WO2018059112A1 - 一种天线波束管理方法及相关设备 - Google Patents

一种天线波束管理方法及相关设备 Download PDF

Info

Publication number
WO2018059112A1
WO2018059112A1 PCT/CN2017/095291 CN2017095291W WO2018059112A1 WO 2018059112 A1 WO2018059112 A1 WO 2018059112A1 CN 2017095291 W CN2017095291 W CN 2017095291W WO 2018059112 A1 WO2018059112 A1 WO 2018059112A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
information
receiving
terminal
base station
Prior art date
Application number
PCT/CN2017/095291
Other languages
English (en)
French (fr)
Inventor
高秋彬
陈润华
拉盖施
苏昕
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP17854565.3A priority Critical patent/EP3522583B1/en
Priority to KR1020197012553A priority patent/KR102173667B1/ko
Priority to US16/337,961 priority patent/US10804994B2/en
Priority to JP2019517372A priority patent/JP7123914B2/ja
Publication of WO2018059112A1 publication Critical patent/WO2018059112A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an antenna beam management method and related devices.
  • MIMO Multiple-Input Multiple-Output
  • LTE long-term evolution
  • LTE-A Enhanced Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • Rel-8 up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on multi-user MIMO (Multi-User MIMO, MU-MIMO) technology, and supports up to four downlink data layers in MU-MIMO transmission in Transmission Mode (TM)-8.
  • Rel-10 introduces support for 8 antenna ports to further improve the spatial resolution of channel state information, and further expands the transmission capability of single-user MIMO (SU-MIMO) to up to 8 data layers.
  • Rel-13 and Rel-14 introduce full-scale MIMO (full-scale, FD-MIMO) technology to support 32-port, full-dimensional and vertical beamforming.
  • large-scale antenna technology is introduced in mobile communication systems.
  • fully digital large-scale antennas can have up to 128/256/512 antenna elements and up to 128/256/512 transceiver units, one for each antenna element.
  • the terminal measures channel state information and feeds back by transmitting pilot signals up to 128/256/512 antenna ports.
  • an antenna array of up to 32/64 antenna elements can also be configured.
  • the large-scale antenna technology in the prior art mainly adopts a digital analog hybrid beamforming transceiver architecture solution, such as Figure 1 shows.
  • Both analog beamforming and digital-to-analog hybrid beamforming require adjustment of the analog beamforming weights at both ends of the transceiver so that the resulting beam can be aligned with the opposite end of the communication.
  • the beam shaping weights sent by the base station side and the beam shaping weights received by the terminal side need to be adjusted.
  • the beam shaping weights sent by the terminal side and received by the base station side need to be adjusted.
  • the weight of beamforming is usually obtained by sending a training signal.
  • the base station sends a downlink beam training signal, and the terminal measures the downlink beam training signal, selects the best base station transmit beam, and feeds the beam related information to the base station, and selects the corresponding optimal receive beam, and saves it locally.
  • the terminal sends an uplink beam training signal, and the base station measures the uplink beam training signal, selects the best terminal transmission beam, transmits the beam-related information to the terminal, and selects the corresponding optimal receiving beam, and saves it locally.
  • Data transmission can be performed after the uplink and downlink transmit and receive beams are trained.
  • the transmitting end Before the data transmission, in order to enable the receiving end to properly set the receiving beam, the transmitting end needs to transmit the information related to the transmitting beam to the receiving end.
  • the antenna array of the transmitting end base station
  • the number of beams is large
  • the transmission of the relevant information of the transmitting beam brings a large amount of control signaling overhead.
  • the embodiment of the present invention provides an antenna beam management method and related equipment, which are used to solve the problem of large overhead of beam management control signaling existing in the large-scale antenna technology.
  • an embodiment of the present application provides an antenna beam management method, including:
  • the notification information related to the first downlink transmission beam that is sent by the base station, where the notification information includes indication information used by the terminal to determine at least one first downlink receiving beam;
  • the terminal receives a downlink signal based on the at least one first downlink receive beam.
  • the terminal sends related information about the downlink beam of the terminal to the base station, including:
  • the terminal receives K downlink transmit beam training signals sent by the base station based on at least one downlink receiving beam of the M downlink receive beams;
  • M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the determining, by the terminal, the at least one first downlink receiving beam, based on the notification information includes:
  • the selecting a first downlink receiving beam from each group of the at least one target group includes:
  • the terminal receives R training signals sent by the base station based on each downlink receiving beam in each group, and the terminal is based on the received training signal received by each of the downlink receiving beams.
  • a downlink receiving beam that satisfies a preset rule is selected as the first downlink receiving beam in each group.
  • an embodiment of the present application provides an antenna beam management method, including:
  • the base station receives related information of the downlink beam sent by the terminal;
  • the base station Transmitting, by the base station, the notification information related to the first downlink transmission beam to the terminal, so that the terminal determines, according to the notification information, at least one first downlink receiving beam, where the notification information includes Determining, by the terminal, indication information of the at least one first downlink receiving beam;
  • the base station sends the downlink signal to the terminal based on the first downlink transmit beam.
  • the method before the receiving, by the base station, the related information of the downlink beam sent by the terminal, the method further includes:
  • the base station sends K downlink transmit beam training signals to the terminal, where K is an integer greater than or equal to 1.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the sending, by the base station, the notification information related to the first downlink sending beam to the terminal including:
  • the determining, by the base station, whether the notification information needs to be sent to the terminal includes:
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • an embodiment of the present application provides a terminal, including:
  • a first sending module configured to send, to the base station, related information of the downlink beam of the terminal, so that the base station determines the first downlink transmit beam based on the related information of the downlink beam;
  • a first receiving module configured to receive, by the base station, notification information related to the first downlink sending beam, where the notification information includes an indication that the terminal is used to determine at least one first downlink receiving beam information;
  • a first determining module configured to determine the at least one first downlink receive beam based on the notification information
  • the first communication module is configured to receive a downlink signal based on the at least one first downlink receive beam.
  • the first sending module is specifically configured to:
  • Receiving K downlink transmit beam training signals transmitted by the base station based on at least one downlink receiving beam of the M downlink receiving beams;
  • M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period. At least one The mapping relationship between the first receive beam and the time-frequency resource location.
  • the first determining module is specifically configured to:
  • the first determining module is specifically configured to:
  • an embodiment of the present application provides a base station, including:
  • a second receiving module configured to receive information about a downlink beam sent by the terminal
  • a second determining module configured to determine, according to the related information of the downlink beam, a first downlink transmit beam
  • a second sending module configured to send, to the terminal, notification information related to the first downlink sending beam, so that the terminal determines, according to the notification information, at least one first downlink receiving beam, where
  • the notification information includes indication information used by the terminal to determine at least one first downlink receiving beam
  • the second communication module is configured to send the downlink signal to the terminal based on the first downlink transmit beam.
  • the base station further includes:
  • the third sending module is configured to send K downlink transmit beam training signals to the terminal, where K is an integer greater than or equal to 1.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where Is greater than An integer equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the second sending module is specifically configured to:
  • the second determining module is specifically configured to:
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • an embodiment of the present application provides a terminal, including a processor, a memory, and a transceiver, where the transceiver receives and transmits data under the control of the processor, and the preset program is stored in the memory, and the processor reads Take the program in the memory, according to the program to perform the following process:
  • the notification information related to the first downlink transmission beam that is sent by the base station, where the notification information includes indication information used by the terminal to determine at least one first downlink receiving beam;
  • the processor receives the downlink signal based on the at least one first downlink receive beam by the transceiver.
  • the processor receives, by the transceiver, the K downlink transmit beam training signals sent by the base station according to at least one downlink receiving beam of the M downlink receive beams; and receives the received by the at least one downlink receive beam. And determining, by the transceiver, related information of the downlink beam of the terminal; and transmitting, by the transceiver, information about the downlink beam to the base station; where, M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the processor determines the at least one first downlink receive beam based on the at least one number information
  • the processor Determining, by the processor, the at least one first downlink receive beam based on the at least one identifier information and the correspondence between the identifier information and the downlink receive beam;
  • the processor selects any one of the downlink receiving beams from each of the groups as the first downlink receiving beam; or
  • the processor selects, as the first downlink receive beam, a downlink receive beam that matches the second packet information from each of the groups; or
  • the processor receives R training signals transmitted by the base station based on each of the downlink receive beams in the each group, the terminal based on the received training signals received by each of the downlink receive beams, from the A downlink receiving beam that satisfies a preset rule is selected as the first downlink receiving beam in each group.
  • the embodiment of the present application provides a base station, including a processor, a memory, and a transceiver, where the transceiver receives and transmits data under the control of the processor, and the preset program is stored in the memory, and the processor reads Take the program in the memory, according to the program to perform the following process:
  • the processor determines, according to the related information of the downlink beam, a first downlink transmit beam
  • the transceiver Transmitting, by the transceiver, the notification information related to the first downlink transmit beam to the terminal, so that the terminal determines, according to the notification information, at least one first downlink receive beam, where the notification information includes Determining, by the terminal, indication information of the at least one first downlink receiving beam;
  • the processor transmits the downlink signal to the terminal by using a transceiver according to the first downlink transmit beam.
  • the processor sends, by the transceiver, K downlink transmit beam training signals to the terminal, where K is an integer greater than or equal to 1.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the processor determines whether the notification information needs to be sent to the terminal; if yes, the notification information is sent to the terminal by using a transceiver.
  • the processor determines whether the current downlink transmit beam is the same as the first downlink transmit beam; if not, determining that the notification information needs to be sent to the terminal.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the terminal sends a related signal of the downlink beam of the terminal to the base station. And determining, by the base station, a first downlink transmit beam according to the related information of the downlink beam; the terminal receiving, by the base station, notification information related to the first downlink transmit beam, where
  • the notification information includes indication information used by the terminal to determine at least one first downlink receiving beam; the terminal determines the at least one first downlink receiving beam based on the notification information; the terminal is based on the at least one
  • the first downlink receiving beam receives the downlink signal, so that the management and control of the beam is performed based on the receiving beam of the terminal, and the number of receiving beams of the terminal is smaller than the number of transmitting beams of the base station, and therefore, the terminal and the base station
  • the related information of the downlink beam transmitted is also reduced, which greatly reduces the overhead of control signaling, and solves the problem of large overhead of beam management control signaling existing in the large-scale antenna technology.
  • FIG. 1 is a schematic diagram of a digital analog hybrid beamforming transceiver architecture in the prior art
  • FIG. 2 is a schematic diagram of a process of performing beam management on a terminal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a process of performing beam management by a base station according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a terminal in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another terminal in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another base station in the embodiment of the present application.
  • the specific process of the terminal performing beam management is as follows:
  • Step 101 The terminal sends related information of the downlink beam of the terminal to the base station, so that the base station determines the first downlink transmission beam based on the related information of the downlink beam.
  • step 101 is as follows:
  • the terminal receives K downlink transmit beam training signals sent by the base station based on at least one downlink receiving beam of the M downlink receive beams;
  • M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the terminal first reports the number M of its own receiving beams to the base station.
  • the terminal has a total of M receiving beams, wherein each receiving beam corresponds to a set of beamforming weights, for example, the receiving beam shaping weight of the nth beam is
  • L is the number of antenna elements of the beamforming, which may be smaller than the number of antenna elements of the terminal, and each receiving beam corresponds to a spatial direction.
  • the terminal After the base station receives the number of received beams reported by the terminal, the terminal receives the downlink beam training signal sent by the base station.
  • the base station has a total of K candidate downlink transmit beams, and each downlink beam corresponds to a set of beamforming weights, for example, the transmit beam shaping weight of the nth beam is Where k is the number of antenna elements of the beamforming, which may be smaller than the number of antenna elements of the base station.
  • the base station may transmit one beam training signal for each candidate downlink transmit beam, and the beam training signal of each beam is shaped by using the beamforming weight corresponding to the beam.
  • the base station can transmit K training signals, and the K training signals can be time division multiplexed (TDM), frequency division multiplexed (FDM), and code division. Use (Code Division Multiplexing, CDM), or a combination of various multiplexing methods.
  • K training signals can occupy K OFDM symbols, each training signal occupies 1 OFDM symbol, and TDM multiplexing is used between training signals; and multiple transmissions can be performed in one OFDM symbol.
  • the training signals of the beams are FDM multiplexed or CDM multiplexed between them.
  • the beam training signal may be sent periodically or non-periodically, which is not limited in the embodiment of the present application.
  • the terminal may receive the downlink beam training signal sent by the base station by using one or more of the M receiving beams, and then measure the received beam training signal to determine N downlink transmitting beams that meet the condition.
  • the condition may be that the power of the received beam training signal is the strongest, or the power value of the received beam training signal is greater than a preset threshold, and the preset threshold may be an agreement between the base station and the terminal, for example, in an agreement. In the agreement, or the base station is configured to the terminal through signaling.
  • the conditions related to the parameters such as the signal-to-interference ratio and the signal-to-noise ratio of the received beam training signal are not limited in the embodiment of the present application.
  • the condition may also be all downlink transmission beams corresponding to the base station. In this case, N is equal to K, that is, N downlink transmission beams are all downlink transmission beams of the base station.
  • the terminal After determining the N downlink transmit beams, the terminal needs to determine a receive beam corresponding to each downlink transmit beam of the N downlink transmit beams. Specifically, for a downlink beam training signal, the terminal may separately try to receive each of the received beams, and select a receiving beam with the strongest received signal power as the receiving beam of the downlink transmitting beam. Of course, it can be determined by parameters such as the signal-to-noise ratio and the signal-to-noise ratio of the received signal, which are not limited in the embodiment of the present application.
  • the terminal After the terminal determines the N downlink transmit beams and the corresponding receive beams, the terminal feeds back N downlink transmit beams and corresponding received information to the base station.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the terminal may send the identifier information of the N downlink transmit beams and the identifier information of the receive beam corresponding to each downlink transmit beam to the base station; or the identifier information of the N downlink transmit beams and each downlink transmit beam.
  • Corresponding reception indication information is sent to the base station.
  • the identification information of the N downlink transmission beams may be the number thereof, or may be different according to the multiplexing manner of the downlink transmission beam or the downlink transmission beam training signal, and feedback different information, for example, the downlink beamforming signal is in different OFDM symbols or The subframe time division multiplexing, the terminal measures and feeds back the determined downlink time information (OFDM symbol or subframe index) of the N downlink transmission beams.
  • the downlink beamforming signal is multiplexed in different frequency resources (PRB, subband), and the terminal measures and feeds back the determined downlink frequency information (PRB or subband index) of the N downlink transmission beams.
  • the downlink transmit beam training signal strength information received by the terminal such as the received signal power level, and the like, may further be included.
  • the value of the identifier of the receiving beam ranges from 0 to M.
  • the terminal reports to the base station the correspondence between the three downlink transmit beams x0, x1, x2 and their corresponding receive beams y0, y1, y2, as shown in Table 1.
  • Downstream transmit beam identification Downlink receive beam identification X 0 Y 0 X 1 Y 1 X 2 Y 2
  • the terminal reports the identification information of the receiving beam corresponding to each downlink transmitting beam to the base station, as shown in Table 2.
  • Each of the downlink transmission beams described herein refers to any one of N downlink transmission beams, the same below.
  • Downstream transmit beam identification Downlink receive beam identification X 0 Y 0 X 1 Y 1 X 2 Y 2 ... ... X K Y M
  • the terminal reports the identifier of the downlink transmit beam whose received signal power is greater than a certain threshold and the identifier information of the corresponding receive beam to the base station. as shown in Table 3.
  • Downstream transmit beam identification Downlink receive beam identification X 0 Y 0 X 1 Y 1 X 4 Y 4 X 7 Y 7 X 9 Y 9
  • the terminal determines the receiving indication information of each downlink transmitting beam according to the downlink receiving beam corresponding to each downlink transmitting beam, and the terminal reports the receiving indication information corresponding to each downlink transmitting beam to the base station, as shown in Table 4.
  • a mapping relationship exists between the downlink receiving beam and the receiving indication information, and the terminal maintains a mapping relationship between the downlink receiving beam and the receiving indication information.
  • step 102 the terminal receives the notification information related to the first downlink sending beam that is sent by the base station, where the notification information is The indication information used by the terminal to determine at least one first downlink receiving beam is included.
  • the base station determines, according to the information reported by the terminal, a downlink transmission beam that performs downlink signal transmission with the terminal, and sends an indication to the terminal that includes determining the corresponding receiving beam. Notification information for information.
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or with the first The first receiving indication information corresponding to the row transmission beam.
  • the notification information further includes an effective time-frequency resource indication information or a preset for indicating a time-frequency resource location corresponding to the at least one first downlink receiving beam.
  • an effective time-frequency resource indication information or a preset for indicating a time-frequency resource location corresponding to the at least one first downlink receiving beam A mapping relationship between the at least one first receive beam and a time-frequency resource location in a time period.
  • the effective time of the message is the time + time interval of the received message (the time interval can be 0, that is, it takes effect immediately), the time interval is fixed, or the time interval information is carried in the message.
  • the beam switch notification message may further include indication information of the effective time-frequency resource, that is, the time-frequency resource location indicating the terminal application target beam, for example, indicating in which subframes (which PRB/sub-band) the terminal applies the target reception. The beam is received.
  • the terminal needs to use multiple receiving beams on different time-frequency resources according to certain rules.
  • T beams are used in T subframes (or OFDM symbols, or other time units), received by one beam in each subframe, and cycled in T subframes.
  • Different frequency domain resources within one subframe can also be received with different beams.
  • the beam switching notification message sent by the base station may further include a mapping relationship between the beam and the time-frequency resource in a period of time, that is, beam pattern information.
  • step 103 that is, the terminal determines the at least one first downlink receiving beam based on the notification information.
  • step 103 the specific implementation manner of step 103 is as follows:
  • the terminal may directly determine the corresponding receiving beam according to the number information in the notification information after the notification information is valid, or the one-to-one correspondence with the receiving beam according to the identification information in the notification information and the identification information stored in the terminal. Relationship: determining that the beam corresponding to the identifier information is the first receiving beam; or first determining the corresponding downlink receiving beam according to the number information or the identification information, and then performing a search for the receiving beam in the vicinity of the downlink receiving beam, searching for A more preferred receive beam is the first receive beam.
  • one beam is "near" in the other beam It can be judged by correlation, for example, a beam with a beamforming weight correlation threshold higher than a certain value, or judged by a spatial angle difference, for example, a beam whose spatial angle difference is less than a certain threshold; or based on the first receiving indication information And the mapping relationship between the receiving indication information and the receiving beam stored in the terminal, and determining that the downlink receiving beam corresponding to the receiving indication information is the first downlink receiving beam.
  • correlation for example, a beam with a beamforming weight correlation threshold higher than a certain value, or judged by a spatial angle difference, for example, a beam whose spatial angle difference is less than a certain threshold; or based on the first receiving indication information
  • a spatial angle difference for example, a beam whose spatial angle difference is less than a certain threshold
  • step 104 that is, the terminal receives the downlink signal based on the at least one first downlink receiving beam.
  • the downlink signal transmission can be performed.
  • the specific process of the terminal performing beam management is as follows:
  • Step 101 The terminal sends related information of the downlink beam of the terminal to the base station, so that the base station determines the first downlink transmission beam based on the related information of the downlink beam.
  • step 101 is as follows:
  • the terminal receives K downlink transmit beam training signals sent by the base station based on at least one downlink receiving beam of the M downlink receive beams;
  • M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the terminal first needs to group its own M receiving beams, for example, according to the correlation between the beams, and the correlation is higher than a certain threshold, or grouped according to the spatial direction of the beam. Pointing into a group within a certain range, and then reporting the number of its own receiving beam groups to the base station.
  • the terminal After receiving the number of receiving beam groups reported by the terminal, the terminal receives the downlink beam training signal sent by the base station.
  • the transmission mode and related parameters of the downlink transmit beam training signal are the same as those in the first embodiment, and are not described herein again.
  • the terminal may receive the downlink beam training signal sent by the base station by using one or more groups of the plurality of receiving beam groups, and then measure the received beam training signal to determine N downlink transmitting beams that meet the condition.
  • the condition may be that the power of the beam training signal received by the beam group is the strongest, or the power value of the beam training signal received by the beam group is greater than a preset threshold, and the preset threshold may be an agreement between the base station and the terminal. For example, as agreed in the protocol, or the base station is configured to the terminal by signaling.
  • the conditions related to the parameters such as the signal-to-interference ratio, the signal-to-noise ratio, and the like of the beam training signal received by the beam group are not limited in the embodiment of the present application.
  • the article The component may also be all downlink transmit beams corresponding to the base station. In this case, N is equal to K, that is, N downlink transmit beams are all downlink transmit beams of the base station.
  • the terminal After determining the N downlink transmit beams, the terminal needs to determine a receive beam group corresponding to each of the N downlink transmit beams. Specifically, for a downlink beam training signal, the terminal may separately try to receive each group of receiving beams, and select a receiving beam group with the strongest received signal power as the receiving beam group of the downlink transmitting beam. Of course, it can be determined by parameters such as the signal-to-noise ratio and the signal-to-noise ratio of the received signal, which are not limited in the embodiment of the present application.
  • the terminal After the terminal determines the N downlink transmit beams and the corresponding receive beam groups, the terminal feeds back information about the N downlink transmit beams and the corresponding receive beam groups to the base station.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the packet information of the downlink receiving beam corresponding to each downlink transmission beam is the packet information of the downlink receiving beam corresponding to each downlink transmission beam.
  • the terminal sends the identifier information of the N downlink transmit beams and the identifier information of the receive beam group corresponding to each downlink transmit beam to the base station.
  • the identification information of the N downlink transmit beams is the same as the corresponding description in the first embodiment, and details are not described herein again.
  • the S-group receiving beam is used as an example.
  • the identifier of the receiving beam group ranges from 0 to S.
  • the terminal reports the correspondence between the three downlink transmit beams x0, x1, x2 and their corresponding receive beam groups z0, z1, z2 to the base station, as shown in Table 5.
  • Downstream transmit beam identification Downlink receive beam group identifier X 0 Z 0 X 1 Z 1 X 2 Z 2
  • the terminal reports the identification information of the receiving beam corresponding to each downlink transmitting beam to the base station; or the terminal reports the identifier of the downlink transmitting beam whose received signal power is greater than a certain threshold and the identifier information of the corresponding receiving beam to the base station.
  • the method in the embodiment of the present application performs step 102, that is, the terminal receives the notification information related to the first downlink sending beam that is sent by the base station, where the notification information is Including
  • the terminal is configured to determine indication information of the at least one first downlink receiving beam.
  • the base station determines, according to the information reported by the terminal, a downlink transmission beam that performs downlink signal transmission with the terminal, and sends a notification to the terminal that includes indication information for determining the corresponding receiving beam. information.
  • the indication information is at least one group identification information of at least one group of the at least one first downlink receiving beam.
  • the notification information further includes an effective time-frequency resource indication information or a preset for indicating a time-frequency resource location corresponding to the at least one first downlink receiving beam.
  • an effective time-frequency resource indication information or a preset for indicating a time-frequency resource location corresponding to the at least one first downlink receiving beam A mapping relationship between the at least one first receive beam and a time-frequency resource location in a time period.
  • the content in the notification information is the same as the corresponding description in the first embodiment, and details are not described herein again.
  • step 103 that is, the terminal determines the at least one first downlink receiving beam based on the notification information.
  • step 103 the specific implementation manner of step 103 is as follows:
  • the selecting a first downlink receiving beam from each group of the at least one target group includes:
  • the terminal receives R training signals sent by the base station based on each downlink receiving beam in each group, and the terminal is based on the received training signal received by each of the downlink receiving beams.
  • a downlink receiving beam that satisfies a preset rule is selected as the first downlink receiving beam in each group.
  • the terminal needs to select one beam for receiving data and signals in the target receiving beam group.
  • the choices can be:
  • the terminal saves the downlink receiving beam corresponding to the previously reported N downlink transmitting beam. If one of the downlink receiving beams belongs to the target receiving beam group, the terminal may select the receiving beam for receiving.
  • the base station sends a number of training signals, and the terminal receives the target separately
  • Each beam in the beam group receives the training signal, and selects a downlink receiving beam according to a certain criterion, for example, selecting a receiving beam with the largest received signal power.
  • step 104 that is, the terminal receives the downlink signal based on the at least one first downlink receiving beam.
  • the downlink signal transmission can be performed.
  • the specific process of performing beam management by the base station is as follows:
  • Step 201 The base station receives related information of the downlink beam sent by the terminal.
  • the method before the step 201, the method further includes:
  • the base station sends K downlink transmit beam training signals to the terminal, where K is an integer greater than or equal to 1.
  • the base station first receives related information of the self-received beam reported by the terminal, such as the number of receiving beams of the terminal or the number of receiving beam groups of the terminal. Then, the base station transmits a downlink transmit beam training signal based on the received receive beam information of the terminal.
  • related information of the self-received beam reported by the terminal such as the number of receiving beams of the terminal or the number of receiving beam groups of the terminal.
  • the base station transmits a downlink transmit beam training signal based on the received receive beam information of the terminal.
  • the manner in which the base station sends the downlink transmit beam training signal is the same as the corresponding description in the first embodiment, and is not described herein.
  • the terminal can receive the downlink transmit beam training signal in two ways:
  • one or more of the M receiving beams are used to receive the downlink beam training signal sent by the base station, and then the received beam training signal is measured, thereby determining N downlink transmit beams that satisfy the condition.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the second mode the terminal first groups its own receiving beams, and then uses one or more groups of the receiving beam groups to receive the downlink transmitting beam training signals sent by the base station, and then measures the received beam training signals of each group. Further, N downlink transmission beams satisfying the condition are determined.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the packet information of the downlink receiving beam corresponding to each downlink transmission beam is the packet information of the downlink receiving beam corresponding to each downlink transmission beam.
  • step 202 that is, the base station determines the first downlink transmit beam based on the related information of the downlink beam.
  • the base station determines, according to the information reported by the terminal, a downlink transmit beam that performs downlink signal transmission with the terminal. For example, one or more of the N downlink transmission beams determined by the terminal are selected as the first downlink transmission beam, or any one of the downlink transmission beams is selected as the first downlink transmission beam, which is not limited in the application embodiment.
  • step 203 the base station sends the notification information related to the first downlink transmission beam to the terminal, so that the terminal is based on the The notification information determines at least one first downlink receive beam, where the notification information includes indication information used by the terminal to determine at least one first downlink receive beam.
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first At least one packet identification information of at least one group of the downlink receiving beam or first receiving indication information corresponding to the first downlink transmitting beam.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or the at least one time in the preset time period.
  • the mapping relationship between the first receive beam and the time-frequency resource location is not limited to the mapping relationship between the first receive beam and the time-frequency resource location.
  • the content of the notification information sent by the base station is different according to different information reported by the terminal.
  • the information reported by the terminal is the identification information of the receiving beam corresponding to the downlink transmitting beam
  • the base station sends the number or the identification information corresponding to the receiving beam to the terminal; and the information reported by the terminal is the beam group identifier of the receiving beam group corresponding to the downlink transmitting beam.
  • the base station sends the packet identification information corresponding to the receiving beam to the terminal.
  • the information reported by the terminal is the receiving indication information corresponding to the downlink transmitting beam
  • the base station sends the receiving indication information of the receiving beam to the terminal.
  • the notification information is the same as the corresponding description in the first embodiment, and details are not described herein again.
  • step 203 the specific implementation manner of step 203 is as follows:
  • the base station determines the downlink transmit beam for downlink signal transmission, it directly transmits the downlink and downlink signals.
  • the bundle related notification information is sent to the terminal.
  • step 203 the specific implementation of step 203 is as follows:
  • the determining, by the base station, whether the notification information needs to be sent to the terminal includes:
  • the base station determines a downlink transmit beam for downlink signal transmission.
  • the base station determines whether it is necessary to send a beam switching notification message to the terminal. There are two ways to judge:
  • the base station compares the downlink receive beam identifier corresponding to the downlink transmit beam before and after the change, and if the two are different, the notification message needs to be sent.
  • the base station compares the packet identifiers of the downlink receive beam groups corresponding to the downlink transmit beams before and after the change, and if the two are different, the notification message needs to be sent.
  • step 204 that is, the base station sends the downlink signal to the terminal according to the first downlink transmit beam.
  • the downlink signal transmission can be performed.
  • the terminal mainly includes:
  • the first sending module 301 is configured to send, to the base station, related information of the downlink beam of the terminal, so that the base station determines the first downlink transmit beam based on the related information of the downlink beam;
  • the first receiving module 302 is configured to receive, by the base station, notification information related to the first downlink transmit beam, where the notification information includes, by the terminal, the at least one first downlink receive beam. Indication information;
  • the first determining module 303 is configured to determine the at least one first downlink receiving beam based on the notification information
  • the first communication module 304 is configured to receive a downlink signal based on the at least one first downlink receive beam.
  • the first sending module is specifically configured to:
  • Receiving K downlink transmit beam training signals transmitted by the base station based on at least one downlink receiving beam of the M downlink receiving beams;
  • M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the first determining module is specifically configured to:
  • the first determining module is specifically configured to:
  • the embodiment of the present application provides a base station.
  • the base station mainly includes:
  • the second receiving module 401 is configured to receive related information of a downlink beam sent by the terminal.
  • the second determining module 402 is configured to determine, according to the related information of the downlink beam, a first downlink transmit beam.
  • a second sending module 403 configured to send, to the terminal, notification information related to the first downlink transmit beam, so that the terminal determines, according to the notification information, at least one first downlink receive beam, where
  • the notification information includes indication information used by the terminal to determine at least one first downlink receiving beam;
  • the second communication module 404 is configured to send the downlink signal to the terminal based on the first downlink transmit beam.
  • the base station further includes:
  • the third sending module 405 is configured to send K downlink transmit beam training signals to the terminal, where K is an integer greater than or equal to 1.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving At least one group identification information of the at least one group of the beam or the first reception indication information corresponding to the first downlink transmission beam.
  • the second sending module is specifically configured to:
  • the second determining module is specifically configured to:
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the embodiment of the present application provides a terminal.
  • the terminal mainly includes a processor 501.
  • the notification information related to the first downlink transmission beam that is sent by the base station where the notification information includes indication information used by the terminal to determine at least one first downlink reception beam;
  • the processor 501 determines the at least one first downlink receive beam based on the notification information
  • the processor 501 receives the downlink signal based on the at least one first downlink receive beam by the transceiver 503.
  • the processor 501 receives, by the transceiver 503, K downlink transmit beam training signals sent by the base station, based on at least one downlink receiving beam of the M downlink receive beams; and receiving, by the at least one downlink receive beam, Receiving a signal, determining related information of the downlink beam of the terminal; transmitting, by the transceiver 503, related information of the downlink beam to the base station; wherein, M and K are integers greater than or equal to 1, and K is greater than or equal to M.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information is at least one number information of the at least one first downlink receiving beam or the At least one identification information of the at least one first downlink receiving beam or at least one group identification information of the at least one group of the at least one first downlink receiving beam or the first receiving corresponding to the first downlink transmitting beam Instructions.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the processor 501 determines the at least one first downlink receive beam based on the at least one number information
  • the processor 501 determines the at least one first downlink receive beam based on the first receiving indication information
  • the processor 501 determines the at least one first downlink receive beam based on the at least one identifier information and the correspondence between the identifier information and the downlink receive beam; or
  • the processor 501 determines at least one second downlink receive beam based on the at least one number information or the at least one identifier information, and determines at least the at least one second downlink receive beam from the M downlink receive beams.
  • One receiving beam is the at least one first downlink receiving beam; or
  • the processor 501 determines at least one target group based on the at least one group identification information; selects a first downlink receiving beam from each of the at least one target group as the at least one first downlink Receive beam.
  • the processor 501 selects any one of the downlink receiving beams from each of the groups as the first downlink receiving beam; or
  • the processor 501 selects, from the each group, a downlink receiving beam that matches the second packet information as the first downlink receiving beam; or
  • the processor 501 receives R training signals transmitted by the base station based on each downlink receiving beam in each group, and the terminal is based on the received training signal received by each of the downlink receiving beams.
  • a downlink receiving beam that satisfies a preset rule is selected as the first downlink receiving beam in each group.
  • the embodiment of the present application provides a base station.
  • the base station mainly includes a processor 601.
  • the processor 601 determines a first downlink transmit beam based on the related information of the downlink beam.
  • the terminal is configured to determine indication information of the at least one first downlink receiving beam
  • the processor 601 transmits the downlink signal to the terminal by using the transceiver 603 based on the first downlink transmit beam.
  • the processor 601 sends, by the transceiver 603, K downlink transmit beam training signals to the terminal, where K is greater than or equal to 1.
  • K is greater than or equal to 1.
  • the related information of the downlink beam is specifically:
  • N first identification information of the N downlink transmission beams and the reception information corresponding to each downlink transmission beam of the N downlink transmission beams, among the K downlink transmission beams of the base station, where It is an integer greater than or equal to 1 and less than or equal to K.
  • the receiving information is specifically:
  • the indication information includes at least one number information of the at least one first downlink receiving beam or at least one identifier information of the at least one first downlink receiving beam or the at least one first downlink receiving beam. At least one group identification information of the at least one group or first reception indication information corresponding to the first downlink transmission beam.
  • the processor 601 determines whether the notification information needs to be sent to the terminal; if yes, sends the notification information to the terminal by using a transceiver.
  • the processor 601 determines whether the current downlink transmit beam is the same as the first downlink transmit beam. If not, it is determined that the notification information needs to be sent to the terminal.
  • the notification information further includes an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period.
  • an effective time-frequency resource indication information of the time-frequency resource location corresponding to the at least one first downlink receiving beam or a preset time period is mapped to the at least one first downlink receiving beam or a preset time period.
  • the terminal sends the related information of the downlink beam of the terminal to the base station, so that the base station determines the first downlink transmission beam based on the related information of the downlink beam;
  • the notification information related to the first downlink transmission beam sent by the base station where the notification information includes indication information used by the terminal to determine at least one first downlink reception beam;
  • Notification information Determining at least one first downlink receiving beam; the terminal receiving a downlink signal based on the at least one first downlink receiving beam, so that management and control of the beam is performed based on a receiving beam of the terminal, and the receiving beam of the terminal
  • the number of transmission beams of the base station is smaller than that of the base station. Therefore, the information about the downlink beam transmitted between the terminal and the base station is also reduced, which greatly reduces the overhead of control signaling, and solves the beam management existing in the current large-scale antenna technology. The problem of large overhead of control signaling.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种天线波束管理方法及相关设备,用以解决目前大规模天线技术中存在的波束管理控制信令的开销大的问题。方法为:终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;所述终端基于所述通知信息,确定所述至少一个第一下行接收波束;所述终端基于所述至少一个第一下行接收波束接收下行信号。

Description

一种天线波束管理方法及相关设备
本申请要求在2016年09月30日提交中国专利局、申请号为201610877296.4、申请名称为“一种天线波束管理方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线波束管理方法及相关设备。
背景技术
1、多输入多输出(Multiple-Input Multiple-Output,MIMO)技术介绍
鉴于MIMO技术对于提高峰值速率与***频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)/增强的长期演进(LTE-Advanced,LTE-A)等无线接入技术标准都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。MIMO技术的性能增益来自于多天线***所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户MIMO(Multi-User MIMO,MU-MIMO)技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将单用户MIMO(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了全维度MIMO(full dimension,FD-MIMO)技术支持到32端口,实现全维度以及垂直方向的波束赋形。
2、大规模天线技术
为了进一步提升MIMO技术,移动通信***中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线振子,以及高达128/256/512个收发单元,每个天线振子连接一个收发单元。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对于终端,也可以配置高达32/64个天线振子的天线阵列。通过基站和终端两侧的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
现有技术中的大规模天线技术主要采用一种数字模拟混合波束赋形收发架构方案,如 图1所示。模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端。对于下行传输,需要调整基站侧发送的波束赋形权值和终端侧接收的波束赋形权值,而对于上行传输,需要调整终端侧发送的和基站侧接收的波束赋形权值。波束赋形的权值通常通过发送训练信号获得。下行方向,基站发送下行波束训练信号,终端测量下行波束训练信号,选择出最佳的基站发送波束,并将波束相关的信息反馈给基站,同时选择出对应的最佳接收波束,保存在本地。上行方向,终端发送上行波束训练信号,基站测量上行波束训练信号,选择出最佳的终端发送波束,将波束相关的信息传递给终端,同时选择出对应的最佳接收波束,保存在本地。上下行的收发波束训练好之后即可以进行数据传输。
在进行数据传输之前,为了让接收端能合理的设置接收波束,发送端需要将发送波束相关的信息传递给接收端。而对于下行传输,通常发送端(基站)的天线阵列规模较大,波束的数量较大,发送波束相关信息的传递会带来大量的控制信令的开销。
因此,如何降低波束管理控制信令的开销是目前大规模天线技术亟待解决的问题。
发明内容
本申请实施例提供一种天线波束管理方法及相关设备,用以解决目前大规模天线技术中存在的波束管理控制信令的开销大的问题。
本申请实施例提供的具体技术方案如下:
第一方面,本申请实施例提供了一种天线波束管理方法,包括:
终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
所述终端基于所述通知信息,确定所述至少一个第一下行接收波束;
所述终端基于所述至少一个第一下行接收波束接收下行信号。
可选的,所述终端向基站发送所述终端的下行波束的相关信息,包括:
所述终端基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
所述终端基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
所述终端向所述基站发送所述下行波束的相关信息;
其中,M、K为大于等于1的整数,且K大于等于M。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
可选的,所述终端基于所述通知信息,确定所述至少一个第一下行接收波束,包括:
基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
可选的,所述从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,包括:
所述终端从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
所述终端从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第 一下行接收波束;或
所述终端基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
第二方面,本申请实施例提供了一种天线波束管理方法,包括:
基站接收终端发送的下行波束的相关信息;
所述基站基于所述下行波束的相关信息,确定第一下行发送波束;
所述基站向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
所述基站基于所述第一下行发送波束向所述终端发送所述下行信号。
可选的,在所述基站接收终端发送的下行波束的相关信息之前,所述方法还包括:
所述基站向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述基站向所述终端发送与所述第一下行发送波束相关的通知信息,包括:
所述基站判断是否需要向所述终端发送所述通知信息;
若是,则向所述终端发送所述通知信息。
可选的,所述基站判断是否需要向所述终端发送所述通知信息,包括:
所述基站判断当前下行发送波束与所述第一下行发送波束是否相同;
若不同,则确定需要向所述终端发送所述通知信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
第三方面,本申请实施例提供了一种终端,包括:
第一发送模块,用于向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
第一接收模块,用于接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
第一确定模块,用于基于所述通知信息,确定所述至少一个第一下行接收波束;
第一通信模块,用于基于所述至少一个第一下行接收波束接收下行信号。
可选的,所述第一发送模块具体用于:
基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
向所述基站发送所述下行波束的相关信息;
其中,M、K为大于等于1的整数,且K大于等于M。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一 个第一接收波束与时频资源位置的映射关系。
可选的,所述第一确定模块具体用于:
基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
可选的,所述第一确定模块具体用于:
从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
第四方面,本申请实施例提供了一种基站,包括:
第二接收模块,用于接收终端发送的下行波束的相关信息;
第二确定模块,用于基于所述下行波束的相关信息,确定第一下行发送波束;
第二发送模块,用于向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
第二通信模块,用于基于所述第一下行发送波束向所述终端发送所述下行信号。
可选的,所述基站还包括:
第三发送模块,用于向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于 等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述第二发送模块具体用于:
判断是否需要向所述终端发送所述通知信息;
若是,则向所述终端发送所述通知信息。
可选的,所述第二确定模块具体用于:
判断当前下行发送波束与所述第一下行发送波束是否相同;
若不同,则确定需要向所述终端发送所述通知信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
第五方面,本申请实施例提供了一种终端,包括处理器、存储器和收发机,其中,收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
通过收发机向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
通过收发机接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
处理器基于所述通知信息,确定所述至少一个第一下行接收波束;
处理器通过收发机基于所述至少一个第一下行接收波束接收下行信号。
可选的,处理器通过收发机基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;通过收发机向所述基站发送所述下行波束的相关信息;其中,M、K为大于等于1的整数,且K大于等于M。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
可选的,处理器基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
处理器基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
处理器基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
处理器基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
处理器基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
可选的,处理器从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
处理器从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
处理器基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
第六方面,本申请实施例提供了一种基站,包括处理器、存储器和收发机,其中,收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
通过收发机接收终端发送的下行波束的相关信息;
处理器基于所述下行波束的相关信息,确定第一下行发送波束;
通过收发机向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
处理器通过收发机基于所述第一下行发送波束向所述终端发送所述下行信号。
可选的,在处理器通过收发机接收终端发送的下行波束的相关信息之前,处理器通过收发机向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,处理器判断是否需要向所述终端发送所述通知信息;若是,则通过收发机向所述终端发送所述通知信息。
可选的,处理器判断当前下行发送波束与所述第一下行发送波束是否相同;若不同,则确定需要向所述终端发送所述通知信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
基于上述技术方案,本申请实施例中,终端向基站发送所述终端的下行波束的相关信 息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;所述终端基于所述通知信息,确定所述至少一个第一下行接收波束;所述终端基于所述至少一个第一下行接收波束接收下行信号,从而使得对波束的管理和控制是基于终端的接收波束进行的,而终端的接收波束在数量上会小于基站的发送波束的数量,因此,终端与基站之间传递的下行波束的相关信息也减少,大大降低了控制信令的开销,解决了目前大规模天线技术中存在的波束管理控制信令的开销大的问题。
附图说明
图1为现有技术中的一种数字模拟混合波束赋形收发架构示意图;
图2为本申请实施例中终端进行波束管理的过程示意图;
图3为本申请实施例中基站进行波束管理的过程示意图;
图4为本申请实施例中终端结构示意图;
图5为本申请实施例中基站结构示意图;
图6为本申请实施例中另一终端结构示意图;
图7为本申请实施例中另一基站结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
实施例一
本申请实施例中,如图2所示,终端进行波束管理的具体过程如下:
步骤101:终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束。
本申请实施例中,步骤101的具体实现方式如下:
所述终端基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
所述终端基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行 波束的相关信息;
所述终端向所述基站发送所述下行波束的相关信息;
其中,M、K为大于等于1的整数,且K大于等于M。
具体来讲,终端首先向基站上报自身的接收波束的数量M。终端共有M个接收波束,其中,每个接收波束对应一组波束赋形权值,如,第n个波束的接收波束赋形权值为
Figure PCTCN2017095291-appb-000001
其中L是波束赋形的天线振子数,可以小于终端的天线振子数,每个接收波束对应一个空间方向。
当基站接收到终端上报的接收波束的数量后,终端会接收到由基站发送下行波束训练信号。基站共有K个候选的下行发送波束,每个下行波束对应一组波束赋形权值,如,第n个波束的发送波束赋形权值为
Figure PCTCN2017095291-appb-000002
其中k是波束赋形的天线振子数,可以小于基站的天线振子数。
基站可以为每个候选的下行发送波束发射一个波束训练信号,每个波束的波束训练信号用该波束对应的波束赋形权值赋形之后发出。例如对于K个下行发送波束,基站可以发送K个训练信号,这K个训练信号之间可以时分复用(Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)、码分复用(Code Division Multiplexing,CDM),或者各种复用方式的组合。例如,在以OFDM为基础的***中,K个训练信号可以占用K个OFDM符号,每个训练信号占用1个OFDM符号,训练信号之间为TDM复用;也可以在一个OFDM符号中发射多个波束的训练信号,它们之间是FDM复用,或者CDM复用。波束训练信号可以周期性发送,也可以非周期性发送,在本申请实施例中不作限制。
终端可以采用M个接收波束中的一个或多个接收到基站发送的下行波束训练信号,然后对接收到的波束训练信号进行测量,进而确定出满足条件的N个下行发送波束。所述条件具体可以是接收到的波束训练信号的功率最强,或者是接收到的波束训练信号的功率值大于一个预设阈值,所述预设阈值可以是基站和终端实现约定,例如在协议中约定,或者基站通过信令配置给终端。当然,也可以与接收到的波束训练信号的信干噪比、信噪比等参数相关的条件,在本申请实施例中不作限制。当然,所述条件也可以是与所述基站对应的所有下行发送波束,此时,N等于K,即N个下行发送波束即为基站的所有下行发送波束。
终端确定出N个下行发送波束后,需要确定与N个下行发送波束中每个下行发送波束对应的接收波束。具体地,对于一个下行波束训练信号,终端可以分别尝试使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该下行发送波束的接收波束。 当然,也可以通过接收信号的信干噪比、信噪比等参数进行判断,在本申请实施例中不作限制。
当终端确定出N个下行发送波束及对应的接收波束后,终端将向基站反馈N个下行发送波束及对应的接收信息。
本申请实施例中,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
在本申请实施例中,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的接收指示信息。
具体来讲,终端可以将N个下行发送波束的标识信息以及每个下行发送波束对应的接收波束的标识信息发送至基站;也可以将N个下行发送波束的标识信息及与每个下行发送波束对应的接收指示信息发送至基站。所述N个下行发送波束的标识信息可以是其编号,也可以根据下行发送波束或者下行发送波束训练信号的复用方式不同,反馈不同的信息,如,下行波束赋形信号在不同OFDM symbol或者subframe时分复用,终端测量并反馈确定出的N个下行发送波束的下行时间信息(OFDM symbol或者subframe index)。再例如,下行波束赋形信号在不同频率资源(PRB,subband)复用,终端测量并反馈确定出的N个下行发送波束的下行频率信息(PRB or subband index)。还可以进一步包括终端收到的下行发送波束训练信号强度信息,例如接收信号功率水平等。所述接收波束的标识信息的取值范围为0~M。
如,终端向基站上报了3个下行发送波束x0,x1,x2与其对应的接收波束y0,y1,y2之间的对应关系,如表1所示。
表1
下行发送波束标识 下行接收波束标识
X0 Y0
X1 Y1
X2 Y2
或者,终端向基站上报每个下行发送波束对应的接收波束的标识信息,如表2所示。这里描述的每个下行发送波束是指N个下行发送波束中的任意一个,下同。
表2
下行发送波束标识 下行接收波束标识
X0 Y0
X1 Y1
X2 Y2
XK YM
并且,终端保存每个上报的下行发送波束对应的下行接收波束和该下行发送波束对应的下行接收波束标识之间的映射关系。
或者,终端向基站上报接收信号功率大于一定门限值的下行发送波束的标识以及其对应的接收波束的标识信息。如表3所示。
表3
下行发送波束标识 下行接收波束标识
X0 Y0
X1 Y1
X4 Y4
X7 Y7
X9 Y9
或者,终端根据每个下行发送波束对应的下行接收波束确定每个下行发送波束的接收指示信息,终端向基站上报每个下行发送波束对应的接收指示信息,如表4所示。
表4
下行发送波束标识 接收指示信息
X0 Z0
X1 Z1
X2 Z2
XK ZM
下行接收波束和接收指示信息之间存在映射关系,终端保存下行接收波束和接收指示信息之间的映射关系。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤102,即:所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息。
具体来讲,当终端向基站上报上述信息之后,基站便会根据终端上报的信息确定出与终端进行下行信号传输的下行发送波束,并向终端发送包含有确定相应的接收波束的指示 信息的通知信息。
在本申请实施例中,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或与所述第一下行发送波束对应的第一接收指示信息。
在本申请实施例中,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
具体来讲,消息的生效时间是收到消息的时间+时间间隔(时间间隔可以是0,即立即生效),时间间隔是固定的,或者在消息中携带时间间隔信息。或者,波束切换通知消息中还可以包括有效时频资源的指示信息,即指示终端应用目标波束的时频资源位置,例如,指示终端在哪些子帧(哪些PRB/子带)中应用该目标接收波束进行接收。
由于接收波束可以是多个,此时,终端则需要按照一定的规则将多个接收波束用在不同的时频资源上。例如,T个波束用在T个子帧(或者OFDM符号,或者其他的时间单位)内,每个子帧内用一个波束进行接收,以T个子帧为周期进行循环。在一个子帧内的不同的频域资源也可以用不同的波束进行接收。相应地,基站发送的波束切换通知消息中还可以包括一段时间内波束与时频资源的映射关系,即波束图样信息。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤103,即:所述终端基于所述通知信息,确定所述至少一个第一下行接收波束。
在本申请实施例中,步骤103的具体实现方式如下:
基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束。
具体来讲,终端可以在通知信息生效后,则根据通知信息中的编号信息直接确定出对应的接收波束;或者根据通知信息中的标识信息以及终端中存储的标识信息与接收波束的一一对应关系,确定出与标识信息对应的波束即为第一接收波束;或者,首先根据编号信息或者标识信息确定出对应的下行接收波束,然后在该下行接收波束“附近”进行接收波束的搜索,寻找更优的接收波束为第一接收波束。其中,一个波束在另外一个波束的“附近” 可以通过相关性进行判断,例如波束赋形权值相关性门限高于一定值的波束,或者通过空间角度差进行判断,例如空间角度差小于一定门限值的波束;或者基于第一接收指示信息以及终端中存储的接收指示信息与接收波束的映射关系,确定所述接收指示信息对应的下行接收波束为第一下行接收波束。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤104,即:所述终端基于所述至少一个第一下行接收波束接收下行信号。
具体来讲,当终端和基站确定好下行发送波束和下行接收波束之后,便可以进行下行信号传输。
实施例二
本申请实施例中,如图2所示,终端进行波束管理的具体过程如下:
步骤101:终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束。
本申请实施例中,步骤101的具体实现方式如下:
所述终端基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
所述终端基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
所述终端向所述基站发送所述下行波束的相关信息;
其中,M、K为大于等于1的整数,且K大于等于M。
具体来讲,终端首先要对自身的M个接收波束进行分组,例如按照波束之间的相关性进行分组,相关性高于一定门限的分为一组;或者按照波束的空间指向进行分组,空间指向在一定范围内的分为一组,然后向基站上报自身的接收波束组的数量。
当基站接收到终端上报的接收波束组的数量后,终端会接收到由基站发送下行波束训练信号。其中,下行发送波束训练信号的发送方式及相关参数与实施例一中相应的描述相同,在此就不再赘述。
终端可以采用多个接收波束组中的一组或多组波束接收到基站发送的下行波束训练信号,然后对接收到的波束训练信号进行测量,进而确定出满足条件的N个下行发送波束。所述条件具体可以是波束组接收到的波束训练信号的功率最强,或者是波束组接收到的波束训练信号的功率值大于一个预设阈值,所述预设阈值可以是基站和终端实现约定,例如在协议中约定,或者基站通过信令配置给终端。当然,也可以与波束组接收到的波束训练信号的信干噪比、信噪比等参数相关的条件,在本申请实施例中不作限制。当然,所述条 件也可以是与所述基站对应的所有下行发送波束,此时,N等于K,即N个下行发送波束即为基站的所有下行发送波束。
终端确定出N个下行发送波束后,需要确定与N个下行发送波束中每个下行发送波束对应的接收波束组。具体地,对于一个下行波束训练信号,终端可以分别尝试使用每组接收波束对其进行接收,选择接收信号功率最强的接收波束组作为该下行发送波束的接收波束组。当然,也可以通过接收信号的信干噪比、信噪比等参数进行判断,在本申请实施例中不作限制。
当终端确定出N个下行发送波束及对应的接收波束组后,终端将向基站反馈N个下行发送波束及对应的接收波束组的相关信息。
在本申请实施例中,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
在本申请实施例中,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的分组信息。
具体来讲,终端将N个下行发送波束的标识信息以及每个下行发送波束对应的接收波束组的标识信息发送至基站。所述N个下行发送波束的标识信息与实施例一中相应的描述相同,在此就不再赘述。以终端共有S组接收波束为例,接收波束组的标识信息的取值范围为0~S。
如,终端向基站上报了3个下行发送波束x0,x1,x2与其对应的接收波束组z0,z1,z2之间的对应关系,如表5所示。
表5
下行发送波束标识 下行接收波束组标识
X0 Z0
X1 Z1
X2 Z2
或者,终端向基站上报每个下行发送波束对应的接收波束的标识信息;或者,终端向基站上报接收信号功率大于一定门限值的下行发送波束的标识以及其对应的接收波束的标识信息。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤102,即:所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所 述终端用于确定至少一个第一下行接收波束的指示信息。
具体来讲,当终端向基站上报上述信息之后,基站便会根据终端上报的信息确定出与终端进行下行信号传输的下行发送波束,并向终端发送包含有确定相应的接收波束的指示信息的通知信息。
在本申请实施例中,所述指示信息为所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息。
在本申请实施例中,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
具体来讲,所述通知信息中的内容与实施例一中相应的描述相同,在此就不再赘述。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤103,即:所述终端基于所述通知信息,确定所述至少一个第一下行接收波束。
在本申请实施例中,步骤103的具体实现方式如下:
基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
在本申请实施例中,所述从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,包括:
所述终端从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
所述终端从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
所述终端基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
具体来讲,当终端接收到通知信息后,需要在目标接收波束组选择一个波束进行数据和信号的接收。选择的方式可以有:
a)随机选择;
b)根据先前的测量结果进行选择。例如终端保存了先前上报的N下行发送波束对应的下行接收波束,如果其中的某一个下行接收波束属于目标接收波束组,则终端可以选择该接收波束进行接收。
c)基于基站发送的训练信号进行选择。基站发送若干训练信号,终端分别用目标接收 波束组中的每个波束对训练信号进行接收,按照一定的准则选择下行接收波束,例如选择接收信号功率最大的接收波束。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤104,即:所述终端基于所述至少一个第一下行接收波束接收下行信号。
具体来讲,当终端和基站确定好下行发送波束和下行接收波束之后,便可以进行下行信号传输。
实施例三
基于同一发明构思,本申请实施例中,如图3所示,基站进行波束管理的具体过程如下:
步骤201:基站接收终端发送的下行波束的相关信息。
本申请实施例中,在步骤201之前,所述方法还包括:
所述基站向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
具体来讲,基站首先会接收到终端上报的自身接收波束的相关信息,如终端的接收波束的个数或者终端的接收波束组的个数。然后,基站便基于接收到的终端的自身接收波束信息,发送下行发送波束训练信号。其中,基站发送下行发送波束训练信号的方式与实施例一中相应的描述相同,在此就不在赘述。
终端可以采用两种方式对下行发送波束训练信号进行接收:
第一种方式:采用M个接收波束中的一个或多个接收到基站发送的下行波束训练信号,然后对接收到的波束训练信号进行测量,进而确定出满足条件的N个下行发送波束。
在此情况下,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
此时,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的接收指示信息。
具体实现方式请参照实施例一,在此就不再赘述。
第二种方式:终端首先将自身的接收波束进行分组,然后采用接收波束组中的一组或多组接收基站发送的下行发送波束训练信号,然后对各组接收到的波束训练信号进行测量,进而确定出满足条件的N个下行发送波束。
在此情况下,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
此时,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的分组信息。
具体实现方式请参照实施例二,在此就不再赘述。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤202,即:所述基站基于所述下行波束的相关信息,确定第一下行发送波束。
具体来讲,当基站接收到终端的上报信息之后,基站便会根据终端上报的信息确定出与终端进行下行信号传输的下行发送波束。如,从终端确定出的N个下行发送波束中选择其中一个或者多个作为第一下行发送波束,或者选择任意一个下行发送波束作为第一下行发送波束,在申请实施例中不作限制。
在执行完成步骤202之后,本申请实施例中的方法便执行步骤203,即:所述基站向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息。
在本申请实施例中,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
具体来讲,根据终端上报的信息不同,基站发送的通知信息内容也不相同。当终端上报的信息为下行发送波束对应的接收波束的标识信息时,基站则向终端发送接收波束对应的编号或者标识信息;当终端上报的信息为下行发送波束对应的接收波束组的波束组标识信息时,基站则向终端发送接收波束对应的分组标识信息;当终端上报的信息为下行发送波束对应的接收指示信息时,基站则向终端发送接收波束的接收指示信息。所述通知信息与实施例一中相应的描述相同,在此就不再赘述。
在本申请实施例中,步骤203的具体实现方式有如下两种:
第一种,当基站确定出进行下行信号传输的下行发送波束后,则直接将与下行发送波 束相关的通知信息发送给终端。
第二种,步骤203的具体实现方式如下:
所述基站判断是否需要向所述终端发送所述通知信息;
若是,则向所述终端发送所述通知信息。
在本申请实施例中,所述基站判断是否需要向所述终端发送所述通知信息,包括:
所述基站判断当前下行发送波束与所述第一下行发送波束是否相同;
若不同,则确定需要向所述终端发送所述通知信息。
具体来讲,当基站确定进行下行信号传输的下行发送波束。基站判断是否需要向终端发送波束切换通知消息。判断的方法有如下两种:
a)如果下行发送波束不改变,则不发送该通知消息;
如果下行发送波束发生改变,则基站对比改变前后的下行发送波束对应的下行接收波束标识,如果两者不同,则需要发送通知消息。
b)如果下行发送波束不改变,则不发送该通知消息;
如果下行发送波束发生改变,则基站对比改变前后的下行发送波束对应的下行接收波束组的分组标识,如果两者不同,则需要发送通知消息。
在执行完成上述步骤之后,本申请实施例中的方法便执行步骤204,即:所述基站基于所述第一下行发送波束向所述终端发送所述下行信号。
具体来讲,当基站和终端确定好下行发送波束和下行接收波束之后,便可以进行下行信号传输。
实施例四
基于同一发明构思,本申请实施例中提供了一种终端,该终端的具体实施可参见方法实施例部分的描述,重复之处不再赘述,如图4所示,该终端主要包括:
第一发送模块301,用于向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
第一接收模块302,用于接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
第一确定模块303,用于基于所述通知信息,确定所述至少一个第一下行接收波束;
第一通信模块304,用于基于所述至少一个第一下行接收波束接收下行信号。
可选的,所述第一发送模块具体用于:
基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
向所述基站发送所述下行波束的相关信息;
其中,M、K为大于等于1的整数,且K大于等于M。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
可选的,所述第一确定模块具体用于:
基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
可选的,所述第一确定模块具体用于:
从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
实施例五
基于同一发明构思,本申请实施例提供了一种基站,该基站的具体实施可参见方法实施例部分的描述,重复之处不再赘述,如图5所示,该基站主要包括:
第二接收模块401,用于接收终端发送的下行波束的相关信息;
第二确定模块402,用于基于所述下行波束的相关信息,确定第一下行发送波束;
第二发送模块403,用于向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
第二通信模块404,用于基于所述第一下行发送波束向所述终端发送所述下行信号。
可选的,所述基站还包括:
第三发送模块405,用于向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述第二发送模块具体用于:
判断是否需要向所述终端发送所述通知信息;
若是,则向所述终端发送所述通知信息。
可选的,所述第二确定模块具体用于:
判断当前下行发送波束与所述第一下行发送波束是否相同;
若不同,则确定需要向所述终端发送所述通知信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
实施例六
基于同一发明构思,本申请实施例提供了一种终端,该终端的具体实施可参见方法实施例部分的描述,重复之处不再赘述,如图6所示,该终端主要包括处理器501、存储器502和收发机503,其中,收发机503在处理器501的控制下接收和发送数据,存储器502中保存有预设的程序,处理器501读取存储器502中的程序,按照该程序执行以下过程:
通过收发机503向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
通过收发机503接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
处理器501基于所述通知信息,确定所述至少一个第一下行接收波束;
处理器501通过收发机503基于所述至少一个第一下行接收波束接收下行信号。
可选的,处理器501通过收发机503基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;通过收发机503向所述基站发送所述下行波束的相关信息;其中,M、K为大于等于1的整数,且K大于等于M。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述 至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
可选的,处理器501基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
处理器501基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
处理器501基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
处理器501基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
处理器501基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
可选的,处理器501从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
处理器501从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
处理器501基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
实施例七
基于同一发明构思,本申请实施例提供了一种基站,该基站的具体实施可参见方法实施例部分的描述,重复之处不再赘述,如图7所示,该基站主要包括处理器601、存储器602和收发机603,其中,收发机603在处理器601的控制下接收和发送数据,存储器602中保存有预设的程序,处理器601读取存储器602中的程序,按照该程序执行以下过程:
通过收发机603接收终端发送的下行波束的相关信息;
处理器601基于所述下行波束的相关信息,确定第一下行发送波束;
通过收发机603向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
处理器601通过收发机603基于所述第一下行发送波束向所述终端发送所述下行信号。
可选的,在处理器601通过收发机603接收终端发送的下行波束的相关信息之前,处理器601通过收发机603向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
可选的,所述下行波束的相关信息具体为:
所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
可选的,所述接收信息具体为:
所述每个下行发送波束对应的下行接收波束的标识信息;或
所述每个下行发送波束对应的下行接收波束的分组信息;或
所述每个下行发送波束对应的接收指示信息。
可选的,所述指示信息所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
可选的,处理器601判断是否需要向所述终端发送所述通知信息;若是,则通过收发机向所述终端发送所述通知信息。
可选的,处理器601判断当前下行发送波束与所述第一下行发送波束是否相同;若不同,则确定需要向所述终端发送所述通知信息。
可选的,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
基于上述技术方案,本申请实施例中,终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;所述终端基于所述通知信息,确定所 述至少一个第一下行接收波束;所述终端基于所述至少一个第一下行接收波束接收下行信号,从而使得对波束的管理和控制是基于终端的接收波束进行的,而终端的接收波束在数量上会小于基站的发送波束的数量,因此,终端与基站之间传递的下行波束的相关信息也减少,大大降低了控制信令的开销,解决了目前大规模天线技术中存在的波束管理控制信令的开销大的问题。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种天线波束管理方法,其特征在于,包括:
    终端向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
    所述终端接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
    所述终端基于所述通知信息,确定所述至少一个第一下行接收波束;
    所述终端基于所述至少一个第一下行接收波束接收下行信号。
  2. 如权利要求1所述的方法,其特征在于,所述终端向基站发送所述终端的下行波束的相关信息,包括:
    所述终端基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;
    所述终端基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
    所述终端向所述基站发送所述下行波束的相关信息;
    其中,M、K为大于等于1的整数,且K大于等于M。
  3. 如权利要求2所述的方法,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  4. 如权利要求3所述的方法,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  5. 如权利要求1所述的方法,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  6. 如权利要求5所述的方法,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
  7. 如权利要求5所述的方法,其特征在于,所述终端基于所述通知信息,确定所述至少一个第一下行接收波束,包括:
    基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
    基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
    基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
    基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
    基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
  8. 如权利要求7所述的方法,其特征在于,所述从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,包括:
    所述终端从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
    所述终端从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
    所述终端基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
  9. 一种天线波束管理方法,其特征在于,包括:
    基站接收终端发送的下行波束的相关信息;
    所述基站基于所述下行波束的相关信息,确定第一下行发送波束;
    所述基站向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
    所述基站基于所述第一下行发送波束向所述终端发送所述下行信号。
  10. 如权利要求9所述的方法,其特征在于,在所述基站接收终端发送的下行波束的相关信息之前,所述方法还包括:
    所述基站向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
  11. 如权利要求10所述的方法,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  12. 如权利要求11所述的方法,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  13. 如权利要求9所述的方法,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  14. 如权利要求13所述的方法,其特征在于,所述基站向所述终端发送与所述第一下行发送波束相关的通知信息,包括:
    所述基站判断是否需要向所述终端发送所述通知信息;
    若是,则向所述终端发送所述通知信息。
  15. 如权利要求14所述的方法,其特征在于,所述基站判断是否需要向所述终端发送所述通知信息,包括:
    所述基站判断当前下行发送波束与所述第一下行发送波束是否相同;
    若不同,则确定需要向所述终端发送所述通知信息。
  16. 如权利要求13或14所述的方法,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
  17. 一种终端,其特征在于,包括:
    第一发送模块,用于向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;
    第一接收模块,用于接收所述基站发送的与所述第一下行发送波束相关的通知信息,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
    第一确定模块,用于基于所述通知信息,确定所述至少一个第一下行接收波束;
    第一通信模块,用于基于所述至少一个第一下行接收波束接收下行信号。
  18. 如权利要求17所述的终端,其特征在于,所述第一发送模块具体用于:
    基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行 发送波束训练信号;
    基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;
    向所述基站发送所述下行波束的相关信息;
    其中,M、K为大于等于1的整数,且K大于等于M。
  19. 如权利要求18所述的终端,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  20. 如权利要求19所述的终端,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  21. 如权利要求17所述的终端,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  22. 如权利要求21所述的终端,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
  23. 如权利要求22所述的终端,其特征在于,所述第一确定模块具体用于:
    基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
    基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
    基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
    基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
    基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
  24. 如权利要求23所述的终端,其特征在于,所述第一确定模块具体用于:
    从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
    从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
    基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
  25. 一种基站,其特征在于,包括:
    第二接收模块,用于接收终端发送的下行波束的相关信息;
    第二确定模块,用于基于所述下行波束的相关信息,确定第一下行发送波束;
    第二发送模块,用于向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束,其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
    第二通信模块,用于基于所述第一下行发送波束向所述终端发送所述下行信号。
  26. 如权利要求25所述的基站,其特征在于,所述基站还包括:
    第三发送模块,用于向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
  27. 如权利要求26所述的基站,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  28. 如权利要求27所述的基站,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  29. 如权利要求25所述的基站,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  30. 如权利要求29所述的基站,其特征在于,所述第二发送模块具体用于:
    判断是否需要向所述终端发送所述通知信息;
    若是,则向所述终端发送所述通知信息。
  31. 如权利要求30所述的基站,其特征在于,所述第二确定模块具体用于:
    判断当前下行发送波束与所述第一下行发送波束是否相同;
    若不同,则确定需要向所述终端发送所述通知信息。
  32. 如权利要求29或30所述的基站,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
  33. 一种终端,其特征在于,包括处理器、存储器和收发机,其中,所述收发机在所述处理器的控制下接收和发送数据,所述存储器中保存有预设的程序,所述处理器读取所述存储器中的程序,按照该程序执行以下过程:
    向基站发送所述终端的下行波束的相关信息,以使所述基站基于所述下行波束的相关信息确定第一下行发送波束;接收所述基站发送的与所述第一下行发送波束相关的通知信息;基于所述通知信息,确定所述至少一个第一下行接收波束;基于所述至少一个第一下行接收波束接收下行信号;
    其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息。
  34. 如权利要求33所述的终端,其特征在于,所述处理器具体用于:
    基于M个下行接收波束中的至少一个下行接收波束接收由所述基站发送的K个下行发送波束训练信号;基于由所述至少一个下行接收波束接收到的接收信号,确定所述终端的下行波束的相关信息;向所述基站发送所述下行波束的相关信息;其中,M、K为大于等于1的整数,且K大于等于M。
  35. 如权利要求34所述的终端,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  36. 如权利要求35所述的终端,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  37. 如权利要求33所述的终端,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  38. 如权利要求37所述的终端,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
  39. 如权利要求38所述的终端,其特征在于,所述处理器具体用于:
    基于所述至少一个编号信息确定所述至少一个第一下行接收波束;或
    基于所述第一接收指示信息确定所述至少一个第一下行接收波束;或
    基于所述至少一个标识信息及标识信息与下行接收波束的对应关系,确定所述至少一个第一下行接收波束;或
    基于所述至少一个编号信息或所述至少一个标识信息确定至少一个第二下行接收波束;从所述M个下行接收波束中确定与所述至少一个第二下行接收波束相匹配的至少一个接收波束为所述至少一个第一下行接收波束;或
    基于所述至少一个分组标识信息确定至少一个目标组别;从所述至少一个目标组别的每个组别中选择一个第一下行接收波束,作为所述至少一个第一下行接收波束。
  40. 如权利要求39所述的终端,其特征在于,所述处理器具体用于:
    从所述每个组别中选择任意一个下行接收波束作为所述第一下行接收波束;或
    从所述每个组别中选择与第二分组信息相匹配的下行接收波束作为所述第一下行接收波束;或
    基于所述每个组别中的每个下行接收波束接收由所述基站发送的R个训练信号,所述终端基于由所述每个下行接收波束接收到的接收训练信号,从所述每个组别中选择满足预设规则的下行接收波束作为所述第一下行接收波束。
  41. 一种基站,其特征在于,包括处理器、存储器和收发机,其中,所述收发机在所述处理器的控制下接收和发送数据,所述存储器中保存有预设的程序,所述处理器读取所述存储器中的程序,按照该程序执行以下过程:
    接收终端发送的下行波束的相关信息;基于所述下行波束的相关信息,确定第一下行发送波束;向所述终端发送与所述第一下行发送波束相关的通知信息,以使所述终端基于所述通知信息确定至少一个第一下行接收波束;基于所述第一下行发送波束向所述终端发送所述下行信号;
    其中,所述通知信息包括所述终端用于确定至少一个第一下行接收波束的指示信息;
  42. 如权利要求41所述的基站,其特征在于,所述处理器还用于:
    在接收终端发送的下行波束的相关信息之前,向所述终端发送K个下行发送波束训练信号,其中,K为大于等于1的整数。
  43. 如权利要求42所述的基站,其特征在于,所述下行波束的相关信息具体为:
    所述基站的K个下行发送波束中满足预设条件的N个下行发送波束的N个第一标识信息以及所述N个下行发送波束中的每个下行发送波束对应的接收信息,其中,N为大于等于1且小于等于K的整数。
  44. 如权利要求43所述的基站,其特征在于,所述接收信息具体为:
    所述每个下行发送波束对应的下行接收波束的标识信息;或
    所述每个下行发送波束对应的下行接收波束的分组信息;或
    所述每个下行发送波束对应的接收指示信息。
  45. 如权利要求41所述的基站,其特征在于,所述指示信息为所述至少一个第一下行接收波束的至少一个编号信息或所述至少一个第一下行接收波束的至少一个标识信息或所述至少一个第一下行接收波束所在至少一个组别的至少一个分组标识信息或与所述第一下行发送波束对应的第一接收指示信息。
  46. 如权利要求45所述的基站,其特征在于,所述处理器具体用于:
    判断是否需要向所述终端发送所述通知信息;若是,则向所述终端发送所述通知信息。
  47. 如权利要求46所述的基站,其特征在于,所述处理器具体用于:
    判断当前下行发送波束与所述第一下行发送波束是否相同;若不同,则确定需要向所述终端发送所述通知信息。
  48. 如权利要求45或46所述的基站,其特征在于,所述通知信息还包括所述通知信息的生效时间或用于指示所述至少一个第一下行接收波束对应的时频资源位置的有效时频资源指示信息或预设时间段内所述至少一个第一接收波束与时频资源位置的映射关系。
PCT/CN2017/095291 2016-09-30 2017-07-31 一种天线波束管理方法及相关设备 WO2018059112A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17854565.3A EP3522583B1 (en) 2016-09-30 2017-07-31 Antenna beam management method and related device
KR1020197012553A KR102173667B1 (ko) 2016-09-30 2017-07-31 안테나 빔 관리 방법 및 관련 장치
US16/337,961 US10804994B2 (en) 2016-09-30 2017-07-31 Antenna beam management method and related device
JP2019517372A JP7123914B2 (ja) 2016-09-30 2017-07-31 アンテナビーム管理のための方法および関連装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877296.4 2016-09-30
CN201610877296.4A CN107888259B (zh) 2016-09-30 2016-09-30 一种天线波束管理方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018059112A1 true WO2018059112A1 (zh) 2018-04-05

Family

ID=61763306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095291 WO2018059112A1 (zh) 2016-09-30 2017-07-31 一种天线波束管理方法及相关设备

Country Status (6)

Country Link
US (1) US10804994B2 (zh)
EP (1) EP3522583B1 (zh)
JP (1) JP7123914B2 (zh)
KR (1) KR102173667B1 (zh)
CN (1) CN107888259B (zh)
WO (1) WO2018059112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088797A1 (zh) * 2019-11-08 2021-05-14 索尼公司 网络侧设备、终端侧设备、通信方法、通信装置以及介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102147932B1 (ko) * 2017-03-09 2020-08-25 엘지전자 주식회사 빔을 기반으로 mbms 서비스를 수신하는 방법 및 장치
US10986520B2 (en) * 2017-07-14 2021-04-20 Qualcomm Incorporated Configuration of beam pair links during random access
WO2019056210A1 (zh) * 2017-09-20 2019-03-28 北京小米移动软件有限公司 同步块的指示及确定方法、装置、基站、用户设备
US10863582B2 (en) 2018-02-16 2020-12-08 Apple Inc. Methods to signal antenna panel capability of user equipment (UE) for carrier aggregation (CA) in millimeter-wave (MMWAVE) frequency bands
CN110446232B (zh) * 2018-05-04 2021-10-29 ***通信有限公司研究院 测量上报配置方法、测量上报方法、小区切换方法及设备
US11695462B2 (en) * 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
CN112584467B (zh) * 2019-09-27 2022-07-19 大唐移动通信设备有限公司 节能信号的发送方法、波束信息的上报方法、设备及终端
WO2022052107A1 (zh) * 2020-09-14 2022-03-17 深圳传音控股股份有限公司 确定发射波束的方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296011A (zh) * 2008-04-25 2008-10-29 浙江大学 无线认知网络中的自适应随机波束模式选择方法
CN101582747A (zh) * 2008-05-16 2009-11-18 浙江大学 波束形成方法及其装置
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信***中波束识别方法、相关设备及***
US20150351135A1 (en) * 2014-06-02 2015-12-03 Andreas Schmidt Techniques for Exchanging Beamforming Information for a Dual Connection to User Equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811907B2 (en) 2009-11-04 2014-08-19 Nec Corporation Control method of radio communication system, radio communication system, and radio communication apparatus
KR101800221B1 (ko) * 2011-08-11 2017-11-22 삼성전자주식회사 무선통신 시스템에서 빔 추적 방법 및 장치
CN103918196B (zh) * 2011-09-16 2018-06-22 三星电子株式会社 用于在无线通信***中的波束分配的方法及装置
CN106165311B (zh) * 2014-02-06 2020-02-18 瑞典爱立信有限公司 波束形成选择
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
KR102169662B1 (ko) * 2014-03-10 2020-10-23 삼성전자주식회사 무선 통신 시스템에서 빔 결정 장치 및 방법
US10084579B2 (en) * 2014-11-17 2018-09-25 Samsung Electronics Co., Ltd. CSI feedback for MIMO wireless communication systems with polarized active antenna array
US10484062B2 (en) * 2015-08-20 2019-11-19 Intel IP Corporation Transmit beamforming
US10237906B2 (en) * 2016-04-27 2019-03-19 Asustek Computer Inc. Method and apparatus for improving uplink transmission in a wireless communication system
EP4007368A1 (en) * 2016-06-23 2022-06-01 Nokia Technologies Oy Beam change

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296011A (zh) * 2008-04-25 2008-10-29 浙江大学 无线认知网络中的自适应随机波束模式选择方法
CN101582747A (zh) * 2008-05-16 2009-11-18 浙江大学 波束形成方法及其装置
CN104734759A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 Mimo波束赋形通信***中波束识别方法、相关设备及***
US20150351135A1 (en) * 2014-06-02 2015-12-03 Andreas Schmidt Techniques for Exchanging Beamforming Information for a Dual Connection to User Equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522583A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088797A1 (zh) * 2019-11-08 2021-05-14 索尼公司 网络侧设备、终端侧设备、通信方法、通信装置以及介质

Also Published As

Publication number Publication date
US10804994B2 (en) 2020-10-13
EP3522583A1 (en) 2019-08-07
CN107888259A (zh) 2018-04-06
EP3522583A4 (en) 2019-08-14
KR102173667B1 (ko) 2020-11-03
EP3522583B1 (en) 2021-06-16
JP2019531656A (ja) 2019-10-31
US20200028560A1 (en) 2020-01-23
JP7123914B2 (ja) 2022-08-23
KR20190059956A (ko) 2019-05-31
CN107888259B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2018059112A1 (zh) 一种天线波束管理方法及相关设备
RU2613526C1 (ru) Способ и устройство для выполнения фрагментарного формирования диаграммы направленности посредством крупномасштабной системы mimo в системе беспроводной связи
US10804979B2 (en) Method and device for acquiring and feeding back transmission beam information
JP5557712B2 (ja) アンテナ送信電力制御を行う無線基地局装置
KR20210069623A (ko) 채널과 간섭 측정 및 보고를 위한 방법 및 장치
US11843554B2 (en) User equipment and transmission and reception point
CN109997313A (zh) 用于上行链路发送的方法
CN111587556B (zh) 用户装置和无线通信方法
US11664876B2 (en) Method and device for training downlink beams
CN110999196B (zh) 无线通信方法、用户设备和基站
WO2018141286A1 (zh) 一种大尺度信道参数的指示、确定方法、基站及终端
CN109617575B (zh) 一种被用于多天线传输的ue、基站中的方法和装置
CN110999175A (zh) 无线通信方法
CN110710128A (zh) 执行波束报告的方法和用户设备
CN108242944B (zh) 一种用于多天线传输的ue、基站中的方法和装置
KR20240035809A (ko) 풀-듀플렉스 무선 통신 시스템을 위한 방법 및 장치
JP2020518200A (ja) ビーム制御方法、基地局および端末
KR20230094177A (ko) 무선 통신 시스템에서 시변 csi 보고 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197012553

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017854565

Country of ref document: EP

Effective date: 20190430