is an enlarged view of the vicinity of the nozzle hole 205 in the same cross section as FIG.
  • the valve body 206 and the valve seat surface 204 are in contact at the ground contact point 400 when the valve is closed, and are separated by a stroke amount St when the valve is opened.
  • the fuel flows radially inward toward the central axis 206 of the valve body, passes through the path of the streamline 401, flows into the injection hole 402 from the injection hole inlet 404, and is injected from the injection hole outlet 405.
  • Part of the fuel once flows into the sac chamber 403 and then flows into the nozzle hole 402.
  • the amount of fuel flowing in is controlled by the stroke amount St, and the flow rate is larger when St is larger than when St is small. Since the fluid velocity becomes longer when the flow rate is large, the penetration can be set by the stroke amount St.
  • penetration can be set by the ratio L / D of the length L of the nozzle hole and the outlet diameter D.
  • L / D the injection speed increases and the penetration becomes longer.
  • the fluid injection valve 121 is a fuel injection valve for stirring separately from the fuel injection valve 119, and the L / D of the injection hole formed in the fuel injection valve for stirring is lower than that of the fuel injection valve 119.
  • the combustion rate can be increased while increasing the homogeneity of the air-fuel mixture.
  • combustion can be performed in a short period of time, and the isovolume of the combustion process can be increased. Increased isovolume improves thermal efficiency and fuel efficiency.
  • the propagation speed of the flame has a correlation with the turbulent kinetic energy, and the larger the turbulent kinetic energy, the higher the combustion speed can be expected.
  • This embodiment works suitably when the engine speed is low and the air flow in the cylinder is slow. For this reason, for example, it can be used when starting the engine.
  • a warm-up operation may be performed for the purpose of warming up the catalyst.
  • the catalyst is warmed up while increasing the homogeneity of the air-fuel mixture by controlling the exhaust temperature by, for example, retarding the ignition timing. Can be done.
  • the CPU (control unit) of the ECU 118 controls the fuel injection valve to inject during one stroke of the piston, and then the fluid injection valve is moved from the fuel injection valve in a state where the piston of the internal combustion engine is near bottom dead center. Control is performed so that the fuel to be injected is agitated, and when the internal combustion engine is in a warm-up operation, the control is switched to control that retards the ignition timing. Thereby, warming up of a catalyst can be performed suitably, raising the homogeneity of air-fuel
  • the effect of the present invention is not limited to the case where the rotational speed is low, and the same effect can be obtained when the air flow in the cylinder is slow.
  • the intake valve is opened near the top dead center, and the negative pressure inside the cylinder is not sufficient.
  • a fuel injection valve according to a second embodiment of the present invention will be described below with reference to FIG.
  • a fuel injection valve 121 for stirring which is separate from the fuel injection valve 119, is provided as the air-fuel mixture stirring means.
  • Other configurations are the same as those of the first embodiment.
  • a high-pressure fuel pump 310 is provided separately from the high-pressure fuel pump 111, and fuel is sent from the fuel tank 109 to the feed pump 110 to the high-pressure fuel pump 310.
  • the fuel boosted by the high-pressure fuel pump 310 is sent to the common rail 311.
  • a fuel pressure sensor 312 is provided on the common rail 311 to detect the fuel pressure. At this time, by applying a higher fuel pressure to the agitation fuel injection valve 121 than to the fuel injection valve 119, the penetration of the spray injected from the agitation fuel injection valve 121 can be lengthened.
  • the agitation fluid injection valve 121 is a fuel injection valve for agitation separate from the fuel injection valve 119, and the fuel pressure applied to the agitation fuel injection valve 121 is larger than that of the fuel injection valve 119.
  • the spray 300 injected from the fuel injection valve 119 can be stirred, and a homogeneous air-fuel mixture can be formed in the cylinder.
  • a fuel injection valve according to a third embodiment of the present invention will be described below with reference to FIG.
  • a gas injection valve 501 for stirring, a common rail 500 for injecting gas, and a tank for storing gas are separated from the fuel injection valve 119. 501, a pressure adjustment valve 503 that adjusts the flow rate of gas, and a flow meter 504.
  • Other configurations are the same as those in the first embodiment.
  • gaseous fuel such as CNG is injected.
  • the control method is the same as in the first embodiment.
  • air may be injected from the gas injection valve 501.
  • a compressor instead of a tank for storing gas and supply air from the intake port.
  • a part of the recirculated exhaust gas may be injected from the gas injection valve 501. That is, the CPU (control unit) of the ECU 118 controls to inject the air or the recirculated exhaust gas from the stirring gas injection valve 501 and to stir the fuel injected from the fuel injection valve 119. Also in this case, like the air, the recirculated exhaust gas is pressurized by the compressor and injected from the gas injection valve 501.
  • the injection timing from the fluid injection valve is not related to the position of the piston.
  • the CPU (control unit) of the ECU 118 controls to inject fuel from the fuel injection valve in a state where the piston is from 40 deg to 60 deg, and then injects the fluid injection valve in a state where the piston is from 60 deg to 80 deg, Since fuel mixes with gas at an early stage and vaporizes, the adhesion of fuel to the wall surface can be suitably reduced.
  • Valve body 204 ... Valve seat surface 205 ... Injection hole 206 ... Valve element central axis 207 ... Injection hole axis 400 ... Ground point 401 ... Streamline 402 ... Injection hole 403 ... Suck chamber 404 ... Injection hole inlet 405 ... Injection hole outlet 406 ... Injection hole central axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

エンジン低回転時の均質燃焼において、均質な混合気を形成可能な燃料噴射弁及びその制御装置を提供する。 本発明の燃料噴射弁の制御装置は、燃料噴射弁(119)とは別体で構成され、流体を噴射する機能を有する流体噴射弁(121)が設けられ、燃料噴射弁(119)から燃料を噴射するように制御した後、流体噴射弁(121)から流体を噴射し、燃料噴射弁(119)から噴射された燃料を撹拌するように流体噴射弁(121)を制御する制御部を備えた。

Description

燃料噴射弁の制御装置
本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁の制御装置に関する。
 近年、自動車におけるガソリンエンジンは燃費改善の要求が高まっており、燃費に優れたエンジンとして、燃焼室内に燃料を直接噴射し、噴射された燃料と吸入空気との混合気を点火プラグで点火して爆発させる筒内噴射式エンジンが普及してきている。しかし、筒内噴射式エンジンは噴射地点から壁面までの距離が短いため燃料が燃焼室内に付着しやすく、温度の低い壁面に付着した燃料が不完全燃焼することで発生する粒子状物質(Particle Matter:PM)の抑制が課題となっている。この課題を解決し、低燃費かつ低排ガスの直噴エンジンを開発するためには、燃焼室内の燃焼の最適化が必要である。
 自動車の運転には、高負荷運転、低負荷運転、冷間始動等、様々な運転状況が存在する。
そのため、筒内噴射式エンジンでは、運転状況によって最適な燃焼を行うために、筒内に均質な混合気を形成させて燃焼させる均質燃焼と、点火プラグの周りに濃い混合気を形成する成層燃焼を使い分けている。
 均質燃焼と成層燃焼を両立するために、燃焼室内に燃料を直接噴射する燃料噴射弁を1気筒当り複数設ける方法が提案されている。例えば、特許文献1では、1気筒当り2本の燃料噴射弁を備え、第1の燃料噴射弁を均質燃焼時に使用し、第2の燃料噴射弁を成層燃焼時に使用する技術が記載されている。特許文献1では、均質燃焼時に、燃料噴射弁の静流が大きい燃料噴射弁を使用し、成層燃焼時に静流が小さくペネトレーションの短い燃料噴射弁を使用する技術が開示されている。
特開2010-196506号公報
 筒内噴射式エンジンには、高負荷での運転時には吸気行程に燃料を噴射し、筒内に均質な混合気を形成し燃焼させる均質燃焼モードと、負荷が比較的に低い場合に圧縮行程の後期に燃料を噴射し、点火プラグ周りに濃い混合気を成層化させて燃焼させる成層燃焼モードが知られている。
 成層燃焼モードでは、筒内全体の空燃比は理論空燃比よりも大きな空燃比で燃焼させるため、安定に着火させるためには、点火プラグ周りに適切な濃度の燃料を配置させる必要がある。このため、燃焼室上部の中央部に燃料噴射弁と点火プラグを近接に配置し、燃料噴射弁から点火プラグの電極の近傍に向かって燃料を噴射し、この燃料に点火プラグで点火させる、スプレーガイド方式が考案されている。この方式では、噴射地点から点火プラグまでの距離が近接しているため、要求される噴霧の到達距離は非常に小さい。このため、噴霧の貫徹力(ペネトレーション)が小さい燃料噴射弁が求められる。
 一方、均質燃焼モードでは、吸気弁が開弁している状態で燃料噴射を行い、吸気ポートから燃焼室内に向かって流れるガス流動(タンブル流)によって燃料を混合し、均質な混合気を形成する。この際に、噴霧の貫徹力が十分でないとタンブル流により噴霧が筒内の壁面側に流され、均質な混合気を形成することができないため、大きい貫徹力(長いペネトレーション)を持つ燃料噴射弁が求められる。
 このような、相反する燃料噴射弁への要求を解決するために、燃焼室内に燃料を直接噴射する燃料噴射弁を1気筒当り複数設ける方法が提案されている。
 特許文献1に開示されている技術では、1気筒当り2本の燃料噴射弁を備え、ペネトレーションの長い第1の燃料噴射弁を均質燃焼時に使用し、ペネトレーションの短い第2の燃料噴射弁を成層燃焼時に使用することで、均質燃焼モードと成層燃焼モードのそれぞれのモードにおいて最適な噴霧を形成し、高い性能を出すことができる。
 ところで、吸気行程では、タンブル流の強さがエンジンの回転数によって変化する。エンジンが高回転時にはピストンの移動速度が速く、単位時間当たりに気筒に流入する気体の流量が大きくなるため、タンブル流は強くなる。そのため、タンブル流に流されないためにペネトレーションの長い噴霧が要求される。
 一方、エンジン低回転時には、ピストンの移動速度が遅く、単位時間当たりに気筒に流入する気体の流量が小さくなるため、タンブル流は弱くなる。そのため、タンブル流による混合力が小さくなり、筒内に均質な混合気が形成されにくくなる。
 特許文献1に開示されている技術では、低回転高負荷時に均質燃焼モードになった場合、タンブル流が弱く、混合力が小さい状態でペネトレーションの長い燃料噴射弁を使うために、壁面への燃料の付着が多くなってしまい、均質性が悪化する恐れがある。
 以上の課題を鑑みて、本発明の目的は、エンジン低回転時の均質燃焼において、均質な混合気を形成可能な燃料噴射弁及びその制御装置を提供することである。
 上記課題を解決するために、本発明の燃料噴射弁の制御装置は、燃料噴射弁とは別体で構成され、流体を噴射する機能を有する流体噴射弁が設けられ、燃料噴射弁から燃料を噴射するように制御した後、流体噴射弁から流体を噴射し、燃料噴射弁から噴射された燃料を撹拌するように流体噴射弁を制御する制御部を備えた。
 本発明によれば、エンジン低回転時の均質燃焼において、均質な混合気を形成することが可能である。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
本発明に係る内燃機関の構成の概要を示した図である。 本発明の第1実施例に係る内燃機関の気筒中心断面での構成を示した図である。 本発明の第1実施例に係る燃料噴射弁を示した図である。 本発明の第1実施例に係る燃料噴射弁下端部の拡大断面図である。 本発明の第1実施例に係る噴射制御のフローチャートである。 本発明の第1実施例に係る燃焼モードマップである。 本発明の第1実施例に係る燃料噴射弁及び流体噴射弁を動作させる電流パルスの概略図である。 本発明の第1実施例に係る内燃機関の燃焼室を示した図である。 本発明に係る燃料噴射弁の噴射速度とペネトレーションの関係を示した図である。 本発明に係る内燃機関の筒内運動エネルギの総和と噴射速度の関係を示した図である。 本発明の第1実施例に係る撹拌用燃料噴射弁を用いた噴射制御のフローチャートである。 本発明の第1実施例に係る燃料噴射弁を動作させる電流パルスを示した図である。 本発明の第1実施例に係る燃料噴射弁の弁体先端の近傍を拡大した断面図である。 本発明の第1実施例に係る内燃機関の気筒中心断面での構成を示した図である。 本発明の第2実施例に係る内燃機関の気筒中心断面での構成を示した図である。
 以下、本発明に係る実施例を説明する。
 本発明の第1の実施例に係る燃料噴射弁の制御装置について、図1と図2を用いて以下説明する。
 図1は、筒内噴射式エンジンの構成の概要を示した図である。図1を用いて筒内噴射式エンジンの基本的な動作を説明する。図1において、シリンダヘッド101とシリンダブロック102、シリンダブロック102に挿入されたピストン103により燃焼室104が形成され、燃料室104に向けて吸気管105と排気管106がそれぞれ2つに分岐して接続されている。吸気管105の開口部には吸気弁107が、排気管106の開口部には排気弁108がそれぞれ設けられ、カム動作方式により開閉するように動作する。
 ピストン103はコンロッド114を介してクランク軸115と連結されており、クランク角センサ116によりエンジン回転数を検知できる。回転数の値はECU(エンジンコントロールユニット)118に送られる。クランク軸115には図示しないセルモータが連結され、エンジン始動時にはセルモータによりクランク軸115を回転させ始動することができる。シリンダブロック102には水温センサ117が備えられ、図示しないエンジン冷却水の温度を検知できる。エンジン冷却水の温度はECU118に送られる。
 図1は1気筒のみの記述だが、吸気管105の上流には図示しないコレクタが備えられ、気筒ごとに空気を分配する。コレクタの上流には図示しないエアフローセンサとスロットル弁が備えられ、燃料室104に吸入される空気量をスロットル弁の開度によって調節できる。
 燃料は燃料タンク109に貯蔵され、フィードポンプ110によって高圧燃料ポンプ111に送られる。フィードポンプ110は燃料を0.3MPa程度まで昇圧して高圧燃料ポンプ111に送る。高圧燃料ポンプ111により昇圧された燃料はコモンレール112に送られる。高圧燃料ポンプ111は燃料を30MPa程度まで昇圧してコモンレール112に送る。コモンレール112には燃圧センサ113が設けられ、燃料圧力を検知する。燃料圧力の値はECU118に送られる。
 図2は、筒内噴射式エンジンの気筒中心断面での構成を示した図である。気筒の軸方向上部で、且つ径方向中央部に燃料噴射弁119が備えられている。さらに、径方向側面部に流体噴射弁121が備えられている。点火プラグ120は排気管106の近傍に備えられている。ECU118はセンサの信号をモニタし、燃料噴射弁119や点火プラグ120、高圧燃料ポンプ111といったデバイスの作動を制御できる。ECU118のROMには一般的に用いられるエンジン回転数や水温、空燃比に応じた各種デバイスの設定値がマップデータとして記録されている。
 図3は、本実施例に係る燃料噴射弁の概要を示した図である。燃料は燃料供給口200から供給され、燃料噴射弁の内部に供給される。図3に示す電磁式燃料噴射弁119は、通常時閉型の電磁駆動式であって、通電がないときには燃料がシールされるようになっている。このとき、筒内噴射用燃料噴射弁では、供給される燃料圧力がおよそ1MPaから50MPaの範囲である。通電状態となると、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換され、燃料噴射弁下端部に空いた燃料噴射孔に至り噴射される。噴射された燃料は雰囲気とのせん断力により微粒化され、燃料噴霧201を形成する。
 次に、燃料噴射弁の詳細形状について図4を用いて説明する。図4は、燃料噴射弁下端部の拡大断面図であり、シート部材202と弁体203などから構成されている。シート部材202は、弁座面204と、複数の燃料噴孔205から構成されている。弁座面204及び弁体203は弁体中心軸206を中心に軸対称に延在している。燃料は、シート部材202と弁体203の隙間を通り、噴孔205から噴射される。燃料は、噴孔軸207の方向に噴射され、気体とのせん断力により微粒化される。筒内噴射式エンジン用燃料噴射弁では、噴射される燃料液滴のザウタ平均粒径は、概ね30μm以下になるよう、燃料噴射弁119のノズル形態、燃圧などが設定されている。
 次に、本実施例の燃料噴射弁を用いた均質燃焼の制御方法について図5を用いて説明を行う。図5は、本実施例に係る噴射制御のフローチャートである。燃料を噴射する際、まず制御S01で示される燃焼モードの判定を行う。燃焼モードは図6で示す燃焼モードマップにより、エンジントルクと回転数から決定される。制御S01において成層燃焼モードに判定された場合は、通常の成層燃焼モードにより制御S08以降を行う。均質燃焼モードに判定された場合は、回転数の判定を制御S02において行う。ここであらかじめ決定された回転数以下の場合、制御S03以降を行い、その他の場合は通常の均質燃焼モードにより制御S06以降を行う。
 制御S03では吸気行程において燃料噴射弁から噴射を行った後に流体噴射弁から噴射を行い、制御S03で吸気行程において流体噴射弁から噴射を行った後に、圧縮行程後期に制御S05によって点火を行う。
 図7は、本実施例における燃料噴射弁及び流体噴射弁を動作させる電流パルスの概略図である。本実施例に係る内燃機関には、燃料噴射弁とは別体で構成され、流体を噴射する機能を有する流体噴射弁が設けられている。
 次に、燃焼室内の形態について説明する。図8は本実施例に係る内燃機関の燃焼室を示した図である。燃料室104には撹拌機構として燃料噴射弁119とは別体の流体噴射弁121が備えられており、流体噴射弁121の駆動はECU118により制御される。より具体的にはECU118はCPU(Central Processing Unit)を備え、ECU118のCPU(制御部)からの指令により燃料噴射弁119から燃料を噴射するように制御した後、流体噴射弁121から流体を噴射し、燃料噴射弁から噴射された燃料を撹拌するように燃料噴射弁119、及び流体噴射弁121を制御する。
 ECU118のCPU(制御部)は図5で示す制御S03によって、燃料噴射弁119を制御して燃料を燃焼室104に噴射させ、噴霧300を形成する。このとき、燃料噴射弁から噴射される噴霧300のペネトレーションLは、壁面に付着しないようにペネトレーションと噴射タイミングを設定するとよい。低回転時には、筒内のタンブル流が弱いため、噴霧300はタンブル流によって流されず、気筒内に漂う。
 次に、ECU118のCPU(制御部)は制御S04によって流体噴射弁121を制御して燃焼室104に流体を噴射させる。噴射された流体302が燃料噴射弁から噴射された噴霧300を撹拌し、燃焼室104内に均質な混合気を形成する。一般的に、エンジンが低回転数時には、筒内の空気流動が不十分であり、均質な混合気が形成されにくい。本実施例では、流体噴射弁を燃料噴射弁に遅らせて噴射することにより、燃焼室内で燃料を撹拌する。これにより、筒内の空気流動が緩慢な際にも、均質な混合気を形成することができる。本実施例により、エンジン低回転時の均質燃焼において、均質な混合気を形成することができる。
 ECU118のCPU(制御部)は図5で示す制御S05によって、点火プラグ120を制御して火花点火によって点火させ、燃焼室104内の混合気を燃焼させる。なお、本実施例は点火プラグを備えた内燃機関を一例として説明しているが、本実施例による効果は点火プラグを備えない、圧縮自着火式の内燃機関においても同様に得られる。
 なお、本実施例は燃料噴射弁の位置を限定するものではないが、燃料噴射弁119を内燃機関の上部に配置することで、より広範囲に燃料を噴射することができる。広範囲に燃料を噴射することで、混合気の均質度を高めることができる。さらに、燃料噴射弁119を点火プラグの近くに配置することで、成層燃焼時の燃焼安定性を高めることができる。
 一般に、成層燃焼をスプレーガイド方式で行う場合、圧縮行程時に噴射を行うと、噴霧角が小さくなる。成層燃焼に用いる燃料噴射弁を吸気行程中に用いる場合、噴霧角が広くなるため、噴霧角θの設定は、吸気行程においてシリンダ壁面に付着せず、かつ圧縮行程中に噴射した際に十分な噴霧角を得られるように設計するのがよい。
 一方、流体噴射弁121は、側面に備え付けることで筒内に縦方向の渦303を形成する。縦方向の渦を形成することで、燃料噴射弁119から噴射された噴霧300を好適に撹拌することができる。さらに流体噴射弁121と壁面の距離をできるだけ大きくすることで、流体噴射弁121から噴射する流体が燃料の場合に、壁面への燃料の付着量を低減することができる。
 高回転における均質燃焼は、タンブル流が縦方向に渦を形成しており、この渦により筒内に均質な混合気を形成する。低回転時においてはタンブル流が弱く縦方向の渦が形成されにくいが、流体噴射弁121によって縦方向の渦を形成することで、高回転時に得られるような均質な混合気を形成することができる。
 すなわち、燃料噴射弁119が内燃機関の上部に取り付けられ、流体噴射弁121が内燃機関の側面に取り付けられることで、混合気の均質度を高めることができる。
 しかしながら、発明の効果は燃料噴射弁の配置と点火プラグの配置を限定するものではない。例えば、燃料噴射弁119と流体噴射弁121の配置が逆の場合でも発明の効果は有効である。ただし、燃料噴射弁を側部に配置し、点火プラグを中央に配置する場合、成層燃焼時の燃焼安定性を高めるために、少なくとも1つの噴霧方向を点火プラグに指向するとよい。
 本実施例では、燃料を噴射する時期は、上死点を0degとすると、例えば60degとしている。すなわち、ECU118のCPU(制御部)はピストンが下降している状態において、燃料噴射弁119から噴射するように制御した後、流体噴射弁121から流体を噴射し、燃料噴射弁から噴射された燃料を撹拌するように燃料噴射弁119及び流体噴射弁121を制御する。ピストン移動方向305で示されるようにピストンが下降することにより、流体が筒内に下向きに流れ込み、流体302の流動を補助することができる。結果として、筒内の縦方向の渦303が強化され、燃料噴射弁119から噴射された噴霧300を好適に撹拌することができる。
 また、燃料噴射弁119の噴孔軸と、流体噴射弁121の噴孔軸は、ピストンが下死点にいる状態で、ピストンよりも点火プラグ側において交わるようにすることが望ましい。すなわち、図8で示されるように、交点304がピストンよりも点火プラグ側において存在するようにするとよい。また、流体302が角度θを持つ時、角度θの範囲内で交点が存在するようにするとよい。交点が存在する場合、流体噴射弁から噴射された流体302が、噴霧300に衝突する。流体302が噴霧300に衝突することで、運動量の交換が起こり、筒内で燃料がより好適に撹拌する。以上より、均質な混合気を好適に形成することができる。
 なお、上で述べた流体噴射弁は燃料噴射弁とは別体の撹拌用の燃料噴射弁でもよく、ECU118のCPU(制御部)は燃料噴射弁からの噴霧のペネトレーションに対し、撹拌用燃料噴射弁からの噴霧のペネトレーションが長くなるように制御すると良い。これにより、同様の発明の効果が得られる。以下にその原理を述べる。図9は、噴射速度とペネトレーションの一般的な関係を示した概略図である。噴射速度VとVにV<Vの関係があるとき、ペネトレーションはL<Lとなる。このため、噴射速度が大きいとき、ペネトレーションは大きくなる。次に、図10に流体の運動エネルギと噴射速度の関係を表す概略図を示す。噴射速度VとVにV<Vの関係があるとき、流体の運動エネルギはE<Eとなる。
 図8において、燃料噴射弁119から噴射された噴霧300は、流体噴射弁121(本実施例では撹拌用燃料噴射弁)から噴射された流体302(本実施では撹拌用燃料噴霧302)の運動エネルギが、燃料噴射弁119から噴射された噴霧300の運動エネルギよりも大きいことで、流体が筒内に下向きに流れ込み、縦方向の渦303が形成されることで、燃料噴射弁119から噴射された噴霧300を撹拌し、筒内に均質な混合気を形成することができる。
 次に、本実施例の撹拌用燃料噴射弁を用いた均質燃焼の制御方法について図10を用いて説明を行う。図11は、本実施例に係る噴射制御のフローチャートであり、図5と同様の図である。制御S13では、吸気行程において燃料噴射弁119から噴射を行った後に、制御S14によって撹拌用燃料噴射弁から流体を噴射する。噴射された噴霧302が燃料噴射弁119から噴射された噴霧300を撹拌し、燃焼室104内に均質な混合気を形成する。
 なお、制御S12によって高回転と判定された場合は、制御S16によって撹拌用燃料噴射弁から燃料を噴射するように制御することが望ましい。これは、エンジンが高回転時にはタンブル流が強くなり、タンブル流に流されないためにペネトレーションの長い噴霧が要求されるためである。このため、高回転時にはペネトレーションの長い撹拌用燃料噴射弁から燃料を噴射することで、均質な混合気を形成することができる。
 図12に、燃料噴射弁119と攪拌用燃料噴射弁121を動作させる電流パルスとピストン位置との関係を示す。時間Tは燃料噴射弁119の噴射開始時間であり、時間Tは燃料噴射弁121の噴射開始時間である。図11における時間Tはピストン下死点付近になるように制御することで、壁面への燃料の付着を低減させることができる。本実施例では、燃料噴射弁121の噴射時期は、例えば下死点から-20deg~+20degの間としている。以上の制御により、壁面への燃料付着量の低減と、筒内の空気流動強化を両立することができる。なお、時間T及び時間T噴射時期は吸気行程に制限されるものではないが、混合と気化を十分に行うためには、ピストンが下降中の吸気行程において行われることが望ましい。
 さらに、燃料噴射弁121のペネトレーションの長さは、ピストンへ付着しない範囲で、均質度が高くなるように最適化されることが望ましい。エンジンの回転数が低い場合は、燃焼室104内の空気流動が緩慢であり、燃料が燃焼室壁面やピストンに付着しやすい。図8において、燃料噴霧302はペネトレーションが短くなるように設定されることで、ピストン及びシリンダ壁面への付着が低減する。例えば、ペネトレーションLをあるクランク角θにおける燃料噴射弁からピストンまでの距離と設定すると、付着を好適に抑えつつ、混合気の均質度を高めることができる。
 次に、ペネトレーションの長さを設定する方法について述べる。図13は図4と同様の断面における、噴孔205近傍の拡大図である。弁体206と弁座面204は、閉弁時には接地点400で接しており、開弁時にはストローク量Stだけ離れている。燃料は、弁体の中心軸206に向かって半径内側方向に流入し、流線401の経路を通り、噴孔入口404から噴孔402に流入し、噴孔出口405から噴射される。一部の燃料はサック室403に一度流入し、その後噴孔402に流れ込む。流れ込む燃料の量はストローク量Stにより制御され、Stが小さい場合に比べて、Stが大きい場合に流量が大きい。流体速度は流量が大きい場合に長くなるので、ペネトレーションはストローク量Stによって設定できる。
 また、噴孔の長さLと出口径Dの比L/Dによっても、ペネトレーションを設定可能である。一般に、L/Dが大きい場合に噴射速度が大きくなり、ペネトレーションが長くなる。このため、流体噴射弁121が燃料噴射弁119とは別体の撹拌用燃料噴射弁であり、燃料噴射弁119に対し、撹拌用燃料噴射弁に形成される噴孔の方がL/Dが大きくなるように構成することで、燃料噴射弁119から噴射された噴霧300を撹拌し、筒内に均質な混合気を形成することができる。
 その他、短パルス噴射や短パルス噴射を使用した多段噴射でもペネトレーションを変えることが可能である。短パルス噴射ではペネトレーションが短くなるため、より壁面への付着量を低減することができる。一方、短パルス噴射では1パルスあたりの噴射量が減るので、多段噴射により必要な燃料量を噴射するのが良い。
 さらに、本発明を用いることによって、混合気の均質度を高めつつ、燃焼速度を高めることができる。燃焼速度を向上させることで、燃焼を短い期間で行うことができ、燃焼過程の等容度を高めることが可能である。等容度が高まることで熱効率が向上し、燃費効率が改善する。
 流れの平均的な運動の大きさを表す運動エネルギが大きいほど、流れの乱れの大きさを表す乱流運動エネルギも大きくなる。火炎の伝播速度は乱流運動エネルギと相関があり、乱流運動エネルギが大きいほど、燃焼速度の向上効果が期待できる。
 すなわち、燃料噴射弁から燃料を噴射するように制御した後、流体噴射弁から流体を噴射し、燃料噴射弁から噴射された燃料を撹拌するように流体噴射弁を制御することで、筒内の乱流運動エネルギが大きくなり、混合気の均質度を高めつつ、燃焼速度を高めることができる。
 本実施例は、エンジンの回転数が低く、筒内の空気流動が緩慢な場合に好適に作用する。このため、例えばエンジンの始動時に用いることができる。エンジンの始動時においては、触媒の暖機を行う目的で暖機運転を行うことがある。エンジンの回転数が上がり暖機運転モードになった場合には、点火時期をリタードさせるなどして排気温度を上げる制御を行うことで、混合気の均質度を高めつつ、触媒の暖機を好適に行うことができる。
 すなわち、ECU118のCPU(制御部)はピストンの1ストロークにおいて、燃料噴射弁を噴射するように制御した後、内燃機関のピストンが下死点付近にいる状態で、流体噴射弁を燃料噴射弁から噴射される燃料を撹拌するように制御し、内燃機関が暖気運転となったら、点火タイミングをリタードさせる制御に切り替える。これにより、混合気の均質度を高めつつ、触媒の暖機を好適に行うことができる。
 なお、本発明の効果は回転数が低い場合に限られず、筒内の空気流動が緩慢である場合には同様の効果を得られる。例えば、吸気バルブを上死点付近で開弁し、気筒内部の負圧が十分でない場合などである。
 本発明の第2の実施例に係る燃料噴射弁について、図14を用いて以下説明する。
図14に示す第2の実施例では、混合気撹拌手段として、燃料噴射弁119とは別体の、撹拌用の燃料噴射弁121を備える。その他の構成は第1の実施例と同様である。
 図14に示す第2の実施例では、高圧燃料ポンプ111とは別体の高圧燃料ポンプ310が備えられており、燃料は燃料タンク109からフィードポンプ110に高圧燃料ポンプ310に送られる。高圧燃料ポンプ310により昇圧された燃料はコモンレール311に送る。コモンレール311には燃圧センサ312が設けられ、燃料圧力を検知する。このとき、燃料噴射弁119に比べて撹拌用燃料噴射弁121に高い燃圧を付与することで、撹拌用燃料噴射弁121から噴射される噴霧のペネトレーションを長くすることができる。すなわち、撹拌用流体噴射弁121が燃料噴射弁119とは別体の撹拌用の燃料噴射弁であり、燃料噴射弁119に対し、撹拌用燃料噴射弁121に付与される燃圧が大きくなるように構成されることで、燃料噴射弁119から噴射された噴霧300を撹拌し、筒内に均質な混合気を形成することができる。
 本発明の第3の実施例に係る燃料噴射弁について、図15を用いて以下説明する。図15に示す第3の実施例では、混合気撹拌手段として、燃料噴射弁119とは別体の、撹拌用気体噴射弁501と、気体を噴射するためのコモンレール500と、気体を貯蔵するタンク501と、気体の流量を調整する圧力調整弁503と、流量計504を備える。その他の構成については、実施例1と同様である。
 気体噴射弁501からは、例えばCNG等の気体燃料を噴射する。制御の方法は、実施例1と同様である。
 また、気体噴射弁501からは、空気を噴射しても良い。空気を噴射する場合、気体を貯蔵するタンクの代わりにコンプレッサを備え、吸気ポートから空気を供給するとよい。また、気体噴射弁501からは還流した排気ガスの一部を噴射しても良い。つまりECU118のCPU(制御部)は撹拌用気体噴射弁501から空気又は還流した排気を噴射し、燃料噴射弁119から噴射された燃料を撹拌するように制御する。この場合も空気と同様に、還流した排気ガスをコンプレッサによって昇圧し、気体噴射弁501から噴射する。
 気体噴射弁から気体を噴射する場合、ピストンへの燃料の付着はない。そのため、流体噴射弁からの噴射時期は、ピストンの位置に関わらない。例えば、ECU118のCPU(制御部)はピストンが40degから60degにいる状態において燃料噴射弁から燃料を噴射し、その後、ピストンが60degから80degにいる状態において流体噴射弁を噴射するように制御すると、燃料が気体と早期に混合し気化することで、壁面への燃料の付着を好適に低減することができる。
101…シリンダヘッド
102…シリンダブロック
103…ピストン
104…燃焼室
105…吸気管
106…排気管
107…吸気弁
108…排気弁
109…燃料タンク
110…フィードポンプ
111…高圧燃料ポンプ
112…コモンレール
113…燃圧センサ
114…コンロッド
115…クランク軸
116…クランク角センサ
117…水温センサ
118…ECU
119…燃料噴射弁
120…点火プラグ
121…流体噴射弁(実施例1では撹拌用燃料噴射弁)
200…燃料供給口
201…燃料噴霧
202…シート部材
203…弁体
204…弁座面
205…噴孔
206…弁体中心軸
207…噴孔軸
400…接地点
401…流線
402…噴孔
403…サック室
404…噴孔入口
405…噴孔出口
406…噴孔中心軸

Claims (11)

  1.  内燃機関に燃料を噴射する燃料噴射弁を制御する制御装置において、
     前記内燃機関には、前記燃料噴射弁とは別体で構成され、流体を噴射する機能を有する流体噴射弁が設けられ、
     前記燃料噴射弁から燃料を噴射するように制御した後、前記流体噴射弁から流体を噴射し、前記燃料噴射弁から噴射された燃料を撹拌するように前記流体噴射弁を制御する制御部を備えたことを特徴とする制御装置。
  2.  請求項1に記載の制御装置において、
     前記制御部は、前記内燃機関のピストンが下降している状態において、前記燃料噴射弁を噴射するように制御した後、前記流体噴射弁から流体を噴射し、前記燃料噴射弁から噴射された燃料を撹拌するように前記流体噴射弁を制御することを特徴とする制御装置。
  3.  請求項1に記載の制御装置において、
     前記燃料噴射弁の噴孔軸と前記流体噴射弁の噴孔軸が、ピストンが下死点にいる状態で、ピストンよりも点火プラグ側において交わるように前記燃料噴射弁及び前記流体噴射弁が配置されることを特徴とする制御装置。
  4.  請求項1に記載の制御装置において、
     前記燃料噴射弁は前記燃料噴射弁とは別体の撹拌用燃料噴射弁であり、
     前記燃料噴射弁は前記内燃機関の上部に取り付けられ、前記撹拌用燃料噴射弁は前記内燃機関の側面に取り付けられたことを特徴とする制御装置。
  5.  請求項1に記載の制御装置において、
     前記燃料噴射弁は前記燃料噴射弁とは別体の撹拌用燃料噴射弁であり、
     前記制御部は、前記燃料噴射弁からの噴霧のペネトレーションに対し、前記撹拌用燃料噴射弁からの噴霧のペネトレーションが長くなるように前記燃料噴射弁及び前記撹拌用燃料噴射弁を制御することを特徴とする制御装置。
  6.  請求項1に記載の制御装置において、前記撹拌機構は前記燃料噴射弁とは別体の撹拌用燃料噴射弁であり、前記燃料噴射弁に形成される噴孔に対し、前記撹拌用燃料噴射弁に形成される噴孔の方がL/Dが大きくなるように構成されたことを特徴とする制御装置。
  7.  請求項1に記載の制御装置において、前記撹拌機構は前記燃料噴射弁とは別体の撹拌用燃料噴射弁であり、前記燃料噴射弁に形成される噴孔に対し、前記撹拌用燃料噴射弁に付与される燃圧が大きくなるように構成されることを特徴とする制御装置。
  8.  請求項1に記載の制御装置において、前記流体噴射弁は前記燃料噴射弁とは別体の撹拌用気体噴射弁であり、前記制御部は前記撹拌用気体噴射弁から空気又は還流した排気を噴射し、前記燃料噴射弁から噴射された燃料を撹拌するように制御することを特徴とする制御装置。
  9.  請求項1に記載の制御装置において、前記流体噴射弁は前記燃料噴射弁とは別体の撹拌用気体噴射弁であり、前記制御部は前記撹拌用気体噴射弁から気体燃料を噴射し、前記燃料噴射弁から噴射された燃料を撹拌するように制御することを特徴とする制御装置。
  10.  請求項1に記載の制御装置において、
     前記制御部は前記内燃機関の始動時に、前記内燃機関のピストンの1ストロークにおいて、前記燃料噴射弁を噴射するように制御した後、前記内燃機関のピストンが下死点付近にいる状態で、前記流体噴射弁を前記燃料噴射弁から噴射される燃料を撹拌するように制御し、前記内燃機関が暖気運転となったら、点火タイミングをリタードさせる制御に切り替えることを特徴とする制御装置。
  11.  請求項1に記載の制御装置において、
     前記流体噴射弁は前記燃料噴射弁とは別体の撹拌用気体噴射弁であり、
     前記制御部は、前記内燃機関のピストンが40degから60degにいる状態において前記燃料噴射弁から燃料を噴射し、その後、前記内燃機関のピストンが60degから80degにいる状態において前記撹拌用気体噴射弁から空気又は還流した排気を噴射するように前記撹拌用気体噴射弁を制御することを特徴とする制御装置。
PCT/JP2016/083876 2016-01-29 2016-11-16 燃料噴射弁の制御装置 WO2017130526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680070156.4A CN108291493B (zh) 2016-01-29 2016-11-16 燃料喷射阀的控制装置
EP16888111.8A EP3409932B1 (en) 2016-01-29 2016-11-16 Fuel injection valve control device
US16/073,021 US20190040814A1 (en) 2016-01-29 2016-11-16 Fuel Injection Valve Control Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-015030 2016-01-29
JP2016015030A JP6568808B2 (ja) 2016-01-29 2016-01-29 燃料噴射弁の制御装置

Publications (1)

Publication Number Publication Date
WO2017130526A1 true WO2017130526A1 (ja) 2017-08-03

Family

ID=59397782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083876 WO2017130526A1 (ja) 2016-01-29 2016-11-16 燃料噴射弁の制御装置

Country Status (5)

Country Link
US (1) US20190040814A1 (ja)
EP (1) EP3409932B1 (ja)
JP (1) JP6568808B2 (ja)
CN (1) CN108291493B (ja)
WO (1) WO2017130526A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107947A1 (de) * 2017-04-12 2018-10-18 Volkswagen Ag Strahlbild eines Mehrloch-Einspritzventils für Einspritzdrücke über 300 bar bei Ottomotoren mit zentraler Injektorlage
CN111006872B (zh) * 2018-10-08 2021-11-16 上海汽车集团股份有限公司 发动机的燃烧等容度计算方法、装置及发动机燃烧分析仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53306A (en) * 1976-06-25 1978-01-05 Mitsubishi Motors Corp Fuel ejection system rare air combustion engine
JPS6035115A (ja) * 1983-08-05 1985-02-22 Mazda Motor Corp 層状給気エンジン
JPH09264180A (ja) * 1996-03-27 1997-10-07 Nobuo Hirasawa 燃焼システム及びエンジンシステム
JPH10331642A (ja) * 1997-06-03 1998-12-15 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2001248443A (ja) * 2000-03-01 2001-09-14 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2010196506A (ja) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関
JP2014529042A (ja) * 2011-10-14 2014-10-30 ボリソフスキー,ウラジミール 内燃機関の燃焼室、燃料−空気の混合気を点火するための方法、及び内燃機関
JP2016006325A (ja) * 2015-08-03 2016-01-14 三菱重工業株式会社 2サイクルガスエンジン及び2サイクルガスエンジン用の燃料ガス噴射システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008898A (ja) * 1998-06-19 2000-01-11 Mitsubishi Heavy Ind Ltd ディーゼルエンジンの予混合強制点火燃焼方法
JP4415497B2 (ja) * 2000-03-29 2010-02-17 マツダ株式会社 火花点火式直噴エンジン
JP2002038955A (ja) * 2000-07-24 2002-02-06 Nissan Diesel Motor Co Ltd 筒内噴射式エンジン
JP2004537004A (ja) * 2001-08-02 2004-12-09 シュタン、コーネル 直接燃料噴射式熱機関のための混合気の形成および燃焼方法
JP4032690B2 (ja) * 2001-10-09 2008-01-16 株式会社日立製作所 筒内噴射ガソリンエンジン
DE102004037971A1 (de) * 2004-08-05 2006-02-23 Bayerische Motoren Werke Ag Verbrennungsmotor, insbesondere für Gasbetrieb
DE102005028553A1 (de) * 2005-06-21 2007-01-04 Daimlerchrysler Ag Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
DE102005037551A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Brennkraftmaschine, sowie Verfahren zum Betreiben einer solchen Brennkraftmaschine
GB2520017A (en) * 2013-11-05 2015-05-13 Univ Brunel Dual fuel internal combustion engine
WO2015077496A1 (en) * 2013-11-20 2015-05-28 Dortch Richard W Jr Isothermal compression based combustion engine
US20160298584A1 (en) * 2015-04-13 2016-10-13 Caterpillar Inc. Ducted Combustion Systems Utilizing Outside Air Injection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53306A (en) * 1976-06-25 1978-01-05 Mitsubishi Motors Corp Fuel ejection system rare air combustion engine
JPS6035115A (ja) * 1983-08-05 1985-02-22 Mazda Motor Corp 層状給気エンジン
JPH09264180A (ja) * 1996-03-27 1997-10-07 Nobuo Hirasawa 燃焼システム及びエンジンシステム
JPH10331642A (ja) * 1997-06-03 1998-12-15 Nissan Motor Co Ltd 筒内噴射式内燃機関
JP2001248443A (ja) * 2000-03-01 2001-09-14 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2010196506A (ja) * 2009-02-23 2010-09-09 Hitachi Automotive Systems Ltd 筒内噴射式内燃機関
JP2014529042A (ja) * 2011-10-14 2014-10-30 ボリソフスキー,ウラジミール 内燃機関の燃焼室、燃料−空気の混合気を点火するための方法、及び内燃機関
JP2016006325A (ja) * 2015-08-03 2016-01-14 三菱重工業株式会社 2サイクルガスエンジン及び2サイクルガスエンジン用の燃料ガス噴射システム

Also Published As

Publication number Publication date
EP3409932A1 (en) 2018-12-05
EP3409932A4 (en) 2019-10-30
EP3409932B1 (en) 2021-03-31
JP2017133443A (ja) 2017-08-03
CN108291493A (zh) 2018-07-17
JP6568808B2 (ja) 2019-08-28
US20190040814A1 (en) 2019-02-07
CN108291493B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US11927148B2 (en) Direct-injection, applied-ignition internal combustion engine with injection device arranged in the cylinder liner, and method for operating an internal combustion engine of said type
JP2007224753A (ja) 火花点火式直噴エンジン
JP2012154209A (ja) 内燃機関の制御装置及び内燃機関
JP2005256675A (ja) 内燃機関の運転制御方法及び内燃機関運転制御装置、並びに内燃機関
WO2012086006A1 (ja) 燃料噴射弁
JPH02136560A (ja) 燃料噴射制御装置
WO2015129285A1 (ja) 直噴ガソリンエンジンの制御装置
JP2003525389A (ja) 内燃エンジンおよび制御
JP4017069B2 (ja) ディーゼルエンジンの燃料噴射装置
JP6568808B2 (ja) 燃料噴射弁の制御装置
US20130327851A1 (en) Fuel injection valve
JP2006274946A (ja) 火花点火式直噴エンジン
JP6670718B2 (ja) 制御装置
CN107407223B (zh) 直喷发动机的燃料喷射控制装置
JP5783701B2 (ja) 筒内噴射エンジンの制御装置
JP2007051549A (ja) 燃料噴射弁及びそれを備えた筒内噴射式エンジン
JP2006274945A (ja) 火花点火式直噴エンジン
WO2017199574A1 (ja) 内燃機関制御装置
JP6862284B2 (ja) 燃料噴射弁及びエンジンシステム
JP6402753B2 (ja) 直噴エンジンの燃焼室構造
JP5865603B2 (ja) 筒内噴射式エンジン及びその燃料噴射方法
JP3976153B2 (ja) 直接噴射火花点火エンジン
JP2007077996A (ja) 内燃機関及び内燃機関の燃料噴射制御装置
JP2004251143A (ja) 直噴火花点火式内燃機関の燃焼制御装置
JP2012132332A (ja) 燃料噴射弁及び燃料噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888111

Country of ref document: EP

Effective date: 20180829