WO2017128754A1 - 触控单元及其制备方法、触控基板 - Google Patents

触控单元及其制备方法、触控基板 Download PDF

Info

Publication number
WO2017128754A1
WO2017128754A1 PCT/CN2016/100707 CN2016100707W WO2017128754A1 WO 2017128754 A1 WO2017128754 A1 WO 2017128754A1 CN 2016100707 W CN2016100707 W CN 2016100707W WO 2017128754 A1 WO2017128754 A1 WO 2017128754A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch
sub
conductive
branch
Prior art date
Application number
PCT/CN2016/100707
Other languages
English (en)
French (fr)
Inventor
曲连杰
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/541,920 priority Critical patent/US10067589B2/en
Publication of WO2017128754A1 publication Critical patent/WO2017128754A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • Embodiments of the present invention relate to a touch unit, a method of fabricating the same, and a touch substrate.
  • the capacitive touch unit has the advantages of precise positioning and sensitivity, and is applied in many fields.
  • the capacitive touch unit is divided into two types: self-capacitance type and mutual capacitance type. Since the mutual-capacitive touch unit can realize multi-touch, the mutual-capacitive touch unit becomes the mainstream and future development trend in the market.
  • the mutual-capacitive touch screen is divided into two types: external plug-in type and integrated type.
  • the integrated mutual-capacitive touch screen also called the in-cell mutual-capacitive touch screen, hereinafter referred to as the in-cell touch screen
  • the control unit is integrated between the opposite substrate of the display panel and the array substrate.
  • the external touch screen stacks the touch unit on the display panel, thereby inevitably increasing the thickness and weight of the entire display device, resulting in a decrease in light transmittance, which does not meet the requirements of the current trend of thin and light display devices.
  • the in-cell touch screen has a significant advantage in reducing the thickness of the display device and improving the transmittance by integrating the touch unit inside the display panel.
  • the display device can be made thinner and lighter.
  • the capacitance between the touch electrodes in the touch unit is easily interfered by the electric field in the display panel, resulting in a low signal-to-noise ratio of the output signal, thereby causing the touch of the entire touch unit output.
  • the signal-to-noise ratio of the control sensing signal is also low, which results in low touch recognition accuracy of the touch unit.
  • the embodiment of the invention provides a touch unit, a preparation method thereof, and a touch substrate, which can solve the technical problem that the touch recognition accuracy of the current touch unit is low.
  • An embodiment of the present invention provides a touch unit including: a first touch electrode, a second touch electrode, and a conductive branch, wherein the second touch electrode includes a first sub-electrode and a second a sub-electrode and a conductive bridge line, the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode, and the conductive bridge line spans the first touch electrode and both ends Separately
  • the first sub-electrode is connected to the second sub-electrode;
  • the conductive branch is connected to the second touch electrode and insulated from the first touch electrode, and the conductive branch is on the first touch electrode
  • the orthographic projection on the plane at least partially falls within the area corresponding to the first touch electrode.
  • an insulating layer, the conductive bridge line, and the first sub-electrode, the second sub-electrode, and the first touch electrode are disposed above A conductive branch is located above the insulating layer.
  • a first via hole is disposed in the insulating layer, and the conductive bridge line and the first sub-electrode and the second sub-electrode pass the first Via connection.
  • a second via hole is disposed in the insulating layer, and the conductive branch passes through the second via hole and the first sub-electrode and the second sub-portion Electrode connection.
  • a second via hole is disposed in the insulating layer, and the conductive branch passes through the second via hole and the first sub-electrode or the second sub-port Electrode connection.
  • the conductive branch is connected to the conductive bridge.
  • the orthographic projections of the conductive branches on the plane where the first touch electrodes are located all fall within the area corresponding to the first touch electrodes.
  • the conductive branch is disposed in the same layer as the conductive bridge line.
  • the conductive branch includes a first conductive sub-branch and a second conductive sub-branch, and the first conductive sub-branch and the second conductive sub-branche are respectively located in the Both sides of the conductive bridge.
  • the shapes of the first conductive sub-branch and the second conductive sub-branch are different.
  • the embodiment of the present invention further provides a method for fabricating a touch unit, including: providing a substrate; forming a first touch electrode, a second touch electrode, and a conductive branch on the substrate;
  • the second touch electrode includes a first sub-electrode, a second sub-electrode, and a conductive bridge line.
  • the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode, and the conductive
  • the bridge line is connected to the first touch electrode and the two ends are respectively connected to the first sub-electrode and the second sub-electrode;
  • the conductive branch is connected to the second touch electrode and the first
  • the touch electrode is insulated, and the orthographic projection of the conductive branch on the plane where the first touch electrode is located falls at least partially in a region corresponding to the first touch electrode.
  • the step of forming the first touch electrode, the second touch electrode and the conductive branch on the base substrate comprises: Forming the first touch electrode, the first sub-electrode and the second sub-electrode on the base substrate; at the first touch electrode, the first sub-electrode and the second sub- Forming an insulating layer on the electrode; forming the conductive bridge line and the conductive branch on the insulating layer by a patterning process, the conductive bridge line and the first sub-electrode and the second sub-electrode passing through the first a via connection, the conductive branch is connected to the conductive bridge line; the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode.
  • An embodiment of the present invention further provides a touch substrate, including: a substrate substrate; and the touch unit disposed in the substrate on the substrate.
  • the touch unit is a plurality of to form a touch array, and in each of the touch units, the first touch electrode extends in a first direction.
  • the second touch electrode extends in a second direction.
  • each of the first touch electrodes arranged along the first direction is connected to each other;
  • the second touch electrodes are connected.
  • FIG. 1 is a schematic structural view of a mutual capacitive touch unit
  • FIG. 2 is a schematic structural diagram of a touch unit according to an embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional view of the Z-Z direction of Figure 2;
  • FIG. 4 is a schematic structural diagram of still another touch unit according to an embodiment of the present invention.
  • Figure 5 is a schematic cross-sectional view of the P-P direction of Figure 4.
  • FIG. 6 is a flowchart of a method for preparing a touch unit according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for fabricating a touch unit according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a touch substrate according to an embodiment of the invention.
  • the touch unit T includes a first touch electrode 1 and a second touch electrode 2
  • the second touch electrode 2 includes: The first sub-electrode 21, the second sub-electrode 23 and the conductive bridge 22, the first sub-electrode 21 and the second sub-electrode 23 are respectively located on two sides of the first touch electrode 1, and the conductive bridge 22 spans the first touch
  • the electrode 1 is connected to the first sub-electrode 21 and the second sub-electrode 23.
  • one of the first touch electrode and the second touch electrode serves as a touch scan electrode, and the other serves as a touch sensing electrode, and a mutual capacitance is generated between the first touch electrode and the second touch electrode.
  • the mutual capacitance includes a capacitance generated by the fringe electric field between the first sub-electrode 21 and the second sub-electrode 23 and the first touch electrode 1 respectively, and a fringe electric field between the conductive bridge line 22 and the first touch electrode 1 The resulting capacitance.
  • the portion is The signal-to-noise ratio of the output signal is relatively low, so that the signal-to-noise ratio of the touch sensing signal outputted by the entire touch unit is also low, and the touch recognition accuracy of the touch unit is low.
  • An embodiment of the present invention provides a touch unit including a first touch electrode, a second touch electrode, and a conductive branch.
  • the second touch electrode includes a first sub-electrode, a second sub-electrode, and a conductive
  • the bridge line, the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode, the conductive bridge line spans the first touch electrode and the two ends are respectively connected with the first sub-electrode and the second sub-electrode;
  • the branch is connected to the second touch electrode and insulated from the first touch electrode, and the orthographic projection of the conductive branch on the plane where the first touch electrode is located falls at least partially in the region corresponding to the first touch electrode.
  • the touch unit can solve the technical problem of low touch recognition accuracy in the current touch unit.
  • FIG. 2 is a schematic structural diagram of a touch unit according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of FIG. 2, FIG. 2 and FIG. 3,
  • the touch unit includes: a first touch electrode 100, a second touch electrode 200, and a conductive branch 300.
  • the second touch electrode 200 includes: a sub-electrode 201, a second sub-electrode 203, and a conductive bridge 202.
  • the first sub-electrode 201 and the second sub-electrode 203 are respectively located on two sides of the first touch electrode 100, and the conductive bridge 202 spans the first touch electrode.
  • the conductive branch 300 is connected to the second touch electrode 200 and insulated from the first touch electrode 100 , and the conductive branch 300 is at the first touch electrode 100 .
  • the first and second sub-electrodes are connected to the first touch electrode 100 .
  • the orthographic projection on the plane at least partially falls within the area corresponding to the first touch electrode 100. It should be noted that the touch unit provided by the embodiment of the present invention is located on the base substrate 400.
  • the conductive branch 300 includes a portion A that is projected in the region corresponding to the first touch electrode 100 and a portion B that is projected out of the region corresponding to the first touch electrode 100 .
  • a fringe electric field can be generated between the portion A and the first touch electrode 100, thereby effectively increasing the first
  • the mutual capacitance between the touch electrode 100 and the second touch electrode 200 (the conductive branch 300 can be regarded as a part of the second touch electrode 200) (the positive projection on the conductive branch 300 falls on the first touch electrode 100)
  • the portion A is shielded by the first touch electrode (the first touch electrode 100 can shield the electric field from the display panel), the portion A is not subjected to the touch process.
  • the effect of the electric field in the display panel is that no noise signal is generated.
  • the portion B on the conductive branch 300 that is projected beyond the region corresponding to the first touch electrode 100, since the portion B is far away from the first touch electrode 100, the portion B and the first touch
  • the edge electric field between the control electrodes 100 is relatively small, and thus does not significantly affect the mutual capacitance between the first touch electrode 100 and the second touch electrode 200.
  • the technical solution in the embodiment of the invention can improve the signal-to-noise ratio of the touch sensing signal, and is beneficial to improving the accuracy of the touch recognition.
  • the first sub-electrode 201, the second sub-electrode 203, and the first A touch electrode 100 is disposed in the same layer, and an insulating layer 500 is disposed on the first sub-electrode 201, the second sub-electrode 203, and the first touch electrode 100, and the first sub-electrode 201 and the second sub-electrode are disposed on the insulating layer 500.
  • the position of the electrode 203 is provided with a first via 801
  • the conductive bridge 202 is located above the insulating layer 500, and the conductive bridge 202 is connected to the first sub-electrode 201 and the second sub-electrode 203 through the first via 801, respectively.
  • the insulating layer 500 is further provided with a second via for connecting the conductive branch 300 to the first sub-electrode 201 and the second sub-electrode 203, or the insulating layer 500 is further provided with a conductive branch 300 and the first The second via 201 to which the sub-electrode 201 or the second sub-electrode 203 is connected.
  • the conductive branch 300 is located above the insulating layer 500, and the conductive branch 300 is connected to the first sub-electrode 201 and the second sub-electrode 203 through the second via. It should be noted that, in FIG.
  • the conductive branch 300 and the conductive bridge 202 can be disposed in the same layer above the insulating layer 500. At this time, the conductive branch 300 and the conductive bridge 202 can be simultaneously prepared by one patterning process, thereby shortening the production cycle. .
  • FIG. 4 is a schematic structural view of still another touch unit according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the PP direction of FIG. 4, as shown in FIG. 4 and FIG. 5, the touch unit shown in FIG.
  • the difference between the touch unit shown in FIG. 2 is that, in the touch unit shown in FIG. 4, the conductive branch 300 is directly connected to the conductive bridge 202, and the conductive branch 300 can be made at the first touch electrode 100.
  • the orthographic projections on the plane of the plane all fall within the area corresponding to the first touch electrode 100.
  • the conductive branch 300 is connected to the first sub-electrode 100 through the second via hole.
  • the conductive branch 300 extends from above the first sub-electrode 201 to the first touch.
  • the conductive branch 300 necessarily includes a portion of the orthographic projection that falls between the gap between the first touch electrode 100 and the first sub-electrode 201.
  • the portion is susceptible to interference from an electric field in the display panel, thereby being conductive.
  • the signal in the branch causes interference.
  • the conductive branch 300 is directly connected to the conductive bridge 202, and the conductive branch 300 is designed such that the conductive branch 300 is on the plane where the first touch electrode 100 is located.
  • the orthographic projections all fall within the area corresponding to the first touch electrode 100.
  • the electric field in the display panel can be effectively prevented from interfering with the signal in the conductive branch 300, thereby improving the touch recognition accuracy of the touch unit. degree.
  • the conductive branch 300 includes a first conductive sub-branch 301 and a second conductive sub-branche 302, and the first conductive sub-branch 301 and the second conductive sub-branche 302 are respectively located on opposite sides of the conductive bridge 202.
  • the total length of the conductive branch 300 can be effectively increased by providing conductive sub-branches on both sides of the conductive bridge.
  • the orthographic projection of the conductive branch 300 falls on the area corresponding to the first touch electrode 100.
  • the total length of the inner portion can also be increased as much as possible, so that the mutual capacitance between the first touch electrode 100 and the second touch electrode 200 (the conductive branch can be regarded as a part of the second touch electrode)
  • the increase that is, the amount of useful information in the touch sensing signal output by the touch unit is increased, thereby further improving the signal to noise ratio of the touch sensing signal.
  • the shapes of the first conductive sub-branch 301 and the second conductive sub-branch 302 are designed, when the shapes of the first conductive sub-branch 301 and the second conductive branch 302 are the same, the shape on the touch substrate is used for the entire touch substrate.
  • the periodicity of the same conductive sub-branches is too strong, so that moiré phenomenon is apt to occur. Therefore, in the embodiment, the shapes of the first conductive sub-branches 301 and the second conductive sub-branches 302 are different, and the moiré phenomenon on the touch substrate can be effectively avoided.
  • the shapes of the first touch electrode 100, the first sub-electrode 201 and the second sub-electrode 203, and the conductive branch 300 in FIG. 2 and FIG. 4 are merely exemplary functions, which are not implemented in the present invention.
  • the technical solution of the example creates a limitation.
  • the conductive branch 300 only needs to be in a linear structure to generate a fringe electric field with the first touch electrode 100, and the linear conductive branch 300 can be formed into any shape, which will not be exemplified herein.
  • the embodiment of the present invention provides a conductive branch connected to the second touch electrode in the touch unit, and the orthographic projection of the conductive branch on the plane where the first touch electrode is located at least partially falls on the first touch electrode.
  • the amount of useful information in the touch sensing signal outputted by the touch unit is effectively improved, thereby improving the signal-to-noise ratio of the touch sensing signal, thereby improving the accuracy of the touch recognition.
  • FIG. 6 is a flowchart of a method for fabricating a touch unit according to an embodiment of the present invention. As shown in FIG. 6 , the preparation method is used to prepare the touch unit in the above embodiment.
  • the preparation method includes:
  • Step S1 providing a substrate
  • Step S2 forming a first touch electrode, a second touch electrode, and a conductive branch on the base substrate;
  • the second touch electrode includes: a first sub-electrode, a second sub-electrode, and a conductive bridge line.
  • the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode, and the conductive bridge crosses the first touch An electrode and two ends of the electrode are respectively connected to the first sub-electrode and the second sub-electrode;
  • the conductive branch is connected to the second touch electrode and insulated from the first touch electrode.
  • the orthographic projection of the conductive branch on the plane where the first touch electrode is located falls at least partially in the region corresponding to the first touch electrode.
  • FIG. 7 is a flowchart of a method for preparing a touch unit according to an embodiment of the present invention, and the preparation method shown in FIG. 7 is a solution based on the preparation method shown in FIG. 6.
  • the preparation method includes:
  • Step S11 forming a first touch electrode, a first sub-electrode, and a second sub-electrode on the base substrate by using a patterning process.
  • the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode.
  • a conductive electrode film layer is first formed on the base substrate 1 by deposition, coating, sputtering, etc., and the material of the conductive electrode film layer may be indium tin oxide or silver nanowires.
  • the conductive material is then formed; then the pattern including the first touch electrode 100, the first sub-electrode 201, and the second sub-electrode 203 is formed by a patterning process.
  • the patterning process in the embodiment of the present invention includes photoresist coating, exposure, development, etching, photoresist stripping and the like.
  • Step S12 forming an insulating layer on the first touch electrode, the first sub-electrode, and the second sub-electrode.
  • an insulating layer 500 is formed on the substrate processed by step S11 by deposition, coating, sputtering, or the like, and the insulating layer 500 covers the first touch electrode 100, the first sub-electrode 201, and the second sub-electrode. 203.
  • the material of the insulating layer 500 may be a resin material, a material such as silicon oxide or silicon nitride.
  • the conductive bridge line 202 in the subsequent step is also required to correspond to the first sub-electrode 201 on the insulating layer 500 by an etching process.
  • the position of the second sub-electrode 203 forms a corresponding connection via, for example, forming a first via and a second via.
  • Step S13 forming a conductive bridge line and a conductive branch on the insulating layer by a patterning process, the conductive bridge line is connected to the first sub-electrode and the second sub-electrode through the first via, and the conductive branch is connected to the conductive bridge.
  • a conductive connection film layer is first formed on the insulating layer by deposition, coating, sputtering, etc., and the material of the conductive connection film layer may be a conductive material such as indium tin oxide, Mo, AL, Cu, etc.;
  • the process forms a pattern comprising conductive bridge lines 202, conductive branches 3.
  • the first sub-electrode 201, the conductive bridge line 202, and the second sub-electrode 203 constitute the second touch electrode 200.
  • the conductive branch 300 and the first sub-electrode may also be And the second sub-electrode is connected through the second via hole, or the conductive sub-branch 300 is connected to the first sub-electrode or the second sub-electrode through the second via hole.
  • the conductive bridge line 202 and the conductive branch 300 can be separately prepared by two patterning processes, and details are not described herein again.
  • the method for manufacturing the touch unit is configured to provide a conductive branch connected to the second touch electrode in the touch unit, and the orthographic projection of the conductive branch on the plane of the first touch electrode is at least partially dropped.
  • the amount of useful information in the touch sensing signal output by the touch unit is effectively improved, thereby improving the signal-to-noise ratio of the touch sensing signal, and improving the accuracy of the touch recognition. .
  • FIG. 8 is a schematic structural diagram of a touch substrate according to an embodiment of the present invention.
  • the touch substrate includes a base substrate (not shown) and a touch unit T located above the base substrate.
  • the touch unit T uses the above-mentioned touch unit. For related descriptions of the touch unit, reference may be made to the related content, and details are not described herein again.
  • the first touch electrodes 100 of the touch units T extend along the first direction X
  • the second touch electrodes 200 extend along the second direction Y.
  • the unit T forms a touch array.
  • the first touch electrodes 100 of the touch units T arranged in the first direction X are connected
  • the second touch units of the touch units are arranged along the second direction Y.
  • the electrodes 200 are connected.
  • all the first touch electrodes 100 arranged along the first direction X can be transmitted by the same signal trace 700
  • all the second touch electrodes 200 arranged along the second direction Y can use the same signal trace. 600 performs signal transmission, which can effectively reduce the number of signal traces on the touch substrate.
  • the touch substrate provided by the embodiment of the invention has high touch recognition accuracy.
  • the embodiment of the present invention provides a touch unit and a method for fabricating the same, and the touch control unit includes: a first touch electrode, a second touch electrode, and a conductive branch, wherein the second touch electrode includes: a sub-electrode, a second sub-electrode and a conductive bridge line, the first sub-electrode and the second sub-electrode are respectively located on two sides of the first touch electrode, the conductive bridge line spans the first touch electrode and the two ends are respectively opposite to the first
  • the sub-electrode is connected to the second sub-electrode
  • the conductive branch is connected to the second touch electrode and insulated from the second touch electrode, and the orthographic projection of the conductive branch on the plane of the first touch electrode at least partially falls on the first In the area corresponding to the touch electrode.
  • the technical solution of the embodiment of the invention can effectively improve the amount of useful information in the touch sensing signal output by the touch unit, thereby improving the signal to noise ratio of the touch sensing signal,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控单元及其制备方法、触控基板。该触控单元包括:第一触控电极(100)、第二触控电极(200)和导电分支(300),其中,第二触控电极(200)包括第一子电极(201)、第二子电极(203)和导电桥线(202),第一子电极(201)和第二子电极(203)分别位于第一触控电极(100)的两侧,导电桥线(202)跨过第一触控电极(100)且两端分别与第一子电极(201)和第二子电极(203)连接;导电分支(300)与第二触控电极(200)连接且与第一触控电极(100)绝缘,导电分支(300)在第一触控电极(100)所处平面上的正投影至少部分落在第一触控电极(100)所对应的区域内。有效地提高了触控单元输出的触控感应信号中有用的信息量,从而提高了触控感应信号的信噪比,进而提高了触控识别的精准度。

Description

触控单元及其制备方法、触控基板 技术领域
本发明的实施例涉及一种触控单元及其制备方法、触控基板。
背景技术
电容式触控单元具有定位精确灵敏的优点,在众多领域中得到应用。电容式触控单元分为自电容式和互电容式两种,由于互电容式触控单元可以实现多点触控,因而互电容式触控单元成为市场上的主流和未来发展的趋势。
互电容式触控屏分为外挂式和集成式两种结构,集成式互电容式触控屏(也称内嵌式互电容式触控屏,以下简称内嵌式触控屏)是将触控单元集成在显示面板的对向基板和阵列基板之间。外挂式触控屏是将触控单元叠置在显示面板上,因而不可避免地增加了整个显示装置的厚度和重量,造成透光率的下降,不符合当前显示装置轻薄化发展趋势的要求。将电容式触控单元应用于内嵌式触控屏时,内嵌式触控屏由于将触控单元集成在显示面板的内部,在减少显示装置的厚度以及提高透过率方面具有显著的优势,在实现触控功能的同时,还能达到显示装置轻薄化的效果。但是,无论是外挂式还是集成式,触控单元中的触控电极之间的电容容易受到显示面板中电场的干扰,造成输出信号的信噪比较低,从而导致整个触控单元输出的触控感应信号的信噪比也较低,进而导致该触控单元的触控识别精准度较低。
发明内容
本发明的实施例提供一种触控单元及其制备方法、触控基板,可解决目前触控单元的触控识别精准度较低的技术问题。
本发明的实施例提供一种触控单元,该触控单元包括:第一触控电极、第二触控电极和导电分支,其中,所述第二触控电极包括第一子电极、第二子电极和导电桥线,所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧,所述导电桥线跨过所述第一触控电极且两端分别与所 述第一子电极和所述第二子电极连接;所述导电分支与所述第二触控电极连接且与所述第一触控电极绝缘,所述导电分支在所述第一触控电极所处平面上的正投影至少部分落在所述第一触控电极所对应的区域内。
例如,在本发明实施例提供的触控单元中,所述第一子电极、所述第二子电极和所述第一触控电极的上方设置有绝缘层,所述导电桥线和所述导电分支位于所述绝缘层的上方。
例如,在本发明实施例提供的触控单元中,所述绝缘层中设置有第一过孔,所述导电桥线与所述第一子电极、所述第二子电极通过所述第一过孔连接。
例如,在本发明实施例提供的触控单元中,所述绝缘层中设置有第二过孔,所述导电分支通过所述第二过孔与所述第一子电极以及所述第二子电极连接。
例如,在本发明实施例提供的触控单元中,所述绝缘层中设置有第二过孔,所述导电分支通过所述第二过孔与所述第一子电极或者所述第二子电极连接。
例如,在本发明实施例提供的触控单元中,所述导电分支与所述导电桥线连接。
例如,在本发明实施例提供的触控单元中,所述导电分支在所述第一触控电极所处平面上的正投影全部落在所述第一触控电极所对应的区域内。
例如,在本发明实施例提供的触控单元中,所述导电分支与所述导电桥线同层设置。
例如,在本发明实施例提供的触控单元中,所述导电分支包括第一导电子分支和第二导电子分支,所述第一导电子分支和所述第二导电子分支分别位于所述导电桥线的两侧。
例如,在本发明实施例提供的触控单元中,所述第一导电子分支和所述第二导电子分支的形状不同。
本发明的实施例还提供一种触控单元的制备方法,包括:提供衬底基板;在所述衬底基板上形成第一触控电极、第二触控电极和导电分支;其中,所述第二触控电极包括第一子电极、第二子电极和导电桥线,所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧,所述导电 桥线跨过所述第一触控电极且两端分别与所述第一子电极和所述第二子电极连接;所述导电分支与所述第二触控电极连接且与所述第一触控电极绝缘,所述导电分支在所述第一触控电极所处平面上的正投影至少部分落在所述第一触控电极所对应的区域内。
例如,在本发明实施例提供的制备方法中,在所述衬底基板上形成所述第一触控电极、所述第二触控电极和所述导电分支的步骤包括:通过一次构图工艺在所述衬底基板上形成所述第一触控电极、所述第一子电极和所述第二子电极;在所述第一触控电极、所述第一子电极和所述第二子电极上形成绝缘层;通过一次构图工艺在所述绝缘层上形成所述导电桥线和所述导电分支,所述导电桥线与所述第一子电极、所述第二子电极通过第一过孔连接,所述导电分支与所述导电桥线连接;所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧。
本发明的实施例还提供一种触控基板,包括:衬底基板;设置在所述衬底基板上的上述中的触控单元。
例如,在本发明实施例提供的触控基板中,所述触控单元为多个以形成触控阵列,在各所述触控单元中,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸。
例如,本发明实施例提供的触控基板,在所述触控阵列中,沿所述第一方向排列的各所述第一触控电极相连接;沿所述第二方向排列的各所述第二触控电极相连接。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种互电容式触控单元的结构示意图;
图2为本发明一实施例提供的一种触控单元的结构示意图;
图3为图2中Z-Z向的截面示意图;
图4为本发明一实施例提供的又一种触控单元的结构示意图;
图5为图4中P-P向的截面示意图;
图6为本发明一实施例提供的一种触控单元的制备方法的流程图;
图7为本发明再一实施例提供的一种触控单元的制备方法的流程图;
图8为本发明一实施例提供的一种触控基板的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为一种互电容式触控单元的结构示意图,如图1所示,该触控单元T包括:第一触控电极1和第二触控电极2,第二触控电极2包括:第一子电极21、第二子电极23和导电桥线22,第一子电极21和第二子电极23分别位于第一触控电极1的两侧,导电桥线22跨过第一触控电极1以连接第一子电极21和第二子电极23。
在进行触控过程中,第一触控电极和第二触控电极中一个作为触控扫描电极,另一个作为触控感应电极,第一触控电极和第二触控电极之间产生互电容,该互电容包括第一子电极21和第二子电极23分别与第一触控电极1之间通过边缘电场产生的电容,以及导电桥线22与第一触控电极1之间通过边缘电场产生的电容。
在图1所示的互电容式触控单元中,由于第一子电极21和第二子电极23分别与第一触控电极1之间的电容易受到显示面板中电场的干扰,因此该部分输出信号的信噪比较低,从而导致整个触控单元输出的触控感应信号的信噪比也较低,进而导致该触控单元的触控识别精准度较低。
本发明的实施例提供了一种触控单元,该触控单元包括第一触控电极、第二触控电极和导电分支,第二触控电极包括第一子电极、第二子电极和导电桥线,第一子电极和第二子电极分别位于第一触控电极的两侧,导电桥线跨过第一触控电极且两端分别与第一子电极和第二子电极连接;导电分支与第二触控电极连接且与第一触控电极绝缘,导电分支在第一触控电极所处平面上的正投影至少部分落在第一触控电极所对应的区域内。该触控单元可解决目前的触控单元中触控识别精准度较低的技术问题。
图2为本发明一实施例提供的一种触控单元的结构示意图,图3为图 2中Z-Z向的截面示意图,如图2和图3所示,该触控单元包括:第一触控电极100、第二触控电极200和导电分支300,第二触控电极200包括:第一子电极201、第二子电极203和导电桥线202,第一子电极201和第二子电极203分别位于第一触控电极100的两侧,导电桥线202跨过第一触控电极100且两端分别与第一子电极201和第二子电极203连接,导电分支300与第二触控电极200连接且与第一触控电极100绝缘,导电分支300在第一触控电极100所处平面上的正投影至少部分落在第一触控电极100所对应的区域内。需要说明的是,本发明实施例提供的触控单元位于衬底基板400上。
例如,在图2中,导电分支300包含正投影落在第一触控电极100所对应的区域内的部分A和正投影落在第一触控电极100所对应的区域之外的部分B。
对于导电分支3上正投影落在第一触控电极100所对应的区域内的部分A,该部分A与第一触控电极100之间可产生边缘电场,从而可有效的增大了第一触控电极100和第二触控电极200(导电分支300可看作是第二触控电极200的一部分)之间的互电容(导电分支300上正投影落在第一触控电极100所对应的区域内的部分的总长度越长,第一触控电极100和第二触控电极200之间的互电容的增大量越大),即可有效提高触控单元输出的触控感应信号中的有用信息量,与此同时,由于该部分A受到第一触控电极的屏蔽作用(第一触控电极100可屏蔽显示面板中电场的干扰),该部分A在触控过程中不会受到显示面板中电场的影响,即不会产生噪声信号。
对于导电分支300上正投影落在第一触控电极100所对应的区域之外的部分B,由于该部分B与第一触控电极100之间距离较远,因此该部分B与第一触控电极100之间的边缘电场相对较小,因而不会对第一触控电极100和第二触控电极200之间的互电容产生明显影响。
由上述内容可见,本实施例中通过设置导电分支300,可使得触控单元输出的触控感应信号中的有用信息的信息量增大且噪声信息的信息量不变。本发明实施例中的技术方案可使得触控感应信号的信噪比提高,有利于提高触控识别的精准度。
在本实施例中,如图2所示,第一子电极201、第二子电极203和第 一触控电极100同层设置,且第一子电极201、第二子电极203和第一触控电极100的上方设置有绝缘层500,绝缘层500上对应第一子电极201、第二子电极203的位置设置有第一过孔801,导电桥线202位于绝缘层500的上方,导电桥线202通过第一过孔801与第一子电极201和第二子电极203分别连接。
例如,绝缘层500上还设置有用于供导电分支300与第一子电极201和第二子电极203连接的第二过孔,或者,绝缘层500上还设置有用于供导电分支300与第一子电极201或第二子电极203连接的第二过孔。导电分支300位于绝缘层500的上方,导电分支300通过第二过孔与第一子电极201、第二子电极203进行连接。需要说明的是,图2中仅示例性的画出了导电分支300通过第二过孔802与第一子电极201连接的情况,对于导电分支300与第二子电极203通过第二过孔连接的情况未给出相应的附图。
在本实施例中,导电分支300与导电桥线202可同层设置于绝缘层500的上方,此时可通过一次构图工艺以同时制备出导电分支300与导电桥线202,从而可缩短生产周期。
图4为本发明一实施例提供的再一种触控单元的结构示意图,图5为图4中P-P向的截面示意图,如图4和图5所示,图4所示的触控单元与图2所示的触控单元的区别在于,在图4所示的触控单元中,导电分支300直接与导电桥线202相连接,此时可使得导电分支300在第一触控电极100所处平面上的正投影全部落在第一触控电极100所对应的区域内。
在图2所示的触控单元中,以导电分支300与第一子电极100通过第二过孔连接为例,此时导电分支300会从第一子电极201的上方延伸至第一触控电极100的上方,因此导电分支300必然包含正投影落在位于第一触控电极100与第一子电极201之间间隙的部分,然而该部分容易受到显示面板中电场的干扰,从而会对导电分支中的信号造成干扰。
在图4所示的触控单元中,将导电分支300直接与导电桥线202相连接,并对导电分支300进行一定的设计,使得导电分支300在第一触控电极100所处平面上的正投影全部落在第一触控电极100所对应的区域内。此时,在第一触控电极100的屏蔽作用下,可有效避免显示面板中的电场对导电分支300中的信号产生干扰,进而可提升触控单元的触控识别精准 度。
例如,导电分支300包括:第一导电子分支301和第二导电子分支302,第一导电子分支301和第二导电子分支302分别位于导电桥线202的两侧。在本实施例中,通过在导电桥线的两侧均设置导电子分支,可有效增加导电分支300的总长度,此时导电分支300上正投影落在第一触控电极100所对应的区域内的部分的总长度也可以尽可能的增大,从而使得第一触控电极100和第二触控电极200(导电分支可看作是第二触控电极的一部分)之间的互电容相应增大,即触控单元输出的触控感应信号中的有用信息量增加,进而使得触控感应信号的信噪比相应提高。
在设计第一导电子分支301和第二导电子分支302的形状时,当第一导电子分支301和第二导电分支302的形状相同时,对于整个触控基板而言,触控基板上形状相同的导电子分支的周期性过强,从而容易出现摩尔纹现象。因此在本实施例中,第一导电子分支301和第二导电子分支302的形状不同,此时可有效的避免触控基板上出现摩尔纹现象。
需要说明的是,上述图2和图4中第一触控电极100、第一子电极201和第二子电极203、导电分支300的形状仅起到示例性作用,这并不会对本发明实施例的技术方案产生限制。在本发明的实施例中,仅需满足导电分支300为线性结构,以与第一触控电极100产生边缘电场,线性的导电分支300可摆成任意形状,此处不再一一举例说明。
本发明的实施例通过在触控单元中设置与第二触控电极连接的导电分支,且导电分支在第一触控电极所处平面上的正投影至少部分落在第一触控电极所对应的区域内,从而有效地提高了触控单元输出的触控感应信号中有用的信息量,进而使得触控感应信号的信噪比提高,从而有利于提高触控识别的精准度。
图6为本发明实施例提供的一种触控单元的制备方法的流程图,如图6所示,该制备方法用于制备上述实施例中的触控单元,该制备方法包括:
步骤S1、提供衬底基板;
步骤S2、在衬底基板上形成第一触控电极、第二触控电极和导电分支;
第二触控电极包括:第一子电极、第二子电极和导电桥线,第一子电极和第二子电极分别位于第一触控电极的两侧,导电桥线跨过第一触控电极且两端分别与第一子电极和第二子电极连接;
导电分支与第二触控电极连接且与第一触控电极绝缘,导电分支在第一触控电极所处平面上的正投影至少部分落在第一触控电极所对应的区域内。
图7为本发明实施例提供的一种触控单元的制备方法的流程图,图7所示的制备方法为基于图6所示制备方法的一种方案,该制备方法包括:
步骤S11、通过一次构图工艺在衬底基板上形成第一触控电极、第一子电极和第二子电极,第一子电极和第二子电极分别位于第一触控电极的两侧。
参见图4和图5,在步骤S11中,首先在衬底基板1上通过沉积、涂布、溅射等方式形成导电电极膜层,导电电极膜层的材料可以为氧化铟锡、银纳米线等导电材料;然后通过构图工艺形成包括第一触控电极100、第一子电极201和第二子电极203的图形。
需要说明的是,本发明实施例中的构图工艺包括光刻胶涂敷、曝光、显影、刻蚀、光刻胶剥离等工艺。
步骤S12、在第一触控电极、第一子电极和第二子电极上形成绝缘层。
在步骤S12中,通过沉积、涂布、溅射等方式在经步骤S11处理后的基板上形成绝缘层500,绝缘层500覆盖第一触控电极100、第一子电极201和第二子电极203。其中,绝缘层500的材料可以为树脂材料、氧化硅、氮化硅等材料。
需要说明的是,为使后续步骤中的导电桥线202能够与第一子电极201和第二子电极202进行连接,则还需要通过刻蚀工艺在绝缘层500上对应于第一子电极201和第二子电极203的位置形成相应的连接过孔,例如,形成第一过孔和第二过孔。
步骤S13、通过一次构图工艺在绝缘层上形成导电桥线和导电分支,导电桥线与第一子电极和第二子电极通过第一过孔连接,导电分支与导电桥线连接。
在步骤S13中,首先在绝缘层上通过沉积、涂布、溅射等方式形成导电连接膜层,导电连接膜层的材料可以为氧化铟锡、Mo、AL、Cu等导电材料;然后通过构图工艺形成包括导电桥线202、导电分支3的图形。第一子电极201、导电桥线202和第二子电极203构成第二触控电极200。
例如,如图2和图3所示,也可以使得导电分支300与第一子电极以 及第二子电极通过第二过孔连接,或者,使得导电分支300与第一子电极或第二子电极通过第二过孔连接,此时则需要在绝缘层500上形成用于供导电分支300与第一子电极201以及第二子电极203连接的第二过孔,或者形成用于供导电分支300与第一子电极201或第二子电极203连接的第二过孔。
此外,本发明实施例中导电桥线202和导电分支300可以通过两次构图工艺来分别制备,此处不再赘述。
本发明实施例提供的触控单元的制备方法,通过在触控单元中设置与第二触控电极连接的导电分支,且导电分支在第一触控电极所处平面上的正投影至少部分落在第一触控电极所对应的区域,从而有效地提高了触控单元输出的触控感应信号中的有用信息量,进而使得触控感应信号的信噪比提高,触控识别的精准度提高。
图8为本发明实施例提供的一种触控基板的结构示意图,如图8所示,该触控基板包括衬底基板(未示出)和位于衬底基板上方触控单元T,其中,该触控单元T采用上述中的触控单元,该触控单元的相关描述可参考上述相关内容,此处不再赘述。
例如,当触控单元T的数量为多个时,各触控单元T中的第一触控电极100沿第一方向X延伸,第二触控电极200沿第二方向Y延伸,全部触控单元T形成触控阵列;在触控阵列中,沿第一方向X排列的各触控单元T的第一触控电极100连接,沿第二方向Y排列的各触控单元的第二触控电极200连接。此时,沿第一方向X排列的全部第一触控电极100可利用同一根信号走线700进行信号传递,沿第二方向Y排列的全部第二触控电极200可利用同一根信号走线600进行信号传递,从而可有效的减小触控基板上信号走线的数量。
本发明实施例提供的触控基板具有较高的触控识别精准度。
本发明的实施例提供了一种触控单元及其制备方法、触控基板,该触控单元包括:第一触控电极、第二触控电极和导电分支,第二触控电极包括:第一子电极、第二子电极和导电桥线,第一子电极和第二子电极分别位于第一触控电极的两侧,导电桥线跨过第一触控电极且两端分别与第一子电极和第二子电极连接,导电分支与第二触控电极连接且与第二触控电极绝缘,导电分支在第一触控电极所处平面上的正投影至少部分落在第一 触控电极所对应的区域内。本发明实施例的技术方案可有效的提高触控单元输出的触控感应信号中有用的信息量,从而使得触控感应信号的信噪比提高,进而有利于提高触控识别的精准度。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年1月28日递交的中国专利申请第201610060248.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种触控单元,包括:第一触控电极、第二触控电极和导电分支,其中,
    所述第二触控电极包括第一子电极、第二子电极和导电桥线,所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧,所述导电桥线跨过所述第一触控电极且两端分别与所述第一子电极和所述第二子电极连接;
    所述导电分支与所述第二触控电极连接且与所述第一触控电极绝缘,所述导电分支在所述第一触控电极所处平面上的正投影至少部分落在所述第一触控电极所对应的区域内。
  2. 根据权利要求1所述的触控单元,其中,所述第一子电极、所述第二子电极和所述第一触控电极的上方设置有绝缘层,所述导电桥线和所述导电分支位于所述绝缘层的上方。
  3. 根据权利要求2所述的触控单元,其中,所述绝缘层中设置有第一过孔,所述导电桥线与所述第一子电极、所述第二子电极通过所述第一过孔连接。
  4. 根据权利要求2所述的触控单元,其中,所述绝缘层中设置有第二过孔,所述导电分支通过所述第二过孔与所述第一子电极以及所述第二子电极连接。
  5. 根据权利要求2所述的触控单元,其中,所述绝缘层中设置有第二过孔,所述导电分支通过所述第二过孔与所述第一子电极或者所述第二子电极连接。
  6. 根据权利要求1或2所述的触控单元,其中,所述导电分支与所述导电桥线连接。
  7. 根据权利要求6所述的触控单元,其中,所述导电分支在所述第一触控电极所处平面上的正投影全部落在所述第一触控电极所对应的区域内。
  8. 根据权利要求1-7中任一项所述的触控单元,其中,所述导电分支与所述导电桥线同层设置。
  9. 根据权利要求8所述的触控单元,其中,所述导电分支包括第一导电子分支和第二导电子分支,所述第一导电子分支和所述第二导电子分支分别位于所述导电桥线的两侧。
  10. 根据权利要求9所述的触控单元,其中,所述第一导电子分支和所述第二导电子分支的形状不同。
  11. 一种触控单元的制备方法,包括:
    提供衬底基板;
    在所述衬底基板上形成第一触控电极、第二触控电极和导电分支;
    其中,所述第二触控电极包括第一子电极、第二子电极和导电桥线,所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧,所述导电桥线跨过所述第一触控电极且两端分别与所述第一子电极和所述第二子电极连接;
    所述导电分支与所述第二触控电极连接且与所述第一触控电极绝缘,所述导电分支在所述第一触控电极所处平面上的正投影至少部分落在所述第一触控电极所对应的区域内。
  12. 根据权利要求11所述的制备方法,其中,在所述衬底基板上形成所述第一触控电极、所述第二触控电极和所述导电分支的步骤包括:
    通过一次构图工艺在所述衬底基板上形成所述第一触控电极、所述第一子电极和所述第二子电极;
    在所述第一触控电极、所述第一子电极和所述第二子电极上形成绝缘层;
    通过一次构图工艺在所述绝缘层上形成所述导电桥线和所述导电分支,所述导电桥线与所述第一子电极、所述第二子电极通过第一过孔连接,所述导电分支与所述导电桥线连接;
    所述第一子电极和所述第二子电极分别位于所述第一触控电极的两侧。
  13. 一种触控基板,包括:
    衬底基板;
    设置在所述衬底基板上的如权利要求1-10中任一项所述的触控单元。
  14. 根据权利要求13所述的触控基板,其中,所述触控单元为多个以形成触控阵列,在各所述触控单元中,所述第一触控电极沿第一方向延伸,所述第二触控电极沿第二方向延伸。
  15. 根据权利要求14所述的触控基板,其中,在所述触控阵列中,沿所述第一方向排列的各所述第一触控电极相连接;沿所述第二方向排列的各所述第二触控电极相连接。
PCT/CN2016/100707 2016-01-28 2016-09-29 触控单元及其制备方法、触控基板 WO2017128754A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,920 US10067589B2 (en) 2016-01-28 2016-09-29 Touch unit and manufacturing method thereof and touch substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610060248.6A CN105446570B (zh) 2016-01-28 2016-01-28 触控单元及其制备方法、触控基板
CN201610060248.6 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017128754A1 true WO2017128754A1 (zh) 2017-08-03

Family

ID=55556847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100707 WO2017128754A1 (zh) 2016-01-28 2016-09-29 触控单元及其制备方法、触控基板

Country Status (3)

Country Link
US (1) US10067589B2 (zh)
CN (1) CN105446570B (zh)
WO (1) WO2017128754A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446570B (zh) * 2016-01-28 2017-02-15 京东方科技集团股份有限公司 触控单元及其制备方法、触控基板
CN107025027A (zh) 2016-08-12 2017-08-08 京东方科技集团股份有限公司 触控基板及其制作方法、显示面板和显示装置
CN106293250A (zh) * 2016-09-09 2017-01-04 合肥鑫晟光电科技有限公司 触控单元及其制造方法、触控显示面板
CN108227990A (zh) * 2018-01-03 2018-06-29 京东方科技集团股份有限公司 触控基板及显示装置
CN108762589A (zh) * 2018-05-30 2018-11-06 武汉华星光电半导体显示技术有限公司 触控面板、触控面板制备方法及触控装置
US10754484B2 (en) * 2018-05-30 2020-08-25 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch panel, manufacturing method for touch panel and touch device
CN108897454B (zh) * 2018-06-29 2021-07-23 武汉天马微电子有限公司 触控面板及其制作方法、集成触控的显示面板、显示装置
CN115543112A (zh) * 2021-06-30 2022-12-30 京东方科技集团股份有限公司 触控基板、显示面板及电子设备
WO2024065314A1 (zh) * 2022-09-28 2024-04-04 京东方科技集团股份有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201853214U (zh) * 2010-09-30 2011-06-01 深圳市中显微电子有限公司 电容式触摸屏触控板
US20140320763A1 (en) * 2013-04-25 2014-10-30 Anapass Inc. Capacitive touch-sensitive panel and mobile terminal using the same
CN104407742A (zh) * 2014-12-12 2015-03-11 合肥鑫晟光电科技有限公司 触控基板及其制备方法、显示装置
CN104750343A (zh) * 2015-02-05 2015-07-01 深圳市华星光电技术有限公司 电容式感应元件、触摸屏及电子设备
CN105446570A (zh) * 2016-01-28 2016-03-30 京东方科技集团股份有限公司 触控单元及其制备方法、触控基板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447475B (zh) * 2009-09-07 2014-08-01 Au Optronics Corp 觸控面板
CN102915147A (zh) * 2012-09-17 2013-02-06 北京京东方光电科技有限公司 触摸感应元件、触摸面板及触摸面板的制造方法
CN103092414B (zh) * 2013-01-17 2015-12-02 北京京东方光电科技有限公司 一种外挂式触摸屏及其制作方法、显示装置
TW201445379A (zh) * 2013-05-21 2014-12-01 Wintek Corp 觸控面板
TWI485598B (zh) * 2013-07-02 2015-05-21 Au Optronics Corp 觸控面板及其製造方法
US9958973B2 (en) * 2014-10-24 2018-05-01 Lg Display Co., Ltd. Touch panel and touch panel-integrated organic light emitting display device
CN104765497B (zh) * 2015-04-09 2018-01-09 深圳市华星光电技术有限公司 一种触摸屏及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201853214U (zh) * 2010-09-30 2011-06-01 深圳市中显微电子有限公司 电容式触摸屏触控板
US20140320763A1 (en) * 2013-04-25 2014-10-30 Anapass Inc. Capacitive touch-sensitive panel and mobile terminal using the same
CN104407742A (zh) * 2014-12-12 2015-03-11 合肥鑫晟光电科技有限公司 触控基板及其制备方法、显示装置
CN104750343A (zh) * 2015-02-05 2015-07-01 深圳市华星光电技术有限公司 电容式感应元件、触摸屏及电子设备
CN105446570A (zh) * 2016-01-28 2016-03-30 京东方科技集团股份有限公司 触控单元及其制备方法、触控基板

Also Published As

Publication number Publication date
US20180046291A1 (en) 2018-02-15
CN105446570A (zh) 2016-03-30
CN105446570B (zh) 2017-02-15
US10067589B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
WO2017128754A1 (zh) 触控单元及其制备方法、触控基板
TWI468820B (zh) 觸控感測元件
US9671909B2 (en) Mutual capacitance one glass solution touch panel and manufacture method thereof
US11360610B2 (en) Touch control substrate, method for fabricating the same, and touch control display device
TWI386838B (zh) 觸控顯示面板與觸控基材
JP2015225649A (ja) 埋め込み式アクティブマトリクス有機発光ダイオードのタッチ制御パネル
CN106020562B (zh) 一种触控屏及其制作方法、外挂式触摸屏
TW201305888A (zh) 電容式觸控面板結構及製造方法
WO2019080758A1 (zh) 触控基板及其制备方法和触控装置
WO2015143862A1 (zh) 触摸屏、其制作方法及显示装置
US8568599B1 (en) Touch panel fabricating method
WO2015027639A1 (zh) 触摸屏、触摸屏的制作方法及显示装置
JP2020531932A (ja) タッチパネル、その製造方法及びタッチ表示装置
KR20150139104A (ko) 터치 스크린 패널
CN106681559B (zh) 触控面板及其制造方法、触控显示装置
KR20140143645A (ko) 터치 센서 패널 및 그 제조 방법
TWI628563B (zh) 觸碰感測電極以及含此之觸控螢幕面板
WO2021027711A1 (zh) 触控屏、屏幕模组和电子设备
WO2018099069A1 (zh) 触摸显示屏、显示装置和触摸面板
CN103455204B (zh) 触摸屏、其制作方法及显示装置
TW201443719A (zh) 觸控面板及觸控顯示面板
US11086460B2 (en) Touch substrate, method for manufacturing same, and touch device
KR20130072402A (ko) 터치패널의 전극형성방법
CN203480463U (zh) 触摸屏及显示装置
US11184985B2 (en) Method of manufacturing touch structure and touch structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541920

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887628

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 060619)

122 Ep: pct application non-entry in european phase

Ref document number: 16887628

Country of ref document: EP

Kind code of ref document: A1