WO2017118117A1 - 确定天线极化类型的方法、装置及基站 - Google Patents

确定天线极化类型的方法、装置及基站 Download PDF

Info

Publication number
WO2017118117A1
WO2017118117A1 PCT/CN2016/100610 CN2016100610W WO2017118117A1 WO 2017118117 A1 WO2017118117 A1 WO 2017118117A1 CN 2016100610 W CN2016100610 W CN 2016100610W WO 2017118117 A1 WO2017118117 A1 WO 2017118117A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
antenna
difference
determining
crs port
Prior art date
Application number
PCT/CN2016/100610
Other languages
English (en)
French (fr)
Inventor
周鋆卿
秦洪峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118117A1 publication Critical patent/WO2017118117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communications, for example, to a method, apparatus, and base station for determining the type of antenna polarization.
  • the polarization of an antenna refers to the direction of the electric field strength formed when the antenna is radiated.
  • the electric wave is called a vertically polarized wave; when the direction of the electric field strength is parallel to the ground, the electric wave is called a horizontally polarized wave.
  • the horizontally polarized propagation signal will generate a polarization current on the ground surface when it is close to the ground.
  • the polarization current is rapidly attenuated by the thermal energy generated by the ground impedance, and the vertical polarization mode is not easy.
  • the polarization current is generated, thereby avoiding a large attenuation of energy and ensuring effective signal propagation. Therefore, in a mobile communication system, a vertically polarized propagation mode is generally employed.
  • the best effect can be obtained only when the polarization of the transmitting and receiving antennas is uniform. In theory, when the polarization type of the transmitting and receiving antenna is vertical, the receiving antenna receives almost no signal.
  • a certain "polarization rotation" phenomenon occurs in the electromagnetic wave during the propagation process.
  • a dual-polarized antenna has appeared. As far as its design is concerned, it is generally divided into vertical and horizontal polarization and ⁇ 45° polarization. The performance is generally better than the former, so most of the current methods are ⁇ 45° polarization.
  • the dual-polarized antenna combines the antennas with two polarization directions of +45° and -45° and is orthogonal to each other, and works in the duplex mode at the same time, which greatly saves the number of antennas in each cell. At the same time, it is ⁇ 45°. Orthogonal polarization effectively ensures the good results of diversity reception.
  • the polarization type of the base station antenna is known and no longer changes, and the terminal models vary widely.
  • the antenna polarization form may have vertical polarization type, ⁇ 45° polarization type, vertical and horizontal poles. Polarization type (dual polarization type), etc.
  • polarization type dual polarization type
  • the present disclosure provides a method, an apparatus, and a base station for determining an antenna polarization type, and a method for determining a transmitter antenna type, so that the characteristics of the polarized antenna can be utilized to obtain a maximum received power and improve system performance.
  • the present disclosure provides a method for determining an antenna polarization type, including: obtaining a mapping relationship between a base station physical antenna and a cell-specific reference signal CRS port, and determining a reference quantity corresponding to each physical antenna according to an uplink channel estimation value. a value, and determining, according to the reference quantity value and the mapping relationship, a reference value difference value of different CRS ports, and determining, according to the reference quantity value difference, an average value of reference value differences of different CRS ports, where
  • the reference value includes: a power value and/or a phase value; and comparing the reference value difference average value with a preset threshold value to determine a polarization type of the user equipment antenna.
  • comparing the average value of the reference value difference with a preset threshold value determining a polarization type of the user equipment antenna, including: determining whether an average value of the reference quantity value difference is greater than a preset threshold; if the average value of the reference magnitude difference is greater than the preset threshold, determining that the polarization type of the user equipment antenna is ⁇ 45° polarization type; and if the reference magnitude The average value of the difference is not greater than the preset threshold, and the polarization type of the user equipment antenna is determined to be a vertical polarization type or a vertical horizontal dual polarization type.
  • determining a reference value difference value of the different CRS ports according to the reference quantity value and the mapping relationship including: calculating a sum of reference quantity values of all antennas in the first CRS port, and all antennas in the second CRS port The sum of the reference magnitudes, and the difference between the sum of the reference magnitudes of the first CRS port and the reference magnitude of the second CRS port, the reference value of the first port and the reference to the second port The difference between the magnitude sums is determined as the reference magnitude difference; or, each antenna reference magnitude in the first CRS port and the reference magnitude of the corresponding antenna in the second CRS port are calculated The difference value is determined as the sum of the difference values of the reference values.
  • determining an average value of the reference value difference values of the different CRS ports according to the reference value difference value including: dividing the reference value difference value by the number of antennas corresponding to the same CRS port, to obtain different CRSs. The average value of the reference value difference of the port.
  • the method before obtaining the mapping relationship between the physical antenna of the base station and the CRS port of the cell-specific reference signal, the method further includes: receiving an uplink reference signal, and determining an uplink channel estimation value according to the uplink reference signal.
  • the disclosure further provides an apparatus for determining an antenna polarization type, including: an acquiring module, configured to obtain a mapping relationship between a base station physical antenna and a CRS port; and a parameter determining module, configured to The uplink channel estimation value determines a reference quantity value corresponding to each physical antenna, and determines a reference value difference value of different CRS ports according to the reference quantity value and the mapping relationship, and determines different CRS ports according to the reference quantity difference value.
  • the reference value difference average value wherein the reference quantity value comprises: a power value and/or a phase value; and a type determining module configured to perform the reference value difference average value and a preset threshold value For comparison, the polarization type of the user equipment antenna is determined.
  • the type determining module includes: a determining unit, configured to determine whether the average value of the reference magnitude difference is greater than the preset threshold; and a type determining unit configured to be in the reference value difference If the value average is greater than the preset threshold, determining that the polarization type of the user equipment antenna is ⁇ 45° polarization type; and the average value of the reference magnitude difference is not greater than the preset gate In the case of the limit value, it is determined that the polarization type of the user equipment antenna is a vertical polarization type or a vertical horizontal dual polarization type.
  • the parameter determining module includes: a first calculating unit, configured to calculate a sum of reference values of all antennas in the first CRS port, a sum of reference values of all antennas in the second CRS port, and a first a difference between a sum of a reference magnitude of the CRS port and a sum of reference values of the second CRS port, the difference being determined as the reference magnitude difference; and a second calculating unit configured to calculate the first CRS a difference between a reference quantity value of each antenna in the port and a reference quantity value of the corresponding antenna of each antenna in the second CRS port, and determining a sum value of all the difference values obtained as the reference quantity difference value .
  • the parameter determining module includes: an average value determining unit, configured to divide the reference value difference value by the number of antennas corresponding to the same CRS port, to obtain an average value of reference value differences of different CRS ports. .
  • the device further includes: a receiving module, configured to receive an uplink reference signal and obtain an uplink channel estimation value according to the uplink reference signal, before obtaining a mapping relationship between the physical antenna of the base station and the CRS port of the cell-specific reference signal .
  • a receiving module configured to receive an uplink reference signal and obtain an uplink channel estimation value according to the uplink reference signal, before obtaining a mapping relationship between the physical antenna of the base station and the CRS port of the cell-specific reference signal .
  • the present disclosure also provides a base station, comprising the apparatus for determining an antenna polarization type according to any of the above.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • the present disclosure also provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the method described above.
  • the present disclosure determines a reference quantity corresponding to the physical antenna according to the uplink channel estimation value, calculates a reference value difference value of the different CRS port according to the reference quantity value and the mapping relationship, and determines a reference of the different CRS port according to the reference quantity value difference.
  • the average value of the difference value is compared with the preset threshold value to determine the polarization type of the antenna of the user equipment. After determining the polarization type of the antenna by the method, the polarization can be fully utilized according to the determined type.
  • the characteristics of the antenna improve the system performance, so that the characteristics of the polarized antenna can be utilized to obtain the maximum received power.
  • FIG. 1 is a flow chart of a method of determining an antenna polarization type in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of an apparatus for determining an antenna polarization type in an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a type determining module of an apparatus for determining an antenna polarization type in an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a parameter determining module of an apparatus for determining an antenna polarization type in an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing an optional structure of an apparatus for determining an antenna polarization type in an embodiment of the present disclosure
  • FIG. 6 is a flowchart of estimating a polarization type of a terminal antenna according to a power difference in an embodiment of the present disclosure
  • FIG. 7 is a flow chart for estimating a polarization type of a terminal antenna based on a phase difference in an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an electronic device provided by the present disclosure.
  • Embodiments of the present disclosure provide a method for determining an antenna polarization type, and the flow of the method is as shown in FIG. 1.
  • a base station physical antenna and a cell-specific reference signal are obtained.
  • Reference signals, CRS) Port mapping may be determined according to a mapping relationship between a physical antenna of the base station and a CRS port.
  • a reference quantity value corresponding to each physical antenna is determined according to the uplink channel estimation value, and reference value difference values of different CRS ports are determined according to the reference quantity value and the mapping relationship, and different CRS ports are determined according to the reference quantity difference value.
  • step 130 the reference value difference average value is compared with a preset threshold value to determine the polarization type of the user equipment antenna.
  • the embodiment of the present disclosure determines a reference quantity value corresponding to each physical antenna according to the uplink channel estimation value, calculates a reference quantity difference value of different CRS ports according to the reference quantity value and the mapping relationship, and finally determines according to the reference quantity value difference.
  • the average value of the reference value difference of the different CRS ports is compared with the preset threshold value to determine the polarization type of the antenna of the user equipment. After determining the polarization type of the antenna by using the method, the determined The type makes full use of the characteristics of the polarized antenna, which improves the system performance, so that the characteristics of the polarized antenna can be utilized to obtain the maximum received power.
  • the uplink reference signal from the user equipment may be received, and the uplink channel estimation value is determined according to the uplink reference signal, and the process of determining the uplink channel estimation value is not described herein.
  • An embodiment utilizes the uplink channel estimate to determine the type of polarization of the antenna.
  • the following process is included: determining whether the reference value difference average value is greater than a preset threshold value And determining, if the average value of the reference magnitude difference is greater than the preset threshold, a polarization type of the user equipment antenna of ⁇ 45°; and if the average value of the reference magnitude difference is not greater than
  • the preset threshold is determined to determine whether the polarization type of the user equipment antenna is a vertical polarization type or a vertical horizontal dual polarization type.
  • the preset threshold is determined by a person skilled in the art according to the characteristics of the polarized antenna, and the preset threshold may be an empirical value or an experimental value, and the preset threshold has a wide representativeness. In this case, the preset threshold can be used as a criterion to judge whether the antenna is ⁇ 45° polarization type.
  • the method may include multiple methods, for example, calculating a sum of reference values of all antennas in the first CRS port, and all antennas in the second CRS port.
  • the sum of the reference magnitudes, the sum of the reference magnitudes of the first CRS port and the second CRS Determining the difference between the reference values of the ports, determining the difference as the reference value difference; or calculating each antenna reference value in the first CRS port and corresponding to each antenna in the second CRS port
  • the difference between the reference values of the antennas determines the sum of all the differences obtained as the reference magnitude difference.
  • the first calculation method is to add the reference quantity values in each CRS port, and then subtract the sum of the reference quantity values of the two CRS ports, and take the absolute value of the subtraction result as the reference quantity value difference.
  • the second method the reference value of one antenna in each CRS port is subtracted from the reference value of the antenna corresponding to the antenna in another CRS port, and the absolute value of the subtraction result is taken, and each CRS port is used.
  • the reference values of all the antennas in the same operation are the same as those of the reference values of other port antennas, and finally the absolute values of all the subtraction results are added as the reference value difference. Both methods can be used, and the average value of the subsequent reference magnitude difference can be determined according to the difference of the reference magnitude.
  • the reference value difference is divided by the number of antennas corresponding to the same CRS port to obtain the reference value difference of the CRS port. The average value.
  • An embodiment of the present disclosure further provides an apparatus for determining an antenna polarization type.
  • the structure of the apparatus is schematically shown in FIG. 2, and includes an acquisition module 10, a parameter determination module 20, and a type determination module 30.
  • the obtaining module 10 is configured to obtain a mapping relationship between the physical antenna of the base station and the CRS port to determine a mapping relationship between the physical antenna of the base station and the CRS port.
  • the parameter determining module 20 is coupled to the obtaining module 10, and configured to determine a reference quantity value corresponding to each physical antenna according to the uplink channel estimation value, and determine a reference quantity difference value of the different CRS port according to the reference quantity value and the mapping relationship, according to the reference.
  • the magnitude difference determines an average of the reference magnitude differences of the different CRS ports, wherein the reference magnitude includes: a power value and/or a phase value.
  • the type determining module 30 is coupled to the parameter determining module 20 and configured to compare the average value of the reference magnitude difference with a preset threshold to determine the polarization type of the user equipment antenna.
  • FIG. 3 shows a schematic structural diagram of the above-described type determining module 30, which includes a judging unit 301 and a type determining unit 302.
  • the determining unit 301 is configured to determine whether the average value of the reference magnitude difference is greater than a preset threshold.
  • the type determining unit 302 is coupled to the determining unit 301, and configured to determine that the polarization type of the user equipment antenna is ⁇ 45° polarization type if the reference value difference average value is greater than a preset threshold value; If the average value of the difference is not greater than the preset threshold, it is determined that the polarization type of the user equipment antenna is a vertical polarization type or a vertical horizontal dual polarization type.
  • FIG. 4 shows a schematic structural diagram of the above-described parameter determination module 20, and the parameter determination module 20 may include a first calculation unit 201 and a second calculation unit 202.
  • the first calculating unit 201 is set to calculate the first The sum of the reference magnitudes of all the antennas in the CRS port, the sum of the reference magnitudes of all the antennas in the second CRS port, and the difference between the value of the reference amount of the first CRS port and the reference value of the second CRS port The value is determined as the reference magnitude difference.
  • the second calculating unit 202 is configured to calculate a difference between each antenna reference quantity value in the first CRS port and a reference quantity value of the corresponding antenna of each antenna in the second CRS port, and determine a sum of all the obtained difference values.
  • the parameter determination module 20 may further include an average value determining unit 203.
  • the average value determining unit 203 is coupled to the first calculating unit 201 and the second calculating unit 202, and is configured to divide the reference value difference value by the number of antennas corresponding to the same CRS port to obtain a reference value difference value of different CRS ports. average value.
  • FIG. 5 is a schematic diagram of an optional structure of the foregoing apparatus.
  • the apparatus for determining an antenna polarization type may further include: a receiving module 40 coupled to the acquiring module 10, configured to receive an uplink reference signal, and according to FIG.
  • the uplink reference signal determines an uplink channel estimate.
  • Embodiments of the present disclosure also provide a base station including the above-described apparatus for determining an antenna polarization type. Those skilled in the art will know how to set the above device in the base station according to the above description, and details are not described herein again.
  • the embodiment of the present disclosure further provides a method for determining an antenna polarization type, which utilizes the characteristics of a polarized antenna, that is, the characteristics of the maximum received power can be obtained only when the transmit and receive antennas are uniformly polarized.
  • the receiving antenna usually the base station
  • the receiving antenna is known for the polarization type of the antenna, and the information such as the received power or the phase difference is calculated, and the polarization type of the antenna whose origin is unknown is estimated.
  • the method for determining the antenna polarization type has universal applicability and accuracy, and effectively improves system performance. This method makes it possible to know the type of antenna at the origin, and there is more a priori information in the algorithm selection of the smart antenna beamforming scheme.
  • the base station may estimate the polarization type of the originating antenna according to the uplink channel estimation value (H), the physical antenna of the base station, and the CRS port mapping manner.
  • the method includes steps 210 through 250.
  • the UE User Equipment uplinks the reference signal
  • the reference signal may include a Sounding Reference Signal (SRS) or a Demodulation Reference Signal (DMRS).
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • step 220 the base station calculates H according to the uplink transmitted reference signal
  • the H of each subcarrier may be averaged or accumulated according to Resource Blocks (RB) to achieve the effect of noise reduction.
  • RB Resource Blocks
  • the averaging according to the RB is to accumulate the Hs of all subcarriers included in one or more RBs, and divide the accumulated result by the number of RBs; Accumulating is the accumulation of H of all subcarriers included in one or more RBs.
  • the base station obtains a mapping relationship between the physical antenna of the base station and the CRS port (which may include two CRS ports, which are CRS port 1 and CRS port 2 respectively) from the Operation and Maintenance Center (OMC), and obtains the physical antenna of the base station.
  • OMC Operation and Maintenance Center
  • the mapping relationship with the CRS port that is, in the multi-antenna system, since the number of cell ports is smaller than the number of physical antennas, it is necessary to know which antennas correspond to CRS port 1, and which antennas correspond to CRS port 2.
  • step 240 the power or phase on all physical antennas is calculated according to H, and the power difference or phase difference of the corresponding antennas of different ports is calculated according to the mapping relationship between the physical antenna of the base station and the CRS port.
  • the corresponding antenna power of different CRS ports in step 240 may be calculated as follows.
  • the method includes steps 41-1 to 41-3.
  • step 41-2 the absolute value ⁇ P of the antenna power difference in the different CRS ports is calculated.
  • ⁇ P(Ind)
  • the above formula represents a cyclic index, that is, the absolute value of the antenna power subtraction corresponding to each antenna of one port and another port.
  • step 41-3 the mean value p of the antenna power difference between different CRS ports is calculated, and the mean p can be calculated by the following formula:
  • n the number of antennas corresponding to the same CRS port.
  • the calculated power difference in step 240 may also first calculate the power sum of the antennas in the same CRS port, and then calculate the power difference of the different CRS ports.
  • the calculation of the phase difference in step 240 may include steps 42-1 through 42-3.
  • step 42-2 the absolute value ⁇ Angle of the phase difference on the antenna between the different CRS ports is calculated.
  • ⁇ Angle(Ind)
  • index1 represents an antenna index corresponding to CRS port 1
  • index2 represents an antenna index corresponding to CRS port 2.
  • step 42-3 the mean value ⁇ of the phase difference is calculated, and the mean value ⁇ can be calculated by the following formula:
  • n the number of antennas corresponding to the same CRS port.
  • step 250 the calculated difference (power difference or phase difference) is compared to a known threshold. If the calculated difference is greater than the known threshold, it is determined that the antenna polarization type of the terminal is ⁇ 45° polarization. If the calculated difference is not greater than the known threshold, it is determined that the antenna polarization type of the terminal is vertical. Polarized or dual polarized.
  • the number of CRS ports is two.
  • the number of CRS ports is four, according to the mapping relationship between the CRS port and the antenna in the foregoing embodiment, the two CRS ports correspond to the first polarization mode, and the remaining two CRSs.
  • the port corresponds to the second polarization mode.
  • CRS port 1 and CRS port 2 correspond to the first polarization mode
  • CRS port 3 and CRS port 4 correspond to the second antenna polarization mode.
  • One CRS port may be selected from two CRS ports corresponding to the same polarization mode, such as selecting one CRS port in CRS port 1 and CRS port 2 corresponding to the first polarization mode, and corresponding to the second antenna pole Select one CRS port from the CRS port 3 and the CRS port 4 in the mode, and perform the calculation in the above embodiment according to the two CRS ports selected by the two CRS ports, or two CRS ports corresponding to the same polarization mode.
  • the average of the parameters is taken as the parameters of the two CRS ports, respectively, and is calculated according to the method in the above embodiment.
  • LTE TDD Long Term Evolution Time Division Duplexing
  • Embodiments of the present disclosure also provide a flow of a method for estimating an antenna polarization type of a terminal by power, As shown in FIG. 6, the method may include the following steps 610 to 680.
  • the base station calculates an uplink channel estimate H K*8 (frequency domain), the dimension of H is K*8, K is the number of subcarriers, and 8 is the number of base station antennas. If the result of the uplink channel estimation is the channel estimate obtained by the SRS, K is related to the system bandwidth; if the result of the uplink channel estimation is obtained by the DMRS, K is related to the resource allocated by the user.
  • the H of each subcarrier of a user may be optionally averaged or accumulated in units of RBs in step 610. It is assumed that K subcarriers in the base station H are averaged or accumulated according to the above method to obtain M resource groups (M is a positive integer).
  • the base station obtains a mapping bitmap of the base station physical antenna and the CRS port (which may be two CRS ports, respectively, port 1 and port 2) from the OMC, and obtains a mapping relationship between the physical antenna of the base station and the CRS port, where the antenna 1 Antenna 4 is a positive 45 degree polarization direction, corresponding to port 1; antenna 5 - antenna 8 is a negative 45 degree polarization direction, corresponding to port 2.
  • the mapping relationship is represented by H as follows.
  • step 640 an antenna power difference ⁇ P within a different CRS port on one resource block is calculated.
  • step 650 the mean value p of the antenna power difference between different CRS ports on one resource block is calculated, and the calculation formula is as follows:
  • the power difference p of the M resource groups is repeatedly calculated, and the M resource groups are averaged to obtain the mean value of the power differences.
  • step 660 the calculated power difference mean Compare with known thresholds. Mean value of power difference If the threshold is greater than the threshold, perform step 670, the average power difference If it is not greater than the threshold, step 680 is performed.
  • step 670 it is determined that the antenna polarization type of the terminal is ⁇ 45° polarization.
  • step 680 it is determined that the antenna polarization type of the terminal is vertical polarization or vertical horizontal dual polarization.
  • Embodiments of the present disclosure also provide a flow of a method of estimating an antenna polarization type of a terminal by phase, as shown in FIG. 7, the method including steps 710 to 750.
  • the base station calculates an uplink channel estimate H K*8 (frequency domain), the dimension of H is K*8, K is the number of subcarriers, and 8 is the number of base station antennas. If the result of the uplink channel estimation is the channel estimate obtained by the SRS, K is related to the system bandwidth; if the result of the uplink channel estimation is obtained by the DMRS, K is related to the resource allocated by the user.
  • the uplink channel estimate H for each subcarrier of a user in step 710 may be optionally averaged or accumulated in units of RBs. It is assumed that the K subcarriers in the base station uplink channel estimation H are averaged or accumulated according to the above method to obtain M resource groups (M is a positive integer).
  • the base station obtains a mapping bitmap of the base station physical antenna and the CRS port (which may be two and CRS ports, respectively, port 1 and port 2) from the OMC, and obtains a mapping relationship between the physical antenna of the base station and the CRS port.
  • antenna 1 - antenna 4 is a positive 45 degree polarization direction, corresponding to port 1
  • antenna 5 - antenna 8 is a negative 45 degree polarization direction, corresponding to port 2.
  • the mapping relationship is represented by H as follows:
  • H port1 H(k, 1:4)
  • H port2 H(k, 5:8).
  • step 740 calculating a phase difference ⁇ Angle on the corresponding antenna in different CRS ports on one resource block
  • step 750 the mean ⁇ of the phase difference on a resource group is calculated, ie
  • n the number of antennas corresponding to the same CRS port.
  • M represents the number of resource blocks.
  • step 760 the calculated phase difference ⁇ is compared to a known threshold. In the case where ⁇ is greater than the threshold value, step 770 is performed, and if ⁇ is not greater than the threshold value, step 780 is performed.
  • step 770 it is determined that the antenna polarization type of the terminal is ⁇ 45° polarization.
  • step 780 it is determined that the antenna polarization type of the terminal is vertical polarization or vertical horizontal dual polarization.
  • the present disclosure also provides a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the present disclosure also provides a schematic structural diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 80 which is exemplified by a processor 80 in FIG. 8; and a memory 81, may further include a communication interface 82 and a bus 83.
  • the processor 80, the communication interface 82, and the memory 81 can complete communication with each other through the bus 83.
  • Communication interface 82 can be used for information transfer.
  • Processor 80 can invoke logic instructions in memory 81 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 81 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 81 is used as a computer readable storage medium for storing software programs, computer executable programs, and program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 80 executes the function application and the data processing by executing the software programs, the instructions, and the modules stored in the memory 81, that is, the method for determining the antenna polarization type in the above method embodiments.
  • the memory 81 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to use of the terminal device, and the like. Further, the memory 81 may include a high speed random access memory, and may also include a nonvolatile memory.
  • a storage medium includes one or more instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • the method, device and base station for determining the antenna polarization type provided by the embodiments of the present disclosure improve system performance, so that the characteristics of the polarized antenna can be utilized to obtain the maximum received power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本文公开了一种确定天线极化类型的方法、装置及基站,该方法包括:获得基站物理天线和CRS端口的映射关系;根据上行信道估计值确定每个物理天线对应的参考量值,并根据参考量值以及映射关系确定不同CRS端口的参考量值差值,根据参考量值差值确定不同CRS端口的参考量值差值平均值,其中,参考量值包括:功率值和/或相位值;将参考量值差值平均值与预设门限值进行比较,确定用户设备天线的极化类型。

Description

确定天线极化类型的方法、装置及基站 技术领域
本公开涉及通讯领域,例如涉及一种确定天线极化类型的方法、装置及基站。
背景技术
天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。
由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信***中,一般均采用垂直极化的传播方式。另外,对于极化天线而言,只有收发天线极化一致时,才能获得最理想的效果,理论上,当收发天线极化类型垂直时,接收天线几乎收不到任何信号。但在实际外场中,由于多径的影响,造成电磁波在传播过程中,出现一定的“极化旋转”现象。
另外,为了减小天线体积,出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能上一般后者优于前者,因此目前大部分采用的是±45°极化方式。双极化天线组合了+45°和-45°两副极化方向相互正交的天线,并同时工作在收发双工模式下,大大节省了每个小区的天线数量;同时由于±45°为正交极化,有效保证了分集接收的良好效果。
通常在实际的通信***中,基站天线的极化类型是已知且不再变化的,而终端型号千差万别,天线极化形式可能存在垂直极化类型、±45°极化类型、垂直与水平极化极化类型(双极化类型)等。然而,相关技术中却没有一种能够确定发送端天线类型的方法,导致无法利用极化天线的特性来能获得最大的接收功率,***性能较低。
发明内容
本公开提供一种确定天线极化类型的方法、装置及基站,能够确定发送端天线类型的方法,使得可以利用极化天线的特性来能获得最大的接收功率,提高了***性能。
一方面,本公开提供了一种确定天线极化类型的方法,包括:获得基站物理天线和小区专有参考信号CRS端口的映射关系,;根据上行信道估计值确定每个物理天线对应的参考量值,并根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,其中,所述参考量值包括:功率值和/或相位值;以及将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型。
可选地,将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型,包括:判断所述参考量值差值平均值是否大于所述预设门限值;如果所述参考量值差值平均值大于所述预设门限值,确定所述用户设备天线的极化类型为±45°极化类型;以及如果所述参考量值差值平均值不大于所述预设门限值,确定所述用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。
可选地,根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,包括:计算第一CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,以及第一CRS端口的参考量值的和与第二CRS端口的参考量值的和的差值,将所述第一端口的参考量值和与第二端口的参考量值和的差值确定为所述参考量值差值;或者,计算第一CRS端口中每个天线参考量值和所述每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为所述参考量值差值。
可选地,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,包括:用所述参考量值差值除以同一个CRS端口对应的天线数量,以得到不同CRS端口的参考量值差值平均值。
可选地,在获得基站物理天线和小区专有参考信号CRS端口的映射关系之前,所述方法还包括:接收上行参考信号,并根据所述上行参考信号确定上行信道估计值。
另一方面,本公开还提供一种确定天线极化类型的装置,包括:获取模块,设置为获得基站物理天线和CRS端口的映射关系;参数确定模块,设置为根据 上行信道估计值确定每个物理天线对应的参考量值,并根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,其中,所述参考量值包括:功率值和/或相位值;以及类型确定模块,设置为将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型。
可选地,所述类型确定模块包括:判断单元,设置为判断所述参考量值差值平均值是否大于所述预设门限值;以及类型确定单元,设置为在所述参考量值差值平均值大于所述预设门限值的情况下,确定所述用户设备天线的极化类型为±45°极化类型;在所述参考量值差值平均值不大于所述预设门限值的情况下,确定所述用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。
可选地,所述参数确定模块包括:第一计算单元,设置为计算第一CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,以及第一CRS端口的参考量值的和与第二CRS端口的参考量值的和的差值,将所述差值确定为所述参考量值差值;以及第二计算单元,设置为计算第一CRS端口中每个天线的参考量值和所述每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为所述参考量值差值。
可选地,所述参数确定模块包括:平均值确定单元,设置为用所述参考量值差值除以同一个CRS端口对应的天线数量,以得到不同CRS端口的参考量值差值平均值。
可选地,所述装置还包括:接收模块,设置为在获得基站物理天线和小区专有参考信号CRS端口的映射关系之前,接收上行参考信号,并根据所述上行参考信号确定上行信道估计值。
又一方面,本公开还提供一种基站,包括上述任一项所述的确定天线极化类型的装置。本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
本公开根据上行信道估计值确定物理天线对应的参考量值,根据该参考量值和映射关系来计算不同CRS端口的参考量值差值,并根据该参考量值差值确定不同CRS端口的参考量值差值平均值,将该平均值与预设门限值进行比较,确定用户设备天线的极化类型,在通过该方法确定天线的极化类型后,可以根据确定的类型充分利用极化天线的特性,提升了***性能,使得可以利用极化天线的特性来能获得最大的接收功率。
附图说明
图1是本公开实施例中确定天线极化类型的方法的流程图;
图2是本公开实施例中确定天线极化类型的装置的结构示意图;
图3是本公开实施例中确定天线极化类型的装置的类型确定模块的结构示意图;
图4是本公开实施例中确定天线极化类型的装置的参数确定模块的结构示意图;
图5是本公开实施例中确定天线极化类型的装置的可选结构示意图;
图6是本公开实施例中根据功率差来估计终端天线极化类型的流程图;
图7是本公开实施例中根据相位差来估计终端天线极化类型的流程图;以及
图8是本公开提供的电子设备的结构示意图。
具体实施方式
以下结合附图以及实施例,对本公开进行详细地说明。应当理解,此处所描述的实施例仅仅用以解释本公开,并不限定本公开。以下参照附图对实施例进行说明,在不冲突的情况下,实施例和实施例中的特征可以相互任意组合。
本公开实施例提供一种确定天线极化类型的方法,该方法的流程如图1所示。
在步骤110中,获得基站物理天线和小区专有参考信号(Cell-specific  reference signals,CRS)端口的映射关系。该映射关系可以根据基站物理天线和CRS端口的映射关系确定。
在步骤120中,根据上行信道估计值确定每个物理天线对应的参考量值,并根据参考量值以及映射关系确定不同CRS端口的参考量值差值,根据参考量值差值确定不同CRS端口的参考量值差值平均值,其中,参考量值包括:功率值和/或相位值。
在步骤130中,将参考量值差值平均值与预设门限值进行比较,确定用户设备天线的极化类型。
本公开实施例根据上行信道估计值确定每个物理天线对应的参考量值,根据该参考量值和映射关系来计算不同CRS端口的参考量值差值,并根据该参考量值差值最终确定不同CRS端口的参考量值差值平均值,将该平均值与预设门限值进行比较,确定用户设备天线的极化类型,在通过该方法确定天线的极化类型后,可以根据确定的类型充分利用极化天线的特性,提升了***性能,使得可以利用极化天线的特性来能获得最大的接收功率。
在获得基站物理天线和CRS端口的映射位图之前,可接收来自用户设备的上行参考信号,并根据上行参考信号确定上行信道估计值,确定上行信道估计值的过程,此处不再赘述,上述实施例是利用了该上行信道估计值来确定天线的极化类型。
实现过程中,将参考量值差值平均值与预设门限值进行比较以确定用户设备天线的极化类型时,包括如下过程:判断参考量值差值平均值是否大于预设门限值;如果所述参考量值差值平均值大于所述预设门限值,确定用户设备天线的极化类型为±45°极化类型;以及如果所述参考量值差值平均值不大于所述预设门限值,确定用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。在本实施例中,预设门限值是本领域技术人员根据极化天线的特性确定的,预设门限值可以是经验值或实验值,预设门限值具有广泛的代表性,因此,在此时实例中,预设门限值可以作为一个标准,来评判天线是否为±45°极化类型。
根据参考量值以及映射关系确定不同CRS端口的参考量值差值时,可以包括多种方法,例如,计算第一CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,计算第一CRS端口的参考量值的和与第二CRS 端口的参考量值的和的差值,将差值确定为参考量值差值;或者是,计算第一CRS端口中每个天线参考量值和该每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为参考量值差值。上述第一种计算方式是将每个CRS端口内的参考量值相加,然后将两个CRS端口的参考量值的和做减法,取减法结果的绝对值作为参考量值差值。第二种方式则是将每个CRS端口内的一个天线的参考量值与另一个CRS端口内该天线对应的天线的参考量值做减法,取减法结果的绝对值,并将每个CRS端口内所有的天线的参考量值都和其他端口天线的参考量值都做相同的操作,最后将所有减法结果的绝对值相加,作为参考量值差值。两种方式都可以采用,可以根据参考量值差值确定后续参考量值差值平均值。
在根据参考量值差值确定CRS端口上对应的参考量值差值平均值的过程中,用参考量值差值除以同一个CRS端口对应的天线数量就可以得到CRS端口的参考量值差值平均值。
本公开实施例还提供了一种确定天线极化类型的装置,该装置的结构示意如图2所示,包括获取模块10、参数确定模块20以及类型确定模块30。获取模块10设置为获得基站物理天线和CRS端口的映射关系,以确定基站物理天线和CRS端口的映射关系。参数确定模块20,与获取模块10耦合,设置为根据上行信道估计值确定每个物理天线对应的参考量值,并根据参考量值以及映射关系确定不同CRS端口的参考量值差值,根据参考量值差值确定不同CRS端口的参考量值差值平均值,其中,参考量值包括:功率值和/或相位值。类型确定模块30,与参数确定模块20耦合,设置为将参考量值差值平均值与预设门限值进行比较,确定用户设备天线的极化类型。
图3示出了上述类型确定模块30的结构示意图,其包括判断单元301以及类型确定单元302。判断单元301设置为判断参考量值差值平均值是否大于预设门限值。类型确定单元302,与判断单元301耦合,设置为在参考量值差值平均值大于预设门限值的情况下,确定用户设备天线的极化类型为±45°极化类型;以及在参考量值差值平均值不大于预设门限值的情况下,确定用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。
图4示出了上述参数确定模块20的结构示意图,参数确定模块20可以包括第一计算单元201和第二计算单元202。第一计算单元201设置为计算第一 CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,以及第一CRS端口的参考量的值和与第二CRS端口的参考量值的和的差值,将差值确定为参考量值差值。第二计算单元202设置为计算第一CRS端口中每个天线参考量值和每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为参考量值差值。参数确定模块20还可以包括平均值确定单元203。平均值确定单元203,与第一计算单元201和第二计算单元202耦合,设置为将参考量值差值除以同一个CRS端口对应的天线数量,以得到不同CRS端口的参考量值差值平均值。
图5示出了上述装置的可选结构示意图,在图2的基础上,确定天线极化类型的装置还可以包括:接收模块40,与获取模块10耦合,设置为接收上行参考信号,并根据上行参考信号确定上行信道估计值。
本公开实施例还提供了一种基站,基站包括上述的确定天线极化类型的装置。本领域技术人员根据上述记载,知晓如何将上述装置设置在基站中,此处不再赘述。
本公开实施例还提供了一种确定天线极化类型的方法,该方法利用极化天线的特性,即只有收发天线极化一致时,才能获得最大的接收功率的特性。通过收端(通常为基站)已知天线的极化类型,计算接收功率或相位差等信息,进而估计发端未知的天线极化类型。该确定天线极化类型的方法有普遍适用性和准确性,有效提升***性能。该方法使得发端的天线类型可知,在智能天线波束赋形方案算法选择上有更多先验信息。
本公开实施例所提供确定天线极化类型的方法,基站可以根据上行信道估计值(H),基站的物理天线和CRS端口映射方式估计发端天线的极化类型。该方法包括步骤210至步骤250。
在步骤210中,UE(用户设备,User Equipment)上行发送参考信号,参考信号可以包括探测参考信号(Sounding Reference Signal,SRS)或解调参考信号(Demodulation Reference Signal,DMRS)。
在步骤220中,基站根据上行发射的参考信号计算H;
可选的,每个子载波的H可以按照资源块(Resource Blocks,RB)进行平均或者累加,达到降噪的效果。其中,按照RB进行平均,是将一个或多个RB中包含的所有子载波的H进行累加,将累加结果除以RB的数量;按照RB进行 累加,是将一个或多个RB中包含的所有子载波的H进行累加。
在步骤230中,基站从操作维护中心(Operation and Maintenance Center,OMC)获得基站物理天线和CRS端口(可以包含两个CRS端口,分别是CRS端口1和CRS端口2)映射关系,得到基站物理天线和CRS端口的映射关系,即在多天线***中由于小区端口数小于物理天线数,需要知道哪几个天线对应CRS端口1,哪几个天线对应CRS端口2。
在步骤240中,根据H计算所有物理天线上的功率或者相位,根据基站物理天线和CRS端口的映射关系计算出不同端口对应天线的功率差或者相位差。
可选的,步骤240中不同CRS端口对应天线功率可以按照如下方法计算,该方法包括步骤41-1至步骤41-3。
在步骤41-1中,根据H计算所有天线上的功率Pi,其中,其中i表示天线索引,i=1,...,N,N为基站天线数目,则Pi=|Hi|2
在步骤41-2中,计算不同CRS端口内天线功率差的绝对值ΔP。
例如,ΔP(Ind)表示对应不同CRS端口的两个相对应的天线的功率差的绝对值,Ind=1,...,n(n表示同一个CRS端口对应的天线数目,
Figure PCTCN2016100610-appb-000001
);则
ΔP(Ind)=|Pindex1(Ind)-Pindex2(Ind)|,其中,index1表示CRS端口1对应的天线索引,index2表示CRS端口2对应的天线索引。在计算时,上述公式表示循环索引,即一个端口的每个天线和另一个端口对应的天线功率相减的绝对值。
在步骤41-3中,计算不同CRS端口间天线功率差的均值p,均值p可以采用如下公式计算:
Figure PCTCN2016100610-appb-000002
其中,n表示同一个CRS端口对应的天线数目。
可选的,步骤240中的计算功率差也可以先计算同一CRS端口内天线的功率和,然后计算不同CRS端口的功率差。
实现时,步骤240中相位差的计算,可以包括步骤42-1至42-3。
在步骤42-1中,根据H计算所有天线的相位Anglei,其中i表示天线索引,i=1,...,N,N为基站天线数目,则
Figure PCTCN2016100610-appb-000003
在步骤42-2中,计算不同CRS端口之间天线上相位差的绝对值ΔAngle。
例如,ΔAngle(Ind)表示对应不同CRS端口的两个相对应的天线的相位差的绝对值,Ind=1,...,n(n表示同一个CRS端口对应的天线数目,
Figure PCTCN2016100610-appb-000004
),则
ΔAngle(Ind)=|Angleindex1(Ind)-Angleindex2(Ind)|,
其中,index1表示CRS端口1对应的天线索引,index2表示CRS端口2对应的天线索引。
在步骤42-3中,计算相位差的均值θ,均值θ的可以采用如下公式计算:
Figure PCTCN2016100610-appb-000005
其中,n表示同一个CRS端口对应的天线数目。
在步骤250中,用计算的差值(功率差或者相位差)和已知门限值比较。若计算的差值大于已知门限值,则判断终端的天线极化类型是±45°极化,若计算的差值不大于已知门限值,就判断终端的天线极化类型是垂直极化或双极化。
上述实施例中的CRS端口为2个,当CRS端口数量为4个时,按照上述实施例中CRS端口和天线的映射关系,两个CRS端口对应第一种极化方式,剩余的两个CRS端口对应第二种极化方式,示例性的,CRS端口1和CRS端口2对应第一种极化方式,CRS端口3和CRS端口4对应第二种天线极化方式。可以在对应相同的极化方式的两个CRS端口中挑选一个CRS端口,如在对应第一个极化方式的CRS端口1和CRS端口2中选择一个CRS端口,以及在对应第二个天线极化方式的CRS端口3和CRS端口4中选择一个CRS端口,将上述选择的两个CRS端口按照两个CRS端口进行上述实施例中的计算,或者将对应相同的极化方式的两个CRS端口的参数的平均值,分别作为两个CRS端口的参数,并按照上述实施例中的方法进行计算。
下面以长期演进时分双工(Long Term Evolution Time Division Duplexing,LTE TDD)***下,基站±45°双极化8天线,CRS两端口为例,结合附图对上述过程进行说明。
本公开实施例还提供了通过功率估计终端的天线极化类型的方法的流程, 如图6所示,所述方法可以包括如下步骤610至680。
在步骤610中,基站计算上行信道估计HK*8(频域),H的维度是K*8,K是子载波数,8是基站天线数。如果上行信道估计的结果是由SRS获得的信道估计,K与***带宽相关;如果上行信道估计的结果是由DMRS获得的,K与该用户分配的资源相关。
可选的,步骤610中对一个用户的每个子载波的H可以按照RB为单位可选地进行平均或者累加。假设基站H中的K个子载波按照上述方法平均或者累加得到M个资源组(M为正整数)。
在步骤620中,基站从OMC获得基站物理天线和CRS端口(可以是两个CRS端口,分别是端口1和端口2)映射位图,得到基站物理天线和CRS端口的映射关系,其中天线1-天线4是正45度极化方向,对应端口1;天线5-天线8是负45度极化方向,对应端口2。用H表示该映射关系如下,
Hport1=H(k,1∶4)以及Hport2=H(k,5∶8)。
在步骤630:基站对于每一个资源组计算所有天线的功率Pi,其中,其中i表示天线索引,i=1,...,8,则Pi=|Hi|2
在步骤640中,计算一个资源块上不同CRS端口内天线功率差ΔP。
例如,Ind=1∶4,则ΔP(Ind)=|Pindex1(Ind)-Pindex2(Ind)|,其中,index1表示CRS端口1对应的天线索引,index1=[1,2,3,4],index2表示CRS端口2对应的天线索引,index2=[5,6,7,8]。
在步骤650中,计算一个资源块上不同CRS端口间天线功率差的均值p,计算公式如下:
Figure PCTCN2016100610-appb-000006
重复计算M个资源组功率差p,对M个资源组求平均,得到功率差的均值
Figure PCTCN2016100610-appb-000008
在步骤660中,用计算的功率差均值
Figure PCTCN2016100610-appb-000009
和已知门限比较。在功率差均值
Figure PCTCN2016100610-appb-000010
大 于门限值的情况下,执行步骤670,在功率差均值
Figure PCTCN2016100610-appb-000011
不大于门限值的情况下,执行步骤680。
在步骤670中,确定终端的天线极化类型是±45°极化。
在步骤680中,确定终端的天线极化类型是垂直极化或垂直水平双极化。
本公开实施例还提供了通过相位估计终端的天线极化类型的方法的流程,如图7所示,所述方法包括步骤710至750。
在步骤710中,基站计算上行信道估计HK*8(频域),H的维度是K*8,K是子载波数,8是基站天线数。如果上行信道估计的结果是由SRS获得的信道估计,K与***带宽相关;如果上行信道估计的结果是由DMRS获得的,K与该用户分配的资源相关。
可选的,步骤710中对一个用户的每个子载波的上行信道估计H可以按照RB为单位可选地进行平均或者累加。假设基站上行信道估计H中的K个子载波按照上述方法平均或者累加得到M个资源组(M为正整数)。
在步骤720中,基站从OMC获得基站物理天线和CRS端口(可以是两和CRS端口,分别是端口1和端口2)映射位图,得到基站物理天线和CRS端口的映射关系。其中,天线1-天线4是正45度极化方向,对应端口1;天线5-天线8是负45度极化方向,对应端口2。用H表示该映射关系如下:
Hport1=H(k,1∶4),Hport2=H(k,5∶8)。
在步骤730中,基站对于每一个资源组计算所有天线的功率pi,其中,其中i表示天线索引,i=1,...,8,则
Figure PCTCN2016100610-appb-000012
在步骤740中,计算一个资源块上不同CRS端口内对应天线上相位差ΔAngle
例如,Ind=1∶4,ΔAngle(Ind)=|Angleindex1(Ind)-Angleindex2(Ind)|,其中,index1表示CRS端口1对应的天线索引,index1=[1,2,3,4],index2表示CRS端口2对应的天线索引,index2=[5,6,7,8]。
在步骤750中,计算一个资源组上相位差的均值θ,即
Figure PCTCN2016100610-appb-000013
其中,n表示同一个CRS端口对应的天线数目。
重复计算M个资源组相位差θ,求平均得到相位差的均值Δθ,即
Figure PCTCN2016100610-appb-000014
其中,M表示资源块的个数。
在步骤760中,用计算的相位差值Δθ和已知门限比较。在Δθ大于门限值的情况下,执行步骤770,在Δθ不大于门限值的情况下,执行步骤780。
在步骤770中,确定终端的天线极化类型是±45°极化,
在步骤780中,确定终端的天线极化类型是垂直极化或垂直水平双极化。
本公开还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开还提供了一种电子设备的结构示意图。参见图8,该电子设备包括:
至少一个处理器(processor)80,图8中以一个处理器80为例;和存储器(memory)81,还可以包括通信接口(Communications Interface)82和总线83。其中,处理器80、通信接口82、存储器81可以通过总线83完成相互间的通信。通信接口82可以用于信息传输。处理器80可以调用存储器81中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器81中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器81作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器80通过运行存储在存储器81中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的确定天线极化类型的方法。
存储器81可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器81可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在 一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
工业实用性
本公开实施例提供的确定天线极化类型的方法、装置及基站,提升了***性能,使得可以利用极化天线的特性来能获得最大的接收功率。

Claims (12)

  1. 一种确定天线极化类型的方法,包括:
    获得基站物理天线和小区专有参考信号CRS端口的映射关系;
    根据上行信道估计值确定每个物理天线对应的参考量值,并根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,其中,所述参考量值包括:功率值和/或相位值;以及
    将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型。
  2. 如权利要求1所述的方法,其中,将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型,包括:
    判断所述参考量值差值平均值是否大于所述预设门限值;
    如果所述参考量值差值平均值大于所述预设门限值,确定所述用户设备天线的极化类型为±45°极化类型;以及
    如果所述参考量值差值平均值不大于所述预设门限值,确定所述用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。
  3. 如权利要求1所述的方法,其中,根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,包括:
    计算第一CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,以及第一CRS端口的参考量值的和与第二CRS端口的参考量值的和的差值,将所述差值确定为所述参考量值差值;或者,
    计算第一CRS端口中每个天线的参考量值和所述每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为所述参考量值差值。
  4. 如权利要求1所述的方法,其中,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,包括:
    用所述参考量值差值除以同一个CRS端口对应的天线数量,以得到不同CRS端口的参考量值差值平均值。
  5. 如权利要求1至4中任一项所述的方法,在获得基站物理天线和小区专有参考信号CRS端口的映射关系之前,所述方法还包括:
    接收上行参考信号,并根据所述上行参考信号确定上行信道估计值。
  6. 一种确定天线极化类型的装置,包括:
    获取模块,设置为获得基站物理天线和小区专有参考信号CRS端口的映射关系;
    参数确定模块,设置为根据上行信道估计值确定每个物理天线对应的参考量值,并根据所述参考量值以及所述映射关系确定不同CRS端口的参考量值差值,根据所述参考量值差值确定不同CRS端口的参考量值差值平均值,其中,所述参考量值包括:功率值和/或相位值;以及
    类型确定模块,设置为将所述参考量值差值平均值与预设门限值进行比较,确定所述用户设备天线的极化类型。
  7. 如权利要求6所述的装置,其中,所述类型确定模块包括:
    判断单元,设置为判断所述参考量值差值平均值是否大于所述预设门限值;以及
    类型确定单元,设置为在所述参考量值差值平均值大于所述预设门限值的情况下,确定所述用户设备天线的极化类型为±45°极化类型;在所述参考量值差值平均值不大于所述预设门限值的情况下,确定所述用户设备天线的极化类型为垂直极化类型或者垂直水平双极化类型。
  8. 如权利要求6所述的装置,其中,所述参数确定模块包括:
    第一计算单元,设置为计算第一CRS端口内所有天线的参考量值的和,第二CRS端口内所有天线的参考量值的和,以及第一CRS端口的参考量值的和与第二CRS端口的参考量值的和的差值,将所述差值确定为所述参考量值差值;以及,
    第二计算单元,设置为计算第一CRS端口中每个天线的参考量值和所述每个天线在第二CRS端口中对应的天线的参考量值的差值,将得到的所有差值的和值确定为所述参考量值差值。
  9. 如权利要求6所述的装置,其中,所述参数确定模块包括:
    平均值确定单元,设置为用所述参考量值差值除以同一个CRS端口对应的天线数量,以得到不同CRS端口的参考量值差值平均值。
  10. 如权利要求6至9任一项所述的装置,所述装置还包括:
    接收模块,设置为在获得基站物理天线和小区专有参考信号CRS端口的映射关系之前,接收上行参考信号,并根据所述上行参考信号确定上行信道估计值。
  11. 一种基站,包括权利要求6至10中任一项所述的确定天线极化类型的装置。
  12. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-5中任一项的方法。
PCT/CN2016/100610 2016-01-04 2016-09-28 确定天线极化类型的方法、装置及基站 WO2017118117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610004652.1 2016-01-04
CN201610004652.1A CN106941681B (zh) 2016-01-04 2016-01-04 一种确定天线极化类型的方法、装置及基站

Publications (1)

Publication Number Publication Date
WO2017118117A1 true WO2017118117A1 (zh) 2017-07-13

Family

ID=59273212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100610 WO2017118117A1 (zh) 2016-01-04 2016-09-28 确定天线极化类型的方法、装置及基站

Country Status (2)

Country Link
CN (1) CN106941681B (zh)
WO (1) WO2017118117A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110851985A (zh) * 2019-11-14 2020-02-28 重庆大学 一种电磁波极化判决方法
CN111385002A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 一种空分复用方法及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493831B (zh) * 2019-07-30 2021-09-28 维沃移动通信有限公司 一种功率确定方法及终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050143037A1 (en) * 2003-12-23 2005-06-30 Glafkos Stratis Adaptive diversity antenna system
CN102404028A (zh) * 2010-09-07 2012-04-04 普天信息技术研究院有限公司 一种波束赋形方法
CN103249080A (zh) * 2012-02-03 2013-08-14 ***通信集团公司 一种确定基站的天线校准系数的方法、***以及装置
CN104218982A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 确定下行信道状态信息的方法和装置
WO2015019776A1 (ja) * 2013-08-06 2015-02-12 株式会社Nttドコモ 無線基地局装置、およびスケジューリング方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044434A (ja) * 2010-08-19 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> 偏波追尾アンテナ装置およびそのrf特性変動補償方法
JP2014204305A (ja) * 2013-04-05 2014-10-27 株式会社Nttドコモ 無線通信システム、無線基地局装置、およびユーザ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050143037A1 (en) * 2003-12-23 2005-06-30 Glafkos Stratis Adaptive diversity antenna system
CN102404028A (zh) * 2010-09-07 2012-04-04 普天信息技术研究院有限公司 一种波束赋形方法
CN103249080A (zh) * 2012-02-03 2013-08-14 ***通信集团公司 一种确定基站的天线校准系数的方法、***以及装置
CN104218982A (zh) * 2013-05-31 2014-12-17 华为技术有限公司 确定下行信道状态信息的方法和装置
WO2015019776A1 (ja) * 2013-08-06 2015-02-12 株式会社Nttドコモ 無線基地局装置、およびスケジューリング方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385002A (zh) * 2018-12-29 2020-07-07 中兴通讯股份有限公司 一种空分复用方法及***
CN110851985A (zh) * 2019-11-14 2020-02-28 重庆大学 一种电磁波极化判决方法
CN110851985B (zh) * 2019-11-14 2024-02-06 重庆大学 一种电磁波极化判决方法

Also Published As

Publication number Publication date
CN106941681B (zh) 2020-03-31
CN106941681A (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
CN114424623A (zh) 基于机器学习的信道估计
CN103701478B (zh) 干扰消除装置和接收机
JP2022166118A (ja) 基地局、端末デバイス及び方法
WO2017118117A1 (zh) 确定天线极化类型的方法、装置及基站
CN110495219B (zh) 上行功率控制方法、设备及***
TWI655873B (zh) 用於傳送功率控制的方法與裝置
WO2015135397A1 (zh) 基站及形成波束的方法
CN107171981B (zh) 通道校正方法及装置
WO2020134611A1 (zh) 多普勒频移的确定方法及装置
WO2016150145A1 (zh) 一种信号发送方法和设备
WO2016165508A1 (zh) 一种信号处理方法、上行资源分配方法及其装置
WO2015184949A1 (zh) 在干扰条件下的lte上行***的信号检测方法和装置
WO2019010714A1 (zh) 一种波束成形方法及设备
WO2015161508A1 (zh) 估计基带自干扰信道响应的方法和装置
KR102402436B1 (ko) 소형 셀 간섭 조정 방법 및 무선 통신 디바이스
JP6561471B2 (ja) 通信装置、通信方法、及び通信プログラム
EP3883287B1 (en) Prach detection method and device
EP3579603A1 (en) Scheduling method, base station and terminal
WO2017118079A1 (zh) 一种双流波束赋形的方法、装置及基站
WO2017005161A1 (zh) 功率分配方法和装置
CN110417523B (zh) 信道估计方法和装置
CN104601311B (zh) 一种同频干扰的抑制方法及装置
CN108400947B (zh) 干扰噪声协方差矩阵估计方法、装置及***
WO2017118111A1 (zh) 信号检测的方法及装置
CN108028822B (zh) 用于在通信***中执行信道解码操作的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883247

Country of ref document: EP

Kind code of ref document: A1