WO2017121095A1 - 一种实现测量参考符号传输的方法及装置 - Google Patents

一种实现测量参考符号传输的方法及装置 Download PDF

Info

Publication number
WO2017121095A1
WO2017121095A1 PCT/CN2016/092420 CN2016092420W WO2017121095A1 WO 2017121095 A1 WO2017121095 A1 WO 2017121095A1 CN 2016092420 W CN2016092420 W CN 2016092420W WO 2017121095 A1 WO2017121095 A1 WO 2017121095A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement reference
symbol
symbols
data
ofdm
Prior art date
Application number
PCT/CN2016/092420
Other languages
English (en)
French (fr)
Inventor
张淑娟
毕峰
刘文豪
苗婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017121095A1 publication Critical patent/WO2017121095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0067Allocation algorithms which involve graph matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to mobile communication technologies, and in particular, to a method and apparatus for transmitting measurement reference symbols based on a high frequency hybrid beam communication method.
  • High-frequency carrier communication has a large available bandwidth and can provide efficient high-speed data communication.
  • a big technical challenge faced by high-frequency carrier communication is that relatively low-frequency signals, the fading of high-frequency signals in space is very large, although the high-frequency signals in the outdoor communication have a spatial fading loss problem, but because of With its wavelength reduction, more antennas can usually be used so that communication can be based on the beam to compensate for fading losses in space.
  • the radio frequency processing is a time domain signal, and the radio frequency beam acts on all subbands and is immutable within an Orthogonal Frequency Division Multiplexing (OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the general radio frequency link is limited, that is, the direction of the radio frequency link on one OFDM symbol is relatively limited, and the available bandwidth of the high frequency is large, and the optimal data transmission beam on each sub-band is different, so as to satisfy different sub-bands.
  • Optimal data traffic transmission beams, limited RF beams are far from enough.
  • the limited RF link also needs to extract a part of the RF link for measurement signal transmission, especially when the data beam and measurement The problem is more serious when there is no intersection between the beams.
  • the data beam is based on the user's business needs, it is relatively random, if Sending measurement signals according to the existing LTE system will greatly increase the measurement delay.
  • the data beam is beam 1, beam 2, beam 3, and beam 4 in three subframes (the optimal beam of the user who needs the service is concentrated in beam 1, beam 2, beam 3, and beam 4).
  • the measurement beam needs to be polled and transmitted in beam 1, beam 2, beam 3, beam 4, beam 5, beam 6, beam 7 and beam 8. At this time, the measurement beam is affected by the data beam, thereby affecting the measurement period. Alternatively, the order in which the data beams are transmitted is not the polling mode, and the measurement period is also affected at this time. At the same time, in order to reduce the beam training load, the general data beam is constant on one physical resource block (PRB) resource, but the beam measurement is expected to complete measurement of multiple beams in one subframe. The data beam and the measurement beam necessarily create a direction conflict. If multiple streams are sent to the user, multiple radio links may be required on one sub-band, and the user needs to be beam-trained for each radio link.
  • PRB physical resource block
  • the measurement beam and the data beam compete for the limited radio link. Use is even more prominent. Moreover, since it is desirable to complete the transmission of all measurement beams that need to be transmitted within one beam measurement period in as few transmission units as possible, the direction of the data beams in one transmission unit is generally fixed, which undoubtedly makes the measurement beam and the data beam need to compete. Use a limited RF link.
  • the transmission and reception of reference symbols according to the transmission pattern of the existing measurement pilot (CSI-RS) in LTE may occur.
  • Embodiments of the present invention provide a method and apparatus for implementing measurement reference symbol transmission, which can at least reduce collision problems between measurement beam and data beam transmission and reception.
  • Embodiments of the present invention provide a method for implementing measurement reference symbol transmission, including:
  • the transmitting end determines the multiplexing pattern category of the measurement reference symbol and the data symbol in the transmission unit that needs to transmit the measurement reference symbol;
  • the transmitting end transmits the measurement reference symbols and the data symbols according to the determined multiplexing pattern category.
  • the transmission unit that needs to send the measurement reference symbol is:
  • the transmission unit in which the aperiodic beam measurement reference symbol of the dynamic signaling is located.
  • the determining the multiplexing pattern category of the measurement reference symbol and the data symbol comprises:
  • the transmitting end and the receiving end pre-arranging a multiplexing pattern category
  • the transmitting end invisibly notifying a set of multiplexing pattern categories according to relevant time domain parameters of the transmission unit;
  • the transmitting end notifies the receiving end to multiplex the pattern category by signaling.
  • the multiplexing pattern categories of the measurement reference symbols and the data symbols include:
  • the first type of multiplexing all measurement reference symbols and data symbols are time-division multiplexed;
  • the second type of multiplexing all measurement reference symbols and data symbols are frequency division multiplexed;
  • all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy resource elements RE on all orthogonal frequency division multiplexed OFDMs having measurement reference symbols, And between different OFDMs that measure reference symbols, or between OFDM with measured reference symbols and OFDM without measured reference symbols, different demodulation reference signal ports can only be in the frequency domain if the code division multiplexing can only be in the time domain code Division multiplexing
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the first signaling to indicate the measurement reference symbol port whose transmission power is 0 or the transmission power corresponding to the measurement reference symbol port.
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the second signaling indicates that the data symbol transmission power is 0 OFDM symbol index;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measure the OFDM on the reference signal.
  • the measurement reference signal corresponding to one measurement reference port is only one frequency division multiplexed OFDM symbol. Send on, or only on a time-division multiplexed measurement reference symbol.
  • the frequency division multiplexing is: measuring frequency division multiplexing of reference symbols and data symbols on OFDM with measurement reference symbols; the transmission unit memory There is no OFDM symbol that measures the reference symbol only data symbols.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is a first type multiplexing mode and/or a sixth type multiplexing mode
  • the sum of the durations of one or more of the time division multiplexed measurement reference symbols is equal to the duration of one data symbol, or the sum of the duration of one or more of the time division multiplexed measurement reference symbols and the duration of one short data symbol is equal to The length of a long data symbol.
  • the transmission unit pattern further satisfies: carrying a beam measurement reference symbol in a frequency division multiplexing manner on a short data symbol in the transmission unit.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is the sixth type multiplexing mode
  • the number of time division multiplexed OFDM and/or frequency division multiplexed OFDM is fixed or different; the number of measurement reference symbols and the duration of short data symbols in one time division multiplexed OFDM are fixed or different;
  • the time division multiplexed OFDM includes one or more measurement reference symbols in a data OFDM duration, or one or more measurement reference symbols and one short data symbol in a data OFDM duration;
  • the number of time division multiplexed measurement reference symbols and/or the number of frequency division multiplexed OFDM symbols are fixed or different.
  • the notification is performed by the third indication information.
  • the third indication information is notified by one or more of the following manners:
  • Notifying the time division multiplexed OFDM and the frequency division by downlink control information DCI command notification, and/or by higher layer signaling, and/or by notifying the beam ID of the reference symbol and the beam ID of the data symbol The number of multiplexed OFDM, and the number of measured reference symbols and the duration of short data symbols within a time division multiplexed OFDM.
  • the method when the third indication information is notified by notifying the beam ID of the measurement reference symbol and the beam ID of the data symbol, the method includes:
  • the receiving end determines all measurement reference symbols on the OFDM.
  • the data symbols are time division multiplexed, and the number of measurement reference symbols in the time division multiplexed OFDM is the number of corresponding measurement reference symbols on the OFDM, thereby obtaining the duration of the short data symbols;
  • the measurement reference symbol and the data symbol are frequency division multiplexed.
  • the set of beam IDs is notified by signaling, or is pre-agreed by the transmitting end and the receiving end; there is no intersection between different sets of beam IDs;
  • the beam ID of the measurement reference symbol includes a beam ID of all beam measurement reference ports carried on the measurement reference symbol.
  • the beam ID of the data symbol is notified by one or more of the following manners:
  • the transmitting measurement reference symbols and data symbols include:
  • the measurement reference symbol and the data symbol time domain do not overlap; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to the subcarrier spacing of the data symbol.
  • the duration of one measurement reference symbol is less than or equal to one data symbol duration, and the reference symbol is measured.
  • the carrier spacing is greater than or equal to the subcarrier spacing of the data symbols:
  • the subcarrier spacing of the measurement reference symbol is a parameter N/L times the data symbol subcarrier spacing, where L and N are both positive integers, and N represents an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit. 0 ⁇ L ⁇ N.
  • X represents the number of data subcarriers in the bandwidth corresponding to the minimum CSI feedback unit, and the CSI feedback is obtained based on the measurement reference signal.
  • the parameter I is a positive integer.
  • the parameter where m1, m2 ⁇ ⁇ 0, 1 ⁇ , and m3 are integers.
  • the subcarrier spacing of the measurement reference symbol is less than or equal to a coherence bandwidth of the channel.
  • one or more measurement reference signals corresponding to the measurement reference symbol port are sent on one beam measurement reference OFDM symbol.
  • the ports are sent by frequency division code division multiplexing or frequency division.
  • one of the beam measurement symbol ports corresponds to a different or the same hybrid beam on different resource cells of one beam measurement reference OFDM symbol;
  • the different hybrid beams are different baseband weighted hybrid beams for one fixed beam combination corresponding to the N antenna groups; the beam combination includes the beam direction of each antenna group; the resource lattice indicates that the duration is equal to the beam measurement reference OFDM symbol S-CSI-
  • the duration of OFDM occupancy, and the frequency domain width is the time-frequency resource frame formed by the sub-carrier spacing of S-CSI-OFDM.
  • the measurement reference symbol when the duration of one of the measurement reference symbols is less than one data symbol duration, the measurement reference symbol is a single carrier symbol, and when the data symbol is an OFDM symbol, it satisfies one or more of the following features.
  • the measurement reference symbol when the duration of one of the measurement reference symbols is less than one data symbol duration, the measurement reference symbol is a single carrier symbol, and when the data symbol is an OFDM symbol, it satisfies one or more of the following features.
  • the measurement reference signal sequence on port j is Wherein SL represents the length of the time domain signal sequence of the port j transmitted by the one single carrier measurement reference symbol;
  • the time interval between two signals in the time domain signal sequence is T gap , then,
  • T Data T CP, Data + T 1, Data , where T CP, Data represents the corresponding CP length on a data OFDM symbol; T 1, Data represents the length of time occupied by valid data of a data symbol, when a transmission unit When there are multiple data symbols in the duration, T 1, Data refers to the longest data symbol duration;
  • L and N are both positive integers, and N is an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit, and 0 ⁇ L ⁇ N.
  • the parameter I is a positive integer.
  • the parameter where m1, m2 ⁇ ⁇ 0, 1 ⁇ , and m3 are integers.
  • the duration of one of the single carrier measurement reference symbols is less than or equal to the coherence time of the channel.
  • one single carrier measurement reference symbol carries one or more beam measurement ports; one beam measurement port corresponds to one hybrid beam, and the hybrid beam remains unchanged in a system bandwidth occupied by the single carrier symbol.
  • the multiple beam measurement ports correspond to different hybrid beams; different hybrid beams corresponding to different beam measurement ports are different baseband weighted hybrid beams of one fixed beam combination corresponding to N antenna groups; Contains the beam for each antenna group.
  • the measurement reference signal sequences corresponding to the multiple beam measurement ports are orthogonal to each other.
  • the measurement reference signal sent on one of the single carrier measurement reference symbols satisfies the following characteristics:
  • the measurement reference signal sequence corresponding to the beam measurement port j satisfies:
  • the measurement reference signal sequence corresponding to different port j1 and port j2 satisfies:
  • P measurement reference symbols are included, and P measurement reference symbols are in one of the transmission units;
  • the P value is indicated by one or more of the following:
  • all P measurement reference symbols are located in the last bit of one transmission unit in one transmission unit, and there is no data symbol between P measurement reference symbols, and there is no data symbol after P measurement reference symbols in one transmission unit.
  • the method includes:
  • Btotal is a positive integer
  • Btotal represents the total number of beams that need to be sent to complete a beam scanning measurement on a frequency domain resource
  • Q represents a beam that can be simultaneously transmitted on one measurement reference symbol on the one frequency domain resource. Number.
  • the time domain relationship pattern of the P measurement reference symbols and the data symbols in one beam measurement period satisfies one of the following characteristics:
  • the pattern of the subframe time domain structure formed by the measurement reference symbol and the data symbol is fixed; or, there are multiple sets of patterns, and one or more sets are selected by the indication information.
  • the different hybrid beams are different baseband weighted hybrid beams of one fixed beam combination corresponding to the N antenna groups;
  • the beam direction of each antenna group in the beam combination is the beam direction of the antenna group, which is specifically expressed as: among them, Indicates a pattern corresponding to the jth mixed beam; Indicates a beam pattern corresponding to the i-th antenna group, the direction of which is the direction of the beam group; the beam combination of the antenna group represents a beam pattern combination of the N antenna groups, which is a combination of the following:
  • the baseband weighting adjustment scalar corresponding to the i-th antenna group corresponding to the j-th hybrid beam, and the baseband weighting vector corresponding to the j-th hybrid beam is:
  • the AFRF ( ⁇ ) corresponding to different hybrid beams of different baseband weights of corresponding one fixed beam combination of the N antenna groups is the same, different.
  • the determined multiplexing pattern category displays the multiplexing category as the third type multiplexing mode
  • demodulating the reference signal in the data transmission unit that does not measure the reference symbol and the transmission unit that has the measurement reference symbol are different.
  • all measurement reference symbols in one transmission unit have no data between the beam measurement reference symbols in the last bit of the transmission unit, and there is no data symbol after the measurement reference symbols in the transmission unit.
  • the measurement reference signal corresponding to one or more measurement reference ports is transmitted on one OFDM symbol by frequency division multiplexing.
  • An embodiment of the present invention further provides a method for implementing measurement reference symbol transmission, including:
  • the receiving end determines the multiplexing pattern category of the measurement reference symbol and the data symbol in the transmission unit that needs to transmit the measurement reference symbol;
  • the receiving end receives the measurement reference symbols and the data symbols according to the determined multiplexing pattern category.
  • the transmission unit that needs to send the measurement reference symbol is:
  • the transmission unit in which the aperiodic beam measurement reference symbol of the dynamic signaling is located.
  • the determining the multiplexing pattern category of the measurement reference symbol and the data symbol comprises:
  • the receiving end and the transmitting end pre-agreed a multiplexing pattern category;
  • the receiving end invisibly notifying a set of multiplexing pattern categories according to relevant time domain parameters of the transmission unit;
  • the receiving end receives the signaling from the transmitting end to notify the learned multiplexing pattern category.
  • the multiplexing pattern categories of the measurement reference symbols and the data symbols include:
  • the first type of multiplexing mode all measurement reference symbols and data symbols are time division multiplexed; the receiving end performs time domain interpolation on channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • all measurement reference symbols and data symbols are frequency division multiplexed; the receiving end time-domain interpolates channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • a third type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy a resource element RE on all OFDMs having measurement reference symbols, and have measurement reference symbols Between different OFDMs, or between OFDM with measured reference symbols and OFDM without measured reference symbols, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain;
  • the same demodulation reference signal port at the receiving end may not interpolate the channel estimation value between different OFDMs with measurement reference symbols, and the channel estimation between the same demodulation reference signal port between OFDM with measurement reference symbols and OFDM without measurement reference symbols The value may not be interpolated in the time domain, and the same demodulation reference signal port may perform time domain interpolation on the channel estimation value between OFDM without the reference symbol;
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the first signaling to indicate the measurement reference symbol port whose transmission power is 0 or the transmission power corresponding to the measurement reference symbol port.
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the second signaling indicates that the data symbol transmission power is 0 OFDM symbol index; the receiving end pair is the same demodulation reference signal port Time domain interpolation of channel estimation values obtained on different OFDM symbols;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measuring reference signal on OFDM; measuring reference symbol measurement reference The number receiving end can interpolate the channel estimation values obtained on different OFDM symbols by the same demodulation reference signal port.
  • the measurement reference signal corresponding to one measurement reference port is only one frequency division multiplexed OFDM symbol. Send on, or only on a time-division multiplexed measurement reference symbol.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is a first type multiplexing mode and/or a sixth type multiplexing mode
  • the sum of the durations of one or more of the time division multiplexed measurement reference symbols is equal to the duration of one data symbol; or the sum of the duration of one or more of the time division multiplexed measurement reference symbols and the duration of one short data symbol is equal to The length of a long data symbol.
  • the transmission unit pattern further satisfies: carrying a beam measurement reference symbol in a frequency division multiplexing manner on a long data symbol in the transmission unit.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is the sixth type multiplexing mode
  • the number of time division multiplexed OFDM and/or frequency division multiplexed OFDM is fixed or different; the number of measurement reference symbols and the duration of short data symbols in one time division multiplexed OFDM are fixed or different ;
  • the time division multiplexed OFDM includes one or more measurement reference symbols in a data OFDM duration, or one or more measurement reference symbols and one short data symbol in a data OFDM duration;
  • the number of time division multiplexed measurement reference symbols and/or the number of frequency division multiplexed OFDM symbols are fixed or different.
  • the notification is performed by the third indication information.
  • the third indication information is notified by one or more of the following manners:
  • Notifying the time division multiplexed OFDM and the frequency by downlink control information DCI command notification, and/or by higher layer signaling, and/or by notifying the beam ID of the reference symbol and the beam ID of the data symbol The number of multiplexed OFDMs, and the number of measured reference symbols and the duration of short data symbols in a time division multiplexed OFDM.
  • the method when the third indication information is notified by notifying the beam ID of the measurement reference symbol and the beam ID of the data symbol, the method includes:
  • the transmitting end determines all the OFDM Measuring reference symbols and data symbols are time division multiplexed, and the number of measurement reference symbols in the time division multiplexed OFDM is the number of corresponding measurement reference symbols on the OFDM to obtain the duration of the short data symbols;
  • the measurement reference symbol and the data symbol are frequency division multiplexed.
  • the set of beam IDs is notified by signaling, or is pre-agreed by the transmitting end and the receiving end; there is no intersection between different sets of beam IDs;
  • the beam ID of the measurement reference symbol includes a beam ID of all beam measurement reference ports carried on the measurement reference symbol.
  • the beam ID of the data symbol is notified by one or more of the following manners:
  • the receiving measurement reference symbols and data symbols include:
  • the measurement reference symbol and the data symbol time domain do not overlap; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to the subcarrier spacing of the data symbol.
  • the duration of one measurement reference symbol is less than or equal to one data symbol duration
  • the subcarrier spacing of the measurement reference symbol is greater than or equal to the subcarrier spacing of the data symbol.
  • the subcarrier spacing of the measurement reference symbol is a parameter N/L times the data symbol subcarrier spacing, where L and N are both positive integers, and N represents an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit. 0 ⁇ L ⁇ N.
  • X represents the number of data subcarriers in the bandwidth corresponding to the minimum CSI feedback unit, and the CSI feedback is obtained based on the measurement reference signal.
  • the parameter I is a positive integer.
  • the parameter where m1, m2 ⁇ ⁇ 0, 1 ⁇ , and m3 are integers.
  • the subcarrier spacing of the measurement reference symbol is less than or equal to a coherence bandwidth of the channel.
  • one or more measurement reference signals corresponding to the measurement reference symbol port are sent on one beam measurement reference OFDM symbol.
  • the ports are sent by frequency division code division multiplexing or frequency division.
  • one of the beam measurement symbol ports corresponds to a different or the same hybrid beam on different resource cells of one beam measurement reference OFDM symbol;
  • the different hybrid beams are different baseband-weighted hybrid beams of one fixed beam combination corresponding to the N antenna groups; the beam combination includes the beam direction of each antenna group; the resource cell indicates that the duration is equal to the duration of the S-CSI-OFDM occupation.
  • Subcarriers with frequency domain width S-CSI-OFDM The time-frequency resource grid formed by the interval.
  • the measurement reference symbol is a single carrier symbol
  • the data symbol is an OFDM symbol
  • the measurement reference signal sequence on port j is Wherein SL represents the length of the time domain signal sequence of the port j transmitted by the one single carrier measurement reference symbol;
  • the time interval between two signals in the time domain signal sequence is T gap , then,
  • T Data T CP, Data + T 1, Data , where T CP, Data represents the corresponding CP length on a data OFDM symbol; T 1, Data represents the length of time occupied by valid data of a data symbol, when a transmission unit When there are multiple data symbols in the duration, T 1, Data refers to the longest data symbol duration;
  • T CSI ⁇ T Data Where T CSI ⁇ T Data ; Where L and N are both positive integers, and N is an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit, and 0 ⁇ L ⁇ N.
  • the parameter I is a positive integer.
  • the parameter where m1, m2 ⁇ ⁇ 0, 1 ⁇ , and m3 are integers.
  • the duration of one of the single carrier measurement reference symbols is less than or equal to the coherence time of the channel.
  • one single carrier measurement reference symbol carries one or more beam measurement ports; one beam measurement port corresponds to one hybrid beam, and the hybrid beam remains unchanged in a system bandwidth occupied by the single carrier symbol.
  • the multiple beam measurement ports correspond to different hybrid beams; different hybrid beams corresponding to different beam measurement ports are different baseband weighted hybrid beams of one fixed beam combination corresponding to N antenna groups; Contains the beam for each antenna group.
  • the measurement reference signal sequences corresponding to the multiple beam measurement ports are orthogonal to each other.
  • the measurement reference signal sent on one of the single carrier measurement reference symbols satisfies the following characteristics:
  • the measurement reference signal sequence corresponding to the beam measurement port j satisfies:
  • the measurement reference signal sequence corresponding to different port j1 and port j2 satisfies:
  • P measurement reference symbols are included, and P measurement reference symbols are in one of the transmission units;
  • the P value is indicated by one or more of the following:
  • all P measurement reference symbols are located in the last bit of one transmission unit in one transmission unit, and there is no data symbol between P measurement reference symbols, and there is no data symbol after P measurement reference symbols in one transmission unit.
  • the method includes:
  • Btotal is a positive integer
  • Btotal represents the total number of beams that need to be sent to complete a beam scanning measurement on a frequency domain resource
  • Q represents a beam that can be simultaneously transmitted on one measurement reference symbol on the one frequency domain resource. Number.
  • the time domain relationship pattern of the P measurement reference symbols and the data symbols in one beam measurement period satisfies one of the following characteristics:
  • the pattern of the time domain structure of the subframe formed by the measurement reference symbol and the data symbol is fixed; or,
  • the different hybrid beams are different baseband weighted hybrid beams of one fixed beam combination corresponding to the N antenna groups;
  • the beam direction of each antenna group in the beam combination is the beam direction of the antenna group, which is specifically expressed as: among them, Indicates a pattern corresponding to the jth mixed beam; Indicates a beam pattern corresponding to the i-th antenna group, the direction of which is the direction of the beam group; the beam combination of the antenna group represents a beam pattern combination of the N antenna groups, which is a combination of the following:
  • the baseband weighting adjustment scalar corresponding to the i-th antenna group corresponding to the j-th hybrid beam, and the baseband weighting vector corresponding to the j-th hybrid beam is:
  • the AFRF ( ⁇ ) corresponding to different hybrid beams of different baseband weights of corresponding one fixed beam combination of the N antenna groups is the same, different.
  • the determined multiplexing pattern category displays the multiplexing category as the third type multiplexing mode
  • demodulating the reference signal in the data transmission unit that does not measure the reference symbol and the transmission unit that has the measurement reference symbol are different.
  • all beam measurement reference symbols in one transmission unit are at the last bit of the transmission unit, there is no data between the beam measurement reference symbols, and there is no data symbol after the beam measurement reference symbol.
  • the measurement reference signal corresponding to one or more measurement reference ports is transmitted on one OFDM symbol.
  • An embodiment of the present invention further provides an apparatus for implementing measurement reference symbol transmission, including a first determining unit, a first processing unit, where
  • a first determining unit configured to determine, in a transmission unit that has a measurement reference symbol to be transmitted, a multiplexing pattern category of the measurement reference symbol and the data symbol;
  • the first processing unit is configured to transmit the measurement reference symbols and the data symbols according to the determined multiplexing pattern category.
  • the first determining unit is specifically configured to: pre-approve a multiplexing pattern category; or a set of multiplexing pattern categories that are invisibly notified according to relevant time domain parameters of the transmission unit; or, according to current needs
  • a multiplexing pattern category determined by the result of whether the data beam and the measurement beam correspond to the direction of the radio beam direction, and is notified to the receiving end by signaling.
  • the first processing module is specifically configured to: the measurement reference symbol and the data symbol do not overlap in time domain; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to Subcarrier spacing of data symbols.
  • the multiplexing pattern categories of the measurement reference symbols and the data symbols include:
  • the first type of multiplexing all measurement reference symbols and data symbols are time-division multiplexed;
  • the second type of multiplexing all measurement reference symbols and data symbols are frequency division multiplexed;
  • a third type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy a resource element RE on all OFDMs having measurement reference symbols, and have measurement reference symbols Between different OFDMs, or between OFDM with measured reference symbols and OFDM without measured reference symbols, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain;
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the first signaling to indicate the measurement reference symbol port whose transmission power is 0 or the transmission power corresponding to the measurement reference symbol port.
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the second signaling indicates that the data symbol transmission power is 0 OFDM symbol index;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measure the OFDM on the reference signal.
  • the measurement reference signal corresponding to one measurement reference port is only one frequency division multiplexed OFDM symbol. Send on, or only on a time-division multiplexed measurement reference symbol.
  • the frequency division multiplexing is: measuring frequency division multiplexing of reference symbols and data symbols on OFDM with measurement reference symbols; the transmission unit memory There is no OFDM symbol that measures the reference symbol only data symbols.
  • the transmission unit that needs to send the measurement reference symbol includes:
  • the transmission unit is a transmission unit in which the periodic beam measurement reference symbol of the upper layer notification is located;
  • the transmission unit is a transmission unit in which the aperiodic beam measurement reference symbol of the dynamic signaling is located.
  • the transmission unit pattern satisfies the following characteristics:
  • the sum of the durations of one or more time division multiplexed measurement reference symbols is equal to the duration of one data symbol, or the sum of the duration of one or more time division multiplexed measurement reference symbols and the duration of one short data symbol is equal to one long data symbol The length of time.
  • the transmission unit pattern further satisfies: carrying a beam measurement reference symbol in a frequency division multiplexing manner on a long data symbol in the transmission unit.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is the sixth type multiplexing mode
  • the number of time division multiplexed OFDM and/or frequency division multiplexed OFDM is fixed or different; the number of measurement reference symbols and the duration of short data symbols in one time division multiplexed OFDM are fixed or different ;
  • the time division multiplexed OFDM includes one or more measurement reference symbols in a data OFDM duration, or one or more measurement reference symbols and one short data symbol in one data OFDM duration; or all beams
  • the number of time division multiplexed measurement reference symbols and/or the number of frequency division multiplexed OFDM symbols are fixed or different. When not, the notification can be made by signaling.
  • An embodiment of the present invention further provides an apparatus for implementing measurement reference symbol transmission, including a second Determining unit, second processing unit; wherein
  • a second determining unit configured to determine, in a transmission unit that has a measurement reference symbol to be transmitted, a multiplexing pattern category of the measurement reference symbol and the data symbol;
  • the second processing unit is configured to receive the measurement reference symbols and the data symbols in accordance with the determined multiplexing pattern category.
  • the second determining unit is specifically configured to: pre-agreed a multiplexing pattern category; or a set of multiplexing pattern categories that are invisibly notified according to relevant time domain parameters of the transmission unit; or receive a letter from the sending end The type of reuse pattern that informs the notification.
  • the second processing module is specifically configured to: the measurement reference symbol and the data symbol do not overlap in time domain; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to Subcarrier spacing of data symbols.
  • the multiplexing pattern categories of the measurement reference symbols and the data symbols are:
  • the first type of multiplexing mode all measurement reference symbols and data symbols are time division multiplexed; time domain interpolation is performed on channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • all measurement reference symbols and data symbols are frequency division multiplexed; the receiving end time-domain interpolates channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • a third type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy a resource element RE on all OFDMs having measurement reference symbols, and have measurement reference symbols Between different OFDMs, or between OFDM with measured reference symbols and OFDM without measured reference symbols, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain;
  • the device has the same demodulation reference signal port.
  • the channel estimation value between different OFDMs with measurement reference symbols may not be time domain interpolated, and the same demodulation reference signal port is between the OFDM with the measurement reference symbol and the channel with no measurement reference symbol OFDM.
  • the estimated value may not be time domain interpolated, and the same demodulation reference signal port may perform time domain interpolation on the channel estimation value between OFDM without the reference symbol;
  • the fourth type of multiplexing all measurement reference symbols and data symbols are frequency division multiplexed;
  • the quantity reference symbol uses the first signaling to indicate a measurement reference symbol port whose transmission power is 0 or an OFDM symbol index whose transmission reference power port corresponds to a transmission power of 0; at this time, the apparatus has the same demodulation reference signal port in different OFDM symbols.
  • the channel estimation value on the time domain is interpolated;
  • a fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use a second signaling to indicate an OFDM symbol index with a data symbol transmission power of 0; Performing time domain interpolation on channel estimation values of demodulation reference signal ports on different OFDM symbols;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measuring the reference signal on the OFDM; measuring the reference symbol measurement reference symbol receiving end can interpolate the channel estimation values obtained on the different OFDM symbols by the same demodulation reference signal port.
  • the measurement reference signal corresponding to one measurement reference port is only one frequency division multiplexed OFDM symbol. Send on, or only on a time-division multiplexed measurement reference symbol.
  • the transmission unit that needs to send the measurement reference symbol includes:
  • the transmission unit is a transmission unit in which the periodic beam measurement reference symbol of the upper layer notification is located;
  • the transmission unit is a transmission unit in which the aperiodic beam measurement reference symbol of the dynamic signaling is located.
  • the transmission unit pattern satisfies the following characteristics:
  • the sum of the durations of one or more time division multiplexed measurement reference symbols is equal to the duration of one data symbol; or the sum of the duration of one or more time division multiplexed measurement reference symbols and the duration of one short data symbol is equal to one long data symbol The length of time.
  • the transmission unit pattern further satisfies: a long data symbol in the transmission unit
  • the beam measurement reference symbols are carried in a frequency division multiplexing manner.
  • the measurement reference signal corresponding to one measurement reference port is only one frequency division multiplexed OFDM symbol. Send on, or only on a time-division multiplexed measurement reference symbol.
  • the embodiment of the present invention further provides a transmitting end, including: a first processor; a first memory configured to store the first processor executable instruction; and configured to perform information transmission and reception according to the control of the first processor a first transmission device for communication;
  • the first processor is configured to perform an operation in the method of implementing the measurement reference symbol transmission by the transmitting end.
  • the embodiment of the present invention further provides a receiving end, including: a second processor; a second memory configured to store the second processor executable instruction; and configured to perform information transmission and reception according to the control of the second processor a second transmission device for communication;
  • the second processor is configured to perform an operation in the method of implementing the measurement reference symbol transmission at the receiving end.
  • Embodiments of the present invention further provide a computer storage medium arranged to store a computer program configured to perform the above-described method of implementing measurement reference symbol transmission.
  • the technical solution of the present application includes: determining, in a transmission unit that needs to transmit a measurement reference symbol, a multiplexing pattern category of the measurement reference symbol and the data symbol; and transmitting and receiving the measurement reference symbol according to the determined multiplexing pattern category.
  • Data symbol the measurement reference symbol and the data symbol are sent and received according to the determined multiplexing reference pattern of the measurement reference symbol and the data symbol, and the RF beam direction requirement of the limited RF link of the measurement beam and the data beam is solved.
  • Conflict issue In particular, when the determined multiplexing reference symbols of the measurement reference symbols and the data symbols are displayed as time division multiplexing, the collision problem between the measurement beam and the data beam for the radio beam direction requirements of the limited radio frequency link is effectively avoided.
  • FIG. 1 is a flowchart of a method for implementing measurement of reference symbol transmission according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a first embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention
  • FIG. 4 is a schematic diagram of a second embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention.
  • FIG. 5 is a schematic diagram of a third embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention.
  • FIG. 6 is a schematic diagram of a fourth embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention.
  • 25 is a structural diagram of an embodiment of a time domain period in which a measurement reference signal is periodically transmitted according to the present invention.
  • 26 is a schematic diagram of different embodiments of radio frequency beam patterns of respective radio frequency links according to the present invention.
  • 27 is a schematic diagram of an embodiment of a measurement of a reference symbol on a resource frame corresponding to different radio frequency link beam patterns
  • 29 is a schematic diagram of an embodiment of a time domain single carrier symbol structure according to the present invention.
  • FIG. 30 is a schematic diagram of a first embodiment of a subframe structure of a measurement reference signal transmission unit according to the present invention.
  • FIG. 31 is a schematic diagram of a second embodiment of a subframe structure of a measurement reference signal transmission unit according to the present invention.
  • FIG. 32 is a schematic diagram of a third embodiment of a subframe structure of a measurement reference signal transmission unit according to the present invention.
  • FIG. 33 is a schematic diagram of measuring frequency division multiplexing of reference signals and data symbols according to an embodiment of the present invention.
  • FIG. 34 is a schematic diagram of an OFDM pattern for measuring frequency division multiplexing of reference signals and data symbols according to an embodiment of the present invention.
  • Figure 35 (a) is a schematic diagram showing a first embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention
  • Figure 35 (b) is a schematic diagram showing a second embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention.
  • Figure 35 (c) is a schematic diagram showing a third embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention.
  • Figure 35 (d) is a schematic diagram showing a fourth embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention.
  • Figure 35 (e) is a schematic diagram showing a fifth embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention.
  • Figure 35 (f) is a schematic diagram showing a sixth embodiment of a pattern of measurement reference symbols and demodulation reference symbols in the third type of multiplexing class of the present invention.
  • FIG. 36 is a schematic diagram of an embodiment of a beam measurement reference port transmitting a pattern on only one measurement reference symbol during time division multiplexing.
  • FIG. 37 is a schematic structural diagram of a device for implementing measurement of reference symbol transmission according to an embodiment of the present invention.
  • FIG. 38 is a schematic structural diagram of another component of an apparatus for implementing measurement reference symbol transmission according to an embodiment of the present invention.
  • 39 is a schematic diagram of a first embodiment of measuring a reference symbol at the last bit of a transmission unit according to the present invention.
  • FIG. 40 is a schematic diagram of a second embodiment of measuring a reference symbol at the last bit of a transmission unit according to the present invention.
  • Figure 41 is a schematic illustration of a third embodiment of the measurement reference symbol at the last bit of the transmission unit of the present invention.
  • FIG. 1 is a flowchart of a method for implementing measurement reference symbol transmission according to an embodiment of the present invention. As shown in FIG. 1 , the method includes:
  • Step 100 Determine a multiplexing pattern category of the measurement reference symbol and the data symbol in a transmission unit having a measurement reference symbol to be transmitted.
  • the transmission unit in which the aperiodic beam measurement reference symbol of the dynamic signaling is located.
  • the sender and the receiver pre-agreed a type of multiplexing pattern; or,
  • class_t mod(n f1 *20 +n f , 6)
  • the receiving end receives the signaling from the transmitting end to notify the learned multiplexing pattern category.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol may include:
  • the first type of multiplexing mode all measurement reference symbols and data symbols are time division multiplexed; and the demodulation reference signal can be on the data symbols, and different demodulation reference signal ports can be multiplexed in the time domain code division;
  • the second type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the demodulation reference signal and the measurement reference symbol can be frequency division multiplexed on the same OFDM, and different demodulation reference signal ports can be Time division code division multiplexing;
  • a third type of multiplexing all measurement reference symbols and data symbols are frequency division multiplexed; All demodulation reference signal ports occupy between a resource element (RE, Resource element) and a different OFDM with measured reference symbols on all OFDMs with measurement reference symbols, or OFDM with and without measurement reference symbols Between different demodulation reference signal ports, if code division multiplexing can only be in the frequency domain, not in the time domain code division multiplexing;
  • All demodulation reference signal ports occupy between a resource element (RE, Resource element) and a different OFDM with measured reference symbols on all OFDMs with measurement reference symbols, or OFDM with and without measurement reference symbols.
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the demodulation reference signal and the measurement reference symbols can be frequency division multiplexed on the same OFDM, and different demodulation reference signal ports can be In the time domain code division multiplexing; the measurement reference symbol may use the first signaling to indicate a measurement reference symbol port with a transmission power of 0 or an OFDM symbol index with a transmission power of 0 corresponding to the measurement reference symbol port;
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the demodulation reference signal and the measurement reference symbols can be frequency division multiplexed on the same OFDM, and different demodulation reference signal ports can be In the time domain code division multiplexing; the measurement reference symbol may use an OFDM symbol index indicating that the data symbol transmission power is 0;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measuring OFDM on the reference signal; on the OFDM measuring the reference symbol and the data symbol frequency division multiplexing, the demodulation reference signal and the measurement reference symbol can be frequency division multiplexed on the same OFDM; different demodulation reference signal ports can be in time Domain code division multiplexing.
  • the frequency division multiplexing is: measuring frequency division multiplexing of reference symbols and data symbols on OFDM having measured reference symbols;
  • the multiplexed pattern category of the reference symbol and the data symbol can be:
  • the first type of multiplexing all measurement reference symbols and data symbols are time division multiplexed; and the demodulation reference signal can be on the data symbols.
  • the receiving end may interpolate the channel estimation values obtained by the same demodulation reference signal port on different OFDM symbols in time domain;
  • the second type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the channel estimates values obtained by the receiving end on different OFDM symbols by the same demodulation reference signal port Interpolated in time domain;
  • the third type of administration all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy REs on OFDM with measurement reference symbols, and measurement reference symbols occupy different OFDM between Or, between OFDM with measured reference symbols and OFDM without measured reference symbols, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain.
  • the same demodulation reference signal port on the receiving end may not interpolate the channel estimation value between different OFDMs with measurement reference symbols, and the same demodulation reference signal port is between the OFDM with the measurement reference symbol and the OFDM without the measurement reference symbol.
  • the channel estimation value may not be time domain interpolated, and the same demodulation reference signal port may perform time domain interpolation on the channel estimation value between OFDM without measurement reference symbols;
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols may use the first signaling to indicate that the measurement reference symbol port with the transmission power is 0 or the measurement reference symbol port transmission power is 0 OFDM symbol index.
  • the receiving end performs time domain interpolation on channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols may use an OFDM symbol index indicating that the data symbol transmission power is 0.
  • the receiving end performs time domain interpolation on channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measuring the reference signal on the OFDM; measuring the reference symbol measurement reference symbol receiving end can interpolate the channel estimation values obtained on the different OFDM symbols by the same demodulation reference signal port.
  • Different types of multiplexing patterns are different.
  • the signaling that the transmitting end needs to notify is different.
  • the demodulation reference signal pattern sent by the transmitting end is different, and the multiplexing mode of different demodulation reference signal ports is different.
  • the measurement reference signal corresponding to one measurement reference port is sent only on one frequency division multiplexed OFDM symbol, or only A time division multiplexed measurement reference symbol is sent.
  • Frequency division multiplexing transmits one or more measurement reference signals corresponding to the measurement reference ports on one OFDM symbol, and the plurality of measurement reference ports are transmitted by using frequency domain code division and/or frequency division multiplexing.
  • the transmission unit pattern satisfies the following characteristics:
  • the sum of the durations of one or more time division multiplexed measurement reference symbols is equal to the duration of one data symbol.
  • the time domain occupied by one or more measurement reference symbols is referred to as a time division multiplexed OFDM; or one or more time divisions
  • the sum of the length of the multiplexed measurement reference symbol and the duration of one short data symbol is equal to the length of one long data symbol.
  • the measurement reference signal may also be carried in a frequency division multiplexing manner on the short data symbol.
  • the time domain occupied by one or more measurement reference symbols and one short data symbol is referred to as a time division multiplexed OFDM.
  • the time domain is equal to the time domain length corresponding to the minimum unit of the resource scheduling, and the frequency domain corresponds to all system bandwidths.
  • the transmission unit pattern further satisfies: carrying the beam measurement reference symbols in a frequency division multiplexing manner on the short data symbols in the transmission unit.
  • the multiplexing pattern category of the measurement reference symbol and the data symbol is the sixth type multiplexing mode
  • the number of time division multiplexed OFDM and frequency division multiplexed OFDM may be fixed or different, and the number of measurement reference symbols and the duration of short data symbols in one time division multiplexed OFDM may be fixed, ie, the same or different.
  • the third indication information may be used for notification.
  • the third indication information when it is required to use the third indication information to notify the time division multiplexing OFDM number and the frequency division multiplexing OFDM number, and the number of measurement reference symbols in one time division multiplexing OFDM, the third indication information may be in one of the following manners. Or multiple notifications:
  • Time-division multiplexing OFDM is notified invisibly by downlink control information (DCI, Downlink Control Information) command notification, and/or by higher layer signaling, and/or by notifying the beam ID of the reference symbol and the beam ID of the data symbol.
  • DCI Downlink Control Information
  • higher layer signaling and/or by notifying the beam ID of the reference symbol and the beam ID of the data symbol.
  • the number of time division multiplexed OFDM and frequency division multiplexed OFDM is invisibly notified, and the number of measurement reference symbols and the short data symbol in one time division multiplexed OFDM Duration, including:
  • the transmitting end assumes that all measurement reference signals are transmitted in a frequency division multiplexing manner. If the OFDM on which the reference symbol is measured, at least one beam ID of the measurement reference symbol and the beam ID of the data symbol on the OFDM do not belong to any When a set of the same beam ID is used, the transmitting end determines that all measurement reference symbols and data symbols on the OFDM are transmitted in a time division multiplexing manner, that is, the duration occupied by one long data OFDM symbol is divided into one or more time division multiplexing measurements. The reference symbol is divided into one or more time division multiplexed measurement reference symbols and one short data symbol.
  • the time domain corresponding to the long data symbol occupies is simply referred to as a time division multiplexed OFDM, and time division multiplexed OFDM.
  • the number of measurement reference symbols is the number of corresponding measurement reference symbols on the OFDM, thereby obtaining the duration of the short data symbols.
  • the measurement reference symbol and the data symbol are frequency division multiplexed. among them,
  • the set of beam IDs may be signaled or may be pre-agreed by the sender and the receiver. There is no intersection between different beam ID sets.
  • the beam ID of the measurement reference symbol contains all beam measurements carried on the measurement reference symbol The beam ID of the reference port.
  • the receiving end assumes that all measurement reference signals are transmitted in a frequency division multiplexing manner. If the OFDM on which the reference symbol is measured, at least one beam ID of the measurement reference symbol and the beam ID of the data symbol on the OFDM are not arbitrary. When a set of the same beam ID is used, the receiving end determines that the measurement reference symbol and the data symbol are time division multiplexed, and the number of measurement reference symbols in the time division multiplexed OFDM is the corresponding number of measurement reference symbols on the OFDM. In turn, the duration of the short data symbols is obtained. On the OFDM where the measurement reference symbol is located, when the beam ID of the measurement reference symbol and the beam ID of the data symbol on the OFDM belong to the same beam ID set, the measurement reference symbol and the data symbol are frequency division multiplexed. among them,
  • the set of beam IDs may be signaled or may be pre-agreed by the sender and the receiver. There is no intersection between different beam ID sets.
  • the beam ID of the measurement reference symbol includes the beam ID of all beam measurement reference ports carried on the measurement reference symbol.
  • the beam ID of the reference port is adjusted, and all demodulation reference port beam IDs corresponding to the downlink data channel are beam IDs of the data symbols.
  • Step 101 Transceive measurement reference symbols and data symbols according to the determined multiplexing pattern category.
  • the transmission and reception measurement reference symbols and data symbols in this step include:
  • the time domain of the measurement reference symbol and the data symbol do not overlap, and the frequency domain completely overlaps; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to the subcarrier spacing of the data symbol.
  • All beam measurement reference symbols within a transmission unit are at the last bit of the transmission unit, there is no data between the measurement reference symbols, and there is no data symbol after the reference symbol is measured within the transmission unit.
  • the symbol in which the reference symbol is measured is an OFDM symbol
  • the different beam measurement reference ports are code division multiplexed, only the frequency domain code division multiplexing can be performed.
  • the duration of one measurement reference symbol is less than or equal to one data symbol duration
  • the subcarrier spacing of the measurement reference symbol is greater than or equal to the subcarrier spacing of the data symbol:
  • the duration of a measurement reference symbol includes a cyclic shift (CP) length
  • the duration of a data symbol includes the length of the CP, and when there are multiple data OFDM symbols with different durations in one transmission unit, the duration of the data symbol refers to the length of the data symbol with the longest duration in the transmission unit;
  • the subcarrier spacing of the measurement reference symbol is N/L times the data symbol subcarrier spacing, where L and N are both positive integers, and N represents an integer multiple of the number of subcarriers included in the minimum resource allocation unit of the data transmission, 0 ⁇ L ⁇ N.
  • X represents the number of data subcarriers in the bandwidth corresponding to the minimum CSI feedback unit, and the CSI feedback is obtained based on the measurement reference signal.
  • the subcarrier spacing of the measurement reference symbols refers to the data subcarrier spacing with the smallest subcarrier spacing.
  • the subcarrier spacing of the measurement reference symbols is less than or equal to the coherence bandwidth of the channel.
  • one measurement reference signal corresponding to one or more measurement reference symbol ports is transmitted on one beam measurement reference OFDM symbol (hereinafter referred to as S-CSI-OFDM).
  • the ports are transmitted in frequency domain code division multiplexing or frequency division manner;
  • one of the beam measurement symbol ports corresponds to a different or the same hybrid beam on different resource cells of one beam measurement reference OFDM symbol; wherein different hybrid beams are different basebands of one fixed beam combination corresponding to N antenna groups
  • the measurement reference symbol is a single carrier symbol
  • the data symbol is an OFDM symbol
  • the measurement reference signal sequence on port j is Wherein SL represents the length of the time domain signal sequence transmitted by the port j in the one single carrier measurement reference symbol, wherein the time interval between the two signals in the time domain signal sequence is Tgap , then
  • T Data T CP, Data + T 1, Data , where T CP, Data represents the corresponding CP length on a data OFDM symbol; T 1, Data represents the length of time occupied by valid data of a data symbol, when a transmission unit When there are multiple data symbols in the duration, T 1, Data refers to the longest data symbol duration;
  • L and N are both positive integers, and N is an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit, and 0 ⁇ L ⁇ N.
  • m1,m2 ⁇ 0,1 ⁇ , and m3 are integers.
  • the duration of a single carrier measurement reference symbol is less than or equal to the coherence time of the channel.
  • One single carrier measurement reference symbol (S-CSI-Time Sequence for short) carries one or more beam measurement ports; one beam measurement port corresponds to one hybrid beam, and the hybrid beam is on the system bandwidth occupied by the single carrier symbol. constant.
  • the plurality of beam measurement ports correspond to different hybrid beams; the different hybrid beams corresponding to different beam measurement ports are different baseband weighted hybrid beams of one fixed beam combination corresponding to the N antenna groups; wherein the beam combination includes each antenna group Beam.
  • the measurement reference signal sequences corresponding to the plurality of beam measurement ports are orthogonal between each other.
  • the measurement reference signal transmitted on a single carrier measurement reference symbol (S-CSI-Time Sequence for short) satisfies the following characteristics:
  • the measurement reference signal sequence corresponding to one beam measurement port j satisfies:
  • the measurement reference signal sequence corresponding to different port j1 and port j2 satisfies:
  • P measurement reference symbols are included, and P measurement reference symbols are in one transmission unit.
  • the P value is indicated by one or more of the following:
  • all P measurement reference symbols in one transmission unit are located at the last bit of one transmission unit, there is no data symbol between P measurement reference symbols, and P measurement in one transmission unit There is no data symbol after the reference symbol.
  • Btotal is a positive integer
  • Btotal represents the total number of beams that need to be sent to complete a beam scanning measurement on a frequency domain resource
  • Q represents a beam that can be simultaneously transmitted on one measurement reference symbol on the one frequency domain resource. Number.
  • the pattern is fixed, that is, the time domain structure of the subframe formed by the measurement reference symbol and the data symbol is fixed; or,
  • the different hybrid beams are different baseband-weighted hybrid beams of one fixed beam combination corresponding to the N antenna groups; wherein, the beam direction of each antenna group in the beam combination is the beam direction of the antenna group, specifically for:
  • the beam combination of the antenna group represents a beam pattern combination of the N antenna groups, which is a combination of the following:
  • the baseband weighting adjustment scalar corresponding to the i-th antenna group corresponding to the j-th hybrid beam, and the baseband weighting vector corresponding to the j-th hybrid beam is:
  • the demodulation reference signal pattern is different in the data transmission unit that does not measure the reference symbol and the transmission unit that has the measurement reference symbol.
  • the measurement reference symbol and the data symbol are sent and received according to the determined multiplexing reference pattern of the reference symbol and the data symbol. Specifically, when the data beam direction and the measurement beam direction of one radio frequency link are different, the measurement reference symbols and the data symbols are time-divisionally transmitted, or the measurement signals are not transmitted, or the data signals are not transmitted, when the data beam of one radio frequency link When the direction and the direction of the measurement beam are the same, the reference symbol and the data symbol are measured for time division transmission or frequency division transmission.
  • the technical solution provided by the embodiment of the present invention solves the problem that the measurement beam and the data beam conflict with the radio beam direction requirement of the limited radio frequency link. In particular, when the determined multiplexing reference symbols of the measurement reference symbols and the data symbols are displayed as time division multiplexing, the collision problem between the measurement beam and the data beam for the radio beam direction requirements of the limited radio frequency link is effectively avoided.
  • the transmitting end has N radio frequency links, each radio frequency link is connected with M transmitting elements, and the nth radio frequency link is for digital baseband.
  • W n [w n1 w n2 ... w nM ] T
  • W n [w n1 w n2 ... w nM ] T
  • W n [w n1 w n2 ... w nM ] T
  • each radio frequency link can only generate one radio frequency beam on one OFDM symbol, and one radio frequency chain is needed in one measurement period. Multiple RF beams of the path are measured, and one or more RF beams need to be transmitted on one or more different measurement reference symbols.
  • One antenna group corresponds to one radio frequency link, or one antenna group corresponds to one baseband transmission port, and one baseband transmission port may correspond to multiple radio frequency links.
  • one measurement reference symbol is an OFDM symbol
  • the multiplexing manner of the measurement reference symbol and the data symbol is a first type of multiplexing manner, that is, in all transmission units having measurement beams to be transmitted, all antenna groups
  • All measurement reference symbols and data symbols are time division multiplexed.
  • the time domain relationship pattern of P measurement reference symbols and data symbols in a measurement period has an L pattern set, and there is no data symbol between P measurement reference symbols in the same pattern; P measurement reference symbol duration or P measurement reference symbol duration And a short data symbol duration equal to one long data symbol duration.
  • D-OFDM long data symbol
  • S-OFDM special OFDM
  • FIG. 5 is a schematic diagram of a third embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention, wherein the region S is the 10th D-OFDM symbol;
  • FIG. 6 is a schematic diagram of a fourth embodiment of measuring a time domain relationship pattern of reference signals and data symbols according to the present invention, wherein the region S is composed of the ninth to tenth D-OFDM symbols .
  • the area S is divided into a measurement reference area (S-CSI) and a data area (S-Data), wherein the measurement reference area includes P time-division measurement reference symbols; when the measurement reference area and the data area are included
  • the gap (GP) domain or there is a GP domain between the P measurement reference symbols of the S-CSI, and there is a GP domain between the measurement reference area and the data area.
  • the GP domain is a guard interval, and it can be considered that the useful signal is not transmitted during the period, and the GP domain exists to fit a D-OFDM domain under the preferred feature design.
  • these GP domains also provide a change time for changes in the RF weight vector. among them,
  • the P value is obtained by one or more of the following: obtained by higher layer signaling; and/or by dynamic signaling; and/or by other information.
  • the other information obtained includes: Among them, Btotal and Q are positive integers, Btotal indicates the total number of beams that need to be scanned for the current beam scanning measurement, and Q indicates the number of beams transmitted on one measurement symbol.
  • S-CSI-OFDM P measurement reference symbols of region S
  • S-Data-OFDM The data OFDM symbol (which may be simply referred to as S-Data-OFDM) duration, and the sum of the durations of the GP lengths are equal to the duration of one D-OFDM symbol, and the duration of the OFDM includes the CP length.
  • S-OFDM is a term used herein to distinguish a symbol from a special OFDM symbol, that is, a plurality of measurement reference symbols, or a D-OFDM that is different from a plurality of measurement reference symbols and data symbols.
  • T CP MT 1
  • Data in the first instance
  • the measurement reference OFDM of the measurement reference area ensures that the subcarrier spacing is
  • L is a positive integer and satisfies 0 ⁇ L ⁇ N
  • ⁇ f is a subcarrier spacing of the D-OFDM symbol.
  • X is the number of frequency domain data subcarriers corresponding to the minimum CSI feedback unit
  • the CSI feedback is obtained based on the measurement reference signal, preferably Is a positive integer.
  • K is a positive integer satisfying 0 ⁇ K ⁇ N, preferably, Is a positive integer.
  • the CP length of the OFDM symbol based on 1) the S-CSI domain, and the CP length of the S-Data-OFDM domain symbol are equal to the CP length of the D-OFDM domain; 2) Is a positive integer; 3) It is a positive integer; 4)
  • Each of the S-CSI domains measures the same four characteristics of the OFDM duration, and the parameters of the S-OFDM as shown in Table 1 are obtained:
  • the transmitting end and the receiving end can establish the measurement pilot configuration as shown in Table 2, and the blank item in Table 2 indicates that there is no such configuration.
  • the S-OFDM domain can be designed based on the parameters as shown in Table 3.
  • the transmitting end and the receiving end can establish a measurement pilot configuration as shown in Table 4.
  • a GP is inserted between each OFDM symbol in the S-OFDM domain.
  • FIGS. 7 to 11 are respectively changed to FIGS. 12 to 16.
  • one of the GPs in FIG. 7 to FIG. 11 is equally divided into corresponding (p+1) GPs inserted between different OFDM symbols of the S-OFDM region, and these OFDMs include OFDM and S of the S-CSI region.
  • OFDM of the -Data-OFDM region In this case, Table 2 is changed to Table 5, and Table 4 is changed to Table 6.
  • the third, ninth, and tenth OFDMs of the D-OFDM are respectively used as the area S, which is an example of the existing LTE, and other
  • the OFDM which can be used as the D-OFDM domain of the region S can be transmitted without any special signal on the current transmission period.
  • the special signal includes at least one or more of the following signals: a broadcast signal, and/or a demodulation pilot signal, and/or a synchronization signal, and/or other measurement reference signals such as CRS.
  • ⁇ f 15 kHz is assumed, but the subcarrier spacing of the D-OFDM domain is not excluded.
  • one measurement reference symbol is an OFDM symbol
  • the measurement reference symbol and the data symbol are multiplexed in such a manner that all measurement reference symbols and data symbols of all antenna groups are in all transmission units having measurement beams to be transmitted.
  • the region S contains only P measurement reference OFDM symbols and one S-Data-OFDM symbol of the S-CSI region, and no GP domain.
  • the CP length of the OFDM symbol based on 1) the S-CSI domain, and the CP length of the S-Data-OFDM domain symbol are both greater than or equal to the CP length of the D-OFDM domain; 2) Is a positive integer; 3) It is a positive integer; 4)
  • Each of the S-CSI domains measures the same four characteristics of the same OFDM duration, and the parameters of the S-OFDM as shown in Table 7 are established:
  • the CP time length of the first 7 measurement reference symbols S-CSI-OFDM is 146 Ts1
  • the 8th measurement reference symbol S-CSI-OFDM The CP time length is 145Ts1.
  • the transmitting and receiving ends can establish the measurement pilot configuration as shown in Table 8, and the blank entries in Table 8 indicate that there is no such configuration.
  • the transmitting and receiving ends can establish the measurement pilot configuration as shown in Table 10.
  • there is only one pilot pattern that is, P S-CSI-OFDM symbols and one S-Data-OFDM symbol of the region S are inserted between 13 D-OFDM symbols.
  • the sum of the durations of the P S-CSI-OFDM symbols and one S-Data-OFDM symbol is still the duration of one D-OFDM symbol, and at this time, the durations of the various OFDM symbols include their CP lengths.
  • the transmitting and receiving ends can establish measurement pilot configurations as shown in Table 11, and the blank entries in Table 11 indicate that there is no such configuration.
  • the positions at which P S-CSI-OFDM symbols and one S-Data-OFDM symbol are inserted are only an example, and are not used to define the method of insertion.
  • this embodiment does not exclude the division of one region S into P 1 S-CSI-OFDM-Pre symbols, where P 1 is a region S according to the four preferred features 1) to 4) in this embodiment.
  • the first P S-CSI-OFDM-Pres are selected as the S-CSI-OFDM symbols according to the difference of the P values, and the remaining P 1 -P OFDM symbols can be used for data transmission, or the transmission power is assumed. Is 0. In this way, the CSI regions of the respective cells are aligned, and mutual interference between the inter-cell CSI measurement signals and the Data data is controlled.
  • the measurement reference signal is transmitted periodically and/or aperiodically.
  • the first or first to second sub-frames of each period satisfy one of the sub-frame structures shown in FIGS. 3 to 6 in the first embodiment and the second embodiment. There is no measurement of the transmission of the reference signal in other subframes.
  • the subframe structure of the current subframe has the subframe structure of the first embodiment and the second embodiment, and there is no measurement reference in other subframes. Signal transmission.
  • the subframe structure of the first subframe that is, the subframe 0 satisfies any one of the first embodiment or the second embodiment, and there is no measurement signal in other subframe structures. Transmit, the subframe structure is different from subframe 0.
  • the P value remains unchanged and the subframe structure remains unchanged in different measurement periods unless there is a new P value and pattern indication notification.
  • the P measurement reference signals of the S-CSI domain and the time domain pattern relationship with S-Data-OFDM, D-OFDM, and the week of the measurement reference signal are given. Period and acyclic transmission methods. In this embodiment, a specific transmission method of a measurement reference signal will be described.
  • one measurement reference signal is an OFDM symbol, and the total bandwidth of the current system bandwidth is common.
  • a measurement reference signal region that is, a time-frequency resource (RE) (which may be simply referred to as S-CSI-OFDM-RE) on an S-CSI-OFDM symbol, and only one port signal can be transmitted on the same time-frequency resource.
  • a port may correspond to one beam of one radio frequency link, or may correspond to a result of N-baseband beamforming and radio frequency beamforming hybrid beamforming.
  • the generation function of the m sequence is initialized once at the beginning of each OFDM, where It is the virtual cell number of the measurement reference signal, p is an index of P measurement reference signals in an S domain, N CP is a CP length index, and N CP belongs to ⁇ 0, 1 ⁇ .
  • the measured baseband precoding is as shown in the formula (2):
  • the baseband frequency domain signal sequence on the i-th radio link is as shown in equation (3):
  • the equivalent baseband signal obtained by the formula (6) is subjected to radio frequency processing, for example, processing such as load frequency, and then transmitted.
  • the ports of the corresponding measurement reference signals are the same, but the corresponding hybrid beams are different.
  • Different hybrid beams on different S-CSI-OFDM-RE resources corresponding to different components in the same RF link beam combination adjusted by baseband beam weighting, that is, a mixture corresponding to port j on one S-CSI-OFDM-RE resource The beam pattern is shown in equation (7):
  • the frequency domain width occupied by the multiplexed M measurement reference signals should be less than or equal to the frequency domain width of the Precoding Resource Block Group (PRG).
  • PRG Precoding Resource Block Group
  • each S-CSI-OFDM-RE resource is precoded by W j, m, BB baseband.
  • the adjustment of the vector constitutes a hybrid beam, assuming W j, m, BB is a column vector in which only one of the elements is non-zero and the other elements are 0.
  • each S-CSI-OFDM-RE corresponds to one of the four beams in FIG.
  • the 0th to the 3rd S-CSI-OFDM-REs sequentially correspond to the beam [4, 2, 3, 1] in FIG.
  • the channel quality of one of the N radio frequency links to the receiving end can be obtained.
  • the receiving end is based on the received signal on the 0th S-CSI-OFDM-RE and the measurement reference signal on the port j, and the fourth RF link can be obtained when the beam direction indicated by the beam 4 is emitted. Channel quality at the receiving end.
  • each S-CSI-OFDM-RE can correspond to a different narrow beam within the radio wide beam.
  • one measurement reference symbol is transmitted based on a single carrier.
  • the subframe pattern and the structure of each region S are the same as those of the first embodiment and the second embodiment, but only one of the S-CSI-
  • the OFDM is changed to a single carrier signal, called an S-CSI-TimeSequence, and the time domain length of the S-CSI-OFDM is changed to the duration of the S-CSI-TimeSequence in this embodiment.
  • the receiving end obtains a time domain tap by correlating the single carrier reference symbols, and then performs fast Fourier transform (FFT) transform on the time domain tap to obtain a frequency domain channel corresponding.
  • FFT fast Fourier transform
  • the length of an S-CSI-TimeSequence needs to consider the following preferred features:
  • One S-CSI-TimeSequence is divided into two domains, the first domain transmits a time domain measurement reference signal sequence T S-CSI-TimeSequence, and the second domain is a protection domain T S-CSI-TimeSequence, 2 , a protection domain
  • T Delay that is, T S-CSI-TimeSequence, 2 ⁇ T Delay
  • T Delay represents the maximum multipath delay and the signal power in the protection domain is 0.
  • the GP domain in FIG. 12 to FIG. 17 is a T S-CSI-Time Sequence, 2 domain
  • the S-CSI-OFDM domain in this embodiment is T S-CSI-TimeSequence, 1 .
  • N is an integer multiple of the number of subcarriers included in the data transmission minimum resource allocation unit, and 0 ⁇ L ⁇ N.
  • T 1 D-Data is a time domain length of a D-OFDM after removing the CP length;
  • An S-CSI-TimeSequence symbol can simultaneously transmit measurement reference signals corresponding to multiple ports, and different measurement reference signals are different hybrid beams after different baseband beam weight adjustments of beam combinations of the same radio frequency link group, the same The port has the same hybrid beam corresponding to the full system bandwidth occupied by the current S-CSI-TimeSequence symbol.
  • the signal transmission process of an S-CSI-TimeSequence is as follows:
  • the equivalent baseband on the ijth antenna element connected to the i-th radio frequency link is as follows
  • the signal is processed by radio frequency processing, such as load frequency processing.
  • the above preferred feature 2 is protected in this embodiment.
  • the length of the domain is 0, that is, only the first domain, the beam reference signal sequence domain.
  • the multiplexing mode of the reference symbol and the data symbol is a sixth type of multiplexing mode, that is, in all the transmission units that need to transmit the measurement beam, part of the measurement reference symbols and the data symbols are time-division, part of The measurement reference symbols and data symbols are in a frequency division manner. Further, in different transmission units having measurement reference symbols, the multiplex subframe pattern may be varied.
  • FIG. 30 to FIG. 32 there are three types of sub-frame patterns, as shown in FIG. 30 to FIG. 32, in which OFDM in the OFDM indicates that the measurement reference signal and the data signal are transmitted in a time division manner, and the horizontally shaded OFDM is used.
  • the medium measurement reference signal and the data signal are transmitted by frequency division.
  • C0 represents a subcarrier position occupied by a measurement reference symbol
  • its subcarrier position in OFDM is only an example, and is not used to define its position, that is, other subcarrier positions are not excluded.
  • the oblique hatching in FIGS. 30 to 32 indicates that the measurement reference signal and the data signal are transmitted by time division, and the pattern may be one of FIG. 7 to FIG. 10 or one of FIG. 12 to FIG. 15; or FIG. 17 to FIG. One.
  • the sum of the durations of the reference signals is measured, or the sum of the durations of the measured reference signals and the short data is equal to the length of the long data.
  • the receiving end may determine, by one or more of the following methods, a specific subframe pattern in the beam measurement transmission unit:
  • Method 1 Obtained by high-level signaling
  • Manner 3 comparing the beam ID of the reference signal of the PDCCH that has been successfully demodulated and the measurement beam ID to be transmitted in the transmission unit. If the two beam IDs belong to the same beam direction set of one antenna group, the beam direction and the data beam direction are measured.
  • the measurement reference symbols and data symbols of the antenna group with the same beam direction adopt frequency division multiplexing.
  • the measurement reference symbols and data symbols of the antenna group with the same beam direction adopt time division multiplexing, and the measurement reference signals of each antenna group are used.
  • the order of transmission is pre-agreed by both sending and receiving.
  • the receiving end can know the beam ID, and the beam direction set of each antenna group corresponding to each beam ID can be obtained, because the beam is a hybrid beam, and multiple hybrid beams correspond to one beam in one antenna group. direction.
  • the criteria are fixed or notified through high-level signaling.
  • Manner 4 Comparing the beam ID of the reference signal of the demodulated PDSCH of the antenna group and the measurement beam ID of the antenna group.
  • the measurement beam direction and the data beam direction are the same.
  • the receiving end can know the beam ID, and can obtain the beam ID of each antenna group corresponding to the beam ID, or the transmitting end and the receiving end agree on the beam ID set corresponding to different directions of each antenna group, because The beam is a hybrid beam, and multiple hybrid beams correspond to one beam direction in one antenna group.
  • the criteria for determining the subframe pattern according to whether the beam direction is the same or not may include:
  • the measurement reference symbol and the data symbol are transmitted in a frequency division manner, and among the S OFDM symbols having the measurement reference signal, at least one of the OFDM symbols has at least one antenna group, and the measurement beam and the data beam direction are different.
  • the measurement reference symbols and data symbols of all antenna groups in the transmission unit are sent in a time division manner;
  • the measurement reference signal and the data beam direction are different in the S OFDM symbols in which the measurement beam and the data beam direction are different.
  • the beam measurement symbols and data symbols of all antenna groups on the OFDM are transmitted in a time division manner; on the OFDM symbols in which the measurement beam and the data beam are in the same direction, the measurement reference symbols and the data symbols are transmitted by time division or frequency division;
  • the measurement reference signal and the data beam direction are different in the S OFDM symbols in which the measurement beam and the data beam direction are different.
  • the measurement reference symbols and data symbols of the antenna group having different beam and data beam directions on the OFDM symbol are transmitted in a time division manner,
  • the measurement reference symbols and data symbols of the antenna group with the same direction of the measurement beam and the data beam on the OFDM symbol are transmitted in a time division or frequency division manner; on the OFDM symbol with the same direction of the measurement beam and the data beam, all measurement reference symbols and data symbols on the OFDM symbol Send by time division or frequency division.
  • Manner 5 Comparing the beam ID of the common reference symbol of the antenna group and the measurement beam ID of the antenna group. When the two beam IDs belong to the same beam direction set of the antenna group, the measurement beam direction and the data beam direction are the same. It should be noted that, here, it is assumed that the receiving end can know the beam ID, and can obtain the beam ID of each antenna group corresponding to the beam ID, or the transmitting end and the receiving end agree on the beam ID set corresponding to different directions of each antenna group. Since the beam is a hybrid beam, multiple hybrid beams correspond to one beam direction in one antenna group. By comparing whether the beam directions are the same, and determining the multiplexing manner of the measurement reference symbols and the data symbols in the current measurement reference signal transmission subframe according to certain criteria. Wherein, the criterion may be fixed in advance or notified by high layer signaling;
  • the mode three to five is better than the mode one, that is, if one of the transmission modes is available, two of the modes are available, and the mode is three to five.
  • the method shall prevail.
  • the measurement reference symbols and the data symbol multiplexing classes are different, and different multiplexing classes are obtained by signaling or time domain parameters in which the transmission unit is located.
  • the subframe positions occupied by the measurement reference symbols are fixed in different measurement periods, but the multiplexing categories of the measurement reference symbols and the data symbols may be different, and different multiplexing classes need to be notified by signaling.
  • the signaling may be one of the following:
  • the change period of the reuse category can be longer, and it is not notified every measurement period; or,
  • the change of the multiplexing class can be passed through every subframe in which the reference symbol is measured. Know that, in turn, each sub-frame can be different; or,
  • High-level signaling + dynamic signaling the high layer signaling class subset, wherein the category subset belongs to the set of the six categories to dynamically signal the specific category.
  • the multiplexing category is notified according to the time domain parameter of the transmission unit, as shown in FIG. 34. At this time, the multiplexing category is calculated according to the system frame number of the transmission unit and the subframe number where the transmission unit is located, and one implementation manner is that all multiplexing is performed. A subset of the categories or multiplexing classes are used alternately in different measurement periods. Another implementation is that all multiplexing classes or a subset of the multiplexing classes are used in turn within different transmission units with measured reference symbols.
  • the multiplexing manner of the data symbols and the measurement reference symbols in the transmission unit is the third type multiplexing mode, that is, all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signals
  • the port occupies the RE on the OFDM with the measurement reference, and the measurement reference symbol occupies between different OFDM or between the OFDM with the measurement reference symbol and the OFDM without the measurement reference symbol, and the different demodulation reference signal ports can only be code division multiplexed. Code division multiplexing in the frequency domain.
  • each demodulation reference signal port occupies an RE on all OFDMs with measurement reference symbols and occupies an RE on at least one data OFDM symbol without measurement reference symbols.
  • the subframe structure of the existing LTE is a physical resource block including 14 OFDM symbols, 12 subcarriers, and the first 7 OFDM symbols are called even numbers.
  • the slot, the last 7 OFDM symbols are called odd slots.
  • different beam measurement ports do not perform time division code division multiplexing on CSI1 and CSI2 ports, that is, CSI1 only occupies one RE on the fifth OFDM of even time slots, and CSI2 only occupies even time slots.
  • a demodulation reference signal port occupies an RE on all OFDMs with CSI-RS occupancy, and does not perform time domain spreading between different OFDM symbols RE with CSI-RS.
  • DMRS1 and DMRS2 occupy REs on OFDM occupied by CSI1 to CSI4, and occupy at least one RE on OFDM symbols without measurement reference symbols, such as REs on the 4th OFDM symbols of even and odd slots.
  • the channel estimation result obtained by the DMRS on the same demodulation reference signal port such as DMRS1 or DMRS2 on the 5th and 6th OFDM symbols of the even slot and the odd slot (ie, the OFDM with CSI-RS) can only be obtained.
  • time domain interpolation cannot be used for demodulation of other OFDM
  • channel estimation results obtained by DMRS on the 4th OFDM symbol of the even time slot and the odd time slot can be used for other OFDM symbols, for example
  • FIGS. 35(a) to 35(f) are patterns of different demodulation reference signals satisfying the above constraints.
  • different demodulation reference signal ports adopt frequency division multiplexing.
  • different demodulation reference signal ports are frequency division multiplexed on OFDM symbols with CSI-RS, and time domain code division is performed on different demodulation reference signal ports on OFDM symbols without CSI-RS. use.
  • different demodulation reference signal ports adopt frequency domain code division multiplexing.
  • Fig. 35(d) different demodulation reference signal ports are also frequency-domain code division multiplexed, except that the density of the demodulation reference signal port in the frequency domain is reduced.
  • FIG. 35(a) different demodulation reference signal ports adopt frequency division multiplexing.
  • different demodulation reference signal ports are frequency division multiplexed on OFDM symbols with CSI-RS, and time domain code division is performed on different demodulation reference signal ports on OFDM symbols without CSI-RS. use.
  • Fig. 35(c) different demodulation reference signal ports adopt frequency domain
  • different demodulation reference signal ports adopt frequency division and/or frequency domain code division multiplexing. Only the demodulated signal port occupies adjacent subcarriers in the frequency domain.
  • different demodulation reference signal ports adopt frequency division and/or frequency domain code division multiplexing, except that the density of the demodulation reference signal is increased relative to 35(e).
  • the same demodulation reference signal port such as demodulation reference signal port 1 or demodulation reference signal port 2, in even and odd slots 5th to 6th
  • the time domain interpolation cannot be performed between the channel estimation values obtained by totaling 4 OFDM on OFDM, and the channel estimation value obtained by the 4th OFDM in the even time slot or the odd time slot cannot be the 5th to the even time slot and the odd time slot.
  • the channel estimation values obtained by the sixth total of 4 OFDMs are time-domain interpolated; the channel values on the OFDM without the reference symbols and the demodulation reference signals are not measured, and the estimation values obtained only from the demodulation reference signals without the reference symbols are measured. Time domain interpolation is obtained.
  • one demodulation reference port occupies an RE on an OFDM having a measurement reference symbol, and even if there is no measurement reference symbol on the OFDM on the PRB where the demodulation reference port is located, at least OFDM in the same subframe has There is a measurement reference symbol on one RE. At this time, it is also considered that there is a measurement reference symbol on the OFDM, and the demodulation reference port needs to occupy the RE on the OFDM.
  • the radio frequency beam combining direction on the data symbol is allowed to be different from the radio frequency beam on the OFDM where the measurement reference symbol is located to solve the conflict problem.
  • Different radio frequency beams between different OFDMs in which different measurement reference symbols are allowed can be realized by performing scanning of multiple radio frequency beams in one transmission unit.
  • one measurement reference symbol port is transmitted only on one measurement reference symbol, and different beam measurement ports may be code division multiplexed in the frequency domain on the same measurement reference symbol, or frequency division multiplexed in the frequency domain. Instead of time-domain code division multiplexing.
  • the reference symbols and the data symbols are time-division multiplexed, there are four measurement reference symbols C0 to C3, and one beam measurement reference port such as CSI0 is only transmitted on C0, and does not occupy resources in other measurement reference symbols.
  • different beam measurement reference ports may be frequency-multiplexed on the same measurement reference symbol as C0, or code division multiplexed on C0.
  • different measurement reference ports cannot be multiplexed in the time domain code in different measurement reference symbols, that is, different measurement reference ports cannot be spread in the time domain of different measurement reference symbols, for example, CSI3 and CSI4 cannot be in C0 to C3.
  • Spreading is performed on any two, or any three, or four, and code division multiplexing in the time domain cannot be achieved. In this way, the beam combinations of the RF antenna groups on different measurement reference symbols are allowed to be different.
  • the measurement reference symbol is at the last bit of a transmission unit, and there is no data symbol after the reference symbol is measured in the transmission unit.
  • the time division multiplexed measurement reference symbols C0 to C4 are at the last bit of a transmission unit, and the number of measurement reference symbols included in one subframe (ie, one transmission unit) in the figure is only an example, and in the figure, There is a short data symbol which is only an example and is not intended to limit the protection of the present invention. The range of protection does not include short data symbols in other embodiments of the embodiment, as shown in FIG.
  • all the symbols including the measurement reference symbols are at the last bit of a transmission unit, including time division multiplexing measurement reference symbols and frequency division multiplexed OFDM symbols, as shown in FIG.
  • the number of frequency division multiplexed OFDM symbols and the number of time division multiplexed beam measurement reference symbols in FIG. 41 are also only examples, and are not intended to limit the protection scope of the present invention, and may be frequency division multiplexed OFDM symbols, and may also be There are no short data symbols.
  • the processing is such that the radio frequency beam does not change during the data transmission phase, and the radio frequency beam is changed at the last bit of the subframe.
  • the device is disposed in a transmitting end, and includes at least a first determining unit, a first processing unit, where
  • a first determining unit configured to determine, in a transmission unit that has a measurement reference symbol to be transmitted, a multiplexing pattern category of the measurement reference symbol and the data symbol;
  • the first processing unit is configured to transmit the measurement reference symbols and the data symbols according to the determined multiplexing pattern category.
  • the first determining unit is specifically configured to: pre-agreed a multiplexing pattern category; or a set of multiplexing pattern categories that are invisibly notified according to relevant time domain parameters of the transmission unit; or, according to current data beams and measurements that need to be sent A kind of multiplexing pattern determined by the result of whether the beam direction of the beam corresponds to the collision, and is notified to the receiving end by signaling.
  • the first processing module is specifically configured to: the measurement reference symbol and the data symbol do not overlap in the time domain, and the frequency domain completely overlaps; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to the data. The subcarrier spacing of the symbol.
  • the multiplexing pattern categories of the reference symbols and the data symbols may include:
  • the first type of multiplexing mode all measurement reference symbols and data symbols are time division multiplexed; and/or, the second type of multiplexing mode: all measurement reference symbols and data symbols are frequency division multiplexed;
  • a third type of multiplexing all measurement reference symbols and data symbols are frequency division multiplexed; All demodulation reference signal ports occupy a resource element (RE, Resource element) on all OFDMs with measurement reference symbols, and between different OFDMs with measurement reference symbols, or in OFDM with measurement reference symbols and no measurement reference symbols Between OFDM, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain;
  • RE Resource element
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the first signaling to indicate the measurement reference symbol port whose transmission power is 0 or the transmission power corresponding to the measurement reference symbol port.
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; and the second signaling indicates that the data symbol transmission power is 0 OFDM symbol index;
  • a sixth type of multiplexing mode partial measurement reference symbols and data symbols time division multiplexing, partial measurement reference symbols and data symbols frequency division multiplexing; and demodulation reference signals only on frequency division multiplexed OFDM or not Measure the OFDM on the reference signal.
  • the measurement reference signal corresponding to one measurement reference port is sent only on one frequency division multiplexed OFDM symbol, or only Transmitted on a time-division multiplexed measurement reference symbol.
  • FIG. 38 is a schematic structural diagram of a device for implementing measurement of reference symbol transmission according to an embodiment of the present invention. As shown in FIG. 38, the device is disposed in a receiving end, and includes at least a second determining unit and a second processing unit.
  • a second determining unit configured to determine, in a transmission unit that has a measurement reference symbol to be transmitted, a multiplexing pattern category of the measurement reference symbol and the data symbol;
  • the second processing unit is configured to receive the measurement reference symbols and the data symbols in accordance with the determined multiplexing pattern category.
  • the second determining unit is specifically configured to: pre-agreed a multiplexing pattern category; or a set of multiplexing pattern categories that are invisibly notified according to relevant time domain parameters of the transmission unit; or receive signaling from the transmitting end to learn the learned multiplexing Pattern category.
  • the second processing module is specifically configured to: the measurement reference symbol and the data symbol do not overlap in the time domain, and the frequency domain completely overlaps; the duration of one measurement reference symbol is less than or equal to the duration of one data symbol, and the subcarrier spacing of the measurement reference symbol is greater than or equal to the data. The subcarrier spacing of the symbol.
  • the multiplexed pattern category of the reference symbol and the data symbol can be:
  • the first type of multiplexing mode all measurement reference symbols and data symbols are time division multiplexed; channel estimation values obtained on different OFDM symbols by the same demodulation reference signal port can be time-domain interpolated;
  • all measurement reference symbols and data symbols are frequency division multiplexed; the receiving end time-domain interpolates channel estimation values obtained by different demodulation reference signal ports on different OFDM symbols;
  • the third type of administration all measurement reference symbols and data symbols are frequency division multiplexed; and all demodulation reference signal ports occupy REs on OFDM with measurement reference symbols, and measurement reference symbols occupy different OFDM between Or, between OFDM with measurement reference symbols and OFDM without measurement reference symbols, different demodulation reference signal ports can only be multiplexed in the time domain if the code division multiplexing can only be in the frequency domain.
  • the same demodulation reference signal port on the receiving end may not interpolate the channel estimation value between different OFDMs with measurement reference symbols, and the same demodulation reference signal port is between the OFDM with the measurement reference symbol and the OFDM without the measurement reference symbol.
  • the channel estimation value may not be time domain interpolated, and the same demodulation reference signal port may perform time domain interpolation on the channel estimation value between OFDM without measurement reference symbols;
  • the fourth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the first signaling to indicate that the measurement reference symbol port with the transmission power is 0 or the measurement reference symbol port transmission power is 0. OFDM symbol index.
  • the channel estimation values of the same demodulation reference signal port on the different OFDM symbols at the receiving end may be time-domain interpolated;
  • the fifth type of multiplexing mode all measurement reference symbols and data symbols are frequency division multiplexed; the measurement reference symbols use the second signaling to indicate an OFDM symbol index with a data symbol transmission power of zero.
  • the channel estimation values of the same demodulation reference signal port on the different OFDM symbols at the receiving end may be time-domain interpolated;
  • the sixth type of multiplexing part of the measurement reference symbols and data symbols time division multiplexing, the Ministry Sub-measurement reference symbols and data symbols are frequency division multiplexed; and the demodulation reference signal is only on frequency division multiplexed OFDM or OFDM without measurement reference signals; measurement reference symbol measurement reference symbol reception end pairs are by the same demodulation reference signal
  • the channel estimates obtained by the ports on different OFDM symbols can be time domain interpolated.
  • the measurement reference signal corresponding to one measurement reference port is sent only on one frequency division multiplexed OFDM symbol, or only Transmitted on a time-division multiplexed measurement reference symbol.
  • the transmission unit is a transmission unit in which the periodic measurement beam reference symbol is located at a high layer, and the measurement beam is a periodic measurement beam;
  • the transmission unit is a transmission unit in which the aperiodic measurement beam reference symbol of the dynamic signaling is located, and the measurement beam is a non-periodic measurement beam.
  • the transmission unit pattern satisfies the following characteristics:
  • the sum of the durations of one or more time division multiplexed measurement reference symbols is equal to the duration of one data symbol; or the sum of the duration of one or more time division multiplexed measurement reference symbols and the duration of one short data symbol is equal to one long data symbol Length of time;
  • the multiplexed pattern class is the sixth class
  • the number of time division multiplexed OFDM and/or frequency division multiplexed OFDM is fixed or different in different transmission units having all beam reference symbols, and measurement in one time division multiplexed OFDM
  • the number of reference symbols and the duration of the short data symbols are fixed or different;
  • the time division multiplexed OFDM includes one or more measurement reference symbols in a data OFDM duration, or one or more measurement reference symbols and one short data symbol in one data OFDM duration; or all beams Reference symbol
  • the number of time division multiplexed measurement reference symbols and/or the number of frequency division multiplexed OFDM symbols are fixed or different. When not, the notification can be made by signaling.
  • the transmission unit pattern further satisfies: carrying the beam measurement reference symbols in a frequency division multiplexing manner on the short data symbols in the transmission unit.
  • the time domain is equal to the time domain length corresponding to the minimum unit of the resource scheduling, and the frequency domain corresponds to all system bandwidths.
  • the data symbols refer to all symbols except the measurement reference symbols, including demodulation reference signals.
  • the one symbol is a sequence of one or more signal elements.
  • the measurement reference signal may be a channel measurement reference signal CSI-RS, and/or a beam measurement reference symbol, and/or a beam tracking measurement reference signal, and/or a beam detection measurement reference symbol.
  • the measurement reference symbol may also be an uplink SRS (Sounding Reference Signal).
  • a write end including: a first processor; a first memory configured to store the first processor executable instruction; and configured to perform information transmission and reception according to the control of the first processor a first transmission device of communication; wherein the first processor is configured to perform an operation in a method of implementing measurement of reference symbol transmission at the transmitting end.
  • the embodiment further provides a receiving end, comprising: a second processor; a second memory configured to store the second processor executable instructions; and configured to perform information transceiving communication according to the control of the second processor a second transmission device; wherein the second processor is configured to perform the operations in the method of receiving the measured reference symbol transmission described above.
  • the present embodiment also provides a computer storage medium arranged to store a computer program arranged to perform the method of measuring reference symbol transmission as described above.
  • the method and apparatus for implementing measurement reference symbol transmission provided by the embodiments of the present invention have the following beneficial effects: solving the problem of conflict between the measurement beam and the data beam for the limited RF link direction of the radio frequency link.
  • the determined multiplexing reference symbols of the measurement reference symbols and the data symbols are displayed as time division multiplexing, the collision problem between the measurement beam and the data beam for the radio beam direction requirements of the limited radio frequency link is effectively avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种实现测量参考符号传输的方法及装置,包括在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;按照确定出的复用图样类别收发测量参考符号和数据符号。本发明实施例提供的技术方案,根据确定出的测量参考符号和数据符号的复用图样类别,收发测量参考符号和数据符号,解决了测量波束和数据波束对有限的射频链路射频波束方向需求的冲突问题。特别地,当确定出的测量参考符号和数据符号的复用图样类别显示为时分复用时,有效避免了测量波束和数据波束对有限射频链路射频波束方向需求的冲突问题。

Description

一种实现测量参考符号传输的方法及装置 技术领域
本发明实施例涉及移动通信技术,尤指一种基于高频混合波束通信方式,实现测量参考符号传输的方法及装置。
背景技术
随着通信技术的发展,数据业务需求量不断增加,可用的低频载波也已经非常稀缺,由此,基于还未充分利用的高频(30~300GHz)载波通信成为解决未来高速数据通信的重要通信手段之一。高频载波通信的可用带宽很大,可以提供有效的高速数据通信。但是,高频载波通信面临的一个很大的技术挑战就是:相对低频信号,高频信号在空间的衰落非常大,虽然会导致高频信号在室外的通信出现了空间的衰落损耗问题,但是由于其波长的减小,通常可以使用更多的天线,从而可以基于波束进行通信以补偿在空间的衰落损耗。
但是,当天线数增多时,由于此时需要每个天线都有一套射频链路,基于数字波束成型也带来了增加成本和功率损耗的问题。因此,目前的研究中比较倾向于混合波束赋形,即射频波束和数字波束共同形成最终的波束。
其中,射频处理的是时域信号,射频波束作用在所有子带上,在一个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号内不可变。但是,一般射频链路是有限的,即一个OFDM符号上射频链路方向比较有限,同时高频的可用带宽很大,各个子带上最优数据发送波束不同,从而为了满足不同子带上的最优数据业务发送波束,有限的射频波束已经远远不够。如果此时按现有长期演进(LTE)***将测量参考信号复用在LTE的OFDM结构中,有限的射频链路还需要抽取一部分射频链路用于测量信号的发送,尤其当数据波束和测量波束之间没有交集时问题比较严重。而且,由于数据波束基于用户的业务需求,比较随机,如果 按照现有的LTE***发送测量信号,将大大加大测量的时延。比如:数据波束在3个子帧中都是波束1、波束2、波束3和波束4(此时有业务需要的用户的最优波束集中在波束1、波束2、波束3和波束4中),而测量波束需要在波束1、波束2、波束3、波束4、波束5、波束6、波束7和波束8中轮询发送,此时测量波束受到数据波束的影响,从而影响了测量周期。或者,数据波束的发送顺序不是轮询的方式,此时也会影响测量周期。同时,为了降低波束训练负载,一般数据波束在一个物理资源块(PRB,Physical Resource Block)资源上是不变的,但是,波束测量则希望在一个子帧中完成多个波束的测量,此时数据波束和测量波束必然产生方向冲突。如果给用户发送多个流,可能一个子带上就需要采用多个射频链路,而且需要针对每个射频链路对用户进行波束训练,此时测量波束和数据波束对有限射频链路的竞争使用就更加突出。而且,由于希望尽量在较少的传输单元内完成一个波束测量周期内需要发送的全部测量波束的发送,但是一个传输单元内数据波束的方向一般是固定的,无疑使得测量波束和数据波束需要竞争使用有限的射频链路。
也就是说,由于射频链路数有限,当测量波束和数据波束不同时,按现有LTE中测量导频(CSI-RS)的发送图样进行参考符号的收发是会出现冲突的。
发明内容
本发明实施例提供一种实现测量参考符号传输的方法及装置,至少能够降低测量波束和数据波束收发的冲突问题。
本发明实施例提供了一种实现测量参考符号传输的方法,包括:
发送端在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
发送端按照确定出的复用图样类别发送测量参考符号和数据符号。
可选地,所述有测量参考符号需要发送的传输单元为:
高层通知的周期波束测量参考符号所在的传输单元;或者,
动态信令通知的非周期波束测量参考符号所在的传输单元。
可选地,所述确定测量参考符号和数据符号的复用图样类别包括:
所述发送端和接收端预先约定一种复用图样类别;或者,
所述发送端根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,
所述发送端根据当前需要发送的数据波束和测量波束对应的射频波束方向是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端;或者,
所述发送端通过信令通知所述接收端复用图样类别。
可选地,所述测量参考符号和数据符号的复用图样类别包括:
第一类复用方式:所有测量参考符号和数据符号时分复用;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有正交频分复用OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上。
可选地,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
可选地,当所述复用方式为频分复用时,所述频分复用为:在有测量参考符号的OFDM上,测量参考符号和数据符号频分复用;所述传输单元内存在没有测量参考符号仅有数据符号的OFDM符号。
可选地,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式;
所述传输单元图样满足如下特征:
一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个所述时分复用的测量参考符号的时长之和等于一个数据符号的时长,或一个或者多个所述时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
可选地,所述传输单元图样还满足:在所述传输单元内的短数据符号上,采用频分复用的方式承载波束测量参考符号。
可选地,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
所有有波束参考符号的不同所述传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;
或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。
可选地,当所述时分复用OFDM和频分复用OFDM的数目不同,或一个时分复用OFDM内的测量参考符号数目和短数据符号的时长不同,或时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目不同时,通过第三指示信息进行通知。
可选地,所述第三指示信息通过如下方式中的一种或者多种进行通知:
通过下行链路控制信息DCI命令通知,和/或通过高层信令通知,和/或通过通知测量参考符号的波束ID和数据符号的波束ID,隐形通知所述时分复用OFDM和所述频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长。
可选地,当所述第三指示信息通过通知测量参考符号的波束ID和数据符号的波束ID进行通知时,包括:
如果频分复用的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,所述接收端确定该OFDM上所有测量参考符号和数据符号采用的是时分复用,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,进而得到短数据符号的时长;
在所述测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。
可选地,所述波束ID集通过信令通知,或者是发送端和接收端预先约定的;不同波束ID集之间没有交集;
所述测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量参考端口的波束ID。
可选地,通过如下方式中的一种或者多种通知所述数据符号的波束ID:
发送解调下行控制信令对应的解调参考信号端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;
和/或,发送解调下行数据信道对应的解调参考信号端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
可选地,当所述确定出的复用图样类别中包含测量参考符号和数据符号时分复用时,所述发送测量参考符号和数据符号包括:
所述测量参考符号和所述数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
可选地,当所述测量参考符号和数据发送符号都是OFDM符号,一个测量参考符号的时长小于或等于一个数据符号时长,测量参考符号的子 载波间隔大于或等于数据符号的子载波间隔时:
所述测量参考符号的子载波间隔是数据符号子载波间隔的参数N/L倍,其中,L、N都为正整数,N表示数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
可选地,所述参数
Figure PCTCN2016092420-appb-000001
其中,X表示最小CSI反馈单元对应的频带宽度内数据子载波个数,CSI反馈基于测量参考信号得到。
可选地,所述参数
Figure PCTCN2016092420-appb-000002
是正整数。
可选地,所述参数
Figure PCTCN2016092420-appb-000003
其中,m1,m2∈{0,1},m3是整数。
可选地,所述测量参考符号的子载波间隔小于或等于信道的相干带宽。
可选地,在一个波束测量参考OFDM符号上,发送一个或者多个所述测量参考符号端口对应的测量参考信号。
可选地,当一个测量参考符号上有多个测量参考符号端口时,端口之间通过在频域码分复用或者频分方式发送。
可选地,一个所述波束测量符号端口在一个波束测量参考OFDM符号的不同资源格上对应不同或者相同的混合波束;
其中,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;波束组合包含每个天线组的波束方向;资源格表示时长等于波束测量参考OFDM符号S-CSI-OFDM占有的时长,频域宽度为S-CSI-OFDM的子载波间隔构成的时频资源格。
可选地,当一个所述测量参考符号的时长小于一个数据符号时长,所述测量参考符号是一个单载波符号,所述数据符号是一个OFDM符号时,其满足如下特征中的一种或者多种:
端口j上的测量参考信号序列为
Figure PCTCN2016092420-appb-000004
其中,SL表示端口j在所述一个单载波测量参考符号发送的时域信号序列长度;
时域信号序列中两个信号之间的时间间隔为Tgap,那么,
一个单载波测量参考符号的时长为:
TCSI=T1,CSI+TGP,T1,CSI=Tgap*SL,TGP=0或者TGP≥TDelay,其中,TDelay表示最大多径时延;TGP表示保护域时长,其上发送信号功率为0;
一个数据符号的时长为:
TData=TCP,Data+T1,Data,其中,TCP,Data表示一个数据OFDM符号上对应的CP长度;T1,Data表示一个数据符号的有效数据占有的时间长度,当一个传输单元中有多个数据符号时长时,T1,Data指最长的数据符号时长;
其中,
Figure PCTCN2016092420-appb-000005
其中,L、N都为正整数,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
可选地,所述参数
Figure PCTCN2016092420-appb-000006
是正整数。
可选地,所述参数
Figure PCTCN2016092420-appb-000007
其中,m1,m2∈{0,1},m3是整数。
可选地,一个所述单载波测量参考符号的时长小于或等于信道的相干时间。
可选地,一个所述单载波测量参考符号上承载一个或者多个波束测量端口;一个波束测量端口对应一个混合波束,该混合波束在所述单载波符号所占有的***带宽上保持不变。
可选地,多个所述波束测量端口对应不同的混合波束;不同波束测量端口对应的不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中的波束组合包含每个天线组的波束。
可选地,所述多个波束测量端口对应的测量参考信号序列之间是正交的。
可选地,一个所述单载波测量参考符号上发送的测量参考信号满足如下特征:
所述波束测量端口j对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000008
Figure PCTCN2016092420-appb-000009
其中,M*Tgap≤TDelay,|a|表示a的绝对值,(a)*表示a的共轭;
不同端口j1和端口j2对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000010
可选地,在一个波束测量周期内,包含P个测量参考符号,P个测量参考符号在一个所述传输单元内;
P值通过以下方式中的一种或者多种指示:
通过高层信令通知、和/或通过动态信令通知、和/或通过其他信息计算得到;和/或是一个固定值。
可选地,一个传输单元内得到所有P个测量参考符号位于一个传输单元的末位,P个测量参考符号之间没有数据符号,一个传输单元内P个测量参考符号之后没有数据符号。
可选地,当所述P值通过其他信息计算得到时,包括:
Figure PCTCN2016092420-appb-000011
其中,Btotal,Q都为正整数,Btotal表示一个频域资源上完成一次波束扫描测量需要发送的波束总个数,Q表示所述一个频域资源上在一个测量参考符号上能够同时发送的波束个数。
可选地,一个波束测量周期内的P个测量参考符号和数据符号的时域关系图样满足如下特征之一:
所述测量参考符号和数据符号构成的子帧时域结构的图样固定;或者,有多套图样,通过指示信息选择其中一套或者多套。
可选地,当存在混合波束时,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中,
波束组合中每个天线组的波束方向为天线组的波束方向,具体表示为:
Figure PCTCN2016092420-appb-000012
其中,
Figure PCTCN2016092420-appb-000013
表示第j个混合波束对应的方向图;
Figure PCTCN2016092420-appb-000014
表示第i个天线组对应的波束方向图,其方向为所述波束组的方向;天线组的波束组合表示N个天线组的波束方向图组合,为如下的组合:
Figure PCTCN2016092420-appb-000015
其中,
Figure PCTCN2016092420-appb-000016
表示第j个混合波束对应第i个天线组的基带加权调整标量,第j个混合波束对应的基带加权向量为:
Figure PCTCN2016092420-appb-000017
可选地,所述对N个天线组的对应的一个固定波束组合的不同基带加权的不同混合波束对应的AFRF(φ)相同,
Figure PCTCN2016092420-appb-000018
不同。
可选地,当所述确定出的复用图样类别显示复用类别为第三类复用方式时,在没有测量参考符号的数据传输单元和有测量参考符号的传输单元内,解调参考信号图样不同。
可选地,一个传输单元内的所有测量参考符号在所述传输单元的末位,波束测量参考符号之间没有数据,所述传输单元内,测量参考符号之后没有数据符号。
可选地,频分复用一个OFDM符号上发送一个或者多个测量参考端口对应的测量参考信号。
本发明实施例还提供了一种实现测量参考符号传输的方法,包括:
接收端在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
接收端按照确定出的复用图样类别接收测量参考符号和数据符号。
可选地,所述有测量参考符号需要发送的传输单元为:
高层通知的周期波束测量参考符号所在的传输单元;或者,
动态信令通知的非周期波束测量参考符号所在的传输单元。
可选地,所述确定测量参考符号和数据符号的复用图样类别包括:
所述接收端和发送端预先约定一种复用图样类别;或者,
所述接收端根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,
所述接收端接收来自发送端的信令通知获知的复用图样类别。
可选地,所述测量参考符号和数据符号的复用图样类别包括:
第一类复用方式:所有测量参考符号和数据符号时分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值时域插值;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;此时,接收端相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符 号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
可选地,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
可选地,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式;
所述传输单元图样满足如下特征:
一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个所述时分复用的测量参考符号的时长之和等于一个数据符号的时长;或一个或者多个所述时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
可选地,所述传输单元图样还满足:在所述传输单元内的长数据符号上,采用频分复用的方式承载波束测量参考符号。
可选地,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
所有波束参考符号的不同所述传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;
或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。
可选地,当所述时分复用OFDM和频分复用OFDM的数目不同,或一个时分复用OFDM内的测量参考符号数目和短数据符号的时长不同, 或时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目不同时,通过第三指示信息进行通知。
可选地,所述第三指示信息通过如下方式中的一种或者多种进行通知:
通过下行链路控制信息DCI命令通知,和/或通过高层信令通知,和/或通过通知测量参考符号的波束ID和数据符号的波束ID,以隐形通知所述时分复用OFDM和所述频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长。
可选地,当所述第三指示信息通过通知测量参考符号的波束ID和数据符号的波束ID进行通知时,包括:
如果在所述测量参考符号所在的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,所述发送端确定该OFDM上所有测量参考符号和数据符号采用的是时分复用,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,以得到短数据符号的时长;
在所述测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。
可选地,所述波束ID集通过信令通知,或者是发送端和接收端预先约定的;不同波束ID集之间没有交集;
所述测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量参考端口的波束ID。
可选地,通过如下方式中的一种或者多种通知所述数据符号的波束ID:
发送解调下行控制信令对应的解调参考信号端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;
和/或,发送解调下行数据信道对应的解调参考信号端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
可选地,当所述确定出的复用图样类别显示测量参考符号和数据符号时分复用时,所述接收测量参考符号和数据符号包括:
所述测量参考符号和所述数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
可选地,当所述测量参考符号和数据发送符号都是OFDM符号,一个测量参考符号的时长小于或等于一个数据符号时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔时:
所述测量参考符号的子载波间隔是数据符号子载波间隔的参数N/L倍,其中,L、N都为正整数,N表示数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
可选地,所述参数
Figure PCTCN2016092420-appb-000019
其中,X表示最小CSI反馈单元对应的频带宽度内数据子载波个数,CSI反馈基于测量参考信号得到。
可选地,所述参数
Figure PCTCN2016092420-appb-000020
是正整数。
可选地,所述参数
Figure PCTCN2016092420-appb-000021
其中,m1,m2∈{0,1},m3是整数。
可选地,所述测量参考符号的子载波间隔小于或等于信道的相干带宽。
可选地,在一个波束测量参考OFDM符号上,发送一个或者多个所述测量参考符号端口对应的测量参考信号。
可选地,当一个测量参考符号上有多个所述测量参考符号端口时,端口之间通过在频域码分复用或者频分方式发送。
可选地,一个所述波束测量符号端口在一个波束测量参考OFDM符号的不同资源格上对应不同或者相同的混合波束;
其中,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;波束组合包含每个天线组的波束方向;资源格表示时长等于S-CSI-OFDM占有的时长,频域宽度为S-CSI-OFDM的子载波 间隔构成的时频资源格。
可选地,当一个所述测量参考符号的时长小于一个数据符号时长,所述测量参考符号是一个单载波符号,所述数据符号是一个OFDM符号时,满足如下特征中的一种或者多种:
端口j上的测量参考信号序列为
Figure PCTCN2016092420-appb-000022
其中,SL表示端口j在所述一个单载波测量参考符号发送的时域信号序列长度;
时域信号序列中两个信号之间的时间间隔为Tgap,那么,
一个单载波测量参考符号的时长为:
TCSI=T1,CSI+TGP,T1,CSI=Tgap*SL,TGP=0或者TGP≥TDelay,其中,TDelay表示最大多径时延;TGP表示保护域时长,其上发送信号功率为0;
一个数据符号的时长为:
TData=TCP,Data+T1,Data,其中,TCP,Data表示一个数据OFDM符号上对应的CP长度;T1,Data表示一个数据符号的有效数据占有的时间长度,当一个传输单元中有多个数据符号时长时,T1,Data指最长的数据符号时长;
其中,TCSI≤TData
Figure PCTCN2016092420-appb-000023
其中,L、N都为正整数,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
可选地,所述参数
Figure PCTCN2016092420-appb-000024
是正整数。
可选地,所述参数
Figure PCTCN2016092420-appb-000025
其中,m1,m2∈{0,1},m3是整数。
可选地,一个所述单载波测量参考符号的时长小于或等于信道的相干时间。
可选地,一个所述单载波测量参考符号上承载一个或者多个波束测量端口;一个波束测量端口对应一个混合波束,该混合波束在所述单载波符号所占有的***带宽上保持不变。
可选地,多个所述波束测量端口对应不同的混合波束;不同波束测量端口对应的不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中的波束组合包含每个天线组的波束。
可选地,所述多个波束测量端口对应的测量参考信号序列之间是正交的。
可选地,一个所述单载波测量参考符号上发送的测量参考信号满足如下特征:
所述波束测量端口j对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000026
Figure PCTCN2016092420-appb-000027
其中,M*Tgap≤TDelay,|a|表示a的绝对值,(a)*表示a的共轭;
不同端口j1和端口j2对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000028
可选地,在一个波束测量周期内,包含P个测量参考符号,P个测量参考符号在一个所述传输单元内;
P值通过以下方式中的一种或者多种指示:
通过高层信令通知、和/或通过动态信令通知、和/或通过其他信息计算得到;和/或是一个固定值。
可选地,一个传输单元内得到所有P个测量参考符号位于一个传输单元的末位,P个测量参考符号之间没有数据符号,一个传输单元内P个测量参考符号之后没有数据符号。
可选地,当所述P值通过其他信息计算得到时,包括:
Figure PCTCN2016092420-appb-000029
其中,Btotal,Q都为正整数,Btotal表示一个频域资源上完成一次波束扫描测量需要发送的波束总个数,Q表示所述一个频域资源上在一个测量参考符号上能够同时发送的波束个数。
可选地,一个波束测量周期内的P个测量参考符号和数据符号的时域关系图样满足如下特征之一:
所述测量参考符号和数据符号构成的子帧时域结构的图样固定;或者,
有多套图样,通过指示信息选择其中一套或者多套。
可选地,当存在混合波束时,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中,
波束组合中每个天线组的波束方向为天线组的波束方向,具体表示为:
Figure PCTCN2016092420-appb-000030
其中,
Figure PCTCN2016092420-appb-000031
表示第j个混合波束对应的方向图;
Figure PCTCN2016092420-appb-000032
表示第i个天线组对应的波束方向图,其方向为所述波束组的方向;天线组的波束组合表示N个天线组的波束方向图组合,为如下的组合:
Figure PCTCN2016092420-appb-000033
其中,
Figure PCTCN2016092420-appb-000034
表示第j个混合波束对应第i个天线组的基带加权调整标量,第j个混合波束对应的基带加权向量为:
Figure PCTCN2016092420-appb-000035
可选地,所述对N个天线组的对应的一个固定波束组合的不同基带加权的不同混合波束对应的AFRF(φ)相同,
Figure PCTCN2016092420-appb-000036
不同。
可选地,当所述确定出的复用图样类别显示复用类别为第三类复用方式时,在没有测量参考符号的数据传输单元和有测量参考符号的传输单元内,解调参考信号图样不同。
可选地,一个传输单元内的所有波束测量参考符号在所述传输单元的末位,波束测量参考符号之间没有数据,波束测量参考符号之后没有数据符号。
可选地,当采用频分方式时,频分复用一个OFDM符号上发送一个或者多个测量参考端口对应的测量参考信号。
本发明实施例再提供了一种实现测量参考符号传输的装置,包括第一确定单元,第一处理单元;其中,
第一确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
第一处理单元,设置为按照确定出的复用图样类别发送测量参考符号和数据符号。
可选地,所述第一确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,根据当前需要发送的数据波束和测量波束对应的射频波束方向是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端。
可选地,所述第一处理模块具体设置为:测量参考符号和数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
可选地,所述测量参考符号和数据符号的复用图样类别包括:
第一类复用方式:所有测量参考符号和数据符号时分复用;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上。
可选地,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
可选地,当所述复用方式为频分复用时,所述频分复用为:在有测量参考符号的OFDM上,测量参考符号和数据符号频分复用;所述传输单元内存在没有测量参考符号仅有数据符号的OFDM符号。
可选地,所述有测量参考符号需要发送的传输单元包括:
传输单元为高层通知的周期波束测量参考符号所在的传输单元;或者,
传输单元为动态信令通知的非周期波束测量参考符号所在的传输单元。
可选地,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式时,所述传输单元图样满足如下特征:
一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长,或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
可选地,所述传输单元图样还满足:在所述传输单元内的长数据符号上,采用频分复用的方式承载波束测量参考符号。
可选地,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
所述所有波束参考符号的不同传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。当不同时,可以通过信令进行通知。
本发明实施例又提供了一种实现测量参考符号传输的装置,包括第二 确定单元,第二处理单元;其中,
第二确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
第二处理单元,设置为按照确定出的复用图样类别接收测量参考符号和数据符号。
可选地,所述第二确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,接收来自发送端的信令通知获知的复用图样类别。
可选地,所述第二处理模块具体设置为:测量参考符号和数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
可选地,所述测量参考符号和数据符号的复用图样类别是:
第一类复用方式:所有测量参考符号和数据符号时分复用;对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值时域插值;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;此时,所述装置相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测 量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;此时,所述装置相同解调参考信号端口在不同OFDM符号上的信道估计值进行时域插值;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第二信令指示数据符号发送功率为0的OFDM符号索引;此时,所述装置相同解调参考信号端口在不同OFDM符号上的信道估计值进行时域插值;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
可选地,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
可选地,所述有测量参考符号需要发送的传输单元包括:
传输单元为高层通知的周期波束测量参考符号所在的传输单元;或者,
传输单元为动态信令通知的非周期波束测量参考符号所在的传输单元。
可选地,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式时,其传输单元图样满足如下特征:
一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长;或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
可选地,所述传输单元图样还满足:在所述传输单元内的长数据符号 上,采用频分复用的方式承载波束测量参考符号。
可选地,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
本发明实施例又提供了一种发送端,包括:第一处理器;设置为存储所述第一处理器可执行指令的第一存储器;设置为根据所述第一处理器的控制进行信息收发通信的第一传输装置;
其中,所述第一处理器设置为执行上述发送端的实现测量参考符号传输的方法中的操作。
本发明实施例又提供了一种接收端,包括:第二处理器;设置为存储所述第二处理器可执行指令的第二存储器;设置为根据所述第二处理器的控制进行信息收发通信的第二传输装置;
其中,所述第二处理器设置为执行上述接收端的实现测量参考符号传输的方法中的操作。
本发明实施例又提供了一种计算机存储介质,设置为存储设置为执行上述的实现测量参考符号传输的方法的计算机程序。
与相关技术相比,本申请技术方案包括:在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;按照确定出的复用图样类别收发测量参考符号和数据符号。本发明实施例提供的技术方案,根据确定出的测量参考符号和数据符号的复用图样类别,收发测量参考符号和数据符号,解决了测量波束和数据波束对有限的射频链路射频波束方向需求的冲突问题。特别地,当确定出的测量参考符号和数据符号的复用图样类别显示为时分复用时,有效避免了测量波束和数据波束对有限射频链路射频波束方向需求的冲突问题。
本发明实施例的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明实施例而了解。本发明实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特 别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例实现测量参考符号传输的方法的流程图;
图2为一种混合波束赋形的通信模型图;
图3为本发明测量参考信号和数据符号的时域关系图样的第一实施例示意图;
图4为本发明测量参考信号和数据符号的时域关系图样的第二实施例的示意图;
图5为本发明测量参考信号和数据符号的时域关系图样的第三实施例的示意图;
图6为本发明测量参考信号和数据符号的时域关系图样的第四实施例的示意图;
图7为本发明P=1时,S域的第一实施例的结构示意图;
图8为本发明P=2时,S域的第一实施例的结构示意图;
图9为本发明P=4时,S域的第一实施例的结构示意图;
图10为本发明P=8时,S域的第一实施例的结构示意图;
图11为本发明P=8时,S域的第二实施例的结构示意图;
图12为本发明P=1时,S域的第二实施例的结构示意图;
图13为本发明P=2时,S域的第二实施例的结构示意图;
图14为本发明P=4时,S域的第二实施例的结构示意图;
图15为本发明P=8时,S域的第三实施例的结构示意图;
图16为本发明P=8时,S域的第四实施例的结构示意图;
图17为本发明P=1时,S域的第三实施例的结构示意图;
图18为本发明P=2时,S域的第三实施例的结构示意图;
图19为本发明P=4时,S域的第三实施例的结构示意图;
图20为本发明P=8时,S域的第五实施例的结构示意图;
图21为本发明P=8时,S域的第六实施例的结构示意图;
图22为本发明P=1时的传输单元的实施例的结构图样;
图23为本发明P=2时的传输单元的实施例的结构图样;
图24为本发明P=4时的传输单元的实施例的结构图样;
图25为本发明周期发送测量参考信号的时域周期的实施例的结构图样;
图26为本发明各个射频链路的射频波束方向图不同的实施例示意图;
图27为本发明一个测量参考符号上的各个资源格对应不同射频链路波束图样的实施例的示意图;
图28为本发明各个射频链路的射频波束方向图相同的实施例的示意图;
图29为本发明一个时域单载波符号结构的实施例示意图;
图30为本发明测量参考信号传输单元的子帧结构的第一实施例的示意图;
图31为本发明测量参考信号传输单元的子帧结构的第二实施例的示意图;
图32为本发明测量参考信号传输单元的子帧结构的第三实施例的示意图;
图33为本发明实施例测量参考信号和数据符号频分复用的示意图;
图34为本发明实施例测量参考信号和数据符号频分复用的OFDM图样的示意图;
图35(a)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第一实施例的示意图;
图35(b)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第二实施例的示意图;
图35(c)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第三实施例的示意图;
图35(d)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第四实施例的示意图;
图35(e)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第五实施例的示意图;
图35(f)为本发明第三类复用类别时,测量参考符号和解调参考符号的图样的第六实施例的示意图;
图36为本发明时分复用时,一个波束测量参考端口只在一个测量参考符号上发送图样的实施例的示意图。
图37为本发明实施例实现测量参考符号传输的装置的组成结构示意图;
图38为本发明实施例实现测量参考符号传输的装置的另一组成结构示意图;
图39为本发明测量参考符号在传输单元末位的第一实施例的示意图;
图40为本发明测量参考符号在传输单元末位的第二实施例的示意图;
图41为本发明测量参考符号在传输单元末位的第三实施例的示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明实施例实现测量参考符号传输的方法流程图,如图1所示,包括:
步骤100:在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别。
本步骤中的有测量参考符号需要发送的传输单元为:
高层通知的周期波束测量参考符号所在的传输单元;或者,
动态信令通知的非周期波束测量参考符号所在的传输单元。
本步骤中的确定测量参考符号和数据符号的复用图样类别包括:
发送端和接收端预先约定一种复用图样类别;或者,
发送端和接收端分别根据传输单元的相关时域参数隐形通知的一组复用图样类别,一种实施方式是根据时隙号和子帧号得到复用类别,比如class_t=mod(nf1*20+nf,6),其中nf1为***帧号,nf为子帧号,此时能够充分利用各种复用方式的优缺点,提高频谱利用率,同时减少信令开销;或者,
发送端根据当前需要发送的数据对应的数据波束和测量参考符号对应的测量波束对射频链路波束的需求是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端,相应地,接收端接收来自发送端的信令通知获知的复用图样类别。
可选地,对于发送端,测量参考符号和数据符号的复用图样类别可以包括:
第一类复用方式:所有测量参考符号和数据符号时分复用;且解调参考信号可以在数据符号上,不同解调参考信号端口可以在时域码分复用;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;且解调参考信号和测量参考符号可以在相同的OFDM上频分复用,不同解调参考信号端口可以在时域码分复用;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且 所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素(RE,Resource element)与有测量参考符号的不同OFDM之间,或者,在有测量参考符号的OFDM和没有测量参考符号OFDM之间;不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;且解调参考信号和测量参考符号可以在相同的OFDM上频分复用,不同解调参考信号端口可以在时域码分复用;测量参考符号可以采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;且解调参考信号和测量参考符号可以在相同的OFDM上频分复用,不同解调参考信号端口可以在时域码分复用;测量参考符号可以采用第二信令指示数据符号发送功率为0的OFDM符号索引;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;在测量参考符号和数据符号频分复用的OFDM上,解调参考信号和测量参考符号可以在相同的OFDM上频分复用;不同解调参考信号端口可以在时域码分复用。
其中,当所述复用方式为频分复用时,所述频分复用为:在有测量参考符号的OFDM上,测量参考符号和数据符号频分复用;
所述传输单元内存在没有测量参考符号仅有数据符号的OFDM符号。
对于接收端,测量参考符号和数据符号的复用图样类别可以是:
第一类复用方式:所有测量参考符号和数据符号时分复用;且解调参考信号可以在数据符号上。此时,接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值 可以时域插值;
和/或,第三类服用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符的OFDM上占有RE,且测量参考符号占有的不同OFDM之间,或在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用。此时,接收端相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号可以采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口发送功率为0的OFDM符号索引。此时,接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号可以采用第二信令指示数据符号发送功率为0的OFDM符号索引。此时,接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
其中,
复用图样类别不同,发送端需要通知的信令不同,发送端对应发送的解调参考信号图样不同,不同解调参考信号端口的复用方式不同。
复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
频分复用一个OFDM符号上发送一个或者多个测量参考端口对应的测量参考信号,所述多个测量参考端口采用频域码分和/或频分复用方式进行发送。
特别地,对于第一类复用方式和/或第六类复用方式,其传输单元图样满足如下特征:
时分复用的OFDM内的一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长,此时,一个或者多个测量参考符号占据的时域称为一个时分复用OFDM;或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。优选地,短数据符号上也可以采用频分复用的方式承载测量参考信号。此时,一个或者多个测量参考符号和一个短数据符号占据的时域称为一个时分复用OFDM。
其中,对于一个传输单元,其时域等于资源调度最小单元对应的时域长度,其频域对应所有***带宽。
除此之外,传输单元图样还满足:在所述传输单元内的短数据符号上,采用频分复用的方式承载波束测量参考符号。
当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
所有波束参考符号的不同传输单元中,时分复用OFDM和频分复用OFDM的数目可以固定或不同,一个时分复用OFDM内的测量参考符号数目和短数据符号的时长可以固定即相同或不同。当时分复用OFDM和频分复用OFDM的数目不同,或一个时分复用OFDM内的测量参考符号数目和短数据符号的时长不同时,可以通过第三指示信息进行通知。
其中,当需要采用第三指示信息进行通知时分复用OFDM数目和频分复用OFDM数目,以及一个时分复用OFDM内的测量参考符号数目时,第三指示信息可以通过如下方式中的一种或者多种进行通知:
通过下行链路控制信息(DCI,Downlink Control Information)命令通知,和/或通过高层信令通知,和/或通过通知测量参考符号的波束ID和数据符号的波束ID,从而隐形通知时分复用OFDM和频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长。
其中,通过通知测量参考符号的波束ID和数据符号的波束ID,从而隐形通知时分复用OFDM和频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长,具体包括:
对于发送端:
首先发送端假设所有测量参考信号都是以频分复用方式发送的,如果在测量参考符号所在的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,发送端确定该OFDM上所有测量参考符号和数据符号采用的是时分复用方式发送,即将一个长数据OFDM符号占有的时长分为一个或者多个时分复用的测量参考符号,或者分为一个或者多个时分复用的测量参考符号和一个短数据符号,此时对应所述长数据符号占有的时域简称为一个时分复用OFDM,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,进而得到短数据符号的时长。在测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。其中,
波束ID集可以是通过信令通知的,或者也可以是发送端和接收端预先约定的。不同波束ID集之间没有交集。
测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量 参考端口的波束ID。
发送端可以通过如下方式中的一种或者多种通知数据符号的波束ID:
发送解调下行控制信令对应的解调参考信号端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;和/或,发送解调下行数据信道对应的解调参考信号端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
对于接收端:
首先接收端假设所有测量参考信号都是以频分复用方式发送的,如果在测量参考符号所在的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,接收端确定测量参考符号和数据符号采用的是时分复用,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,进而得到短数据符号的时长。在测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。其中,
波束ID集可以是通过信令通知的,或者也可以是发送端和接收端预先约定的。不同波束ID集之间没有交集。
测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量参考端口的波束ID。
接收端可以通过如下方式中的一种或者多种得到数据符号的波束ID:
获得下行控制信令对应的解调参考端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;和/或,获得发送解调下行数据信道对应的解调参考端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
步骤101:按照确定出的复用图样类别收发测量参考符号和数据符号。
当确定出的复用图样类别中包含测量参考符号和数据符号时分复用 (这里包括全部采用时分复用的第一类复用方式,和部分采用时分复用的第六类复用方式)时,本步骤中的收发测量参考符号和数据符号包括:
测量参考符号和数据符号时域不重叠,频域完全重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
一个传输单元内的所有波束测量参考符号在所述传输单元的末位,测量参考符号之间没有数据,所述传输单元内测量参考符号之后没有数据符号。
其中,如果测量参考符号所在的符号是OFDM符号时,如果不同波束测量参考端口码分复用,那么仅能在频域码分复用。
其中,
当测量参考符号和数据发送符号都是OFDM符号,一个测量参考符号的时长小于或等于一个数据符号时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔时:
一个测量参考符号的时长包括循环移位(CP)长度;
一个数据符号的时长包含CP长度,且当一个传输单元内有多个时长不同的数据OFDM符号时,该数据符号的时长指传输单元内时长最长的数据符号的时长;
测量参考符号的子载波间隔是数据符号子载波间隔的N/L倍,其中,L、N都为正整数,N表示数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
进一步地,
Figure PCTCN2016092420-appb-000037
其中,X表示最小CSI反馈单元对应的频带宽度内数据子载波个数,CSI反馈基于测量参考信号得到。
优选地,
Figure PCTCN2016092420-appb-000038
是正整数。优选地,
Figure PCTCN2016092420-appb-000039
其中,m1,m2∈{0,1},m3是整数。当一个传输单元内有多个数据子载波间隔时,测量参考符号的子载波间隔是指子载波间隔最小的数据子载波间隔。
进一步地,测量参考符号的子载波间隔小于或等于信道的相干带宽。
其中,在一个波束测量参考OFDM符号上(下文中简称为S-CSI-OFDM),发送一个或者多个测量参考符号端口对应的测量参考信号。
进一步地,当一个测量参考符号上有多个波束测量端口时,端口之间通过在频域码分复用或者频分方式发送;
进一步地,一个所述波束测量符号端口在一个波束测量参考OFDM符号的不同资源格上对应不同或者相同的混合波束;其中,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;波束组合包含每个天线组的波束方向;资源格表示时长等于S-CSI-OFDM占有的时长,频域宽度为S-CSI-OFDM的子载波间隔构成的时频资源格。
其中,
当一个测量参考符号的时长小于一个数据符号时长,测量参考符号是一个单载波符号,数据符号是一个OFDM符号时,满足如下特征中的一种或者多种:
端口j上的测量参考信号序列为
Figure PCTCN2016092420-appb-000040
其中,SL表示端口j在该一个单载波测量参考符号发送的时域信号序列长度,其中,时域信号序列中两个信号之间的时间间隔为Tgap,那么,
一个单载波测量参考符号的时长为:
TCSI=T1,CSI+TGP,T1,CSI=Tgap*SL,TGP=0或者TGP≥TDelay,其中,TDelay表示最大多径时延;TGP表示保护域时长,其上发送信号功率为0;
一个数据符号的时长为:
TData=TCP,Data+T1,Data,其中,TCP,Data表示一个数据OFDM符号上对应的CP长度;T1,Data表示一个数据符号的有效数据占有的时间长度,当一个传输单元中有多个数据符号时长时,T1,Data指最长的数据符号时长;
其中,
Figure PCTCN2016092420-appb-000041
其中,L、N都为正整数,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
优选地,
Figure PCTCN2016092420-appb-000042
是正整数。进一步优选地,
Figure PCTCN2016092420-appb-000043
其中, m1,m2∈{0,1},m3是整数。
一个单载波测量参考符号的时长小于或等于信道的相干时间。
进一步地,
一个单载波测量参考符号(简称为S-CSI-Time Sequence)上承载一个或者多个波束测量端口;一个波束测量端口对应一个混合波束,该混合波束在所述单载波符号所占有的***带宽上保持不变。
多个波束测量端口对应不同的混合波束;不同波束测量端口对应的不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中的波束组合包含每个天线组的波束。
多个波束测量端口对应的测量参考信号序列之间是正交的。
进一步地,
一个单载波测量参考符号(简称为S-CSI-Time Sequence)上发送的测量参考信号满足如下特征:
一个波束测量端口j对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000044
Figure PCTCN2016092420-appb-000045
其中,M*Tgap≤TDelay,|a|表示a的绝对值,(a)*表示a的共轭。
不同端口j1和端口j2对应的测量参考信号序列满足:
Figure PCTCN2016092420-appb-000046
其中,
在一个波束测量周期内,包含P个测量参考符号,P个测量参考符号在一个传输单元内。P值通过以下方式中的一种或者多种指示:
通过高层信令通知、和/或通过动态信令通知、和/或通过其他信息计算得到;和/或是一个固定值。
其中,一个传输单元内得到所有P个测量参考符号位于一个传输单元的末位,P个测量参考符号之间没有数据符号,一个传输单元内P个测量 参考符号之后没有数据符号。
其中,当P值通过其他信息计算得到时,包括:
Figure PCTCN2016092420-appb-000047
其中,Btotal,Q都为正整数,Btotal表示一个频域资源上完成一次波束扫描测量需要发送的波束总个数,Q表示所述一个频域资源上在一个测量参考符号上能够同时发送的波束个数。
其中,
一个波束测量周期内的P个测量参考符号和数据符号的时域关系图样满足如下特征之一:
图样固定,即测量参考符号和数据符号构成的子帧时域结构固定;或者,
有多套图样,通过指示信息选择其中一套或者多套。
其中,
当存在混合波束时,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中,波束组合中每个天线组的波束方向为天线组的波束方向,具体表示为:
Figure PCTCN2016092420-appb-000048
其中,
Figure PCTCN2016092420-appb-000049
表示第j个混合波束对应的方向图;
Figure PCTCN2016092420-appb-000050
表示第i个天线组对应的波束方向图,其方向为所述波束组的方向;天线组的波束组合表示N个天线组的波束方向图组合,为如下的组合:
Figure PCTCN2016092420-appb-000051
其中,
Figure PCTCN2016092420-appb-000052
表示第j个混合波束对应第i个天线组的基带加权调整标量,第j个混合波束对应的基带加权向量为:
Figure PCTCN2016092420-appb-000053
进一步地,对N个天线组的对应的一个固定波束组合的不同基带加权的不同混合波束对应的AFRF(φ)相同,
Figure PCTCN2016092420-appb-000054
不同。
当确定出的复用图样类别显示复用类别为第三类复用方式时,在没有测量参考符号的数据传输单元和有测量参考符号的传输单元内,解调参考信号图样不同。
本发明实施例提供的技术方案,根据确定出的测量参考符号和数据符号的复用图样类别,收发测量参考符号和数据符号。具体地,当一个射频链路的数据波束方向和测量波束方向不同时,将测量参考符号和数据符号分时发送,或者测量信号不发送,或者数据信号不发送,当一个射频链路的数据波束方向和测量波束方向相同时,测量参考符号和数据符号时分发送或者频分发送。通过本发明实施例提供的技术方案,解决了测量波束和数据波束对有限的射频链路射频波束方向需求的冲突问题。特别地,当确定出的测量参考符号和数据符号的复用图样类别显示为时分复用时,有效避免了测量波束和数据波束对有限射频链路射频波束方向需求的冲突问题。
下面结合具体实施例对本发明实施例方法进行详细描述。
图2是一种混合波束赋形通信模型图,如图2所示,发送端有N个射频链路,每个射频链路连接M个发射阵子,第n个射频链路中对于来自数字基带的信号进行射频波束赋形即乘以Wn=[wn1 wn2 … wnM]T后,通过各个与该第n个射频链路相连的M个天线阵子发射出去。本发明实施例中,假设发送端从数字基带信号到每个射频链路的信号是时域信号,即图2中的序列S1、S2、…SN都是时域信号,此时,每个射频波束赋形作用到时域信号上,相当于对全带宽信号有此射频波束赋形,即一个射频链路在一个OFDM符号上只能产生一个射频波束,一个测量周期内,需要对一个射频链路的多个射频波束进行测量,一个或者多个射频波束需要在一个或者多个不同的测量参考符号上发送。其中,一个天线组对应一个射频链路,或者一个天线组对应一个基带发送端口,而一个基带发送端口可能对应多个射频链路。
第1实施例
在第1实施例中,一个测量参考符号是一个OFDM符号,测量参考符号和数据符号的复用方式为第一类复用方式,即在所有有测量波束需要发送的传输单元内,所有天线组的所有测量参考符号和数据符号时分复用。 一个测量周期内的P个测量参考符号和数据符号的时域关系图样有Lpattern套,相同图样中P个测量参考符号之间没有数据符号;P个测量参考符号时长或者P个测量参考符号时长和一个短数据符号时长,等于一个长数据符号时长。
如图3~图6所示,一个传输时间单元由14个时长相同的OFDM符号构成长数据符号(D-OFDM)即多个测量参考符号对齐的数据符号,每个OFDM符号的时长为:TData=TCP,Data+T1,Data,只是其中的一个或者2个OFDM符号作为特殊OFDM,称为区域S,以下简称称为S-OFDM。图3为本发明测量参考信号和数据符号的时域关系图样的第一实施例示意图,其中,区域S为第3个D-OFDM符号;图4为本发明测量参考信号和数据符号的时域关系图样的第二实施例的示意图,其中,区域S为第9个D-OFDM符号;图5为本发明测量参考信号和数据符号的时域关系图样的第三实施例的示意图,其中,区域S为第10个D-OFDM符号;图6为本发明测量参考信号和数据符号的时域关系图样的第四实施例的示意图,其中,区域S为第9~10两个D-OFDM符号构成。
进一步地,区域S中分为测量参考区域(S-CSI)和数据区域(S-Data),其中,测量参考区域包括P个时分的测量参考符号;在测量参考区域和数据区域之间包括时隙(GP)域,或者,在S-CSI的P个测量参考符号之间存在GP域,且测量参考区域和数据区域之间存在GP域。其中,GP域为保护间隔,可以认为期间不发送有用信号,GP域的存在是为了在优选特征设计下,凑齐一个D-OFDM域。同时,这些GP域也给射频加权向量的改变提供改变时间。其中,
P值由以下方式中的一种或者多种得到:通过高层信令得到;和/或通过动态信令得到;和/或通过其他信息得到。
这里,通过其他信息得到包括:
Figure PCTCN2016092420-appb-000055
其中Btotal,Q都为正整数,Btotal表示当前完成一次波束扫描测量需要发送扫描的波束总个数,Q表示一个测量符号上发送的波束个数。
区域S的P个测量参考符号(可简称为S-CSI-OFDM)和一个区域S 的数据OFDM符号(可简称为S-Data-OFDM)时长,以及GP长度的时长之和等于一个D-OFDM符号的时长,OFDM的时长包括CP长度。
在图3~图6所示的图样中,P个S-CSI-OFDM符号和一个S-Data-OFDM的构成,以及GP域构成如图7~图11所示。图7对应P=1时的S-OFDM的组成情况,图8对应P=2时的S-OFDM的组成情况,图9对应P=4时的S-OFDM的组成情况,图10和图11分别对应P=8时的S-OFDM的两种组成情况。其中,S-OFDM为本文中的术语,用于区别符号表示特殊OFDM符号即多个测量参考符号,或者区别于多个测量参考符号和数据符号占有的D-OFDM。
在第1实例中,假设TCP,Data=MT1,Data,第1实例中
Figure PCTCN2016092420-appb-000056
只是为了举例简单,也参照现有的LTE设计准则,并不排斥其他的M取值。假设资源分配的最小单元对应的频域子载波个数为N,测量参考区域的测量参考OFDM保证其子载波间隔为
Figure PCTCN2016092420-appb-000057
其中,L为正整数,满足0<L≤N,Δf为D-OFDM符号的子载波间隔。进一步地,
Figure PCTCN2016092420-appb-000058
其中,X是最小CSI反馈单元对应的频域数据子载波个数,CSI反馈基于测量参考信号得到,优选地
Figure PCTCN2016092420-appb-000059
为正整数。同时需要满足S-Data区域构成一个S-Data-OFDM符号,且
Figure PCTCN2016092420-appb-000060
其中,K是正整数,满足0<K≤N,优选地,
Figure PCTCN2016092420-appb-000061
为正整数。
在第1实施例中,为了简化描述,以现有LTE为例,假设Δf=15kHz,N=12,L=1,X=12,即在S-CSI区域的子载波间隔等于D-OFDM区域的一个PRB资源上的频域宽带。也就是说,与现有LTE兼容,一个PRB资源上有一个测量参考资源对应,那么:
基于1)S-CSI域的OFDM符号的CP长度,以及S-Data-OFDM域符号的CP长度都等于D-OFDM域的CP长度;2)
Figure PCTCN2016092420-appb-000062
为正整数;3)
Figure PCTCN2016092420-appb-000063
为正整数;4)S-CSI域的各个测量OFDM时长相同四个优选特征,得到如表1所示的S-OFDM的各项参数:
Figure PCTCN2016092420-appb-000064
Figure PCTCN2016092420-appb-000065
表1
此时发送端和接收端可以建立如表2所示的测量导频配置,表2中空白的项,表示没有这样的配置。
Figure PCTCN2016092420-appb-000066
表2
第1实例的另一种实施方式中,可以基于如表3所示的参数设计S-OFDM域。
Figure PCTCN2016092420-appb-000067
Figure PCTCN2016092420-appb-000068
表3
此时,发送端和接收端可以建立如表4所示的测量导频配置,
导频图样索引 P=1 P=2 P=4 P=8
0(如图3) 图7 图8 图9 图10
1(如图4) 图7 图8 图9 图10
2(如图5) 图7 图8 图9 图10
表4
在第1实施例的又一种实施方式中,在S-OFDM域的各个OFDM符号之间***GP,此时,图7~图11分别对应改变为图12~16。此时,将图7~图11中的一个GP均分为相应的(p+1)个GP插于S-OFDM区域的各个不同OFDM符号之间,这些OFDM包括S-CSI区域的OFDM和S-Data-OFDM区域的OFDM。这种情况下,表2改变为表5所示,表4改变为表6所示。
Figure PCTCN2016092420-appb-000069
表5
Figure PCTCN2016092420-appb-000070
表6
上述实实现方式中,由于N=12,存在与现有采样点存在非整数采样点相同的问题,这样,不利于***实施。因此,需要提高采样速率,比如需要30.72*12MHz的采样速率,或者30.72*24MHz的采样速率。
需要说明的是,在第一实施例中,在图3~图5中,D-OFDM的第3、第9和第10个OFDM分别作为区域S,是以现有的LTE为例,在其他***设计中,比如高频***设计中,可以作为区域S的D-OFDM域的OFDM只要满足当前传输周期上,其上没有特殊信号的传输即可。其中,特殊信号至少包括以下信号中的一种或者多种:广播信号、和/或解调导频信号、和/或同步信号、和/或其他测量参考信号如CRS等。在第一实施例中为描述方便假设Δf=15kHz,但是并不排除D-OFDM域的子载波间隔。
第2实施例
在第2实施例中,一个测量参考符号是一个OFDM符号,测量参考符号和数据符号的复用方式为在所有有测量波束需要发送的传输单元内,所有天线组的所有测量参考符号和数据符号时分复用。本实施例中,假设N=2m=M2m1,其中2m1表示D-OFDM区域的对应资源调度的最小单元包含的子载波个数,以现在的LTE为例2m1即是一个PRB中包含的子载波个数。
此时,区域S仅包含S-CSI区域的P个测量参考OFDM符号和一个S-Data-OFDM符号,没有GP域。为了描述简单,第二实施例中假设M=1,2m1=16,那么:
基于1)S-CSI域的OFDM符号的CP长度,以及S-Data-OFDM域符号的CP长度都大于等于D-OFDM域的CP长度;2)
Figure PCTCN2016092420-appb-000071
为正整数;3)
Figure PCTCN2016092420-appb-000072
为正整数;4)S-CSI域的各个所述测量OFDM时长相同四个优选特征,建立如表7所示的S-OFDM的各项参数:
Figure PCTCN2016092420-appb-000073
Figure PCTCN2016092420-appb-000074
表7
在表7所示的P=8选项对应S-CSI域的CP长度中,前7个测量参考符号S-CSI-OFDM的CP时间长度为146Ts1,第8个测量参考符号S-CSI-OFDM的CP时间长度为145Ts1。此时,发送端和接收端可以建立如表8所示的测量导频配置,表8中空白的项表示没有这样的配置。
Figure PCTCN2016092420-appb-000075
表8
在第2实施例的另一种实施方式中,假设2m1=16,N=2*16=32,从而可以基于以上1)~4)的优选特征得到如表9所示的区域S域的各项参数。
Figure PCTCN2016092420-appb-000076
Figure PCTCN2016092420-appb-000077
表9
如表9所示,P=4中,S-CSI区域的前2个测量参考符号S-CSI-OFDM的CP长度为183Ts1,其余2个测量参考符号S-CSI-OFDM的CP长度为182Ts1;P=8中,S-CSI区域的前2个测量参考符号S-CSI-OFDM的CP长度为159Ts1,其余2个测量参考符号S-CSI-OFDM的CP长度为158Ts1。此时,发送端和接收端可以建立如表10所示的测量导频配置。
Figure PCTCN2016092420-appb-000078
表10
在第2实施例的又一种实现方式中,只有一种导频图样,即将区域S的P个S-CSI-OFDM符号和一个S-Data-OFDM符号***13个D-OFDM符号之间,如图22~图24所示。优选地,依然满足P个S-CSI-OFDM符号和一个S-Data-OFDM符号的时长之和为一个D-OFDM符号的时长,此时,各种OFDM符号时长包括其CP长度。发送端和接收端可以建立如表11所示的测量导频配置,表11中的空白项表示没有这样的配置。
Figure PCTCN2016092420-appb-000079
表11
在第2实施例中的各种P值下,P个S-CSI-OFDM符号和一个 S-Data-OFDM符号***的位置只是一种示例,并不用于限定***的方法。同时,本实施例也不排除将一个区域S平分为P1个S-CSI-OFDM-Pre符号,其中,P1为根据本实施例中的1)~4)四个优选特征得到一个区域S能够平分的最大S-CSI-OFDM-Pre符号的个数,然后将P1个S-CSI-OFDM-Pre符号均匀***D-OFDM之间。这样,实际调用时,根据P值的不同选用前P个S-CSI-OFDM-Pre作为测量S-CSI-OFDM符号,剩余的P1-P OFDM符号可以用于数据的发送,或者假设发送功率为0。这样,对齐了各个小区的CSI区域,控制了小区间CSI测量信号和Data数据之间的相互干扰。
第3实施例
在第3实施例中,测量参考信号是周期和/或非周期发送的。
当测量参考信号是周期发送时,在每个周期的第1个或者第1~2个子帧满足第1实施例和第2实施例中的如图3~图6所示的子帧结构之一,其他子帧中没有测量参考信号的发送。
当有非周期指示信令指示当前子帧中有测量参考信号的发送时,当前子帧的子帧结构中有第1实施例和第2实施例的子帧结构,其他子帧中没有测量参考信号的发送。
如图25所示,此时在一个测量周期内,只有第1子帧即子帧0的帧结构满足第1实施例或者第2实施例中的任意一个,其他子帧结构中没有测量信号的发送,子帧结构不同于子帧0。如图25所示,有测量参考信号的子帧中在D-OFDM3中,不同测量周期中P值保持不变和子帧结构保持不变,除非有新的P值和图样指示通知。
如果在一个测量周期中没有周期测量参考信号的子帧,有信令指示需要传输非周期测量参考信号,那么,其子帧结构需要基于配置的图样,在子帧上发送非周期测量参考信号。
第4实施例
在第1实施例~第3实施例中,给出了S-CSI域的P个测量参考信号及其和S-Data-OFDM,D-OFDM的时域图样关系,以及测量参考信号的周 期和非周期发送方式。在本实施例中,将对具体的一个测量参考信号的发送方式进行说明。
在第4实施例中,一个测量参考信号为一个OFDM符号,当前***带宽下全带宽共有
Figure PCTCN2016092420-appb-000080
个测量参考信号区域,即一个S-CSI-OFDM符号上的时频资源格(RE)(可以简称为S-CSI-OFDM-RE),相同的时频资源上只能发送一个端口信号,该一个端口可以对应一个射频链路的一个波束,也可以对应一个由N个基带波束赋形和射频波束赋形混合波束赋形的结果。
端口j的信号的发送过程如下:
首先,随机产生如公式(1)所示的随机序列:
Figure PCTCN2016092420-appb-000081
在公式(1)中,常数l表示一个子帧中的OFDM符号索引;ns表示子帧索引;c(m)是m序列,其初始化值的产生函数为:
Figure PCTCN2016092420-appb-000082
m序列的产生函数在每个OFDM起始处初始化一次,其中
Figure PCTCN2016092420-appb-000083
是测量参考信号的虚拟小区号,p是一个S域内,P个测量参考信号的索引,NCP是CP长度索引,NCP属于{0,1}。
接着,端口j上的对应于第m个S-CSI-OFDM-RE上,测量基带预编码如公式(2)所示:
Figure PCTCN2016092420-appb-000084
在公式(2)中,
Figure PCTCN2016092420-appb-000085
表示第i个射频链路对应端口j的在第m个S-CSI-OFDM-RE上的基带预编码权值。在本实施例中,假设每个S-CSI-OFDM-RE只有一个端口信号发送,但是,不同S-CSI-OFDM-RE上的公式(2)的加权值可以不同。
如果加权值不同,同一端口在不同S-CSI-OFDM-RE对应不同的混合波束结果。这样,第i个射频链路上基带频域信号序列如公式(3)所示:
Figure PCTCN2016092420-appb-000086
然后,对yi(m)序列进行IFFT变换得到时域Fy序列如公式(4)所示:
Figure PCTCN2016092420-appb-000087
加上CP构成如图2所示的第i个射频链路上基带输出Si序列如公式(5)所示:
Figure PCTCN2016092420-appb-000088
最后,与第i个射频链路上相连的如图2所示的第ij个天线阵子上的发送等效基带信号如公式(6)所示:
Figure PCTCN2016092420-appb-000089
对公式(6)得到的等效基带信号进行射频处理处理,例如加载频等处理之后发送出去。
此时,不同S-CSI-OFDM-RE资源上,对应的测量参考信号的端口相同,但是对应的混合波束不同。不同S-CSI-OFDM-RE资源上对应对同一射频链路波束组合中的不同成分通过基带波束加权调整之后的不同混合波束,即一个S-CSI-OFDM-RE资源上的端口j对应的混合波束方向图如公式(7)所示:
Figure PCTCN2016092420-appb-000090
但是,在一个S-CSI-OFDM-RE资源上,只能发送一个端口的测量参考信号,除非此时多个S-CSI-OFDM-RE资源进行上的端口参考信号进行码分复用,码分复用的M个S-CSI-OFDM-RE资源上最多发送M个端口对应的所述测量参考信号。而且,复用的M个测量参考信号占有的频域宽度应该小于或等于预编码资源块组(PRG,Precoding Resource block Groups)的频域宽度。
第4实施例的一种实施方式中,假设各个射频链路对应的射频波束目标方向不同,如图26所示,各个S-CSI-OFDM-RE资源上通过Wj,m,BB基 带预编码向量的调整组成混合波束,假设Wj,m,BB为只有其中一个元素非0,其他元素为0的列向量,此时各个S-CSI-OFDM-RE上对应图26中4个波束之一,如图27所示,作为示例,第0~第3个S-CSI-OFDM-RE依次对应图26中的波束[4,2,3,1]。即基于S-CSI-OFDM-RE上的一个发送端口j上的测量参考信号,可以得到N个射频链路中的其中之一的一个射频波束到接收端的信道质量。比如:图27中接收端基于第0个S-CSI-OFDM-RE上的接收信号以及端口j上的测量参考信号,可以得到第4个射频链路发出如波束4所示的波束方向时的接收端的信道质量。
第4实施例的另一种实施方式中,假设各个射频链路对应的射频波束目标方向相同,此时通过基带的预编码调整,可以形成此射频宽波束方向下的不同窄波束,如图27所示,此时通过射频链路的波束调整,各个S-CSI-OFDM-RE可以对应此射频宽波束内的不同窄波束。
第5实施例
在第5实施例中,一个测量参考符号基于单载波的方式发送,此时子帧图样,和各个区域S的结构和第一实施例和第二实施例相同,只是其中的一个S-CSI-OFDM更改为一个单载波信号,称为一个S-CSI-TimeSequence,而且S-CSI-OFDM的时域长度和更改为本实施例中的S-CSI-TimeSequence的时长。接收端通过对单载波参考符号做相关得到时域抽头,然后对时域抽头做快速傅里叶(FFT)变换,得到频域信道相应。
本实施例中,一个S-CSI-TimeSequence的长度需要考虑如下优选特征:
1)TS-CSI-TimeSequence≤TD-Data
2)一个S-CSI-TimeSequence分为两个域,第一域发送时域测量参考信号序列TS-CSI-TimeSequence,,第二个域为保护域TS-CSI-TimeSequence,2,保护域的时长大于或等于TDelay,即TS-CSI-TimeSequence,2≥TDelay,其中,TDelay表示最大多径时延,保护域中信号功率为0。特别地,图12~图17中的GP域即为TS-CSI-TimeSequence,2域,且其中的S-CSI-OFDM域在本实施例中为TS-CSI-TimeSequence,1
3)
Figure PCTCN2016092420-appb-000091
其中,L、N都为正整数。进一步地,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。其中,T1,D-Data为一个D-OFDM的除去CP长度之后的时域长度;
4)一个S-CSI-TimeSequence符号上可以同时发送多个端口对应的测量参考信号,不同测量参考信号是对同一射频链路组的波束组合的不同基带波束加权调整之后的不同混合波束,同一个端口在当前S-CSI-TimeSequence符号中占有的全***带宽上对应的混合波束相同。
同一个S-CSI-TimeSequence符号上同时发送的多个端口对应的测量参考信号序列之间需要满足正交性特性:
Figure PCTCN2016092420-appb-000092
其中,
Figure PCTCN2016092420-appb-000093
是第j个端口的测量参考信号序列。
同一端口对应的测量参考信号序列需要满足如下特征:
Figure PCTCN2016092420-appb-000094
其中,m=1,…M,,
Figure PCTCN2016092420-appb-000095
在本实施例所示的上述条件下,一个S-CSI-TimeSequence的信号发送过程如下:
首先,形成时域对应各个射频链路的基带信号:
Figure PCTCN2016092420-appb-000096
其中,
Figure PCTCN2016092420-appb-000097
表示第porti测量端口对应第i个射频链路的基带预编码权值。
然后,各个射频链路上的基带信号和,与此射频链路相连的M个天线阵子的射频调整量相乘之后,如下与第i个射频链路相连的第ij个天线阵子上等效基带发送信号为:y1ij(m)=wij Si(m),m=0,1,…SL-1,其中,wij表示与第i个射频链路相连的第ij个天线阵子对应的射频波束调整标量。通过对此信号进行射频处理处理,例如加载频等处理之后发送出去。
第5实施例的另一种实施方式中,本实施例中上述优选特征2)中保护 域的长度为0,也就是说只有第一域即波束参考信号序列域。
第6实施例
在第6实施例中,测量参考符号和数据符号的复用方式为第六类复用方式,即在所有有测量波束需要发送的传输单元内,部分测量参考符号和数据符号采用时分方式,部分测量参考符号和数据符号采用频分方式。进一步地,有测量参考符号的不同传输单元中,复用子帧图样可能是变化的。
在第6实施例中,假设其子帧图样有三种,如图30~图32所示,其中,斜线阴影表示的OFDM中测量参考信号和数据信号通过时分方式发送,横条阴影表示的OFDM中测量参考信号和数据信号通过频分方式发送。如图33所示,其中C0表示一个测量参考符号占有的子载波位置,其在OFDM中的子载波位置只是示例,并不用于限定其位置,也就是说不排除其他子载波位置。图30~图32中斜线阴影表示测量参考信号和数据信号通过时分方式发送,其图样可以为图7~图10中之一,或者图12~图15之一;或者图17~图20之一。此时,测量参考信号的时长之和,或者测量参考信号和短数据的时长之和等于长数据的时长。
接收端可以通过如下方式中的一种或者多种判断波束测量传输单元内具体的子帧图样:
方式一:由高层信令得到;
方式二:由DCI信令得到;
方式三:对比已经成功解调的PDCCH的参考信号的波束ID和传输单元内需要发送的测量波束ID,如果两个波束ID属于一个天线组的同一波束方向集时,测量波束方向和数据波束方向相同;波束方向相同的天线组的测量参考符号和数据符号采用频分复用的方式,波束方向相同的天线组的测量参考符号和数据符号采用时分复用的方式,各个天线组的测量参考信号的发送次序是收发双发预先约定的。需要说明的是,这里假设接收端能够得知波束ID,而且可以得到各个波束ID对应各个天线组的波束方向集,因为波束是混合波束,多个混合波束在一个天线组中对应一个波束 方向。
通过对比波束方向是否相同,并依据一定的准则判断出当前测量参考信号传输子帧中测量参考符号和数据符号的复用方式。其中,准则固定或者通过高层信令通知。
方式四:对比天线组的解调PDSCH的参考信号的波束ID和天线组的所述测量波束ID,两个波束ID属于天线组的同一波束方向集时,测量波束方向和数据波束方向相同。需要说明的是,这里假设接收端能够得知波束ID,而且可以得到波束ID对应的各个天线组的波束ID,或者发送端和接收端约定每个天线组的不同方向对应的波束ID集合,因为波束是混合波束,多个混合波束在一个天线组中对应一个波束方向。通过对比波束方向是否相同,并依据一定的准则判断出当前测量参考信号传输子帧中测量参考符号和数据符号的复用方式。其中,准则固定或者通过高层信令通知;
在方式三和方式四中,根据波束方向相同与否判断子帧图样的准则可以包括:
传输单元内,测量参考符号和数据符号频分方式发送的图样中有测量参考信号的S个OFDM符号中,至少有一个OFDM符号上存在至少一个天线组的测量波束和数据波束方向不相同,那么,传输单元中所有天线组的测量参考符号和数据符号采用时分方式发送;
一个传输单元内,测量参考符号和数据符号频分方式发送的图样中有测量参考信号的S个OFDM符号中,仅在存在至少一个天线组的测量波束和数据波束方向不相同的OFDM符号上,OFDM上所有天线组的波束测量符号和数据符号采用时分方式发送;测量波束和数据波束方向相同的OFDM符号上,测量参考符号和数据符号通过时分或者频分方式发送;
一个传输单元内,测量参考符号和数据符号频分方式发送的图样中有测量参考信号的S个OFDM符号中,仅在存在至少一个天线组的测量波束和数据波束方向不相同的OFDM符号上,OFDM符号上测量波束和数据波束方向不相同的天线组的测量参考符号和数据符号时分方式发送, OFDM符号上测量波束和数据波束方向相同的天线组的测量参考符号和数据符号时分或者频分方式发送;测量波束和数据波束方向相同的OFDM符号上,OFDM符号上的所有测量参考符号和数据符号通过时分或者频分方式发送。
方式五:对比天线组公共参考符号的波束ID和天线组的测量波束ID,两个波束ID属于天线组的同一波束方向集时,测量波束方向和数据波束方向相同。需要说明的而是,这里假设接收端能够得知波束ID,而且可以得到波束ID对应的各个天线组的波束ID,或者发送端和接收端约定每个天线组的不同方向对应的波束ID集合,因为波束是混合波束,多个混合波束在一个天线组中对应一个波束方向。通过对比波束方向是否相同,并依据一定的准则判断出当前测量参考信号传输子帧中测量参考符号和数据符号的复用方式。其中,准则可以是预先设置的固定的或者通过高层信令通知;
当采用方式三~方式五中的任意一种并结合方式一进行通知时,方式三~五优于方式一,即如果一个传输单元内,其中两种方式都可用,以方式三~五中的方式为准。
第7实施例
在第7实施例中,在有测量参考符号的不同传输单元中,测量参考符号和数据符号复用类别不同,通过信令通知或者传输单元所在的时域参数得到不同的复用类别。
如图34所示,在不同的测量周期内,测量参考符号占有的子帧位置固定,只是测量参考符号和数据符号的复用类别可能不同,需要通过信令通知不同的复用类别。
在第7实施例中,信令可以是如下之一:
高层信令。此时复用类别的改变周期可以更长,不用每个测量周期都通知;或者,
动态信令。此时复用类别的改变可以有测量参考符号的每个子帧都通 知,进而可以每个子帧都不同;或者,
高层信令+动态信令。此时高层信令通知类别子集,其中类别子集属于所述六类类别构成的集合动态信令通知具体的类别。
根据传输单元所在的时域参数通知复用类别,如图34所示,此时根据传输单元所在的***帧号,所在的子帧号计算得到复用类别,一种实施方式是,所有复用类别或者复用类别的一个子集在不同的测量周期轮流使用,另一种实施方式是所有复用类别或者复用类别的一个子集在不同有测量参考符号的传输单元内轮流使用。
需要说明的是,本实施例也不排除在不同测量周期内,测量参考符号占有的子帧索引不同的实现方式等。
第8实施例
在第8实施例中,当传输单元内的数据符号和测量参考符号的复用方式为第三类复用方式时,即所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符的OFDM上占有RE,测量参考符号占有的不同OFDM之间或者有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域码分复用。
本实施例中,每个解调参考信号端口在所有有测量参考符号的OFDM上占有RE,并在至少一个没有测量参考符号的数据OFDM符号上占有RE。
以现有LTE的子帧结构为例,如图35(a)~35(f)所示,为一个物理资源块,包括14个OFDM符号,12个子载波,前7个OFDM符号称为偶数时隙,后7个OFDM符号称为奇数时隙。在不同的OFDM符号上,不同波束测量端口如图中CSI1、CSI2端口不进行时域的码分复用,即CSI1只占偶数时隙第5个OFDM上的一个RE,CSI2只占偶数时隙第6个OFDM上的一个RE,;CSI3和CSI4之间不进行时域的码分复用,即CSI3只占奇数时隙第5个OFDM上的一个RE,CSI4只占奇数时隙第6个OFDM上 的一个RE。一个解调参考信号端口在有CSI-RS占有的所有OFDM上占有RE,其在有CSI-RS的不同OFDM符号RE之间不进行时域扩频。比如:DMRS1和DMRS2在CSI1~CSI4占有的OFDM上都占有RE,而且在没有测量参考符号的OFDM符号上至少占有一个RE,比如在偶数和奇数时隙的第4个OFDM符号上占有RE。此时同一个解调参考信号端口比如DMRS1或者DMRS2在偶数时隙和奇数时隙第5,6个OFDM符号上(即有CSI-RS的OFDM)符号上由DMRS得到的信道估计结果,只能用于所在OFDM符号的解调,不能时域插值用于其它OFDM的解调,在偶数时隙和奇数时隙第4个OFDM符号上由DMRS得到的信道估计结果可以用于其它OFDM符号即比如偶数时隙第0~3个OFDM中没有PDCCH的OFDM符号和奇数时隙第0~3个OFDM符号上的数据解调。
具体地,图35(a)~图35(f)是满足上述约束下,不同解调参考信号的图样。在图35(a)中,不同解调参考信号端口采用频分复用方式。在图35(b)中,不同解调参考信号端口在有CSI-RS的OFDM符号上进行频分复用,在没有CSI-RS的OFDM符号上不同解调参考信号端口进行时域码分复用。在图35(c),不同解调参考信号端口采用频域码分复用的方式。图35(d)中,不同解调参考信号端口也采用频域码分复用,只是减低了解调参考信号端口在频域的密度。在图35(e)中,不同解调参考信号端口采用频分和/或频域码分复用的方式。只是解调信号端口在频域占用相邻的子载波。图35(f)中,不同解调参考信号端口采用频分和/或频域码分复用的方式,只是相对35(e)提高了解调参考信号的密度。
总之,如图35(a)~图35(f),相同解调参考信号端口,比如解调参考信号端口1或者解调参考信号端口2,在偶数时隙和奇数时隙第5~第6个OFDM上总共4个OFDM得到的信道估计值之间不能进行时域插值,在偶数时隙或者奇数时隙第4个OFDM得到的信道估计值不能和在偶数时隙和奇数时隙第5~第6个总共4个OFDM得到的信道估计值进行时域插值;没有测量参考符号也没有解调参考信号的OFDM上的信道值,只能由没有测量参考符号的解调参考信号得到的估计值进行时域插值得到。
在本实施例中,一个解调参考端口在有测量参考符号的OFDM上占有RE,即使在解调参考端口所在的PRB上,OFDM上没有测量参考符号,但是同一子帧内的OFDM上至少有一个RE上有测量参考符号,此时,也认为OFDM上有测量参考符号,解调参考端口在OFDM上需要占有RE。
这样,就允许数据符号上的射频波束组合方向和测量参考符号所在的OFDM上的射频波束不同,以解决冲突问题。允许不同的测量参考符号所在的不同OFDM之间的射频波束不同,可以通过在一个传输单元内完成多个射频波束的扫描来实现。
第9实施例
在第9实施例中,一个测量参考符号端口只在一个测量参考符号上发送,不同波束测量端口可以在相同的测量参考符号上在频域码分复用,或者在频域频分复用,而不在时域码分复用。
如图36所示,当测量参考符号和数据符号时分复用时,即有C0~C3四个测量参考符号,一个波束测量参考端口如CSI0只在C0上发送,不占有其他测量参考符号中资源如C1~C3上没有CSI0的信号发送时,不同的波束测量参考端口可以在相同测量参考符号上如C0上频分复用,或者在C0上在码分复用。此时,不同测量参考端口不能在不同测量参考符号通过在时域码复用,即不同测量参考端口不能在不同测量参考符号的时域进行扩频,比如CSI3和CSI4不能在C0~C3中的任意两个,或者任意三个,或者四个上进行扩频,不能达到时域的码分复用。这样,就允许不同测量参考符号上的射频天线组的波束组合不同。
第10实施例
在本实施例中,测量参考符号在一个传输单元的末位,所述传输单元内测量参考符号之后没有数据符号。
如图39所示,时分复用的测量参考符号C0~C4在一个传输单元的末位,图中一个子帧(即一个传输的单元)包含的测量参考符号的个数只是示例,而且图中有一个短数据符号也只是示例,并不用于限定本发明的保 护范围,在本实施例的其他实施方式中不包括短数据符号,如图40所示。
本实施例的另一种实施方式中,所有包含有测量参考符号的符号都在一个传输单元的末位,包括时分复用测量参考符号和频分复用的OFDM符号,如图41所示,图41中频分复用的OFDM符号个数和时分复用的波束测量参考符号的个数也只是示例,并不用于限定本发明的保护范围,可能都是频分复用的OFDM符号,也可能没有短数据符号。
本发明实施例中这样的处理,使得在数据传输阶段射频波束不发生改变,在子帧末位对射频波束进行改变。
图37为本发明实施例实现测量参考符号传输的装置的组成结构示意图,如图37所示,该装置设置在发送端中,至少包括第一确定单元,第一处理单元;其中,
第一确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
第一处理单元,设置为按照确定出的复用图样类别发送测量参考符号和数据符号。
其中,第一确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,根据当前需要发送的数据波束和测量波束对应的射频波束方向是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端。
第一处理模块具体设置为:测量参考符号和数据符号时域不重叠,频域完全重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
对于发送端,测量参考符号和数据符号的复用图样类别可以包括:
第一类复用方式:所有测量参考符号和数据符号时分复用;和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;
和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且 所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素(RE,Resource element),且与有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上。
当复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
图38为本发明实施例实现测量参考符号传输的装置的组成结构示意图,如图38所示,该装置设置在接收端中,至少包括第二确定单元,第二处理单元;其中,
第二确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
第二处理单元,设置为按照确定出的复用图样类别接收测量参考符号和数据符号。
其中,
第二确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,接收来自发送端的信令通知获知的复用图样类别。
第二处理模块具体设置为:测量参考符号和数据符号时域不重叠,频域完全重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
对于接收端,测量参考符号和数据符号的复用图样类别可以是:
第一类复用方式:所有测量参考符号和数据符号时分复用;对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值;
和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值时域插值;
和/或,第三类服用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符的OFDM上占有RE,且测量参考符号占有的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用。此时,接收端相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口发送功率为0的OFDM符号索引。此时,接收端相同解调参考信号端口在不同OFDM符号上的信道估计值可以时域插值;
和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第二信令指示数据符号发送功率为0的OFDM符号索引。此时,接收端相同解调参考信号端口在不同OFDM符号上的信道估计值可以时域插值;
和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部 分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
当复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
无论是图37所示的发送端,还是图38所示的接收端:
有测量参考符号需要发送的传输单元包括:
传输单元为高层通知的周期测量波束参考符号所在的传输单元,测量波束为周期测量波束;或者,
传输单元为动态信令通知的非周期测量波束参考符号所在的传输单元,测量波束为非周期测量波束。
特别地,对于第一类复用方式和第六类复用方式,其传输单元图样满足如下特征:
所述时分复用的OFDM内的一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长;或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长;
当复用图样类别为第六类时,所述所有有波束参考符号的不同传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同,一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;或者,所有有波束参考符号的不 同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。当不同时,可以通过信令进行通知。
进一步地,传输单元图样还满足:在所述传输单元内的短数据符号上,采用频分复用的方式承载波束测量参考符号。
其中,对于一个传输单元,其时域等于资源调度最小单元对应的时域长度,其频域对应所有***带宽。
在上述实施例中,数据符号指除所述测量参考符号之外的所有符号,包括解调参考信号。所述一个符号是由一个或者多个信号元素构成的序列。所述测量参考信号可以是信道测量参考信号CSI-RS,和/或是波束测量参考符号,和/或是波束跟踪测量参考信号,和/或是波束探测测量参考符号。所述测量参考符号还可以是上行SRS(Sounding reference signal)。
本实施例中还提供了一撰发送端,包括:第一处理器;设置为存储所述第一处理器可执行指令的第一存储器;设置为根据所述第一处理器的控制进行信息收发通信的第一传输装置;其中,所述第一处理器设置为执行上述发送端的实现测量参考符号传输的方法中的操作。
本实施例还提供了一种接收端,包括:第二处理器;设置为存储所述第二处理器可执行指令的第二存储器;设置为根据所述第二处理器的控制进行信息收发通信的第二传输装置;其中,所述第二处理器设置为执行上述接收到的实现测量参考符号传输的方法中的操作。
本实施例还提供了一种计算机存储介质,设置为存储设置为执行如上述的实现测量参考符号传输的方法的计算机程序。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种实现测量参考符号传输的方法及装置,具有以下有益效果:解决了测量波束和数据波束对有限的射频链路射频波束方向需求的冲突问题。特别地,当确定出的测量参考符号和数据符号的复用图样类别显示为时分复用时,有效避免了测量波束和数据波束对有限射频链路射频波束方向需求的冲突问题。

Claims (101)

  1. 一种实现测量参考符号传输的方法,包括:
    发送端在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
    发送端按照确定出的复用图样类别发送测量参考符号和数据符号。
  2. 根据权利要求1所述的方法,其中,所述有测量参考符号需要发送的传输单元为:
    高层通知的周期波束测量参考符号所在的传输单元;或者,
    动态信令通知的非周期波束测量参考符号所在的传输单元。
  3. 根据权利要求1所述的方法,其中,所述确定测量参考符号和数据符号的复用图样类别包括:
    所述发送端和接收端预先约定一种复用图样类别;或者,
    所述发送端根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,
    所述发送端根据当前需要发送的数据波束和测量波束对应的射频波束方向是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端;或者,
    所述发送端通过信令通知所述接收端复用图样类别。
  4. 根据权利要求1所述的方法,其中,所述测量参考符号和数据符号的复用图样类别包括:
    第一类复用方式:所有测量参考符号和数据符号时分复用;
    和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;
    和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有正交频分复用OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
    和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
    和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;
    和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上。
  5. 根据权利要求4所述的方法,其中,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
  6. 根据权利要求4所述的方法,其中,当所述复用方式为频分复用时,所述频分复用为:在有测量参考符号的OFDM上,测量参考符号和数据符号频分复用;所述传输单元内存在没有测量参考符号仅有数据符号的OFDM符号。
  7. 根据权利要求4所述的方法,其中,所述测量参考符号和数据 符号的复用图样类别为第一类复用方式和/或第六类复用方式;
    所述传输单元图样满足如下特征:
    一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
    一个或者多个所述时分复用的测量参考符号的时长之和等于一个数据符号的时长,或一个或者多个所述时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
  8. 根据权利要求7所述的方法,其中,所述传输单元图样还满足:在所述传输单元内的短数据符号上,采用频分复用的方式承载波束测量参考符号。
  9. 根据权利要求4所述的方法,其中,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
    所有有波束参考符号的不同所述传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
    其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;
    或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。
  10. 根据权利要求9所述的方法,其中,当所述时分复用OFDM和频分复用OFDM的数目不同,或一个时分复用OFDM内的测量参考符号数目和短数据符号的时长不同,或时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目不同时,通过第三指示信息 进行通知。
  11. 根据权利要求10所述的方法,其中,所述第三指示信息通过如下方式中的一种或者多种进行通知:
    通过下行链路控制信息DCI命令通知,和/或通过高层信令通知,和/或通过通知测量参考符号的波束ID和数据符号的波束ID,隐形通知所述时分复用OFDM和所述频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长。
  12. 根据权利要求11所述的方法,其中,当所述第三指示信息通过通知测量参考符号的波束ID和数据符号的波束ID进行通知时,包括:
    如果频分复用的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,接收端确定该OFDM上所有测量参考符号和数据符号采用的是时分复用,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,进而得到短数据符号的时长;
    在所述测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。
  13. 根据权利要求12所述的方法,其中,所述波束ID集通过信令通知,或者是发送端和接收端预先约定的;不同波束ID集之间没有交集;
    所述测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量参考端口的波束ID。
  14. 根据权利要求12所述的方法,其中,通过如下方式中的一种 或者多种通知所述数据符号的波束ID:
    发送解调下行控制信令对应的解调参考信号端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;
    和/或,发送解调下行数据信道对应的解调参考信号端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
  15. 根据权利要求1或4所述的方法,其中,当所述确定出的复用图样类别中包含测量参考符号和数据符号时分复用时,所述发送测量参考符号和数据符号包括:
    所述测量参考符号和所述数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
  16. 根据权利要求15所述的方法,其中,当所述测量参考符号和数据发送符号都是OFDM符号,一个测量参考符号的时长小于或等于一个数据符号时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔时:
    所述测量参考符号的子载波间隔是数据符号子载波间隔的参数N/L倍,其中,L、N都为正整数,N表示数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
  17. 根据权利要求16所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100001
    其中,X表示最小CSI反馈单元对应的频带宽度内数据子载波个数,CSI反馈基于测量参考信号得到。
  18. 根据权利要求17所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100002
    是正整数。
  19. 根据权利要求18所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100003
    Figure PCTCN2016092420-appb-100004
    其中,m1,m2∈{0,1},m3是整数。
  20. 根据权利要求16所述的方法,其中,所述测量参考符号的子载波间隔小于或等于信道的相干带宽。
  21. 根据权利要求16所述的方法,其中,在一个波束测量参考OFDM符号上,发送一个或者多个所述测量参考符号端口对应的测量参考信号。
  22. 根据权利要求21所述的方法,其中,当一个测量参考符号上有多个测量参考符号端口时,端口之间通过在频域码分复用或者频分方式发送。
  23. 根据权利要求21所述的方法,其中,一个所述波束测量符号端口在一个波束测量参考OFDM符号的不同资源格上对应不同或者相同的混合波束;
    其中,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;波束组合包含每个天线组的波束方向;资源格表示时长等于波束测量参考OFDM符号S-CSI-OFDM占有的时长,频域宽度为S-CSI-OFDM的子载波间隔构成的时频资源格。
  24. 根据权利要求15所述的方法,其中,当一个所述测量参考符号的时长小于一个数据符号时长,所述测量参考符号是一个单载波符号,所述数据符号是一个OFDM符号时,其满足如下特征中的一种或者多种:
    端口j上的测量参考信号序列为
    Figure PCTCN2016092420-appb-100005
    其中,SL表示端口j在所述一个单载波测量参考符号发送的时域信号序列长度;
    时域信号序列中两个信号之间的时间间隔为Tgap,那么,一个单载波测量参考符号的时长为:
    TCSI=T1,CSI+TGP,T1,CSI=Tgap*SL,TGP=0或者TGP≥TDelay,其中,TDelay表示最大多径时延;TGP表示保护域时长,其上发送信号功率为0;
    一个数据符号的时长为:
    TData=TCP,Data+T1,Data,其中,TCP,Data表示一个数据OFDM符号上对应的CP长度;T1,Data表示一个数据符号的有效数据占有的时间长度,当一个传输单元中有多个数据符号时长时,T1,Data指最长的数据符号时长;
    其中,TCSI≤TData
    Figure PCTCN2016092420-appb-100006
    其中,L、N都为正整数,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
  25. 根据权利要求24所述的方法,其中,所述
    Figure PCTCN2016092420-appb-100007
    是正整数。
  26. 根据权利要求25所述的方法,其中,所述
    Figure PCTCN2016092420-appb-100008
    其中,m1,m2∈{0,1},m3是整数。
  27. 根据权利要求24所述的方法,其中,一个所述单载波测量参考符号的时长小于或等于信道的相干时间。
  28. 根据权利要求24所述的方法,其中,一个所述单载波测量参考符号上承载一个或者多个波束测量端口;一个波束测量端口对应一个混合波束,该混合波束在所述单载波符号所占有的***带宽上保持不变。
  29. 根据权利要求28所述的方法,其中,多个所述波束测量端口对应不同的混合波束;不同波束测量端口对应的不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中的波束组合包含每个天线组的波束。
  30. 根据权利要求29所述的方法,其中,所述多个波束测量端口 对应的测量参考信号序列之间是正交的。
  31. 根据权利要求24所述的方法,其中,一个所述单载波测量参考符号上发送的测量参考信号满足如下特征:
    所述端口j对应的测量参考信号序列满足:
    Figure PCTCN2016092420-appb-100009
    Figure PCTCN2016092420-appb-100010
    其中,M*Tgap≤TDelay,|a|表示a的绝对值,(a)*表示a的共轭;
    不同端口j1和端口j2对应的测量参考信号序列满足:
    Figure PCTCN2016092420-appb-100011
  32. 根据权利要求15所述的方法,其中,在一个波束测量周期内,包含P个测量参考符号,P个测量参考符号在一个所述传输单元内;
    P值通过以下方式中的一种或者多种指示:
    通过高层信令通知、和/或通过动态信令通知、和/或通过其他信息计算得到;和/或是一个固定值。
  33. 根据权利要求32所述的方法,其中,一个传输单元内得到所有P个测量参考符号位于一个传输单元的末位,P个测量参考符号之间没有数据符号,一个传输单元内P个测量参考符号之后没有数据符号。
  34. 根据权利要求32所述的方法,其中,当所述P值通过其他信息计算得到时,包括:
    Figure PCTCN2016092420-appb-100012
    其中,Btotal,Q都为正整数,Btotal表示一个频域资源 上完成一次波束扫描测量需要发送的波束总个数,Q表示所述一个频域资源上在一个测量参考符号上能够同时发送的波束个数。
  35. 根据权利要求15所述的方法,其中,一个波束测量周期内的P个测量参考符号和数据符号的时域关系图样满足如下特征之一:
    所述测量参考符号和数据符号构成的子帧时域结构的图样固定;或者,有多套图样,通过指示信息选择其中一套或者多套。
  36. 根据权利要求23、28或29所述的方法,其中,当存在混合波束时,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中,
    波束组合中每个天线组的波束方向为天线组的波束方向,具体表示为:
    Figure PCTCN2016092420-appb-100013
    其中,
    Figure PCTCN2016092420-appb-100014
    表示第j个混合波束对应的方向图;
    Figure PCTCN2016092420-appb-100015
    表示第i个天线组对应的波束方向图,其方向为所述波束组的方向;天线组的波束组合表示N个天线组的波束方向图组合,为如下的组合:
    Figure PCTCN2016092420-appb-100016
    其中,
    Figure PCTCN2016092420-appb-100017
    表示第j个混合波束对应第i个天线组的基带加权调整标量,第j个混合波束对应的基带加权向量为:
    Figure PCTCN2016092420-appb-100018
  37. 根据权利要求36所述的方法,其中,所述对N个天线组的对应的一个固定波束组合的不同基带加权的不同混合波束对应的AFRF(φ)相同,
    Figure PCTCN2016092420-appb-100019
    不同。
  38. 根据权利要求1或4所述的方法,其中,当所述确定出的复用图样类别显示复用类别为第三类复用方式时,在没有测量参考符号的数据传输单元和有测量参考符号的传输单元内,解调参考信号图样不同。
  39. 根据权利要求15所述的方法,其中,一个传输单元内的所有测量参考符号在所述传输单元的末位,波束测量参考符号之间没有数据,所述传输单元内,测量参考符号之后没有数据符号。
  40. 根据权利要求4所述的方法,其中,频分复用一个OFDM符号上发送一个或者多个测量参考端口对应的测量参考信号。
  41. 一种实现测量参考符号传输的方法,包括:
    接收端在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
    接收端按照确定出的复用图样类别接收测量参考符号和数据符号。
  42. 根据权利要求41所述的方法,其中,所述有测量参考符号需要发送的传输单元为:
    高层通知的周期波束测量参考符号所在的传输单元;或者,
    动态信令通知的非周期波束测量参考符号所在的传输单元。
  43. 根据权利要求41所述的方法,其中,所述确定测量参考符号和数据符号的复用图样类别包括:
    所述接收端和发送端预先约定一种复用图样类别;或者,
    所述接收端根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,
    所述接收端接收来自发送端的信令通知获知的复用图样类别。
  44. 根据权利要求41所述的方法,其中,所述测量参考符号和数据符号的复用图样类别包括:
    第一类复用方式:所有测量参考符号和数据符号时分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
    和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值时域插值;
    和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;此时,接收端相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
    和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
    和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
    和/或,第六类复用方式:部分测量参考符号和数据符号时分复用, 部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
  45. 根据权利要求44所述的方法,其中,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
  46. 根据权利要求44所述的方法,其中,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式;
    所述传输单元图样满足如下特征:
    一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
    一个或者多个所述时分复用的测量参考符号的时长之和等于一个数据符号的时长;或一个或者多个所述时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
  47. 根据权利要求46所述的方法,其中,所述传输单元图样还满足:在所述传输单元内的长数据符号上,采用频分复用的方式承载波束测量参考符号。
  48. 根据权利要求44所述的方法,其中,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
    所有波束参考符号的不同所述传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
    其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;
    或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。
  49. 根据权利要求48所述的方法,其中,当所述时分复用OFDM和频分复用OFDM的数目不同,或一个时分复用OFDM内的测量参考符号数目和短数据符号的时长不同,或时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目不同时,通过第三指示信息进行通知。
  50. 根据权利要求49所述的方法,其中,所述第三指示信息通过如下方式中的一种或者多种进行通知:
    通过下行链路控制信息DCI命令通知,和/或通过高层信令通知,和/或通过通知测量参考符号的波束ID和数据符号的波束ID,以隐形通知所述时分复用OFDM和所述频分复用OFDM的数目,以及一个时分复用OFDM内的测量参考符号数目和短数据符号的时长。
  51. 根据权利要求50所述的方法,其中,当所述第三指示信息通过通知测量参考符号的波束ID和数据符号的波束ID进行通知时,包括:
    如果在所述测量参考符号所在的OFDM上,至少存在一个测量参考符号的波束ID和该OFDM上数据符号的波束ID不属于任意一个相同的波束ID集时,所述发送端确定该OFDM上所有测量参考符号和数据符号采用的是时分复用,且时分复用的OFDM内的测量参考符号个数为该OFDM上的对应的测量参考符号个数,以得到短数据符号的时长;
    在所述测量参考符号所在的OFDM上,当测量参考符号的波束ID和该OFDM上数据符号的波束ID属于一个相同的波束ID集时,测量参考符号和数据符号频分复用。
  52. 根据权利要求51所述的方法,其中,所述波束ID集通过信令通知,或者是发送端和接收端预先约定的;不同波束ID集之间没有交集;
    所述测量参考符号的波束ID包含该测量参考符号上承载的所有波束测量参考端口的波束ID。
  53. 根据权利要求51所述的方法,其中,通过如下方式中的一种或者多种通知所述数据符号的波束ID:
    发送解调下行控制信令对应的解调参考信号端口的波束ID,下行控制信令对应的所有解调参考端口波束ID都是数据符号的波束ID;
    和/或,发送解调下行数据信道对应的解调参考信号端口的波束ID,下行数据信道对应的所有解调参考端口波束ID都是数据符号的波束ID。
  54. 根据权利要求41或44所述的方法,其中,当所述确定出的复用图样类别显示测量参考符号和数据符号时分复用时,所述接收测量参考符号和数据符号包括:
    所述测量参考符号和所述数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
  55. 根据权利要求54所述的方法,其中,当所述测量参考符号和数据发送符号都是OFDM符号,一个测量参考符号的时长小于或等于一个数据符号时长,测量参考符号的子载波间隔大于或等于数据符 号的子载波间隔时:
    所述测量参考符号的子载波间隔是数据符号子载波间隔的参数N/L倍,其中,L、N都为正整数,N表示数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
  56. 根据权利要求55所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100020
    其中,X表示最小CSI反馈单元对应的频带宽度内数据子载波个数,CSI反馈基于测量参考信号得到。
  57. 根据权利要求56所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100021
    是正整数。
  58. 根据权利要求57所述的方法,其中,所述参数
    Figure PCTCN2016092420-appb-100022
    Figure PCTCN2016092420-appb-100023
    其中,m1,m2∈{0,1},m3是整数。
  59. 根据权利要求55所述的方法,其中,所述测量参考符号的子载波间隔小于或等于信道的相干带宽。
  60. 根据权利要求55所述的方法,其中,在一个波束测量参考OFDM符号上,发送一个或者多个所述测量参考符号端口对应的测量参考信号。
  61. 根据权利要求60所述的方法,其中,当一个测量参考符号上有多个所述测量参考符号端口时,端口之间通过在频域码分复用或者频分方式发送。
  62. 根据权利要求60所述的方法,其中,一个所述波束测量符号端口在一个波束测量参考OFDM符号的不同资源格上对应不同或者相同的混合波束;
    其中,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;波束组合包含每个天线组的波束方向;资源格表示时长等于波束测量参考OFDM符号S-CSI-OFDM占有的时 长,频域宽度为S-CSI-OFDM的子载波间隔构成的时频资源格。
  63. 根据权利要求54所述的方法,其中,当一个所述测量参考符号的时长小于一个数据符号时长,所述测量参考符号是一个单载波符号,所述数据符号是一个OFDM符号时,满足如下特征中的一种或者多种:
    端口j上的测量参考信号序列为
    Figure PCTCN2016092420-appb-100024
    其中,SL表示端口j在所述一个单载波测量参考符号发送的时域信号序列长度;
    时域信号序列中两个信号之间的时间间隔为Tgap,那么,
    一个单载波测量参考符号的时长为:
    TCSI=T1,CSI+TGP,T1,CSI=Tgap*SL,TGP=0或者TGP≥TDelay,其中,TDelay表示最大多径时延;TGP表示保护域时长,其上发送信号功率为0;
    一个数据符号的时长为:
    TData=TCP,Data+T1,Data,其中,TCP,Data表示一个数据OFDM符号上对应的CP长度;T1,Data表示一个数据符号的有效数据占有的时间长度,当一个传输单元中有多个数据符号时长时,T1,Data指最长的数据符号时长;
    其中,TCSI≤TData
    Figure PCTCN2016092420-appb-100025
    其中,L、N都为正整数,N是数据传输最小资源分配单元包含的子载波个数的整数倍,0<L≤N。
  64. 根据权利要求63所述的方法,其中,所述
    Figure PCTCN2016092420-appb-100026
    是正整数。
  65. 根据权利要求64所述的方法,其中,所述
    Figure PCTCN2016092420-appb-100027
    其中,m1,m2∈{0,1},m3是整数。
  66. 根据权利要求63所述的方法,其中,一个所述单载波测量参 考符号的时长小于或等于信道的相干时间。
  67. 根据权利要求63所述的方法,其中,一个所述单载波测量参考符号上承载一个或者多个波束测量端口;一个波束测量端口对应一个混合波束,该混合波束在所述单载波符号所占有的***带宽上保持不变。
  68. 根据权利要求67所述的方法,其中,多个所述波束测量端口对应不同的混合波束;不同波束测量端口对应的不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中的波束组合包含每个天线组的波束。
  69. 根据权利要求68所述的方法,其中,所述多个波束测量端口对应的测量参考信号序列之间是正交的。
  70. 根据权利要求63所述的方法,其中,一个所述单载波测量参考符号上发送的测量参考信号满足如下特征:
    所述端口j对应的测量参考信号序列满足:
    Figure PCTCN2016092420-appb-100028
    Figure PCTCN2016092420-appb-100029
    其中,M*Tgap≤TDelay,|a|表示a的绝对值,(a)*表示a的共轭;
    不同端口j1和端口j2对应的测量参考信号序列满足:
    Figure PCTCN2016092420-appb-100030
  71. 根据权利要求54所述的方法,其中,在一个波束测量周期内,包含P个测量参考符号,P个测量参考符号在一个所述传输单元内;
    P值通过以下方式中的一种或者多种指示:
    通过高层信令通知、和/或通过动态信令通知、和/或通过其他信息计算得到;和/或是一个固定值。
  72. 根据权利要求71所述的方法,其中,一个传输单元内得到所有P个测量参考符号位于一个传输单元的末位,P个测量参考符号之间没有数据符号,一个传输单元内P个测量参考符号之后没有数据符号。
  73. 根据权利要求71所述的方法,其中,当所述P值通过其他信息计算得到时,包括:
    Figure PCTCN2016092420-appb-100031
    其中,Btotal,Q都为正整数,Btotal表示一个频域资源上完成一次波束扫描测量需要发送的波束总个数,Q表示所述一个频域资源上在一个测量参考符号上能够同时发送的波束个数。
  74. 根据权利要求54所述的方法,其中,一个波束测量周期内的P个测量参考符号和数据符号的时域关系图样满足如下特征之一:
    所述测量参考符号和数据符号构成的子帧时域结构的图样固定;或者,
    有多套图样,通过指示信息选择其中一套或者多套。
  75. 根据权利要求62、67或63所述的方法,其中,当存在混合波束时,不同混合波束是对N个天线组对应的一个固定波束组合的不同基带加权的混合波束;其中,
    波束组合中每个天线组的波束方向为天线组的波束方向,具体表示为:
    Figure PCTCN2016092420-appb-100032
    其中,
    Figure PCTCN2016092420-appb-100033
    表示第j个混合波束对应的方向图;
    Figure PCTCN2016092420-appb-100034
    表示第i个天线组对应的波束方向图,其方向为所述波束组的方向;天线组的波束组合表示N个天线组的波束方向图 组合,为如下的组合:
    Figure PCTCN2016092420-appb-100035
    其中,
    Figure PCTCN2016092420-appb-100036
    表示第j个混合波束对应第i个天线组的基带加权调整标量,第j个混合波束对应的基带加权向量为:
    Figure PCTCN2016092420-appb-100037
  76. 根据权利要求75所述的方法,其中,所述对N个天线组的对应的一个固定波束组合的不同基带加权的不同混合波束对应的AFRF(φ)相同,
    Figure PCTCN2016092420-appb-100038
    不同。
  77. 根据权利要求41或44所述的方法,其中,当所述确定出的复用图样类别显示复用类别为第三类复用方式时,在没有测量参考符号的数据传输单元和有测量参考符号的传输单元内,解调参考信号图样不同。
  78. 根据权利要求54所述的方法,其中,一个传输单元内的所有波束测量参考符号在所述传输单元的末位,波束测量参考符号之间没有数据,波束测量参考符号之后没有数据符号。
  79. 根据权利要求44所述的方法,其中,当采用频分方式时,频分复用一个OFDM符号上发送一个或者多个测量参考端口对应的测量参考信号。
  80. 一种实现测量参考符号传输的装置,包括第一确定单元,第一处理单元;其中,
    第一确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
    第一处理单元,设置为按照确定出的复用图样类别发送测量参考符号和数据符号。
  81. 根据权利要求80所述的装置,其中,所述第一确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,根据当前需要发送的数据波束和测量波束对应的射频波束方向是否冲突的结果确定的一种复用图样类别,并通过信令通知给接收端。
  82. 根据权利要求80所述的装置,其中,所述第一处理模块具体设置为:测量参考符号和数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
  83. 根据权利要求80、81或82所述的装置,其中,所述测量参考符号和数据符号的复用图样类别包括:
    第一类复用方式:所有测量参考符号和数据符号时分复用;
    和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;
    和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;
    和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;
    和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;采用第二信令指示数据符号发送功率为0的OFDM符号索引;
    和/或,第六类复用方式:部分测量参考符号和数据符号时分复用, 部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上。
  84. 根据权利要求83所述的装置,其中,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
  85. 根据权利要求83所述的装置,其中,当所述复用方式为频分复用时,所述频分复用为:在有测量参考符号的OFDM上,测量参考符号和数据符号频分复用;所述传输单元内存在没有测量参考符号仅有数据符号的OFDM符号。
  86. 根据权利要求83或84所述的装置,其中,所述有测量参考符号需要发送的传输单元包括:
    传输单元为高层通知的周期波束测量参考符号所在的传输单元;或者,
    传输单元为动态信令通知的非周期波束测量参考符号所在的传输单元。
  87. 根据权利要求86所述的装置,其中,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式时,所述传输单元图样满足如下特征:
    一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
    一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长,或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
  88. 根据权利要求87所述的装置,其中,所述传输单元图样还满足:在所述传输单元内的长数据符号上,采用频分复用的方式承载波束测量参考符号。
  89. 根据权利要求83所述的装置,其中,当所述测量参考符号和数据符号的复用图样类别为第六类复用方式时,
    所述所有波束参考符号的不同传输单元中,时分复用OFDM和/或频分复用OFDM的数目固定或不同;一个时分复用OFDM内的测量参考符号数目和短数据符号的时长固定或不同;
    其中,所述时分复用OFDM表示一个数据OFDM时长内包括一个或者多个测量参考符号数目,或者一个数据OFDM时长内包括一个或者多个测量参考符号数目和一个短数据符号;
    或者,所有有波束参考符号的不同所述传输单元中,时分复用的测量参考符号的数目和/或频分复用的OFDM符号的数目固定或不同。
  90. 一种实现测量参考符号传输的装置,包括第二确定单元,第二处理单元;其中,
    第二确定单元,设置为在有测量参考符号需要发送的传输单元内,确定测量参考符号和数据符号的复用图样类别;
    第二处理单元,设置为按照确定出的复用图样类别接收测量参考符号和数据符号。
  91. 根据权利要求90所述的装置,其中,所述第二确定单元具体设置为:预先约定一种复用图样类别;或者,根据传输单元的相关时域参数隐形通知的一组复用图样类别;或者,接收来自发送端的信令通知获知的复用图样类别。
  92. 根据权利要求90所述的装置,其中,所述第二处理模块具体设置为:测量参考符号和数据符号时域不重叠;一个测量参考符号的时长小于或等于一个数据符号的时长,测量参考符号的子载波间隔大于或等于数据符号的子载波间隔。
  93. 根据权利要求90、91或92所述的装置,其中,所述测量参考符号和数据符号的复用图样类别是:
    第一类复用方式:所有测量参考符号和数据符号时分复用;对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值进行时域插值;
    和/或,第二类复用方式:所有测量参考符号和数据符号频分复用;接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值时域插值;
    和/或,第三类复用方式:所有测量参考符号和数据符号频分复用;且所有解调参考信号端口在有测量参考符号的所有OFDM上占有资源元素RE,且有测量参考符号的不同OFDM之间,或者在有测量参考符号的OFDM和没有测量参考符号OFDM之间,不同解调参考信号端口如果码分复用仅能在频域,不能在时域码分复用;此时,所述装置相同解调参考信号端口在有测量参考符号不同OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在有测量参考符号的OFDM和没有测量参考符号OFDM之间信道估计值不可以时域插值,相同解调参考信号端口在没有测量参考符号的OFDM之间的信道估计值可以进行时域插值;
    和/或,第四类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第一信令指示发送功率为0的测量参考符号端口或者测量参考符号端口对应的发送功率为0的OFDM符号索引;此时,所述装置相同解调参考信号端口在不同OFDM符号上的信道估计值 进行时域插值;
    和/或,第五类复用方式:所有测量参考符号和数据符号频分复用;测量参考符号采用第二信令指示数据符号发送功率为0的OFDM符号索引;此时,所述装置相同解调参考信号端口在不同OFDM符号上的信道估计值进行时域插值;
    和/或,第六类复用方式:部分测量参考符号和数据符号时分复用,部分测量参考符号和数据符号频分复用;且解调参考信号只在频分复用的OFDM上或者没有测量参考信号的OFDM上;测量参考符号测量参考符号接收端对由相同解调参考信号端口在不同OFDM符号上得到的信道估计值可以时域插值。
  94. 根据权利要求93所述的装置,其中,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
  95. 根据权利要求90所述的装置,其中,所述有测量参考符号需要发送的传输单元包括:
    传输单元为高层通知的周期波束测量参考符号所在的传输单元;或者,
    传输单元为动态信令通知的非周期波束测量参考符号所在的传输单元。
  96. 根据权利要求95所述的装置,其中,所述测量参考符号和数据符号的复用图样类别为第一类复用方式和/或第六类复用方式时,其传输单元图样满足如下特征:
    一个或者多个时分复用的测量参考符号之间没有数据符号;以及,
    一个或者多个时分复用的测量参考符号的时长之和等于一个数据符号的时长;或一个或者多个时分复用的测量参考符号的时长和一个短数据符号的时长之和等于一个长数据符号的时长。
  97. 根据权利要求96所述的装置,其中,所述传输单元图样还满足:在所述传输单元内的长数据符号上,采用频分复用的方式承载波束测量参考符号。
  98. 根据权利要求96所述的装置,其中,所述复用图样类别为第一类复用方式至第六类复用方式中的任意一类时,一个测量参考端口对应的测量参考信号仅在一个频分复用的OFDM符号上发送,或者仅在一个时分复用的测量参考符号上发送。
  99. 一种发送端,包括:
    第一处理器;
    设置为存储所述第一处理器可执行指令的第一存储器;
    设置为根据所述第一处理器的控制进行信息收发通信的第一传输装置;
    其中,所述第一处理器设置为执行如权利要求1至40中任一项所述的实现测量参考符号传输的方法中的操作。
  100. 一种接收端,包括:
    第二处理器;
    设置为存储所述第二处理器可执行指令的第二存储器;
    设置为根据所述第二处理器的控制进行信息收发通信的第二传输装置;
    其中,所述第二处理器设置为执行如权利要求41至79中任一项所述的实现测量参考符号传输的方法中的操作。
  101. 一种计算机存储介质,设置为存储设置为执行如权利要求1-79中任一项所述的实现测量参考符号传输的方法的计算机程序。
PCT/CN2016/092420 2016-01-15 2016-07-29 一种实现测量参考符号传输的方法及装置 WO2017121095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610027927.3A CN106982184B (zh) 2016-01-15 2016-01-15 一种实现测量参考符号传输的方法及装置
CN201610027927.3 2016-01-15

Publications (1)

Publication Number Publication Date
WO2017121095A1 true WO2017121095A1 (zh) 2017-07-20

Family

ID=59310769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092420 WO2017121095A1 (zh) 2016-01-15 2016-07-29 一种实现测量参考符号传输的方法及装置

Country Status (2)

Country Link
CN (2) CN106982184B (zh)
WO (1) WO2017121095A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831219A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 业务冲突处理方法、用户终端及计算机可读存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412764B (zh) * 2017-08-17 2022-07-29 华为技术有限公司 同步方法和装置
CN109802818B (zh) * 2017-11-17 2022-05-10 华为技术有限公司 通信方法及装置
WO2019096195A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 通信方法及装置
CN110505698B (zh) * 2018-05-18 2023-06-23 中兴通讯股份有限公司 信道配置方法及终端、存储介质、电子装置
CN110798292B (zh) * 2018-08-02 2021-01-08 维沃移动通信有限公司 映射反馈信息的方法和装置
CN113037403B (zh) * 2019-12-24 2023-08-15 维沃移动通信有限公司 旁链路参考信号接收功率的测量方法及装置、通信设备
CN116112046A (zh) * 2021-11-10 2023-05-12 华为技术有限公司 参考信号的传输方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873625A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继链路中的信道估计方法、***及设备
CN102158292A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 信道测量导频发送方法及基站
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826471B2 (en) * 2003-03-11 2010-11-02 Nortel Networks Limited Multi-beam cellular communication system
JP4099118B2 (ja) * 2003-08-08 2008-06-11 株式会社エヌ・ティ・ティ・ドコモ 信号伝送装置及び信号伝送方法
US7742533B2 (en) * 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
CN101411239B (zh) * 2006-04-06 2010-12-22 株式会社日立制作所 无线通信***、无线基站装置和无线终端装置
CN101394213B (zh) * 2007-09-19 2013-05-08 中兴通讯股份有限公司 一种时分双工方式频分复用***的多天线通信方法
CN101447815B (zh) * 2007-11-27 2013-02-13 电信科学技术研究院 一种波束赋形传输的方法和装置
CN101552757B (zh) * 2008-04-04 2013-01-16 中兴通讯股份有限公司 下行专用导频和物理资源块的映射方法及其发射装置
US9077415B2 (en) * 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
CN102916735B (zh) * 2012-10-17 2016-06-08 东南大学 利用大规模天线阵列的无线通信方法
CN103944847B (zh) * 2013-01-18 2019-06-18 中兴通讯股份有限公司 导频符号承载及处理方法、装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873625A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继链路中的信道估计方法、***及设备
CN102158292A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 信道测量导频发送方法及基站
CN102195741A (zh) * 2010-03-10 2011-09-21 华为技术有限公司 信道状态信息参考信号的传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Evaluations on CSI-RS Patterns", 3GPP TSG RAN WG1 MEETING #59BIS R1-100073, 22 January 2010 (2010-01-22), VALENCIA, SPAIN, pages 1 - 7, XP050417816 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831219A (zh) * 2018-08-10 2020-02-21 北京展讯高科通信技术有限公司 业务冲突处理方法、用户终端及计算机可读存储介质

Also Published As

Publication number Publication date
CN112615706B (zh) 2022-08-19
CN112615706A (zh) 2021-04-06
CN106982184A (zh) 2017-07-25
CN106982184B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2017121095A1 (zh) 一种实现测量参考符号传输的方法及装置
CN109845137B (zh) 用于无线通信***中波束管理参考信号的方法和装置
CN107666341B (zh) 用大规模阵列天线的移动通信***中csi-rs端口共享的参考信号配置的方法和装置
US10903958B2 (en) Method and apparatus for transmitting reference signal in wireless communication system
US9107213B2 (en) Reference signal for time and/or frequency tracking in a wireless network
KR101701899B1 (ko) 무선시스템에서 하향링크 통신을 위한 8개 송신안테나 기준신호 설계
US10230436B2 (en) Methods for channel information acquisition, signal detection and transmission in multi-user wireless communication systems
US9780901B2 (en) Method and apparatus for reference signaling allocation and channel estimation in distributed antenna systems
US20140219237A1 (en) Method and Apparatus for Establishing a Time-Frequency Reference Signal Pattern Configuration in a Carrier Extension or Carrier Segment
WO2016095110A1 (zh) 基于探测参考信号的下行信道估计方法、装置以及通信***
US20120108254A1 (en) Reference signal allocation method for wireless communication system, apparatus for same, and transceiver device using the apparatus
US8582486B2 (en) Reference signal transmission method for downlink multiple input multiple output system
CN108432174A (zh) 使用多个天线端口在无线通信***中配置参考信号和通信信道状态信息的方案
US10958396B2 (en) Method and device for sending reference signal
CN115362635A (zh) 基于上行链路参考信号执行波束管理的方法和装置
WO2018177183A1 (zh) 一种获取、反馈发送波束信息的方法及装置
WO2018059112A1 (zh) 一种天线波束管理方法及相关设备
CN102487532B (zh) 一种协作多点传输***的信号发送方法及其装置
CN106936479B (zh) 一种广播信息传输方法及装置
CN106063170A (zh) 无线基站、用户终端以及无线通信方法
CN108989008A (zh) 参考信号的传输方法、装置和设备
US8879510B2 (en) Method and device for transmitting midamble signals in wireless communication system
US8331482B2 (en) System and method for subcarrier allocation and permutation
CN107528616B (zh) 一种大尺度mimo的传输方法和装置
JPWO2016021012A1 (ja) 無線通信システム、基地局、移動局、送信方法および復調方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884649

Country of ref document: EP

Kind code of ref document: A1