WO2017119450A1 - フレキシブルデバイス基板形成用組成物 - Google Patents

フレキシブルデバイス基板形成用組成物 Download PDF

Info

Publication number
WO2017119450A1
WO2017119450A1 PCT/JP2017/000147 JP2017000147W WO2017119450A1 WO 2017119450 A1 WO2017119450 A1 WO 2017119450A1 JP 2017000147 W JP2017000147 W JP 2017000147W WO 2017119450 A1 WO2017119450 A1 WO 2017119450A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible device
composition
forming
substrate
polyimide
Prior art date
Application number
PCT/JP2017/000147
Other languages
English (en)
French (fr)
Inventor
欣也 小山
浩 北
鎮嘉 葉
邦慶 何
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2017560407A priority Critical patent/JP6905213B2/ja
Priority to KR1020187018920A priority patent/KR102675766B1/ko
Priority to CN201780005922.3A priority patent/CN108473764B/zh
Publication of WO2017119450A1 publication Critical patent/WO2017119450A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1014Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)anhydrid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a composition for forming a flexible device substrate, and more specifically, can be suitably used for forming a flexible device substrate such as a flexible display using a laser lift-off method particularly in the step of peeling the substrate from a carrier substrate. Relates to the composition.
  • Non-Patent Document 1 In manufacturing a flexible display, a polymer substrate made of polyimide or the like is provided on a glass carrier, and then a circuit or the like including an electrode or the like is formed on the substrate. Finally, the substrate is peeled off from the glass carrier together with the circuit or the like. There is a need.
  • the LLO method is adopted, that is, when a glass carrier is irradiated with a light beam having a wavelength of 308 nm from the surface opposite to the surface on which a circuit or the like is formed, the light beam with the wavelength passes through the glass carrier, Only the nearby polymer (polyimide) absorbs this light and evaporates (sublimates). As a result, it has been reported that peeling of the substrate from the glass carrier can be performed selectively without affecting the circuit or the like provided on the substrate, which determines the performance of the display.
  • the LLO method is increasingly used as a substrate peeling method that is extremely superior in the manufacture of flexible displays.
  • the demand for polymer substrates for flexible displays to which the LLO method can be applied will increase.
  • the polymer substrate absorbs light having a specific wavelength.
  • the semi-alicyclic polyimide and the fully alicyclic polyimide which have been proposed as flexible display substrate materials so far, include an alicyclic moiety, so that the absorption of light in the visible light region is suppressed and the transparency is improved.
  • the LLO method is often not applicable to existing materials including semi-alicyclic polyimides and fully alicyclic polyimides. Therefore, in the field of flexible displays, absorption in the visible light region is suppressed and transparency is sufficiently excellent, and light of a specific wavelength (for example, 308 nm) that can be applied to the LLO method is sufficiently absorbed. There is a need for a substrate material having
  • the present invention has been made in view of such circumstances, and is excellent not only in heat resistance and flexibility, but also as a base film of a flexible device substrate such as a flexible display substrate having a feature of low retardation.
  • the present invention provides a composition for forming a flexible device substrate that gives a resin thin film having performance, and in particular a thin film capable of sufficiently absorbing light of a specific wavelength (308 nm) to which a laser lift-off method can be applied while ensuring transparency in the visible light region.
  • An object of the present invention is to provide a composition for forming a flexible device substrate that can form a film.
  • the present inventors have obtained a resin thin film in which titanium dioxide particles and silicon dioxide particles are blended with polyimide having an alicyclic skeleton in the main chain, and has excellent heat resistance, It has low retardation and also has the characteristics of excellent flexibility, and by making the blending amount of the silicon dioxide within a predetermined range, it has excellent heat resistance, low retardation, excellent flexibility, and transparency.
  • a specific amount of the titanium dioxide particles it is possible to realize a resin thin film that can sufficiently absorb light of a specific wavelength that can apply the LLO method while ensuring the transparency.
  • the present invention has been completed by finding that it can be suitably used for substrates for flexible devices such as flexible displays.
  • the present invention provides, as a first aspect, a polyimide having an alicyclic skeleton in the main chain, Titanium dioxide particles having a particle diameter of 3 nm to 200 nm,
  • the present invention relates to a composition for forming a flexible device substrate, comprising silicon dioxide particles having an average particle diameter of 100 nm or less calculated from a specific surface area value measured by a nitrogen adsorption method, and an organic solvent.
  • the titanium dioxide particles are in an amount of 0.1% by mass or more and 20% by mass or less based on a total mass of the polyimide, the titanium dioxide particles, and the silicon dioxide particles.
  • the present invention relates to a composition for forming a flexible device substrate.
  • a compound further comprising only a hydrogen atom, a carbon atom, a nitrogen atom and an oxygen atom, wherein the group is selected from the group consisting of a hydroxy group, an epoxy group and an alkoxy group having 1 to 5 carbon atoms.
  • a cross-linking agent comprising a compound having two or more and having a cyclic structure, It is related with the composition for flexible device board
  • the said titanium dioxide particle is the quantity of 3 mass% or more and 16 mass% or less with respect to the total mass of the said polyimide, the said titanium dioxide particle, and the said silicon dioxide particle, The flexible device as described in a 3rd viewpoint.
  • the present invention relates to a composition for forming a substrate.
  • the polyimide imidizes a polyamic acid obtained by reacting a tetracarboxylic dianhydride component containing an alicyclic tetracarboxylic dianhydride and a diamine component containing a fluorine-containing aromatic diamine. It is related with the composition for flexible device board
  • the said alicyclic tetracarboxylic dianhydride is related with the composition for flexible device board
  • B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12).
  • a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.
  • the said fluorine-containing aromatic diamine is related with the composition for flexible device board
  • the composition for forming a flexible device substrate according to any one of the first aspect to the seventh aspect wherein a mass ratio of the polyimide and the silicon dioxide particles is 7: 3 to 3: 7.
  • a mass ratio of the polyimide and the silicon dioxide particles is 7: 3 to 3: 7.
  • the average particle diameter of the said silicon dioxide particle is related with the composition for flexible device board
  • a step of applying the flexible device substrate forming composition according to any one of the first aspect to the tenth aspect to a base material, drying and heating to form a flexible device substrate The present invention relates to a method for manufacturing a flexible device substrate, including a peeling step of peeling the flexible device substrate from the base material by a laser lift-off method.
  • the composition for forming a flexible device substrate according to the present invention has a low coefficient of linear expansion, excellent heat resistance, high transparency and low retardation, and further excellent flexibility, particularly application of the laser lift-off method. It is possible to form a substrate for a flexible device such as a flexible display that can sufficiently absorb a light beam having a specific wavelength (308 nm) that can be reproduced with good reproducibility.
  • the flexible device substrate according to the present invention has various characteristics required for a substrate for a flexible device such as a flexible display, that is, a low linear expansion coefficient and high transparency in the visible light region (high light transmittance, low yellowness).
  • the laser lift-off method can be suitably used when peeling the substrate from the carrier base material because it exhibits low retardation, is excellent in flexibility, and particularly can sufficiently absorb light having a specific wavelength (308 nm).
  • a present invention is a substrate for a flexile device that requires characteristics such as high flexibility, low linear expansion coefficient, high transparency (high light transmittance, low yellowness), low retardation, particularly in the production process thereof.
  • the laser lift-off method can be adopted, and can sufficiently cope with the progress in the field of flexible device substrates.
  • composition for forming a flexible device substrate of the present invention contains the following specific polyimide, titanium dioxide particles, silicon dioxide particles and an organic solvent, and optionally contains a crosslinking agent and other components.
  • the polyimide used in the present invention is a polyimide having an alicyclic skeleton in the main chain, and preferably includes a tetracarboxylic dianhydride component including an alicyclic tetracarboxylic dianhydride and a fluorine-containing aromatic diamine. It is the polyimide obtained by imidating the polyamic acid obtained by making it react with the diamine component to contain. That is, the polyimide is preferably an imidized product of polyamic acid, and the polyamic acid is a diamine component including a tetracarboxylic dianhydride component including an alicyclic tetracarboxylic dianhydride and a fluorine-containing aromatic diamine.
  • the alicyclic tetracarboxylic dianhydride includes a tetracarboxylic dianhydride represented by the following formula (C1), and the fluorine-containing aromatic diamine is represented by the following formula (A1). It is preferable that the diamine contains.
  • B 1 represents a tetravalent group selected from the group consisting of formulas (X-1) to (X-12). (In the formula, a plurality of R's independently represent a hydrogen atom or a methyl group, and * represents a bond.)
  • B 2 represents a divalent group selected from the group consisting of formulas (Y-1) to (Y-34)). (In the formula, * represents a bond.)
  • B 1 in the formula is represented by the formulas (X-1), (X-4), (X-6), (X-7).
  • diamines represented by the above formula (A1) compounds in which B 2 is represented by the formulas (Y-12) and (Y-13) are preferred.
  • a polyimide obtained by imidizing a polyamic acid obtained by reacting a tetracarboxylic dianhydride represented by the above formula (C1) and a diamine represented by the above formula (A1) is described below.
  • the monomer unit represented by Formula (2) is included.
  • a tetracarboxylic dianhydride component The alicyclic tetracarboxylic dianhydride, for example, the tetracarboxylic dianhydride represented by the above formula (C1) is preferably 90 mol% or more, and 95 mol% or more. More preferably, it is most preferable that all (100 mol%) are tetracarboxylic dianhydrides represented by the above formula (C1).
  • the fluorine-containing aromatic diamine is used with respect to the total number of moles of the diamine component.
  • the diamine represented by the above formula (A1) is preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the diamine represented by the said Formula (A1) may be sufficient as all (100 mol%) of a diamine component.
  • the polyimide used by this invention contains the monomer unit represented by following formula (2).
  • the polyimide used by this invention is a diamine containing the alicyclic tetracarboxylic dianhydride component containing the tetracarboxylic dianhydride represented by the above-mentioned formula (C1), and the diamine represented by a formula (A1).
  • C1 alicyclic tetracarboxylic dianhydride
  • A1 diamine represented by a formula (A1).
  • other monomer units may be included.
  • the content ratio of the other monomer units is arbitrarily determined as long as the properties of the resin thin film suitable as a flexible device substrate formed from the composition of the present invention are not impaired.
  • the ratio is derived from the alicyclic tetracarboxylic dianhydride component containing the tetracarboxylic dianhydride represented by the formula (C1) and the diamine component containing the diamine represented by the formula (A1).
  • the total number of moles of monomer units is preferably less than 20 mol%, more preferably less than 10 mol%, and even more preferably less than 5 mol%.
  • Examples of such other monomer units include, but are not limited to, monomer units represented by the formula (3).
  • A represents a tetravalent organic group, preferably a tetravalent group represented by any of the following formulas (A-1) to (A-4).
  • B represents a divalent organic group, preferably a divalent group represented by any one of formulas (B-1) to (B-11).
  • * represents a bond.
  • B represents the above formulas (Y-1) to ( Y-34) may be a divalent group.
  • A represents the above formulas (X-1) to (X It may be a tetravalent group represented by any of -12).
  • a and B may contain only a monomer unit composed of only one of the groups exemplified by the following formula, for example.
  • at least one of A and B may contain two or more monomer units selected from two or more groups exemplified below.
  • each monomer unit is bonded in an arbitrary order.
  • the polyimide used by this invention contains the diamine represented by the alicyclic tetracarboxylic dianhydride component containing the tetracarboxylic dianhydride represented by the above-mentioned formula (C1), and a formula (A1).
  • the polyimide containing each monomer unit is represented by the above formula (C1) as a tetracarboxylic dianhydride component.
  • a in the above formula (5) and B in the formula (6) have the same meaning as A and B in the above formula (3), respectively.
  • tetracarboxylic dianhydride represented by the formula (5)
  • tetracarboxylic dianhydrides in which A in the formula (5) is a tetravalent group represented by any one of the above formulas (A-1) to (A-4) are preferable.
  • 4,8-bis (trifluoromethoxy) benzo [1,2-c: 4,5 -C '] difuran-1,3,5,7-tetraone can benzo
  • Examples of the diamine represented by the formula (6) include 2- (trifluoromethyl) benzene-1,4-diamine, 5- (trifluoromethyl) benzene-1,3-diamine, and 5- (trifluoromethyl).
  • aromatic diamines in which B in the formula (6) is a divalent group represented by any one of the formulas (B-1) to (B-11) are preferable, that is, 2,2 ′.
  • -Bis (trifluoromethoxy)-(1,1'-biphenyl) -4,4'-diamine [other name: 2,2'-dimethoxybenzidine], 4,4 '-(perfluoropropane-2,2- Diyl) dianiline, 2,5-bis (trifluoromethyl) benzene-1,4-diamine, 2- (trifluoromethyl) benzene-1,4-diamine, 2-fluorobenzene-1,4-diamine, 4, 4′-oxybis [3- (trifluoromethyl) aniline], 2,2 ′, 3,3 ′, 5,5 ′, 6,6′-octafluoro [1,1′-biphenyl] -4,4 ′ -
  • the content of the polyimide is usually 10% by mass or more, preferably 20% by mass or more, more preferably based on the total solid content of the composition for forming a flexible device substrate.
  • the optical properties of the low retardation film thickness direction retardation (R th ) and linear expansion coefficient (CTE) do not decrease)
  • it is usually 80% by mass or less, preferably 75% by mass or less. More preferably, it is 70 mass% or less.
  • solid content means the remaining components remove
  • the polyimide used in the present invention is represented by the tetracarboxylic dianhydride component including the alicyclic tetracarboxylic dianhydride represented by the above formula (C1) and the above formula (A1). It is obtained by imidizing a polyamic acid obtained by reacting a diamine component containing a fluorine-containing aromatic diamine.
  • the reaction for obtaining a polyamic acid from the above two components is advantageous in that it can proceed relatively easily in an organic solvent and no by-product is produced.
  • the charging ratio (molar ratio) between the tetracarboxylic dianhydride component and the diamine component in such a reaction is appropriately set in consideration of the molecular weight of the polyamic acid and the polyimide obtained by subsequent imidization.
  • the tetracarboxylic dianhydride component can usually be about 0.8 to 1.2, for example about 0.9 to 1.1, preferably 0.95. About 1.02. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the organic solvent used in the reaction between the tetracarboxylic dianhydride component and the diamine component is not particularly limited as long as it does not adversely affect the reaction and the produced polyamic acid dissolves. Specific examples are given below.
  • the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • a method of reacting the tetracarboxylic dianhydride component and the diamine component in an organic solvent for example, a dispersion or solution in which the diamine component is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic acid dianhydride component is stirred here.
  • the method of adding a diamine component the method of adding a tetracarboxylic dianhydride component and a diamine compound component alternately, etc. are mentioned, As long as the target polyamic acid is obtained, it is not limited to these methods.
  • the tetracarboxylic dianhydride component and / or the diamine component are composed of a plurality of types of compounds, they may be reacted in a premixed state, individually individually, or further individually. Low molecular weight substances may be mixed and reacted to form high molecular weight substances.
  • the temperature at the time of synthesizing the polyamic acid may be appropriately set in the range from the melting point to the boiling point of the solvent to be used, and can be selected, for example, from -20 ° C to 150 ° C. C. to 100.degree. C., usually about 0 to 100.degree. C., preferably about 0 to 70.degree.
  • the reaction time depends on the reaction temperature and the reactivity of the raw material, it cannot be defined unconditionally, but is usually about 1 to 100 hours.
  • the reaction can be carried out at any raw material concentration. However, if the concentration is too low, it will be difficult to obtain a high molecular weight polyamic acid, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur.
  • the total concentration of the tetracarboxylic dianhydride component and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 40% by mass. If necessary, the initial reaction can be carried out at a high concentration, and then an organic solvent can be added.
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the chemical (catalyst) imidization of polyamic acid is carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution, and igniting the system under a temperature condition of ⁇ 20 to 250 ° C., preferably 0 to 180 ° C. This can be done by stirring.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 1.5 to 20 mol times the amide acid group of the polyamic acid, and the amount of the acid anhydride is 1 to 50 mol of the amide acid group of the polyamic acid. Double, preferably 2 to 30 mole times.
  • Examples of the basic catalyst include amines such as pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, 1-ethylpiperidine, etc.
  • pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of acid anhydrides include aliphatic carboxylic acid anhydrides such as acetic anhydride, and aromatic carboxylic acid anhydrides such as trimellitic anhydride and pyromellitic anhydride. This is preferable because it can be easily purified.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the use and purpose. Particularly preferably, it is 50% or more.
  • the filtrate after filtering the reaction solution, the filtrate may be used as it is, or may be diluted or concentrated, and may be combined with titanium dioxide, silicon dioxide, etc., which will be described later, to form a flexible device substrate forming composition. .
  • the filtrate when filtration is performed, not only can the contamination of the resin thin film obtained be deteriorated in heat resistance, flexibility, or deterioration of linear expansion coefficient characteristics, but also efficiently obtain a composition for forming a flexible device substrate. Can do.
  • the polyimide used in the present invention has a weight average molecular weight (Mw) in terms of polystyrene of gel permeation chromatography (GPC) in consideration of the strength of the resin thin film, workability when forming the resin thin film, uniformity of the resin thin film, and the like. ) Is preferably 5,000 to 200,000.
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, isopropanol, and water.
  • a polymer precipitated in a poor solvent and collected by filtration can be dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is re-dissolved in an organic solvent and re-precipitation is collected 2 to 10 times, impurities in the polymer can be reduced.
  • the organic solvent for dissolving the resin component in the reprecipitation collection step is not particularly limited. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetra Methyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate , Propylene carbonate, diglyme, 4-hydroxy-4-methyl-2-pent
  • Titanium dioxide (titania) used in the present invention is not particularly limited, but titanium dioxide in the form of particles, for example, particles having a particle diameter of 3 nm to 200 nm, preferably 3 nm to 50 nm, more preferably 3 nm to 20 nm are preferably used. it can.
  • the particle diameter of the titanium dioxide particles is represented as a primary particle diameter obtained by observing titanium dioxide particles in a titanium dioxide sol described later with an electron microscope.
  • Titanium dioxide may have an anatase type, a rutile type, an anatase / rutile mixed type, or a brookite type crystal structure. Among these, those containing a rutile type are desirable.
  • titania-based colloidal particles having the above particle diameter values can be suitably used, and titania sol can be used as the colloidal titania.
  • the titania colloidal particles used in the present invention may be single colloidal particles, a mixture with other high refractive index metal oxides described later, or composite oxide colloidal particles.
  • the method for producing the titania colloidal particles is not particularly limited, and can be produced by a conventional method, for example, 1) an ion exchange method, 2) a peptization method, or the like.
  • Ion exchange method A method of treating an acidic salt of titanium with a hydrogen ion exchange resin, or a method of treating a basic salt of titanium with a hydroxyl type anion exchange resin.
  • Peptization A method in which the gel obtained by neutralizing the acidic salt of titanium with a salt or neutralizing the basic salt of titanium with an acid is washed with an acid or a base ( Japanese Patent Publication No. 4-27168), a method of hydrolyzing an alkoxide of titanium (Japanese Patent Laid-Open No. 2003-176120), or a method of hydrolyzing a basic salt of titanium with heating (Japanese Patent Laid-Open No. 10-245224) ) And the like.
  • Examples of the other metal oxides include Fe 2 O 3 , ZrO 2 , SnO 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , MoO 3 , WO 3 , PbO, In 2 O 3 , Examples include Bi 2 O 3 and SrO, which can be produced in the same manner as the titania colloidal particles.
  • composite oxides TiO 2 -SnO 2, TiO 2 -ZrO 2, TiO 2 -ZrO 2 -SnO 2, TiO 2 -ZrO 2 -CeO 2 , and the like, as a method for compounding is
  • methods disclosed in JP 2014-38293 A, JP 2001-122621 A, JP 2000-063119 A, and the like can be employed.
  • organic solvents in the above titania sol include lower alcohols such as methyl alcohol, ethyl alcohol and isopropanol; linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methyl-2-pyrrolidone Cyclic ethers such as ⁇ -butyrolactone; glycols such as ethyl cellosolve and ethylene glycol; acetonitrile and the like.
  • the titania sol has a viscosity of about 0.6 mPa ⁇ s to 100 mPa ⁇ s at 20 ° C.
  • titania colloidal particles examples include, for example, Product name Neutral titania sol TTO-W-5 (Rutile ultrafine titanium oxide aqueous sol, silica surface treatment, manufactured by Ishihara Sangyo Co., Ltd.) Product name TKS-201 (Anatase type acidic sol, manufactured by Teika Co., Ltd.), Product name KS-202 (Anatase type acidic sol, manufactured by Teika Co., Ltd.), Product name TKS-203 (Anatase type neutral sol, Taker ( ) Product name CSB (anaters type water-based acidic sol, manufactured by Sakai Chemical Industry Co., Ltd.), product name CSB-M (anaters type water-based neutral sol, manufactured by Sakai Chemical Industry Co., Ltd.), Product name DC-Ti, DCN-Ti, DCB-Ti (above amorphous water-based sol, manufactured by Fuji Titanium Industry Co., Ltd.), organic sol (anatata sol TTO-W-5 (
  • the content of the titanium dioxide is usually 0.1 mass relative to the total mass of the polyimide, titanium dioxide particles, and silicon dioxide particles in the flexible device substrate-forming composition from the viewpoint of ensuring absorption of light having a wavelength of 308 nm. % Or more, preferably 1% by mass or more, more preferably 2% by mass or more, from the viewpoint of obtaining a thin film excellent in transparency in the visible light region with good reproducibility, usually 30% by mass or less, preferably 25% by mass or less, More preferably, it is 20 mass% or less.
  • the total amount of the polyimide, titanium dioxide particles, and silicon dioxide particles in the composition for forming a flexible device substrate is used. It is preferable that the titanium content is 3 mass% or more and 16 mass% or less.
  • the silicon dioxide (silica) used in the present invention is not particularly limited, but silicon dioxide in the form of particles, for example, the average particle diameter is 100 nm or less, preferably 5 nm to 100 nm, more preferably 5 nm to 55 nm, and a highly transparent thin film is formed. From the viewpoint of obtaining good reproducibility, the thickness is preferably 5 nm to 50 nm, more preferably 5 nm to 45 nm, still more preferably 5 nm to 35 nm, and still more preferably 5 nm to 30 nm.
  • the average particle diameter of silicon dioxide particles is an average particle diameter value calculated from specific surface area values measured by a nitrogen adsorption method using silicon dioxide particles.
  • colloidal silica having the above average particle size can be suitably used, and silica sol can be used as the colloidal silica.
  • silica sol there can be used an aqueous silica sol produced by a known method using a sodium silicate aqueous solution as a raw material, and an organosilica sol obtained by substituting water as a dispersion medium of the aqueous silica sol with an organic solvent.
  • alkoxysilanes such as methyl silicate and ethyl silicate are obtained by hydrolysis and condensation in an organic solvent such as alcohol in the presence of a catalyst (for example, an alkali catalyst such as ammonia, an organic amine compound, or sodium hydroxide).
  • a silica sol obtained by replacing the silica sol with another organic solvent can be used.
  • This substitution can be performed by a usual method such as a distillation method or an ultrafiltration method.
  • the present invention preferably uses an organosilica sol whose dispersion medium is an organic solvent.
  • Examples of the organic solvent in the above-described organosilica sol include: lower alcohols such as methyl alcohol, ethyl alcohol and isopropanol; linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide; N-methyl-2- Examples include cyclic amides such as pyrrolidone; ethers such as ⁇ -butyrolactone; glycols such as ethyl cellosolve and ethylene glycol, acetonitrile, and the like.
  • the viscosity of the organosilica sol is about 0.6 mPa ⁇ s to 100 mPa ⁇ s at 20 ° C.
  • organosilica sols examples include, for example, trade name MA-ST-S (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.), trade name MT-ST (methanol-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.).
  • Product name XBA-ST xylene / n-butanol mixed solvent dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.
  • product name EAC-ST ethyl acetate dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.
  • product Name PMA-ST propylene glycol monomethyl ether acetate dispersed silica sol, Nissan Chemical Industries, Ltd.
  • Trade name MEK-ST methyl ethyl ketone dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.
  • trade name MEK-ST-UP methyl ethyl ketone dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd.
  • trade name MEK-ST-L examples thereof include, but are not limited to, methyl ethyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries, Ltd., and trade name MIBK-ST (methyl isobutyl ketone-dispersed silica sol, manufactured by Nissan Chemical Industries
  • the content of silicon dioxide is based on the total mass of polyimide, titanium dioxide particles, and silicon dioxide particles in the composition for forming a flexible device substrate. Usually 20% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more. From the viewpoint of the mechanical strength of the membrane, it is usually 80% by mass or less, preferably 75% by mass or less, more preferably 70% by mass. It is as follows.
  • the composition for forming a flexible device substrate of the present invention may further contain a cross-linking agent, and the cross-linking agent used here is a compound composed only of hydrogen atoms, carbon atoms, nitrogen atoms and oxygen atoms. And a crosslinking agent comprising a compound having two or more groups selected from the group consisting of a hydroxy group, an epoxy group, and an alkoxy group having 1 to 5 carbon atoms, and having a ring structure.
  • a cross-linking agent it is possible to realize a composition for forming a flexible device substrate that not only provides excellent solvent resistance but also provides a resin thin film suitable for a flexible device substrate with good reproducibility, as well as improved storage stability. can do.
  • the total number of hydroxy groups, epoxy groups and alkoxy groups having 1 to 5 carbon atoms per compound in the crosslinking agent is preferably 3 or more from the viewpoint of realizing the solvent resistance of the resulting resin thin film with good reproducibility. From the viewpoint of realizing the flexibility of the resulting resin thin film with good reproducibility, it is preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • ring structure possessed by the crosslinking agent include aryl rings such as benzene, nitrogen-containing heteroaryl rings such as pyridine, pyrazine, pyrimidine, pyridazine, 1,3,5-triazine, cyclopentane, cyclohexane, cycloheptane, etc.
  • cyclic amines such as cycloalkane ring, piperidine, piperazine, hexahydropyrimidine, hexahydropyridazine, hexahydro-1,3,5-triazine and the like.
  • the number of ring structures per compound in the crosslinking agent is not particularly limited as long as it is 1 or more. However, from the viewpoint of obtaining a resin thin film having high flatness by ensuring the solubility of the crosslinking agent in a solvent, 1 or 2 is preferable.
  • the ring structures may be condensed with each other, and an alkane having 1 to 5 carbon atoms such as a methylene group, an ethylene group, a trimethylene group, a propane-2,2-diyl group, etc.
  • the ring structures may be bonded to each other through a linking group such as a diyl group.
  • the molecular weight of the crosslinking agent is not particularly limited as long as it has crosslinking ability and dissolves in the solvent to be used, but the solvent resistance of the resulting resin thin film, the solubility of the crosslinking agent itself in an organic solvent, and easy availability In consideration of properties, price, etc., it is preferably about 100 to 500, more preferably about 150 to 400.
  • the crosslinking agent may further have a group that can be derived from a hydrogen atom, a carbon atom, a nitrogen atom, and an oxygen atom, such as a ketone group or an ester group (bond).
  • crosslinking agent examples include compounds represented by the formulas selected from the group consisting of the following formulas (K1) to (K5).
  • formula (K4) As one preferred embodiment of formula (K4), formula (K4- As one of the preferred embodiments of the compound represented by 1), the compound represented by the formula (5-1) is exemplified.
  • each A 1 and A 2 independently represents an alkane-diyl group having 1 to 5 carbon atoms such as a methylene group, an ethylene group, a trimethylene group, a propane-2,2-diyl group, Among them, A 1 is preferably a methylene group or an ethylene group, more preferably a methylene group, and A 2 is preferably a methylene group or a propane-2,2-diyl group.
  • Each X is independently of each other hydroxy group, epoxy group (oxa-cyclopropyl group), methoxy group, ethoxy group, 1-propyloxy group, isopropyloxy group, 1-butyloxy group, t-butyloxy group, etc.
  • An alkoxy group having 1 to 5 carbon atoms is represented.
  • X is preferably an epoxy group in the formulas (K1) and (K5), and has 1 to 5 carbon atoms in the formulas (K2) and (K3) in consideration of the availability, price, etc. of the crosslinking agent.
  • An alkoxy group is preferable, and a hydroxy group is preferable in the formula (K4).
  • each n represents the number of — (A 1 -X) groups bonded to the benzene ring, and is an integer of 1 to 5 independently of each other, preferably 2 to 3, more preferably 3.
  • each A 1 is preferably the same group, and each X is preferably the same group.
  • the compounds represented by the above formulas (K1) to (K5) are skeleton compounds such as aryl compounds, heteroaryl compounds, and cyclic amines having the same ring structure as the ring structure in these compounds, epoxy alkyl halide compounds, It can be obtained by reacting an alkoxy halide compound or the like with a carbon-carbon coupling reaction or an N-alkylation reaction, or hydrolyzing the resulting alkoxy moiety.
  • a commercial item may be used for a crosslinking agent, and what was synthesize
  • combining method may be used for it.
  • Commercially available products include CYMEL (registered trademark) 300, 301, 303LF, 303ULF, 304, 350, 3745, XW3106, MM-100, 323, 325, 327, 328, Same 385, Same 370, Same 373, Same 380, Same 1116, Same 1130, Same 1133, Same 1141, Same 1161, Same 1168, Same 3020, Same 202, Same 203, Same 1156, Same MB-94, Same MB- 96, MB-98, 247-10, 651, 658, 683, 683, 688, 1158, MB-14, MI-12-I, MI-97-IX, U-65 UM-15, U-80, U-21-511, U-21-510, U-216-8, U-227-8, U-1050-10, U-1052 -8, the same
  • TEPIC registered trademark
  • V, S, HP, etc. L, PAS, VL, UC manufactured by Nissan Chemical Industries, Ltd.
  • TM-BIP-A manufactured by Asahi Organic Materials Co., Ltd.
  • 1,3,4,6-tetrakis (methoxymethyl) ) Glycoluril hereinafter abbreviated as TMG) (Tokyo Chemical Industry Co., Ltd.) 4,4'-methylenebis (N, N-diglycidylaniline) (Aldrich), HP-4032D, HP-7200L, HP-7200, HP-7200H, HP-7200HH, HP-7200HHH, HP- 4700, HP-4770, HP-5000, HP-6000, HP-4710, EXA-4850-150, EXA-4850-1000, EXA-4816, HP-820 (DIC Corporation), TG-G (Shikoku Chemicals) Kogyo Co., Ltd.).
  • the amount of the crosslinking agent is appropriately determined according to the type of the crosslinking agent, etc., it cannot be specified unconditionally.
  • the total amount of the polyimide, the titanium dioxide, and the silicon dioxide is usually the amount of the resin thin film obtained. From the viewpoint of ensuring flexibility and suppressing embrittlement, it is 50% by mass or less, preferably 100% by mass or less, and from the viewpoint of ensuring solvent resistance of the resulting resin thin film, 0.1% by mass or more, preferably 1% by mass or more.
  • the composition for forming a flexible device substrate of the present invention contains an organic solvent in addition to the polyimide, titanium dioxide, silicon dioxide and, optionally, a crosslinking agent.
  • This organic solvent is not specifically limited, For example, the thing similar to the specific example of the reaction solvent used at the time of preparation of the said polyamic acid and a polyimide is mentioned. More specifically, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-ethyl-2-pyrrolidone, ⁇ - Examples include butyrolactone.
  • an organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and ⁇ -butyrolactone are preferable in view of obtaining a resin film having high flatness with good reproducibility.
  • composition for forming flexible device substrate is a composition for forming a flexible device substrate containing the polyimide, titanium dioxide, silicon dioxide, an organic solvent, and optionally a crosslinking agent.
  • the composition for forming a flexible device substrate of the present invention is uniform and phase separation is not observed.
  • the solid content in the composition for forming a flexible device substrate of the present invention is usually in the range of 0.5 to 30% by mass, preferably 5% by mass or more and 20% by mass from the viewpoint of film uniformity. It is as follows.
  • solid content means the remaining components remove
  • the viscosity of the composition for forming a flexible device substrate is appropriately determined in consideration of the coating method used, the thickness of the resin thin film to be produced, and the like, but is usually 1 to 50,000 mPa ⁇ s at 25 ° C. .
  • various other organic or inorganic low-molecular or high-molecular compounds may be blended with the composition for forming a flexible device substrate of the present invention.
  • a catalyst an antifoaming agent, a leveling agent, a surfactant, a dye, a plasticizer, fine particles, a coupling agent, a sensitizer, and the like can be used.
  • the catalyst may be added for the purpose of reducing the retardation and linear expansion coefficient of the resin thin film.
  • composition for forming a flexible device substrate of the present invention can be obtained by dissolving the polyimide obtained by the above-mentioned method, titanium dioxide and silicon dioxide, and optionally a crosslinking agent in the above-mentioned organic solvent. Titanium dioxide, silicon dioxide, and a crosslinking agent as required may be added to the subsequent reaction solution, and the organic solvent may be further added as desired.
  • [Flexible device substrate] The organic solvent is removed by applying the composition for forming a flexible device substrate of the present invention described above to a substrate, drying and heating, high heat resistance, high transparency, moderate flexibility, and moderate A resin thin film having a linear expansion coefficient and having a small retardation and selectively absorbing light having a wavelength of 308 nm, that is, a flexible device substrate can be obtained.
  • the flexible device substrate that is, the flexible device comprising the polyimide, the titanium dioxide, silicon dioxide, and optionally a crosslinking agent, that is, the flexible device comprising the cured product of the flexible device substrate forming composition of the present invention.
  • Substrates are also the subject of the present invention.
  • a base material used for manufacturing a flexible device substrate for example, plastic (polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetylcellulose, ABS, AS, norbornene resin, etc.), metal , Stainless steel (SUS), wood, paper, glass, silicon wafer, slate, and the like.
  • plastic polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, triacetylcellulose, ABS, AS, norbornene resin, etc.
  • metal Stainless steel
  • wood paper, glass, silicon wafer, slate, and the like.
  • the base material to be applied is glass or a silicon wafer from the viewpoint that existing equipment can be used, and the obtained flexible device substrate exhibits good peelability. Therefore, it is more preferable that it is glass.
  • a linear expansion coefficient of the base material to apply from a viewpoint of the curvature of the base material after coating, Preferably it is 40 ppm / degrees C or less, More preferably, it is 30 ppm / degrees C or less.
  • the method for applying the composition for forming a flexible device substrate on the base material is not particularly limited, and examples thereof include a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, and a bar coating method. , Die coating method, ink jet method, printing method (letter plate, intaglio plate, planographic plate, screen printing, etc.) and the like, and these can be appropriately used according to the purpose.
  • the heating temperature is preferably 300 ° C. or lower. If the temperature exceeds 300 ° C., the resulting resin thin film becomes brittle, and a resin thin film particularly suitable for display substrate use may not be obtained. Also, considering the heat resistance and linear expansion coefficient characteristics of the resulting resin thin film, after heating the applied flexible device substrate forming composition at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, the heating temperature is gradually increased as it is. It is desirable to raise the temperature and finally heat at over 175 ° C. to 280 ° C. for 30 minutes to 2 hours. Thus, by heating at a temperature of two or more stages of drying the solvent and promoting molecular orientation, the low thermal expansion characteristics can be expressed with higher reproducibility.
  • the applied composition for forming a flexible device substrate is heated at 40 ° C. to 100 ° C. for 5 minutes to 2 hours, then at a temperature exceeding 100 ° C. to 175 ° C. for 5 minutes to 2 hours, and then at a temperature exceeding 175 ° C. to 280 ° C. It is preferable to heat for 5 minutes to 2 hours.
  • the appliance used for heating include a hot plate and an oven.
  • the heating atmosphere may be under air or under an inert gas such as nitrogen, and may be under normal pressure or under reduced pressure, and different pressures are applied at each stage of heating. May be.
  • the thickness of the resin thin film is appropriately determined in consideration of the type of the flexible device within a range of about 1 to 200 ⁇ m, but usually 1 to 60 ⁇ m when it is assumed to be used as a substrate for a flexible display.
  • the thickness is about 5 to 50 ⁇ m, and the thickness of the coating before heating is adjusted to form a resin thin film having a desired thickness.
  • the method for peeling the resin thin film formed in this way from the substrate is not particularly limited, and the resin thin film is cooled together with the substrate, and a thin film is cut and peeled or tension is applied via a roll. And a method of peeling off.
  • a laser lift-off (LLO) method can be adopted as a method for peeling a resin thin film from a substrate. That is, by irradiating the base material with a light beam having a wavelength of 308 nm from the surface opposite to the surface on which the resin thin film of the base material is formed, the light beam with the wavelength passes through the base material (for example, a glass carrier).
  • the resin thin film can be peeled off from the base material by absorbing this light only in the vicinity of the polyimide and evaporating the polyimide in the portion.
  • the laser beam used for peeling the resin thin film from the substrate by the laser lift-off method is not particularly limited, but an excimer laser is preferable.
  • the oscillation wavelength is ArF (193 nm), KrF (248 nm), XeCl (308 nm). ) And XeF (353 nm), and XeCl (308 nm) is particularly preferable.
  • the energy density of the irradiated laser beam typically, include a range of less than 650 mJ / cm 2, for instance, the range of 500 mJ / cm 2 to 530mJ / cm 2, the range of 500 mJ / cm 2 to 515mJ / cm 2 Etc.
  • the resin thin film according to a preferred embodiment of the present invention thus obtained can achieve high transparency with a light transmittance of 85% or more at a wavelength of 550 nm.
  • the light transmittance at a wavelength of 308 nm is 5% or less, that is, it is possible to achieve sufficient light absorption at the wavelength that enables the resin thin film to be peeled from the substrate to which the laser lift-off method is applied.
  • the resin thin film can have a low coefficient of linear expansion coefficient of, for example, 40 ppm / ° C. or less, particularly 10 ppm / ° C. to 35 ppm / ° C. at 30 ° C. to 220 ° C., and has excellent dimensional stability during heating. It is.
  • the resin thin film has an in-plane retardation R 0 represented by the product of birefringence (difference between two in-plane orthogonal refractive indexes) and a film thickness when the wavelength of incident light is 590 nm,
  • the film thickness thickness direction retardation R th represented are both featuring a very small.
  • the resin thin film has a thickness direction retardation R th of less than 700 nm, for example, 450 nm or less, for example, 1 nm to 410 nm, and in-plane retardation R 0 is less than 4.5.
  • R th thickness direction retardation
  • in-plane retardation R 0 is less than 4.5.
  • the birefringence ⁇ n has a very low value of less than 0.015, for example, 0.0028 to 0.0144.
  • the resin thin film described above has the above-mentioned characteristics, it satisfies the conditions necessary for a base film of a flexible device substrate, and is particularly preferably used as a base film for a substrate of a flexible device, particularly a flexible display. it can.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • BODAxx bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic dianhydride
  • TFMB 2,2′-bis (trifluoromethyl) benzidine
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • titania sol (TiO 2 -GBL)
  • methanol-dispersed titania sol manufactured by Nissan Chemical Industries, Ltd .: TiO 2 -MeOH (“Sun Colloid (registered trademark) HT-R305M7-20”, rutile type, solid content of titania: 30.6% by mass ) 91.13 g and ⁇ -butyrolactone 82.02 g.
  • the flask was connected to a vacuum evaporator to reduce the pressure in the flask, and immersed in a warm water bath at about 35 ° C.
  • titania sol TiO 2 -GBL in which the solvent was replaced with ⁇ -butyllactone was about 107 0.0 g was obtained (titania solid content concentration: 26.06% by mass).
  • titania sol the primary particle diameter of titanium dioxide particles observed with an electron microscope was 10 to 12 nm.
  • the average particle diameter calculated from the specific surface area value measured by the nitrogen adsorption method was 22 nm.
  • the specific surface area of the dry powder of silica sol was measured using a specific surface area measuring device Monosorb MS-16 manufactured by Yuasa Ionics Co., Ltd., and the measured specific surface area S (m 2 / g) was used as D.
  • Example 1 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%). 9703g and GBL 0.946g were added, and it stirred for 30 minutes, and obtained the composition for flexible device board
  • TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.1343 g and GBL 0.95 g were added and stirred for 30 minutes to obtain a composition for forming a flexible device substrate.
  • Example 3 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%).
  • Example 4 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%).
  • TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.0302 g and GBL 0.5648 g were added and stirred for 30 minutes to obtain a composition for forming a flexible device substrate.
  • Example 5 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%).
  • Example 6 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%).
  • Example 7 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%).
  • TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.04029 g and GBL 0.335 g were added and stirred for 30 minutes to obtain a composition for forming a flexible device substrate.
  • Example 8 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%). 5718 g, TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.05 g, GBL 1.264 g were added, and TEPIC-L (purity 99%) 0.029 g was added, and the mixture was stirred for 30 minutes. Then, a composition for forming a flexible device substrate was obtained.
  • PI polyimide solid content concentration: 10.5 mass%
  • Example 9 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%). 5198 g, TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.1 g and GBL 1.266 g were added, and TEPIC-L (purity 99%) 0.029 g was further added, followed by stirring for 30 minutes. Then, a composition for forming a flexible device substrate was obtained.
  • PI polyimide solid content concentration: 10.5 mass%
  • Example 10 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%). 4678 g, TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.1511 g and GBL 1.268 g were added, and TEPIC-L (purity 99%) 0.029 g was added, and the mixture was stirred for 30 minutes. Then, a composition for forming a flexible device substrate was obtained.
  • PI polyimide solid content concentration: 10.5 mass%
  • Example 11 At room temperature, 1 g of the polyimide solution prepared in the synthesis example (PI, polyimide solid content concentration: 10.5 mass%) was added to the GBL-M silica sol prepared in the preparation example (silica solid content concentration: 25.25 mass%). 5458 g, TiO 2 -GBL titania sol (titania solid content concentration: 26.06 mass%) 0.0755 g, and GBL 0.5654 g were added and stirred for 30 minutes to obtain a composition for forming a flexible device substrate.
  • 5% weight loss temperature (Td 5% ) 5% weight loss temperature (Td 5% [° C.]) is measured by using a TGA Q500 manufactured by TA Instruments Inc. and raising the temperature of about 5 to 10 mg of thin film from nitrogen to 50 to 800 ° C. at a rate of 10 ° C./min. I asked for it.
  • CIE b value (CIE b * ) was measured using a SA4000 spectrometer manufactured by Nippon Denshoku Industries Co., Ltd., at room temperature, using air as a reference.
  • T 308nm , T 550nm Light transmittance at wavelengths of 308 nm and 550 nm (T 308 nm , T 550 nm [%]) was measured using UV-3600 manufactured by Shimadzu Corporation at room temperature and with reference as air.
  • Retardation (R th , R 0 ) Thickness direction retardation (R th ) and in-plane retardation (R 0 ) were measured at room temperature using KOBURA 2100ADH manufactured by Oji Scientific Instruments.
  • the thickness direction retardation (R th ) and the in-plane retardation (R 0 ) are calculated by the following equations.
  • Table 1 shows the results of optical characteristics of the resin thin films obtained from the respective flexible device substrate forming compositions
  • Table 2 shows the results of heat resistance and solvent resistance tests.
  • the resin thin films obtained from the flexible device substrate forming compositions of Examples 2 to 11 have a high light transmittance [%] at a wavelength of 550 nm, while the light transmittance at a wavelength of 308 nm is 5%. The results suggesting that the laser lift-off method can be applied.
  • the resin thin film also has a low yellowness (CIE b * ), a thickness direction retardation R th of 404 nm or less, an in-plane retardation R 0 of 4.2 nm or less, and a birefringence ⁇ n of less than 0.015. The value was extremely low.
  • the resin thin film had a low coefficient of linear expansion [ppm / ° C.] (30 to 220 ° C.) (less than 31 ppm / ° C.), improved heat resistance, and flexibility. . Furthermore, in Example 8 thru
  • Laser light source Maxima laser XeCl (308 nm) Energy Density: 420mJ / cm 2, 500mJ / cm 2, 515mJ / cm 2, 530mJ / cm 2, 560mJ / cm 2, 630mJ / cm 2 Stage moving speed: 7.8 mm / sec Laser beam size: 14 mm ⁇ 1.3 mm (maximum energy size: 7.8 mm ⁇ 1.3 mm), laser beam overlapping scanning range is 80% The results are shown in Table 3. In the table, ⁇ represents that the resin thin film was peeled off, ⁇ represents that there was a partial defect, and ⁇ represents that no peeling occurred.
  • Example 11 As shown in Table 3, it was confirmed that the resin thin film of the present invention shown in Example 11 can be peeled off by the LLO method. On the other hand, the resin thin film of Example 1 containing no TiO 2 was not peeled off under the same conditions.
  • the composition for forming a flexible device substrate of the present invention has characteristics such as a low linear expansion coefficient, high transparency (high light transmittance, low yellowness), low retardation, and excellent solvent resistance. That is, it is a material that can form a resin thin film that satisfies the requirements as a base film of a flexible device substrate.
  • the resin thin film sufficiently absorbs light of a specific wavelength (308 nm) and can be applied with a laser lift-off method, it is particularly preferably used as a base film of a flexible device substrate for mass production of flexible devices. I can expect to be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

【課題】耐熱性に優れ、リタデーションが低いという特徴をも有する樹脂薄膜、特にフレキシブルデバイスの基板として好適な樹脂薄膜を与え、レーザーリフトオフ法の適用が可能となる特定波長の光線を吸収する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することを目的とする。 【解決手段】ポリイミド、粒子径が3nm~200nmである二酸化チタン粒子、窒素吸着法により測定された比表面積値から算出される平均粒子径が100nm以下である二酸化ケイ素粒子及び有機溶媒を含むフレキシブルデバイス基板形成用組成物及び該フレキシブルデバイス基板形成用組成物から形成された樹脂薄膜。

Description

フレキシブルデバイス基板形成用組成物
 本発明は、フレキシブルデバイス基板形成用組成物に関し、より具体的には、特にキャリア基材からの基板の剥離工程においてレーザーリフトオフ法を用いる、フレキシブルディスプレイ等のフレキシブルデバイス基板の形成に好適に使用できる組成物に関する。
 近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。
 これらのデバイスにはガラス基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されているが、このガラス材料を柔軟かつ軽量な樹脂材料に替えることで、デバイス自体の薄型化や軽量化、フレキシブル化が図れる。
 このような事情の下、ガラスの代替材料としてポリイミドが注目を集めている。そして、当該用途向けのポリイミドには、柔軟性だけでなく、大抵の場合、ガラスと同様の透明性が要求されることとなる。これらの特性を実現するために、原料に脂環式ジアミン成分や脂環式無水物成分を用いて得られる半脂環式ポリイミドや全脂環式ポリイミドが報告されている(例えば特許文献1~3参照)。
 一方、フレキシブルディスプレイの製造において、これまで高輝度LEDや三次元半導体パッケージ等の製造において使用されてきたレーザーリフトオフ法(LLO法)を用いてガラスキャリアからポリマー基板を好適に剥離できることが報告されている(例えば非特許文献1)。
 フレキシブルディスプレイの製造では、ガラスキャリア上にポリイミド等からなるポリマー基板を設け、次にその基板の上に電極等を含む回路等を形成し、最終的にこの回路等とともに基板をガラスキャリアから剥離する必要がある。この剥離工程においてLLO法を採用し、すなわち、回路等が形成された面とは反対の面から、波長308nmの光線をガラスキャリアに照射すると、当該波長の光線がガラスキャリアを透過し、ガラスキャリア近傍のポリマー(ポリイミド)のみがこの光線を吸収して蒸発(昇華)する。その結果、ディスプレイの性能を決定づけることとなる、基板上に設けられた回路等に影響を与えることなく、ガラスキャリアからの基板の剥離を選択的に実行可能であると報告されている。
特開2013-147599号公報 特開2014-114429号公報 国際公開第2015/152178号
Journal of Information Display,2014, Vol 15, No.1, p.p.1-4
 LLO法は、上述したプロセス上の優位性のために、フレキシブルディスプレイの製造において、極めて優位な基板剥離法としての採用の可能性が高まっている。そして、フレキシブルディスプレイの実用化、さらには量産化への現実味が増すに伴い、LLO法が適用可能なフレキシブルディスプレイ用のポリマー基板への要求も高まることとなる。
 フレキシブルディスプレイの製造においてLLO法の採用を可能にするには、ポリマー基板が特定波長の光線を吸収することが求められる。しかし、これまで提案されたフレキシブルディスプレイ用基板材料として有望な半脂環式ポリイミドや全脂環式ポリイミドは、脂環部位を含むために、可視光領域の光の吸収が抑制されて透明性に優れる反面、紫外光領域の光の吸収も抑制され、LLO法を適用可能にする紫外光領域の光線(例えば308nm)を十分に吸収しないことが多い。
 このようなトレードオフの関係があるために、半脂環式ポリイミドや全脂環式ポリイミドを含む既存材料はLLO法を適用できないことが多い。それ故、フレキシブルディスプレイの分野においては、可視光領域の吸収が抑制されて透明性に十分に優れるとともに、LLO法の適用が可能となる特定波長(例えば308nm)の光線を十分に吸収するという特徴を持つ基板材料が求められている。
 本発明は、このような事情に鑑みてなされたものであって、耐熱性及び柔軟性に優れるだけでなく、リタデーションが低いという特徴を有するフレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供すること、特に可視光領域における透明性を確保する一方、レーザーリフトオフ法を適用できる特定波長(308nm)の光線を十分に吸収できる薄膜を形成できる、フレキシブルデバイス基板形成用組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、主鎖に脂環式骨格を有するポリイミドに、二酸化チタン粒子と二酸化ケイ素粒子を配合した樹脂薄膜が、耐熱性に優れ、リタデーションが低く、さらに柔軟性に優れるという特徴をも有すること、及び、当該二酸化ケイ素の配合量を所定の範囲とすることで、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れる樹脂薄膜が実現できること、特に当該二酸化チタン粒子を特定量配合することにより、前記透明性を確保しつつLLO法を適用可能となる特定波長の光線を十分に吸収できる樹脂薄膜を実現でき、フレキシブルディスプレイ等のフレキシブルデバイス向けの基板に好適に使用できることを見出し、本発明を完成させた。
 すなわち本発明は、第1観点として、主鎖に脂環式骨格を有するポリイミド、
粒子径が3nm~200nmである二酸化チタン粒子、
窒素吸着法により測定された比表面積値から算出される平均粒子径が100nm以下である二酸化ケイ素粒子、及び
有機溶媒
を含む、フレキシブルデバイス基板形成用組成物に関する。
 第2観点として、前記二酸化チタン粒子は、前記ポリイミド、前記二酸化チタン粒子および前記二酸化ケイ素粒子の合計質量に対して0.1質量%以上20質量%以下の量である、第1観点に記載のフレキシブルデバイス基板形成用組成物に関する。
 第3観点として、さらに水素原子、炭素原子、窒素原子および酸素原子のみから構成される化合物であって、ヒドロキシ基、エポキシ基および炭素原子数1~5のアルコキシ基からなる群から選ばれる基を2以上有し、且つ、環状構造を有する化合物からなる架橋剤を含む、
第1観点に記載のフレキシブルデバイス基板形成用組成物に関する。
 第4観点として、前記二酸化チタン粒子は、前記ポリイミド、前記二酸化チタン粒子および前記二酸化ケイ素粒子の合計質量に対して3質量%以上16質量%以下の量である、第3観点に記載のフレキシブルデバイス基板形成用組成物に関する。
 第5観点として、前記ポリイミドが、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と含フッ素芳香族ジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られるポリイミドである、第1観点乃至第4観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物に関する。
 第6観点として、前記脂環式テトラカルボン酸二無水物が、式(C1)で表されるテトラカルボン酸二無水物を含む、第5観点に記載のフレキシブルデバイス基板形成用組成物に関する。
Figure JPOXMLDOC01-appb-C000009
〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
Figure JPOXMLDOC01-appb-C000010
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
 第7観点として、前記含フッ素芳香族ジアミンが、式(A1)で表されるジアミンを含む、第5観点または請求項6に記載のフレキシブルデバイス基板形成用組成物に関する。
Figure JPOXMLDOC01-appb-C000011
(式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、*は結合手を表す。)
 第8観点として、前記ポリイミドと前記二酸化ケイ素粒子の質量比が、7:3~3:7である、第1観点乃至第7観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物に関する。
 第9観点として、前記二酸化ケイ素粒子の平均粒子径が、60nm以下である、第1観点乃至第8観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物に関する。
 第10観点として、レーザーリフトオフ法を適用するフレキシブルデバイスの基板形成用組成物である、第1観点乃至第9観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物に関する。
 第11観点として、第1観点乃至第10観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物から形成されるフレキシブルデバイス基板に関する。
 第12観点として、第1観点乃至第10観点のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱してフレキシブルデバイス基板を形成する工程、
レーザーリフトオフ法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法に関する。
 本発明に係るフレキシブルデバイス基板形成用組成物によれば、低い線膨張係数を有し、耐熱性に優れ、高い透明性と低いリタデーションを有し、さらに柔軟性に優れ、特にレーザーリフトオフ法の適用が可能となる特定波長(308nm)の光線を十分に吸収できるフレキシブルディスプレイ等のフレキシブルデバイス用の基板を再現性よく形成することができる。
 また本発明に係るフレキシブルデバイス基板は、フレキシブルディスプレイ等のフレキシブルデバイス用の基板に求められる種々の特性、すなわち、低線膨張係数、可視光領域における高い透明性(高い光線透過率、低い黄色度)、低いリタデーションを示し、さらに柔軟性に優れ、特に、特定波長(308nm)の光線を十分に吸収できることから、キャリア基材からの基板を剥離する際にレーザーリフトオフ法を好適に用いることができる。
 このような本発明は、高い柔軟性、低い線膨張係数、高い透明性(高い光線透過率、低い黄色度)、低いリタデーション等の特性が求められるフレキシルデバイス用基板、特に、その製造工程においてレーザーリフトオフ法の採用が可能である、フレキシブルデバイス用基板の分野における進展に十分対応し得るものである。
 以下、本発明について詳細に説明する。
 本発明のフレキシブルデバイス基板形成用組成物は、下記特定のポリイミド、二酸化チタン粒子、二酸化ケイ素粒子及び有機溶媒を含有し、所望により架橋剤及びその他成分を含有する。
[ポリイミド]
 本発明で使用するポリイミドは、主鎖に脂環式骨格を有するポリイミドであって、好ましくは、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と含フッ素芳香族ジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られるポリイミドである。すなわち、上記ポリイミドは、好ましくはポリアミック酸のイミド化物であって、該ポリアミック酸は、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と含フッ素芳香族ジアミンを含むジアミン成分との反応物である。
 中でも、前記脂環式テトラカルボン酸二無水物が、下記式(C1)で表されるテトラカルボン酸二無水物を含むものであり、前記含フッ素芳香族ジアミンが、下記式(A1)で表されるジアミンを含むものであることが好ましい。
Figure JPOXMLDOC01-appb-C000017
〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
Figure JPOXMLDOC01-appb-C000018
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
Figure JPOXMLDOC01-appb-C000019
(式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
(式中、*は結合手を表す。)
 上記式(C1)で表されるテトラカルボン酸二無水物の中でも、式中のB1が式(X-1)、(X-4)、(X-6)、(X-7)で表される化合物が好ましい。
 また上記式(A1)で表されるジアミンの中でも、式中のB2が式(Y-12)、(Y-13)で表される化合物が好ましい。
 好適な例として、上記式(C1)で表されるテトラカルボン酸二無水物と上記式(A1)で表されるジアミンとを反応させて得られるポリアミック酸をイミド化して得られるポリイミドは、後述する式(2)で表されるモノマー単位を含む。
 本発明の目的である低線膨張係数、低リタデーション及び高透明性の特性を有し、柔軟性に優れる、フレキシブルデバイス基板に好適である樹脂薄膜を得るためには、テトラカルボン酸二無水物成分の全モル数に対して、脂環式テトラカルボン酸二無水物、例えば上記式(C1)で表されるテトラカルボン酸二無水物が90モル%以上であることが好ましく、95モル%以上であることがより好ましく、特に全て(100モル%)が上記式(C1)で表されるテトラカルボン酸二無水物であることが最適である。
 また同様に、上記低線膨張係数、低リタデーション及び高透明性の特性を有し、柔軟性に優れる前記樹脂薄膜を得るためには、ジアミン成分の全モル数に対して、含フッ素芳香族ジアミン、例えば上記式(A1)で表されるジアミンが90モル%以上であることが好ましく、95モル%以上であることがより好ましい。またジアミン成分の全て(100モル%)が上記式(A1)で表されるジアミンであってもよい。
 好適な態様の一例として、本発明で使用するポリイミドは、下記式(2)で表されるモノマー単位を含む。
Figure JPOXMLDOC01-appb-C000025
 上記式(2)で表されるモノマー単位としては、式(2-1)又は式(2-2)で表されるものが好ましく、式(2-1)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 本発明で使用するポリイミドは、前述の式(C1)で表されるテトラカルボン酸二無水物を含む脂環式テトラカルボン酸二無水物成分と、式(A1)で表されるジアミンを含むジアミン成分とから誘導されるモノマー単位以外にも、他のモノマー単位を含んでもよい。この他のモノマー単位の含有割合は、本発明の組成物から形成されるフレキシブルデバイス基板として好適となる樹脂薄膜の特性を損なわない限りにおいて任意に定められる。その割合は、前述の式(C1)で表されるテトラカルボン酸二無水物を含む脂環式テトラカルボン酸二無水物成分と、式(A1)で表されるジアミンを含むジアミン成分とから誘導されるモノマー単位の総モル数に対して、20モル%未満が好ましく、10モル%未満がより好ましく、5モル%未満であることがより一層好ましい。
 このような他のモノマー単位としては、例えば式(3)で表されるモノマー単位が挙げられるが、これに限定されるわけではない。
Figure JPOXMLDOC01-appb-C000027
 式(3)中、Aは4価の有機基を表し、好ましくは下記式(A-1)~(A-4)のいずれかで表される4価の基を表す。また上記式(3)中、Bは2価の有機基を表し、好ましくは式(B-1)~(B-11)のいずれかで表される2価の基を表す。各式中、*は結合手を表す。なお、式(3)中、Aが下記式(A-1)~(A-4)のいずれかで表される4価の基を表す場合、Bは前述の式(Y-1)~(Y-34)のいずれかで表される2価の基であってもよい。或いは式(3)中、Bが下記式(B-1)~(B-11)のいずれかで表される2価の基を表す場合、Aは前述の式(X-1)~(X-12)のいずれかで表される4価の基であってもよい。
 本発明のポリイミドにおいて式(3)で表されるモノマー単位が含まれる場合、A及びBは、例えば下記式で例示された基のうち一種のみで構成されるモノマー単位のみを含んでいてもよいし、A及びBの少なくとも一方が下記に例示された二種以上の基から選択される二種以上のモノマー単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 なお、本発明で用いるポリイミド中では、各モノマー単位は任意の順序で結合している。
 また本発明で使用するポリイミドが、前述の式(C1)で表されるテトラカルボン酸二無水物を含む脂環式テトラカルボン酸二無水物成分と、式(A1)で表されるジアミンを含むジアミン成分とから誘導されるモノマー単位に加え、上記式(3)で表される他のモノマー単位を含む場合、各モノマー単位を含有するポリイミドは、テトラカルボン酸二無水物成分として上記式(C1)で表されるテトラカルボン酸二無水物及び下記式(5)で表されるテトラカルボン酸二無水物と、ジアミン成分として上記式(A1)で表されるジアミン及び下記式(6)で表されるジアミンとを有機溶媒中で重合させ、得られるポリアミック酸をイミド化することにより得られる。
Figure JPOXMLDOC01-appb-C000030
 上記式(5)中のA及び式(6)中のBは、前述の式(3)中のA及びBとそれぞれ同じ意味を表す。
 具体的には、式(5)で表されるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、11,11-ビス(トリフルオロメチル)-1H-ジフルオロ[3,4-b:3’,4’-i]キサンテン-1,3,7,9-(11H-テトラオン)、6,6’-ビス(トリフルオロメチル)-[5,5’-ビイソベンゾフラン]-1,1’,3,3’-テトラオン、4,6,10,12-テトラフルオロジフロ[3,4-b:3’,4’-i]ジベンゾ[b,e][1,4]ジオキシン-1,3,7,9-テトラオン、4,8-ビス(トリフルオロメトキシ)ベンゾ[1,2-c:4,5-c’]ジフラン-1,3,5,7-テトラオン、N,N’-[2,2’-ビス(トリフルオロメチル)ビフェニル-4,4’-ジイル]ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボアミド)等の芳香族テトラカルボン酸;1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等の脂環式テトラカルボン酸二無水物;1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられるが、これらに限定されない。
 これらの中でも、式(5)中のAが前記式(A-1)~(A-4)のいずれかで表される4価の基であるテトラカルボン酸二無水物が好ましく、すなわち、11,11-ビス(トリフルオロメチル)-1H-ジフルオロ[3,4-b:3’,4’-i]キサンテン-1,3,7,9-(11H-テトラオン)、6,6’-ビス(トリフルオロメチル)-[5,5’-ビイソベンゾフラン]-1,1’,3,3’-テトラオン、4,6,10,12-テトラフルオロジフロ[3,4-b:3’,4’-i]ジベンゾ[b,e][1,4]ジオキシン-1,3,7,9-テトラオン、4,8-ビス(トリフルオロメトキシ)ベンゾ[1,2-c:4,5-c’]ジフラン-1,3,5,7-テトラオンを好ましい化合物として挙げることができる。
 また式(6)で表されるジアミンとしては、例えば2-(トリフルオロメチル)ベンゼン-1,4-ジアミン、5-(トリフルオロメチル)ベンゼン-1,3-ジアミン、5-(トリフルオロメチル)ベンゼン-1,2-ジアミン、2,5-ビス(トリフルオロメチル)-ベンゼン-1,4-ジアミン、2,3-ビス(トリフルオロメチル)-ベンゼン-1,4-ジアミン、2,6-ビス(トリフルオロメチル)-ベンゼン-1,4-ジアミン、3,5-ビス(トリフルオロメチル)-ベンゼン-1,2-ジアミン、テトラキス(トリフルオロメチル)-1,4-フェニレンジアミン、2-(トリフルオロメチル)-1,3-フェニレンジアミン、4-(トリフルオロメチル)-1,3-フェニレンジアミン、2-メトキシ-1,4-フェニレンジアミン、2,5-ジメトキシ-1,4-フェニレンジアミン、2-ヒドロキシ-1,4-フェニレンジアミン、2,5-ジヒドロキシ-1,4-フェニレンジアミン、2-フルオロベンゼン-1,4-ジアミン、2,5-ジフルオロベンゼン-1,4-ジアミン、2-クロロベンゼン-1,4-ジアミン、2,5-ジクロロベンゼン-1,4-ジアミン、2,3,5,6-テトラフルオロベンゼン-1,4-ジアミン、4,4’-(パーフルオロプロパン-2,2-ジイル)ジアニリン、4,4’-オキシビス[3-(トリフルオロメチル)アニリン]、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3’-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、ベンジジン、2-メチルベンジジン、3-メチルベンジジン、2-(トリフルオロメチル)ベンジジン、3-(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン(m-トリジン)、3,3’-ジメチルベンジジン(o-トリジン)、2,3’-ジメチルベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジメトキシベンジジン、2,3’-ジメトキシベンジジン、2,2’-ジヒドロキシベンジジン、3,3’-ジヒドロキシベンジジン、2,3’-ジヒドロキシベンジジン、2,2’-ジフルオロベンジジン、3,3’-ジフルオロベンジジン、2,3’-ジフルオロベンジジン、2,2’-ジクロロベンジジン、3,3’-ジクロロベンジジン、2,3’-ジクロロベンジジン、4,4’-ジアミノベンズアニリド、4-アミノフェニル-4’-アミノベンゾエート、オクタフルオロベンジジン、2,2’,5,5’-テトラメチルベンジジン、3,3’,5,5’-テトラメチルベンジジン、2,2’,5,5’-テトラキス(トリフルオロメチル)ベンジジン、3,3’,5,5’-テトラキス(トリフルオロメチル)ベンジジン、2,2’,5,5’-テトラクロロベンジジン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-{[3,3”-ビス(トリフルオロメチル)-(1,1’:3’,1”-ターフェニル)-4,4”-ジイル]-ビス(オキシ)}ジアニリン、4,4’-{[(パーフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレン)]ビス(オキシ)}ジアニリン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5(または6)アミン等の芳香族ジアミン;4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(3-メチルシクロヘキシルアミン)、イソホロンジアミン、トランス-1,4-シクロヘキサンジアミン、シス-1,4-シクロヘキサンジアミン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8-ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3-ジアミノアダマンタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン等の脂肪族ジアミンが挙げられるが、これらに限定されない。
 これらの中でも、式(6)中のBが前記式(B-1)~(B-11)のいずれかで表される2価の基である芳香族ジアミンが好ましく、すなわち、2,2’-ビス(トリフロオロメトキシ)-(1,1’-ビフェニル)-4,4’-ジアミン[別称:2,2’-ジメトキシベンジジン]、4,4’-(パーフルオロプロパン-2,2-ジイル)ジアニリン、2,5-ビス(トリフルオロメチル)ベンゼン-1,4-ジアミン、2-(トリフルオロメチル)ベンゼン-1,4-ジアミン、2-フルオロベンゼン-1,4-ジアミン、4,4’-オキシビス[3-(トリフルオロメチル)アニリン]、2,2’,3,3’,5,5’,6,6’-オクタフルオロ[1,1’-ビフェニル]-4,4’-ジアミン[別称:オクタフルオロベンジジン]、2,3,5,6-テトラフルオロベンゼン-1,4-ジアミン、4,4’-{[3,3”-ビス(トリフルオロメチル)-(1,1’:3’,1”-ターフェニル)-4,4”-ジイル]-ビス(オキシ)}ジアニリン、4,4’-{[(パーフルオロプロパン-2,2-ジイル)ビス(4,1-フェニレン)]ビス(オキシ)}ジアニリン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5(または6)アミンを好ましいジアミンとして挙げることができる。
 上記ポリイミドの含有量は、形成される膜の機械強度の観点から、フレキシブルデバイス基板形成用組成物の固形分総質量に対して、通常10質量%以上、好ましくは20質量%以上、より好ましくは25質量%以上であり、低リタデーション膜の光学特性(厚さ方向リタデーション(Rth)および線膨張係数(CTE)が下がらない)の観点から、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下である。なお、固形分とは、フレキシブルデバイス基板形成用組成物を構成する全成分から溶媒を除いた残りの成分を意味する。
〈ポリアミック酸の合成〉
 本発明で使用するポリイミドは、前述したように、上記式(C1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、上記式(A1)で表される含フッ素芳香族ジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られる。
 上記二成分からポリアミック酸を得る反応は、有機溶媒中で比較的容易に進行させることができ、かつ副生成物が生成しない点で有利である。
 このような反応におけるテトラカルボン酸二無水物成分とジアミン成分との仕込み比(モル比)は、ポリアミック酸、さらにはその後イミド化させることにより得られるポリイミドの分子量等を勘案して適宜設定されるものではあるが、ジアミン成分1に対して、通常、テトラカルボン酸二無水物成分0.8~1.2程度とすることができ、例えば0.9~1.1程度、好ましくは0.95~1.02程度である。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
 上記テトラカルボン酸二無水物成分とジアミン成分との反応の際に用いる有機溶媒は、反応に悪影響を及ぼさず、また生成したポリアミック酸が溶解するものであれば特に限定されない。以下にその具体例を挙げる。
 例えば、m-クレゾール、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロピルアミド、3-エトキシ-N,N-ジメチルプロピルアミド、3-プロポキシ-N,N-ジメチルプロピルアミド、3-イソプロポキシ-N,N-ジメチルプロピルアミド、3-ブトキシ-N,N-ジメチルプロピルアミド、3-sec-ブトキシ-N,N-ジメチルプロピルアミド、3-tert-ブトキシ-N,N-ジメチルプロピルアミド、γ-ブチロラクトン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等があげられるがこれらに限定されない。これらは単独で又は2種以上を組み合わせて使用してもよい。
 さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 上記テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる方法としては、例えば、ジアミン成分を有機溶媒に分散あるいは溶解させた分散液又は溶液を撹拌させ、ここにテトラカルボン酸二無水物成分をそのまま添加するか、又はその成分を有機溶媒に分散あるいは溶解させたものを添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた分散液又は溶液にジアミン成分を添加する方法、そしてテトラカルボン酸二無水物成分とジアミン化合物成分とを交互に添加する方法などが挙げられ、目的とするポリアミック酸が得られる限り、これらの方法に限定されない。
 また、テトラカルボン酸二無水物成分及び/又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 上記のポリアミック酸合成時の温度は、上述した使用する溶媒の融点から沸点までの範囲で適宜設定すればよく、例えば-20℃~150℃の任意の温度を選択することができるが、-5℃~100℃、通常0~100℃程度、好ましくは0~70℃程度である。
 反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1~100時間程度である。
 また、反応は任意の原料濃度で行うことができるが、濃度が低すぎると高分子量のポリアミック酸を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、テトラカルボン酸二無水物成分とジアミン成分との反応溶液中での合計濃度が、好ましくは1~50質量%、より好ましくは5~40質量%である。なお、必要に応じて、反応初期は高濃度で行い、その後、有機溶媒を追加することもできる。
〈ポリアミック酸のイミド化〉
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリアミック酸の化学(触媒)イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃での温度条件にて系内を撹拌することにより行うことができる。
 塩基性触媒の量はポリアミック酸のアミド酸基の0.5~30モル倍、好ましくは1.5~20モル倍であり、酸無水物の量はポリアミック酸のアミド酸基の1~50モル倍、好ましくは2~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン、1-エチルピペリジン等のアミン類を挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸等の脂肪族カルボン酸無水物、無水トリメリット酸、無水ピロメリット酸等の芳香族カルボン酸無水物などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 本発明に用いるポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整して用いることができる。特に好ましくは50%以上である。
 本発明において、上記反応溶液をろ過した後、そのろ液をそのまま用い、又は、希釈若しくは濃縮し、これに後述する二酸化チタン及び二酸化ケイ素等を配合してフレキシブルデバイス基板形成用組成物としてもよい。このようにろ過を経た場合、得られる樹脂薄膜の耐熱性、柔軟性あるいは線膨張係数特性の悪化の原因となり得る不純物の混入を低減できるだけでなく、効率よくフレキシブルデバイス基板形成用組成物を得ることができる。
 また、本発明に用いるポリイミドは、樹脂薄膜の強度、樹脂薄膜を形成する際の作業性、樹脂薄膜の均一性等を考慮してゲル浸透クロマトグラフィー(GPC)のポリスチレン換算による重量平均分子量(Mw)が5,000乃至200,000であることが好ましい。
〈ポリマー回収〉
 ポリアミック酸及びポリイミドの反応溶液から、ポリマー成分を回収し、用いる場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、イソプロパノール、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過により回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 また、沈殿回収したポリマーを、有機溶媒に再溶解させ、再沈殿回収する操作を2から10回繰り返すと、ポリマー中の不純物を少なくすることができる。この際の貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 再沈殿回収工程において樹脂成分を溶解させる有機溶媒は特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらの溶媒は2種類以上を混合して用いてもよい。
[二酸化チタン]
 本発明に用いる二酸化チタン(チタニア)は特に限定されないが、粒子形態の二酸化チタン、例えば粒子径が3nm~200nm、好ましくは3nm~50nm、より好ましくは3nm~20nmである粒子を好適に用いることができる。このような数値範囲の粒子径の二酸化チタン粒子を用いることで、レーザーリフトオフ法による基板剥離をより高い精度、より高い再現性で行う事が可能となる。
 本発明において二酸化チタン粒子の粒子径は、後述する二酸化チタンゾル中の二酸化チタン粒子を電子顕微鏡で観察した一次粒子径として表される。
 二酸化チタンとしては、アナタース型、ルチル型、アナタース・ルチル混合型、ブルッカイト型のいずれの結晶構造を有するものであってもよいが、これらの中でも、ルチル型を含むものが望ましい。
 特に本発明では、上記粒子径の値を有するチタニア系コロイド粒子(コロイダルチタニア)を好適に使用でき、該コロイダルチタニアとしては、チタニアゾルを用いることができる。
 本発明に用いられるチタニア系コロイド粒子は、単独のコロイド粒子でもよく、後述する他の高屈折率系の金属酸化物との混合物や複合酸化物コロイド粒子でもよい。
 上記チタニア系コロイド粒子の製造方法は、特に限定されず、慣用の方法で、例えば、1)イオン交換法、2)解こう法、等で製造可能である。
1)イオン交換法:チタンの酸性塩を水素型イオン交換樹脂で処理する方法、あるいはチタンの塩基性塩を水酸基型陰イオン交換樹脂で処理する方法が挙げられる。
2)解こう法:チタンの酸性塩を塩で中和するか、又は上記チタンの塩基性塩を酸で中和させることによって得られるゲルを洗浄した後、酸又は塩基で解こうする方法(特公平4-27168号公報)や、チタンのアルコキシドを加水分解する方法(特開2003-176120号公報)、あるいは上記チタンの塩基性塩を加熱下加水分解する方法(特開平10-245224号公報)等が挙げられる。
 上記その他の金属酸化物の例としては、Fe23、ZrO2、SnO2、Ta25、Nb25、Y23、MoO3、WO3、PbO、In23、Bi23、SrO等が挙げられ、これらは上記チタニア系コロイド粒子と同様に製造可能である。また複合酸化物の例としては、TiO2-SnO2、TiO2-ZrO2、TiO2-ZrO2-SnO2、TiO2-ZrO2-CeO2等が挙げられ、複合化の方法としては、例えば特開2014-38293号公報、特開2001-122621号公報、特開2000-063119号公報等に開示される方法を採用できる。
 上述のチタニアゾルにおける有機溶媒の例としては、メチルアルコール、エチルアルコール、イソプロパノール等の低級アルコール;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖アミド類;N-メチル-2-ピロリドン等の環状アミド類;γ-ブチロラクトン等のエーテル類;エチルセロソルブ、エチレングリコール等のグリコール類、アセトニトリル等が挙げられる。
 上記のチタニアゾルの粘度は、20℃で、0.6mPa・s~100mPa・s程度である。
 上記チタニア系コロイド粒子(チタニアゾル)の市販品の例としては、例えば、
商品名 中性チタニアゾルTTO-W-5(ルチル型超微粒子酸化チタンの水系ゾル、シリカ表面処理、石原産業(株)製)、
商品名 TKS-201(アナタース型 酸性ゾル、テイカ(株)製)、商品名 KS-202(アナタース型 酸性ゾル、テイカ(株)製)、商品名 TKS-203(アナタース型 中性ゾル、テイカ(株)製)、
商品名 CSB(アナタース型 水系酸性ゾル、堺化学工業(株)製)、商品名 CSB-M(アナタース型 水系中性ゾル、堺化学工業(株)製)、
商品名 DC-Ti、DCN-Ti、DCB-Ti(以上アモルファス 水系ゾル、富士チタン工業(株)製)、有機系ゾル(アナタース型、溶媒:エチレングリコール、トルエン-IPA、富士チタン工業(株)製)、
商品名 QUEEN TITANIC シリーズ(水系コロイド、日揮触媒化成(株)製)、商品名 OPTALAKE シリーズ(非水系コロイド、日揮触媒化成(株)製)、
商品名 サンコロイド(登録商標)HT-R350M7-20(日産化学工業(株)製)等を挙げることができる。
 なお、チタニアゾルは、有機溶媒中にチタニア粒子を定法に従って分散させて製造してもよい。
 そのような有機溶媒としては、上述したものと同様のものが挙げられる。
 チタニア粒子の市販品の例としては、商品名 AEROXIDE(登録商標)TiO2 P25(日本アエロジル(株)製)等を挙げることができる。
 上記二酸化チタンの含有量は、波長308nmの光線の吸収を確保する観点から、フレキシブルデバイス基板形成用組成物中のポリイミド、二酸化チタン粒子および二酸化ケイ素粒子の合計質量に対して、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上であり、可視光領域における透明性に優れる薄膜を再現性よく得る観点から、通常30質量%以下、好ましくは25質量%以下、より好ましくは20質量%以下である。
 なお本発明のフレキシブルデバイス基板形成用組成物において、後述する架橋剤を含む場合には、フレキシブルデバイス基板形成用組成物中のポリイミド、二酸化チタン粒子および二酸化ケイ素粒子の合計質量に対して、前記二酸化チタンの含有量を、3質量以上16質量%以下とすることが好ましい。
[二酸化ケイ素]
 本発明に用いる二酸化ケイ素(シリカ)は特に限定されないが、粒子形態の二酸化ケイ素、例えば平均粒子径が100nm以下、好ましくは5nm~100nm、より好ましくは5nm~55nmであり、より高透明の薄膜を再現性よく得る観点から、好ましくは5nm~50nm、より好ましくは5nm~45nm、より一層好ましくは5nm~35nm、さらに好ましくは5nm~30nmである。
 本発明において二酸化ケイ素粒子の平均粒子径とは、二酸化ケイ素粒子を用いて窒素吸着法により測定された比表面積値から算出される平均粒子径値である。
 特に本発明では、上記平均粒子径の値を有するコロイダルシリカを好適に使用でき、該コロイダルシリカとしては、シリカゾルを用いることができる。シリカゾルとしては、ケイ酸ナトリウム水溶液を原料として公知の方法により製造される水性シリカゾル及び該水性シリカゾルの分散媒である水を有機溶媒に置換して得られるオルガノシリカゾルを使用する事が出来る。
 また、メチルシリケートやエチルシリケート等のアルコキシシランを、アルコール等の有機溶媒中で触媒(例えば、アンモニア、有機アミン化合物、水酸化ナトリウム等のアルカリ触媒)の存在下において加水分解し、縮合して得られるシリカゾル、又はそのシリカゾルを他の有機溶媒に溶媒置換したオルガノシリカゾルも用いることができる。この置換は、蒸留法、限外濾過法等による通常の方法により行うことができる。
 これらの中でも本発明は分散媒が有機溶媒であるオルガノシリカゾルを用いることが好ましい。
 上述のオルガノシリカゾルにおける有機溶媒の例としては、メチルアルコール、エチルアルコール、イソプロパノール等の低級アルコール;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等の直鎖アミド類;N-メチル-2-ピロリドン等の環状アミド類;γ-ブチロラクトン等のエーテル類;エチルセロソルブ、エチレングリコール等のグリコール類、アセトニトリル等が挙げられる。
 上記のオルガノシリカゾルの粘度は、20℃で、0.6mPa・s~100mPa・s程度である。
 上記オルガノシリカゾルの市販品の例としては、例えば商品名MA-ST-S(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MT-ST(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-UP(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-M(メタノール分散シリカゾル、日産化学工業(株)製)、商品名MA-ST-L(メタノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-S(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-UP(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-L(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名IPA-ST-ZL(イソプロパノール分散シリカゾル、日産化学工業(株)製)、商品名NPC-ST-30(n-プロピルセロソルブ分散シリカゾル、日産化学工業(株)製)、商品名PGM-ST(1-メトキシ-2-プロパノール分散シリカゾル、日産化学工業(株)製)、商品名DMAC-ST(ジメチルアセトアミド分散シリカゾル、日産化学工業(株)製)、商品名XBA-ST(キシレン・n-ブタノール混合溶媒分散シリカゾル、日産化学工業(株)製)、商品名EAC-ST(酢酸エチル分散シリカゾル、日産化学工業(株)製)、商品名PMA-ST(プロピレングリコールモノメチルエーテルアセテート分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST-UP(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)、商品名MEK-ST-L(メチルエチルケトン分散シリカゾル、日産化学工業(株)製)及び商品名MIBK-ST(メチルイソブチルケトン分散シリカゾル、日産化学工業(株)製)等を挙げることができるが、これらに限定されない。
 本発明において二酸化ケイ素、例えばオルガノシリカゾルとして使用される上記製品に挙げたような二酸化ケイ素は、二種以上を混合して用いてもよい。
 上記二酸化ケイ素の含有量は、低リタデーションで低線膨張係数の薄膜を再現性よく得る観点から、フレキシブルデバイス基板形成用組成物中のポリイミド、二酸化チタン粒子および二酸化ケイ素粒子の合計質量に対して、通常20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上であり、膜の機械強度の観点から、通常80質量%以下、好ましくは75質量%以下、より好ましくは70質量%以下である。
[架橋剤]
 本発明のフレキシブルデバイス基板形成用組成物には、さらに架橋剤を含むことができ、ここで使用する架橋剤は、水素原子、炭素原子、窒素原子および酸素原子のみから構成される化合物であって、ヒドロキシ基、エポキシ基および炭素原子数1~5のアルコキシ基からなる群から選ばれる基を2つ以上有し、且つ、環構造を有する化合物からなる架橋剤である。このような架橋剤を用いることで、耐溶剤性に優れる、フレキシブルデバイス基板に好適な樹脂薄膜を再現性よく与えるだけでなく、保存安定性がより改善されたフレキシブルデバイス基板形成用組成物を実現することができる。
 中でも、架橋剤における一化合物あたりのヒドロキシ基、エポキシ基および炭素原子数1~5のアルコキシ基の合計数は、得られる樹脂薄膜の耐溶剤性を再現性よく実現する観点から、好ましくは3以上であり、得られる樹脂薄膜の柔軟性を再現性よく実現する観点から、好ましく10以下、より好ましくは8以下、より一層好ましくは6以下である。
 架橋剤が有する環構造の具体例としては、ベンゼン等のアリール環、ピリジン、ピラジン、ピリミジン、ピリダジン、1,3,5-トリアジン等の含窒素原子ヘテロアリール環、シクロペンタン、シクロヘキサン、シクロヘプタン等のシクロアルカン環、ピペリジン、ピペラジン、ヘキサヒドロピリミジン、ヘキサヒドロピリダジン、ヘキサヒドロ-1,3,5-トリアジン等の環状アミン等が挙げられる。
 架橋剤における一化合物あたりの環構造の数は、1以上であれば特に限定されないが、架橋剤の溶媒への溶解性を確保して平坦性の高い樹脂薄膜を得る観点から、1または2が好ましい。
 なお、環構造が2以上存在する場合、環構造同士が縮合していてもよく、メチレン基、エチレン基、トリメチレン基、プロパン-2,2-ジイル基等の炭素原子数1~5のアルカン-ジイル基等の連結基を介して環構造同士が結合していてもよい。
 架橋剤の分子量は、架橋能を有し、且つ、用いる溶媒に溶解する限り特に限定されるものではないが、得られる樹脂薄膜の溶剤耐性、架橋剤自体の有機溶媒への溶解性、入手容易性や価格等を考慮すると、好ましくは100~500程度であり、より好ましくは150~400程度である。
 架橋剤は、ケトン基、エステル基(結合)等、水素原子、炭素原子、窒素原子および酸素原子から誘導できる基を更に有していてもよい。
 架橋剤として好ましい例としては、下記式(K1)~(K5)からなる群から選ばれる式で表される化合物が挙げられ、式(K4)の好ましい態様の1つとしては、式(K4-1)で表される化合物が、式(K5)の好ましい態様の1つとしては、式(5-1)で表される化合物が、それぞれ挙げられる。
Figure JPOXMLDOC01-appb-C000031
 上記式中、各A1およびA2は、互いに独立して、メチレン基、エチレン基、トリメチレン基、プロパン-2,2-ジイル基等の炭素原子数1~5のアルカン-ジイル基を表わし、中でもA1としては、メチレン基、エチレン基が好ましく、メチレン基がより好ましく、A2としては、メチレン基、プロパン-2,2-ジイル基が好ましい。
 各Xは、互いに独立して、ヒドロキシ基、エポキシ基(オキサ-シクロプロピル基)、またはメトキシ基、エトキシ基、1-プロピルオキシ基、イソプロピルオキシ基、1-ブチルオキシ基、t-ブチルオキシ基等の炭素原子数1~5のアルコキシ基を表す。
 中でも、架橋剤の入手容易性、価格等を考慮すると、Xは、式(K1)および(K5)においてはエポキシ基が好ましく、式(K2)および(K3)においては炭素原子数1~5のアルコキシ基が好ましく、式(K4)においてはヒドロキシ基が好ましい。
 式(K4)中、各nは、ベンゼン環に結合する-(A1-X)基の数を示し、互いに独立して1~5の整数であるが、好ましくは2~3、より好ましくは3である。
 各化合物において、各A1は、全て同一の基であることが好ましく、各Xは、全て同一の基であることが好ましい。
 上記式(K1)~(K5)で表される化合物は、これら各化合物中の環構造と同一の環構造を有するアリール化合物、ヘテロアリール化合物、環状アミン等の骨格化合物と、エポキシアルキルハライド化合物、アルコキシハライド化合物等とを炭素-炭素カップリング反応やN-アルキル化反応によって反応させたり、結果物のアルコキシ部位を加水分解したりすることで、得ることができる。
 架橋剤は、市販品を用いてもよく、公知の合成方法で合成したものを用いてもよい。
 市販品としては、CYMEL(登録商標)300、同301、同303LF,同303ULF、同304、同350、同3745、同XW3106、同MM-100、同323、同325、同327、同328、同385、同370、同373、同380、同1116、同1130、同1133、同1141、同1161、同1168、同3020、同202、同203、同1156、同MB-94、同MB-96、同MB-98、同247-10、同651、同658、同683、同688、同1158、同MB-14、同MI-12-I、同MI-97-IX、同U-65、同UM-15、同U―80、同U-21-511、同U-21-510、同U-216-8、同U-227-8、同U-1050-10、同U-1052-8、同U-1054、同U-610、同U-640、同UB-24-BX、同UB-26-BX、同UB-90-BX、同UB-25-BE、同UB-30-B、同U-662、同U-663、同U-1051、同UI-19-I、同UI-19-IE、同UI-21-E、同UI-27-EI、同U-38-I、同UI-20-E同659、同1123、同1125、同5010、同1170、同1172、同NF3041、同NF2000等(以上、allnex社製);TEPIC(登録商標)V、同S、同HP、同L、同PAS、同VL、同UC(以上、日産化学工業(株)製)、TM-BIP-A(旭有機材工業(株)製)、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(以下、TMGと略す)(東京化成工業(株)製)、4,4’-メチレンビス(N,N-ジグリシジルアニリン)(Aldrich社製)、HP-4032D、HP-7200L、HP-7200、HP-7200H、HP-7200HH、HP-7200HHH、HP-4700、HP-4770、HP-5000、HP-6000、HP-4710、EXA-4850-150、EXA-4850-1000、EXA-4816、HP-820(DIC(株))、TG-G(四国化成工業(株))等が挙げられる。
 以下、架橋剤として好ましい具体例を挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000032
 架橋剤の配合量は、架橋剤の種類等に応じて適宜決定されるため一概に規定できないが、通常、前記ポリイミド、前記二酸化チタン及び前記二酸化ケイ素の合計質量に対して、得られる樹脂薄膜の柔軟性の確保、脆弱化の抑制の観点から、50質量%以下、好ましくは100質量%以下であり、得られる樹脂薄膜の耐溶剤性の確保の観点から、0.1質量%以上、好ましくは1質量%以上である。
[有機溶媒]
 本発明のフレキシブルデバイス基板形成用組成物は、前記ポリイミド、二酸化チタン及び二酸化ケイ素及び所望により架橋剤に加えて、有機溶媒を含む。該有機溶媒は、特に限定されるものではなく、例えば、上記ポリアミック酸及びポリイミドの調製時に用いた反応溶媒の具体例と同様のものが挙げられる。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、γ-ブチロラクトンなどが挙げられる。なお、有機溶媒は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 これらの中でも、平坦性の高い樹脂薄膜を再現性よく得ることを考慮すると、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましい。
[フレキシブルデバイス基板形成用組成物]
 本発明は、前記ポリイミドと二酸化チタンと二酸化ケイ素と有機溶媒と所望により架橋剤とを含有するフレキシブルデバイス基板形成用組成物である。ここで本発明のフレキシブルデバイス基板形成用組成物は、均一なものであって、相分離は認められないものである。
 本発明のフレキシブルデバイス基板形成用組成物において、前記ポリイミドと前記二酸化ケイ素の配合比は、質量比で、ポリイミド:二酸化ケイ素=10:1~1:10であることが好ましく、より好ましくは8:2~2:8、例えば7:3~3:7である。
 また本発明のフレキシブルデバイス基板形成用組成物中の固形量は、通常0.5~30質量%の範囲内であるが、膜の均一性の観点から、好ましくは5質量%以上、20質量%以下である。なお、固形分とは、フレキシブルデバイス基板形成用組成物を構成する全成分から溶媒を除いた残りの成分を意味する。
 なお、フレキシブルデバイス基板形成用組成物の粘度は、用いる塗布法、作製する樹脂薄膜の厚み等を勘案して適宜決定されるものではあるが、通常25℃で1~50,000mPa・sである。
 本発明のフレキシブルデバイス基板形成用組成物には、加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、触媒、消泡剤、レベリング剤、界面活性剤、染料、可塑剤、微粒子、カップリング剤、増感剤等を用いることができる。例えば触媒は樹脂薄膜のリタデーションや線膨張係数を低下させる目的で添加され得る。
 本発明のフレキシブルデバイス基板形成用組成物は、上述の方法で得られたポリイミド並びに二酸化チタン及び二酸化ケイ素、そして所望により架橋剤を上述の有機溶媒に溶解して得ることができるし、ポリイミドの調製後の反応溶液に二酸化チタン、二酸化ケイ素、所望により架橋剤を添加し、所望により前記有機溶媒を更に加えたものとしてもよい。
[フレキシブルデバイス基板]
 以上説明した本発明のフレキシブルデバイス基板形成用組成物を基材に塗布して乾燥・加熱することで有機溶媒を除去し、高い耐熱性と、高い透明性と、適度な柔軟性と、適度な線膨張係数とを有し、しかもリタデーションが小さく、波長308nmの光線を選択的に吸収する樹脂薄膜、すなわちフレキシブルデバイス基板を得ることができる。
 そして上記フレキシブルデバイス基板、すなわち上記ポリイミドと、上記二酸化チタン、二酸化ケイ素及び所望により架橋剤とを含有するフレキシブルデバイス基板、すなわち、本発明のフレキキシブルデバイス基板形成用組成物の硬化物からなるフレキシブルデバイス基板も本発明の対象である。
 フレキシブルデバイス基板(樹脂薄膜)の製造に用いる基材としては、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、ステンレス鋼(SUS)、木材、紙、ガラス、シリコンウェハ、スレート等が挙げられる。
 特に、フレキシブルデバイス基板として適用する際、既存設備を利用することができるという観点から、適用する基材がガラス、シリコンウェハであることが好ましく、また得られるフレキシブルデバイス基板が良好な剥離性を示すことからガラスであることがさらに好ましい。なお、適用する基材の線膨張係数としては塗工後の基材の反りの観点から、好ましくは40ppm/℃以下、より好ましくは、30ppm/℃以下である。
 基材へのフレキシブルデバイス基板形成用組成物の塗布法は、特に限定されるものではないが、例えば、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられ、目的に応じてこれらを適宜用いることができる。
 加熱温度は、300℃以下が好ましい。300℃を超えると、得られる樹脂薄膜が脆くなり、特にディスプレイ基板用途に適した樹脂薄膜を得ることができない場合がある。
 また、得られる樹脂薄膜の耐熱性と線膨張係数特性を考慮すると、塗布したフレキシブルデバイス基板形成用組成物を40℃~100℃で5分間~2時間加熱した後に、そのまま段階的に加熱温度を上昇させ、最終的に175℃超~280℃で30分~2時間加熱することが望ましい。このように、溶媒を乾燥させる段階と分子配向を促進する段階の2段階以上の温度で加熱することにより、より再現性よく低熱膨張特性を発現させることができる。
 特に、塗布したフレキシブルデバイス基板形成用組成物は、40℃~100℃で5分間~2時間加熱した後に、100℃超~175℃で5分間~2時間、次いで、175℃超~280℃で5分~2時間加熱することが好ましい。
 加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても窒素等の不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよく、また加熱の各段階において異なる圧力を適用してもよい。
 樹脂薄膜の厚さは、1~200μm程度の範囲内でフレキシブルデバイスの種類を考慮して適宜決定されるものではあるが、特にフレキシブルディスプレイ用の基板として用いることを想定した場合、通常1~60μm程度、好ましくは5~50μm程度であり、加熱前の塗膜の厚さを調整して所望の厚さの樹脂薄膜を形成する。
 なおこのようにして形成された樹脂薄膜を基材から剥離する方法としては特に限定はなく、該樹脂薄膜を基材ごと冷却し、薄膜に切れ目を入れ剥離する方法やロールを介して張力を与えて剥離する方法等が挙げられる。
 特に本発明にあっては、基材から樹脂薄膜を剥離する方法として、レーザーリフトオフ(LLO)法を採用することができる。すなわち、基材の樹脂薄膜が形成された面とは反対の面から、波長308nmの光線を基材に照射することにより、当該波長の光線が基材(例えばガラスキャリア)を透過し、基材近傍のポリイミドのみにこの光線を吸収させ、当該部分のポリイミドを蒸発させることによって、基材から樹脂薄膜を剥離させることができる。
 レーザーリフトオフ法による基材からの樹脂薄膜の剥離に用いるレーザー光としては、特に制限されないが、エキシマレーザーが好ましく、具体的に発振波長としては、ArF(193nm)、KrF(248nm)、XeCl(308nm)、XeF(353nm)等が挙げられるが、XeCl(308nm)が特に好ましい。
 また、照射するレーザー光のエネルギー密度としては、通常、650mJ/cm2未満の範囲が挙げられ、例えば、500mJ/cm2乃至530mJ/cm2の範囲、500mJ/cm2乃至515mJ/cm2の範囲等が挙げられる。
 このようにして得られる本発明の好ましい一の態様に係る樹脂薄膜は、波長550nmでの光透過率が85%以上という高い透明性を実現することができる。一方、波長308nmでの光線透過率は5%以下となり、すなわち、レーザーリフトオフ法を適用した基材からの樹脂薄膜の剥離を実現可能にする、当該波長における充分な光吸収を達成できる。
 更に、該樹脂薄膜は、例えば30℃乃至220℃における線膨張係数が40ppm/℃以下、特に10ppm/℃乃至35ppm/℃という低い値を有することができ、加熱時の寸法安定性に優れたものである。
 また該樹脂薄膜は、入射光の波長を590nmとした場合における複屈折(面内の直交する2つの屈折率の差)と膜厚との積で表される面内リタデーションR0、並びに、厚さ方向の断面からみたときの2つの複屈折(面内の2つの屈折率と厚さ方向の屈折率との夫々の差)にそれぞれ膜厚を掛けて得られる2つの位相差の平均値として表される厚さ方向リタデーションRthが、いずれも非常に小さいことを特長とする。上記樹脂薄膜は、平均膜厚がおよそ15μm~40μmの場合に、厚さ方向のリタデーションRthが700nm未満、例えば450nm以下、例えば1nm~410nmであり、面内リタデーションR0が4.5未満、例えば0.1~4.2であり、複屈折Δnが、0.015未満、例えば0.0028~0.0144といった非常に低い値を有する。
 以上説明した樹脂薄膜は、上記の特性を有することから、フレキシブルデバイス基板のベースフィルムとして必要な各条件を満たすものであり、フレキシブルデバイス、特にフレキシブルディスプレイの基板のベースフィルムとして特に好適に用いることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、使用した試薬の略語並びに使用した装置及びその条件は、以下の通りである。
<数平均分子量(Mn)及び重量平均分子量(Mw)の測定>
装置:昭和電工(株)製、Showdex GPC-101
カラム:KD803およびKD805
カラム温度:50℃
溶出溶媒:DMF、流量:1.5ml/分
検量線:標準ポリスチレン
<酸二無水物>
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODAxx:ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物
<ジアミン>
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン
<有機溶媒>
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
[ポリイミド(I)の合成例(ポリイミド溶液(PI)の調製例)]
 窒素注入/排出口を有し、ディーンスターク装置とメカニカルスターラーが取り付けられた三口反応フラスコ内に、TFMB 11.208g(0.035mol)、γ-ブチロラクトン(GBL)66.56gを加え、撹拌を開始し、90℃に昇温した。ジアミン(TFMB)が溶媒に完全に溶解した後、BODAxx 4.376g(0.0175モル)及びGBL 14.26gを加え、窒素雰囲気下にて140℃で10分間加熱した。その後、CBDA 3.432g(0.0175mol)とGBL(γ-ブチロラクトン)14.26gを加え、窒素雰囲気下にて10分間反応させた。1-エチルピペリジン 0.152gを反応物に加え、温度180℃に昇温させ、7時間保持した。反応混合物にGBL 86.02gを加えて、固形分濃度(有機溶媒を除いた成分の濃度)が10.5質量%となるように希釈し、目的とするポリイミド溶液(PI)を得た(ポリイミド(I)の分子量:Mw=169,385、Mn=54,760)。
[チタニアゾルの調製例(TiO2-GBL)]
 1000mLの丸底フラスコに、日産化学工業(株)製メタノール分散チタニアゾル:TiO2-MeOH(「サンコロイド(登録商標)HT-R305M7-20」,ルチル型、チタニア固形分含量:30.6質量%)91.13gとγ-ブチロラクトン82.02gを入れた。そして、そのフラスコを真空エバポレーターと繋いでフラスコ内を減圧にし、約35℃の温水浴に60分間浸すことで、溶媒がメタノールからγ-ブチルラクトンに置換されたチタニアゾル(TiO2-GBL)約107.0gを得た(チタニア固形分濃度:26.06質量%)。
 なお上記チタニアゾルにおいて、二酸化チタン粒子を電子顕微鏡で観察した一次粒子径は10~12nmであった。
[シリカゾルの調製例(GBL-M)]
 1000mLの丸底フラスコに、日産化学工業(株)製メタノール分散シリカゾル:MA-ST-M 350g(シリカ固形分濃度:40.4質量%)とγ-ブチルラクトン419gを入れた。そして、そのフラスコを真空エバポレーターと繋いでフラスコ内を減圧にし、約35℃の温水浴に20~50分間浸すことで、溶媒がメタノールからγ-ブチルラクトンに置換されたシリカゾル(GBL-M)約560.3gを得た(シリカ固形分濃度:25.25質量%)。
 なお、上記シリカゾルにおいて、窒素吸着法により測定された比表面積値から算出される平均粒子径は22nmであった。なお具体的には、シリカゾルの乾燥粉末の比表面積をユアサアイオニクス社製、比表面積測定装置モノソーブMS-16を用いて測定し、測定された比表面積S(m2/g)を用いてD(nm)=2720/Sの式で平均一次粒子径を算出した。
[フレキシブルデバイス基板形成用組成物の調製]
[例1]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.9703gとGBL 0.946gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例2]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.8316g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.1343g、GBL 0.95gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例3]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.5718g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.0503g、GBL 0.5654gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例4]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.5925g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.0302g、GBL 0.5648gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例5]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.6133g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.0100g、GBL 0.5642gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例6]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.6186g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.0050g、GBL 0.5640gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例7]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.37425g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.04029g、GBL 0.335gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例8]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.5718g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.05g、GBL 1.264gを加え、さらにTEPIC-L(純度99%)0.029gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例9]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.5198g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.1g、GBL 1.266gを加え、さらにTEPIC-L(純度99%)0.029gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例10]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.4678g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.1511g、GBL 1.268gを加え、さらにTEPIC-L(純度99%)0.029gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[例11]
 室温で、合成例で調製したポリイミド溶液(PI、ポリイミド固形分濃度:10.5質量%)1gに、調製例で調製したGBL-Mシリカゾル(シリカ固形分濃度:25.25質量%)0.5458g、TiO2-GBLチタニアゾル(チタニア固形分濃度:26.06質量%)0.0755g、GBL 0.5654gを加え、30分間撹拌して、フレキシブルデバイス基板形成用組成物を得た。
[樹脂薄膜の作成]
 例1~例10で得られた各フレキシブルデバイス基板形成用組成物をガラス基板に塗布し、塗膜を大気下で50℃で30分間、140℃で30分間、200℃で60分間、続いて-99kpaの真空下、280℃で60分間順次加熱して樹脂薄膜を得た。
 得られた薄膜を機械的切断にて剥がし、その後の評価に供した。
[薄膜の評価]
 上述の手順にて作製した各樹脂薄膜(評価試料)の耐熱性及び光学特性、すなわち、30℃乃至220℃における線膨張係数(CTE)、5%重量減少温度(Td5%)、光線透過率(T308nm、T550nm)及びCIE b*値(黄色評価)、リタデーション(Rth、R0)並びに複屈折(Δn)に関して、下記手順に従いそれぞれ評価した。結果を表1に示す。
1)線膨張係数(CTE)
 TAインスツルメンツ社製 TMA Q400を用いて、薄膜を幅5mm、長さ16mmのサイズにカットし、まず10℃/minで昇温して50乃至300℃まで加熱(第一加熱)し、次いで10℃/minで降温して50℃まで冷却した後に、10℃/minで昇温して30℃乃至420℃まで加熱(第二加熱)した際の、第二加熱の30℃乃至220℃における線膨張係数(CTE[ppm/℃])の値を測定することで求めた。なお、第一加熱、冷却および第二加熱を通じて、荷重0.05Nを加えた。
2)5%重量減少温度(Td5%
 5%重量減少温度(Td5%[℃])は、TAインスツルメンツ社製 TGA Q500を用い、窒素中、薄膜約5乃至10mgを50乃至800℃まで10℃/minで昇温して測定することで求めた。
3)CIE b値(CIE b*
 CIE b値(CIE b*)は、日本電色工業(株)製 SA4000スペクトロメーターを用いて、室温にて、リファレンスを空気として、測定を行った。
4)光線透過率(透明性)(T308nm、T550nm
 波長308nm及び550nmの光線透過率(T308nm、T550nm[%])は、(株)島津製作所製UV-3600を用いて、室温にて、リファレンスを空気として、測定を行った。
5)リタデーション(Rth、R0
 厚さ方向リタデーション(Rth)及び面内リタデーション(R0)を、王子計測機器(株)製、KOBURA 2100ADHを用いて、室温にて測定した。
 なお、厚さ方向リタデーション(Rth)及び面内リタデーション(R0)は以下の式にて算出される。
0=(Nx-Ny)×d=ΔNxy×d
th=[(Nx+Ny)/2-Nz]×d=[(ΔNxz×d)+(ΔNyz×d)/2
 Nx、Ny:面内の直交する2つの屈折率(Nx>Ny、Nxを遅相軸、Nyを進相軸とも称する)
 Nz:面に対して厚さ(垂直)方向(垂直)の屈折率
 d:膜厚
 ΔNxy:面内の2つの屈折率の差(Nx-Ny)(複屈折)
 ΔNxz:面内の屈折率Nxと厚さ方向の屈折率Nzの差(複屈折)
 ΔNyz:面内の屈折率Nyと厚さ方向の屈折率Nzの差(複屈折)
6)膜厚(d)
 得られた薄膜の膜厚は、(株)テクロック製 シックネスゲージにて測定した。
7)複屈折(Δn)
 前述の<5)リタデーション>により得られた厚さ方向リタデーション(Rth)の値を用い、以下の式にて算出した。
 ΔN=[Rth/d(フィルム膜厚)]/1000
[耐溶媒性試験]
 室温にて、例1、例3から例10で得られたフレキシブルデバイス基板形成用組成物をガラス基板上に塗布し、塗膜を焼成して得られた樹脂薄膜上に、TOK-106(東京応化工業(株)製)を2、3滴垂らした後、60℃の大気オーブンにて3分間加熱した。その後、TOK-106を拭き取った後、薄膜の外観を目視にて確認した。
 本試験前後の薄膜外観を目視にて観察し、以下の基準にて評価した。
○:溶媒試験後、薄膜は収縮または膨張せず
△:溶媒試験後、薄膜は少し収縮または膨張する
×:溶媒試験後、薄膜は溶解する、あるいは収縮または膨張する
[柔軟性評価]
 得られた薄膜を両手で持ち鋭角(30度程度)に曲げた場合において、割れることがないものを○、クラックが発生したものを×として評価した。
 各フレキシブルデバイス基板形成用組成物より得られた樹脂薄膜の光学特性の結果を表1に、耐熱性及び耐溶媒性試験の結果を表2に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
 表1に示すように、例2~例11のフレキシブルデバイス基板形成用組成物より得られた樹脂薄膜は、波長550nmにおける光線透過率[%]が高く、一方、波長308nmにおける光線透過率は5%以下となり、レーザーリフトオフ法の適用が可能となることが示唆される結果が得られた。また該樹脂薄膜は、黄色度(CIE b*)も低く、さらに厚さ方向リタデーションRthが404nm以下、面内リタデーションR0が4.2nm以下と極めて低く、複屈折Δnも0.015未満という極めて低い値となった。また表2に示すように、上記樹脂薄膜は線膨張係数[ppm/℃](30~220℃)が低く(31ppm/℃未満)、耐熱性が改善され、柔軟性も有するという結果となった。さらに例8乃至例10においては、溶媒に対して溶剤耐性を有するという結果が得られた。
 一方、例1の樹脂薄膜は、例2~例11と同様の耐熱性及び光学特性を有してはいたものの、波長308nmにおける光線透過率が66.5%と高く、基材からの樹脂薄膜の剥離においてレーザーリフトオフ法の適用は難しいことが示唆される結果となった。
[LLO法による樹脂薄膜の剥離]
 例1及び例11で得られたフレキシブルデバイス基板形成用組成物をガラス基板に塗布し、塗膜を大気下で50℃で30分間、140℃で30分間、200℃で60分間、続いて-99kpaの真空下、280℃で60分間順次加熱して樹脂薄膜を得た。
 上記で作成した樹脂薄膜がLLO法により剥離するか否かを評価した。
 尚、LLO法としては以下の条件を採用した。
レーザー光源:マキシマレーザー XeCl(308nm)
エネルギー密度:420mJ/cm2、500mJ/cm2、515mJ/cm2、530mJ/cm2、560mJ/cm2、630mJ/cm2
ステージ移動速度:7.8mm/秒
レーザービームサイズ:14mm×1.3mm(最大エネルギー時のサイズ:7.8mm×1.3mm)、レーザー光の重複する走査範囲は80%
 結果を表3に示した。
 尚、表中、○は樹脂薄膜が剥離したことを表し、△は一部欠損があったことを表し、×は剥離しなかったことを表す。
Figure JPOXMLDOC01-appb-T000035
 表3に示すように、例11で示される本発明の樹脂薄膜は、LLO法により剥離できることが確認された。一方、TiO2を含まない例1の樹脂薄膜は、同様の条件において剥離されなかった。
 このように、本発明のフレキシブルデバイス基板形成用組成物は、低線膨張係数、高い透明性(高い光線透過率、低い黄色度)、低いリタデーションという特性を有し、また優れた溶剤耐性も付与でき、すなわちフレキシブルデバイス基板のベースフィルムとして必要な要件を満たす樹脂薄膜を形成できる材料である。特に該樹脂薄膜は、特定波長(308nm)の光線を十分に吸収しレーザーリフトオフ法の適用が可能となることから、フレキシブルデバイスの量産化に向けてフレキシブルデバイス基板のベースフィルムとして特に好適に用いることができることが期待できる。

Claims (12)

  1. 主鎖に脂環式骨格を有するポリイミド、
    粒子径が3nm~200nmである二酸化チタン粒子、
    窒素吸着法により測定された比表面積値から算出される平均粒子径が100nm以下である二酸化ケイ素粒子、及び
    有機溶媒
    を含む、フレキシブルデバイス基板形成用組成物。
  2. 前記二酸化チタン粒子は、前記ポリイミド、前記二酸化チタン粒子および前記二酸化ケイ素粒子の合計質量に対して0.1質量%以上20質量%以下の量である、請求項1に記載のフレキシブルデバイス基板形成用組成物。
  3. さらに水素原子、炭素原子、窒素原子および酸素原子のみから構成される化合物であって、ヒドロキシ基、エポキシ基および炭素原子数1~5のアルコキシ基からなる群から選ばれる基を2以上有し、且つ、環状構造を有する化合物からなる架橋剤を含む、
    請求項1に記載のフレキシブルデバイス基板形成用組成物。
  4. 前記二酸化チタン粒子は、前記ポリイミド、前記二酸化チタン粒子および前記二酸化ケイ素粒子の合計質量に対して3質量%以上16質量%以下の量である、請求項3に記載のフレキシブルデバイス基板形成用組成物。
  5. 前記ポリイミドが、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と含フッ素芳香族ジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られるポリイミドである、請求項1乃至請求項4のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。
  6. 前記脂環式テトラカルボン酸二無水物が、式(C1)で表されるテトラカルボン酸二無水物を含む、請求項5に記載のフレキシブルデバイス基板形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、B1は、式(X-1)~(X-12)からなる群から選ばれる4価の基を表す。
    Figure JPOXMLDOC01-appb-C000002
    (式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
  7. 前記含フッ素芳香族ジアミンが、式(A1)で表されるジアミンを含む、請求項5または請求項6に記載のフレキシブルデバイス基板形成用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、B2は、式(Y-1)~(Y-34)からなる群から選ばれる2価の基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式中、*は結合手を表す。)
  8. 前記ポリイミドと前記二酸化ケイ素粒子の質量比が、7:3~3:7である、請求項1乃至請求項7のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。
  9. 前記二酸化ケイ素粒子の平均粒子径が、60nm以下である、請求項1乃至請求項8のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。
  10. レーザーリフトオフ法を適用するフレキシブルデバイスの基板形成用組成物である、請求項1乃至請求項9のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。
  11. 請求項1乃至請求項10のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物から形成されたフレキシブルデバイス基板。
  12. 請求項1乃至請求項10のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱してフレキシブルデバイス基板を形成する工程、
    レーザーリフトオフ法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法。
PCT/JP2017/000147 2016-01-08 2017-01-05 フレキシブルデバイス基板形成用組成物 WO2017119450A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017560407A JP6905213B2 (ja) 2016-01-08 2017-01-05 フレキシブルデバイス基板形成用組成物
KR1020187018920A KR102675766B1 (ko) 2016-01-08 2017-01-05 플렉서블 디바이스 기판 형성용 조성물
CN201780005922.3A CN108473764B (zh) 2016-01-08 2017-01-05 柔性器件基板形成用组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016002614 2016-01-08
JP2016-002614 2016-01-08
JP2016-228050 2016-11-24
JP2016228050 2016-11-24

Publications (1)

Publication Number Publication Date
WO2017119450A1 true WO2017119450A1 (ja) 2017-07-13

Family

ID=59274112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000147 WO2017119450A1 (ja) 2016-01-08 2017-01-05 フレキシブルデバイス基板形成用組成物

Country Status (5)

Country Link
JP (1) JP6905213B2 (ja)
KR (1) KR102675766B1 (ja)
CN (1) CN108473764B (ja)
TW (1) TWI775739B (ja)
WO (1) WO2017119450A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125208A (ko) 2018-04-27 2019-11-06 스미또모 가가꾸 가부시키가이샤 광학 필름

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI645973B (zh) * 2017-12-15 2019-01-01 律勝科技股份有限公司 聚醯亞胺薄化軟性基板及其製造方法
KR102245533B1 (ko) * 2020-11-02 2021-04-28 주식회사 지게차코리아 운송수단용 림 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540092A (ja) * 2006-06-15 2009-11-19 クローダ インターナショナル パブリック リミティド カンパニー Uv吸収性組成物
JP2010037425A (ja) * 2008-08-05 2010-02-18 Jsr Corp 樹脂組成物、光学膜及び光学用部材
WO2013125193A1 (ja) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、及びこれを用いたポリイミド樹脂膜、ディスプレイ基板とその製造方法
JP2015078254A (ja) * 2013-10-15 2015-04-23 東レ株式会社 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
WO2016147958A1 (ja) * 2015-03-13 2016-09-22 旭化成株式会社 ポリイミド前駆体樹脂組成物
WO2016158990A1 (ja) * 2015-03-31 2016-10-06 日産化学工業株式会社 剥離層形成用組成物及び剥離層
WO2016167296A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 樹脂組成物、ポリイミド樹脂膜、及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831175A (zh) * 2010-04-01 2010-09-15 辽宁科技大学 一种无色透明的聚酰亚胺纳米复合材料膜及其制备方法
JP2014114429A (ja) 2012-01-12 2014-06-26 New Japan Chem Co Ltd 溶剤可溶性ポリイミド樹脂
JP5845918B2 (ja) 2012-01-20 2016-01-20 宇部興産株式会社 ポリイミド前駆体及びポリイミド
JP6086118B2 (ja) * 2012-04-27 2017-03-01 宇部興産株式会社 ポリアミック酸溶液組成物、及びポリイミド
US9493614B2 (en) * 2013-02-26 2016-11-15 Toray Industries, Inc. Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device
TWI495404B (zh) * 2013-06-21 2015-08-01 Chi Mei Corp 軟性基板用組成物及軟性基板
CN105137636A (zh) * 2015-09-10 2015-12-09 京东方科技集团股份有限公司 一种显示基板及其制作方法和显示面板
CN105111475A (zh) * 2015-09-16 2015-12-02 苏州华辉材料科技有限公司 无色透明的聚酰亚胺纳米复合材料膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540092A (ja) * 2006-06-15 2009-11-19 クローダ インターナショナル パブリック リミティド カンパニー Uv吸収性組成物
JP2010037425A (ja) * 2008-08-05 2010-02-18 Jsr Corp 樹脂組成物、光学膜及び光学用部材
WO2013125193A1 (ja) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、及びこれを用いたポリイミド樹脂膜、ディスプレイ基板とその製造方法
JP2015078254A (ja) * 2013-10-15 2015-04-23 東レ株式会社 樹脂組成物、それを用いたポリイミド樹脂膜、それを含むカラーフィルタ、tft基板、表示デバイスおよびそれらの製造方法
WO2015152178A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
WO2016147958A1 (ja) * 2015-03-13 2016-09-22 旭化成株式会社 ポリイミド前駆体樹脂組成物
WO2016158990A1 (ja) * 2015-03-31 2016-10-06 日産化学工業株式会社 剥離層形成用組成物及び剥離層
WO2016167296A1 (ja) * 2015-04-17 2016-10-20 旭化成株式会社 樹脂組成物、ポリイミド樹脂膜、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125208A (ko) 2018-04-27 2019-11-06 스미또모 가가꾸 가부시키가이샤 광학 필름
KR20200017447A (ko) 2018-04-27 2020-02-18 스미또모 가가꾸 가부시키가이샤 광학 필름

Also Published As

Publication number Publication date
KR20180102081A (ko) 2018-09-14
JP6905213B2 (ja) 2021-07-21
TW201739838A (zh) 2017-11-16
JPWO2017119450A1 (ja) 2018-10-25
KR102675766B1 (ko) 2024-06-18
CN108473764B (zh) 2021-09-28
TWI775739B (zh) 2022-09-01
CN108473764A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
JP6631804B2 (ja) 樹脂薄膜の製造方法および樹脂薄膜形成用組成物
JP7011231B2 (ja) フレキシブルデバイス基板形成用組成物
JP6990354B2 (ja) 樹脂薄膜形成用組成物
JP7116366B2 (ja) フレキシブルデバイス用基板の製造方法
JP7231887B2 (ja) ハイブリッド樹脂組成物
JP7011230B2 (ja) フレキシブルデバイス基板形成用組成物
JP6905213B2 (ja) フレキシブルデバイス基板形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17735987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560407

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018920

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17735987

Country of ref document: EP

Kind code of ref document: A1