WO2017128294A1 - 制备发电器件的方法、发电器件和供电设备 - Google Patents

制备发电器件的方法、发电器件和供电设备 Download PDF

Info

Publication number
WO2017128294A1
WO2017128294A1 PCT/CN2016/072788 CN2016072788W WO2017128294A1 WO 2017128294 A1 WO2017128294 A1 WO 2017128294A1 CN 2016072788 W CN2016072788 W CN 2016072788W WO 2017128294 A1 WO2017128294 A1 WO 2017128294A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
functional layer
power generating
conductive filament
conductive
Prior art date
Application number
PCT/CN2016/072788
Other languages
English (en)
French (fr)
Inventor
王明
闫正
曹彤彤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680003772.8A priority Critical patent/CN107431082A/zh
Priority to PCT/CN2016/072788 priority patent/WO2017128294A1/zh
Publication of WO2017128294A1 publication Critical patent/WO2017128294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00

Definitions

  • Embodiments of the present invention relate to the field of power generation devices, and in particular, to a method of manufacturing a power generation device, a power generation device, and a power supply device.
  • thermoelectric conversion efficiency of the bulk material of the material is currently too low. .
  • thermoelectric conversion efficiency of low-dimensional materials is several tens to hundreds times higher than that of the corresponding bulk materials, so low-dimensional materials are expected to be used for power generation.
  • thermoelectric power generation device has great market value in the field of wearable (smart bracelet, watch, etc.).
  • a nanowire a one-dimensional structure having a diameter limited to less than 100 nm, is one of low-dimensional materials.
  • thermoelectric material The parameter that measures the energy conversion efficiency of a thermoelectric material is the Figure of Merit, also known as ZT, whose expression for calculating the quality factor ZT is:
  • thermoelectric material is required to have a high Seebeck coefficient S, a high electrical conductivity ⁇ and a low thermal conductivity ⁇ .
  • the bulk material cannot meet the requirements of the above three at the same time, so its thermoelectric conversion efficiency is low.
  • nanowires maintain a high Seebeck coefficient S due to their surface effects. When the conductivity ⁇ is used, the thermal conductivity ⁇ can be significantly reduced. Therefore, the nanowire has a high thermoelectric conversion efficiency, and the device constructed by the nanowire is more suitable for power generation.
  • nanowire preparation methods include laser ablation, vapor deposition, hydrothermal, templating, and electron beam lithography.
  • the nanowires prepared by the first three methods are mostly poorly oriented, disorderly arranged, and cannot be directly used, and need to be removed from the disordered nanowire clusters.
  • Nanowires with better orientation can be used for thermoelectric power generation after reorienting and fixing the transferred nanowires. It is difficult to remove and reorient the nanowires, and the preparation cost is high.
  • the present application provides a method of manufacturing a power generating device, a power generating device, and a power supply device.
  • the method for producing the power generating device can generate conductive filaments conforming to power generation characteristics in a relatively simple manner.
  • the present application provides a method of fabricating a power generating device.
  • the power generating device includes a first electrode, a second electrode, and a functional layer.
  • a first electrode and a second electrode are prepared using an electrode material; and a functional layer is prepared using an insulator material and/or a semiconductor material, the functional layer being prepared between the first electrode and the second electrode.
  • the functional layer has a resistance transition characteristic.
  • the method may form a conductive filament electrically connected to the first electrode and the second electrode in the functional layer by using a resistance transition characteristic, and the conductivity of the conductive filament is greater than the conductivity of the functional layer.
  • the technical means for utilizing the resistance transition characteristics may be electrical means, physical means, or chemical means, and the technical means employed are not limited as the formation of conductive filaments in the functional layer of the present application.
  • the conductive filament has a high Seebeck coefficient S, a high electrical conductivity ⁇ and a low thermal conductivity ⁇ ; according to formula (1), the conductive filament has a higher quality factor ZT, and the conductive filament is suitable for thermoelectricity Power generation.
  • the conductive filaments are used for thermoelectric generation; in particular, the conductive filaments are used to generate a potential difference between the first electrode and the second electrode using a thermoelectric effect.
  • the prior art method for preparing nanowires directly generates nanowires without a carrier. Therefore, after preparing the nanowires, it is necessary to remove the well-oriented nanowires from the disordered nanowire clusters and fix them, and fix them well.
  • the nanowires are used for thermoelectric power generation, and the process of removing and fixing is easy to damage the nanowires, and the operation is difficult;
  • the present embodiment directly forms conductive filaments in the functional layer, and then directly uses the entire power generation device for thermoelectric generation. , the process of removing and fixing is reduced, and the damage of the conductive filament is avoided.
  • the method may specifically apply an electrical signal from the first electrode; or, the method may specifically apply an electrical signal to the functional layer from the second electrode; or, the method may specifically be simultaneously from the first electrode and The second electrode respectively applies an electrical signal to the functional layer; a conductive filament is formed inside the functional layer by applying an electrical signal to the function.
  • the conductive thin wire is formed on the functional layer by applying an electric signal, and the operability is strong and the controllability is strong.
  • the method simultaneously applies electrical signals to the functional layer from the first electrode and the second electrode, respectively, to form conductive filaments within the functional layer.
  • the electrical signal applied from the first electrode and the electrical signal applied from the second electrode are different, for example, the two electrical signals are mutually inverted, and for example, the two electrical signals are different in voltage.
  • the electrical signal applied to the functional layer to form a conductive thin line in the functional layer may be a direct current signal or an alternating current signal.
  • an alternating current signal is applied to the functional layer, and a conductive filament electrically connected to the first electrode and the second electrode is formed in a half cycle of the alternating current signal, and the alternating current signal is formed If the forward current is too large, the fusible property of the conductive filament is broken (ie, the resistance transition characteristic of the functional layer is broken), so that the alternating current signal in the half cycle of the negative voltage cannot be blown.
  • the material of the first electrode may be a metal conductive material or a non-metal conductive material
  • the material of the second electrode may be a metal conductive material or a non-metal conductive material
  • the material of the first electrode and the material of the second electrode may be the same or may be different.
  • the first electrode and the second electrode are prepared by a deposition technique on a substrate. Or functional layer.
  • the material of the substrate is an insulator material or a semiconductor material; the conductivity of the substrate does not affect the electrical connection characteristics of the inside of the power generating device (the first electrode, the second electrode, the conductive filament).
  • any combination of the first electrode, the second electrode, and the functional layer may be deposited on the substrate.
  • the first electrode, the functional layer, and the second electrode are both deposited on the substrate.
  • a first electrode is deposited over the substrate, a functional layer is deposited over the first electrode, and a second electrode is deposited over the functional layer.
  • a second electrode may be deposited on the substrate, a functional layer deposited on the second electrode, and a first electrode deposited on the functional layer.
  • a first electrode and a functional layer are deposited on the substrate, and a second electrode is deposited on one side of the functional layer (e.g., over the functional layer).
  • a second electrode and a functional layer are deposited on the substrate, and a first electrode is deposited on one side of the functional layer (e.g., over the functional layer).
  • the substrate is a necessary component of a power supply device, for example, the substrate is a single board for an integrated circuit, the power generating device deposited on the substrate remains.
  • a conductive signal is applied to the functional layer by applying a direct current signal to the functional layer.
  • the implementation of applying a direct current signal to the functional layer may be performed by applying a direct current signal to either of the first electrode and the second electrode, or may be two of the first electrode and the second electrode.
  • the DC signal is applied, but the DC signal applied from the first electrode and the DC signal applied from the second electrode are different.
  • the two DC signals are mutually inverted, and for example, the voltages of the two DC signals are different.
  • the applied direct current signal is current limited to limit the maximum current value through the functional layer.
  • the current limit of the functional layer can protect the power generation device, and the diameter of the conductive filament that can be formed can be controlled by the current limit value.
  • a current limiter is integrated at the functional layer. Apply a DC signal to the functional layer In the process of forming the conductive thin wires, the DC signal is limited by the current limiter to limit the current flowing through the functional layer.
  • the power generating device is connected in series with an external current limiter.
  • the functional layer is limited by an external current limiter.
  • the manner of detecting the formation of the conductive filaments electrically connected to the first electrode and the second electrode includes at least the following four.
  • the first detecting method is configured to detect whether the two ends of the conductive filament are electrically connected to the first electrode and the second electrode respectively, and if yes, determine that the first electrode and the second electrode are electrically connected Conductive filaments are formed.
  • the second detection method detects the current passing through the functional layer, and when the current passing through the functional layer jumps, it is determined that the conductive filaments electrically connected to the first electrode and the second electrode are formed.
  • the voltage passing through the functional layer is detected, and when the voltage across the functional layer is hopped to decrease, the conductive filaments electrically connected to the first electrode and the second electrode are determined to be formed.
  • a fourth detecting method for detecting a resistance of the functional layer/power generating device and determining, when the current value of the resistance of the functional layer/power generating device is reduced to less than one-half or less than an initial value
  • the conductive filaments are electrically connected to each of the first electrode and the second electrode.
  • the direct current signal applied to the functional layer to form the conductive thin wire in the functional layer may be specifically a direct current voltage signal, a direct current signal or a direct current pulse signal.
  • the diameter of the conductive filament is any value between 5 nanometers and 500 nanometers. In this way, it is ensured that a suitable current can be supplied during thermoelectric generation.
  • the conductive filaments having a diameter ranging from 5 nm to 500 nm are stable; externally applying a small reverse electrical signal to the power generating device (inverted with an electrical signal applied to the power generating device to form the conductive filament) is insufficient.
  • the conductive filaments are electrically connected to the first electrode and the second electrode, respectively.
  • the conductivity of the conductive filament is twice or more than that of the functional layer. In this way, in the heat When electrically, carriers (e.g., electrons, holes) are migrated between the first electrode and the second electrode, specifically, through the conductive filaments.
  • the present application provides yet another method of making a power generating device.
  • a Metal-Insulator-Metal (MIM) device is obtained; the MIM device includes a first electrode, a second electrode and a functional layer, and the functional layer is located at the first electrode and the Between the second electrodes, the material of the functional layer is an insulator material or a semiconductor material.
  • MIM Metal-Insulator-Metal
  • a conductive filament is formed inside the functional layer by applying an electrical signal to the first electrode and/or the second electrode, the conductivity of the conductive filament being greater than the function
  • the conductivity of the layer, the two ends of the conductive filament are electrically connected to the first electrode and the second electrode, respectively, when there is a temperature difference between the first electrode and the second electrode, A conductive filament is used to generate a potential difference between the first electrode and the second electrode using a thermoelectric effect.
  • the second aspect is to realize the principle of forming the conductive filament in the functional layer of the MIM device, which is similar to the implementation principle of forming the conductive filament in the functional layer in the first aspect, and will not be described again.
  • the possible designs in the first aspect can also be used, and the second aspect is not described in how to use the various possible designs in the first aspect. A description of each possible design.
  • the second aspect directly forms the conductive filaments using the MIM device, eliminating the preparation steps of preparing the first electrode, the second electrode, and the functional layer.
  • the use of conductive filaments formed inside the functional layers of MIM devices for thermoelectric generation provides new uses for MIM devices.
  • the present application provides a power generating device.
  • the power generating device includes a first electrode, a second electrode, and a functional layer.
  • the functional layer is located between the first electrode and the second electrode, and the material of the functional layer is an insulator material or a semiconductor material.
  • the functional layer internally includes a conductive filament, the conductivity of the conductive filament is greater than the conductivity of the functional layer, and the two ends of the conductive filament are respectively electrically connected to the first electrode and the second electrode Even Then, when there is a temperature difference between the first electrode and the second electrode, the conductive filament is used to generate a potential difference between the first electrode and the second electrode by utilizing a thermoelectric effect.
  • the power generating device further includes a substrate, the material of the substrate being an insulator material or a semiconductor material; the first electrode, the second electrode, and the functional layer are both deposited on the substrate Above or alternatively, the first electrode is deposited over the substrate.
  • the material of the first electrode and the second electrode is a metal conductive material or a non-metal conductive material, and materials of the first electrode and the second electrode are the same or different.
  • the diameter of the conductive filament is any value between 5 nanometers and 500 nanometers, and the conductivity of the conductive filament is twice or more than the conductivity of the functional layer.
  • the power generating device further includes a current limiter integrated in the functional layer, or the current limiter is located between the first electrode and the second electrode and The functional layers are connected in series.
  • the current limiter is a transistor.
  • the composition of the conductive filaments includes any one or more of the following: metal particles, clusters of particles, oxygen vacancies, crystal defects, grain boundaries, crystal phases.
  • the power generating device provided by each of the third aspect or the third aspect may be prepared by the method provided by the first aspect or by the method provided by the second aspect.
  • the configuration of the power generating device refer to the specific description of the power generating device in the first aspect/second aspect.
  • the application provides a power supply device.
  • the power supply apparatus includes the power generation device provided by each of the third aspect or the third aspect.
  • the power supply device includes one or more power generating devices.
  • the power supply device further includes a first power supply electrode and a second power supply electrode.
  • the power generating device utilizes a potential difference formed by the thermoelectric effect at the first electrode and the second electrode, and the potential difference is directly reflected as a potential difference between the first power supply electrode and the second power supply electrode.
  • the power supply device When the power supply device is in an environment having a temperature difference, if the power generation device forms a potential difference between the first power supply electrode and the second power supply electrode by using a thermoelectric effect, the power supply device passes through the first power supply electrode and the second power supply device. The electrode is externally powered.
  • the power supply device includes N of the power generating devices, and N is greater than or equal to 2. A positive integer.
  • the N power generating devices are connected in series, and a first electrode of the first one of the N power generating devices is the first power feeding electrode, and a second electrode of the Nth power generating device among the N power generating devices Is the second power supply electrode.
  • N power generating devices are connected in series to maximize the voltage of the electrical signal output by the power supply device.
  • the power supply device includes N of the power generating devices, and N is a positive integer greater than or equal to 2.
  • the N power generating devices are connected in parallel, the first electrode of the N power generating devices is the first power feeding electrode, and the second electrode of the N power generating devices is the second power feeding electrode.
  • N power generating devices are connected in parallel, which can maximize the current of the electrical signal output by the power supply device.
  • N power generating devices are connected in parallel. Even if some power generating devices work abnormally, the power supply device can continue to supply power by using other power generating devices connected in parallel, thereby effectively improving the power supply stability of the power supply device.
  • the power supply device includes N of the power generating devices, and N is a positive integer greater than or equal to 2.
  • the N power generating devices constitute M power generating units, and M is a positive integer greater than or equal to 2; the M power generating units are connected in series.
  • each power generating unit includes at least one power generating device.
  • the power generating unit includes at least two power generating devices connected in series or in parallel.
  • multiple power generating devices are connected in parallel, which can effectively improve the current of the electrical signal output by the power generating unit and ensure the power supply stability of the power generating unit.
  • the plurality of power generating units are connected in series to increase the voltage of the electrical signal output by the power supply device. Therefore, the M power generating units are connected in series, taking into account the voltage and current of the electrical signal outputted by the power supply device, and the power supply stability of the power supply device is also improved to some extent.
  • the power supply device also includes a heat source.
  • the arrangement of the N power generating devices in the power supply device is determined according to the position of the heat source. Determining the arrangement of the N power generating devices in the power supply device includes determining a position of each power generating device according to a position of the heat source, and determining a connection manner between the N power generating devices.
  • the orientation of the piece (the direction in which the first electrode is directed to the second electrode) can set the orientation of the power generating device to coincide with the thermal gradient of the position of the power generating device such that the temperature difference between the first electrode and the second electrode is the largest; The maximum potential difference can be generated when the thermoelectric power generation is utilized by this temperature difference.
  • connection manner between the N power generating devices in the power supply device determined according to the position of the heat source may be the N power generating devices connected in series in the fourth aspect, the N power generating devices connected in parallel, or the M power generating units.
  • FIG. 1 is a schematic flow chart of a method of preparing a power generating device
  • 2A is a schematic flow chart of a method of preparing a power generating device
  • FIG. 2B is a schematic view of a power generating device prepared by the method shown in FIG. 2A;
  • 2C is a schematic diagram of a power generating device
  • FIG. 3 is a schematic view showing a process of forming conductive filaments in a functional layer
  • FIG. 4 is a schematic diagram of applying a DC voltage signal to a power generating device to form a conductive filament
  • FIG. 5 is a schematic diagram showing a voltage change of a power generating device when a direct current signal is applied to a power generating device
  • FIG. 6 is a schematic diagram of current limiting of a power generating device
  • FIG. 7 is a schematic flow chart of a method of preparing a power generating device
  • 8A is a schematic structural view of a series connection of power generating devices
  • 8B is a schematic structural view of a parallel connection of power generating devices
  • 8C is a schematic structural view of a power generating unit connected in series
  • 9A is a schematic view of a power generating device arranged
  • 9B is a schematic diagram of arranging a power generating device
  • 9C is a schematic diagram of arranging a power generating device
  • FIG. 10 is a schematic diagram of a hardware structure of a power supply system.
  • the method embodiment describes a basic implementation flow of a method for preparing a power generating device.
  • the basic implementation process includes step 101, step 102, step 103, and step 104.
  • step 101 a first electrode is prepared.
  • step 102 a second electrode is prepared.
  • the first electrode is prepared in step 101, and the second electrode is prepared in the same manner as in step 102.
  • the deposition process is used to separate the first electrode and the second electrode.
  • the deposition technique is not limited to the preparation technique.
  • the preparation techniques for preparing the first electrode and the second electrode are all within the protection scope of the embodiments of the present invention.
  • the first electrode and the second electrode are both prepared by using an electrode material, but the first electrode is not limited to which electrode material is used, and the second electrode is not limited to which electrode material is used. For example, metal can be used.
  • a first electrode and/or a second electrode are prepared.
  • Metal conductive materials are a class of electrode materials.
  • the first electrode and/or the second electrode may be prepared by using a metal conductive material.
  • the following metal conductive materials may be used: titanium Ti, copper Cu, tantalum Ta, nickel Ni.
  • Non-metallic conductive materials are also a class of electrode materials.
  • the non-metallic conductive material includes: a compound conductive material (for example, titanium nitride TiN and titanium telluride TaN), an amorphous conductive material (for example, polycrystalline silicon), and an organic conductive material (for example, polyaniline and polythiophene).
  • This embodiment may employ the non-metallic conductive material to prepare the first electrode and/or the second electrode.
  • the electrode material used to make the first electrode and the second electrode in the embodiment of the present invention is not necessarily a metal.
  • the electrode materials used for preparing the first electrode and preparing the second electrode may be the same, for example, copper Cu is used to prepare the first electrode and the second electrode; and the electrode for preparing the first electrode and the second electrode is prepared.
  • the material may also be different, for example, silver Ag is used to prepare the first electrode, and platinum Pt is used to prepare the second electrode.
  • the materials of the first electrode and the second electrode are the same or different.
  • step 103 a functional layer is prepared.
  • the preparation of the functional layer in step 103 is similar to the implementation of the first electrode in step 101.
  • the deposition technique is used to realize the preparation of the functional layer, but the deposition technique is not limited to the preparation technique, and the preparation techniques for preparing the functional layer are all It is within the scope of protection of the embodiments of the present invention.
  • the functional layer has a resistance transition characteristic.
  • the resistance transition characteristic means that an electrical signal is applied to the functional layer to form a conductive filament inside the functional layer, and the conductive filament can remain in the functional layer after the electrical signal is stopped, and the functional layer including the conductive filament has The resistance is smaller than the resistance of the functional layer not containing the conductive filament; applying a reverse electrical signal to the functional layer containing the conductive filament (inverted to the electrical signal used to form the conductive filament), the conductive filament It is blown and/or gradually disappears.
  • the functional layer is prepared using an insulator material having a resistance change characteristic, or a functional layer is prepared using a semiconductor material having a resistance transformation property.
  • the insulator material or semiconductor material that can be used to prepare the functional layer includes: an oxide material (eg, titanium dioxide TiO 2 , cuprous oxide Cu 2 O, tantalum pentoxide Ta 2 O 5 , silicon dioxide SiO 2 , oxidation) Nickel NiO, cerium oxide HfO 2 , zirconium dioxide ZrO 2 , aluminum oxide Al 2 O 3 , or perovskite material PCMO, etc., solid dielectric materials (eg copper sulfide CuS, silver sulfide Ag 2 S, silver iodide) AgI, or Ag 4 RbI 5 , etc.), organic materials, amorphous silicon materials, and the like.
  • an oxide material eg, titanium dioxide TiO 2 , cuprous oxide Cu 2 O, tantalum pentoxide Ta 2 O 5 , silicon dioxide SiO 2 ,
  • the functional layer is prepared between the first electrode and the second electrode. It is worth noting that the spacing between the first electrode and the second electrode is variable, ie the length of the functional layer (the linear distance from the first electrode to the second electrode) is variable. The longer the length of the functional layer, the longer the conductive filament formed in the functional layer in the subsequent step 104, and accordingly the voltage output by the thermoelectric generation of the conductive filament can be increased. Alternatively, the length of the functional layer can be selected between 1 nanometer (nm) and 100 micrometers (um), so that the conductive filament formed in the functional layer is suitable not only for thermoelectric generation but also for outputting thermoelectric power. .
  • the sequence of the execution of the step 101, the step 102, and the step 103 is not limited.
  • the step 101, the step 102, and the step 103 may be sequentially performed in sequence, or the step 102, the step 101, and the step 103 may be sequentially performed in sequence, or simultaneously.
  • Step 101, step 102, and step 103 are performed.
  • step 104 conductive filaments are formed inside the functional layer.
  • Step 104 is to form conductive filaments inside the functional layer using the resistance transition characteristics of the functional layer.
  • an electrical signal is applied to the functional layer from the first electrode to generate a conductive filament inside the functional layer; or an electrical signal is applied to the functional layer from the second electrode to generate a conductive filament inside the functional layer; or, from the first The electrode and the second electrode simultaneously apply an electrical signal to the functional layer, but the electricity applied from the second electrode
  • the signal is different from the electrical signal applied from the second electrode (eg, applying a positive direct current signal from the first electrode while applying a negative direct current signal from the second electrode, and for example, the voltages of the two electrical signals are different), Conductive filaments are formed inside the functional layer.
  • connection state of the conductive filaments to the first electrode and the second electrode respectively may be: one end of the conductive filament is electrically connected to the first electrode, and the conductive filament is The other end is electrically connected to the second electrode.
  • the application of the electrical signal to the functional layer may be stopped; of course, the electrical signal may be continuously applied to the functional layer to increase The diameter of the large conductive filaments or the formation of more conductive filaments, continue to apply electrical signals for a preset time (which can be preset or changed) before stopping the application of electrical signals to the functional layer. After the electrical signal is stopped from being applied to the functional layer, the conductive filament remains in the functional layer.
  • the electrical conductivity of the conductive filament is greater than the electrical conductivity of the functional layer, ie the electrical resistance of the conductive filament is less than the electrical resistance of the functional layer.
  • the functional layer has a relatively high electrical resistance, and it is difficult to realize the migration of carriers (for example, electrons, holes) between the first electrode and the second electrode through the functional layer, even in function. There is almost no migration of carriers (such as electrons, holes) in the layer. However, migration of carriers (e.g., electrons, holes) between the first electrode and the second electrode can be achieved by the conductive filaments.
  • the conductivity of the conductive filament is twice or more than the conductivity of the functional layer.
  • the conductive filament formed in step 104 can be used for thermoelectric power generation.
  • Thermoelectric power generation is the direct conversion of thermal energy into electrical energy.
  • the specific implementation of the thermoelectric power generation is: in a state where the conductive filaments are electrically connected to the first electrode and the second electrode, respectively, the temperature at the first electrode and the temperature at the second electrode are present.
  • carriers e.g., electrons, holes
  • thermoelectric effect in the power generating device is: assuming that the temperature of the first electrode is higher than the temperature of the second electrode, the electrons of the first electrode pass the conductive filament from the first electrode of the high temperature along with the thermal gradient (temperature gradient) Moving toward the second electrode at a low temperature, the migrated electrons are deposited on the second electrode; Assuming that the temperature of the first electrode is lower than the temperature of the second electrode, electrons of the second electrode migrate toward the first electrode through the conductive filament, and the migrated electrons are accumulated at the first electrode.
  • the conductive filament when there is a temperature difference between the first electrode and the second electrode, the conductive filament is used to generate a potential difference between the first electrode and the second electrode by using a thermoelectric effect .
  • Conductive filaments formed inside the functional layer using the method steps shown in Figure 1 the conductive filaments being nanoscale, having a high Seebeck coefficient S, high electrical conductivity ⁇ , and low thermal conductivity ⁇ , thus the conductive
  • the filament has a high quality factor ZT and is suitable for thermoelectric generation.
  • a conductive filament connected between the first electrode and the second electrode the larger the diameter of the conductive filament, capable of providing a larger current during thermoelectric generation.
  • the diameter of the conductive filaments is any value between 5 nanometers and 500 nanometers, which ensures that a suitable current can be supplied during thermoelectric generation.
  • the prior art method for preparing nanowires directly generates nanowires without a carrier. Therefore, after preparing the nanowires, it is necessary to remove the well-oriented nanowires from the disordered nanowire clusters and fix them, and fix them well.
  • the nanowires are used for thermoelectric power generation, and the process of removing and fixing is easy to damage the nanowires, and the operation is difficult; compared with the prior art, the present embodiment directly forms conductive filaments in the functional layer by electrical signals, and then directly uses the entire power generation device.
  • the thermoelectric power generation reduces the process of removal and fixation and avoids damage to the conductive filaments.
  • the conductive thin wires are formed by applying an electrical signal to the functional layer, and each of the formed conductive thin wires is straight, and the plurality of conductive thin wires are not disordered, and can be directly used for thermoelectric power generation.
  • FIG. 2A provides a schematic step of preparing a power generating device of FIG. 2B, and the method steps provided by FIG. 2A is a specific example of the method steps provided in FIG. 1.
  • step 201 a first electrode is deposited on the substrate.
  • Step 202 depositing a second electrode on the substrate.
  • step 203 a functional layer is deposited on the substrate.
  • the conductivity requirement for the substrate is such that electrical connection characteristics of the inside of the power generating device (first electrode, second electrode, conductive filament) are not affected; in view of this requirement, an insulator or a semiconductor may be employed as the substrate. material.
  • This embodiment is a deposition technique for depositing a first electrode on a substrate (including a deposition method and a deposition)
  • the process is not limited, and existing deposition techniques or future deposition techniques may be employed, and the deposition technique employed does not constitute a limitation of the present invention.
  • the first electrode may be deposited by the following deposition techniques, including: electron beam evaporation (English full name electron beam evaporation), sputtering (English full name sputtering), chemical vapor deposition (English full name chemical vapor deposition, English CVD for short) ), atomic layer deposition (English full name atomic layer deposition, English abbreviated ALD), electrochemical deposition (English full name electrolytic deposition) and other similar deposition techniques.
  • the technique of depositing the first electrode on the substrate in step 201 can also be used in step 202 to deposit a second electrode on the substrate.
  • the technique of depositing the functional layer on the substrate in step 203 is also similar to the technique of depositing the first electrode on the substrate in step 201.
  • a functional layer is deposited between the first electrode and the second electrode.
  • the execution order of step 201, step 202, and step 203 is not limited; the functional layer may be first deposited on the substrate, and then the first electrode and the second electrode may be deposited on both ends of the functional layer; A first electrode and a second electrode are deposited on the substrate, and a functional layer is deposited between the first electrode and the second electrode.
  • step 201 of Figure 2A is omitted; if the deposition of the second electrode has been previously completed, then step 202 of Figure 2A is omitted; if the function has been previously completed.
  • step 204 an electrical signal is applied to the functional layer to form a conductive filament inside the functional layer.
  • Step 204 is similar to the implementation of step 104, and details are not described herein. For details, refer to the implementation step 104.
  • FIG. 2B Three power generating devices are schematically illustrated in Figure 2B, each of which can be fabricated using the method steps provided in Figure 2A. As shown in FIG. 2B, the power generating device is parallel to the preparation of the substrate. Therefore, when the first electrode, the second electrode, and the third electrode are deposited, the order of steps 201, 202, and 203 may not be limited.
  • the power generating device shown in Fig. 2C is perpendicular to the substrate with respect to the power generating device as shown in Fig. 2B.
  • the fabrication of the power generating device shown in FIG. 2C is similar to the implementation of the power generating device shown in FIG. 2B; however, in the fabrication of the power generating device shown in FIG. 2C, it is required to first deposit a second electrode on the substrate, and then at the A functional layer is deposited on the two electrodes, and a first electrode is deposited on the functional layer. Finally, step 204 is performed to form conductive filaments inside the functional layer.
  • the power generating device when the power generating device is deposited perpendicular to the substrate, it can also be implemented in the following deposition sequence: first depositing a first electrode on the substrate, then depositing a functional layer on the first electrode, and then on the functional layer A second electrode is deposited, and finally step 204 is performed to form a conductive filament inside the functional layer.
  • the substrate is a necessary component of the power supply device (for example, the substrate is a single board for an integrated circuit)
  • the power generating device deposited on the substrate remains; if it is a temporary lining for making a power generating device After the step 204, the power generating device is taken out from the substrate.
  • the implementation technology for how to extract the power generating device is not limited, and the implementation technology for taking out the power generating device is not limited to the embodiment.
  • step 104 or step 204 is illustrated to form conductive filaments inside the functional layer of the power generating device.
  • the first electrode of the power generating device is composed of silver Ag
  • the second electrode of the power generating device is composed of platinum Pt.
  • an electrical signal is applied from the first electrode, and an Ag atom in the first electrode undergoes an oxidation reaction to obtain Ag+; and application of an electrical signal from the first electrode also forms an electric field in the functional layer. Under the action of the electric field, Ag+ will migrate toward the second electrode inside the functional layer. When electrons are encountered during the migration process, the reduction reaction occurs and Ag atoms are obtained, and the Ag atoms obtained by the reduction are deposited.
  • FIG. 3 only shows a scene in which the contact surface (the contact surface where the functional layer is in contact with the second electrode) is reduced to Ag atoms and deposited, and there may be a contact surface that does not reach the contact surface (the functional layer is in contact with the second electrode). A scene in which it is reduced to Ag atoms and begins to deposit, so it is possible to deposit Ag atoms from any position inside the functional layer to form conductive filaments.
  • the electrical signal is continuously applied from the first electrode, and the continuously growing conductive filaments are electrically connected to the first electrode and the second electrode respectively; and the time of applying the electrical signal continues, Can also continue to deposit Ag atoms on the conductive filament, increase the diameter of the conductive filament (that is, increase the cross-sectional area of the conductive filament), or may generate other conductive filaments; the current through the functional layer (the first When the current flowing from one electrode to the second electrode reaches the current limit value, the diameter of the conductive filament is substantially determined and does not substantially change. After the application of the electrical signal from the first electrode is stopped, the formed conductive filaments remain in the functional layer.
  • This embodiment can utilize the conductive filaments in the power generating device for thermoelectric power generation.
  • FIG. 3 only provides a process for forming a conductive filament. If other conductive filaments are simultaneously formed inside the power generating device, the generation process of other conductive filaments is similar.
  • the present example is to apply an electrical signal from the first electrode to the Ag+, and similarly, to apply an electrical signal from the second electrode to ionize the Ag+ from the first electrode, and also from the first electrode and the second.
  • the electrodes each apply a different electrical signal to ionize Ag+ from the first electrode, such as applying a positive direct current signal from the first electrode while applying a negative direct current signal from the second electrode.
  • the embodiment of the present invention does not limit the electrical signal applied to the functional layer in step 104 or step 204, and may be a direct current signal or an alternating current signal, but the electrical layer is applied to the functional layer.
  • the signal is sufficient to form a conductive filament electrically connected to the first electrode and the second electrode inside the functional layer, for example, applying an alternating current signal to the functional layer, wherein the alternating current signal is in a half cycle of the forward voltage Forming a conductive filament electrically connected to both the first electrode and the second electrode, and the fusible property of the conductive filament is broken due to the excessive forward current due to the alternating current signal (ie, the resistance transition of the functional layer) The characteristic is destroyed) such that the alternating current signal in the half cycle of the negative voltage cannot fuse the conductive filament that has been formed in the functional layer.
  • Step 104/Step 204 The implementation of forming the conductive filament by applying a direct current signal to the function includes the following three types: first, applying a direct current signal from the first electrode to the functional layer, forming a first electrode and a first inside the functional layer a conductive filament electrically connected to the two electrodes; a second type, a direct current signal is applied to the functional layer from the second electrode, and a conductive filament electrically connected to the first electrode and the second electrode is formed inside the functional layer; Applying a direct current signal to the functional layer from the first electrode and the second electrode simultaneously, but the direct current signal applied from the second electrode is different from the direct current signal applied from the second electrode (eg, applying a forward direct current from the first electrode) Signaling, simultaneously applying a negative direct current signal from the second electrode, and for example, the voltages of the two direct current signals are different) inside the functional layer A conductive filament electrically connected to both the first electrode and the second electrode is formed.
  • the direct current signal applied to the functional layer may include three types: a direct current voltage signal, a direct current signal, and a direct current pulse signal (for example, a pulse voltage signal).
  • a direct current voltage signal for example, a direct current signal
  • a direct current pulse signal for example, a pulse voltage signal.
  • the following is an example of three power-on scenarios, the first power-on scenario is given by applying a DC voltage signal to the power generating device to form a conductive filament, and the second power-on scenario is to apply a DC current signal to the power generating device.
  • the third powered scene is given from the angle at which the pulsed voltage signal is applied to the power generating device to form the conductive filaments.
  • a DC voltage signal is applied to the power generating device to form conductive filaments electrically connected to the first electrode and the second electrode inside the functional layer of the power generating device.
  • there are two modes for applying a DC voltage signal to the power generating device including: a scan voltage mode and a constant voltage mode; and the scan voltage mode refers to stepwise increasing the DC voltage signal during the application of the DC voltage signal to the power generating device.
  • the voltage amplitude; the constant voltage mode means that the voltage amplitude of the DC voltage signal does not change during the application of the DC voltage signal to the power generating device.
  • the voltage magnitude of the DC voltage signal may range from 0 volts (V) to 50 volts (V) in the scan voltage mode or the constant voltage mode.
  • the power generating device can be current-limited, and the current limiting value used for the current limiting is adjustable.
  • a current limit value is selected from the range of 1 nanoamperes (nA) to 5 amps (A); even if the selected higher current limit value destroys the resistance transition characteristics of the power generating device, this is for the power generating device. It is also allowed.
  • the process of forming conductive filaments in a first power-on scene is illustrated below in conjunction with an Ag-SiO 2 -Pt device.
  • the Ag-SiO 2 -Pt device is one of the power generation devices; specifically, in the Ag-SiO 2 -Pt device, the first electrode is composed of Ag, the second electrode is composed of Pt, and the functional layer is composed of SiO 2 , the first electrode
  • the spacing between the second electrode and the second electrode is 400 nanometers (nm).
  • the Ag-SiO 2 -Pt device is connected in series with an external current limiter (such as a resistor, a transistor, a semiconductor parameter analyzer, etc.), and the current limiter is used to limit the current flowing through the Ag-SiO 2 -Pt device, allowing the flow to pass through the limit.
  • the maximum current of the flow device is 100 nanoamperes (nA), that is, the current limit value Icc set for the Ag-SiO 2 -Pt device is 100 nA.
  • the Ag-SiO 2 -Pt device is in the state of (d) of Fig. 4, in which case there is no conductive filament in the middle of SiO 2 , and the Ag-SiO 2 -Pt device is in a high resistance state.
  • a DC voltage signal is then applied to the Ag-SiO 2 -Pt device in a scan voltage mode, and the current flowing through the Ag-SiO 2 -Pt device is limited by a series current limiter.
  • the resistance of the Ag-SiO 2 -Pt device is still very large (much larger than the internal resistance of the current limiter), and the voltage of the DC voltage signal is substantially all applied to the Ag-SiO 2 -Pt device.
  • conductive filaments were formed inside the SiO 2 of the Ag-SiO 2 -Pt device.
  • the implementation of forming conductive filaments in the SiO 2 of the Ag-SiO 2 -Pt device is similar to that described above in the formation of the conductive filaments in the functional layer as shown in FIG. 3 and will not be described again.
  • the conductive filament The diameter is approximately 60 nm.
  • SiO 2 Ag-SiO 2 -Pt internal forming device in FIG. 4 (e) the conductive filament-shaped, with respect to the Ag-SiO 2 -Pt resistor device, the resistance of the flow restrictor can no longer be ignored.
  • the series current limiter such as the transistor
  • the Ag-SiO 2 -Pt device in the DC scan voltage mode, which flows through the entire Ag-SiO 2 due to the current limiting action of the current limiter.
  • the current of the -Pt device is limited to 100 nA, so the size of the conductive filament will not change much.
  • a direct current signal is applied to the power generating device to form conductive filaments electrically connected to the first electrode and the second electrode inside the functional layer of the power generating device.
  • a direct current signal is applied to the power generating device to form conductive filaments electrically connected to the first electrode and the second electrode inside the functional layer of the power generating device.
  • the scan current mode refers to stepwise increasing the current amplitude of the direct current signal during the application of the direct current signal to the power generating device.
  • the constant current mode means that the current amplitude of the direct current signal does not change during the application of the direct current signal to the power generating device.
  • the current magnitude of the direct current signal may range from 0 amps (A) to 10 amps (A) in either the scan current mode or the constant current mode.
  • the power generating device can be current limited, and the current limiting value used for current limiting is adjustable.
  • the process of forming the conductive filaments will be described below by taking a DC current signal applied to the power generating device in the scanning current mode as an example.
  • a DC current signal applied to the power generating device in the initial stage of applying a direct current signal to the power generating device, there is no conductive filament inside the power generating device; in the scanning current mode, the current of the direct current signal is gradually increased, and the voltage across the power generating device is gradually increased ( May increase non-linearly; continue to increase straight During the current flow of the current signal, the voltage across the power generating device suddenly drops.
  • the reason why the voltage jumps are reduced is that it is formed simultaneously with the first electrode and the second inside the power generating device. Conductive filaments in which the electrodes are electrically connected.
  • the conductive filament is formed in the second power-on scene, and there are two main factors determining the diameter of the conductive filament, including the current limit value of the current limiter and the direct current signal. If the current limit value of the current limiter is greater than the maximum current value of the direct current signal, the maximum current value of the direct current signal determines the diameter of the finally formed conductive filament, and the larger the maximum current value of the direct current signal is formed. The larger the diameter of the conductive filament. If the current limit value of the current limiter is less than or equal to the maximum current value of the DC current signal, the current limit value of the current limiter determines the diameter of the finally formed conductive filament, and the current limit value of the current limiter is larger. The diameter of the formed conductive filaments is larger.
  • a pulse voltage signal is applied to the power generating device to form conductive filaments electrically connected to the first electrode and the second electrode inside the functional layer of the power generating device.
  • the voltage amplitude and the pulse width of the pulse voltage signal are adjustable; optionally, the voltage amplitude of the pulse voltage signal may be any voltage value from 0 volts (V) to 50 volts (V); Alternatively, the pulse width of the pulse voltage signal may be any one of 0 seconds (s) to 10 seconds (s). In order to shorten the time for obtaining the conductive filaments electrically connected to both the first electrode and the second electrode, it can be achieved by increasing the voltage amplitude and/or increasing the pulse width.
  • the pulse voltage signal is applied to the power generating device, and the power generating device can also be limited.
  • the current limiting implementation is similar to the current limiting method used to apply the DC voltage signal to the power generating device.
  • a pulse voltage signal is applied to the power generating device to form the conductive filament. If the pulse width of the pulse voltage signal is small and/or the voltage amplitude of the pulse voltage signal is small, the current flowing through the power generating device is small, and
  • the current limiting device is not limited, that is, the power generating device does not have a series current limiter, and the current limiter may not be integrated in the power generating device.
  • step 104 or step 204 during the process of forming the conductive filament by applying an electrical signal to the functional layer, the embodiment of the present invention determines whether the conductive filament is electrically connected to the first electrode and the second electrode respectively. The following four are included.
  • the first detection mode it is detected whether two ends of the conductive filament are electrically connected to the first electrode and the second electrode, respectively.
  • the embodiment of the present invention does not limit the implementation manner of the first detection mode.
  • an instrument may be used to observe whether the two ends of the conductive filament are electrically connected to the first electrode and the second electrode, respectively.
  • the first type of power-on scene, the second power-on scene, or the third power-on scene may form a conductive filament, and the first detection manner may be used to detect whether the first electrode and the first electrode are respectively formed.
  • a conductive filament electrically connected to the second electrode.
  • the second detecting method detects the current passing through the functional layer, and when the current passing through the functional layer jumps, it is determined that the conductive filaments respectively electrically connected to the first electrode and the second electrode are formed.
  • the second detection method is suitable for detecting whether the conductive filaments respectively electrically connected to the first electrode and the second electrode have been formed under the first power-on scene. Specifically, in the process of applying a DC voltage signal to the power generating device, the current flowing through the power generating device gradually rises gradually in the previous period of time, and the current suddenly flowing through the power generating device jumps and increases, and is determined to be in the power generating device. A conductive filament electrically connected to both the first electrode and the second electrode is formed inside the functional layer.
  • a second detection method will be described by taking a conductive filament in an Ag-SiO 2 -Pt device as an example.
  • the current flowing through the Ag-SiO 2 -Pt device gradually rises slowly, for example, from 0 ampere (A) to 1 picoamperes (pA).
  • the current that suddenly flows through the Ag-SiO 2 -Pt device jumps, for example, from 1 picoamperes (pA) to 100 nanoamps (nA), which is judged to be considered in the Ag-SiO 2 -Pt device.
  • a conductive filament electrically connected to both the first electrode and the second electrode is formed inside the SiO 2 layer.
  • the second detection method is also suitable for detecting whether the conductive filaments respectively electrically connected to the first electrode and the second electrode have been formed under the third power-on scene.
  • the detection principle is similar to the detection principle in the first power-on scenario, and will not be described again.
  • a third detection mode detecting a voltage passing through the functional layer, and when a voltage across the functional layer is hopped to decrease, determining that a conductive connection with the first electrode and the second electrode is formed respectively Electric filament.
  • the third detection mode is suitable for detecting whether the conductive filaments respectively electrically connected to the first electrode and the second electrode have been formed under the second power-on scene. Specifically, in the process of applying a DC current signal to the power generating device, the voltage across the power generating device is suddenly detected to be hopped, and the voltage hopping type is decreased. For example, as shown in FIG. 5, it is determined that it is inside the functional layer of the power generating device. Conductive filaments electrically connected to both the first electrode and the second electrode are formed.
  • the fourth detecting method detects the resistance of the functional layer/power generating device, and when the current value of the resistance of the functional layer/power generating device decreases to less than one-half or one-half of the initial value, it is determined that Conductive filaments electrically connected to the first electrode and the second electrode, respectively, are formed.
  • the fourth detection method is as follows. Before applying an electrical signal to the power generating device, detecting a resistance of the power generating device, using the detected resistance value as a first resistance value, the first resistance value being an initial value of the power generating device; and stopping applying an electrical signal to the power generating device to form a conductive After the filament, the resistance of the power generating device is detected, and the detected resistance value is taken as a second resistance value, and the second resistance value is the current value of the power generating device. If the first resistance value is 2 times or more of the second resistance value, it is determined that a conductive filament electrically connected to both the first electrode and the second electrode is formed inside the functional layer of the power generating device.
  • the fourth detection mode is still applicable to the following scenario: the process of generating the conductive filament is relatively smooth, even when the conductive filaments respectively electrically connected to the first electrode and the second electrode are formed. The voltage between the first electrode and the second electrode does not jump and/or the current flowing through the power generating device does not jump.
  • step 104 or step 204 forms a conductive filament by applying a direct current signal to the functional layer
  • the embodiment of the invention determines that conductive filaments respectively formed to be electrically connected to the first electrode and the second electrode are respectively formed (may be When the first detection mode, the second detection mode, the third detection mode, and the fourth detection mode are determined, the application of the DC signal is stopped; after the application of the DC signal is stopped, the conductive filament is retained.
  • the conductive thin can be used later The wire is subjected to thermoelectric power generation.
  • the applied direct current signal may be current limited to limit the maximum current through the functional layer.
  • the first power-on scene, the second power-on scene, or the third power-on scene described above can all limit the current flowing through the power generating device, that is, limit the current flowing through the functional layer.
  • the first current limiting implementation is to use an external current limiter (such as a resistor, transistor, semiconductor parameter analyzer, etc.) to connect the current limiter in series with the power generating device, as shown in Figure 6.
  • an external current limiter such as a resistor, transistor, semiconductor parameter analyzer, etc.
  • the current limiter does not limit the current flowing through the power generating device; the current of the DC signal in FIG. 6 is greater than or equal to the current limiter.
  • the current limiter limits the current value of the current flowing through the power generating device to a current limit value.
  • the second current limiting implementation is to integrate a current limiter in the functional layer, and use an integrated current limiter to limit the functional layer; use an integrated current limiter to limit the functional layer and use an external current limiter for current limiting.
  • the implementation principle is similar and will not be described again. For details, refer to the corresponding description in the first type of current limiting implementation.
  • the embodiment of the present invention does not limit the integration manner of the integrated current limiter in the functional layer; an optional integration method is to deposit a current limiter (such as a resistor, a transistor, etc.) around the power generating device.
  • the integrated current limiter is connected in series with the functional layer, and an optional integrated implementation in series is to deposit a current limiter in a localized area inside the functional layer.
  • the first role is to prevent damage to the functional layer due to excessive current. If the current or voltage of the DC signal is relatively small and the electrical signal is held for a short time, such as a pulsed voltage signal, there is no need to limit current protection of the functional layer. If the functional layer itself has the ability to suppress current, there is no need for current limiting protection.
  • the second function is to set the current limit value of the functional layer current limit (allowing the maximum current value through the functional layer).
  • the size of the current limit value directly determines the diameter of the conductive filament, and the larger the current limit value is formed.
  • the current limiting value may not even form a complete conductive filament, that is, the formed conductive filament is insufficient to simultaneously connect the first electrode and the second Electrodes, incomplete conductive filaments are not required for embodiments of the present invention and are not suitable for use in thermoelectric power generation. In the present embodiment, even a higher current limit value destroys the resistance transition characteristics of the power generating device, which is also allowed for the power generating device.
  • the second effect is illustrated below in conjunction with FIG.
  • This example applies a DC voltage signal to an Ag-SiO 2 -Pt device in a DC scan voltage mode to form a conductive filament.
  • the Ag-SiO 2 -Pt device is connected in series with an external current limiter as shown in Figure 6.
  • Icc current limit value
  • a conductive filament having a shape as shown in (e) of FIG. 4 is formed inside the SiO 2 of the Ag-SiO 2 -Pt device.
  • the conductive filament has a diameter of approximately 60 nm.
  • a conductive filament having a shape as shown in (f) of FIG. 4 is formed inside the SiO 2 of the Ag-SiO 2 -Pt device.
  • the conductive filament has a diameter of approximately 14 nm.
  • the DC signals applied to form the conductive filaments in different power generating devices may be different for different power generating devices (the functional layer materials constituting the power generating device, the material growth process, the device structure, or the size, etc.) may be used for
  • the current limit values set by the current limiting devices of different power generation devices may be different.
  • the spacing between Ag (first electrode) and Pt (second electrode) is 100 nm; if Ag-Cr 2 O 3 - Icc pt device current limit value set for the 10nA, flowing through the Ag-Cr 2 O 3 -Pt device current equal 10nA, the conductive filaments formed in the interior 2 O 3 Cr Ag-Cr 2 O 3 -Pt device The diameter is approximately 2.9 nm; if the current limit Icc is set to 500 nA for the Ag-Cr 2 O 3 -Pt device, and the current flowing through the Ag-Cr 2 O 3 -Pt device is equal to 500 nA, the Ag-Cr 2 The diameter of the conductive filament formed inside the Cr 2 O 3 of the O 3 -Pt device is about 8.8 nm.
  • a pitch between Cu (first electrode) and Pt (second electrode) is 50 nm; if a Cu-ZrO 2 -Pt device is provided
  • the current limiting value Icc is 0.5 microamperes (uA), and the conductive filaments formed inside the Cr 2 O 3 of the Cu-ZrO 2 -Pt device when the current flowing through the Cu-ZrO 2 -Pt device is equal to 0.5 uA
  • the diameter is approximately 10 nm; if the current limit Icc set for the Cu-ZrO 2 -Pt device is 1.1 uA, and the current flowing through the Cu-ZrO 2 -Pt device is equal to 1.1 uA, in the Cu-ZrO 2 -Pt device
  • the diameter of the conductive filament formed inside Cr 2 O 3 is approximately 20 nm.
  • the conductive filament has a diameter between any of 5 nanometers and 500 nanometers.
  • Conductive filaments with a diameter ranging from 5 nm to 500 nm are stable; externally applied to power generation devices
  • the reverse electrical signal (inverted from the electrical signal applied to the power generating device for forming the conductive filament) is insufficient to destroy the following characteristics required by the embodiment: the conductive filaments are electrically connected to the first electrode and the second electrode, respectively . Therefore, conductive filaments having a diameter ranging from 5 nm to 500 nm are suitable for thermoelectric generation.
  • the conductivity of the conductive filament is twice or more than the conductivity of the functional layer.
  • carriers for example, electrons, holes
  • the component for forming the conductive filament in the functional layer in the embodiment of the present invention may include any one or any of the following: metal particles, particle clusters, oxygen vacancies, crystal defects, grain boundaries, and crystal phases.
  • the components for forming the conductive filaments are determined according to the materials of the first electrode, the second electrode, and the functional layer, which may be the above (metal particles, particle clusters, oxygen vacancies, crystal defects, crystal grains)
  • One of the components of the boundary, the crystal phase may also be a plurality of components as described above.
  • the components for forming the conductive filaments in the embodiments of the present invention may be obtained from the first electrode, may be obtained from the second electrode, or may be obtained from the functional layer, and may also be from the first electrode and the second. It is obtained in any combination of the electrode and the functional layer; it can be seen that the formation of the conductive filament by oxidizing Ag+ from the first electrode is only an example.
  • a direct current signal is applied to the functional layer from the first electrode or the second electrode, causing the oxygen ions inside the functional layer to move, and the oxygen ions move away to form an oxygen vacancy, and the oxygen vacancy Crystal defects) form conductive filaments.
  • oxygen vacancies (crystal defects) for forming the conductive filaments may be generated from any position inside the functional layer, for example, from the point where the functional layer meets the first electrode to generate oxygen vacancies.
  • a direct current signal is applied to the functional layer from the first electrode or the second electrode, resulting in a change in the crystal phase of the local region in the functional layer, and the conductive filament is formed from the changed crystal phase.
  • the composition of the conductive filaments may be continuous, for example, the conductive filaments are formed by successively contacting Ag atoms.
  • the composition of the conductive filaments may also be discontinuous, for example, the conductive filaments are formed by clusters of particles, but there are voids between individual particle clusters.
  • the conductive filament formed on the functional layer is composed of at least one component or a plurality of components (metal particles, particle clusters, oxygen vacancies, crystal defects, grain boundaries, crystal phases), which is usually Unlike nanowires, nanowires are usually composed of a single type of atom. Even if the conductive filaments and the nanowires are formed by the same kind of atoms, the preparation principle of forming the conductive filaments in the functional layer is substantially different from the preparation principle of directly preparing the nanowires in the prior art, for example, the above examples are used in the preparation of the conductive filaments.
  • the first electrode oxidizes Ag+ and then is reduced to Ag atoms in the functional layer, and the nanowire is prepared by directly forming Ag wires using Ag atoms.
  • the preparation process of forming the conductive filaments in the functional layer is compatible with the CMOS process, but the preparation process for preparing the nanowires is not compatible with the CMOS process.
  • step 104 or step 204 is to form conductive filaments on a straight line.
  • step 104 or step 204 applies an electrical signal to the functional layer, an electric field is formed in the functional layer; the direction of the electric field is from the first electrode to the second electrode or from the second electrode to the first electrode.
  • the components for forming the conductive filament generated from the first electrode or the second electrode or the functional layer
  • the components are continuously accumulated (the cumulative starting point can be any position inside the functional layer), and the conductive filaments are cumulatively formed, so the conductive filaments are generated on a straight line until the conductive filaments are grown to the first electrode and the first The two electrodes are electrically connected.
  • the nanowires prepared by the nanowire preparation method have poor orientation, disordered arrangement, and cannot be directly utilized.
  • the conductive filaments formed in the functional layer in the embodiment of the present invention are straight and can be directly used for thermoelectric generation.
  • the nanowires are directly prepared, and the nanowires with good orientation are removed from the disordered nanowire clusters and fixed, and the operability is poor, and the nanowires are easily damaged by moving and fixing the nanowires, and the present invention is implemented.
  • a straight conductive filament is formed in the functional layer. If a plurality of conductive filaments are required to be connected in series or in parallel, a plurality of power generating devices may be directly connected or connected in parallel.
  • Method Embodiment 1 is to prepare a power generating device through steps 101, 102, and 103.
  • a metal-insulator-metal (MIM) device belongs to a class of power generation devices, and can also be prepared through steps 101, 102, and 103.
  • thermoelectric power generation Preparing a power generating device if an existing MIM device is used to form a conductive filament for thermoelectric power generation
  • the method includes steps 701 and 702, as shown in FIG.
  • Step 701 Acquire an MIM device, where the MIM device includes a first electrode, a second electrode, and a functional layer, the functional layer is located between the first electrode and the second electrode, and the material of the functional layer is an insulator Material or semiconductor material.
  • step 701 is to acquire an existing MIM device.
  • an Ag-SiO 2 -Pt device is obtained, and the Ag-SiO 2 -Pt device is one of MIM devices, and the first electrode of the Ag-SiO 2 -Pt device is composed of Ag, and the Ag-SiO 2 -Pt device
  • the functional layer is composed of SiO 2
  • the second electrode of the Ag-SiO 2 -Pt device is composed of Pt.
  • Step 702 forming a conductive filament inside the functional layer by applying an electrical signal to the first electrode and/or the second electrode, the conductivity of the conductive filament being greater than the conductivity of the functional layer Rate, the two ends of the conductive filament are electrically connected to the first electrode and the second electrode respectively, and the conductive filament is present when there is a temperature difference between the first electrode and the second electrode A potential difference is generated between the first electrode and the second electrode by utilizing a thermoelectric effect.
  • Step 702 is similar to the implementation of step 104, see the above-described implementation details for step 104.
  • the conductive filament having a diameter between any of 5 nanometers and 500 nanometers, the conductivity of the conductive filament being twice or twice the conductivity of the functional layer the above.
  • An optional refinement design wherein forming a conductive filament inside the functional layer by applying an electrical signal to the first electrode and/or the second electrode comprises:
  • An optional refinement design the method further comprising:
  • the applied direct current signal is current limited to limit the maximum current through the functional layer.
  • An optional refinement design, wherein the limiting the applied DC signal comprises:
  • An optional refinement design the method further comprising:
  • the application of the direct current signal is stopped.
  • the determining the conductive filament formation comprises:
  • Detecting a voltage passing through the functional layer determining that the conductive filament is formed when a voltage across the functional layer is hopped to decrease;
  • the resistance of the functional layer/power generating device is detected, and when the current value of the resistance of the functional layer/power generating device is reduced to one-half or less of the initial value, the conductive filament formation is determined.
  • An optional refinement design includes: a direct current voltage signal, a direct current signal, or a direct current pulse signal.
  • the MIM device comprises: a memristor, a resistive random access memory (RRAM), a phase change memory (PCM), and a ferroelectric random access memory (referred to as a Ferroelectric Random Access Memory).
  • RRAM resistive random access memory
  • PCM phase change memory
  • Ferroelectric Random Access Memory ferroelectric random access memory
  • FRAM Fluorescence RAM
  • MRAM Magnetic Random Access Memory
  • WORM Write-Once Read-Many-Times Memory
  • the functional layer including the conductive filaments has different electrical resistance with respect to the functional layer not including the conductive filaments; therefore, if the MIM device including the conductive filaments is used to characterize "0", the MIM device not including the conductive filaments is used Characterize "1". Therefore, the use of MIM devices in the storage field will minimize the power consumption required for the “0” and “1” flips. It is usually required to form incomplete conductive filaments in the functional layer.
  • the incomplete conductive filaments refer to The conductive filaments are not electrically connected to the first electrode and the second electrode respectively; even if the conductive filaments respectively electrically connected to the first electrode and the second electrode are formed, the functional layer of the MIM device is required to maintain the resistance transition property .
  • thermoelectricity In the field of thermoelectricity, conductive filaments formed in functional layers of MIM devices are respectively associated with first electrodes and second The electrodes are electrically connected so that the thermoelectric power generation can be realized by migrating carriers between the first electrode and the second electrode through the conductive thin wires.
  • an electrical signal is applied to the functional layer to form a conductive thin wire, the voltage or current of the electrical signal can be increased to form a conductive thin wire having a larger diameter in the functional layer, even if the voltage or current of the electrical signal is increased, the functional layer is destroyed.
  • Resistance transformation characteristic after destroying the resistance transformation characteristic of the functional layer, a reverse electrical signal is applied to the functional layer (inverted with an electrical signal applied to the functional layer for forming the conductive filament), and the conductive thin wire is not in the functional layer Fuse or disappear, that is, the conductive thin wire will remain in the functional layer for a long time.
  • the material of the functional layer is an insulator material or a semiconductor material; for a description of the material of the functional layer, refer to the related description in the method embodiment.
  • the material of the functional layer has a resistance conversion characteristic, and the conductive filament can be formed in the functional layer by using the resistance transformation property.
  • the functional layer internally includes conductive filaments.
  • the conductive filaments are nanoscale.
  • the conductive filament has a diameter between any of 5 nanometers and 500 nanometers.
  • the conductive filament has a conductivity greater than that of the functional layer.
  • the conductivity of the conductive filament is twice or more than the conductivity of the functional layer.
  • Both ends of the conductive filament are electrically connected to the first electrode and the second electrode, respectively.
  • the conductive filament may pass through the first electrode and the second electrode Carriers (e.g., electrons, holes) are migrated such that a potential difference is formed between the first electrode and the second electrode.
  • the conductive filaments electrically connected to the first electrode and the second electrode can be used for thermoelectric power generation. Specifically, when there is a temperature difference (ie, a temperature difference) between the first electrode and the second electrode, the conductive filament is used to utilize thermoelectric effect between the first electrode and the second electrode A potential difference should be generated.
  • a temperature difference ie, a temperature difference
  • the power generating device further includes a substrate.
  • the material of the substrate is an insulator material or a semiconductor material.
  • the first electrode, the second electrode and the functional layer are both deposited on the substrate as shown in FIG. 2B; or the first electrode is deposited on the substrate, As shown in Figure 2C.
  • the material of the first electrode and the second electrode is a metal conductive material or a non-metal conductive material, and materials of the first electrode and the second electrode are the same or different.
  • the power generating device further includes a current limiter.
  • the current limiter is integrated in the functional layer; or the current limiter is located between the first electrode and the second electrode and in series with the functional layer.
  • the current limiter is a transistor.
  • composition of the conductive filament comprises any one or more of the following: metal particles, particle clusters, oxygen vacancies, crystal defects, grain boundaries, and crystal phases.
  • the internal device included in the power generating device or the material of the power generating device refer to the corresponding description of the power generating device in the above method embodiment.
  • the power generating device may also include other devices that are expanded and added; the expanded device may be selected by the user in accordance with the use of the power generating device.
  • the power generation device is used for the thermoelectric power generation.
  • the specific implementation is: placing the first electrode and the second electrode in the power generating device in an environment where there is a temperature difference, and the conductive filament passes through the conductive filament.
  • the migration of carriers (eg, electrons, holes) between an electrode and the second electrode causes a potential difference to be formed between the first electrode and the second electrode; this embodiment utilizes the potential difference to load powered by.
  • the power supply device provided in this embodiment includes the power generation device prepared by the foregoing method embodiment, that is, the power generation device provided by the foregoing power generation device embodiment.
  • the power supply device further includes a first power supply electrode and a second power supply electrode. If the power generating device utilizes a thermoelectric effect at the first power supply electrode and the first A potential difference is formed between the two power supply electrodes, and the power supply device supplies power to the outside through the first power supply electrode and the second power supply electrode.
  • the power supply device includes one or more power generating devices.
  • the power supply device includes a power generating device
  • the first electrode of the power generating device is electrically connected to the first power supply electrode of the power supply device
  • the second electrode of the power generating device is electrically connected to the second power supply electrode of the power supply device;
  • the power generating device utilizes the potential difference formed by the thermoelectric effect at the first electrode and the second electrode, and the potential difference is directly reflected as a potential difference between the first power supply electrode and the second power supply electrode.
  • the power supply device and the load form a closed loop, the power supply device supplies power to the load through the first power supply electrode and the second power supply electrode.
  • the power supply device includes N power generating devices, N is a positive integer greater than or equal to 2, and N power generating devices are connected in combination. Specifically, it may be any achievable combination of the plurality of power generating devices, and each of the combined power generating devices is electrically connected; the following three exemplary alternative combinations are exemplarily provided.
  • the first optional combination connection method, the power supply device includes N power generation devices, and N is a positive integer greater than or equal to 2.
  • N power generating devices are connected in series, and the specific series connection is as shown in FIG. 8A.
  • the first electrode of the first power generating device (the first power generating device) is the first power supply electrode of the power supply device, and the Nth power generating device (the last power generating device)
  • the second electrode of the device is the second supply electrode of the power supply device.
  • the first power generating device is adjacent to the Jth power generating device; wherein I is a positive integer, I is greater than or equal to 1, J is equal to 1 plus 1, and J is less than or It is equal to N; it can be seen that the first power generating device is closer to the first power generating device than the Jth power generating device, and then the first power generating device is the previous power generating device and the Jth power generating device with respect to the Jth power generating device.
  • the first power generating device is the next power generating device; the second electrode of the first power generating device is electrically connected to the first electrode of the Jth power generating device, and the first electrode of the first power generating device is the power supply
  • the first supply electrode of the device remains the same.
  • the power generating devices are connected in series, which can effectively increase the voltage of the electrical signal output by the power supply device (the potential difference between the first power supply electrode and the second power supply electrode); the N power generating devices are connected in series to maximize the power output of the power supply device. The voltage of the signal.
  • the second optional combination connection mode, the power supply device includes N power generation devices; N is greater than or equal A positive integer of 2. N power generating devices are connected in parallel, and the specific parallel mode is as shown in FIG. 8B.
  • the first electrodes of the N power generating devices are the first power supply electrodes.
  • the first electrodes respectively included in the N power generating devices are electrically connected, and have a common connection point, and the connection point is electrically connected to the first power supply electrode, that is, the connection point is the first of the power supply device. Power supply electrode.
  • the second electrodes of the N power generating devices are the second power supply electrodes.
  • the second electrodes respectively included in the N power generating devices are electrically connected, and have a common connection point, and the connection point is electrically connected to the second power supply electrode, that is, the connection point is the second of the power supply device. Power supply electrode.
  • the power generating devices are connected in parallel, which can effectively increase the current of the electrical signal output by the power supply device; the N power generating devices are connected in parallel, which can maximize the current of the electrical signal output by the power supply device. Moreover, the power generating devices are connected in parallel, and even if some of the power generating devices operate abnormally, the power supply device can continue to supply power by using other power generating devices connected in parallel, thereby effectively improving the power supply stability of the power supply device.
  • the power supply device includes N power generation devices, and N is a positive integer greater than or equal to 2.
  • the N power generating devices constitute M power generating units, M is a positive integer greater than or equal to 2, and M is less than or equal to N. Therefore, each power generating unit includes at least one power generating device, and the number of power generating devices included in different power generating units may be different.
  • Each of the power generating units has a third electrode and a fourth electrode.
  • M power generating units are connected in series, and a specific series connection is shown in FIG. 8C.
  • the third electrode of the first power generating unit is the first power supply electrode of the power supply device
  • the fourth electrode of the Mth power generating unit is a second power supply electrode of the power supply device.
  • the Pth power generating unit is adjacent to the Qth power generating unit; wherein P is a positive integer, P is greater than or equal to 1, Q is equal to P plus 1, and Q is less than or It is equal to M; it can be seen that the Pth power generating unit is closer to the first power generating unit than the Qth power generating unit, and then the Pth power generating unit is the last power generating unit with respect to the Qth power generating unit, and the Qth The power generating unit is the next power generating unit with respect to the Pth power generating unit; the fourth electrode of the Pth power generating unit is electrically connected to the third electrode of the Qth power generating unit, and the third electrode of the first power generating unit For the power supply device The first power supply electrode remains the same.
  • Each of the M power generating units includes at least one power generating device, and the number of power generating devices included in the different power generating units may be different.
  • the Qth power generation unit is taken as an example to illustrate three possible structures inside a single power generation unit.
  • the Qth power generating unit includes a power generating device, and the first electrode of the power generating device is the third electrode of the Qth power generating unit, and the power generating device The second electrode is the fourth electrode of the Qth power generating unit.
  • the Qth power generating unit includes a plurality of power generating devices, and the plurality of power generating devices included in the Qth power generating unit are connected in parallel.
  • the implementation manner in which the plurality of power generating devices are connected in parallel in the Qth power generating unit is similar to the implementation manner in which the N power generating devices are connected in parallel, and details are not described herein again.
  • the first electrodes of the plurality of power generating devices are the third electrodes of the Qth power generating unit, and specifically, the first electrodes of the plurality of power generating devices have a common An electrical connection point, the electrical connection point being the third electrode of the Qth power generation unit.
  • the second electrode of the plurality of power generating devices is the fourth electrode of the Qth power generating unit, and specifically, the second electrodes of the plurality of power generating devices have a common An electrical connection point, which is the fourth electrode of the Qth power generation unit.
  • the Qth power generating unit includes a plurality of power generating devices, and the plurality of power generating devices included in the Qth power generating unit are connected in series.
  • the implementation of the series connection of the plurality of power generating devices in the Qth power generating unit is similar to the implementation of the above-mentioned N power generating devices in series, and details are not described herein again.
  • the first electrode of the first power generating device is the third electrode of the Qth power generating unit.
  • the first electrode of the last power generating device is the fourth electrode of the Qth power generating unit.
  • the power generating equipment includes M power generating units, and the possible structure inside each power generating unit is similar to the possible structure inside the Qth power generating unit, that is, the internal structure of each power generating unit may be the first possible structure, The second possible structure or the third possible structure.
  • the internal structures of the different power generating units may be different.
  • the first power generating unit has a third possible structure
  • the Mth power generating unit has a second possible structure.
  • multiple power generating devices are connected in parallel, which can effectively increase the current of the electrical signal output by the power generating unit.
  • the power supply stability of the power generation unit is ensured; the plurality of power generation units are connected in series to increase the voltage of the electrical signal output by the power supply device. Therefore, the M power generating units are connected in series, taking into account the voltage and current of the electrical signal outputted by the power supply device, and the power supply stability of the power supply device is also improved to some extent.
  • the power supply device comprises at least one power generating device, and the arrangement of the at least one power generating device is determined according to the position of the heat source. If the power supply device includes a power generating device, determining the arrangement of the power generating device is specifically: determining the position of the power generating device according to the position of the heat source.
  • determining the arrangement of the plurality of power generating devices includes: determining a position of each power generating device according to a position of the heat source (ie, determining a positional relationship between the plurality of power generating devices), and determining a plurality of The connection mode between the power generation devices, the connection manner between the plurality of power generation devices may be the first optional combination connection manner as shown in FIG. 8A, the second optional combination connection manner provided in FIG. 8B or the figure The third optional combination connection provided by 8C.
  • the heat source may be built in the power supply device, ie the power supply device includes the heat source.
  • the heat source is an external heat source, that is, the power supply device does not include the heat source.
  • the external heat source is not limited in the embodiment of the present invention.
  • the external heat source may be a natural heat source, such as irradiated sunlight, and then a human body surface; the external heat source may also be an artificially manufactured heat source, such as a light-emitting fixture.
  • the thermal gradient (also called the temperature gradient) can be determined by combining the type of heat source and the location of the heat source.
  • thermoelectric power generation device In a thermoelectric power generation application, if the direction in which the first electrode is directed to the second electrode (or the direction in which the first electrode is directed to the second electrode) coincides with the thermal gradient, the temperature difference between the first electrode and the second electrode is the largest Further, when the thermoelectric power generation by the temperature difference is utilized, the maximum potential difference can be generated. If the direction in which the first electrode is directed to the second electrode (or the direction in which the first electrode is directed to the second electrode) is inconsistent with the thermal gradient, the potential difference generated by the power generating device during thermoelectric generation is not the largest.
  • Embodiments of the present invention can determine the arrangement of power generating devices in a power supply device in conjunction with the location of the thermal gradient and the heat source.
  • the position of the power generating device is determined according to requirements (for example, the distance from the heat source) in the case where the heat source position is determined.
  • the orientation of the power generating device (the direction in which the first electrode is directed to the second electrode) is further set, and the orientation of the power generating device is set to coincide with the thermal gradient of the position where the power generating device is located.
  • the power supply equipment includes multiple power generation devices, in the case of determining the location of the heat source, according to the demand
  • the location of each power generating device is determined (eg, from a heat source).
  • the orientation of each power generating device (the direction in which the first electrode is directed to the second electrode) is set, and the orientation of the power generating device is set to coincide with the thermal gradient of the position of the power generating device.
  • the connection manner between the plurality of power generating devices is determined; the connection manner between the plurality of power generating devices may be the first optional combined connection manner as provided in FIG. 8A, or may be the second available as shown in FIG. 8B.
  • the combined connection mode may be selected, or may be the third optional combination connection manner as provided in FIG. 8C.
  • the plurality of power generating devices in the power supply device determine the position according to any one of the following shapes: the ring shape, the fan shape, the line shape, the rectangle shape, and the irregular pattern.
  • the type of the heat source is a columnar heat source
  • the power supply device is disposed on one side of the columnar heat source.
  • the plurality of power generating devices in the power supply device are connected in parallel by using the parallel mode provided in FIG. 8B; the power generating devices connected in parallel are parallel to the thermal gradient; specifically, in each power generating device, the direction of the first electrode directed to the second electrode remains the same as the thermal gradient direction.
  • each power generating device can generate a maximum potential difference between the first electrode and the second electrode during the thermoelectric power generation, so that the electrical signal supplied from the power supply device through the first power supply electrode and the second power supply electrode has the maximum current.
  • each power generating device is at the first electrode during thermoelectric power generation.
  • a maximum potential difference can be generated between the second electrode and the second electrode, so that the electrical signal supplied from the power supply device through the first power supply electrode and the second power supply electrode has a maximum voltage.
  • each power generating device is in the first electrode during thermoelectric power generation.
  • a maximum potential difference can be generated between the second electrode and the second electrode such that the third electrode and the fourth electrode in each of the power generating units have a maximum voltage or a maximum current.
  • the type of the heat source is a spherical heat source, and the magnitude of the thermal gradient decreases outward from the center of the ball.
  • a plurality of power generating devices in the power supply device are disposed around the spherical heat source in a ring shape; the spherical heat source is located at the center of the ring.
  • the plurality of power generating devices located on the ring shape are connected in parallel by the parallel manner provided in FIG. 8B, and the power generating devices connected in parallel are parallel to the thermal gradient; specifically, in each power generating device, the direction of the first electrode directed to the second electrode remains the same as the thermal gradient direction. In this way, each power generating device can generate a maximum potential difference between the first electrode and the second electrode during thermoelectric power generation, thereby powering the device
  • the electrical signal provided by the first supply electrode and the second supply electrode has a maximum current. .
  • the type of the heat source is a spherical heat source, and the magnitude of the thermal gradient is outwardly decreasing centering on the ball.
  • a plurality of power generating devices in the power supply device are disposed around the spherical heat source in a ring shape; the spherical heat source is located at the center of the ring.
  • the power generating devices on the ring shape are connected in series by the series arrangement provided in FIG. 8A, and the power generating devices connected in series are parallel to the thermal gradient; specifically, in each power generating device, the direction in which the first electrode is directed to the second electrode is kept in the same direction as the thermal gradient. In this way, each power generating device can generate a maximum potential difference between the first electrode and the second electrode during thermoelectric power generation, so that the electrical signal supplied from the power supply device through the first power supply electrode and the second power supply electrode has a maximum voltage.
  • connection mode in FIG. 8C can be used instead of the series mode in FIG. 9C.
  • each power generating device is at the first electrode during thermoelectric generation.
  • a maximum potential difference can be generated between the second electrode and the second electrode such that the third electrode and the fourth electrode in each of the power generating units have a maximum voltage or a maximum current.
  • necessary wires for example, adding wires for electrical connection between power generating devices
  • other necessary circuits such as a current limiting circuit for protecting the power generating device
  • Short circuit may be added to the power supply device.
  • One or more power generating devices in the power supply device are placed in an environment where there is a temperature difference.
  • a carrier for example, electrons, holes
  • a potential difference is formed between the first electrode and the second electrode of the power generating device; thus, a potential difference exists between the first power supply electrode and the second power supply electrode of the power supply device, and the power supply device uses the potential difference to supply power to the load.
  • the power supply system provided in this embodiment is shown in FIG. 10.
  • the power supply system includes a power supply circuit and the power supply device provided by the foregoing embodiment.
  • the power supply circuit is electrically connected to the first power supply electrode and the second power supply electrode of the power supply device, respectively.
  • the power circuit is also externally connected to the load.
  • thermoelectric power generation by outputting electricity from the first power supply electrode and the second power supply electrode signal.
  • the power circuit is configured to adjust an electrical signal output by the power supply device, for example, the power circuit rectifies and/or stabilizes the electrical signal, so that the power circuit outputs an electrical signal required by the load.
  • the load is the main power consuming device in this embodiment, and the power supply device needs to output power to drive the work.
  • the temperature difference of the environment in which the power supply device is located may not be constant, and the electrical signal output by the power supply device from the first power supply electrode and the second power supply electrode may not be stable.
  • a power supply circuit is introduced to adjust an electrical signal output by the power supply device, and the power circuit outputs an electrical signal required by the load, thereby effectively ensuring that the load is stable, prolonging the service life of the load, and avoiding: if the power supply device directly Load power supply may be unstable due to the electrical signal output from the power supply equipment, reducing the service life of the load, or even directly damaging the load due to overcurrent or overvoltage.
  • first and second in the “second electrode” are only used to distinguish each other. That is, the “first electrode” and the “second electrode” do not represent specific electrodes, nor do they mean that there is a sequential relationship between them.
  • the names of “first electrode” and “second electrode” may be interchanged, or “first electrode” may be referred to as “fourth electrode” and “second electrode” without departing from the scope of protection of embodiments of the present invention. "Renamed "the fifth electrode.”

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

一种制备发电器件的方法、发电器件和供电设备。该方法包括:首先制备第一电极(101)、功能层(103)和第二电极(102),功能层被制备在第一电极和第二电极之间;再通过第一电极和/或第二电极对功能层施加电信号,在功能层内部形成导电细丝(104, 204),该导电细丝的导电率大于功能层的导电率,该导电细丝的两端分别与第一电极和第二电极电性连接。在第一电极与第二电极之间存在温差时,利用热电效应,使得通过导电细丝在第一电极和第二电极之间迁移载流子,在第一电极和第二电极之间产生电势差。

Description

制备发电器件的方法、发电器件和供电设备 技术领域
本发明实施例涉及发电器件领域,尤其涉及制备发电器件的方法、发电器件和供电设备。
背景技术
从绿色环保的角度考虑,将自然界的清洁能源(如太阳能、风能、热能、机械能等)转换成电能以供人类使用是最有益的。其中,利用热电效应的发电方式由于具有安全、可靠、寿命长和无噪声等特性而备受广泛关注。虽然这种热电发电方式很早就被人们所熟悉,但直到目前还未能大规模使用这种发电方式,最主要原因是:目前已知材料的体材料(bulk material)的热电转换效率太低。近些年来,人们发现低维材料(low-dimensional materials)的热电转换效率比对应的体材料高出几十倍到上百倍,因此低维材料有望用于发电。这种低维材料制备的发电器件可以广泛应用于智能手机、电脑、家电、汽车、通讯等领域。值得注意的是,它可以直接利用人体表面与外界环境的温度差,因此低维材料的热电发电器件在可穿戴(智能手环、手表等)领域有着巨大的市场价值。纳米线,一种具有在直径上被限制在100纳米以下的一维结构,属于低维材料中的一种。
衡量一种热电材料能量转换效率的参数是品质因数(Figure of Merit),又被称为ZT,其计算品质因数ZT的表达式为:
Figure PCTCN2016072788-appb-000001
式(1)中,S是热电材料的赛贝克系数,σ是电导率,κ是热导率,T是绝对温度。为最大化品质因数ZT,要求热电材料有高的赛贝克系数S、高的电导率σ和低的热导率κ。通常,体材料不能同时满足以上三者的要求,因此其热电转换效率较低。然而,纳米线由于其表面效应使得其在保持较高的赛贝克系数S 和电导率σ时,又能显著地降低其热导率κ,因此纳米线具有较高的热电转换效率,由纳米线构建的器件较适用于发电。
目前常用的纳米线制备方法有:激光烧蚀法、气相沉积法、水热法、模板法、电子束平版印刷技术。其中,前三种方法(激光烧蚀法、气相沉积法、水热法)制备的纳米线大多数定向性差、排列杂乱无序,不能直接利用,需要从杂乱无序的纳米线团簇中移出定向性较好的纳米线,对转移出的纳米线重新定向固定后才能用于热电发电,移出并重新将纳米线定向固定的操作难度大,制备成本高。
发明内容
有鉴于此,本申请提供了一种制备发电器件的方法、发电器件和供电设备。该发电器件的制备方法可以通过较为简单的方式生成符合发电特性的导电细丝。
第一方面,本申请提供一种制备发电器件的方法。发电器件包括第一电极、第二电极和功能层。
在所述方法中,采用电极材料制备第一电极和第二电极;采用绝缘体材料和/或半导体材料制备功能层,所述功能层是制备在第一电极和第二电极之间的。
功能层具有电阻转变特性。所述方法可利用电阻转变特性在功能层形成与第一电极和第二电极均电性连接的导电细丝,所述导电细丝的导电率大于所述功能层的导电率。利用电阻转变特性的技术手段可以是电学手段、物理手段、化学手段,采用的技术手段不作为本申请在功能层形成导电细丝的限定。
该导电细丝具有高的赛贝克系数S、高的电导率σ和低的热导率κ;根据式(1),该导电细丝的品质因数ZT较高,该导电细丝适合用于热电发电。
本申请中,导电细丝用于热电发电;具体地,导电细丝用于在第一电极与第二电极之间利用热电效应产生电势差。
现有技术制备纳米线的方法是无载体地直接生成纳米线,因此在制备好纳米线后,需要从杂乱无序的纳米线团簇中移出定向性较好的纳米线并固定,使用固定好的纳米线来热电发电,移出并固定的过程容易损坏纳米线,并且操作难度大;相较于现有技术,本实施例直接在功能层形成导电细丝,后续直接使用整个发电器件进行热电发电,减少了移出和固定的过程,避免了损坏导电细丝。
在一个可能设计中,所述方法具体可以从第一电极施加电信号;或者,所述方法具体可以从第二电极对功能层施加电信号;或者,所述方法具体可以同时从第一电极和第二电极分别对功能层施加电信号;通过对功能施加电信号来在功能层内部形成导电细丝。
采用施加电信号的方式来在功能层形成导电细线,可操作性强,可控性强。
在一个可能设计中,所述方法同时从第一电极和第二电极分别对功能层施加电信号,来在功能层内部形成导电细丝。本设计中,从第一电极施加的电信号和从第二电极施加的电信号是不同的,例如两个电信号是相互反向的,再例如两个电信号是的电压不同。
在一个可能设计中,用于在功能层形成导电细线而对功能层所施加的电信号,可以是直流电信号,也可以是交流电信号。
例如,对该功能层施加交流电信号,在该交流电信号处于正向电压的半个周期内,形成与第一电极和第二电极均电性连接的导电细丝,并且因该交流电信号在正向电流过大导致该导电细丝的可熔断特性被破坏(即功能层的电阻转变特性被破坏),使得处于负向电压的半个周期内的该交流电信号不能够熔断已在功能层形成的导电细丝。
在一个可能设计中,第一电极的材料可以是金属导电材料或非金属导电材料,第二电极的材料可以是金属导电材料或非金属导电材料。
所述第一电极的材料和所述第二电极的材料可以相同,或者可以相异。
在一个可能设计中,是在衬底上通过淀积技术来制备第一电极、第二电极 或者功能层。
衬底的材料为绝缘体材料或半导体材料;衬底的导电性不会影响发电器件内部(第一电极、第二电极、导电细丝)的电学连接特性。
本设计中,可以将第一电极、第二电极和功能层的任一种组合淀积在衬底上。
例如,将第一电极、功能层和第二电极均淀积在衬底上。
例如,在衬底上淀积第一电极,在第一电极上淀积功能层,以及在功能层上淀积第二电极。反之,可以先在衬底上淀积第二电极,在第二电极上淀积功能层,以及在功能层上淀积第一电极。
例如,在衬底上淀积第一电极和功能层,在功能层的一侧(例如功能层之上)淀积第二电极。
例如,在衬底上淀积第二电极和功能层,在功能层的一侧(例如功能层之上)淀积第一电极。
如果衬底是供电设备的必要部件,例如该衬底是用于集成电路的单板,保留淀积在衬底上的发电器件。
在一个可能设计中,采用对功能层施加直流电信号的方式来在功能层形成导电细线。对功能层施加直流电信号的实现方式,可以是在所述第一电极和所述第二电极中的任一方施加直流电信号,或者,可以是在所述第一电极和所述第二电极的两方都施加直流电信号,但从第一电极施加的直流电信号和从第二电极施加的直流电信号是不同的,例如两个直流电信号是相互反向的,再例如两个直流电信号的电压不同。
采用施加直流电信号的方式来形成导电细线,效率高,保证了导电细丝在形成过程中是持续地、稳定地在一条直线上生成的。
在一个可能设计中,采用对功能层施加直流电信号的方式来形成导电细线的过程中,对施加的直流电信号进行限流,以限制通过功能层的最大电流值。
对功能层限流,可以保护发电器件,还可以通过限流值控制所能形成的导电细丝的直径。
在一个可能设计中,在所述功能层集成限流器。对功能层施加直流电信号 的方式来形成导电细线的过程中,通过所述限流器来对所述直流电信号进行限流,限制流过功能层的电流。
在一个可能设计中,发电器件串联外部的限流器。通过外部的限流器对功能层限流。
在一个可能设计中,在确定与第一电极和第二电极均电性连接的导电细丝形成后,停止对功能层施加直流电信号;停止对功能层施加直流电信号后,与第一电极和第二电极均电性连接的导电细丝会保留在功能层内部,后续可以使用该导电细线进行热电发电。在一个可能设计中,确定与第一电极和第二电极均电性连接的导电细丝形成的检测方式至少包括以下四种。
第一种检测方式,检测所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接,如果是,确定与第一电极和第二电极均电性连接的导电细丝形成。
第二种检测方式,检测通过功能层的电流,当通过功能层的电流发生跳变,确定与第一电极和第二电极均电性连接的导电细丝形成。
第三种检测方式,检测通过功能层的电压,当功能层两端的电压发生跳变式地减小,确定与第一电极和第二电极均电性连接的导电细丝形成。
第四种检测方式,检测所述功能层/发电器件的电阻,当所述功能层/发电器件的电阻的当前值减小到初始值的二分之一或二分之一以下时,确定与第一电极和第二电极均电性连接的导电细丝形成。
在一个可能设计中,用于在功能层形成导电细线而对功能层所施加的直流电信号,可以具体为直流电压信号、直流电流信号或直流脉冲信号。
在一个可能设计中,对于与第一电极和第二电极均电性连接的导电细丝,该导电细丝的直径为5纳米到500纳米之间的任一值。这样,可以保证在热电发电时能够提供较合适的电流。
另外,直径属于5纳米到500纳米范围的导电细丝是稳固的;外界对发电器件施加较小的反向的电信号(与为形成导电细丝对发电器件施加的电信号反向)是不足以破坏以下特性:导电细丝分别与第一电极和第二电极电性连接。
在一个可能设计中,对于与第一电极和第二电极均电性连接的导电细丝,该导电细丝的导电率为功能层的导电率的两倍或两倍以上。这样,在热电发 电时,在第一电极和第二电极之间迁移载流子(例如电子、空穴),具体是经过导电细丝迁移的。
第二方面,本申请提供又一种制备发电器件的方法。在所述方法中,获取金属-绝缘体-金属(Metal-Insulator-Metal,简称MIM)器件;MIM器件包括第一电极、第二电极与功能层,所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料。
在所述方法中,通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
第二方面在MIM器件的功能层形成导电细丝的实现原理,与第一方面在功能层形成导电细丝的实现原理类似,不再赘述。
第二方面在MIM器件的功能层形成导电细丝时,也可以使用第一方面中的各个可能设计,不再赘述第二方面如何使用第一方面中的各个可能设计,可参见在第一方面中对各个可能设计的描述。
第二方面直接使用MIM器件形成导电细丝,省去了制备第一电极、第二电极和功能层的制备步骤。利用在MIM器件的功能层内部形成的导电细丝进行热电发电,提供了MIM器件的新用途。
第三方面,本申请提供一种发电器件。该发电器件包括第一电极、第二电极与功能层。
所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料。
所述功能层内部包括导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连 接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
在一个可能设计中,发电器件还包括衬底,所述衬底的材料为绝缘体材料或半导体材料;所述第一电极、所述第二电极和所述功能层均淀积于所述衬底之上,或者,所述第一电极淀积于所述衬底之上。
在一个可能设计中,所述第一电极和所述第二电极的材料为金属导电材料或非金属导电材料,所述第一电极和所述第二电极的材料相同或相异。
在一个可能设计中,所述导电细丝的直径为5纳米到500纳米之间的任一值,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
在一个可能设计中,发电器件还包括限流器,所述限流器集成在所述功能层,或者,所述限流器位于所述第一电极与所述第二电极之间且与所述功能层串联。
在一个可能设计中,所述限流器为晶体管。
在一个可能设计中,所述导电细丝的成分包括以下任一种或几种:金属粒子、粒子团簇、氧空位、晶体缺陷、晶粒边界、晶相。
第三方面或者第三方面的各个可能设计提供的发电器件,是采用第一方面提供的方法制备的,或者是采用第二方面提供的方法制备的。对该发电器件的构成的具体描述,参见第一方面/第二方面中对发电器件的具体描述。
第四方面,本申请提供一种供电设备。
该供电设备包括第三方面或者第三方面的各个可能设计提供的发电器件。该供电设备包括的发电器件为一个或多个。
所述供电设备还包括第一供电电极和第二供电电极。发电器件利用热电效应在第一电极和第二电极形成的电势差,该电势差直接体现为第一供电电极与第二供电电极之间的电势差。
所述供电设备在处于具有温度差的环境中时,若所述发电器件利用热电效应在第一供电电极与第二供电电极之间形成电势差,所述供电设备通过第一供电电极与第二供电电极对外供电。
在一个可能设计中,供电设备包括N个所述发电器件,N为大于或等于2的 正整数。
所述N个发电器件串联,所述N个发电器件中的第一个发电器件的第一电极为所述第一供电电极,所述N个发电器件中的第N个发电器件的第二电极为所述第二供电电极。
本设计中,N个发电器件串联,能够最大可能地提高供电设备输出的电信号的电压。
在一个可能设计中,所述供电设备包括N个所述发电器件,N为大于或等于2的正整数。
所述N个发电器件并联,所述N个发电器件的第一电极为所述第一供电电极,所述N个发电器件中的第二电极为所述第二供电电极。
本设计中,N个发电器件并联,能够最大可能地提高供电设备输出的电信号的电流。
本设计中,N个发电器件并联,即使部分发电器件工作异常,供电设备可以利用并联的其他发电器件继续供电,有效提高了供电设备的供电稳定性。
在一个可能设计中,所述供电设备包括N个所述发电器件,N为大于或等于2的正整数。
所述N个发电器件组成M个发电单元,M为大于或等于2的正整数;所述M个发电单元串联。
在M个发电单元中,每个发电单元包括至少一个发电器件。对于包括至少两个发电器件的发电单元,该发电单元包括的至少两个发电器件串联或并联。
本设计中,多个发电器件并联,可以有效提高发电单元输出的电信号的电流,保证发电单元的供电稳定性。多个发电单元串联,能够提高供电设备输出的电信号的电压。因此,M个发电单元串联,兼顾了提供供电设备输出的电信号的电压和电流,还一定程度提高了供电设备的供电稳定性。
在一个可能设计中,供电设备还包括热源。
根据所述热源的位置确定供电设备中N个发电器件的排列。确定供电设备中N个发电器件的排列包括:根据热源的位置,确定每个发电器件的位置,以及确定N个发电器件之间的连接方式。
根据热源的位置确定供电设备中每个发电器件的位置之后,设置发电器 件的朝向(第一电极指向第二电极的方向),可以将发电器件的朝向设置为与发电器件所在位置的热梯度一致,使得在第一电极和第二电极之间的温度差最大;进而在利用该温度差热电发电时能够产生最大的电势差。
根据热源的位置确定的供电设备中N个发电器件之间的连接方式,可以是第四方面中上述可能设计提供的N个发电器件串联联、N个发电器件并联或者M个发电单元。
附图说明
图1为制备发电器件的方法的一种流程示意图;
图2A为制备发电器件的方法的一种流程示意图;
图2B为使用图2A所示方法制备出的发电器件的一种示意图;
图2C为发电器件的一种示意图;
图3为在功能层形成导电细丝的一种过程示意图;
图4为对发电器件施加直流电压信号来形成导电细丝的一种示意图;
图5为对发电器件施加直流电流信号时发电器件的电压变化的一种示意图;
图6为对发电器件限流的一种示意图;
图7为制备发电器件的方法的一种流程示意图;
图8A为发电器件串联的一种结构示意图;
图8B为发电器件并联的一种结构示意图;
图8C为发电单元串联的一种结构示意图;
图9A为排列发电器件的一种示意图;
图9B为排列发电器件的一种示意图;
图9C为排列发电器件的一种示意图;
图10为供电***的一种硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例提供的技术方案进行描述。
本发明的方法实施例
方法实施例一
本方法实施例描述了制备发电器件的方法的基本实现流程,参见图1,该基本实现流程包括步骤101、步骤102、步骤103和步骤104。
步骤101,制备第一电极。
步骤102,制备第二电极。
步骤101制备第一电极与步骤102制备第二电极的实现方式类似,例如采用淀积技术来实现对第一电极、第二电极的分别制备,但淀积技术不作为对制备技术的限定,能够制备第一电极、第二电极的制备技术均在本发明实施例的保护范围之内。
第一电极和第二电极均是采用电极材料制备,但对具体采用哪种电极材料制备第一电极不做限定,和对具体采用哪种电极材料制备第二电极不做限定,例如可以采用金属制备第一电极和/或第二电极。
金属导电材料为一类电极材料。本实施例可以采用金属导电材料来制备第一电极和/或第二电极,例如可以采用以下金属导电材料:钛Ti、铜Cu、钽Ta、镍Ni。
非金属导电材料也是一类电极材料。非金属导电材料包括:化合物导电材料(例如氮化钛TiN和钽化钛TaN),非晶导电材料(例如多晶硅),以及有机物导电材料(例如聚苯胺和聚噻吩)等。本实施例可以采用该非金属导电材料来制备第一电极和/或第二电极。本发明实施例中用于制作第一电极和第二电极的电极材料不一定是金属。
应知,制备第一电极和制备第二电极各自采用的电极材料可以是相同的,例如均采用铜Cu来制备第一电极和第二电极;制备第一电极和制备第二电极各自采用的电极材料也可以是不同的,例如采用银Ag来制备第一电极,采用铂金Pt来制备第二电极。本发明实施例中,所述第一电极和所述第二电极的材料相同或相异。
步骤103,制备功能层。
步骤103制备功能层与步骤101制备第一电极的实现方式类似,例如采用淀积技术来实现对功能层的制备,但淀积技术不作为对制备技术的限定,能够制备功能层的制备技术均在本发明实施例的保护范围之内。
功能层具有电阻转变特性。该电阻转变特性是指:对功能层施加电信号可以在功能层内部形成导电细丝,并且在停止实施电信号后该导电细丝能够保留在功能层中,包含导电细丝的功能层所具有的电阻小于未包含导电细丝的功能层所具有的电阻;对包含导电细丝的功能层施加反向的电信号(与形成导电细丝所使用的电信号反向),该导电细丝会被熔断和/或逐渐消失。
采用具有电阻转变特性的绝缘体材料制备功能层,或者采用具有电阻转变特性的半导体材料制备功能层。可选地,可以用于制备功能层的绝缘体材料或者半导体材料包括:氧化物材料(例如二氧化钛TiO2、氧化亚铜Cu2O、五氧化二钽Ta2O5、二氧化硅SiO2、氧化镍NiO、二氧化铪HfO2、二氧化锆ZrO2、三氧化二铝Al2O3、或钙钛矿型材料PCMO等)、固态电介质材料(例如硫化铜CuS、硫化银Ag2S、碘化银AgI、或Ag4RbI5等)、有机物材料和非晶硅材料等。
功能层是制备在第一电极和第二电极之间的。值得说明的是,第一电极与第二电极之间的间距是可变的,即功能层的长度(从第一电极到第二电极的直线距离)是可变的。功能层的长度越长,后续步骤104在功能层形成的导电细丝越长,相应地可提高利用导电细丝热电发电所输出的电压。可选地,可在1纳米(nm)到100微米(um)之间选择功能层的长度,这样在功能层形成的导电细丝不但适合用于热电发电,还能保证热电发电所输出的电压。
本实施例对步骤101、步骤102、步骤103的执行顺序不做限定,例如可以依次先后执行步骤101、步骤102、步骤103,也可以依次先后执行步骤102、步骤101、步骤103,也可以同时执行步骤101、步骤102、步骤103。
步骤104,在功能层内部形成导电细丝。
步骤104是利用功能层的电阻转变特性在功能层内部形成导电细丝。
具体地,从第一电极对功能层施加电信号,在功能层内部生成导电细丝;或者,从第二电极对功能层施加电信号,在功能层内部生成导电细丝;或者,从第一电极和第二电极同时对功能层施加电信号,但是从第二电极施加的电 信号与从第二电极施加的电信号是不同的(例如从第一电极施加正向的直流电信号、同时从第二电极施加负向的直流电信号,再例如两个电信号的电压不同),在所述功能层内部生成导电细丝。
持续对功能层施加电信号,所述导电细丝持续生长变长,直到所述导电细丝分别与所述第一电极和所述第二电极电性连接。可选地,所述导电细丝分别与所述第一电极和所述第二电极电性连接的连接状态可以是:导电细丝的一端与所述第一电极电性连接,导电细丝的另一端与所述第二电极电性连接。
本实施例在功能层形成分别与所述第一电极和所述第二电极电性连接的导电细丝时,可以停止对功能层施加电信号;当然也可以继续对功能层施加电信号来增大导电细丝的直径或者形成更多的导电细丝,继续施加电信号预设时间(可以预先设定或更改)后再停止对功能层施加电信号。停止对功能层施加电信号后,导电细丝会保留在功能层中。
导电细丝的电导率大于功能层的电导率,即导电细丝的电阻小于功能层的电阻。相较于导电细丝,功能层具有相对较高的电阻,要经过功能层实现载流子(例如电子、空穴)在第一电极和第二电极之间的迁移是困难的,甚至在功能层中几乎没有载流子(例如电子、空穴)迁移。然而,可以通过导电细丝实现载流子(例如电子、空穴)在第一电极和第二电极之间的迁移。
可选地,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
步骤104形成的导电细丝可用于热电发电。热电发电,就是将热能直接转变成电能。具体在本发明实施例中,热电发电的具体实现是:在导电细丝分别与第一电极和第二电极电性连接的状态下,在第一电极所处温度和第二电极所处温度存在温度差时,根据热电效应,会在第一电极和第二电极之间经过导电细丝迁移载流子(例如电子、空穴),使得在第一电极和第二电极之间形成电势差。
热电效应在发电器件中的具体体现是:假设第一电极的温度高于第二电极的温度,第一电极的电子,会随着热梯度(温度梯度)从高温的第一电极通过导电细丝向低温的第二电极迁移,迁移的电子在第二电极堆积;反之, 假设第一电极的温度低于第二电极的温度,则第二电极的电子通过导电细丝向第一电极迁移,并在第一电极堆积迁移来的电子。
在本实施例中,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
使用图1所示方法步骤在功能层内部形成的导电细丝,该导电细丝是纳米级的,具有高的赛贝克系数S、高的电导率σ和低的热导率κ,因此该导电细丝的品质因数ZT较高,适合用于热电发电。
连接在第一电极和第二电极之间的导电细丝,该导电细丝的直径越大,在热电发电时能够提供更大的电流。可选地,所述导电细丝的直径为5纳米到500纳米之间的任一值,这样可以保证在热电发电时能够提供较合适的电流。
现有技术制备纳米线的方法是无载体地直接生成纳米线,因此在制备好纳米线后,需要从杂乱无序的纳米线团簇中移出定向性较好的纳米线并固定,使用固定好的纳米线来热电发电,移出并固定的过程容易损坏纳米线,并且操作难度大;相较于现有技术,本实施例通过电信号直接在功能层形成导电细丝,后续直接使用整个发电器件进行热电发电,减少了移出和固定的过程,避免了损坏导电细丝。进一步,通过对功能层施加电信号来形成导电细线,形成的每根导电细线均是直的,多根导电细线之间并不杂乱,能够直接用于热电发电。
图2A提供了制备图2B中一个发电器件的一种示意步骤,图2A提供的方法步骤是图1提供的方法步骤的一个具体示例。
步骤201,在衬底上淀积第一电极。
步骤202,在衬底上淀积第二电极。
步骤203,在衬底上淀积功能层。
对所述衬底的导电性要求是:不会影响发电器件内部(第一电极、第二电极、导电细丝)的电学连接特性;鉴于此要求,可以采用绝缘体或半导体作为所述衬底的材料。
本实施例对在衬底上实现淀积第一电极的淀积技术(包括淀积方法和淀 积工艺)不做限定,采用现有淀积技术或未来的淀积技术均可,采用何种淀积技术不构成对本发明的限定。可选地,可以采用以下淀积技术淀积第一电极,包括:电子束蒸发(英文全称electron beam evaporation)、溅射(英文全称sputtering)、化学气相沉积(英文全称chemical vapor deposition,英文简称CVD)、原子层沉积(英文全称atomic layer deposition,英文简称ALD)、电化学沉积(英文全称electrochemical deposition)等类似淀积技术。
本实施例中,能够用于步骤201在衬底上淀积第一电极的技术,也可用于步骤202在衬底上淀积第二电极。步骤203在衬底上淀积功能层的实现技术也与步骤201在衬底上淀积第一电极的技术类似。
如图2A所示,功能层是淀积在第一电极和第二电极之间的。本实施例对步骤201、步骤202、步骤203的执行顺序不做限定;可以先在衬底上淀积功能层,再在功能层的两端淀积第一电极和第二电极;也可以先在衬底上淀积第一电极和第二电极,再在第一电极和第二电极之间淀积功能层。
应知,如果先前已完成第一电极的淀积,则省去执行图2A中步骤201;如果先前已完成第二电极的淀积,则省去执行图2A中步骤202;如果先前已完成功能层的淀积,则省去执行图2A中步骤203。
步骤204,对功能层施加电信号,在功能层内部形成导电细丝。
步骤204与步骤104的实现方式类似,在此不再赘述,可参见对实现步骤104的细节描述。
图2B中示意地给出了三个发电器件,每个发电器件均可采用图2A提供的方法步骤实现制备。如图2B所示,发电器件是平行于制备衬底的,因此在淀积第一电极、第二电极、第三电极时,可以不限定步骤201、步骤202、步骤203的先后顺序。
相对于如图2B所示的发电器件,图2C所示的发电器件是垂直于衬底的。制备图2C所示的发电器件与制备图2B所示的发电器件的实现方式类似;但在制备图2C所示的发电器件时,要求:首先在衬底上淀积第二电极、然后在第二电极上淀积功能层,再在功能层上淀积第一电极,最后执行步骤204在功能层内部形成导电细丝。
类似地,在垂直于衬底淀积发电器件时,还可以按照以下淀积顺序实现:首先在衬底上淀积第一电极、然后在第一电极上淀积功能层,再在功能层上淀积第二电极,最后执行步骤204在功能层内部形成导电细丝。
可选地,如果衬底是供电设备的必要部件(例如该衬底是用于集成电路的单板),保留淀积在衬底上的发电器件;如果是为制作发电器件而临时使用的衬底,在步骤204之后,从衬底上取出发电器件,此处对如何取出发电器件的实现技术不做限定,取出发电器件的实现技术也不作为对本实施例的限定。
下面结合图3,举例说明下步骤104或步骤204在发电器件的功能层内部形成导电细丝。如图3所示,在本举例中,该发电器件的第一电极由银Ag构成,该发电器件的第二电极由铂金Pt构成。
如图3中(a)所示,起始时,功能层内部没有导电细丝,功能层具有较高的阻抗。
如图3中(b)所示,从第一电极施加电信号,第一电极中的Ag原子发生氧化反应并得到Ag+;从第一电极施加电信号还会在功能层中形成电场,在该电场作用下,Ag+会在功能层内部朝向第二电极定向迁移,在迁移过程中遇到电子则发生还原反应并得到Ag原子,还原得到的Ag原子沉积。图3仅示出了从接触面(功能层与第二电极接触的接触面)开始还原成Ag原子并沉积的场景,还可能存在未到达该接触面(功能层与第二电极接触的接触面)便还原成Ag原子并开始沉积的场景,因此可能是从功能层内部的任一位置开始沉积Ag原子来形成导电细丝的。
从第一电极持续施加电信号,在功能层内部沉积Ag原子的过程持续进行,沉积Ag原子所得的导电细丝不断生成。由于从第一电极氧化出的Ag+在电场控制下均定向地向第二电极迁移,如图3中(b)所示,使得导电细丝是在一条直线上不断生成的。随着导电细丝的不断生成,功能层的阻抗不断降低,相应地通过功能层的电流(第一电极流向第二电极的电流)渐渐增大。
如图3中(c)所示,从第一电极继续施加电信号,持续生长的导电细丝会分别与第一电极和第二电极电性连接;再随着施加电信号的时间持续,可 能还会持续在该导电细丝上沉积Ag原子,增加导电细丝的直径(也即增加导电细丝的横截面积),也可能另生成其它导电细丝;在通过功能层的电流(第一电极流向第二电极的电流)达到限流值时,导电细丝的直径基本确定,基本不会改变了。停止从第一电极施加电信号之后,形成的导电细丝会保留在功能层中。本实施例可利用发电器件中的该导电细丝进行热电发电。
应知,为了清楚示意,图3仅提供了一根导电细丝的生成过程,如果在发电器件内部还同时生成其它导电细丝,其它导电细丝的生成过程类似。
应知,为了便于讲解,本举例是从第一电极施加电信号来电离Ag+,类似地,还可以从第二电极施加电信号来从第一电极电离Ag+,还可以从第一电极和第二电极各自施加不同电信号来从第一电极电离Ag+,例如从第一电极施加正向的直流电信号,同时从第二电极施加负向的直流电信号。
可选地,本发明实施例对用于在步骤104或步骤204中向功能层所施加的电信号不做限定,可以是直流电信号,也可以是交流电信号,但通过对功能层施加该电信号足以在在该功能层内部形成与第一电极和第二电极均电性连接的导电细丝,例如:对该功能层施加交流电信号,在该交流电信号处于正向电压的半个周期内,形成与第一电极和第二电极均电性连接的导电细丝,并且因该交流电信号在正向电流过大导致该导电细丝的可熔断特性被破坏(即功能层的电阻转变特性被破坏),使得处于负向电压的半个周期内的该交流电信号不能够熔断已在功能层形成的导电细丝。
步骤104/步骤204通过对功能施加直流电信号来形成导电细丝的实现方式包括以下三种:第一种,从第一电极对功能层施加直流电信号,在功能层内部形成与第一电极和第二电极均电性连接的导电细丝;第二种,从第二电极对功能层施加直流电信号,在功能层内部形成与第一电极和第二电极均电性连接的导电细丝;第三种,从第一电极和第二电极同时对功能层施加直流电信号,但是从第二电极施加的直流电信号与从第二电极施加的直流电信号是不同的(例如从第一电极施加正向的直流电信号、同时从第二电极施加负向的直流电信号,再例如两个直流电信号的电压不同),在所述功能层内部 形成与第一电极和第二电极均电性连接的导电细丝。
用于向功能层施加的直流电信号可以包括以下三种:直流电压信号,直流电流信号,直流脉冲信号(例如脉冲电压信号)。下面从三种加电场景举例描述,第一加电场景是从对发电器件施加直流电压信号来形成导电细丝的角度给出的,第二加电场景是从对发电器件施加直流电流信号来形成导电细丝的角度给出的,第三加电场景是从对发电器件施加脉冲电压信号来形成导电细丝的角度给出的。
第一加电场景,对发电器件施加直流电压信号,以在发电器件的功能层内部形成与第一电极和第二电极均电性连接的导电细丝。可选地,有两种对发电器件施加直流电压信号的模式,包括:扫描电压模式和恒定电压模式;扫描电压模式是指对发电器件施加直流电压信号的过程中阶梯式地增加直流电压信号的电压幅值;恒定电压模式是指对发电器件施加直流电压信号的过程中直流电压信号的电压幅值不变。可选地,在扫描电压模式或者恒定电压模式下,直流电压信号的电压大小范围可以是0伏特(V)到50伏特(V)。
在扫描电压模式或恒定电压模式下对发电器件施加直流电压信号,均可以对发电器件进行限流,限流所使用的限流值是可调整的。可选地,从1纳安培(nA)到5安培(A)这一范围内选择一个限流值;即使选择的较高限流值会破坏发电器件的电阻转变特性,这对发电器件来说也是允许的。
下面结合Ag-SiO2-Pt器件举例说明下在第一加电场景形成导电细丝的过程。Ag-SiO2-Pt器件为发电器件中的一种;具体在Ag-SiO2-Pt器件中,第一电极由Ag组成,第二电极由Pt组成,功能层由SiO2组成,第一电极与第二电极之间的间距是400纳米(nm)。Ag-SiO2-Pt器件串联一个外部限流器(如电阻、晶体管、半导体参数分析仪等),利用该限流器对流过Ag-SiO2-Pt器件的电流限流,允许流过该限流器的最大电流为100纳安(nA),即为Ag-SiO2-Pt器件设置的限流值Icc为100nA。
初始时,Ag-SiO2-Pt器件处于图4中(d)的状态,此时SiO2中间没有导电细丝,Ag-SiO2-Pt器件是高阻态。然后在扫描电压模式对Ag-SiO2-Pt器件进行施加直流电压信号,并且通过串联的限流器对流过Ag-SiO2-Pt器件的电流进行限流。
起始施加直流电压信号阶段,Ag-SiO2-Pt器件的电阻仍然很大(远大于限流器的内阻),这时该直流电压信号的电压基本全部施加在Ag-SiO2-Pt器件上,使得在Ag-SiO2-Pt器件的SiO2内部形成导电细丝。在Ag-SiO2-Pt器件的SiO2内部形成导电细丝的实现方式,参见上述如图3所示在功能层形成导电细丝的实现方式类似,不再赘述。
在扫描电压模式下逐渐增大对发电器件施加的直流电压信号的电压,导电细丝在SiO2内部不断生成;伴随着导电细丝在SiO2内部的不断生成,SiO2的电阻不断降低,Ag-SiO2-Pt器件的电阻也随着降低,使得流过Ag-SiO2-Pt器件的电流随着增大;当流过Ag-SiO2-Pt器件的电流达到限流值Icc(100nA)时,Ag-SiO2-Pt器件的SiO2内部形成如图4中(e)所示形状的导电细丝,该导电细丝与第一电极和第二电极均电性连接,该导电细丝的直径大约为60nm。Ag-SiO2-Pt器件的SiO2内部形成如图4中(e)所示形状的导电细丝后,相对于Ag-SiO2-Pt器件的电阻,限流器的电阻不能再被忽略,继续在直流扫描电压模式下增大对串联的限流器(例如晶体管)和Ag-SiO2-Pt器件施加的电信号的电压,由于限流器的限流作用使得流过整个Ag-SiO2-Pt器件的电流被限制在100nA,因此导电细丝的尺寸将不会有太大改变。
第二加电场景,对发电器件施加直流电流信号,以在发电器件的功能层内部形成与第一电极和第二电极均电性连接的导电细丝。可选地,有两种对发电器件施加直流电流信号的模式,包括:扫描电流模式和恒定电流模式。扫描电流模式是指对发电器件施加直流电流信号的过程中阶梯式地增加直流电流信号的电流幅值。恒定电流模式是指对发电器件施加直流电流信号的过程中直流电流信号的电流幅值不变。可选地,在扫描电流模式或者恒定电流模式下,直流电流信号的电流大小范围可以是0安培(A)到10安培(A)。
在扫描电流模式或者恒定电流模式下对该发电器件施加电信号,可以对发电器件进行限流,限流所使用的限流值是可调整的。
下面以在扫描电流模式下对发电器件施加直流电流信号为例来描述形成导电细丝的过程。如图5所示,对发电器件施加直流电流信号的起始阶段,发电器件内部没有导电细丝;在扫描电流模式下逐渐增大直流电流信号的电流,发电器件两端的电压也逐渐增大(可能是非线性地增大);继续增大直 流电流信号的电流的过程中,发电器件两端的电压会突然降低,如图5所示,电压发生跳变式减小的原因是:其在发电器件内部形成了同时与第一电极和第二电极均电性连接的导电细丝。
在第二加电场景下形成导电细丝,决定导电细丝的直径大小有两个主要因素,包括:限流器的限流值和直流电流信号。如果限流器的限流值大于直流电流信号的最大电流值,由该直流电流信号的最大电流值决定最终形成的导电细丝的直径大小,该直流电流信号的最大电流值越大,形成的导电细丝的直径越大。如果限流器的限流值小于或等于该直流电流信号的最大电流值,由限流器的限流值决定最终形成的导电细丝的直径大小,该限流器的限流值越大,形成的导电细丝的直径越大。
第三加电场景,对发电器件施加脉冲电压信号,以在发电器件的功能层内部形成与第一电极和第二电极均电性连接的导电细丝。其中,该脉冲电压信号的电压幅值和脉冲宽度是可调的;可选地,该脉冲电压信号的电压幅值可以是0伏特(V)到50伏特(V)中任一电压值;可选地,该脉冲电压信号的脉冲宽度可以是0秒(s)到10秒(s)中任一值。为了缩短获得与第一电极和第二电极均电性连接的导电细丝的时间,可以通过增加电压幅值和/或增大脉冲宽度实现。
对该发电器件施加脉冲电压信号,也可以对发电器件进行限流,限流实现方式与上述对发电器件施加直流电压信号所采用的限流方式类似。可选地,对发电器件施加脉冲电压信号来形成导电细丝,若脉冲电压信号的脉冲宽度较小和/或脉冲电压信号的电压幅值较小,则流过发电器件的电流较小,可以不对发电器件限流,即发电器件不串联限流器,也可以不在发电器件中集成限流器。
对该发电器件施加脉冲电压信号来形成与第一电极和第二电极均电性连接的导电细丝的实现方式,与采用直流电压信号来形成与第一电极和第二电极均电性连接的导电细丝的实现方式类似,在此不再赘述。对该发电器件施加脉冲电压信号来形成导电细丝的过程中,在脉冲电压信号的电压为零电平的时间段内,导电细丝暂停生成。
可选地,步骤104或步骤204通过对功能层施加电信号来形成导电细丝的过程中,本发明实施例确定导电细丝是否分别与第一电极和第二电极电性连接的检测方式至少包括以下四种。
第一种检测方式,检测所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接。
本发明实施例对第一种检测方式的实现方式不做限定,例如可以采用仪器观察所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接。
上述的第一种加电场景、第二种加电场景或者第三种加电场景下形成导电细丝,均可采用第一种检测方式检测是否已经形成分别与所述第一电极和所述第二电极电性连接的导电细丝。
第二种检测方式,检测通过所述功能层的电流,当通过所述功能层的电流发生跳变,确定已形成分别与第一电极和第二电极电性连接的导电细丝。
第二种检测方式适合第一种加电场景下检测是否已经形成分别与所述第一电极和所述第二电极电性连接的导电细丝。具体地,对发电器件施加直流电压信号的过程中,前面一段时间内流过发电器件的电流逐渐缓慢上升,突然流过发电器件的电流发生跳变式地增大,则判定为在发电器件的功能层内部形成了与第一电极和第二电极均电性连接的导电细丝。
下面以在Ag-SiO2-Pt器件中形成导电细丝为例说明第二种检测方式。在扫描电压模式下对发电器件施加直流电压信号的过程中,前面一段时间内流过Ag-SiO2-Pt器件的电流逐渐缓慢上升,例如从0安(A)缓慢上升到1皮安(pA);突然流过Ag-SiO2-Pt器件的电流发生跳变,例如从1皮安(pA)突然跳变到100纳安(nA),则判定为认为在Ag-SiO2-Pt器件的SiO2层内部形成了与第一电极和第二电极均电性连接的导电细丝。
第二种检测方式也适合第三种加电场景下检测是否已经形成分别与所述第一电极和所述第二电极电性连接的导电细丝。检测原理与在第一种加电场景下的检测原理类似,不再赘述。
第三种检测方式,检测通过所述功能层的电压,当所述功能层两端的电压发生跳变式地减小,确定已形成分别与第一电极和第二电极电性连接的导 电细丝。
第三种检测方式适合第二种加电场景下检测是否已经形成分别与所述第一电极和所述第二电极电性连接的导电细丝。具体地,对发电器件施加直流电流信号的过程中,突然检测到发电器件两端的电压发生跳变,电压发生跳变式减小,例如图5所示,则判定为在发电器件的功能层内部形成了与第一电极和第二电极均电性连接的导电细丝。
第四种检测方式,检测所述功能层/发电器件的电阻,当所述功能层/发电器件的电阻的当前值减小到初始值的二分之一或二分之一以下时,确定已形成分别与第一电极和第二电极电性连接的导电细丝。
以检测发电器件的电阻为例说明第四检测方式如下。在对发电器件施加电信号之前,检测发电器件的电阻,将检测到的电阻值作为第一电阻值,该第一电阻值为发电器件的初始值;在停止对发电器件施加电信号来形成导电细丝之后,检测发电器件的电阻,将检测到的电阻值作为第二电阻值,该第二电阻值为发电器件的当前值。如果第一电阻值是第二电阻值的2倍或者2倍以上,则判定为在发电器件的功能层内部形成了与第一电极和第二电极均电性连接的导电细丝。
对功能层施加电信号来形成导电细丝的各种场景,包括上述的第一种加电场景、第二种加电场景和第三种加电场景,均可采用第四种检测方式检测是否已经形成分别与所述第一电极和所述第二电极电性连接的导电细丝。
另外,第四种检测方式对于下述场景仍然适用,该场景为:生成导电细丝过程比较平滑,即使在形成分别与所述第一电极和所述第二电极电性连接的导电细丝时,第一电极与第二电极之间的电压没有发生跳变和/或流过发电器件的电流也没有发生跳变。
可选地,如果步骤104或步骤204通过对功能层施加直流电信号来形成导电细丝,本发明实施例确定已形成分别与第一电极和第二电极电性连接的导电细丝(可以通过上述的第一种检测方式、第二种检测方式、第三种检测方式、第四种检测方式进行确定)时,停止施加所述直流电信号;停止施加所述直流电信号之后,该导电细丝会保留在功能层,后续可以使用该导电细 丝进行热电发电。
可选地,通过对功能层施加直流电信号来形成导电细丝的过程中,可以对施加的所述直流电信号进行限流,以限制通过所述功能层的最大电流。例如上述的第一加电场景、第二加电场景或者第三加电场景,均可以对流过发电器件的电流限流,也即对流过功能层的电流限流。
对功能层限流,至少有两种可选限流实现方式。
第一种限流实现方式是使用外部限流器(如电阻、晶体管、半导体参数分析仪等),将限流器与发电器件串联,如图6所示。在如图6的直流电信号的电流小于限流器的限流值)时,限流器不对流过发电器件的电流进行限流;在如图6的直流电信号的电流大于或等于限流器的限流值时,限流器限制流过流过发电器件的电流的电流值为限流值。
第二种限流实现方式是在所述功能层集成限流器,使用集成的限流器对功能层限流;使用集成的限流器对功能层限流与使用外部限流器进行限流的实现原理类似,不再赘述,可参见第一种限流实现方式中的对应描述。本发明实施例对在功能层集成限流器的集成方式不做限定;一种可选的集成方式是在发电器件的周边淀积限流器(如电阻、晶体管等)。可选地,集成的限流器与功能层串联,一种可选实现串联的集成方式是将限流器淀积在功能层内部的局部区域。
对功能层限流有两个作用。
第一个作用,防止因电流过大对功能层造成破坏。如果直流电信号的电流或电压相对较小,电信号保持时间较短,例如脉冲电压信号,则不需要对功能层进行限流保护。如果功能层自身具有抑制电流的能力,也不需要限流保护。
第二个作用,对功能层限流所设置的限流值(允许通过该功能层的最大电流值),该限流值的大小直接决定了导电细丝的直径,限流值越大,形成的导电细丝的直径越大,即导电细丝的横截面积越大;限流值越小,形成的导电细丝的直径越小,即导电细丝的横截面积越小;过小的限流值甚至会形成不了完整的导电细丝,即形成的导电细丝不足以同时连接第一电极和第二 电极,不完整的导电细丝不是本发明实施例需要的,不适合于用来热电发电。本实施例中,即使较高的限流值会破坏发电器件的电阻转变特性,这对发电器件来说也是允许的。
下面结合图4举例说明第二个作用。本举例在直流扫描电压模式下对Ag-SiO2-Pt器件施加直流电压信号来形成导电细丝。Ag-SiO2-Pt器件串联一个外部限流器,如图6所示。在流过Ag-SiO2-Pt器件的电流为限流值Icc(100nA)时,在Ag-SiO2-Pt器件的SiO2内部形成如图4中(e)所示形状的导电细丝,导电细丝的直径大约为60nm。在流过Ag-SiO2-Pt器件的电流为限流值Icc(5nA)时,在Ag-SiO2-Pt器件的SiO2内部形成如图4中(f)所示形状的导电细丝,导电细丝的直径大约为14nm。
应知,针对不同发电器件(构成发电器件的功能层材料、材料生长工艺、器件结构或者尺寸等可能不同),用于在不同发电器件形成导电细丝所施加的直流电信号可能不同,用于对不同发电器件进行限流所设置的限流值可能不同。例如,对于Ag-Cr2O3-Pt器件(属于发电器件的一种),Ag(第一电极)和Pt(第二电极)之间的间距为100nm;如果对Ag-Cr2O3-Pt器件设置的限流值Icc为10nA,在流过Ag-Cr2O3-Pt器件的电流等于10nA时,在Ag-Cr2O3-Pt器件的Cr2O3内部形成的导电细丝的直径大约是2.9nm;如果对Ag-Cr2O3-Pt器件设置的限流值Icc为500nA,在流过Ag-Cr2O3-Pt器件的电流等于500nA时,在Ag-Cr2O3-Pt器件的Cr2O3内部形成的导电细丝的直径大约是8.8nm。再例如,对于Cu-ZrO2-Pt器件(属于发电器件的一种),Cu(第一电极)和Pt(第二电极)之间的间距为50nm;如果对Cu-ZrO2-Pt器件设置的限流值Icc为0.5微安(uA),在流过Cu-ZrO2-Pt器件的电流等于0.5uA时,在Cu-ZrO2-Pt器件的Cr2O3内部形成的导电细丝的直径大约是10nm;如果对Cu-ZrO2-Pt器件设置的限流值Icc为1.1uA,在流过Cu-ZrO2-Pt器件的电流等于1.1uA时,在Cu-ZrO2-Pt器件的Cr2O3内部形成的导电细丝的直径大约是20nm。
可选地,所述导电细丝的直径为5纳米到500纳米之间的任一值。直径属于5纳米到500纳米范围的导电细丝是稳固的;外界对发电器件施加较小的 反向的电信号(与为形成导电细丝而对发电器件施加的电信号反向)是不足以破坏本实施例要求的以下特性:导电细丝分别与第一电极和第二电极电性连接。因此,直径属于5纳米到500纳米范围的导电细丝,适用于热电发电。
可选地,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。这样在热电发电时,在第一电极和第二电极之间迁移载流子(例如电子、空穴),具体是经过导电细丝迁移的。
可选地,本发明实施例用于在功能层形成导电细丝的成分可以包括以下任一种或任意几种:金属粒子、粒子团簇、氧空位、晶体缺陷、晶粒边界、晶相。
本发明实施例中,根据第一电极、第二电极、功能层各自的材料,确定用于形成导电细丝的成分,可能是上述(金属粒子、粒子团簇、氧空位、晶体缺陷、晶粒边界、晶相)的其中一种成分,也可能是上述的多种成分。本发明实施例用于形成导电细丝的成分可能是从第一电极得到的,也可能是从第二电极得到的,也可能是从功能层得到的,还可能同时从第一电极、第二电极和功能层中任一种组合中得到;可见,从第一电极氧化出Ag+来形成导电细丝仅是一种示例。
举例说明由晶体缺陷形成导电细丝的场景,从第一电极或者第二电极对功能层施加直流电信号,导致功能层内部的氧离子发生移动,氧离子移动离开后形成氧空位,由氧空位(晶体缺陷)形成导电细丝。可选地,用于形成导电细丝的氧空位(晶体缺陷)可以是从功能层内部任一位置开始产生,例如从功能层与第一电极相接处开始产生氧空位。
再举例说明由晶相形成导电细丝的场景,从第一电极或者第二电极对功能层施加直流电信号,导致功能层中局部区域的晶相发生改变,由改变的晶相形成导电细丝。
可选地,所述导电细丝的构成可能是连续的,例如导电细丝是由连续相接的Ag原子形成的。所述导电细丝的构成也可能是非连续的,例如:导电细丝是由粒子团簇形成的,但个别粒子团簇之间存在空隙。
本发明实施例中,在功能层形成的导电细丝至少由上述(金属粒子、粒子团簇、氧空位、晶体缺陷、晶粒边界、晶相)的一种成分或多种成分组成,这通常不同于纳米线,纳米线通常由单一种类的原子构成。即使导电细丝与纳米线均是同一种类原子形成,在功能层形成导电细丝的制备原理与现有技术直接制备纳米线的制备原理存在实质上不同,例如上述举例在制备导电细丝时从第一电极氧化出Ag+、再在功能层还原成Ag原子,而纳米线的制备原理是直接利用Ag原子形成纳米线。另外,在功能层形成导电细丝的制备工艺与CMOS工艺兼容,但制备纳米线的制备工艺与CMOS工艺不兼容。
可选地,步骤104或步骤204是在直线上形成导电细丝的。
步骤104或步骤204对功能层施加电信号时,在功能层会形成电场;该电场的方向为从第一电极指向第二电极,或者为从第二电极指向第一电极。以形成一根导电细丝为例,在该电场的作用下,用于形成导电细丝的成分(从第一电极或者第二电极或者功能层产生)均是朝向同一方向移动,朝同一方向移动的成分不断累积(累积的起始点可以是功能层内部的任一位置),累积形成导电细丝,因此导电细丝是在直线上生成的,直到导电细丝生长到分别与第一电极和第二电极均电性连接。相对于纳米线制备方法制备出的纳米线,定向性差,排列杂乱无序,不能直接利用,本发明实施例在功能层形成的导电细丝是直的,能够直接用于热电发电。另外,现有技术直接制备纳米线再从杂乱无序的纳米线团簇中搬移出定向性好的纳米线并固定,可操作性差,搬移和固定纳米线均容易损坏纳米线,而本发明实施例在功能层形成了直的导电细丝,如需要对多根导电细丝进行串连或并连,可以直接对多个发电器件进行串连或并连。
方法实施例二
方法实施例一是通过步骤101、步骤102和步骤103来制备发电器件。金属-绝缘体-金属(Metal-Insulator-Metal,简称MIM)器件属于一类发电器件,也可以通过步骤101、步骤102和步骤103制备得到。
若是利用已有的MIM器件来形成用于热电发电的导电细丝,制备发电器件 的方法包括步骤701和步骤702,如图7所示。
步骤701,获取MIM器件,所述MIM器件包括第一电极、第二电极与功能层,所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料。
具体地,步骤701是获取已有的MIM器件。例如获取到Ag-SiO2-Pt器件,Ag-SiO2-Pt器件为MIM器件中的一种,该Ag-SiO2-Pt器件的第一电极由Ag构成,该Ag-SiO2-Pt器件的功能层由SiO2构成,该Ag-SiO2-Pt器件的第二电极由Pt构成。
步骤702,通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
步骤702与步骤104的实现类似,参见上述对步骤104的实现细节描述。
一种可选细化设计,所述导电细丝的直径为5纳米到500纳米之间的任一值,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
一种可选细化设计,所述通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝包括:
在所述第一电极和所述第二电极中的任一方施加直流电信号,或者,在所述第一电极和所述第二电极的两方都施加直流电信号,以在所述功能层形成与所述第一电极和所述第二电极电性连接的所述导电细丝。
一种可选细化设计,所述方法还包括:
对施加的所述直流电信号进行限流,以限制通过所述功能层的最大电流。
一种可选细化设计,所述对施加的所述直流电信号进行限流包括:
在所述功能层集成限流器,或者增加与所述功能层串联的限流器,通过所述限流器来对所述直流电信号进行限流。
一种可选细化设计,所述方法还包括:
在确定所述导电细丝形成后,停止施加所述直流电信号。
一种可选细化设计,所述确定所述导电细丝形成包括:
检测所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接,如果是,确定所述导电细丝形成;或者,
检测通过所述功能层的电流,当通过所述功能层的电流发生跳变,确定所述导电细丝形成;或者,
检测通过所述功能层的电压,当所述功能层两端的电压发生跳变式地减小,确定所述导电细丝形成;或者,
检测所述功能层/发电器件的电阻,当所述功能层/发电器件的电阻的当前值减小到初始值的二分之一或二分之一以下时,确定所述导电细丝形成。
一种可选细化设计,所述直流电信号包括:直流电压信号、直流电流信号或直流脉冲信号。
对方法实施例二中上述任一种可选细化设计的描述,均参见方法实施例一中的相应描述。
可选地,MIM器件包括:忆阻器(memristor)、阻变存储器(resistive random access memory,简称RRAM)、相变存储器(phase change memory,简称PCM)、铁电存储器(Ferroelectric Random Access Memory,简称FRAM)、磁阻存储器(Magnetic Random Access Memory,简称MRAM)或者一次可编程器件(Write-Once Read-Many-Times Memory,简称WORM)等。
下面说明下再存储领域使用MIM器件与在热电发电领域使用使用MIM器件存在的不同。
存储领域中,是利用MIM器件的功能层是否存在导电细丝来表征“1”或“0”。具体地,包含导电细丝的功能层相对于未包含导电细丝的功能层,电阻不同;因此,如果用包含导电细丝的MIM器件表征“0”,则用未包含导电细丝的MIM器件表征“1”。因此,在存储领域使用MIM器件,会尽量减少“0”和“1”翻转所需的功耗,通常要求在功能层形成不完整的导电细丝即可,该不完整的导电细丝是指没有分别与第一电极和第二电极电性连接的导电细丝;即使是形成分别与第一电极和第二电极均电性连接的导电细丝,也要求MIM器件的功能层保持电阻转变特性。
热电领域中,在MIM器件的功能层形成的导电细丝分别与第一电极和第二 电极电性连接,这样才能通过导电细线在第一电极和第二电极之间迁移载流子来实现热电发电。另外,对功能层施加电信号来形成导电细线时,可以增大电信号的电压或电流来在功能层形成直径更大的导电细线,即使增大电信号的电压或电流会破坏功能层的电阻转变特性;破坏功能层的电阻转变特性后,对功能层施加反向的电信号(与为形成导电细丝对功能层施加的电信号反向),导电细线也不会在功能层熔断或消失,即导电细线会持久地保留在功能层。
本发明的发电器件实施例
采用图1提供的制备方法制备出的发电器件,如图2B和图2C的示意,发电器件包括第一电极、第二电极、功能层,所述功能层处于所述第一电极与所述第二电极之间。
对第一电极和第二电极的材料的描述,参见方法实施例中的相关描述。
所述功能层的材料为绝缘体材料或半导体材料;具体对功能层的材料的描述,参见方法实施例中的相关描述。本发明实施例中,所述功能层的材料具有电阻转变特性,可利用电阻转变特性在功能层形成导电细丝。
如图2B和图2C的示意,所述功能层内部包括导电细丝。
所述导电细丝是纳米级的。可选地,所述导电细丝的直径为5纳米到500纳米之间的任一值。
所述导电细丝的导电率大于所述功能层的导电率。可选地,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接。在所述第一电极所处的环境温度与所述第二电极所处的环境温度存在温差时,根据热电效应,会通过所述导电细丝在所述第一电极与所述第二电极之间迁移载流子(例如电子、空穴),使得在所述第一电极与所述第二电极之间形成电势差。
可见,与所述第一电极和所述第二电极均电性连接的导电细丝可以用于热电发电。具体地,在所述第一电极与所述第二电极之间存在温差(即温度差)时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效 应产生电势差。
可选地,所述发电器件还包括衬底。
所述衬底的材料为绝缘体材料或半导体材料。
所述第一电极、所述第二电极和所述功能层均淀积于所述衬底之上,如图2B所示;或者,所述第一电极淀积于所述衬底之上,如图2C所示。
可选地,所述第一电极和所述第二电极的材料为金属导电材料或非金属导电材料,所述第一电极和所述第二电极的材料相同或相异。
可选地,所述发电器件还包括限流器。
所述限流器集成在所述功能层;或者,所述限流器位于所述第一电极与所述第二电极之间且与所述功能层串联。
可选地,所述限流器为晶体管。
可选地,所述导电细丝的成分包括以下任一种或几种:金属粒子、粒子团簇、氧空位、晶体缺陷、晶粒边界、晶相。
对本实施例提供的发电器件的构成,例如发电器件所包含的内部器件或者发电器件所具有的材料,均参见上述方法实施例对发电器件的对应描述。
应知,发电器件还可以包括其他扩充增添的器件;扩充增添的器件可以是用户根据使用发电器件的场合所选择的。
本发明的使用发电器件的实施例
本实施例利用发电器件进行热电发电,具体实现是:将发电器件中的第一电极与第二电极置于存在温度差的环境中,因热电效应,会通过所述导电细丝在所述第一电极与所述第二电极之间进行载流子(例如电子、空穴)的迁移,使得在所述第一电极与所述第二电极之间形成电势差;本实施例利用该电势差对负载供电。
本发明的供电设备实施例
本实施例提供的供电设备,包括上述方法实施例制备的发电器件,即包括上述发电器件实施例提供的发电器件。所述供电设备还包括第一供电电极和第二供电电极。若所述发电器件利用热电效应在所述第一供电电极与所述第 二供电电极之间形成电势差,所述供电设备通过第一供电电极和第二供电电极对外供电。
供电设备包括的发电器件为一个或多个。
如果供电设备包括一个发电器件,该发电器件的第一电极与供电设备的第一供电电极是电性连接的,该发电器件的第二电极与供电设备的第二供电电极是电性连接的;这样,发电器件利用热电效应在第一电极和第二电极形成的电势差,该电势差直接体现为第一供电电极与第二供电电极之间的电势差。供电设备与负载构成闭合回路时,该供电设备通过第一供电电极和第二供电电极对该负载供电。
如果供电设备包括N个发电器件,N为大于或等于2的正整数,N个发电器件是组合连接的。具体可以是对该多个发电器件作任一种可实现的组合,将组合后的每个发电器件电性连接;下面示例性地提供三种可选组合连接方式。
第一种可选组合连接方式,供电设备包含N个发电器件,N为大于或等于2的正整数。N个发电器件串联,具体的串联方式如图8A所示。
如图8A所示,串联的N个发电器件中,第1个发电器件(第一个发电器件)的第一电极为所述供电设备的第一供电电极,第N个发电器件(最后一个发电器件)的第二电极为所述供电设备的第二供电电极。
如图8A所示,串联的N个发电器件中,第I个发电器件与第J个发电器件相邻;其中,I为正整数,I大于或等于1,J等于I加1,J小于或等于N;可见,第I个发电器件相对于第J个发电器件距离第1个发电器件较近,那么第I个发电器件相对于第J个发电器件为上一个发电器件,第J个发电器件相对于第I个发电器件为下一个发电器件;第I个发电器件的第二电极与第J个发电器件的第一电极电性连接,与第1个发电器件的第一电极为所述供电设备的第一供电电极保持一致。
应知,发电器件串联,可以有效提高供电设备输出的电信号的电压(第一供电电极与第二供电电极之间的电势差);N个发电器件串联,能够最大可能地提高供电设备输出的电信号的电压。
第二种可选组合连接方式,供电设备包含N个发电器件;N为大于或等 于2的正整数。N个发电器件并联,具体的并联方式如图8B所示。
如图8B所示,N个发电器件的第一电极为所述第一供电电极。具体地,N个发电器件分别包含的第一电极均电性连接,并具有一个共同的连接点,该连接点与第一供电电极电性连接,即该连接点为所述供电设备的第一供电电极。
如图8B所示,N个发电器件的第二电极为所述第二供电电极。具体地,N个发电器件分别包含的第二电极均电性连接,并具有一个共同的连接点,该连接点与第二供电电极电性连接,即该连接点为所述供电设备的第二供电电极。
应知,发电器件并联,可以有效提高供电设备输出的电信号的电流;N个发电器件并联,能够最大可能地提高供电设备输出的电信号的电流。并且,发电器件并联,即使部分发电器件工作异常,供电设备可以利用并联的其他发电器件继续供电,有效提高了供电设备的供电稳定性。
第三种可选组合连接方式,如图8C所示,所述供电设备包括N个发电器件,N为大于或等于2的正整数。
其中,N个发电器件组成M个发电单元,M为大于或等于2的正整数,M小于或等于N。因此,每个发电单元包括至少一个发电器件,不同个发电单元包括的发电器件的个数可以不同。
每个发电单元均具有第三电极和第四电极。M个发电单元串联,具体的串联连接如图8C所示。
如图8C所示,串联的M个发电单元中,第1个发电单元的第三电极为所述供电设备的第一供电电极,第M个发电单元(最后一个发电单元)的第四电极为所述供电设备的第二供电电极。
如图8C所示,串联的M个发电单元中,第P个发电单元与第Q个发电单元相邻;其中,P为正整数,P大于或等于1,Q等于P加1,Q小于或等于M;可见,第P个发电单元相对于第Q个发电单元距离第1个发电单元较近,那么第P个发电单元相对于第Q个所述发电单元为上一个发电单元,第Q个发电单元相对于第P个发电单元为下一个发电单元;第P个发电单元的第四电极与第Q个发电单元的第三电极电性连接,与第1个所述发电单元的第三电极为所述供电设备的 第一供电电极保持一致。
M个发电单元中的每个发电单元包括至少一个发电器件,不同发电单元包括的发电器件的个数可以不同。以第Q个发电单元为例说明单个发电单元内部的三种可能结构。
第一种可能结构,如图8C中(r)所示,第Q个发电单元包括一个发电器件,该个发电器件的第一电极为第Q个发电单元的第三电极,该个发电器件的第二电极为第Q个发电单元的第四电极。
第二种可能结构,如图8C中(s)所示,第Q个发电单元包括多个发电器件,第Q个发电单元包括的多个发电器件并联。第Q个发电单元中多个发电器件并联的实现方式与上述N个发电器件并联的实现方式类似,在此不再赘述。
如图8C中(s)所示,第Q个发电单元中,多个发电器件的第一电极为第Q个发电单元的第三电极,具体地,多个发电器件的第一电极有共同的电性连接点,该电性连接点为第Q个发电单元的第三电极。
如图8C中(s)所示,第Q个发电单元中,多个发电器件的第二电极为第Q个发电单元的第四电极,具体地,多个发电器件的第二电极具有共同的电性连接点,该电性连接点为第Q个发电单元的第四电极。
第三种可能结构,如图8C中(t)所示,第Q个发电单元包括多个发电器件,第Q个发电单元包括的多个发电器件串联。第Q个发电单元中多个发电器件串联的实现方式与上述N个发电器件串联的实现方式类似,在此不再赘述。
如图8C中(t)所示,第Q个发电单元中,第一个发电器件的第一电极为第Q个发电单元的第三电极。
如图8C中(t)所示,第Q个发电单元中,最后一个发电器件的第一电极为第Q个发电单元的第四电极。
应知,供电设备包括的M个发电单元,每个发电单元内部的可能结构与第Q个发电单元内部的可能结构类似,即每个发电单元的内部结构可以是上述的第一种可能结构、第二种可能结构或者第三种可能结构。另外,M个发电单元中,不同发电单元的内部结构可以不同,例如:第1个发电单元具有第三种可能结构,第M个发电单元具有第二种可能结构。
应知,多个发电器件并联,可以有效提高发电单元输出的电信号的电流, 保证发电单元的供电稳定性;多个发电单元串联,能够提高供电设备输出的电信号的电压。因此,M个发电单元串联,兼顾了提供供电设备输出的电信号的电压和电流,还一定程度提高了供电设备的供电稳定性。
可选地,所述供电设备包括至少一个发电器件,至少一个发电器件的排列根据热源的位置确定。如果供电设备包括一个发电器件,确定该个发电器件的排列具体为:根据热源的位置确定该个发电器件的位置。如果供电设备包括多个发电器件,确定该多个发电器件的排列包括:根据热源的位置,确定每个发电器件的位置(即确定了多个发电器件之间的位置关系),以及确定多个发电器件之间的连接方式,该多个发电器件之间的连接方式可以是如图8A提供的第一种可选组合连接方式、如图8B提供的第二种可选组合连接方式或者如图8C提供的第三种可选组合连接方式。
所述热源可以内置在供电设备中,即供电设备包括所述热源。或者,所述热源为外部热源,即供电设备不包括所述热源。本发明实施例对外部热源不做限定,外部热源可以是自然界的热源,例如照射的太阳光,再例如人体表面;外部热源也可以是人工制造的热源,例如发光的灯具。
结合热源的类型和热源的位置,可以确定热梯度(也叫温度梯度)。
发电器件在热电发电应用中,如果第一电极指向第二电极的方向(或者第一电极指向第二电极的方向)与热梯度一致,则在第一电极和第二电极之间的温度差最大,进而在利用该温度差热电发电时能够产生最大的电势差。如果第一电极指向第二电极的方向(或者第一电极指向第二电极的方向)与热梯度不一致,热电发电时发电器件产生的电势差不是最大的。
本发明实施例可以结合热梯度和热源的位置,确定供电设备中发电器件的排列。
如果供电设备包括一个发电器件,在确定热源位置的情况下,根据需求(例如距离热源的远近)确定发电器件的位置。再设置发电器件的朝向(第一电极指向第二电极的方向),将发电器件的朝向设置为与发电器件所在位置的热梯度一致。
如果供电设备包括多个发电器件,在确定热源位置的情况下,根据需求 (例如距离热源的远近)确定每个发电器件的位置。再设置每个发电器件的朝向(第一电极指向第二电极的方向),将该个发电器件的朝向设置为与该个发电器件所在位置的热梯度一致。最后确定多个发电器件之间的连接方式;该多个发电器件之间的连接方式可以是如图8A提供的第一种可选组合连接方式,或者可以是如图8B提供的第二种可选组合连接方式,或者可以是如图8C提供的第三种可选组合连接方式。
可选地,在确定热源位置的情况下,所述供电设备中多个发电器件按照以下任一种形状确定位置,所述形状包括:环形、扇形、线形、矩形、不规则图形。
一个举例,如图9A所示,热源的类型为柱状热源,供电设备设置于柱状热源的一侧。采用图8B提供的并联方式将供电设备中的多个发电器件并联;并联连接的发电器件与热梯度平行;具体在每个发电器件中,第一电极指向第二电极的方向与热梯度保持同一方向。这样,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,从而供电设备通过第一供电电极和第二供电电极提供的电信号具有最大电流。
应知,还可以采用图8A中的串联方式替换本举例中的并联方式;在第一电极指向第二电极的方向与热梯度保持同一方向时,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,从而供电设备通过第一供电电极和第二供电电极提供的电信号具有最大电压。
应知,还可以采用图8C中的连接方式替换本举例中的并联方式,在第一电极指向第二电极的方向与热梯度保持同一方向时,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,使得每个发电单元中第三电极与第四电极具有最大电压或最大电流。
一个举例,如图9B所示,热源的类型为球状热源,热梯度的大小以球为中心向外递减。供电设备中的多个发电器件,以环形围绕球状热源设置;球状热源位于环形的中心。采用图8B提供的并联方式将位于环形上的多个发电器件并联,并联连接的发电器件与热梯度平行;具体在每个发电器件中,第一电极指向第二电极的方向与热梯度保持同一方向。这样,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,从而供电设备 通过第一供电电极和第二供电电极提供的电信号具有最大电流。。
一个举例,如图9C所示,热源的类型为球状热源,热梯度的大小以球为中心向外递减。供电设备中的多个发电器件,以环形围绕球状热源设置;球状热源位于环形的中心。采用图8A提供的串联方式将位于环形上的发电器件串联,串联连接的发电器件与热梯度平行;具体在每个发电器件中,第一电极指向第二电极的方向与热梯度保持同一方向。这样,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,从而供电设备通过第一供电电极和第二供电电极提供的电信号具有最大电压。
同理,还可以采用图8C中的连接方式替换图9C中的串联方式,在第一电极指向第二电极的方向与热梯度保持同一方向时,每个发电器件在热电发电时在第一电极与第二电极之间能够产生最大电势差,使得每个发电单元中第三电极与第四电极具有最大电压或最大电流。
可选地,可以根据实际实施要求,在供电设备中添加必要的导线(例如添加用于发电器件之间电性连接的导线)和其他必要电路(例如用于保护发电器件的限流电路、防短接电路)。
本发明的使用供电设备的实施例
将供电设备中的一个或多个发电器件置于存在温度差的环境中。处于存在温度差的环境中的发电器件,因热电效应,会通过所述导电细丝在该发电器件的第一电极与第二电极之间进行载流子(例如电子、空穴)的迁移,使得在该发电器件的第一电极与第二电极之间形成电势差;从而,供电设备的第一供电电极与第二供电电极之间会存在电势差,供电设备利用该电势差对负载供电。
本发明的供电***实施例
本实施例提供的供电***,参见图10,供电***包括电源电路和上述实施例提供的供电设备;电源电路分别与供电设备的第一供电电极和第二供电电极电性连接。电源电路还外接负载。
供电设备用于热电发电时,通过从第一供电电极和第二供电电极输出电 信号。
电源电路,用于调整供电设备输出的电信号,例如电源电路对电信号进行整流和/或稳压,使得电源电路输出负载所需的电信号。
负载为本实施例中主要的耗电设备,需要供电设备输出电能来驱动工作。
本实施例中,供电设备所处环境的温度差可能不是恒定的,导致供电设备从第一供电电极和第二供电电极输出的电信号可能不是稳定的。本实施例引入电源电路来调整供电设备输出的电信号,电源电路输出负载所需的电信号,有效地保证了负载是稳定工作的,延长了负载的使用寿命,避免了:若供电设备直接向负载供电,可能因供电设备输出的电信号不稳定,减少负载的使用寿命,甚至因过流或过压直接损坏负载。
应当理解,“第一电极”中的“第一”,“第二电极”中的“第二”,仅用于相互区分。即,“第一电极”、“第二电极”并不代表特指的电极,也不代表它们之间存在顺序关系。在不脱离本发明实施例保护范围的情况下,可以对“第一电极”、“第二电极”互换名称,或者将“第一电极”改称为“第四电极”和将“第二电极”改称为“第五电极”。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims (28)

  1. 一种制备发电器件的方法,其特征在于,所述方法包括:
    制备第一电极、第二电极与功能层,所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料;
    通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
  2. 根据权利要求1所述的方法,其特征在于,所述制备第一电极、第二电极与功能层包括:
    在衬底上分别淀积所述第一电极和所述第二电极,在所述第一电极和所述第二电极之间淀积所述功能层,其中,所述衬底的材料为绝缘体材料或半导体材料;
    或者,
    在衬底上淀积所述第一电极,在所述第一电极上淀积所述功能层,以及在所述功能层上淀积所述第二电极,其中,所述衬底的材料为绝缘体材料或半导体材料。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一电极和所述第二电极的材料为金属导电材料或非金属导电材料,所述第一电极和所述第二电极的材料相同或相异。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述导电细丝的直径为5纳米到500纳米之间的任一值,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝包括:
    在所述第一电极和所述第二电极中的任一方施加直流电信号,或者,在所述第一电极和所述第二电极的两方都施加直流电信号,以在所述功能层形 成与所述第一电极和所述第二电极电性连接的所述导电细丝。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    对施加的所述直流电信号进行限流,以限制通过所述功能层的最大电流值。
  7. 根据权利要求6所述的方法,其特征在于,所述对施加的所述直流电信号进行限流包括:
    在所述功能层集成限流器,或者增加与所述功能层串联的限流器,通过所述限流器来对所述直流电信号进行限流。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述方法还包括:
    在确定所述导电细丝形成后,停止施加所述直流电信号。
  9. 根据权利要求8所述的方法,其特征在于,所述确定所述导电细丝形成包括:
    检测所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接,如果是,确定所述导电细丝形成;
    或者,
    检测通过所述功能层的电流,当通过所述功能层的电流发生跳变,确定所述导电细丝形成;
    或者,
    检测通过所述功能层的电压,当所述功能层两端的电压发生跳变式地减小,确定所述导电细丝形成;
    或者,
    检测所述功能层/发电器件的电阻,当所述功能层/发电器件的电阻的当前值减小到初始值的二分之一或二分之一以下时,确定所述导电细丝形成。
  10. 根据权利要求5至9任一项所述的方法,其特征在于,所述直流电信号包括:
    直流电压信号、直流电流信号或直流脉冲信号。
  11. 一种制备发电器件的方法,其特征在于,所述方法包括:
    获取金属-绝缘体-金属MIM器件,所述MIM器件包括第一电极、第二电极 与功能层,所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料;
    通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
  12. 根据权利要求11所述的方法,其特征在于,所述导电细丝的直径为5纳米到500纳米之间的任一值,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
  13. 根据权利要求11或12所述的方法,其特征在于,所述通过在所述第一电极和/或所述第二电极施加电信号的方式,在所述功能层内部形成导电细丝包括:
    在所述第一电极和所述第二电极中的任一方施加直流电信号,或者,在所述第一电极和所述第二电极的两方都施加直流电信号,以在所述功能层形成与所述第一电极和所述第二电极电性连接的所述导电细丝。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    对施加的所述直流电信号进行限流,以限制通过所述功能层的最大电流值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    在确定所述导电细丝形成后,停止施加所述直流电信号。
  16. 根据权利要求15所述的方法,其特征在于,所述确定所述导电细丝形成包括:
    检测所述导电细丝的两端是否分别与所述第一电极和所述第二电极电性连接,如果是,确定所述导电细丝形成;
    或者,
    检测通过所述功能层的电流,当通过所述功能层的电流发生跳变,确定所述导电细丝形成;
    或者,
    检测通过所述功能层的电压,当所述功能层两端的电压发生跳变式地减 小,确定所述导电细丝形成;
    或者,
    检测所述功能层/发电器件的电阻,当所述功能层/发电器件的电阻的当前值减小到初始值的二分之一或二分之一以下时,确定所述导电细丝形成。
  17. 一种发电器件,其特征在于,包括:
    第一电极、第二电极与功能层;
    所述功能层位于所述第一电极与所述第二电极之间,所述功能层的材料为绝缘体材料或半导体材料;
    所述功能层内部包括导电细丝,所述导电细丝的导电率大于所述功能层的导电率,所述导电细丝的两端分别与所述第一电极和所述第二电极电性连接,在所述第一电极与所述第二电极之间存在温差时,所述导电细丝用于在所述第一电极与所述第二电极之间利用热电效应产生电势差。
  18. 根据权利要求17所述的发电器件,其特征在于,还包括衬底,所述衬底的材料为绝缘体材料或半导体材料;
    所述第一电极、所述第二电极和所述功能层均淀积于所述衬底之上,或者,所述第一电极淀积于所述衬底之上。
  19. 根据权利要求17或18所述的发电器件,其特征在于,所述第一电极和所述第二电极的材料为金属导电材料或非金属导电材料,所述第一电极和所述第二电极的材料相同或相异。
  20. 根据权利要求17至19任一项所述的发电器件,其特征在于,所述导电细丝的直径为5纳米到500纳米之间的任一值,所述导电细丝的导电率为所述功能层的导电率的两倍或两倍以上。
  21. 根据权利要求17至20任一项所述的发电器件,其特征在于,还包括限流器,所述限流器集成在所述功能层,或者,所述限流器位于所述第一电极与所述第二电极之间且与所述功能层串联。
  22. 根据权利要求21所述的发电器件,其特征在于,所述限流器为晶体管。
  23. 根据权利要求17至22任一项所述的发电器件,其特征在于,所述导电细丝的成分包括以下任一种或几种:金属粒子、粒子团簇、氧空位、晶体 缺陷、晶粒边界、晶相。
  24. 一种供电设备,其特征在于,包括一个或多个如权利要求17至23任一项所述的发电器件;
    所述供电设备还包括第一供电电极和第二供电电极,若所述发电器件利用热电效应在所述第一供电电极与所述第二供电电极之间形成电势差,所述供电设备对外供电。
  25. 根据权利要求24所述的供电设备,其特征在于,所述供电设备包括N个所述发电器件,N为大于或等于2的正整数;
    所述N个发电器件串联,所述N个发电器件中的第一个发电器件的第一电极为所述第一供电电极,所述N个发电器件中的第N个发电器件的第二电极为所述第二供电电极。
  26. 根据权利要求24所述的供电设备,其特征在于,所述供电设备包括N个所述发电器件,N为大于或等于2的正整数;
    所述N个发电器件并联,所述N个发电器件的第一电极为所述第一供电电极,所述N个发电器件的第二电极为所述第二供电电极。
  27. 根据权利要求24所述的供电设备,其特征在于,所述供电设备包括N个所述发电器件,N为大于或等于2的正整数;
    所述N个发电器件组成M个发电单元,M为大于或等于2的正整数;
    所述M个发电单元串联;
    所述M个发电单元中的一个发电单元包括至少两个发电器件,所述至少两个发电器件串联或并联。
  28. 根据权利要求24至27任一项所述的供电设备,其特征在于,所述供电设备还包括热源,所述发电器件的排列根据所述热源的位置确定。
PCT/CN2016/072788 2016-01-29 2016-01-29 制备发电器件的方法、发电器件和供电设备 WO2017128294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680003772.8A CN107431082A (zh) 2016-01-29 2016-01-29 制备发电器件的方法、发电器件和供电设备
PCT/CN2016/072788 WO2017128294A1 (zh) 2016-01-29 2016-01-29 制备发电器件的方法、发电器件和供电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/072788 WO2017128294A1 (zh) 2016-01-29 2016-01-29 制备发电器件的方法、发电器件和供电设备

Publications (1)

Publication Number Publication Date
WO2017128294A1 true WO2017128294A1 (zh) 2017-08-03

Family

ID=59397195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072788 WO2017128294A1 (zh) 2016-01-29 2016-01-29 制备发电器件的方法、发电器件和供电设备

Country Status (2)

Country Link
CN (1) CN107431082A (zh)
WO (1) WO2017128294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270543A (zh) * 2020-02-17 2021-08-17 铠侠股份有限公司 半导体存储装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250459A (en) * 1992-04-14 1993-10-05 Micron Technology, Inc. Electrically programmable low resistive antifuse element
CN102315242A (zh) * 2010-07-09 2012-01-11 科洛斯巴股份有限公司 使用SiGe材料的电阻型存储器
CN103311262A (zh) * 2013-06-09 2013-09-18 中国华能集团清洁能源技术研究院有限公司 微型热电器件、制作方法及包括其的温差发电机
CN104392933A (zh) * 2007-08-21 2015-03-04 加州大学评议会 具有高性能热电性质的纳米结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250459A (en) * 1992-04-14 1993-10-05 Micron Technology, Inc. Electrically programmable low resistive antifuse element
CN104392933A (zh) * 2007-08-21 2015-03-04 加州大学评议会 具有高性能热电性质的纳米结构
CN102315242A (zh) * 2010-07-09 2012-01-11 科洛斯巴股份有限公司 使用SiGe材料的电阻型存储器
CN103311262A (zh) * 2013-06-09 2013-09-18 中国华能集团清洁能源技术研究院有限公司 微型热电器件、制作方法及包括其的温差发电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113270543A (zh) * 2020-02-17 2021-08-17 铠侠股份有限公司 半导体存储装置

Also Published As

Publication number Publication date
CN107431082A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Laurenti et al. Zinc oxide thin films for memristive devices: a review
Alibart et al. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
Wong et al. Metal–oxide RRAM
Miller et al. Memristive behavior in thin anodic titania
US7859036B2 (en) Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
KR100647333B1 (ko) 비휘발성 메모리 소자 및 그 제조 방법
Guo et al. Versatile memristor for memory and neuromorphic computing
Huang et al. Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory
JP5827414B2 (ja) 混合金属酸化物をベースとするメモリスタ
JP2008523590A (ja) ナノスケールワイヤベースのデータ格納装置
Sharma et al. Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications
Sun et al. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor
Kundozerova et al. Anodic $\hbox {Nb} _ {2}\hbox {O} _ {5} $ Nonvolatile RRAM
JP2007243183A (ja) 抵抗性メモリ素子
JP2007300082A (ja) 下部電極上に形成されたバッファ層を備える可変抵抗メモリ素子
Baek et al. Nonvolatile memory devices prepared from sol–gel derived niobium pentoxide films
RU2468471C1 (ru) Способ получения энергонезависимого элемента памяти
US20130026434A1 (en) Memristor with controlled electrode grain size
TWI488347B (zh) 記憶體元件的形成方法
US8487289B2 (en) Electrically actuated device
CN110021703A (zh) 一次性编程电阻式随机存取记忆***、记忆体及形成方法
Misra et al. Studies on resistive switching times in NiO thin films grown by pulsed laser deposition
Sarswat et al. Duality in resistance switching behavior of TiO2-Cu2ZnSnS4 device
JP2004241396A (ja) 抵抗変化素子の製造方法および不揮発性抵抗変化メモリデバイスの製造方法、並びに不揮発性抵抗変化メモリデバイス
WO2017128294A1 (zh) 制备发电器件的方法、发电器件和供电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887178

Country of ref document: EP

Kind code of ref document: A1