WO2017122637A1 - 測距装置および測距方法 - Google Patents

測距装置および測距方法 Download PDF

Info

Publication number
WO2017122637A1
WO2017122637A1 PCT/JP2017/000488 JP2017000488W WO2017122637A1 WO 2017122637 A1 WO2017122637 A1 WO 2017122637A1 JP 2017000488 W JP2017000488 W JP 2017000488W WO 2017122637 A1 WO2017122637 A1 WO 2017122637A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal
optical device
frequency
distance
Prior art date
Application number
PCT/JP2017/000488
Other languages
English (en)
French (fr)
Inventor
正光 錦戸
大槻 豊
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2017122637A1 publication Critical patent/WO2017122637A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present disclosure relates to a distance measuring apparatus and a distance measuring method for measuring a distance by changing a light amount of an optical device.
  • Examples of the distance measuring device include an ultrasonic device, a millimeter wave device, and a laser light device.
  • the distance measurement method there are a TOF (Time Of Flight) method, an FMCW (Frequency Modulated Continuous Wave) method, and the like.
  • the TOF method is a method of measuring a distance by measuring a time until a transmitted signal is reflected by an object and returns.
  • the FMCW method is a method for measuring a distance by measuring a frequency difference between a transmitted FM modulated signal wave and an FM modulated signal wave reflected back from an object.
  • Patent Document 1 describes an automobile radar device using the FMCW method.
  • the distance measuring apparatus includes an optical device, a light receiving unit, and a calculation unit.
  • the optical device outputs light whose frequency of vibration of light quantity changes according to a signal whose frequency changes.
  • the light receiving unit detects reflected light that is reflected from the object by the output light of the optical device.
  • the calculation unit calculates the distance to the object from the frequency difference between the output light and the reflected light.
  • the optical device may be an LED.
  • the optical device may be a car headlight.
  • the distance measuring method uses an optical device that outputs light having a fixed wavelength.
  • a signal whose frequency changes periodically is generated.
  • the optical device outputs output light in which the frequency of vibration of the light amount changes according to the signal.
  • the reflected light reflected from the object is detected by the output light of the optical device.
  • the distance to the object is measured from the frequency difference between the output light and the reflected light.
  • the ultrasonic device has a shorter distance measurement range than the millimeter wave device and the laser light device.
  • the ultrasonic device has low ranging accuracy when the relative speed is high as compared with the millimeter wave device and the laser beam device.
  • Ultrasonic devices have poor directivity compared to millimeter wave devices and laser light devices, and are not suitable for distance measurement in a minute region.
  • Millimeter wave devices are expensive because they handle high frequencies compared to ultrasonic devices and optical devices. Millimeter-wave devices have a higher degree of circuit design difficulty than ultrasonic devices and optical devices. Millimeter-wave devices have laws and regulations in each country depending on the frequency, and must be handled strictly.
  • the FMCW system is a system that measures the distance by measuring the frequency difference between the transmitted wave and the reflected wave.
  • the FMCW method is capable of highly accurate distance measurement, and is used in various modules as a general distance measurement method. Since the FMCW method uses an FM modulated wave, a device that outputs a signal having a fixed frequency cannot be used.
  • the signal generator 110 generates a chirp signal whose frequency changes periodically as shown in FIG. 2A.
  • the chirp signal generated by the signal generator 110 is a digital signal. Similar to the FMCW system, this chirp signal is a signal whose frequency increases (up chirp) with time and then decreases with time (down chirp).
  • FIG. 2A illustrates a chirp signal only when up-chirping.
  • a DA converter (DAC; Digital-to-Analog-Converter) 112 converts a chirp signal, which is a digital signal, into an analog signal.
  • the DAC 112 outputs an analog signal to an amplifier (AMP) 114.
  • AMP amplifier
  • the light output from the LED 116 becomes an amplitude-modulated wave whose light emission amount changes periodically.
  • the object 10 reflects the output light emitted from the LED 116.
  • the output light reflected by the object 10 may be referred to as reflected light.
  • the distance measuring device 100 detects reflected light by the light receiving unit 120.
  • the light receiving unit 120 includes, for example, a photodiode.
  • the light receiving unit 120 emits a detection signal corresponding to the detected amount of reflected light.
  • the detection signal is, for example, a signal whose voltage value or current amount changes according to the amount of light emission.
  • the waveform of the detection signal changes in voltage value or current amount according to the change in the amount of reflected light to be detected.
  • the reflected light received by the light receiving unit 120 is delayed in time from the output light by the propagation time required for reciprocal propagation to the object 10.
  • the light receiving unit 120 outputs a detection signal having a waveform delayed from the output light by the propagation time to an AGC circuit (AGC; Automatic Gain Control) 122 at the next stage.
  • AGC Automatic Gain Control
  • the AGC 122 automatically adjusts the gain according to the signal and controls the output level.
  • the AGC 122 may adjust the output level to be constant.
  • the AGC 122 amplifies the detection signal in accordance with a gain corresponding to the amount of light attenuated until the output light of the LED 116 is reflected by the object 10 and detected by the light receiving unit 120.
  • An analog signal having a waveform delayed in time corresponding to the control signal shown in FIG. 2B is obtained.
  • the mixer (MX) 126 performs digital integration processing on the digital signal output from the ADC 124 and the chirp signal generated by the signal generator 110. These two signals are chirp signals that increase or decrease in frequency. The frequency difference between the two signals changes due to the time delay from the chirp signal.
  • the MX 126 outputs a signal mainly including a frequency component corresponding to a frequency difference between two digital signals.
  • the output signal from the MX 126 may be referred to as a synthesized wave.
  • the filter 128 removes a frequency component unnecessary for distance measurement, and outputs a signal to the FFT processing unit 132 at the next stage.
  • the filter 128 can mainly remove high frequency.
  • the FFT processing unit 132 performs Fourier transform on the output signal of the filter 128 and outputs the result to the calculation unit 134. In the Fourier-transformed waveform, a peak appears in the frequency component corresponding to the frequency difference.
  • the computing unit 134 detects this peak and converts it into a distance from the distance measuring device 100 to the object 10.
  • the computing unit 134 can calculate the distance to the object 10 from the frequency difference between the output light and the reflected light.
  • the distance measuring device 100 uses the LED 116 that outputs light of a fixed wavelength to periodically change the frequency in the oscillation of the light emission amount. By doing so, a frequency difference (beat component) corresponding to the distance to the object is generated between the output light of the LED 116 and the reflected light from which the output light is reflected by the object.
  • the distance measuring device 100 can perform highly accurate distance measurement equivalent to the FMCW method by converting this frequency difference into distance.
  • the distance measuring device 100 can also obtain the relative velocity with respect to the object 10 by calculating the Doppler shift from the frequency difference between the up-chirp and the down-chirp.
  • the distance measuring device 100 Since the distance measuring device 100 does not need to change the frequency of light, the distance measuring device 100 can perform distance measurement with an accuracy equivalent to the FMCW method using an LED. Since the LED is used, the cost of the distance measuring device can be reduced.
  • the present disclosure can be used as a distance measuring device and a distance measuring method for measuring a distance by changing a light amount of an optical device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本開示にかかる測距装置の一つの構成は、光デバイス(116)と、受光部(120)と、演算部(134)とを備える。光デバイス(116)は、出力光を出力する。出力光は、周波数が周期的に変化する信号に応じて発光量の振動における周波数が周期的に変化する。受光部(120)は、光デバイス(116)の出力光が対象物(10)に反射した反射光を検出する。演算部(134)は、出力光と反射光の周波数差から対象物(10)までの距離を算出する。

Description

測距装置および測距方法 関連出願のクロスリファレンス
 本出願は、2016年1月12日に日本国に特許出願された特願2016-003526の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本開示は、光デバイスの光量を変化させて距離を測定する測距装置および測距方法に関する。
 測距デバイスとしては、例えば超音波デバイス、ミリ波デバイス、レーザ光デバイス等がある。測距方式としては、TOF(Time Of Flight)方式、およびFMCW(Frequency Modulated Continuous Wave)方式などがある。TOF方式は、送信した信号が対象物に反射して戻ってくるまでの時間を計測して距離を測る方式である。FMCW方式は、送信したFM変調信号波と対象物に反射して戻ってきたFM変調信号波との周波数差を計測して距離を測る方式である。例えば特許文献1には、FMCW方式を用いた自動車レーダ装置が記載されている。
特開平11-271430号公報
 本開示にかかる一実施形態の測距装置は、光デバイスと、受光部と、演算部とを備える。光デバイスは、周波数が変化する信号に応じて光量の振動の周波数が変化する光を出力する。受光部は、前記光デバイスの出力光が対象物に反射した反射光を検出する。演算部は、前記出力光と反射光の周波数差から前記対象物までの距離を算出する。光デバイスは、LEDであってよい。光デバイスは自動車のヘッドライトであってよい。
 本開示にかかる一実施形態の測距方法は、固定波長の光を出力する光デバイスを用いる。測距方法では、周波数が周期的に変化する信号を生成する。前記光デバイスは、前記信号に応じて光量の振動の周波数が変化する出力光を出力する。前記光デバイスの前記出力光が対象物に反射した反射光を検出する。前記出力光と反射光の周波数差から前記対象物までの距離を測定する。
本実施形態にかかる測距装置および測距方法を説明する図である。 図1に示す信号生成部が生成するチャープ信号を説明する図である。 図1に示すAMPが出力する制御信号を説明する図である。 対象物が近い場合の、積算処理により得られる合成波を説明する図である。 対象物が近い場合の、図1に示すFFT処理部によるフーリエ変換後の波形を説明する図である。 図3Bに示す波形のゼロ付近を拡大した波形を示す図である。 対象物が遠い場合の、積算処理により得られる合成波を説明する図である。 対象物が近い場合の、図1に示すFFT処理部によるフーリエ変換後の波形を説明する図である。 図4Bに示す波形のゼロ付近を拡大した波形を示す図である。 図1に示す信号生成部が生成するチャープ信号を説明する図である。 対象物までの距離と周波数差との関係を説明する図である。
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。
 本発明者は、上記従来の技術においては、測距デバイスの観点からは次のような問題があることに思い至った。
 超音波デバイスは、ミリ波デバイス及びレーザ光デバイスと比較して測距可能距離が短い。超音波デバイスは、ミリ波デバイス及びレーザ光デバイスと比較して相対速度が速い場合の測距精度が低い。超音波デバイスは、ミリ波デバイス及びレーザ光デバイスと比較して指向性が弱く微小領域の測距に不適である。
 ミリ波デバイスは、超音波デバイス及び光デバイスと比較して高周波を扱うため高価である。ミリ波デバイスは、超音波デバイス及び光デバイスと比較して回路的な設計の難易度も高い。ミリ波デバイスは、周波数によって各国の法規制があり、厳格な取扱いが必要である。
 レーザ光デバイスは、半導体レーザー(レーザーダイオード:LD)を含む。LDは、制御電流の量によって波長(周波数)が可変である。LDは、測距方式としてFMCW方式を利用可能である。LDは、優れたデバイスであるが、一般に高価なデバイスである。 
 本発明者は、測距方式の観点からは従来技術には次のような問題があることに思い至った。
 TOF(Time Of Flight)方式は、送信波と反射波との時間差を計測して測距する。TOF方式では、測距精度に応じた高いサンプリングレートのAD変換器が必要となる。例えば、TOF方式によって10cmの精度を得るために、1.6GHz以上のサンプリングが可能なAD変換器が必要である。一般的に入手可能なAD変換器の上限のサンプリングレートは数百MHzである。1GHzを超えるサンプリングレートのAD変換器は特殊用途用のみに一部生産されている。TOF方式の測距デバイスは、AD変換器のサンプリングレートによって測距精度が制限される。
 FMCW方式は、送信波と反射波との周波数差を計測して測距する方式である。FMCW方式は、精度の高い測距が可能であり、一般的な測距方式として様々なモジュール等にて利用されている。FMCW方式は、FM変調波を用いるため、固定周波数の信号を出力するデバイスは利用できない。
 LED(Light Emitting Diode)は、ミリ波デバイス及びLDに比べて安価である。LEDは、発した光の到達可能距離が超音波デバイスに比べて長い。LEDは、周波数に関する各国の法規制がない。LEDは、用いられている素子の特性によって発する光の周波数が固定である。固定周波数で出力するデバイスは、FMCW方式を利用することはできない。
 図1は複数の実施形態のうちの一例にかかる測距装置および測距方法を説明する図である。図1に示す波形のグラフはイメージである。波形のグラフは、図2~4に詳述する。図2はチャープ信号を説明する図である。
 測距装置100の送信系について説明する。信号生成部110は、図2Aに示すように周波数が周期的に変化するチャープ信号を生成する。信号生成部110が生成するチャープ信号は、デジタル信号である。このチャープ信号は、FMCW方式と同様に、時間とともに周波数が増加(アップチャープ)し、次に時間とともに周波数が減少(ダウンチャープ)する信号である。図2Aでは、アップチャープのときのみのチャープ信号を例示している。DA変換器(DAC;Digital to Analog Converter)112は、デジタル信号であるチャープ信号をアナログ信号に変換する。DAC112は、アナログ信号を増幅器(AMP;Amplifier)114に出力する。AMP114は、DAC112から出力されたアナログ信号を増幅する。増幅されたアナログ信号は、図2Bに示すような制御信号となる。制御信号は、電流の振動の周波数が周期的に変化する信号である。図2Bでは、縦軸が電流を示し、横軸が時間を示している。AMP114は、この制御信号を、光デバイスの例であるLED116に供給する。
 本開示の光デバイスは、出力する光の周波数が固定である。以下では、光デバイスが出力する光を出力光という場合がある。LED116は、光デバイスの一例である。LED116は、固定波長の光を出力する。言い換えると、LED116は、特定の周波数の光を出力する。LED116は、電流量に応じて発光量が変化する。LED116は、制御信号における電流量の変化に応じて発光量が変化する。LED116が発する光は、発光量の振動における周波数が周期的に変化する。出力光の波形は、図2Bの縦軸を光量に置き換えたものに相当する。LED116が出力する光は、発光量が周期的に変化する振幅変調の波となる。対象物10は、LED116から照射された出力光を反射する。以下では、対象物10が反射した出力光を反射光という場合がある。
 測距装置100の受信系について説明する。測距装置100は、反射光を受光部120によって検出する。受光部120は、例えばフォトダイオードを含む。受光部120は、検出した反射光の光量に応じた検出信号を発する。検出信号は、例えば、発光量の光量に応じて、電圧値または電流量が変化する信号である。検出信号の波形は、検出する反射光の光量変化に応じて電圧値または電流量が変化する。受光部120が受光する反射光は、対象物10までの往復の伝搬に要する伝搬時間分だけ、出力光から時間遅延している。受光部120は、出力光から伝搬時間分だけ時間遅延した波形の検出信号を次段のAGC回路(AGC;Automatic Gain Control)122に出力する。
 AGC122は、信号に応じて利得を自動調整し、出力レベルを制御する。AGC122は、出力レベルが一定になるように調整してよい。AGC122は、LED116の出力光が対象物10に反射して受光部120に検出されるまでに減衰した光量分に相当する利得分に応じて検出信号を増幅する。図2Bに示した制御信号に対応する時間遅延した波形のアナログ信号が得られる。
 AD変換器(ADC;Analog to Digital Converter)124は、AGC122により増幅された信号をデジタル信号に変換する。ADC124は、図2Aに示したチャープ信号に対応する時間遅延した波形のデジタル信号を出力する。
 混合器(MX;Mixer)126は、ADC124が出力するデジタル信号と、信号生成部110にて生成されたチャープ信号とをデジタル積算処理する。これら2つの信号は、周波数が増加または減少するチャープ信号である。2つの信号は、チャープ信号からの時間遅延によって周波数差が変化する。MX126は、2つのデジタル信号の周波数差に相当する周波数成分が主に含まれる信号を出力する。以下では、MX126からの出力信号を合成波と呼ぶ場合がある。
 フィルタ128は、測距には不要な周波数成分を除去し、次段のFFT処理部132に信号を出力する。フィルタ128は、主に高周波を除去しうる。FFT処理部132は、フィルタ128の出力信号をフーリエ変換し、演算部134に出力する。フーリエ変換された波形には、周波数差に相当する周波数成分にピークが表われる。演算部134は、このピークを検出し、測距装置100から対象物10までの距離に換算する。演算部134は、出力光と反射光の周波数差から対象物10までの距離を算出しうる。
 図3は対象物が近い場合(22.5m)を説明する図である。図3Aは積算処理により得られる合成波の例である。図3BはFFT処理部132によるフーリエ変換後の波形である。図3Cは図3Bに示す波形のゼロ付近を拡大した波形である。図4は対象物が遠い場合(90m)を説明する図である。図4Aは積算処理により得られる合成波の例である。図4BはFFT処理部132によるフーリエ変換後の波形である。図4Cは図4Bに示す波形のゼロ付近を拡大した波形である。
 合成波には、出力光と反射光の時間遅延に応じた周波数差がうなりとなる。周波数差に相当するうなり成分は、合成波において低周波成分となって含まれる。図3Aと図4Aを見比べるとわかるように、対象物が相対的に近い場合はうなり成分の周波数が相対的に低くなり、対象物が相対的に遠い場合はうなり成分の周波数が相対的に高くなる。図3B,3Cの例では、0.015MHz付近に信号ピークが検出されていることがわかる。図4B,4Cの例では、0.06MHz付近に信号ピークが検出される。
 対象物までの距離と周波数差との関係を説明する。図5Aに示すように、信号生成部110が生成するチャープ信号の種別は線形チャープ信号である。周波数変化は10MHz/100μsecであるとする。この場合、対象物までの距離と周波数差との関係は図5Bに示すように、距離が離れるほど比例して周波数差が高くなる関係にある。すなわち、演算部134において検出される周波数差を対象物10までの距離に換算することができる。
 以上説明したように、測距装置100は、固定波長の光を出力するLED116を用いて、発光量の振動における周波数を周期的に変化させる。こうすることで、LED116の出力光と、その出力光が対象物で反射した反射光には、対象物までの距離に応じた周波数差(うなり成分)が生じる。測距装置100は、この周波数差を距離に換算することにより、FMCW方式と同等の高精度な測距を行うことができる。測距装置100は、アップチャープとダウンチャープとの周波数差からドップラーシフトを算出することにより、対象物10との相対速度を求めることもできる。
 測距装置100は、光の周波数を変化させる必要がないことから、LEDを用いてFMCW方式に相当する精度で測距ができる。LEDを用いることから測距装置のコストを削減できるという特別な利点を有している。
 上記の測距装置を車載する場合には、自動車の灯火類に用いられる光デバイスを測距装置に利用してもよい。自動車の灯火類は、前照灯、後退灯、車幅灯、テールランプ、後部番号灯、前部フォグランプ、リアフォグランプ、リアアンダーランプ、デイタイムランニングランプ、サイドマーカ、ターニングランプを含む。自動車の灯火類には省電力、高耐久のLEDが使用される場合も増えてきている。このような灯火類のLEDを用いて上記の制御を行うことにより、測距用のデバイスを追加することなく測距を行うことができる。光デバイスとしては、複数種類の灯火類のうち、1つまたは複数を利用しうる。1つの灯火類に複数のLED球が使用される場合には、一部の球を上記のように制御することでよい。なお、光量の振動を高速にすると、人間は、灯火類の光量の変化を知覚しにくくなる。
 以上、添付図面を参照しながら実施形態について説明したが、本開示はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 本開示は、光デバイスの光量を変化させて距離を測定する測距装置および測距方法として利用可能である。
10…対象物、100…測距装置、110…信号生成部、112…DAC、114…AMP、116…LED、120…受光部、122…AGC、124…ADC、126・・・MX、128…フィルタ、132…FFT処理部、134…演算部

Claims (6)

  1.  周波数が変化する信号に応じて光量の振動の周波数が変化する光を出力する光デバイスと、
     前記光デバイスの出力光が対象物に反射した反射光を検出する受光部と、
     前記出力光と反射光の周波数差から前記対象物までの距離を算出する演算部とを備える測距装置。
  2.  前記光デバイスは、LEDによって構成される請求項1に記載の測距装置。
  3.  周波数が周期的に変化する信号を生成する信号生成部を備え、
     前記光デバイスは、前記信号生成部の信号に応じて光量の振動の周波数が周期的に変化する光を出力する請求項1に記載の測距装置。
  4.  前記信号の種別は線形チャープ信号である請求項1に記載の測距装置。
  5.  前記光デバイスは自動車の灯火類のうちの少なくとも1つである請求項1に記載の測距装置。
  6.  固定波長の光を出力する光デバイスを用いる測距方法において、
     周波数が周期的に変化する信号を生成するステップと、
     前記光デバイスは、前記信号に応じて光量の振動の周波数が変化する光を出力するステップと、
     前記光デバイスの出力光が対象物に反射した反射光を検出するステップと、
     前記出力光と反射光の周波数差から前記対象物までの距離を測定するステップとを有する測距方法。
PCT/JP2017/000488 2016-01-12 2017-01-10 測距装置および測距方法 WO2017122637A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003526A JP2019039671A (ja) 2016-01-12 2016-01-12 測距装置および測距方法
JP2016-003526 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122637A1 true WO2017122637A1 (ja) 2017-07-20

Family

ID=59311340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000488 WO2017122637A1 (ja) 2016-01-12 2017-01-10 測距装置および測距方法

Country Status (2)

Country Link
JP (1) JP2019039671A (ja)
WO (1) WO2017122637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116549A1 (ja) * 2017-12-15 2019-06-20 日本電気株式会社 測距装置及び制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608514A (en) * 1995-04-19 1997-03-04 The United States Of America As Represented By The Secretary Of The Army High range resolution ladar
JPH09152482A (ja) * 1995-12-01 1997-06-10 Olympus Optical Co Ltd 距離測定装置
JP2001183458A (ja) * 1999-12-28 2001-07-06 Tadanori Miyauchi 距離センサ
WO2004061476A1 (ja) * 2002-12-27 2004-07-22 Mitsubishi Denki Kabushiki Kaisha レーザーレーダ装置
JP2005010130A (ja) * 2003-06-18 2005-01-13 Kumataka Engineering:Kk 距離等測定装置
JP2006021720A (ja) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
JP2006172210A (ja) * 2004-12-16 2006-06-29 Matsushita Electric Works Ltd 車両用距離画像センサおよびそれを用いる障害物監視装置
JP2015129646A (ja) * 2014-01-06 2015-07-16 株式会社豊田中央研究所 レーダ装置および距離速度測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608514A (en) * 1995-04-19 1997-03-04 The United States Of America As Represented By The Secretary Of The Army High range resolution ladar
JPH09152482A (ja) * 1995-12-01 1997-06-10 Olympus Optical Co Ltd 距離測定装置
JP2001183458A (ja) * 1999-12-28 2001-07-06 Tadanori Miyauchi 距離センサ
WO2004061476A1 (ja) * 2002-12-27 2004-07-22 Mitsubishi Denki Kabushiki Kaisha レーザーレーダ装置
JP2005010130A (ja) * 2003-06-18 2005-01-13 Kumataka Engineering:Kk 距離等測定装置
JP2006021720A (ja) * 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
JP2006172210A (ja) * 2004-12-16 2006-06-29 Matsushita Electric Works Ltd 車両用距離画像センサおよびそれを用いる障害物監視装置
JP2015129646A (ja) * 2014-01-06 2015-07-16 株式会社豊田中央研究所 レーダ装置および距離速度測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116549A1 (ja) * 2017-12-15 2019-06-20 日本電気株式会社 測距装置及び制御方法
JPWO2019116549A1 (ja) * 2017-12-15 2020-12-03 日本電気株式会社 測距装置及び制御方法
JP7010304B2 (ja) 2017-12-15 2022-01-26 日本電気株式会社 測距装置及び制御方法
US11719817B2 (en) 2017-12-15 2023-08-08 Nec Corporation Distance-measuring apparatus and control method

Also Published As

Publication number Publication date
JP2019039671A (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
CN110346777B (zh) 相干激光雷达***返回路径中的光放大器
KR101909327B1 (ko) 송수광 렌즈를 공유하는 광학계 구조를 가지는 스캐닝 라이다
US7158217B2 (en) Vehicle radar device
JP4984713B2 (ja) レーダ装置
KR101866084B1 (ko) 매트릭스 구조를 갖는 라이다 시스템의 발광 제어장치
US7136013B2 (en) Radio-wave radar system and adaptive cruise control system
CN109031338B (zh) 用于汽车的调频连续波激光雷达及其测距方法
US11112502B2 (en) Laser radar system
US9869767B2 (en) Laser radar device
CN113661410A (zh) 被配置来以不同区间分辨率计算区间的激光雷达***
JPH11287854A (ja) レ―ダシステムの動作方法
US11971508B2 (en) Varying waveforms across frames in frequency-modulated continuous-wave (FMCW) lidar systems
US11333760B2 (en) Frequency modulation for interference free optical time of flight system
JP2017227468A (ja) レーダ装置および上下軸ずれ検知方法
Hwang et al. Study on the frequency-modulated continuous-wave LiDAR mutual interference
JP4423951B2 (ja) 測距機能付ledランプ装置
WO2017122637A1 (ja) 測距装置および測距方法
JP2023537900A (ja) 低いシグナル処理負荷において高い距離解像度を有するレーダ方法とレーダシステム
CN116679310B (zh) Fmcw激光测量装置
CN101498786B (zh) Iccd增益调频连续波调制无扫描距离成像器
CN116660917A (zh) 激光雷达
JP6923799B2 (ja) レーダー装置
CN114994682A (zh) 从低频调频连续波雷达生成高频调频连续波雷达
JP2022158571A (ja) 測距装置
JP5767150B2 (ja) ターゲットサイズ測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP