WO2017128577A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2017128577A1
WO2017128577A1 PCT/CN2016/083567 CN2016083567W WO2017128577A1 WO 2017128577 A1 WO2017128577 A1 WO 2017128577A1 CN 2016083567 W CN2016083567 W CN 2016083567W WO 2017128577 A1 WO2017128577 A1 WO 2017128577A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
light shielding
matrix
layer
Prior art date
Application number
PCT/CN2016/083567
Other languages
English (en)
French (fr)
Inventor
虞晓江
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/114,850 priority Critical patent/US9946108B2/en
Publication of WO2017128577A1 publication Critical patent/WO2017128577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133354Arrangements for aligning or assembling substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display panel and a method of fabricating the same.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal display devices which include an LTPS display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • a liquid crystal display panel comprises a CF (Color Filter) substrate, a thin film transistor (TFT) substrate, a liquid crystal (LC) sandwiched between the color filter substrate and the thin film transistor substrate, and a sealant frame ( Sealant),
  • the molding process generally includes: front array (Array) process (film, yellow, etching and stripping), middle cell (Cell) process (TFT substrate and CF substrate bonding) and rear module assembly Process (drive IC and printed circuit board is pressed).
  • the front Array process mainly forms a TFT substrate to control the movement of liquid crystal molecules;
  • the middle Cell process mainly adds liquid crystal between the TFT substrate and the CF substrate;
  • the rear module assembly process is mainly to drive the IC to press and print the circuit.
  • the integration of the plates drives the liquid crystal molecules to rotate and display images.
  • Low Temperature Poly Silicon is a liquid crystal display technology widely used in small and medium-sized electronic products.
  • Conventional amorphous silicon materials have an electron mobility of about 0.5-1.0 cm 2 /VS, while low-temperature polysilicon has an electron mobility of 30-300 cm 2 /VS. Therefore, the low-temperature polycrystalline silicon liquid crystal display has many advantages such as high resolution, fast reaction speed, and high aperture ratio.
  • LTPS display panels have been widely used in high-end mobile phones and tablets. IPHONE 6S mobile phones, LG G4 mobile phones, Kindle Fire Hdx tablet computers and other products all use LTPS display panels. However, some LTPS display panels may have a large-view character bias. When the user tilts the LTPS display panel from a larger viewing angle, the panel display is deviated from the normal color level.
  • FIG. 1 it is a schematic structural diagram of an existing LTPS display panel, and the LTPS display
  • the panel includes a color film substrate 100 and an array substrate 200 disposed opposite to each other, and a liquid crystal layer 300 interposed between the color filter substrate 100 and the array substrate 200.
  • the color filter substrate 100 includes a first substrate 110 and a substrate.
  • the array substrate 200 includes a second substrate 210, a TFT layer 220 disposed on the second substrate 210, a pixel electrode 230 disposed on the TFT layer 220, an insulating layer 240 disposed on the pixel electrode 230, and an insulating layer 240 disposed on the insulating layer 240
  • the human eye views the display panel from a larger angle, the light transmitted from one pixel unit of the array substrate 200 is transmitted from the two pixel units in the color filter substrate 100, so that the human eye feels Color shift. Therefore, it is necessary to provide an LTPS display panel to solve the technical problem.
  • An object of the present invention is to provide an LTPS display panel, wherein a matrix electrode corresponding to a black matrix is disposed on a side of the color filter substrate adjacent to the liquid crystal layer, so that light between adjacent pixels in the LTPS display panel does not interfere. It eliminates the large-view role of the panel and improves the display quality of the LTPS display panel.
  • Another object of the present invention is to provide a method for fabricating an LTPS display panel, which is simple in manufacturing method, and the obtained LTPS display panel can eliminate the large-view role and improve the display quality of the LTPS display panel.
  • the present invention provides an LTPS display panel comprising a color film substrate and an array substrate disposed opposite to each other, and a liquid crystal layer interposed between the color film substrate and the array substrate;
  • the color filter substrate includes a first substrate, a black matrix and a color photoresist layer disposed on the first substrate, a flat layer disposed on the color photoresist layer, and a flat layer disposed on the a matrix electrode disposed on the layer and corresponding to the black matrix; the matrix electrode is connected to the common electrode signal;
  • the array substrate includes a second substrate, a TFT layer disposed on the second substrate, a pixel electrode disposed on the TFT layer, an insulating layer disposed on the pixel electrode, and a common electrode on the insulating layer;
  • the matrix electrode Since the matrix electrode is connected to the common electrode signal, there is no voltage difference between the matrix electrode and the common electrode, and the liquid crystal layer between the matrix electrode and the common electrode is not in the energized and non-energized states. Deflection occurs, which is always opaque, so that the light between adjacent pixels of the panel does not interfere, and the large-view character of the panel is eliminated.
  • the black matrix includes a plurality of lateral light shielding strips and a plurality of longitudinal light shielding strips, wherein the plurality of horizontal light shielding strips are vertically arranged with a plurality of longitudinal light shielding strips;
  • the matrix electrode includes a plurality of horizontal strip electrodes corresponding to the plurality of lateral light shielding strips, and a plurality of longitudinal strip electrodes corresponding to the plurality of longitudinal light shielding strips, the plurality of horizontal strip electrodes and a plurality of longitudinal electrodes
  • the strip electrodes are vertically aligned.
  • the widths of the lateral light shielding strips and the longitudinal light shielding strips of the black matrix are respectively greater than the widths of the lateral strip electrodes and the longitudinal strip electrodes of the matrix electrodes.
  • the color photoresist layer includes a plurality of first, second, and third color block blocks separated by the black matrix; the first, second, and third color block blocks are red, green, and The blue blocks are combined in any order.
  • the material of the flat layer is an organic photoresist; the material of the matrix electrode, the pixel electrode, and the common electrode is indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, or indium antimony zinc oxide.
  • the material of the insulating layer is silicon oxide, silicon nitride, or a combination of the two.
  • the invention also provides a method for manufacturing an LTPS display panel, comprising the following steps:
  • Step 1 providing a first substrate, coating a black light-shielding material on the first substrate, forming a black light-shielding layer, and patterning the black light-shielding layer by a photolithography process to obtain a black matrix;
  • Step 2 forming a color photoresist layer on the black matrix and the first substrate, and forming a flat layer on the color photoresist layer;
  • Step 3 depositing a transparent conductive material on the flat layer to form a transparent conductive layer, and patterning the transparent conductive layer by a photolithography process to obtain a matrix electrode corresponding to the black matrix, thereby obtaining a color Membrane substrate
  • Step 4 providing an array substrate, the array substrate includes a second substrate, a TFT layer disposed on the second substrate, a pixel electrode disposed on the TFT layer, and the pixel electrode An upper insulating layer and a common electrode disposed on the insulating layer;
  • the array substrate and the color filter substrate are aligned into a box, and liquid crystal molecules are poured between the array substrate and the color filter substrate to form a liquid crystal layer, thereby obtaining an LTPS display panel.
  • the black matrix includes a plurality of lateral light shielding strips and a plurality of longitudinal light shielding strips, wherein the plurality of horizontal light shielding strips are vertically arranged with a plurality of longitudinal light shielding strips;
  • the matrix electrode includes a plurality of horizontal strip electrodes corresponding to the plurality of lateral light shielding strips, and a plurality of longitudinal strip electrodes corresponding to the plurality of longitudinal light shielding strips, the plurality of horizontal strip electrodes and a plurality of longitudinal electrodes
  • the strip electrodes are vertically aligned.
  • the widths of the lateral light shielding strips and the longitudinal light shielding strips of the black matrix are respectively greater than the widths of the lateral strip electrodes and the longitudinal strip electrodes of the matrix electrodes.
  • the color photoresist layer includes a plurality of first, second, and third color block blocks separated by the black matrix; the first, second, and third color block blocks are red, green, and Blue block Arrange and combine in any order.
  • the material of the flat layer is an organic photoresist; the material of the matrix electrode, the pixel electrode, and the common electrode is indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, or indium antimony zinc oxide.
  • the material of the insulating layer is silicon oxide, silicon nitride, or a combination of the two.
  • the present invention also provides a display panel comprising a color film substrate and an array substrate disposed opposite to each other, and a liquid crystal layer interposed between the color film substrate and the array substrate;
  • the color filter substrate includes a first substrate, a black matrix and a color photoresist layer disposed on the first substrate, a flat layer disposed on the color photoresist layer, and a flat layer disposed on the a matrix electrode disposed on the layer and corresponding to the black matrix; the matrix electrode is connected to the common electrode signal;
  • the array substrate includes a second substrate, a TFT layer disposed on the second substrate, a pixel electrode disposed on the TFT layer, an insulating layer disposed on the pixel electrode, and a common electrode on the insulating layer;
  • the matrix electrode Since the matrix electrode is connected to the common electrode signal, there is no voltage difference between the matrix electrode and the common electrode, and the liquid crystal layer between the matrix electrode and the common electrode is not in the energized and non-energized states. Deflection occurs, which is always opaque, so that the light between adjacent pixels of the panel does not interfere, and the large-view role of the panel is eliminated;
  • the black matrix includes a plurality of horizontal light shielding strips and a plurality of longitudinal light shielding strips, wherein the plurality of horizontal light shielding strips are vertically arranged with a plurality of longitudinal light shielding strips;
  • the matrix electrode includes a plurality of horizontal strip electrodes corresponding to the plurality of lateral light shielding strips, and a plurality of longitudinal strip electrodes corresponding to the plurality of longitudinal light shielding strips, the plurality of horizontal strip electrodes and a plurality of longitudinal electrodes Strip electrodes are vertically arranged;
  • the color photoresist layer includes a plurality of first, second, and third color block blocks separated by the black matrix; the first, second, and third color block blocks are red and green. And blue blocks are arranged in any order.
  • the present invention provides an LTPS display panel and a method of fabricating the same, by providing a matrix electrode corresponding to a black matrix on a side of the color filter substrate adjacent to the liquid crystal layer, since the matrix electrode is connected to the common electrode signal Therefore, there is no voltage difference between the matrix electrode and the common electrode, and the liquid crystal layer between the matrix electrode and the common electrode of the array substrate does not deflect in the energized and non-energized state, and is always in an opaque state. The light between the adjacent pixels of the panel is not disturbed, the dominant role of the panel is eliminated, and the display quality of the LTPS display panel is improved.
  • FIG. 1 is a schematic structural view of a conventional LTPS display panel
  • FIG. 2 is a schematic structural view of an LTPS display panel of the present invention
  • FIG. 3 is a schematic view showing the structure of a black matrix and a matrix electrode in the LTPS display panel of the present invention and a step 4 of the method for fabricating the LTPS display panel of the present invention;
  • step 1 is a schematic diagram of step 1 of a method for fabricating an LTPS display panel of the present invention
  • step 2 is a schematic diagram of step 2 of a method for fabricating an LTPS display panel of the present invention
  • FIG. 6 is a schematic diagram of step 3 of the method for fabricating the LTPS display panel of the present invention.
  • the present invention provides an LTPS display panel including a color film substrate 10 and an array substrate 20 disposed opposite to each other, and a liquid crystal layer 30 interposed between the color filter substrate 10 and the array substrate 20 . ;
  • the color filter substrate 10 includes a first substrate 11 , a black matrix 12 and a color photoresist layer 13 disposed on the first substrate 11 , and a flat layer 14 disposed on the color photoresist layer 13 . And a matrix electrode 15 disposed on the flat layer 14 and disposed corresponding to the black matrix 12; the matrix electrode 15 is connected to a common electrode signal;
  • the array substrate 20 includes a second substrate 21, a TFT layer 22 disposed on the second substrate 21, a pixel electrode 23 disposed on the TFT layer 22, and a pixel electrode 23 disposed on the pixel electrode 23.
  • the liquid crystal layer 30 is not deflected and is always opaque, so that light transmitted from one pixel unit of the array substrate 20 can only be transmitted from the corresponding pixel unit in the color filter substrate 10, that is, the panel is made. The light between adjacent pixels does not interfere, thus eliminating the large-view character bias of the panel.
  • the black matrix 12 includes a plurality of lateral light shielding strips 121 and a plurality of longitudinal masks.
  • the light strip 122, the plurality of horizontal light-shielding strips 121 are vertically intersected with the plurality of longitudinal light-shielding strips 122;
  • the matrix electrode 15 includes a plurality of horizontal strip electrodes 151 disposed corresponding to the plurality of lateral light shielding strips 121, and a plurality of longitudinal strip electrodes 152 disposed corresponding to the plurality of longitudinal light shielding strips 122, the plurality of horizontal strip electrodes
  • the electrode 151 is vertically aligned with a plurality of longitudinal strip electrodes 152.
  • the widths of the lateral light shielding strips 121 and the longitudinal light shielding strips 122 of the black matrix 12 are respectively greater than the widths of the lateral strip electrodes 151 and the longitudinal strip electrodes 152 of the matrix electrode 15.
  • the first base substrate 11 and the second base substrate 21 are transparent substrates, preferably glass substrates.
  • the color photoresist layer 13 includes a plurality of first, second, and third color blocking blocks 131, 132, and 133 spaced apart by the black matrix 12; the first, second, and The three color blocking blocks 131, 132, and 133 are red, green, and blue blocking blocks arranged in an arbitrary order.
  • the material of the flat layer 14 is an organic photoresist.
  • the material of the matrix electrode 15, the pixel electrode 23, and the common electrode 25 is a transparent conductive material, such as a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide. Or indium bismuth zinc oxide.
  • the material of the insulating layer 24 is silicon oxide (SiO x ), silicon nitride (SiN x ), or a combination of the two.
  • the matrix electrode 15 corresponding to the black matrix 12 is disposed on the side of the color filter substrate 10 adjacent to the liquid crystal layer, and since the matrix electrode 15 is connected to the common electrode signal, the matrix electrode 15 and the common electrode 25 are disposed. There is no voltage difference, and the liquid crystal layer 30 between the matrix electrode 15 and the common electrode 25 of the array substrate 20 does not deflect in the energized and non-energized states, and is always opaque, so that the adjacent pixels of the panel The light between the two does not cause interference, which eliminates the large-view character of the panel and improves the display quality of the LTPS display panel.
  • the present invention provides a method for fabricating the above LTPS display panel, including the following steps:
  • Step 1 as shown in FIG. 4, a first base substrate 11 is provided, a black light-shielding material is coated on the first base substrate 11, a black light-shielding layer is formed, and the black light-shielding layer is patterned by a photolithography process.
  • the black matrix 12 is obtained by the processing.
  • Step 2 As shown in FIG. 5, a color photoresist layer 13 is formed on the black matrix 12 and the first base substrate 11, and a flat layer 14 is formed on the color photoresist layer 13.
  • the color photoresist layer 13 includes a plurality of first, second, and third color blocking blocks 131, 132, and 133 spaced apart by the black matrix 12; the first, second, and The three color blocking blocks 131, 132, and 133 are red, green, and blue blocking blocks arranged in an arbitrary order.
  • the material of the flat layer 14 is an organic photoresist.
  • Step 3 as shown in FIG. 6, a transparent conductive material is deposited on the flat layer 14, a transparent conductive layer is formed, and the transparent conductive layer is patterned by a photolithography process to obtain a corresponding setting with the black matrix 12.
  • the matrix electrode 15 produces a color film substrate 10.
  • the black matrix 12 includes a plurality of lateral light-shielding strips 121 and a plurality of longitudinal light-shielding strips 122, and the plurality of horizontal light-shielding strips 121 are vertically aligned with a plurality of longitudinal light-shielding strips 122.
  • the matrix electrode 15 includes a plurality of horizontal strip electrodes 151 disposed corresponding to the plurality of lateral light shielding strips 121, and a plurality of longitudinal strip electrodes 152 disposed corresponding to the plurality of longitudinal light shielding strips 122, the plurality of The lateral strip electrode 151 is vertically aligned with the plurality of longitudinal strip electrodes 152.
  • the widths of the lateral light shielding strips 121 and the longitudinal light shielding strips 122 of the black matrix 12 are respectively greater than the widths of the lateral strip electrodes 151 and the longitudinal strip electrodes 152 of the matrix electrode 15.
  • the array substrate 20 includes a second substrate 21, a TFT layer 22 disposed on the second substrate 21, and a TFT layer. a pixel electrode 23 on 22, an insulating layer 24 disposed on the pixel electrode 23, and a common electrode 25 disposed on the insulating layer 24;
  • the array substrate 20 and the color filter substrate 10 are aligned into a box, and liquid crystal molecules are poured between the array substrate 20 and the color filter substrate 10 to form a liquid crystal layer 30, thereby obtaining an LTPS display panel.
  • the first base substrate 11 and the second base substrate 21 are transparent substrates, preferably glass substrates.
  • the material of the matrix electrode 15, the pixel electrode 23, and the common electrode 25 is a transparent conductive material, such as a metal oxide such as indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide. Or indium bismuth zinc oxide.
  • the material of the insulating layer 24 is silicon oxide (SiO x ), silicon nitride (SiN x ), or a combination of the two.
  • the matrix electrode 15 corresponding to the black matrix 12 is disposed on the side of the color filter substrate 10 adjacent to the liquid crystal layer, and since the matrix electrode 15 is connected to the common electrode signal, the matrix electrode 15 and the common electrode are provided. There is no voltage difference between 25, and the liquid crystal layer 30 between the matrix electrode 15 and the common electrode 25 of the array substrate 20 does not deflect in the energized and non-energized state, and is always opaque, so that the panel The light between adjacent pixels does not cause interference, which eliminates the large-view role of the panel and improves the display quality of the LTPS display panel.
  • the present invention provides an LTPS display panel and a method of fabricating the same, by providing a matrix electrode corresponding to a black matrix on a side of the color filter substrate adjacent to the liquid crystal layer, since the matrix electrode is connected to the common electrode signal, There is no voltage difference between the matrix electrode and the common electrode, and the liquid between the matrix electrode and the common electrode of the array substrate, both in the energized and non-energized states
  • the crystal layer does not deflect, and is always opaque, so that the light between adjacent pixels of the panel does not interfere, which eliminates the large-view role of the panel and improves the display quality of the LTPS display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制作方法,通过在彩膜基板(10)上靠近液晶层(30)的一侧设置与黑色矩阵(12)相对应的矩阵电极(15),由于矩阵电极(15)与公共电极(25)信号连接,因此矩阵电极(15)和公共电极(25)之间不存在电压差,无论在通电和不通电状态下,位于矩阵电极(15)与阵列基板(20)的公共电极(25)之间的液晶层(30)都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。

Description

显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括LTPS显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
通常液晶显示面板由彩膜(CF,Color Filter)基板、薄膜晶体管(TFT,Thin Film Transistor)基板、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成,其成型工艺一般包括:前段阵列(Array)制程(薄膜、黄光、蚀刻及剥膜)、中段成盒(Cell)制程(TFT基板与CF基板贴合)及后段模组组装制程(驱动IC与印刷电路板压合)。其中,前段Array制程主要是形成TFT基板,以便于控制液晶分子的运动;中段Cell制程主要是在TFT基板与CF基板之间添加液晶;后段模组组装制程主要是驱动IC压合与印刷电路板的整合,进而驱动液晶分子转动,显示图像。
低温多晶硅(Low Temperature Poly Silicon,LTPS)是广泛用于中小电子产品中的一种液晶显示技术。传统的非晶硅材料的电子迁移率约0.5-1.0cm2/V.S,而低温多晶硅的电子迁移率可达30-300cm2/V.S。因此,低温多晶硅液晶显示器具有高解析度、反应速度快、高开口率等诸多优点。目前,LTPS显示面板在高端手机、平板电脑上已获得广泛应用,IPHONE 6S手机、LG G4手机、Kindle Fire Hdx平板电脑等产品均使用LTPS显示面板。然而,部分LTPS显示面板会出现大视角色偏的情况,用户从较大视角倾斜着看LTPS显示面板时会发现面板的显示偏离了正常的颜色水平。
如图1所示,为现有的LTPS显示面板的结构示意图,所述LTPS显示 面板包括相对设置的彩膜基板100与阵列基板200、及夹设于所述彩膜基板100与阵列基板200之间的液晶层300,所述彩膜基板100包括第一衬底基板110、设于所述第一衬底基板110上的黑色矩阵120和彩色光阻层130、以及设于所述彩色光阻层130上的平坦层140;所述阵列基板200包括第二衬底基板210、设于所述第二衬底基板210上的TFT层220、设于所述TFT层220上的像素电极230、设于所述像素电极230上的绝缘层240、及设于所述绝缘层240上的公共电极250,当人眼从较大角度观看显示面板时,从阵列基板200的一个像素单元透过的光会从彩膜基板100中的两个像素单元透出,使人眼感受到色偏。因此,有必要提供一种LTPS显示面板,以解决该技术问题。
发明内容
本发明的目的在于提供一种LTPS显示面板,通过在彩膜基板上靠近液晶层的一侧设置与黑色矩阵相对应的矩阵电极,使得LTPS显示面板中相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。
本发明的目的还在于提供一种LTPS显示面板的制作方法,制作方法简单,制得的LTPS显示面板可消除大视角色偏,改善LTPS显示面板的显示品质。
为实现上述目的,本发明提供一种LTPS显示面板,包括相对设置的彩膜基板与阵列基板、及夹设于所述彩膜基板与阵列基板之间的液晶层;
所述彩膜基板包括第一衬底基板、设于所述第一衬底基板上的黑色矩阵和彩色光阻层、设于所述彩色光阻层上的平坦层、及设于所述平坦层上且与所述黑色矩阵对应设置的矩阵电极;所述矩阵电极与公共电极信号连接;
所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
由于所述矩阵电极与公共电极信号连接,因此所述矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于所述矩阵电极与公共电极之间的液晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除面板的大视角色偏。
所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列。
所述黑色矩阵的横向遮光带与纵向遮光带的宽度分别大于所述矩阵电极的横向条形电极与纵向条形电极的宽度。
所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按任意顺序的排列组合。
所述平坦层的材料为有机光阻;所述矩阵电极、像素电极、及公共电极的材料为铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物;所述绝缘层的材料为氧化硅、氮化硅、或二者的组合。
本发明还提供一种LTPS显示面板的制作方法,包括如下步骤:
步骤1、提供第一衬底基板,在所述第一衬底基板上涂布黑色遮光材料,形成黑色遮光层,采用光刻制程对所述黑色遮光层进行图形化处理,得到黑色矩阵;
步骤2、在所述黑色矩阵、及第一衬底基板上形成彩色光阻层,在所述彩色光阻层上形成平坦层;
步骤3、在所述平坦层上沉积透明导电材料,形成透明导电层,采用光刻制程对所述透明导电层进行图形化处理,得到与所述黑色矩阵对应设置的矩阵电极,制得一彩膜基板;
步骤4、提供一阵列基板,所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
将所述阵列基板与彩膜基板对位成盒,并在所述阵列基板与彩膜基板之间灌注液晶分子,形成液晶层,得到一LTPS显示面板。
所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列。
所述黑色矩阵的横向遮光带与纵向遮光带的宽度分别大于所述矩阵电极的横向条形电极与纵向条形电极的宽度。
所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按 任意顺序的排列组合。
所述平坦层的材料为有机光阻;所述矩阵电极、像素电极、及公共电极的材料为铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物;所述绝缘层的材料为氧化硅、氮化硅、或二者的组合。
本发明还提供一种显示面板,包括相对设置的彩膜基板与阵列基板、及夹设于所述彩膜基板与阵列基板之间的液晶层;
所述彩膜基板包括第一衬底基板、设于所述第一衬底基板上的黑色矩阵和彩色光阻层、设于所述彩色光阻层上的平坦层、及设于所述平坦层上且与所述黑色矩阵对应设置的矩阵电极;所述矩阵电极与公共电极信号连接;
所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
由于所述矩阵电极与公共电极信号连接,因此所述矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于所述矩阵电极与公共电极之间的液晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除面板的大视角色偏;
其中,所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列;
其中,所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按任意顺序的排列组合。
本发明的有益效果:本发明提供的一种LTPS显示面板及其制作方法,通过在彩膜基板上靠近液晶层的一侧设置与黑色矩阵相对应的矩阵电极,由于矩阵电极与公共电极信号连接,因此矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于矩阵电极与阵列基板的公共电极之间的液晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发 明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为现有的LTPS显示面板的结构示意图;
图2本发明的LTPS显示面板的结构示意图;
图3本发明的LTPS显示面板中的黑色矩阵与矩阵电极的结构示意图暨本发明的LTPS显示面板的制作方法的步骤4的示意图;
图4为本发明的LTPS显示面板的制作方法的步骤1的示意图;
图5为本发明的LTPS显示面板的制作方法的步骤2的示意图;
图6为本发明的LTPS显示面板的制作方法的步骤3的示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2与图3,本发明提供一种LTPS显示面板,包括相对设置的彩膜基板10与阵列基板20、及夹设于所述彩膜基板10与阵列基板20之间的液晶层30;
所述彩膜基板10包括第一衬底基板11、设于所述第一衬底基板11上的黑色矩阵12和彩色光阻层13、设于所述彩色光阻层13上的平坦层14、及设于所述平坦层14上且与所述黑色矩阵12对应设置的矩阵电极15;所述矩阵电极15与公共电极信号连接;
所述阵列基板20包括第二衬底基板21、设于所述第二衬底基板21上的TFT层22、设于所述TFT层22上的像素电极23、设于所述像素电极23上的绝缘层24、及设于所述绝缘层24上的公共电极25;
由于所述矩阵电极15与公共电极信号连接,因此所述矩阵电极15和公共电极25之间不存在电压差,无论在通电和不通电状态下,位于所述矩阵电极15与公共电极25之间的液晶层30都不会发生偏转,一直呈不透光状态,这样从所述阵列基板20的一个像素单元透过的光只能从彩膜基板10中对应的像素单元透出,即使得面板相邻像素之间的光线不会产生干扰,从而消除了面板的大视角色偏。
如图3所示,所述黑色矩阵12包括数个横向遮光带121与数个纵向遮 光带122,所述数个横向遮光带121与数个纵向遮光带122垂直交叉排列;
所述矩阵电极15包括与数个横向遮光带121对应设置的数个横向条形电极151、及与数个纵向遮光带122对应设置的数个纵向条形电极152,所述数个横向条形电极151与数个纵向条形电极152垂直交叉排列。
具体的,所述黑色矩阵12的横向遮光带121与纵向遮光带122的宽度分别大于所述矩阵电极15的横向条形电极151与纵向条形电极152的宽度。
具体的,所述第一衬底基板11与第二衬底基板21为透明基板,优选为玻璃基板。
具体的,所述彩色光阻层13包括被所述黑色矩阵12间隔开的数个第一、第二、及第三色阻块131、132、133;所述第一、第二、及第三色阻块131、132、133为红色、绿色、及蓝色阻块按任意顺序的排列组合。
具体的,所述平坦层14的材料为有机光阻。
具体的,所述矩阵电极15、像素电极23、及公共电极25的材料为透明导电材料,例如是金属氧化物,如铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物。
具体的,所述绝缘层24的材料为氧化硅(SiOx)、氮化硅(SiNx)、或二者的组合。
上述LTPS显示面板,通过在彩膜基板10上靠近液晶层的一侧设置与黑色矩阵12相对应的矩阵电极15,由于矩阵电极15与公共电极信号连接,因此矩阵电极15和公共电极25之间不存在电压差,无论在通电和不通电状态下,位于矩阵电极15与阵列基板20的公共电极25之间的液晶层30都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。
请参阅图2-6,本发明提供一种上述LTPS显示面板的制作方法,包括如下步骤:
步骤1、如图4所示,提供第一衬底基板11,在所述第一衬底基板11上涂布黑色遮光材料,形成黑色遮光层,采用光刻制程对所述黑色遮光层进行图形化处理,得到黑色矩阵12。
步骤2、如图5所示,在所述黑色矩阵12、及第一衬底基板11上形成彩色光阻层13,在所述彩色光阻层13上形成平坦层14。
具体的,所述彩色光阻层13包括被所述黑色矩阵12间隔开的数个第一、第二、及第三色阻块131、132、133;所述第一、第二、及第三色阻块131、132、133为红色、绿色、及蓝色阻块按任意顺序的排列组合。
具体的,所述平坦层14的材料为有机光阻。
步骤3、如图6所示,在所述平坦层14上沉积透明导电材料,形成透明导电层,采用光刻制程对所述透明导电层进行图形化处理,得到与所述黑色矩阵12对应设置的矩阵电极15,制得一彩膜基板10。
如图3所示,所述黑色矩阵12包括数个横向遮光带121与数个纵向遮光带122,所述数个横向遮光带121与数个纵向遮光带122垂直交叉排列。
具体的,所述矩阵电极15包括与数个横向遮光带121对应设置的数个横向条形电极151、及与数个纵向遮光带122对应设置的数个纵向条形电极152,所述数个横向条形电极151与数个纵向条形电极152垂直交叉排列。
具体的,所述黑色矩阵12的横向遮光带121与纵向遮光带122的宽度分别大于所述矩阵电极15的横向条形电极151与纵向条形电极152的宽度。
步骤4、如图2所示,提供一阵列基板20,所述阵列基板20包括第二衬底基板21、设于所述第二衬底基板21上的TFT层22、设于所述TFT层22上的像素电极23、设于所述像素电极23上的绝缘层24、及设于所述绝缘层24上的公共电极25;
将所述阵列基板20与彩膜基板10对位成盒,并在所述阵列基板20与彩膜基板10之间灌注液晶分子,形成液晶层30,得到一LTPS显示面板。
具体的,所述第一衬底基板11与第二衬底基板21为透明基板,优选为玻璃基板。
具体的,所述矩阵电极15、像素电极23、及公共电极25的材料为透明导电材料,例如是金属氧化物,如铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物。
具体的,所述绝缘层24的材料为氧化硅(SiOx)、氮化硅(SiNx)、或二者的组合。
上述LTPS显示面板的制作方法,通过在彩膜基板10上靠近液晶层的一侧设置与黑色矩阵12相对应的矩阵电极15,由于矩阵电极15与公共电极信号连接,因此矩阵电极15和公共电极25之间不存在电压差,无论在通电和不通电状态下,位于矩阵电极15与阵列基板20的公共电极25之间的液晶层30都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。
综上所述,本发明提供一种LTPS显示面板及其制作方法,通过在彩膜基板上靠近液晶层的一侧设置与黑色矩阵相对应的矩阵电极,由于矩阵电极与公共电极信号连接,因此矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于矩阵电极与阵列基板的公共电极之间的液 晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除了面板的大视角色偏,改善LTPS显示面板的显示品质。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种显示面板,包括相对设置的彩膜基板与阵列基板、及夹设于所述彩膜基板与阵列基板之间的液晶层;
    所述彩膜基板包括第一衬底基板、设于所述第一衬底基板上的黑色矩阵和彩色光阻层、设于所述彩色光阻层上的平坦层、及设于所述平坦层上且与所述黑色矩阵对应设置的矩阵电极;所述矩阵电极与公共电极信号连接;
    所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
    由于所述矩阵电极与公共电极信号连接,因此所述矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于所述矩阵电极与公共电极之间的液晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除面板的大视角色偏。
  2. 如权利要求1所述的显示面板,其中,所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
    所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列。
  3. 如权利要求2所述的显示面板,其中,所述黑色矩阵的横向遮光带与纵向遮光带的宽度分别大于所述矩阵电极的横向条形电极与纵向条形电极的宽度。
  4. 如权利要求1所述的显示面板,其中,所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按任意顺序的排列组合。
  5. 如权利要求1所述的显示面板,其中,所述平坦层的材料为有机光阻;所述矩阵电极、像素电极、及公共电极的材料为铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物;所述绝缘层的材料为氧化硅、氮化硅、或二者的组合。
  6. 一种显示面板的制作方法,包括如下步骤:
    步骤1、提供第一衬底基板,在所述第一衬底基板上涂布黑色遮光材料, 形成黑色遮光层,采用光刻制程对所述黑色遮光层进行图形化处理,得到黑色矩阵;
    步骤2、在所述黑色矩阵、及第一衬底基板上形成彩色光阻层,在所述彩色光阻层上形成平坦层;
    步骤3、在所述平坦层上沉积透明导电材料,形成透明导电层,采用光刻制程对所述透明导电层进行图形化处理,得到与所述黑色矩阵对应设置的矩阵电极,制得一彩膜基板;
    步骤4、提供一阵列基板,所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
    将所述阵列基板与彩膜基板对位成盒,并在所述阵列基板与彩膜基板之间灌注液晶分子,形成液晶层,得到一LTPS显示面板。
  7. 如权利要求6所述的显示面板的制作方法,其中,所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
    所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列。
  8. 如权利要求7所述的显示面板的制作方法,其中,所述黑色矩阵的横向遮光带与纵向遮光带的宽度分别大于所述矩阵电极的横向条形电极与纵向条形电极的宽度。
  9. 如权利要求6所述的显示面板的制作方法,其中,所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按任意顺序的排列组合。
  10. 如权利要求6所述的显示面板的制作方法,其中,所述平坦层的材料为有机光阻;所述矩阵电极、像素电极、及公共电极的材料为铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物;所述绝缘层的材料为氧化硅、氮化硅、或二者的组合。
  11. 一种显示面板,包括相对设置的彩膜基板与阵列基板、及夹设于所述彩膜基板与阵列基板之间的液晶层;
    所述彩膜基板包括第一衬底基板、设于所述第一衬底基板上的黑色矩阵和彩色光阻层、设于所述彩色光阻层上的平坦层、及设于所述平坦层上且与所述黑色矩阵对应设置的矩阵电极;所述矩阵电极与公共电极信号连接;
    所述阵列基板包括第二衬底基板、设于所述第二衬底基板上的TFT层、设于所述TFT层上的像素电极、设于所述像素电极上的绝缘层、及设于所述绝缘层上的公共电极;
    由于所述矩阵电极与公共电极信号连接,因此所述矩阵电极和公共电极之间不存在电压差,无论在通电和不通电状态下,位于所述矩阵电极与公共电极之间的液晶层都不会发生偏转,一直呈不透光状态,使得面板相邻像素之间的光线不会产生干扰,消除面板的大视角色偏;
    其中,所述黑色矩阵包括数个横向遮光带与数个纵向遮光带,所述数个横向遮光带与数个纵向遮光带垂直交叉排列;
    所述矩阵电极包括与数个横向遮光带对应设置的数个横向条形电极、及与数个纵向遮光带对应设置的数个纵向条形电极,所述数个横向条形电极与数个纵向条形电极垂直交叉排列;
    其中,所述彩色光阻层包括被所述黑色矩阵间隔开的数个第一、第二、及第三色阻块;所述第一、第二、及第三色阻块为红色、绿色、及蓝色阻块按任意顺序的排列组合。
  12. 如权利要求11所述的显示面板,其中,所述黑色矩阵的横向遮光带与纵向遮光带的宽度分别大于所述矩阵电极的横向条形电极与纵向条形电极的宽度。
  13. 如权利要求11所述的显示面板,其中,所述平坦层的材料为有机光阻;所述矩阵电极、像素电极、及公共电极的材料为铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、或铟锗锌氧化物;所述绝缘层的材料为氧化硅、氮化硅、或二者的组合。
PCT/CN2016/083567 2016-01-28 2016-05-26 显示面板及其制作方法 WO2017128577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/114,850 US9946108B2 (en) 2016-01-28 2016-05-26 Display panel and manufacture method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610059557.1 2016-01-28
CN201610059557.1A CN105511175A (zh) 2016-01-28 2016-01-28 显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2017128577A1 true WO2017128577A1 (zh) 2017-08-03

Family

ID=55719262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083567 WO2017128577A1 (zh) 2016-01-28 2016-05-26 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US9946108B2 (zh)
CN (1) CN105511175A (zh)
WO (1) WO2017128577A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法
CN106168719A (zh) * 2016-08-30 2016-11-30 深圳市华星光电技术有限公司 一种超薄型液晶显示器及其制作方法
CN106353944A (zh) * 2016-11-04 2017-01-25 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板、显示装置
CN108594517B (zh) * 2018-05-04 2021-04-06 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法
CN108828830A (zh) * 2018-06-26 2018-11-16 武汉华星光电技术有限公司 一种彩膜基板以及显示面板
CN109116615A (zh) * 2018-08-20 2019-01-01 深圳市华星光电技术有限公司 彩膜基板及液晶面板
CN110187579B (zh) * 2019-06-27 2021-08-31 京东方科技集团股份有限公司 一种显示面板和显示装置
CN111488079A (zh) * 2020-04-24 2020-08-04 信利(惠州)智能显示有限公司 一种oncell触控模组
WO2023159383A1 (zh) * 2022-02-23 2023-08-31 京东方科技集团股份有限公司 显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429918B1 (en) * 1998-10-29 2002-08-06 Hyundai Display Technology Inc. Liquid crystal display having high aperture ratio and high transmittance
CN101424851A (zh) * 2007-10-29 2009-05-06 Nec液晶技术株式会社 液晶显示装置及其驱动方法
CN101819348A (zh) * 2009-02-26 2010-09-01 北京京东方光电科技有限公司 水平电场模式彩膜基板及其制造方法
US20130057816A1 (en) * 2011-09-02 2013-03-07 Japan Display Central Inc. Liquid crystal display device
CN103941486A (zh) * 2013-07-19 2014-07-23 上海天马微电子有限公司 一种边缘场开关模式液晶显示器及彩膜基板
CN104460137A (zh) * 2014-12-29 2015-03-25 厦门天马微电子有限公司 显示面板及显示装置
CN104570458A (zh) * 2014-12-30 2015-04-29 厦门天马微电子有限公司 液晶显示面板及液晶显示装置
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429918B1 (en) * 1998-10-29 2002-08-06 Hyundai Display Technology Inc. Liquid crystal display having high aperture ratio and high transmittance
CN101424851A (zh) * 2007-10-29 2009-05-06 Nec液晶技术株式会社 液晶显示装置及其驱动方法
CN101819348A (zh) * 2009-02-26 2010-09-01 北京京东方光电科技有限公司 水平电场模式彩膜基板及其制造方法
US20130057816A1 (en) * 2011-09-02 2013-03-07 Japan Display Central Inc. Liquid crystal display device
CN103941486A (zh) * 2013-07-19 2014-07-23 上海天马微电子有限公司 一种边缘场开关模式液晶显示器及彩膜基板
CN104460137A (zh) * 2014-12-29 2015-03-25 厦门天马微电子有限公司 显示面板及显示装置
CN104570458A (zh) * 2014-12-30 2015-04-29 厦门天马微电子有限公司 液晶显示面板及液晶显示装置
CN105511175A (zh) * 2016-01-28 2016-04-20 武汉华星光电技术有限公司 显示面板及其制作方法

Also Published As

Publication number Publication date
US9946108B2 (en) 2018-04-17
CN105511175A (zh) 2016-04-20
US20180011370A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
WO2017128577A1 (zh) 显示面板及其制作方法
US6692983B1 (en) Method of forming a color filter on a substrate having pixel driving elements
WO2016086539A1 (zh) 液晶面板及其制作方法
KR100372533B1 (ko) 액정표시장치 및 그 제조방법
JP4982189B2 (ja) カラーフィルター基板及びこれを備えた液晶表示パネル
US7542112B2 (en) Four color liquid crystal display and panel therefor
CN100426088C (zh) 半透射型液晶显示装置
WO2017128576A1 (zh) Ltps显示面板及其制作方法
KR100971089B1 (ko) 액정표시장치 및 그 제조방법
CN107275288B (zh) Tft基板的制作方法及tft基板
US20180314093A1 (en) Array substrate, method of manufacturing the same and in cell touch control display panel
WO2014206031A1 (zh) 显示面板、其制作方法以及包含该显示面板的显示装置
WO2017124673A1 (zh) 阵列基板的制作方法及液晶显示面板
US20130120679A1 (en) Liquid crystal panel and manufacturing method thereof, and liquid crystal display device
WO2013139192A1 (zh) 触摸液晶显示装置、液晶显示面板及上部基板
CN109188764B (zh) 液晶显示面板及其制作方法
WO2021036276A1 (zh) 显示面板及其制作方法、显示屏及显示装置
WO2021184506A1 (zh) 液晶显示面板
US8581253B2 (en) Display substrate and method of manufacturing the same
KR20110041139A (ko) 액정표시장치 및 그 제조방법
WO2019100485A1 (zh) 彩膜基板、显示面板及彩膜基板的制备方法
WO2019029036A1 (zh) 半穿透半反射式液晶显示器
JP4041122B2 (ja) 液晶表示装置及びその製造方法
WO2018184272A1 (zh) 触碰面板及其制造方法
WO2021248604A1 (zh) 触控面板及触控显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15114850

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887459

Country of ref document: EP

Kind code of ref document: A1