WO2017126337A1 - Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池 - Google Patents

Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池 Download PDF

Info

Publication number
WO2017126337A1
WO2017126337A1 PCT/JP2017/000228 JP2017000228W WO2017126337A1 WO 2017126337 A1 WO2017126337 A1 WO 2017126337A1 JP 2017000228 W JP2017000228 W JP 2017000228W WO 2017126337 A1 WO2017126337 A1 WO 2017126337A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion secondary
electrode material
secondary battery
particles
Prior art date
Application number
PCT/JP2017/000228
Other languages
English (en)
French (fr)
Inventor
田原 知之
Original Assignee
Jfeケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeケミカル株式会社 filed Critical Jfeケミカル株式会社
Priority to US16/070,959 priority Critical patent/US10930929B2/en
Priority to EP17741217.8A priority patent/EP3410517B1/en
Priority to CN201780006742.7A priority patent/CN108463909B/zh
Priority to JP2017562507A priority patent/JP6595007B2/ja
Priority to KR1020187018830A priority patent/KR102199028B1/ko
Publication of WO2017126337A1 publication Critical patent/WO2017126337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/043Lithium aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a Li ion secondary battery in which the surface of Si or SiO particles that can be alloyed with Li is coated with a Li ion conductive metal oxide, and a method for producing the same.
  • Li-ion secondary batteries are widely used as power sources for electronic devices because of their excellent characteristics of high voltage and high energy density.
  • the current Li ion secondary batteries are mainly those using LiCoO 2 for the positive electrode and graphite for the negative electrode.
  • the graphite of the negative electrode is excellent in reversibility of charge and discharge, but the discharge capacity has already reached a value close to the theoretical value of 372 mAh / g corresponding to the intercalation compound LiC 6 . For this reason, in order to achieve higher energy density, it is necessary to develop a negative electrode material having a discharge capacity larger than that of graphite.
  • Si and SiO have attracted attention as active materials for forming an alloy with Li having a discharge capacity far exceeding that of graphite as a negative electrode material replacing graphite. Since the Si-based negative electrode has a large volume expansion associated with alloying at the time of charging, it easily deteriorates, and as a measure for reducing the expansion, atomization of particles is effective. However, the active material surface becomes active due to atomization, and the reductive decomposition of the electrolytic solution is promoted at the time of charging. Therefore, the practical cycle characteristics are not obtained.
  • the coating material is excellent in Li ion conductivity, and the coating causes a decrease in capacity and rapid charge / discharge.
  • FEC fluoroethylene carbonate
  • Patent Document 2 it is said that the ion diffusibility is improved by covering the active material with a composite coating composed of ceramic nanoparticles having a median particle size of 100 nm or less and an organic solid electrolyte interface (SEI).
  • SEI organic solid electrolyte interface
  • the cycle life is increased by coating the surface of Si particles with TiO 2 or ZrO 2 as artificial SEI.
  • TiO 2 and ZrO 2 that do not contain Li have poor Li ion conduction and cause a decrease in capacity and rapid charge / discharge.
  • the present invention has been made in view of the above situation, can sufficiently suppress the reductive decomposition of the electrolytic solution by the active material during charging, has a high discharge capacity exceeding the theoretical capacity of graphite, excellent initial charge and discharge efficiency, and
  • An object of the present invention is to provide a Li-ion secondary battery negative electrode material exhibiting cycle characteristics.
  • the surface of Si particles or SiO particles, which are active materials is covered with a thin film of Li-containing oxide containing Li and other specific metal elements in a predetermined molar ratio, which has high Li ion conductivity and is stable. Therefore, it is possible to obtain a high discharge capacity and good cycle characteristics without inhibiting the contact between the active material and the electrolytic solution, suppressing the reductive decomposition of the electrolytic solution, and inhibiting the charge / discharge reaction accompanied by Li ion conduction. I found out.
  • the reason why high discharge capacity and cycle characteristics are obtained as described above is that the surface of the active material, Si particles or SiO particles, is coated with the above-described Li-containing oxide thin film having high Li ion conductivity and stability.
  • the contact between the active material and the electrolytic solution is limited, the reductive decomposition of the electrolytic solution by the active material during charging can be suppressed, and the charging / discharging reaction accompanied by Li ion conduction is not inhibited.
  • the present invention is not limited to these mechanisms.
  • the present invention provides the following.
  • a negative electrode for a Li ion secondary battery comprising the negative electrode material according to any one of (1) to (3) above.
  • a Li ion secondary battery comprising the negative electrode for a Li ion secondary battery according to (4) above.
  • SiO x (0 ⁇ x ⁇ 2) particles are dispersed in an oxide precursor solution containing at least one metal element M selected from Si, Al, Ti, and Zr, and Li, and after drying, 200 to 1200
  • a method for producing a negative electrode material for a Li-ion secondary battery wherein the negative electrode material according to any one of (1) to (3) is obtained by heat treatment in a temperature range of ° C.
  • the negative electrode material for a Li-ion secondary battery of the present invention can sufficiently suppress excessive reductive decomposition of the electrolyte solution due to the active material during charging, exhibits a high discharge capacity exceeding the theoretical charge capacity of graphite, and excellent cycle characteristics.
  • the negative electrode material for a Li ion secondary battery of the present invention forms a stable and high Li ion conductive Li-containing oxide film on the surface of SiO x (0 ⁇ x ⁇ 2) particles that are active materials.
  • the contact between the active material and the electrolytic solution can be limited to suppress the reductive decomposition of the electrolytic solution by the active material during charging, and the charging / discharging reaction accompanied by Li ion conduction is not hindered.
  • the reaction also shows good properties.
  • the film thickness is preferably 0.5 to 10 nm, more preferably 1 to 3 nm.
  • the coating amount by the Li-containing oxide that is, the content of the Li-containing oxide in the negative electrode material for the Li ion secondary battery of the present invention affects the specific surface area of the SiO x (0 ⁇ x ⁇ 2) particles as the active material. Is done.
  • the coating amount by the Li-containing oxide that is, the content of the Li-containing oxide in the negative electrode material for the Li ion secondary battery of the present invention may be 2 to 10% by mass.
  • FIG. 2 is a TEM image of coated Si particles of Example 1 described later.
  • the coating formed on at least a part of the surface of the SiO x (0 ⁇ x ⁇ 2) particles as the active material is stable and has high Li ion conductivity. It consists of a contained oxide.
  • the matrix metal oxide containing Li is at least one selected from SiO 2 , Al 2 O 3 , TiO 2 and ZrO 2 .
  • the Li-containing oxide in the present invention has a composition in which Li and the metal element M have a molar ratio of M / Li> 5. When the molar ratio is M / Li ⁇ 5, the Li ion conduction becomes small, so that the discharge capacity is lowered and the electrode reaction is poor.
  • the Li-containing oxide in the present invention preferably has a composition of 100> M / Li> 5 in molar ratio.
  • the composition is M / Li ⁇ 100 in terms of mol ratio, Li ion conduction becomes small, and there is a possibility that the discharge capacity is lowered and the response of the electrode reaction is deteriorated.
  • the Li-containing oxide in the present invention more preferably has a composition of 20 ⁇ M / Li ⁇ 6 in terms of a molar ratio.
  • the crystal phase of the Li-containing oxide in the present invention is affected by the heat treatment temperature.
  • the heat treatment temperature is 200 to 600 ° C.
  • crystallization does not proceed and it is amorphous, and when it is 600 ° C. or higher, crystals begin to be formed.
  • the Li-containing oxide contains Si as the metal element M, it becomes a mixed phase of amorphous or crystalline SiO 2 (tridymite type) and Li 2 Si 2 O 5 .
  • the Li-containing oxide contains Al as the metal element M, it becomes a mixed phase of amorphous or crystalline Al 2 O 3 ( ⁇ type) and LiAl 5 O 8 .
  • the Li-containing oxide contains Ti as the metal element M, it becomes a mixed phase of amorphous or crystalline TiO 2 (anatase type, rutile type) and Li 4 Ti 5 O 12 .
  • the Li-containing oxide contains Zr as the metal element M, it becomes a mixed phase of amorphous or crystalline ZrO 2 (monoclinic or tetragonal) and Li 2 ZrO 3 .
  • the negative electrode material for a Li ion secondary battery of the present invention SiO x (0 ⁇ x ⁇ 2) particles that form an alloy with Li are used as the active material.
  • the crystalline phase of SiO x may be either amorphous or crystalline, and is not particularly limited.
  • the SiO x (0 ⁇ x ⁇ 2) particles are Si particles.
  • the average particle diameter D 50 is 1 ⁇ m or less. When the average particle diameter D 50 exceeds 1 ⁇ m, the influence of charging expansion is locally increased, and the deterioration of the electrode is promoted.
  • the average particle diameter D 50 is preferably 0.1 ⁇ m or more. When the average particle diameter D 50 is less than 0.1 ⁇ m, the activity of the surface of the Si particles, which is the active material, becomes high, and it is difficult to suppress the reductive decomposition of the electrolytic solution with a coating during charging.
  • the average particle diameter D 50 is more preferably in the range of 0.1 ⁇ m to 0.5 ⁇ m.
  • the particle shape is not particularly limited, and may be any of a spherical shape, a flake shape, a fiber shape, and a crushed shape obtained by pulverization in a lump shape synthesized by a gas phase method.
  • the whole is amorphous or is in a disproportionated state in which Si crystal particles of several nm are uniformly dispersed in an amorphous SiO 2 matrix. It is said that SiO x is stable in a single phase when about 0.5 ⁇ x ⁇ 1.5.
  • the average particle diameter D 50 of SiO x is preferably 10 ⁇ m or less. When the average particle diameter D 50 exceeds 10 ⁇ m, the influence of the charge expansion is locally increased and the deterioration of the electrode is promoted.
  • the average particle diameter D 50 is preferably 0.1 ⁇ m or more.
  • the average particle diameter D 50 is less than 0.1 ⁇ m, the activity of the active material surface becomes high, and it becomes difficult to suppress the reductive decomposition of the electrolytic solution with a film during charging.
  • the average particle diameter D 50 is more preferably in the range of 0.1 to 5 ⁇ m.
  • the particle shape is not particularly limited, and may be any of a spherical shape, a flake shape, a fiber shape, and a crushed shape obtained by pulverization in a lump shape synthesized by a gas phase method.
  • Li-containing oxide precursor solution in which a Li compound, which is a precursor of a Li-containing oxide, and a compound of at least one metal element M selected from Si, Al, Ti, and Zr are dispersed, Is an organic solvent, the Li compound serving as the Li source is preferably Li acetate, Li nitrate, Li chloride, etc. dissolved in the organic solvent, and the metal element M compound serving as the metal element M source is an alkoxide dissolved in the organic solvent, Nitrate, chloride and the like are preferred.
  • alkoxides those in which the metal element M is Al, Ti, or Zr are easily hydrolyzed and unstable, and thus are preferably stabilized with a chelating agent.
  • Chelating agents include, but are not limited to, ethyl acetoacetate, acetylacetone, triatanolamine, and the like.
  • organic solvent ethanol, isopropyl alcohol, ethyl acetate, toluene and the like can be used.
  • the Li source compound is preferably Li acetate dissolved in water, Li nitrate, Li chloride, or the like, and the metal element M source metal element M source is nitrate, chloride, Oxyacid salts, peroxo acids and the like are preferred.
  • the metal element M is Si, an aqueous solution of Li silicate can also be used.
  • the method for producing a negative electrode material for a Li-ion secondary battery according to the present invention includes: a Li compound that is a precursor of a Li-containing oxide; and a compound of at least one metal element M selected from Si, Al, Ti, and Zr. It is obtained by adding SiO x (0 ⁇ x ⁇ 2) particles that can be alloyed with Li to the dispersed solution (Li-containing oxide precursor solution) and heat-treating it in a temperature range of 200 to 1200 ° C. after drying. .
  • the negative electrode material for a Li-ion secondary battery after heat treatment is agglomerated, it can be used after being crushed with a force that does not damage the Li-containing oxide film.
  • a solution (Li-containing oxide precursor solution) in which a Li compound that is a precursor of a Li-containing oxide and a compound of at least one metal element M selected from Si, Al, Ti, and Zr is dispersed is a metal element.
  • M is Al, Ti, or Zr
  • the alkoxide of these elements is stabilized by chelating with an chelating agent: ethyl acetoacetate, acetylacetone, tritananolamine, etc. in an alcohol solvent, and rapid hydrolysis reaction is performed. It is preferable to suppress and improve the film forming property.
  • the chelated alkoxide solution further promotes hydrolysis by adding water in order to further improve the film forming property.
  • the Li compound is dissolved in a solvent and mixed with the above solution to prepare a solution in which the precursor of the Li-containing oxide is dispersed.
  • the metal element M is Si
  • the alkoxide is stable, so a chelating agent is unnecessary.
  • the Li compound is dissolved in a solvent and mixed with the above solution.
  • a solution in which the precursor of the Li-containing oxide is dispersed can be prepared.
  • SiO x (0 ⁇ x ⁇ 2) particles that can be alloyed with Li are added to the above solution.
  • SiO x may be in the form of either a dry powder or a dispersed slurry.
  • the dry powder can be obtained by dry-grinding or wet-grinding the raw material SiO x and then removing the solvent.
  • the dispersion slurry can be obtained by wet pulverization.
  • the mixed slurry of the Li-containing oxide precursor dispersion and the SiO x particles removes the solvent and forms a Li-containing oxide precursor film on the surface of the SiO x particles.
  • the Li-containing oxide precursor film is preferably heat-treated at 200 to 1200 ° C. in order to accelerate curing.
  • the atmosphere during the heat treatment is preferably a non-oxidizing atmosphere.
  • the main component is a non-reactive gas such as Ar or a low-reactive gas such as N 2 , and the O 2 concentration is more preferably 1000 ppm or less.
  • the negative electrode material for Li ion secondary batteries of the present invention is used by mixing with carbon materials such as different types of graphite materials and hard carbon in order to adjust battery characteristics such as capacity, density and efficiency of the electrodes to be produced. Also good.
  • the negative electrode for Li ion secondary batteries of this invention is a negative electrode for lithium ion secondary batteries containing said negative electrode material for Li ion secondary batteries.
  • the negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal method for forming a negative electrode.
  • the binder preferably has chemical and electrochemical stability with respect to the electrolyte.
  • fluorine resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, resin powders such as polyethylene and polyvinyl alcohol, Carboxymethylcellulose and the like are used. These can also be used together.
  • the binder is usually 1 to 20% by mass in the total amount of the negative electrode mixture.
  • the negative electrode material for a Li ion secondary battery of the present invention is adjusted to a desired particle size by classification or the like, and mixed with a binder and a solvent to prepare a slurry negative electrode mixture. That is, the negative electrode material for the Li ion secondary battery of the present invention, a binder and a solvent such as water, isopropylpyrrolidone, N-methylpyrrolidone, dimethylformamide, and the like, using a known stirrer, mixer, kneader, kneader Use to stir and mix to prepare slurry. The slurry is applied to one or both sides of the current collector and dried to obtain a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded.
  • the film thickness of the negative electrode mixture layer is 10 to 200 ⁇ m, preferably 20 to 100 ⁇ m.
  • the shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like.
  • the material of the current collector is preferably copper, stainless steel, nickel or the like, and the thickness of the current collector is usually 5 to 20 ⁇ m.
  • the negative electrode for Li ion secondary batteries of this invention may mix carbonaceous materials, such as graphite material and hard carbon, and electrically conductive materials, such as CNT, in the range which does not impair the objective of this invention.
  • the Li ion secondary battery of the present invention includes the above-described negative electrode for a Li ion secondary battery, a positive electrode, and a nonaqueous electrolyte, for example, laminated in the order of the negative electrode, the nonaqueous electrolyte, and the positive electrode, and is accommodated in the battery outer packaging material It is composed by doing.
  • a separator is disposed between the negative electrode and the positive electrode.
  • the structure, shape, and form of the Li-ion secondary battery of the present invention are not particularly limited, and can be arbitrarily selected from a cylindrical shape, a square shape, a coin shape, a button shape, a laminate shape, and the like depending on the application.
  • a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs it is preferable to use a battery equipped with means for detecting an increase in the internal pressure of the battery and shutting off the current when an abnormality such as overcharging occurs.
  • the positive electrode is formed, for example, by applying a positive electrode mixture composed of a positive electrode material, a binder, and a solvent to the surface of the current collector.
  • a positive electrode active material it is preferable to select a lithium-containing transition metal oxide capable of inserting / extracting a sufficient amount of lithium.
  • the lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may contain four or more elements.
  • the composite oxide may be used alone or in combination of two or more. Specifically, there are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Co 0.5 O 2 , LiFePO 4 and the like.
  • the positive electrode active material may be used alone or in combination of two or more.
  • various additives such as a conductive agent and a binder can be appropriately used.
  • the shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used.
  • the material of the current collector is aluminum, stainless steel, nickel or the like, and its thickness is usually 10 to 40 ⁇ m.
  • Nonaqueous electrolyte used in Li-ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 CH 2 OSO 2 ) 2 , LiN (CF 3 CF 2 OSO 2) 2, LiN ( HCF 2 CF 2 CH 2 OSO 2) 2, LiN ((CF 3) 2 CHOSO 2) 2, LiB [ ⁇ C 6 H 3 (CF 3) 2 ⁇ ] 4, LiAlCl 4, Lithium salts such as LiSiF 6 can be used.
  • the electrolyte salt concentration in the electrolytic solution is preferably from 0.1 to 5 mol / L, more preferably from 0.5 to 3.0 mol / L.
  • the non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte.
  • the non-aqueous electrolyte battery is configured as a so-called Li ion secondary battery
  • the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery.
  • Examples of the electrolyte for preparing the non-aqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran 2-methyltetrahydrofuran, ⁇ -butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile Nitrile such as trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoic chloride , It can be used benzoyl bromide,
  • an additive may be added to prevent the electrolytic solution from being reduced and decomposed during charging to deteriorate the battery.
  • Known additives include, but are not limited to, fluoroethylene carbonate (FEC), vinylene carbonate (VC), ethylene sulfite (ES), and the like.
  • FEC fluoroethylene carbonate
  • VC vinylene carbonate
  • ES ethylene sulfite
  • the addition amount is usually about 0.5 to 10% by mass.
  • a separator is disposed between the negative electrode and the positive electrode.
  • a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. can be used.
  • a microporous membrane made of synthetic resin is suitable.
  • a polyolefin microporous membrane is preferable in terms of thickness, membrane strength, and membrane resistance. Specifically, polyethylene and polypropylene microporous membranes, or microporous membranes combining these are preferred.
  • a button type secondary battery for single electrode evaluation composed of (positive electrode) 4 was prepared and evaluated.
  • An actual battery can be produced according to a known method based on the concept of the present invention.
  • the measurement methods used in the examples are as follows.
  • Measurement method (1) Measurement of average particle diameter The average particle diameter was a particle diameter at which the cumulative frequency measured with a laser diffraction particle size meter was 50% by volume.
  • the 1C charging rate which is a rapid charging rate, is charged at 1C until the circuit voltage reaches 0 mV after performing constant current discharge until the circuit voltage reaches 1.5 V at the current value of 0.2 C described above.
  • the 2.5C discharge rate which is a rapid discharge rate, is a constant current discharge until the circuit voltage reaches 1.5V at a current value of 2.5C after performing a constant current charge of 0.2C until the circuit voltage reaches 0 mV.
  • formula (3) In this test, the process of occluding lithium ions in the negative electrode material was charged, and the process of detaching from the negative electrode material was discharge, and the results are shown in Table 1.
  • the charge / discharge rate of 1C is an indicator of the relative ratio of the current during charging / discharging to the battery capacity, and charging / discharging is completed in just one hour after constant-current charging / discharging of a cell having a nominal capacity value. Current value.
  • Initial charge / discharge efficiency (%) (discharge capacity / charge capacity) ⁇ 100
  • ... 1C charge rate (%) (1C charge capacity / 0.2C discharge capacity) x 100
  • 2.5C discharge rate (%) (2.5C discharge capacity / 0.2C charge capacity) ⁇ 100
  • Example 1 A first solution is prepared by dissolving 0.02 mol of Al-sec butoxide and 0.02 mol of ethyl acetoacetate in an isopropanol solvent, and then an ethanol solution in which 0.002 mol of acetic acid Li dihydrate is dissolved is used as the first solution. In addition, a second solution was prepared. Next, 29 g of Si particles having an average particle size of 0.15 ⁇ m are added to the second solution, the solvent is removed, and then calcined at 1000 ° C. in a non-oxidizing atmosphere of nitrogen, Li and Li containing Al as the metal element M Si particles having an oxide coating film were obtained.
  • Example 2 A first solution is prepared by dissolving 0.02 mol of Ti-isopropoxide and 0.04 mol of ethyl acetoacetate in an isopropanol solvent, and then an ethanol solution in which 0.002 mol of lithium acetate dihydrate is dissolved is the first solution. In addition, a second solution was prepared. Next, 45 g of Si particles having an average particle size of 0.15 ⁇ m are added to the second solution, and after removing the solvent, firing is performed at 1000 ° C. in a non-oxidizing atmosphere of nitrogen, and Li and Li containing Ti as the metal element M Si particles having an oxide coating film were obtained.
  • Example 3 Zr-propoxide 0.02 mol and ethyl acetoacetate 0.04 mol were dissolved in an isopropanol solvent to prepare a first solution, and then an ethanol solution in which 0.002 mol of acetic acid Li dihydrate was dissolved was used as the first solution. In addition, a second solution was prepared. Next, 69 g of Si particles having an average particle size of 0.15 ⁇ m are added to the second solution, the solvent is removed, and then calcined at 1000 ° C. in a non-oxidizing atmosphere of nitrogen, and Li and Li containing Zr as the metal element M Si particles having an oxide coating film were obtained.
  • Example 5 A first solution is prepared by dissolving 0.02 mol of Al-sec butoxide and 0.02 mol of ethyl acetoacetate in an isopropanol solvent, and then an ethanol solution in which 0.002 mol of acetic acid Li dihydrate is dissolved is used as the first solution. In addition, a second solution was prepared. Next, 29 g of SiO particles having an average particle size of 5 ⁇ m are added to the second solution, the solvent is removed, and then calcined at 600 ° C. in a non-oxidizing atmosphere of nitrogen, so that Li and oxidation containing Li as the metal element M contain Al. SiO particles having a coating of the product were obtained.
  • Example 7 A Li-containing oxide film containing Li and Al as the metal element M was prepared in the same procedure as in Example 1 except that the amount of Si particles added was changed so that the coating amount was 5.0% by mass. Si particles were obtained.
  • Example 8 A Li-containing oxide film containing Li and Al as the metal element M in the same procedure as in Example 1 except that the amount of Li acetic acid dihydrate was changed so that the M / Limol ratio was 6. Si particles having were obtained.
  • a first solution is prepared by dissolving 0.02 mol of Al-sec butoxide and 0.02 mol of ethyl acetoacetate in an isopropanol solvent, and then an ethanol solution in which 0.04 mol of water is dissolved is added to the first solution. A solution was made. Next, 28 g of Si particles having an average particle size of 0.15 ⁇ m were added to the second solution, the solvent was removed, and then fired at 1000 ° C. in a non-oxidizing atmosphere of nitrogen to contain no Li and Al as the metal element M. Si particles having an oxide film contained therein were obtained.
  • a first solution is prepared by dissolving 0.01 mol of Al-sec butoxide and 0.01 mol of ethyl acetoacetate in an isopropanol solvent, and then an ethanol solution in which 0.01 mol of acetic acid Li dihydrate is dissolved is used as the first solution.
  • a second solution was prepared.
  • 18 g of Si particles having an average particle size of 0.15 ⁇ m are added to the second solution, and after removing the solvent, firing is performed at 1000 ° C. in a non-oxidizing atmosphere of nitrogen, and Li and Li containing Al as the metal element M Si particles having an oxide coating film were obtained.
  • the negative electrode mixture paste was applied on a copper foil having a thickness of 15 ⁇ m to a uniform thickness, and further, water in a dispersion medium was evaporated at 100 ° C. in a vacuum to dry the paste.
  • the negative electrode mixture layer applied on the copper foil was pressed by a hand press.
  • the copper foil and the negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm and pressed to produce a working electrode (negative electrode) having a negative electrode mixture layer adhered to the copper foil.
  • the density of the negative electrode mixture layer was 1.65 g / cm 3 .
  • the electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of 33% by volume of ethylene carbonate (EC) and 67% by volume of methyl ethyl carbonate (MEC) to prepare a non-aqueous electrolyte. Furthermore, for the negative electrode produced with the negative electrode material of Example 1 and Comparative Example 3, a mixed solvent in which 5% by mass of fluoroethylene carbonate (FEC) was added to the above mixed solvent was also prepared, and Example 6 and Comparative Example 4 were prepared. . The prepared non-aqueous electrolyte was impregnated into a 20 ⁇ m thick polypropylene porous separator to produce a separator impregnated with the electrolyte. In addition, about a real battery, it can produce according to a well-known method based on the concept of this invention.
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • FIG. 1 shows a button type secondary battery as a configuration of the evaluation battery.
  • the exterior cup 1 and the exterior can 3 were sealed by interposing an insulating gasket 6 at the peripheral portion thereof and caulking both peripheral portions.
  • a copper current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolytic solution, and a negative electrode mixture 2 are attached to the inside of the outer can 3 in that order.
  • a battery in which a current collector 7b made of foil is laminated.
  • the separator 5 impregnated with the electrolytic solution was sandwiched between the current collector 7b and the working electrode (negative electrode) made of the negative electrode mixture 2, and the counter electrode 4 in close contact with the current collector 7a.
  • the current collector 7b is accommodated in the exterior cup 1
  • the counter electrode 4 is accommodated in the exterior can 3
  • the exterior cup 1 and the exterior can 3 are combined, and an insulating gasket is provided at the peripheral edge between the exterior cup 1 and the exterior can 3. 6 was interposed, and both peripheral portions were caulked and sealed.
  • the Li ion secondary battery using the negative electrode material for the Li ion secondary battery of the present invention has a high Li ion conductivity because the film has a high Li ion conductivity, and thus has a reduced capacity of SiO x and a rapid charge rate. It can be seen that the capacity retention rate after the cycle is high because the rapid discharge rate is excellent and the reductive decomposition of the electrolyte and the additive is also suppressed.
  • the uncoated Si particles of Comparative Example 1 have poor cycle characteristics due to large decomposition of the electrolyte.
  • Comparative Examples 2, 3, and 5 since the Li conductivity of the film is low, the capacity reduction of SiO x is large, and the rapid charge rate and the rapid discharge rate are low.
  • the Si particles having an Al-containing oxide film not containing Li of Comparative Example 2 deteriorated in chargeability during the cycle and became impossible to measure. It can be seen that Comparative Example 4 cannot bring out the effect of the additive, and the capacity retention rate after the cycle is lowered.
  • the present invention provides a negative electrode material for a Li ion secondary battery, wherein at least part of the particle surface of SiO x (0 ⁇ x ⁇ 2) as an active material is at least selected from Li, Si, Al, Ti and Zr.
  • a negative electrode material for a Li ion secondary battery, wherein at least part of the particle surface of SiO x (0 ⁇ x ⁇ 2) as an active material is at least selected from Li, Si, Al, Ti and Zr.
  • the Li ion secondary battery using the negative electrode material for Li ions of the present invention satisfies the recent demand for higher energy density of the battery, and is useful for downsizing and higher performance of the equipment to be mounted.
  • the negative electrode material for Li ions of the present invention can be used for high-performance Li ion secondary batteries ranging from small to large, taking advantage of its characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、充電時に活物質による電解液の還元分解を充分に抑制でき、黒鉛の理論容量を超える高い放電容量と、優れた初期充放電効率およびサイクル特性を示すLiイオン二次電池負極材料を提供する。本発明のLiイオン二次電池用負極材料は、SiOx(0≦x<2)の粒子表面に、Liと、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mと、を含有し、mol比でM/Li>5の組成からなるLi含有酸化物の被膜を有する。

Description

Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
 本発明は、Liと合金化可能なSiまたはSiOの粒子表面に、Liイオン伝導性の金属酸化物を被覆したLiイオン二次電池用負極材料及びその製造方法に関する。
 Liイオン二次電池は、高電圧、高エネルギー密度という優れた特性を有するため電子機器の電源として広く普及している。近年、電子機器の小型化および高性能化が進み、Liイオン二次電池のさらなる高エネルギー密度化に対する要望が高まっている。
 現在のLiイオン二次電池は、正極にLiCoO2、負極に黒鉛を用いたものが主流である。負極の黒鉛は充放電(charge and discharge)の可逆性に優れるものの、その放電容量はすでに層間化合物(intercalation compound)LiC6に相当する理論値372mAh/gに近い値まで到達している。このため、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
 そこで、黒鉛に替わる負極材料として、黒鉛を遥かに凌ぐ放電容量を有するLiと合金を形成する活物質としてSi、SiOが注目されている。Si系負極は充電時の合金化に伴う体積膨張が大きいことから劣化しやすく、膨張を低減する対策として粒子の微粒化が有効とされる。しかしながら、微粒化により活物質表面が活性となり、充電時に電解液の還元分解を増進させるため、実用レベルのサイクル特性が得られていない。
 特許文献1では、Si、SiOなどの高容量活物質の表面に、一般式LixyO(Mは金属またはSi、y/x=0.5~2)の硬質膜を被覆することで、活物質の充放電による体積変化を低減させ、サイクルの容量維持率が優れるとしている。しかしながら、当該被覆物質はLiイオン伝導性が優れているとは言えず、被覆により容量および急速充放電の低下を引き起こす。さらに、Si系活物質に添加するとサイクル特性等の向上に有効とされる添加剤フルオロエチレンカーボネート(FEC)を添加した場合でも改善効果が発揮されない。
 特許文献2では、メジアン粒径が100nm以下のセラミックナノ粒子と有機固体電解質界面(SEI)からなる複合被膜が活物質を覆うことで、イオン拡散性が向上するとされている。しかしながら、酸化物が緻密に被覆されていないため、電解液が充電時に活物質と接触し還元分解が進行してしまう。
 特許文献3では、Si粒子表面に人工SEIとしてTiO2、ZrO2を被覆することでサイクル寿命が増加するとしている。しかしながら、Liを含有しないTiO2、ZrO2はLiイオン伝導が悪く、容量および急速充放電の低下を引き起こす。
特許第5385111号明細書 特開2008-041465号公報 特開2006-190642号公報
 本発明は、上述の状況を鑑みてなされたものであり、充電時に活物質による電解液の還元分解を充分に抑制でき、黒鉛の理論容量を超える高い放電容量と、優れた初期充放電効率およびサイクル特性を示すLiイオン二次電池負極材料を提供することを目的とする。
 本発明では、Liイオン伝導性が高く安定な、Liおよび他の特定の金属元素を所定のmol比で含有するLi含有酸化物の薄膜で活物質であるSi粒子若しくはSiO粒子の表面を被覆することで、活物質と電解液との接触を防いで電解液の還元分解を抑制し、かつLiイオン伝導を伴う充放電反応を阻害することなく、高い放電容量と良サイクル特性が得られることを知見した。
 上記のように高い放電容量とサイクル特性が得られる理由は、活物質であるSi粒子若しくはSiO粒子の表面に、Liイオン伝導性が高く安定な、上述したLi含有酸化物の薄膜で被覆することで、活物質と電解液の接触を制限し、充電時に活物質による電解液の還元分解を抑制でき、かつLiイオン伝導を伴う充放電反応を阻害しないためと考えられる。しかし、本発明はこれらの機序に限定されない。
 すなわち本発明は、以下を提供する。
(1)SiOx(0≦x<2)の粒子表面に、Liと、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mと、を含有し、mol比でM/Li>5の組成からなるLi含有酸化物の被膜を有するLiイオン二次電池用負極材料。
(2)上記M/Liが、5<M/Li<100である、上記(1)に記載のLiイオン二次電池用負極材料。
(3)上記Li含有酸化物の含有量が2~10質量%である、上記(1)または(2)に記載のLiイオン二次電池用負極材料。
(4)上記(1)~(3)のいずれかに記載の負極材料を含有することを特徴とするLiイオン二次電池用負極。
(5)上記(4)に記載のLiイオン二次電池用負極を有することを特徴とするLiイオン二次電池。
(6)Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素M、およびLiを含む酸化物前駆体溶液にSiOx(0≦x<2)粒子を分散させ、乾燥後、200~1200℃の温度範囲で熱処理して、上記(1)~(3)のいずれかに記載の負極材料を得るLiイオン二次電池用負極材料の製造方法。
 本発明のLiイオン二次電池用負極材料は、充電時に活物質による電解液の過剰な還元分解を充分に抑制でき、黒鉛の理論充電容量を超える高い放電容量、優れたサイクル特性を示す。
単極評価用のボタン型二次電池の断面図である。 Li含有酸化物の被膜を有するSi粒子の表層部を示すTEM写真である。
 以下、本発明の具体的な実施形態について説明する。
〔本発明のLiイオン二次電池用負極材料〕
 本発明のLiイオン二次電池用負極材料は、活物質であるSiOx(0≦x<2)粒子の表面に、安定で高いLiイオン伝導性のLi含有酸化物の被膜を形成することで、活物質と電解液の接触を制限して充電時に活物質による電解液の還元分解を抑制でき、かつLiイオン伝導を伴う充放電反応を阻害しないため放電容量の低下がなく高電流の充放電反応にも良好な特性を示す。被膜の膜厚は0.5~10nmが好ましく、1~3nmがより好ましい。0.5nmよりも薄いと活物質と電解液との接触を十分に防止できなくなるおそれがある。10nmを超えるとLiイオン伝導および電子伝導の抵抗が増大し電極反応の応答性が悪化するおそれがある。Li含有酸化物による被覆量、すなわち、本発明のLiイオン二次電池用負極材料におけるLi含有酸化物の含有量は、活物質であるSiOx(0≦x<2)粒子の比表面積に影響される。被膜の膜厚が上記範囲の場合、Li含有酸化物による被覆量、すなわち、本発明のLiイオン二次電池用負極材料におけるLi含有酸化物の含有量は、2~10質量%となることが好ましい。本発明のLiイオン二次電池用負極材料におけるLi含有酸化物の含有量が2質量%よりも少ないと、活物質と電解液との接触を十分に防止できなくなるおそれがある。本発明のLiイオン二次電池用負極材料におけるLi含有酸化物の含有量が10質量%よりも多いとLiイオン伝導および電子伝導の抵抗が増大し電極反応の応答性が悪化するおそれがある。
 図2は、後述する実施例1の被覆Si粒子のTEM像である。図2に示す被覆Si粒子は、活物質であるSi粒子の表面に、mol比でM/Li=10(M:Al)の組成からなるLi含有酸化物の厚さ2~3nmの薄膜で被覆されている。
 本発明のLiイオン二次電池用負極材料において、活物質であるSiOx(0≦x<2)粒子の表面の少なくとも一部に形成される被膜は、安定で高いLiイオン伝導性を有するLi含有酸化物からなる。Liを含有させるマトリックスの金属酸化物は、SiO2、Al23、TiO2およびZrO2から選ばれる1種以上である。
 本発明におけるLi含有酸化物は、Liおよび金属元素Mがmol比でM/Li>5の組成からなる。mol比でM/Li≦5の組成だと、Liイオン伝導が小さくなるため、放電容量の低下や電極反応の応答が悪くなる。
 本発明におけるLi含有酸化物は、mol比で100>M/Li>5の組成が好ましい。mol比でM/Li≧100の組成だと、Liイオン伝導が小さくなり、放電容量の低下や電極反応の応答が悪くなるおそれがあるである。
 本発明におけるLi含有酸化物は、mol比で20≧M/Li≧6の組成であることがより好ましい。
 本発明におけるLi含有酸化物の結晶相は熱処理温度の影響を受ける。一般に熱処理温度が200~600℃では結晶化が進まず非晶質であり、600℃以上で結晶が生成し始める。具体的には、Li含有酸化物が金属元素MとしてSiを含有する場合は、非晶質、または結晶相のSiO2(トリジマイト型)と、Li2Si25との混合相となる。Li含有酸化物が金属元素MとしてAlを含有する場合は、非晶質、または結晶相のAl23(γ型)と、LiAl58との混合相となる。Li含有酸化物が金属元素MとしてTiを含有する場合は、非晶質、または結晶相のTiO2(アナターゼ型、ルチル型)とLi4Ti512との混合相となる。Li含有酸化物が金属元素MとしてZrを含有する場合は、非晶質、または結晶相のZrO2(単斜晶、正方晶)と、Li2ZrO3との混合相となる。
〔本発明のLiイオン二次電池用負極材料の原料〕
<活物質>
 本発明のLiイオン二次電池用負極材料では、活物質として、Liと合金を形成するSiOx(0≦x<2)粒子を用いる。SiOxの結晶相は、非晶質または結晶質のどちらでもよく、特に限定されない。
 x=0の場合、SiOx(0≦x<2)粒子はSi粒子である。この場合、平均粒子径D50は1μm以下であることが好ましい。平均粒子径D50が1μmを超えると充電膨張の影響が局所的に大きくなり電極の劣化が増進する。平均粒子径D50は、0.1μm以上であることが好ましい。平均粒子径D50が0.1μm未満であると、活物質であるSi粒子表面の活性が高くなり充電時に電解液の還元分解を被膜で抑制することが難しくなる。平均粒子径D50は、0.1μm~0.5μmの範囲であることがより好ましい。粒子形状については、気相法で合成される球状、薄片状または繊維状、塊状の粉砕で得られる破砕状の何れでもよく、特に限定されない。
 0<x<2の場合、全体が非晶質、または非晶質SiO2マトリックス中に数nmのSiの結晶粒子が均一分散した不均化状態になっている。なお、約0.5≦x≦1.5でSiOxが単一相で安定するといわれている。このときSiOxの平均粒子径D50は10μm以下であることが好ましい。平均粒子径D50が10μmを超えると充電膨張の影響が局所的に大きくなり電極の劣化を増進する。平均粒子径D50は0.1μm以上であることが好ましい。平均粒子径D50が0.1μm未満であると活物質表面の活性が高くなり充電時に電解液の還元分解を被膜で抑制することが難しくなる。平均粒子径D50は0.1~5μmの範囲であることがより好ましい。粒子形状については、気相法で合成される球状、薄片状または繊維状、塊状の粉砕で得られる破砕状の何れでもよく、特に限定されない。
<Li含有酸化物前駆体溶液>
 Li含有酸化物の前駆物質である、Li化合物と、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mの化合物と、が分散した溶液(Li含有酸化物前駆体溶液)において、溶媒が有機溶剤の場合、Li源となるLi化合物は有機溶剤に溶解する酢酸Li、硝酸Li、塩化Li等が好ましく、金属元素M源となる金属元素Mの化合物は、有機溶剤に溶解するアルコキシド、硝酸塩、塩化物等が好ましい。アルコキシドのうち、金属元素MがAl、Ti、Zrのものは加水分解しやすく不安定なため、キレート剤で安定化させることが好ましい。キレート剤には、アセト酢酸エチル、アセチルアセトン、トリアタノールアミン等があるが、これらに限定されない。有機溶剤はエタノール、イソプロピルアルコール、酢酸エチル、トルエンなどを使用できる。溶媒が水の場合、Li源となる化合物は水に溶解する酢酸Li、硝酸Li、塩化Li等が好ましく、金属元素M源となる金属元素Mの化合物は、水に溶解する硝酸塩、塩化物、オキシ酸塩、ペルオキソ酸等が好ましい。金属元素MがSiの場合はケイ酸Li水溶液を使用することもできる。
〔本発明のLiイオン二次電池用負極材料の製造方法〕
 本発明のLiイオン二次電池用負極材料の製造方法は、Li含有酸化物の前駆物質であるLi化合物と、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mの化合物と、が分散した溶液(Li含有酸化物前駆体溶液)に、Liと合金化可能なSiOx(0≦x<2)粒子を加えて、乾燥後200~1200℃の温度範囲で熱処理することで得られる。熱処理後のLiイオン二次電池用負極材料が凝集している場合は、Li含有酸化物の被膜にダメージを与えない程度の力で解砕して使用することができる。
 Li含有酸化物の前駆物質であるLi化合物と、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mの化合物と、が分散した溶液(Li含有酸化物前駆体溶液)は、金属元素MがAl、Ti、Zrの場合は、これらの元素のアルコキシドをアルコール溶媒中でキレート剤:アセト酢酸エチル、アセチルアセトン、トリアタノールアミン等とキレート化することで安定化させ、急速な加水分解反応を抑制して造膜性を高めることが好ましい。キレート剤の配合比はmol比でキレート剤/アルコキシド=1~2が好ましい。mol比で1未満だと、キレート化していないアルコキシドが残存するため安定性が悪く、mol比で2超えだとキレート化しない不要なキレート剤が過剰に残存してしまう。キレート化したアルコキシド溶液は、さらに造膜性を高めるため水を添加して加水分解を適度に促進させるとより好ましい。水の添加量は、mol比で水/アルコキシド=1~2が好ましい。mol比で1未満だと、加水分解の進行が不十分となり成膜時に有機分が残存しやすく、mol比で2超えだと加水分解が進行し過ぎて溶液中に沈殿が生じる場合がある。次いで、Li化合物を溶媒に溶解し上記溶液に混合することで、Li含有酸化物の前駆物質が分散した溶液を調製できる。また、金属元素MがSiの場合は、アルコキシドが安定なためキレート剤は不要で、水および酸触媒を加えて加水分解を促進させたあと、Li化合物を溶媒に溶解し上記溶液に混合することで、Li含有酸化物の前駆物質が分散した溶液を調製できる。
 次いで上記溶液にLiと合金化可能なSiOx(0≦x<2)粒子を加える。SiOxは乾燥粉または分散スラリーのどちらの形態でもよい。乾燥粉は、原料のSiOxを乾式粉砕または湿式粉砕のあと溶媒を除去して得ることができる。分散スラリーは湿式粉砕することで得ることができる。Li含有酸化物の前駆物質の分散溶液と、SiOx粒子と、の混合スラリーは、溶媒を除去し、SiOx粒子表面にLi含有酸化物の前駆物質の被膜を形成する。Li含有酸化物の前駆物質の被膜は、硬化を促進させるため200~1200℃で熱処理することが好ましい。200℃未満だと被膜の硬度およびSiOx粒子との接着が弱く、1200℃超えだと被膜とSiOxとの反応が進行し放電容量が低下してしまう。熱処理時の雰囲気は非酸化性雰囲気が好ましく、Ar等の非反応性ガスまたはN2等の低反応性ガスを主成分とし、O2濃度は1000ppm以下がより好ましい。
 本発明のLiイオン二次電池用負極材料は、作製する電極の容量、密度、効率などの電池特性を調整するために、異種の黒鉛材料、ハードカーボンなどの炭素材料と混合して使用してもよい。
〔負極〕
 本発明のLiイオン二次電池用負極は、上記のLiイオン二次電池用負極材料を含有するリチウムイオン二次電池用負極である。
 本発明のリチウムイオン二次電池用負極は、通常の負極の成形方法に準じて作製される。負極の作製は、本発明のLiイオン二次電池用負極材料に結合剤および溶媒を加えて調製した負極合剤を集電材に塗布することが好ましい。結合剤は、電解質に対して化学的、および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1~20質量%の割合である。
 より具体的には、まず、本発明のLiイオン二次電池用負極材料を分級などにより所望の粒度に調整し、結合剤および溶媒と混合してスラリー状の負極合剤を調製する。すなわち、本発明のLiイオン二次電池用負極材料と、結合剤および水、イソピロピルアルコール、N-メチルピロリドン、ジメチルホルムアミドなどの溶媒を、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合してスラリーを調製する。該スラリーは、集電材の片面または両面に塗布し、乾燥することで、負極合剤層が均一かつ強固に接着した負極を得ることができる。負極合剤層の膜厚は10~200μm、好ましくは20~100μmである。
 負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質は、銅、ステンレス、ニッケルなどが好ましく、その集電体の厚みは通常5~20μmである。
 なお、本発明のLiイオン二次電池用負極は、本発明の目的を損なわない範囲で、黒鉛質材料、ハードカーボンなどの炭素質材料、CNTなどの導電材を混合してもよい。
 〔リチウムイオン二次電池〕
 本発明のLiイオン二次電池は、上述のLiイオン二次電池用負極、および正極、非水電解質を、例えば、負極、非水電解質、正極の順で積層し、電池の外装材内に収容することで構成される。非水電解質を溶媒に溶解する場合は、負極と正極の間にセパレータを配置する。本発明のLiイオン二次電池の構造、形状、形態は特に限定されず、用途に応じて円筒型、角型、コイン型、ボタン型、ラミネート型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものを用いることが好ましい。
<正極>
 正極は、例えば正極材料と結合剤および溶媒からなる正極合剤を集電体の表面に塗布することにより形成される。正極活物質は、充分量のリチウムを吸蔵/離脱し得るリチウム含有遷移金属酸化物を選択するのが好ましい。リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、4種類以上の元素が含まれてもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。具体的には、LiCoO2、LiNiO2、LiMnO2、LiNi0.9Co0.12、LiNi0.5Co0.52、LiFePO4などがある。
 正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
 集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等で、その厚さは通常10~40μmである。
<非水電解質>
 本発明のLiイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩である、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C65)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO22、LiC(CF3SO23、LiN(CF3CH2OSO22、LiN(CF3CF2OSO22、LiN(HCF2CF2CH2OSO22、LiN((CF32CHOSO22、LiB[{C63(CF32}]4、LiAlCl4、LiSiF6などのリチウム塩を用いることができる。酸化安定性の点からは、特に、LiPF6、LiBF4が好ましい。電解液中の電解質塩濃度は0.1~5mol/Lが好ましく、0.5~3.0mol/Lがより好ましい。
 非水電解質は液状の非水電解質としてもよく、固体電解質またはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるLiイオン二次電池として構成され、後者の場合は、非水電解質電池は高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。
 非水電解質液を調製するための電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1-または1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、γ-ブチロラクトン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒などを用いることができる。さらに、充電時に電解液が還元分解して電池が劣化することを防ぐため、添加剤を加えても良い。公知の添加剤としては、フルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、エチレンサルファイト(ES)などがあり、これらに限定されない。添加量は通常0.5~10質量%程度である。
<セパレータ>
 本発明のLiイオン二次電池においては、非水電解質を溶媒に溶解する場合は、負極と正極の間にセパレータを配置する。セパレータの材質は特に限定されるものではないが、例えば、織布、不織布、合成樹脂製微多孔膜などを用いることができる。前記セパレータの材質としては、合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の特性で好ましい。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等が好ましい。
 次に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。また以下の実施例および比較例では、図1に示すように、少なくとも表面の一部に本発明の負極材料を有する負極合剤2が付着した集電体(負極)7bとリチウム箔よりなる対極(正極)4から構成される単極評価用のボタン型二次電池を作製して評価した。実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。
 実施例で用いた測定法は以下である。
〔測定法〕
(1)平均粒径の測定
 平均粒子径は、レーザー回折式粒度計で測定される累積度数が体積百分率で50%となる粒子径とした。
(2)Li含有酸化物のLiと、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mの含有割合
 金属元素Mの含有量は添加量で規定した。定量測定を行う場合はICP発光分析、原子吸光分析などで行うことができる。
(3)被膜観察
 被膜の観察は透過型電子顕微鏡(TEM)写真で行った。
(4)電池特性
 下記の構成で作製された評価電池について、25℃の温度下で以下に示す充放電試験を行い、初期充放電特性、急速充電率、急速放電率およびサイクル特性を計算した。
 <初期充放電特性>
 回路電圧が0mVに達するまで0.2C(0.9mA)の定電流充電を行った後、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から質量当たりの充電容量(単位:mAh/g)を求めた。その後、120分間保持した。次に0.2Cの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から質量当たりの放電容量(単位:mAh/g)を求めた。初期充放電効率は下記式(1)により計算した。
 急速充電率である1C充電率は、前記の0.2Cの電流値で回路電圧が1.5Vに達するまで定電流放電を行ったあとに、回路電圧が0mVに達するまで1Cで充電し、下記式(2)により計算した。
 急速放電率である2.5C放電率は、回路電圧が0mVに達するまで0.2Cの定電流充電を行った後、2.5Cの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、下記式(3)により計算した。
 この試験では、リチウムイオンを負極材料に吸蔵する過程を充電、負極材料から離脱する過程を放電とし、結果を表1に示した。
 なお充放電レートの1Cとは、電池容量に対する充放電時の電流の相対的な比率の指標で、公称容量値の容量を持つセルを定電流充放電してちょうど1時間で充放電が終了となる電流値のことである。
 式(1) … 初期充放電効率(%)=(放電容量/充電容量)×100
 式(2) … 1C充電率(%)=(1C充電容量/0.2C放電容量)×100
 式(3) … 2.5C放電率(%)=(2.5C放電容量/0.2C充電容量)×100
<サイクル特性>
 質量当たりの放電容量、急速充電率、急速放電率を評価した評価電池とは別の評価用電池を作製し、以下のような評価を行なった。
 回路電圧が0mVに達するまで1Cの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に1Cの電流値で、回路電圧が1.5Vに達するまで定電流放電を行う操作を30回繰返した。サイクル特性は、得られた質量当たりの放電容量から下記式(4)を用いて容量維持率を計算して評価した。各回効率は、各サイクルにおける充電容量と放電容量から下記式(5)を用いて計算して評価した。なお、各回効率は活物質の充電量と電解液の還元分解に使われた電荷消費量の総和が分母となることから、値が大きいほど電解液が分解しにくいことを示す。
 式(4) … 容量維持率(%)=(30サイクルにおける放電容量/第1サイクルにおける放電容量)×100
 式(5) … 各回効率(%)=(30サイクルにおける放電容量/30サイクルにおける充電容量)×100
〔負極材料の作製〕
(実施例1)
 Al-secブトキシド0.02molと、アセト酢酸エチル0.02molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで酢酸Li二水塩0.002molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径0.15μmのSi粒子29gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Li、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(実施例2)
 Ti-isoプロポキシド0.02molと、アセト酢酸エチル0.04molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで酢酸Li二水塩0.002molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径0.15μmのSi粒子45gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Li、および金属元素MとしてTiを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(実施例3)
 Zr-プロポキシド0.02molと、アセト酢酸エチル0.04molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで酢酸Li二水塩0.002molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径0.15μmのSi粒子69gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Li、および金属元素MとしてZrを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(実施例4)
 mol比でSi/Li=3.9の4.6質量%のケイ酸Li溶液50gに平均粒径0.15μmのSi粒子63gを加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Li、および金属元素MとしてSiを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(実施例5)
 Al-secブトキシド0.02molと、アセト酢酸エチル0.02molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで酢酸Li二水塩0.002molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径5μmのSiO粒子29gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下600℃で焼成して、Li、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSiO粒子を得た。
(実施例7)
 被覆量が5.0質量%となるようにSi粒子の添加量を変化させた以外は、実施例1と同様の手順でLi、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(実施例8)
 M/Limol比が6となるように酢酸Li二水塩の添加量を変化させた以外は、実施例1と同様の手順でLi、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(比較例1)
 被覆しない平均粒径0.15μmのSi粒子を用いた。
(比較例2)
 Al-secブトキシド0.02molと、アセト酢酸エチル0.02molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで水0.04molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径0.15μmのSi粒子28gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Liを含有せず、金属元素MとしてAlを含有する酸化物の被膜を有するSi粒子を得た。
(比較例3)
 Al-secブトキシド0.01molと、アセト酢酸エチル0.01molと、をイソプロパノール溶媒に溶解して第一溶液を作製し、次いで酢酸Li二水塩0.01molを溶解したエタノール溶液を第一溶液に加えて第二溶液を作製した。次いで平均粒径0.15μmのSi粒子18gを第二溶液に加え、溶媒を除去したあと、窒素の非酸化性雰囲気下1000℃で焼成して、Li、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSi粒子を得た。
(比較例5)
 M/Limol比が4となるように酢酸Li二水塩の添加量を変化させた以外は、実施例1と同様の手順でLi、および金属元素MとしてAlを含有するLi含有酸化物の被膜を有するSi粒子を得た。
〔作用電極(負極)の作製〕
 上記Li含有酸化物被膜を有するSi粒子を3質量部と、球状天然黒鉛粒子94質量部の負極材、上記Li不含有酸化物被膜を有するSi粒子を3質量部と、球状天然黒鉛粒子94質量部の負極材、または上記Li含有酸化物被膜を有するSiO粒子7質量部と、球状天然黒鉛粒子90質量部の負極材、および結合剤としてのカルボキシメチルセルロース1.5質量部、スチレン-ブタジエンゴム1.5質量部を水に入れ、攪拌して負極合剤ペーストを調製した。前記負極合剤ペーストを厚さ15μmの銅箔上に均一な厚さで塗布し、さらに真空中100℃で分散媒の水を蒸発させて乾燥した。次いで、この銅箔上に塗布された負極合剤層をハンドプレスによって加圧した。さらに、銅箔と負極合剤層を直径15.5mmの円柱状に打抜いてプレスし、銅箔に密着した負極合剤層を有する作用電極(負極)を作製した。負極合剤層の密度は1.65g/cm3であった。
 電解液は、エチレンカーボネート(EC)33体積%とメチルエチルカーボネート(MEC)67体積%の混合溶剤に、LiPF6を1mol/Lとなる濃度で溶解させ、非水電解液を調製した。さらに実施例1および比較例3の負極材で作製した負極については、上記混合溶剤に5質量%のフルオロエチレンカーボネート(FEC)を加えた混合溶剤も準備し、実施例6および比較例4とした。また調製した非水電解液は厚さ20μmのポリプロピレン多孔質体のセパレータに含浸させ、電解液が含浸したセパレータを作製した。なお、実電池については、本発明の概念に基づき、公知の方法に準じて作製することができる。
 〔評価電池の作製〕
 図1に評価電池の構成としてボタン型二次電池を示す。
 外装カップ1と外装缶3は、その周縁部において絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。その内部に外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極合剤2が付着した銅箔からなる集電体7bが積層された電池である。
 前記評価電池は電解液を含浸させたセパレータ5を集電体7bと負極合剤2からなる作用電極(負極)と、集電体7aに密着した対極4との間に挟んで積層した後、集電体7bを外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。
 以上の評価結果を表1に示した。実施例1~8から、本発明のLiイオン二次電池用負極材料を用いたLiイオン二次電池は、被膜が高いLiイオン導電性を有することからSiOxの容量減少が無く、急速充電率、急速放電率に優れ、さらに電解液および添加剤の還元分解も抑制されるためサイクル後の容量維持率が高いことが分かる。比較例1の被覆なしのSi粒子は、電解液の分解が大きいためサイクル特性が悪い。比較例2,3,5は、被膜のLi導電性が低いため、SiOxの容量減少が大きく、急速充電率、急速放電率が低い。特に比較例2のLiを含有しないAl含有酸化物被膜を有するSi粒子はサイクル時に充電性が悪化し測定が不能となった。比較例4は添加剤の効果を引き出すことができず、サイクル後の容量維持率が低下してしまうことが分かる。
Figure JPOXMLDOC01-appb-T000001
 本発明は、Liイオン二次電池用負極材料として、活物質であるSiOx(0≦x<2)の粒子表面の少なくとも一部に、Liと、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mと、を含有し、mol比でM/Li>5の組成からなるLi含有酸化物の被膜を有するものを使用することで、充電時に活物質による電解液の過剰な還元分解を充分に抑制でき、黒鉛の理論充電容量を超える高い放電容量、優れたサイクル特性を示す負極材料を提供する。そのため、本発明のLiイオン用負極材料を用いるLiイオン二次電池は、近年の電池の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有用である。本発明のLiイオン用負極材料は、その特性を活かして、小型から大型までの高性能Liイオン二次電池に使用することができる。
  1 外装カップ
  2 負極合剤
  3 外装缶
  4 対極
  5 セパレータ
  6 絶縁ガスケット
  7a、7b 集電体

Claims (6)

  1.  SiOx(0≦x<2)の粒子表面に、Liと、Si、Al、TiおよびZrから選ばれる少なくとも一種の金属元素Mと、を含有し、mol比でM/Li>5の組成からなるLi含有酸化物の被膜を有するLiイオン二次電池用負極材料。
  2.  前記M/Liが、5<M/Li<100である、請求項1に記載のLiイオン二次電池用負極材料。
  3.  前記Li含有酸化物の含有量が2~10質量%である、請求項1または2に記載のLiイオン二次電池用負極材料。
  4.  請求項1~3のいずれかに記載の負極材料を含有するLiイオン二次電池用負極。
  5.  請求項4に記載のLiイオン二次電池用負極を有するLiイオン二次電池。
  6.  Si、Al、TiおよびZrから選ばれる少なくとも一種金属元素M、およびLiを含む酸化物前駆体溶液にSiOx(0≦x<2)粒子を分散させ、乾燥後、200~1200℃の温度範囲で熱処理して、請求項1~3のいずれかに記載の負極材料を得るLiイオン二次電池用負極材料の製造方法。
PCT/JP2017/000228 2016-01-22 2017-01-06 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池 WO2017126337A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/070,959 US10930929B2 (en) 2016-01-22 2017-01-06 Negative-electrode material for Li-ion secondary cell, method for manufacturing said material, negative electrode for Li-ion-secondary-cell, and Li-ion secondary cell
EP17741217.8A EP3410517B1 (en) 2016-01-22 2017-01-06 Negative-electrode material for li-ion secondary cell, method for manufacturing the same, li-ion-secondary-cell negative electrode, and li-ion secondary cell
CN201780006742.7A CN108463909B (zh) 2016-01-22 2017-01-06 Li离子二次电池用负极材料及其制造方法、Li离子二次电池用负极、以及Li离子二次电池
JP2017562507A JP6595007B2 (ja) 2016-01-22 2017-01-06 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
KR1020187018830A KR102199028B1 (ko) 2016-01-22 2017-01-06 Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-010323 2016-01-22
JP2016010323 2016-01-22

Publications (1)

Publication Number Publication Date
WO2017126337A1 true WO2017126337A1 (ja) 2017-07-27

Family

ID=59361578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000228 WO2017126337A1 (ja) 2016-01-22 2017-01-06 Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池

Country Status (7)

Country Link
US (1) US10930929B2 (ja)
EP (1) EP3410517B1 (ja)
JP (1) JP6595007B2 (ja)
KR (1) KR102199028B1 (ja)
CN (1) CN108463909B (ja)
TW (1) TWI623132B (ja)
WO (1) WO2017126337A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075554A1 (ja) 2019-10-18 2021-04-22 株式会社村田製作所 負極活物質、負極および二次電池
CN115053364A (zh) * 2020-02-21 2022-09-13 尤米科尔公司 在蓄电池的负电极中使用的粉末、用于制备此类粉末的方法以及包含此类粉末的蓄电池
CN115498268A (zh) * 2022-11-16 2022-12-20 深圳新宙邦科技股份有限公司 一种锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911643B (zh) * 2019-12-05 2023-07-25 江苏科技大学 一种基于硅藻土基的锂离子电池负极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190642A (ja) 2004-12-31 2006-07-20 Ind Technol Res Inst リチウム二次電池の負極材料およびその製造方法
JP2008041465A (ja) 2006-08-08 2008-02-21 Sony Corp 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池
JP2009135094A (ja) * 2007-10-30 2009-06-18 Tohoku Univ 非水電解液二次電池用負極材料
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2013073818A (ja) * 2011-09-28 2013-04-22 Nissan Motor Co Ltd リチウムイオン二次電池用複合負極活物質
JP5385111B2 (ja) 2008-12-09 2014-01-08 三星エスディアイ株式会社 リチウム二次電池及びその製造方法
WO2016010056A1 (ja) * 2014-07-15 2016-01-21 川上総一郎 蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724217B2 (ja) * 1998-08-20 2005-12-07 トヨタ自動車株式会社 リチウムイオン2次電池用負極
JP4702510B2 (ja) 2001-09-05 2011-06-15 信越化学工業株式会社 リチウム含有酸化珪素粉末及びその製造方法
KR101084077B1 (ko) * 2009-10-14 2011-11-16 삼성에스디아이 주식회사 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
JP5464653B2 (ja) 2009-11-27 2014-04-09 日立マクセル株式会社 非水二次電池およびその製造方法
JP5784961B2 (ja) * 2011-04-28 2015-09-24 国立大学法人高知大学 被覆活物質の製造方法
JP5935246B2 (ja) 2011-06-24 2016-06-15 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101724012B1 (ko) 2012-08-23 2017-04-07 삼성에스디아이 주식회사 실리콘계 음극활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
KR101906973B1 (ko) 2012-12-05 2018-12-07 삼성전자주식회사 표면 개질된 음극 활물질용 실리콘 나노입자 및 그 제조방법
JP2014220216A (ja) 2013-05-10 2014-11-20 帝人株式会社 非水電解質二次電池用の複合粒子
CN103682268B (zh) * 2013-12-04 2016-01-20 上海纳米技术及应用国家工程研究中心有限公司 一种碳、钛酸锂双层包覆的硅负极材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190642A (ja) 2004-12-31 2006-07-20 Ind Technol Res Inst リチウム二次電池の負極材料およびその製造方法
JP2008041465A (ja) 2006-08-08 2008-02-21 Sony Corp 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池
JP2009135094A (ja) * 2007-10-30 2009-06-18 Tohoku Univ 非水電解液二次電池用負極材料
JP5385111B2 (ja) 2008-12-09 2014-01-08 三星エスディアイ株式会社 リチウム二次電池及びその製造方法
JP2011096455A (ja) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
JP2013073818A (ja) * 2011-09-28 2013-04-22 Nissan Motor Co Ltd リチウムイオン二次電池用複合負極活物質
WO2016010056A1 (ja) * 2014-07-15 2016-01-21 川上総一郎 蓄電デバイス用負極材料、電極構造体、蓄電デバイス、及びこれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410517A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075554A1 (ja) 2019-10-18 2021-04-22 株式会社村田製作所 負極活物質、負極および二次電池
CN115053364A (zh) * 2020-02-21 2022-09-13 尤米科尔公司 在蓄电池的负电极中使用的粉末、用于制备此类粉末的方法以及包含此类粉末的蓄电池
CN115053364B (zh) * 2020-02-21 2024-01-30 尤米科尔公司 在蓄电池的负电极中使用的粉末、用于制备此类粉末的方法以及包含此类粉末的蓄电池
CN115498268A (zh) * 2022-11-16 2022-12-20 深圳新宙邦科技股份有限公司 一种锂离子电池

Also Published As

Publication number Publication date
CN108463909A (zh) 2018-08-28
TWI623132B (zh) 2018-05-01
KR20180083432A (ko) 2018-07-20
EP3410517A1 (en) 2018-12-05
EP3410517A4 (en) 2019-08-14
TW201731144A (zh) 2017-09-01
CN108463909B (zh) 2021-03-23
JP6595007B2 (ja) 2019-10-23
KR102199028B1 (ko) 2021-01-06
US20190081323A1 (en) 2019-03-14
US10930929B2 (en) 2021-02-23
JPWO2017126337A1 (ja) 2018-08-23
EP3410517B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
TWI708422B (zh) 非水電解質二次電池用負極活性物質、非水電解質二次電池、非水電解質二次電池用負極材料的製造方法、以及非水電解質二次電池的製造方法
KR102140969B1 (ko) 비수 전해질 이차전지용 양극 활물질, 그 제조 방법 및 그것을 이용한 비수 전해질 이차전지
JP4794866B2 (ja) 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池
WO2017199606A1 (ja) Liイオン二次電池用負極材料、Liイオン二次電池用負極およびLiイオン二次電池
JP4985524B2 (ja) リチウム二次電池
JP5046302B2 (ja) 非水二次電池
JP4853608B2 (ja) リチウム二次電池
WO2011162169A1 (ja) リチウムイオン二次電池
WO2011016222A1 (ja) 非水電解質二次電池
JP2007317534A (ja) 非水電解質二次電池
JP6595007B2 (ja) Liイオン二次電池用負極材料およびその製造方法、Liイオン二次電池負極ならびにLiイオン二次電池
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
JP2014175278A (ja) 非水二次電池用正極材料、非水二次電池用正極および非水二次電池
JPH11204145A (ja) リチウム二次電池
US9716264B2 (en) Electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery including the electrode
JP2010080231A (ja) 正極活物質用前駆体、その製造方法、正極活物質材料、正極活物質材料の製造方法及び非水電解質二次電池
JP2018060751A (ja) リチウムイオン二次電池、及び、リチウムイオン二次電池の製造方法
JP5933252B2 (ja) 非水二次電池
JP2004284845A (ja) リチウムニッケル銅酸化物及びその製造方法並びに非水電解質二次電池
JP6360374B2 (ja) リチウム含有複合金属酸化物の製造方法
JP4158212B2 (ja) リチウム二次電池の製造方法およびリチウム二次電池用正極活物質の製造方法
WO2017126640A1 (ja) 非水電解質二次電池、非水電解質二次電池の製造方法、及び非水電解質二次電池を備えた蓄電装置
WO2023166895A1 (ja) 非水電解質二次電池および非水電解質二次電池用の負極合剤の製造方法
JP2020061245A (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極、およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562507

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018830

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018830

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017741217

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741217

Country of ref document: EP

Effective date: 20180822