WO2017118079A1 - 一种双流波束赋形的方法、装置及基站 - Google Patents

一种双流波束赋形的方法、装置及基站 Download PDF

Info

Publication number
WO2017118079A1
WO2017118079A1 PCT/CN2016/098688 CN2016098688W WO2017118079A1 WO 2017118079 A1 WO2017118079 A1 WO 2017118079A1 CN 2016098688 W CN2016098688 W CN 2016098688W WO 2017118079 A1 WO2017118079 A1 WO 2017118079A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
antenna
vector
terminal
estimation value
Prior art date
Application number
PCT/CN2016/098688
Other languages
English (en)
French (fr)
Inventor
周鋆卿
秦洪峰
姚春峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118079A1 publication Critical patent/WO2017118079A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, and a base station for dual-stream beamforming.
  • Beamforming is an implementation of an adaptive array smart antenna. It is a digital signal processing technology implemented on an antenna array composed of multiple array elements.
  • the antenna array weights the signals received by the array elements, and changes the weight of the antenna array to change the beam shape and direction, that is, both the transmitting and receiving beams can be directed to the desired user, and the zero point of the beam can be Interfering with the user's direction coincidence, eliminating interference, achieving the equivalent transmit power of the base station transmitter, achieving the purpose of reducing inter-user interference and increasing system capacity.
  • BF technology has been in Time Division Long Term Evolution (TD-LTE), Worldwide Interoperability for Microwave Access (WiMAX), Time Division-Synchronous Code Division Multiple Access (Time Division-Synchronous Code Division Multiple Access, Widely used in wireless networks such as TD-SCDMA).
  • TD-LTE Time Division Long Term Evolution
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Time Division-Synchronous Code Division Multiple Access
  • Time Division-Synchronous Code Division Multiple Access Widely used in wireless networks such as TD-SCDMA.
  • MIMO Multiple-Input Multiple-Output
  • DOA Direction of Arrival
  • the MIMO beamforming technology is a beamforming method that uses channel information to weight the transmitted data to form a beam.
  • the beamforming method can be based on whether the shaping weight depends on the feedback of the user equipment (User Equipment, UE). Divided into open loop BF and closed loop BF two modes. Open-loop BF does not require UE feedback weights. It is commonly used in Time Division Duplexing (TDD) systems. Closed-loop BF technology requires terminal feedback channel information (such as codebook) to the transmitting end, which is often used for frequency division duplexing (Frequency Division Duplexing, FDD) system.
  • TDD Time Division Duplexing
  • the open-loop BF technology utilizes the uplink channel information, and does not require the receiving end to feed back the channel information to the transmitting end, and the transmitting end obtains the shaping vector through the uplink channel to estimate the weighting of the transmitted signal.
  • Open-loop BF technology has obvious effects on coverage and throughput improvement.
  • the open-loop BF technology utilizes the reciprocal characteristics of the uplink and downlink channels, so the system needs to correct each transceiver channel when it is implemented.
  • the dual-flow beamforming technology under open-loop BF technology is a multi-antenna enhancement technology, which combines smart antenna beamforming technology with MIMO spatial multiplexing technology. It can maintain the traditional single-flow beamforming technology to increase coverage, improve cell capacity and reduce interference characteristics, which can improve the reliability of edge users and effectively improve the throughput of cell center users.
  • the calculation of the dual-stream beamforming vector requires the terminal to support the selective transmission of the sounding reference signal (SRS), and the base station side obtains the complete uplink channel state information according to the channel. Reciprocity, using the uplink channel estimation value (H) to calculate the weight vector by eigenvalue decomposition or singular value decomposition, can obtain better performance.
  • SRS sounding reference signal
  • H uplink channel estimation value
  • the present invention provides a method, an apparatus, and a base station for dual-stream beamforming.
  • the method and apparatus provided by the present invention solve the problem that the existing commercial terminal does not support selective transmission of the SRS antenna, so the channel information obtained by the base station side is incomplete, thereby causing The problem of performance loss.
  • the present invention provides a method for dual stream beamforming, the method comprising:
  • the base station calculates a channel estimation value of the uplink subcarrier according to the uplink reference signal sent by the terminal single antenna;
  • mapping bitmap between the physical antenna and the CRS port of the cell reference signal, and determining a mapping relationship between the physical antenna and the CRS port according to the mapping bitmap
  • the polarization type of the antenna of the terminal is ⁇ 45° polarization according to the channel estimation value and the mapping relationship, estimating, according to the channel estimation value, that the antenna of the terminal transmits the uplink reference signal in turn Channel estimation value;
  • the dual stream data sent to the terminal is processed by using the dual stream beamforming weight vector.
  • calculating channel estimation values of the uplink subcarriers includes:
  • the uplink subcarrier into multiple resource groups, and determining a channel estimation average corresponding to each resource group; wherein the channel estimation average is a channel estimation value corresponding to multiple uplink subcarriers in each resource group. And the ratio of the number of uplink subcarriers in each resource group;
  • the channel estimation average is used as a channel estimation value for each resource group.
  • estimating, according to the channel estimation value, a complete channel estimation value that the antenna of the terminal sends the uplink reference signal in turn comprises:
  • first channel estimation vector H [h 1,1 h 1,2 ... h 1,N ] T according to the number of antennas of the terminal and the channel estimation value; wherein the element h in the first channel estimation vector H 1, N is the channel estimation value on the Nth antenna of the base station in the current resource group, and N is the number of physical antennas of the base station;
  • mapping bitmap a mapping relationship between the physical antenna and the two CRS ports, and determining, according to the mapping relationship, a correspondence between an element in the first channel estimation vector and the two CRS ports;
  • the first channel estimation vector is The positional relationship of the corresponding elements of the two CRS ports is exchanged to form a second channel estimation vector
  • the first channel estimate vector and the second channel estimate vector are combined to form the complete channel estimate.
  • calculating the dual stream beamforming weight vector according to the complete channel estimation value includes:
  • the full channel estimate is processed using eigenvalue decomposition or singular value decomposition to obtain a dual stream beamforming weight vector.
  • the uplink reference signal includes a sounding reference signal SRS or a demodulation reference signal DMRS.
  • the present invention also provides a dual stream beamforming device based on the above method, the device comprising:
  • a channel estimation module configured to calculate a channel estimation value of the uplink subcarrier according to the uplink reference signal sent by the terminal single antenna
  • mapping relationship determining module configured to obtain a mapping bitmap between a physical antenna of the base station and a CRS port of the cell reference signal, and determine a mapping relationship between the physical antenna and the CRS port according to the mapping bitmap;
  • An estimation module configured to: if the polarization type of the antenna of the terminal is determined to be ⁇ 45° polarization according to the channel estimation value and the mapping relationship, estimating, according to the channel estimation value, that the antenna of the terminal is sent in turn The complete channel estimate of the uplink reference signal;
  • a calculating module configured to calculate a dual stream beamforming weight vector according to the complete channel estimation value
  • the data processing module is configured to process the dual stream data sent to the terminal by using the dual stream beamforming weight vector.
  • the channel estimation module is configured to divide the uplink subcarrier into multiple resource groups, and determine a channel estimation average corresponding to each resource group; wherein the channel estimation average is in each resource group. And a ratio of a sum of channel estimation values corresponding to the plurality of uplink subcarriers to an uplink subcarrier number in each resource group; and using the channel estimation average value as a channel estimation value of each resource group.
  • the estimating module includes:
  • mapping relationship determining unit configured to determine a mapping relationship between the physical antenna and two CRS ports according to the mapping bitmap, and determine, according to the mapping relationship, an element in the first channel estimation vector and the two CRS ports Correspondence relationship
  • a second vector generating unit configured to adjust a correspondence between the two CRS ports and the physical antenna according to a characteristic of the ⁇ 45° polarized antenna, and a terminal with a polarization of the terminal antenna of ⁇ 45° Transmitting a positional relationship of the corresponding elements of the two CRS ports in the first channel estimation vector to form a second channel estimation vector;
  • a generating unit configured to combine the first channel estimation vector and the second channel estimation vector to form the complete channel estimation value.
  • the calculating module is configured to process the complete channel estimation value by using eigenvalue decomposition or singular value decomposition to obtain a dual stream beamforming weight vector.
  • the channel estimation module is configured to detect the reference signal SRS according to the single antenna of the terminal or The demodulation reference signal DMRS calculates a channel estimation value of the uplink subcarrier.
  • the present invention also provides a base station comprising the modules in the dual stream beamforming device described above.
  • the method and device for dual-flow beamforming provided by the present invention estimate the channel state matrix by using a priori information such as an antenna polarization form and an uplink channel estimation value transmitted by a single antenna when the terminal does not support SRS antenna selection and transmission. Furthermore, the common two-stream beamforming weight vector calculation method is used to weight the transmitted data and then transmit. In the current situation that the terminal does not support selective transmission of the SRS antenna, a better weight vector generation method can also be used, which effectively improves the system performance.
  • FIG. 1 is a schematic flowchart diagram of a method for dual-beam beamforming according to Embodiment 1 of the present invention
  • FIG. 2 is a mapping diagram of a correspondence between a CRS port and a physical antenna
  • FIG. 3 is a schematic flowchart of a method for forming a dual-stream beam according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a device for forming a dual stream beam according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for dual-stream beamforming, the method comprising:
  • the base station calculates a channel estimation value of the uplink subcarrier according to the uplink reference signal sent by the terminal single antenna;
  • mapping bitmap between a physical antenna and a cell reference signal (CRS) port, and determining a mapping relationship between the physical antenna and the CRS port according to the mapping bitmap;
  • the polarization type of the antenna of the terminal is ⁇ 45° polarization according to the channel estimation value and the mapping relationship, estimating, according to the channel estimation value, that the antenna of the terminal transmits the uplink reference signal in turn Channel estimation value;
  • the dual stream data sent to the terminal is processed by using the dual stream beamforming weight vector.
  • an embodiment of the present invention provides a method for dual-beam beamforming, which specifically includes the following implementation steps:
  • Step 101 The base station calculates a channel estimation value of the uplink subcarrier according to the uplink reference signal sent by the terminal single antenna.
  • the uplink reference signal may be a sounding reference sign (SRS) or a De Modulation Reference Signal (DMRS).
  • SRS sounding reference sign
  • DMRS De Modulation Reference Signal
  • the channel estimation values of the uplink subcarriers may be further accumulated or averaged, wherein the implementation of the averaging may be:
  • A dividing the uplink subcarrier into multiple resource groups, and determining a channel estimation average corresponding to each resource group; wherein the channel estimation average is a channel estimation corresponding to multiple uplink subcarriers in each resource group.
  • the channel estimation average is used as a channel estimation value for each resource group.
  • Step 102 Obtain a mapping bitmap between the physical antenna and the CRS port of the cell reference signal, and determine a mapping relationship between the physical antenna and the CRS port according to the mapping bitmap.
  • the base station may obtain a physical bitmap of the base station and a CRS port (generally two ports, respectively port 1 and port 2) from the Operation and Maintenance Center (OMC), according to the mapping bitmap.
  • OMC Operation and Maintenance Center
  • the mapping relationship between the actual physical antenna and the CRS port of the base station is obtained. That is, in the multi-antenna system, since the number of cell ports is smaller than the actual number of physical antennas, it is necessary to know which antennas correspond to CRS port 1, and which antennas correspond to CRS port 2.
  • the base station includes eight antennas, wherein port 1 (PORT1) corresponds to antennas ANT1 to ANT4, and port 2 (PORT2) corresponds to antennas ANT5 to ANT8.
  • port 1 corresponds to antennas ANT1 to ANT4
  • port 2 corresponds to antennas ANT5 to ANT8.
  • Step 103 If it is determined that the polarization type of the antenna of the terminal is ⁇ 45° polarization according to the channel estimation value and the mapping relationship, estimating, according to the channel estimation value, that the antenna of the terminal sends an uplink reference in turn. The complete channel estimate of the signal;
  • antenna polarization types are: ⁇ 45° dual polarization, 0° and 90° dual polarization, vertical polarization.
  • the channel estimate obtained in step 101 is transmitted by a single antenna, in order to obtain a complete channel estimate (i.e., a rounded channel estimate), two channel estimates need to be obtained. Based on the characteristics of ⁇ 45° dual polarization (the channel estimation values corresponding to different CRS ports can be element exchanged), another channel estimation value in the rounding can be obtained according to the single channel estimation value; thereby using two channel estimation values Form a complete channel estimate.
  • the complete channel estimation value since the antenna of the terminal that is estimated according to the channel estimation value transmits the complete channel estimation value of the uplink reference signal in turn, the complete channel estimation value only approximates the actual complete channel estimation value, and is not An exact value. In practical applications, the error between the full channel estimate and the actual full channel estimate is less than a set threshold.
  • Step 104 Calculate a dual stream beamforming weight vector according to the complete channel estimation value
  • the complete channel estimate may be processed using eigenvalue decomposition or singular value decomposition to obtain a dual stream beamforming weight vector.
  • Step 105 Perform, by using the dual-stream beamforming weight vector, the dual-stream data sent to the terminal. Reason.
  • the processing of the dual stream data by the base station may be: multiplying the dual stream beamforming weight vector to the downlink data and the UE-specific reference signals (UE-RS).
  • UE-RS UE-specific reference signals
  • the specific implementation of determining the polarization type of the antenna of the terminal to be ⁇ 45° according to the channel estimation value and the mapping relationship may be:
  • the physical antenna is divided into two antenna groups according to the mapping relationship between the physical antennas of the base station and the two CRS ports;
  • the base station includes eight antennas (antennas 1 to 8), port 1 of the two CRS ports is connected to antennas 1 to 4, and port 2 is connected to antennas 5 to 8.
  • the power or phase of the physical antennas in the two antenna groups are one-to-one difference, and the power difference group and the phase difference group are obtained;
  • the power of the antenna 1 minus the power of the antenna 5 gives a difference of 1;
  • the power minus the power of the antenna 6 gives a difference of 2;
  • the power of the antenna 3 minus the power of the antenna 7 gives a difference of 3;
  • the power of the antenna 4 minus the power of the antenna 8 gives a difference of 4;
  • the difference 1 to the difference of 4 A power difference group is formed.
  • the phase difference group is formed in the same manner and will not be described here.
  • D. Determine an average value of the power difference value of the power difference group or a phase difference value of the phase difference group, compare the average value of the power difference with a preset first threshold, and determine the terminal if the value is greater than the first threshold.
  • the polarization type of the antenna is ⁇ 45° polarization; or the average value of the phase difference is compared with a preset second threshold, and if it is greater than the second threshold, the polarization type of the antenna of the terminal is determined to be ⁇ 45° Chemical.
  • the power difference average value of the power difference group or the average of the phase difference values of the phase difference group satisfies the threshold requirement, it may be determined that the polarization type of the antenna of the terminal is ⁇ 45° polarization.
  • the power difference average value of the power difference group or the average value of the phase difference values of the phase difference group is not required to satisfy the threshold requirement at the same time.
  • the power difference average of the power difference groups may be the sum of the difference 1 and the difference 4 divided by 4.
  • the specific implementation manner of estimating the complete channel estimation value of the uplink reference signal sent by the antenna of the terminal according to the channel estimation value may be:
  • mapping bitmap a mapping relationship between the physical antenna and the two CRS ports, and determining, according to the mapping relationship, a correspondence between an element in the first channel estimation vector and the two CRS ports;
  • the first channel estimation vector is used for the terminal antenna polarization type is ⁇ 45° polarization terminal
  • the positional relationship of the corresponding elements of the two CRS ports is exchanged to form a second channel estimation vector
  • the complete channel estimate formed may be:
  • the method for dual-beam beamforming estimates the channel state matrix by using a priori information such as the antenna polarization form and the uplink channel estimation value transmitted by the single antenna when the terminal does not support the SRS antenna selection transmission.
  • Common weight vector calculation methods are used to weight the transmitted data and transmit it.
  • a better weight vector generation method can also be used, which effectively improves the system performance.
  • the base station is ⁇ 45° dual-polarized 8 antennas, and the CRS two ports are taken as an example.
  • the specific steps of the dual-stream beamforming are as follows (as shown in FIG. 3):
  • Step 301 the base station calculates an uplink channel estimate H K*8 (frequency domain);
  • the dimension of H is K*8, K is the number of uplink subcarriers, and 8 is the number of base station antennas. If the result of the uplink channel estimation is a channel estimate obtained by the SRS, K is related to the system bandwidth; if the result of the uplink channel estimation is obtained by the DMRS, K is related to the bandwidth allocated by the user;
  • the channel estimation values of the uplink subcarriers may be further averaged or accumulated according to the resource group to achieve the effect of the noise reduction process.
  • K uplink subcarriers in the channel estimation H are grouped (the granularity of the packets in a specific implementation may be a multiple of 12 or 12) to obtain M resource groups (M is a positive integer).
  • Step 302 The base station obtains a bitmap of the base station physical antenna and the CRS port mapping from the OMC (which may be the relationship shown in FIG. 2), and obtains a mapping relationship between the actual physical antenna of the base station and the CRS port.
  • Step 303 Estimate the polarization type of the terminal antenna according to the obtained uplink channel estimation H K*8 and the obtained base station antenna and port mapping relationship.
  • Step 304 The base station selects a polarization terminal that satisfies ⁇ 45° according to the terminal polarization type, and obtains channel estimation information according to the SRS single antenna transmission to estimate the complete channel state information H of the channel estimation after the SRS round, according to the complete channel state information H. Calculate the dual stream beamforming weights.
  • step 305 the beam shaping weight is multiplied to the data and the UE-specific reference signals (UE-RS), and the dual-stream data is sent.
  • UE-RS UE-specific reference signals
  • step 304 includes the following steps:
  • the base station selects a terminal polarization type of ⁇ 45° dual-polarization terminal according to the estimated terminal polarization type;
  • the base station calculates the channel state information H according to the following manner according to the calculation of the uplink channel estimation H, the mapping relationship between the actual physical antenna and the CRS port of the base station, and the ⁇ 45° dual-polarization terminal.
  • H [h 1,1 h 1,2 ... h 1,8 ] T , where the number of physical antennas of the base station is 8; and the first 4 physical antennas correspond to CRS port 1, and the last 4 physical antennas correspond to CRS ports. 2.
  • the element h 1,1 is the channel estimation value on the first antenna of the base station in the current resource group.
  • the K uplink subcarriers are divided into M resource groups.
  • H [h 1,1 h 1,2 ... h 1,8 ]
  • the elements in T are the channel estimates corresponding to each base station antenna under a resource group.
  • the embodiment of the present invention further provides a dual-flow beamforming device, which includes:
  • the channel estimation module 401 is configured to calculate a channel estimation value of the uplink subcarrier according to the uplink reference signal sent by the terminal single antenna;
  • the channel estimation module 401 is specifically configured to divide the uplink subcarrier into multiple resource groups, and determine a channel estimation average corresponding to each resource group; wherein the channel estimation average is each resource group. And a ratio of a sum of channel estimation values corresponding to the plurality of uplink subcarriers to a number of uplink subcarriers in each resource group; and using the channel estimation average value as a channel estimation value of each resource group.
  • the channel estimation module 401 is specifically configured to calculate a channel estimation value of the uplink subcarrier according to the sounding reference signal SRS or the demodulation reference signal DMRS sent by the terminal single antenna.
  • the mapping relationship determining module 402 is configured to obtain a physical antenna of the base station and a CRS port of the cell reference signal. Mapping mapping between the physical antenna and the CRS port according to the mapping bitmap;
  • An estimation module 403 configured to: if the polarization type of the antenna of the terminal is determined to be ⁇ 45° polarization according to the channel estimation value and the mapping relationship, estimate an antenna rotation of the terminal according to the channel estimation value Transmitting a complete channel estimate of the uplink reference signal;
  • the calculating module 404 is configured to calculate a dual stream beamforming weight vector according to the complete channel estimation value
  • the calculating module 404 is specifically configured to process the complete channel estimation value by using eigenvalue decomposition or singular value decomposition to obtain a dual stream beamforming weight vector.
  • the data processing module 405 is configured to process the dual stream data sent to the terminal by using the dual stream beamforming weight vector.
  • the estimating module 403 may specifically include:
  • mapping relationship determining unit configured to determine, according to the mapping bitmap, a mapping relationship between the physical antenna and two CRS ports, and determine, according to the mapping relationship, an element in the first channel estimation vector and the two CRS ports Correspondence relationship
  • a second vector generating unit configured to: according to a characteristic of the ⁇ 45° polarized antenna and a correspondence between the two CRS ports and the physical antenna, and a terminal with a polarization of the terminal antenna of ⁇ 45°, Transmitting a positional relationship of the corresponding elements of the two CRS ports in the first channel estimation vector to form a second channel estimation vector;
  • a generating unit configured to combine the first channel estimation vector and the second channel estimation vector to form the complete channel estimation value.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can take the form of a computer program product embodied on one or more base station usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code. In order to implement the solution provided by the above embodiments, all functional modules provided by the above-mentioned one-two-beam beamforming device can be integrated in the base station.
  • the method and device for dual-flow beamforming provided by the present invention estimate the channel state matrix by using a priori information such as an antenna polarization form and an uplink channel estimation value transmitted by a single antenna when the terminal does not support SRS antenna selection and transmission. Then, the common weight vector calculation method is used to weight the transmitted data and then transmit. In the current situation that the terminal does not support selective transmission of the SRS antenna, a better weight vector generation method can also be used, which effectively improves the system performance.
  • the invention is applicable to the field of communication technology, and is used to realize that the terminal does not support the selective transmission of the SRS antenna, and can also use the preferred weight vector generation method to effectively improve the system performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种双流波束赋形的方法、装置及基站,该方法包括:基站根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;获得自身的物理天线和CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;根据所述完整信道估计值计算双流波束赋形权向量;利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。本发明公开的方法和装置解决现有商用终端不支持SRS天线选择性发送,所以基站侧获得的信道信息不完整的问题。

Description

一种双流波束赋形的方法、装置及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种双流波束赋形的方法、装置及基站。
背景技术
波束赋形(Beamforming,BF)是自适应阵列智能天线的一种实现方式,是一种在多个阵元组成的天线阵列上实现的数字信号处理技术。天线阵列将各个阵元接收到的信号作加权组合,通过改变天线阵列的权值,使波束形状和方向随之改变,也就是使发射和接收波束均能指向期望用户,而波束的零点能与干扰用户的方向重合,消除干扰,达到提高基站发射机的等效发射功率,实现降低用户间干扰,提升***容量的目的。BF技术已经在时分长期演进(Time Division Long Term Evolution,TD-LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)等无线网络中得到了广泛的应用。
通常有两大类实现方式:多入多出(Multiple-Input Multiple-Output,MIMO)波束赋形和波达角(Direction of arrival,DOA)波束赋形。其中,波束赋形方法属于MIMO波束赋形具体实现为:
MIMO波束赋形技术是利用信道信息对发射数据进行加权,形成波束的一种波束赋形方法,根据赋形权值是否依赖于用户设备(User Equipment,UE)的反馈,该波束赋形方法可分为开环BF和闭环BF两种模式。开环BF不需要UE反馈权值,常用于时分双工(Time Division Duplexing,TDD)***,闭环BF技术需要终端反馈信道信息(如码本Codebook)给发射端,常用于频分双工(Frequency Division Duplexing,FDD)***。
开环BF技术利用上行信道信息,不需要接收端反馈信道信息给发射端,发射端通过上行信道自行估计得到赋形向量对发射信号进行加权。开环BF技术对覆盖和吞吐量的提升都有比较明显的效果。另外,开环BF技术利用了上下行信道的互易特性,故***实现时需要对各个收发通路进行校正。
在开环BF技术下的双流波束赋形技术是多天线增强型技术,完美结合了智能天线波束赋形技术与MIMO空间复用技术。能够保持传统单流波束赋形技术增加覆盖、提高小区容量和减少干扰的特性,既可以提高边缘用户的可靠性,同时也可有效提升小区中心用户的吞吐量。
常见的,计算双流波束赋形向量需要终端支持探测参考信号(sounding reference signal,SRS)的天线选择性发送,基站侧获得完整的上行信道状态信息,根据信道 互易性,用上行信道估计值(H)通过特征值分解或者奇异值分解进行权值向量的计算,可以获得较优的性能。但是目前大多数商用终端不支持SRS天线选择性发送,所以基站侧获得的信道信息不完整,从而会造成性能损失。
发明内容
本发明提供一种双流波束赋形的方法、装置及基站,本发明所提供的方法及装置解决现有商用终端不支持SRS天线选择性发送,所以基站侧获得的信道信息不完整,从而会造成性能损失的问题。
本发明提供一种双流波束赋形的方法,方法包括:
基站根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
获得自身的物理天线和小区参考信号CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
根据所述完整信道估计值计算双流波束赋形权向量;
利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
可选的,计算上行子载波的信道估计值包括:
将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;
将所述信道估计平均值作为每个资源组的信道估计值。
可选的,根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值包括:
根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 ... h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。
可选的,根据所述完整信道估计值计算双流波束赋形权向量包括:
利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
可选的,所述上行参考信号包括探测参考信号SRS或解调参考信号DMRS。
基于上述方法本发明还提供一种双流波束赋形的装置,该装置包括:
信道估计模块,设置为根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
映射关系确定模块,设置为获得基站的物理天线和小区参考信号CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
估计模块,设置为如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
计算模块,设置为根据所述完整信道估计值计算双流波束赋形权向量;
数据处理模块,设置为利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
可选的,所述信道估计模块设置为将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;将所述信道估计平均值作为每个资源组的信道估计值。
可选的,所述估计模块包括:
第一向量生成单元,设置为根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 ... h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
映射关系确定单元,设置为根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
第二向量生成单元,设置为根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
生成单元,设置为将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。
可选的,所述计算模块设置为利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
可选的,所述信道估计模块设置为根据终端单天线发送的探测参考信号SRS或 解调参考信号DMRS计算上行子载波的信道估计值。
本发明还提供一种基站,该基站包括上述双流波束赋形的装置中的各模块。
上述技术方案中的一个或两个,至少具有如下技术效果:
本发明所提供的一种双流波束赋形的方法及装置,在终端不支持SRS天线选择发送时,利用天线极化形式和单天线发送的上行信道估计值等先验信息来估计信道状态矩阵,进而用常见双流波束赋形权值向量计算方法对发射数据加权后发射。使得终端不支持SRS天线选择性发送的现状下,也可以使用较优的权值向量生成方法,有效的提高了***性能。
附图说明
图1为本发明实施例一提供的一种双流波束赋形的方法的流程示意图;
图2为一种CRS端口和物理天线对应关系的映射图;
图3为本发明实施例二提供的一种双流波束赋形的方法的流程示意图;
图4为本发明实施例提供的一种双流波束赋形的装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种双流波束赋形的方法,该方法包括:
基站根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
获得自身的物理天线和小区参考信号(cell reference signals,CRS)端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
根据所述完整信道估计值计算双流波束赋形权向量;
利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
为了进一步详细的说明本发明实施例提供的方法,以下结合具体的使用场景和附图对本发明实施例所提供的方案作进一步详细的说明。
实施例一
如图1所示,本发明实施例提供一种双流波束赋形的方法,具体包括以下实现步骤:
步骤101,基站根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
在本实施例中,该上行参考信号可以是探测参考信号(sounding reference signa,SRS)或解调参考信号(De Modulation Reference Signal,DMRS)。
另外,为了达到降噪处理的效果,还可以进一步对上行子载波的信道估计值进行累加或平均,其中进行平均的实现方式可以是:
A,将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;
B,将所述信道估计平均值作为每个资源组的信道估计值。
步骤102,获得自身的物理天线和小区参考信号CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
该实施例中,基站可以从操作维护中心(Operation and Maintenance Center,OMC)获得基站的物理天线和CRS端口(一般是两端口,分别是端口1和端口2)映射位图,根据该映射位图得到基站实际物理天线和CRS端口的映射关系,即在多天线***中由于小区端口数小于实际物理天线数,需要知道哪几个天线对应CRS端口1,哪几个天线对应CRS端口2。
如图2所示,基站包括8个天线,其中端口1(PORT1)对应天线ANT1~ANT4,端口2(PORT2)对应天线ANT5~ANT8。
步骤103,如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
在现有的天线极化类型中包括:±45°双极化、0°和90°的双极化、垂直极化。
因为步骤101得到的信道估计值是单天线发送的,所以为了得到完整的信道估计值(即轮发的信道估计值),则需要得到两个信道估计值。基于±45°双极化的特点(对不同CRS端口对应的信道估计值可以进行元素交换),可以根据单发的信道估计值得到轮发当中另一信道估计值;从而利用两个信道估计值形成完整信道估计值。
在本发明实施例中,因为是根据所述信道估计值估计出的终端的天线轮流发送上行参考信号的完整信道估计值,所以该完整信道估计值只是近似于实际的完整信道估计值,并不是一个确切的值。在实际的应用中该完整信道估计值与实际的完整信道估计值之间的误差小于一个设定的阈值。
步骤104,根据所述完整信道估计值计算双流波束赋形权向量;
在该实施例中可以利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
步骤105,利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处 理。
在具体的实例中,基站对双流数据的处理可以是:将该双流波束赋形权向量乘到下发的数据以及UE专用参考信号(UE-specific reference signals,UE-RS)上。
在该实施例中,根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化的具体实现可以是:
A、根据基站物理天线和CRS端口的映射关系以及上行子载波的信道估计值,确定基站各物理天线的功率或相位;
B,根据基站各物理天线与两个CRS端口的映射关系,将该物理天线分为两个天线组;
例如基站包括8个天线(天线1~8),两个CRS端口中的端口1连接天线1~4;端口2连接天线5~8。
C,将两个天线组中物理天线的功率或相位一对一求差,得到功率差值组和相位差值组;
将天线1~4对应的功率值或相位与天线5~8一对一作差得到功率差值组和相位差值组;例如天线1的功率减去天线5的功率得到差值1;天线2的功率减去天线6的功率得到差值2;天线3的功率减去天线7的功率得到差值3;天线4的功率减去天线8的功率得到差值4;差值1~差值4组合形成功率差值组。相位差值组的形成方式相同,在此不再赘述。
D,确定功率差值组的功率差值平均值或相位差值组的相位差值平均值,将所述功率差值平均值与预设第一阈值进行比较,如果大于第一阈值则确定终端的天线的极化类型为±45°极化;或者将所述相位差值平均值与预设第二阈值进行比较,如果大于第二阈值则确定终端的天线的极化类型为±45°极化。
在该实施例中,功率差值组的功率差值平均值或相位差值组的相位差值平均值中任何一个满足阈值要求,则可以确定终端的天线的极化类型为±45°极化,并不要求功率差值组的功率差值平均值或相位差值组的相位差值平均值同时满足阈值要求。
功率差值组的功率差值平均值可以是差值1~差值4的和除4。
在本发明实施例中,根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值的具体实现方式可以是:
A,根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 ... h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
B,根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
如果根据基站天线的特性对基站的物理天线进行排序后,排序中的前
Figure PCTCN2016098688-appb-000001
个物理天线对应CRS端口1,后
Figure PCTCN2016098688-appb-000002
个物理天线对应CRS端口2(根据实际物理天线和CRS端口的映射关系获得),则可以确定H=[h1,1 h1,2 ... h1,N]T中,前
Figure PCTCN2016098688-appb-000003
个元素对应CRS端口1,后
Figure PCTCN2016098688-appb-000004
个元素对应CRS端口2。
C,根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
D,将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。其中,形成的完整信道估计值可以是:
Figure PCTCN2016098688-appb-000005
本发明所提供的一种双流波束赋形的方法,在终端不支持SRS天线选择发送时,利用天线极化形式和单天线发送的上行信道估计值等先验信息来估计信道状态矩阵,进而用常见权值向量计算方法对发射数据加权后发射。使得终端不支持SRS天线选择性发送的现状下,也可以使用较优的权值向量生成方法,有效的提高了***性能。
实施例二
在该实施例中,以LTE TDD***下,基站±45°双极化8天线,CRS两端口为例,双流波束赋形的具体步骤如下(如图3所示):
步骤301,基站计算上行信道估计HK*8(频域);
其中,H的维度是K*8,K是上行子载波数,8是基站天线数。如果上行信道估计的结果是由SRS获得的信道估计,K与***带宽相关;如果上行信道估计的结果是由DMRS获得的,K与该用户分配的带宽相关;
在该实施例中,可以按照资源组进一步对上行子载波的信道估计值进行平均或者累加,达到降噪处理的效果。例如:将信道估计H中的K个上行子载波进行分组(在具体实现中进行分组的粒度可以是12或12的倍数)得到M个资源组(M为正整数)。
步骤302,基站从OMC获得基站物理天线与CRS端口映射位图(可以是图2所示的关系),得到基站实际物理天线和CRS端口的映射关系;
步骤303,根据获得的上行信道估计HK*8以及获得的基站天线和端口映射关系,估计终端天线的极化类型。
步骤304,基站根据终端极化类型,选择满足±45°极化终端,根据SRS单天线发送获得信道估计H估计出SRS轮发后信道估计的完整信道状态信息H,根据该完整信道状态信息H计算双流波束赋形权值。
步骤305,把波束赋形权值乘到数据和UE专用参考信号(UE-specific reference signals,UE-RS)上,进行双流数据下发。
在该实施例中,步骤304的具体实现包括以下步骤:
3a,基站根据估计的终端极化类型,选择终端极化类型为±45°双极化终端;
3b,基站根据计算上行信道估计H,基站实际物理天线和CRS端口的映射关系,对±45°双极化终端按照下面方式估计信道状态信息H
已知H=[h1,1 h1,2 ... h1,8]T,其中基站物理天线数是8;且前4个物理天线对应CRS端口1,后4个物理天线对应CRS端口2。元素h1,1是指在当前资源组下基站第1个天线上的信道估计值,根据步骤301中的举例可知在该实施例中将K个上行子载波分成了M个资源组,则该H=[h1,1 h1,2 ... h1,8]T中的元素是一个资源组下每个基站天线对应的信道估计值。
3c,根据±45°双极化的特点,将不同CRS端口信道估计进行元素交换,可以估计完整的上行信道信息HN×2(双流数据的信道估计值);
Figure PCTCN2016098688-appb-000006
3d,根据得到的完整信道状态信息计算双流波束赋形权向量。
通过上述3a~3d的各个步骤只是计算了一个资源组的双流波束赋形权向量,重复上述步骤则可以计算出M个资源组上的双流波束赋形的权值。
实施例三
如图4所示,基于上述方法本发明实施例还提供一种双流波束赋形的装置,该装置包括:
信道估计模块401,用于根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
可选的,该信道估计模块401具体用于将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;将所述信道估计平均值作为每个资源组的信道估计值。
另外,该信道估计模块401具体用于根据终端单天线发送的探测参考信号SRS或解调参考信号DMRS计算上行子载波的信道估计值。
映射关系确定模块402,用于获得基站的物理天线和小区参考信号CRS端口之 间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
估计模块403,用于如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
计算模块404,用于根据所述完整信道估计值计算双流波束赋形权向量;
可选的,该计算模块404具体用于利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
数据处理模块405,用于利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
可选的,在该实施例中,估计模块403具体可以包括:
第一向量生成单元,用于根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 ... h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
映射关系确定单元,用于根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
第二向量生成单元,用于根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
生成单元,用于将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的基站可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。为了实现上述实施例所提供的方案,该基站中可以集成上述一种双流波束赋形的装置所提供的所有功能模块。
本申请实施例中的上述一个或多个技术方案,至少具有如下的技术效果:
本发明所提供的一种双流波束赋形的方法及装置,在终端不支持SRS天线选择发送时,利用天线极化形式和单天线发送的上行信道估计值等先验信息来估计信道状态矩阵,进而用常见权值向量计算方法对发射数据加权后发射。使得终端不支持SRS天线选择性发送的现状下,也可以使用较优的权值向量生成方法,有效的提高了***性能。
本发明所述的方法并不限于具体实施方式中所述的实施例,本领域技术人员根据本发 明的技术方案得出其它的实施方式,同样属于本发明的技术创新范围。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
工业实用性
本发明适用于通信技术领域,用以实现终端在不支持SRS天线选择性发送的现状下,也可以使用较优的权值向量生成方法,有效的提高了***性能。

Claims (11)

  1. 一种双流波束赋形的方法,包括:
    基站根据终端单天线发送的上行参考信号,计算上行子载波的信道估计值;
    获得自身的物理天线和小区参考信号CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
    如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
    根据所述完整信道估计值计算双流波束赋形权向量;
    利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
  2. 如权利要求1所述的方法,其中,计算上行子载波的信道估计值包括:
    将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;
    将所述信道估计平均值作为每个资源组的信道估计值。
  3. 如权利要求2所述的方法,其中,根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值包括:
    根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 … h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
    根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
    根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
    将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。
  4. 如权利要求1~3任一所述的方法,其中,根据所述完整信道估计值计算双流波束赋形权向量包括:
    利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
  5. 如权利要求1~3任一所述的方法,其中,所述上行参考信号包括探测参考信号SRS或解调参考信号DMRS。
  6. 一种双流波束赋形的装置,包括:
    信道估计模块,设置为根据终端单天线发送的上行参考信号,计算上行子载波 的信道估计值;
    映射关系确定模块,设置为获得基站的物理天线和小区参考信号CRS端口之间的映射位图,根据所述映射位图确定所述物理天线和CRS端口的映射关系;
    估计模块,设置为如果根据所述信道估计值和所述映射关系确定所述终端的天线的极化类型为±45°极化,则根据所述信道估计值估计出所述终端的天线轮流发送上行参考信号的完整信道估计值;
    计算模块,设置为根据所述完整信道估计值计算双流波束赋形权向量;
    数据处理模块,设置为利用所述双流波束赋形权向量对下发到所述终端的双流数据进行处理。
  7. 如权利要求6所述的装置,其中,所述信道估计模块设置为将所述上行子载波分为多个资源组,并确定每个资源组对应的信道估计平均值;其中,该信道估计平均值是每个资源组中多个上行子载波对应的信道估计值之和与每个资源组中上行子载波个数的比值;将所述信道估计平均值作为每个资源组的信道估计值。
  8. 如权利要求7所述的装置,其中,所述估计模块包括:
    第一向量生成单元,设置为根据所述终端的天线数量和信道估计值形成第一信道估计向量H=[h1,1 h1,2 … h1,N]T;其中,第一信道估计向量H中的元素h1,N是指在当前资源组下基站第N个天线上的信道估计值,N为基站的物理天线数;
    映射关系确定单元,设置为根据所述映射位图确定所述物理天线和两个CRS端口的映射关系,根据所述映射关系确定所述第一信道估计向量中元素与所述两个CRS端口的对应关系;
    第二向量生成单元,设置为根据±45°极化天线的特性和所述两个CRS端口与所述物理天线的对应关系,对于终端天线极化类型是±45°极化的终端,将所述第一信道估计向量中所述两个CRS端口对应元素的位置关系进行交换形成第二信道估计向量;
    生成单元,设置为将第一信道估计向量和第二信道估计向量组合形成所述完整信道估计值。
  9. 如权利要求6~8任一所述的装置,其中,所述计算模块设置为利用特征值分解或奇异值分解对所述完整信道估计值进行处理得到双流波束赋形权向量。
  10. 如权利要求6~8任一所述的装置,其中,所述信道估计模块设置为根据终端单天线发送的探测参考信号SRS或解调参考信号DMRS计算上行子载波的信道估计值。
  11. 一种基站,包含如权利要求6-10中任一权利要求所述的装置。
PCT/CN2016/098688 2016-01-05 2016-09-12 一种双流波束赋形的方法、装置及基站 WO2017118079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610005910.8A CN106953669B (zh) 2016-01-05 2016-01-05 一种双流波束赋形的方法、装置及基站
CN201610005910.8 2016-01-05

Publications (1)

Publication Number Publication Date
WO2017118079A1 true WO2017118079A1 (zh) 2017-07-13

Family

ID=59273211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098688 WO2017118079A1 (zh) 2016-01-05 2016-09-12 一种双流波束赋形的方法、装置及基站

Country Status (2)

Country Link
CN (1) CN106953669B (zh)
WO (1) WO2017118079A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210392669A1 (en) * 2019-05-06 2021-12-16 Indian Institute Of Technology Hyderabad Method for wireless communication using beamformed physical downlink control channel (pdcch)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392110B (zh) * 2017-08-08 2020-05-26 维沃移动通信有限公司 一种指示上行传输的方法及装置
CN109803414B (zh) * 2017-11-17 2021-10-26 华为技术有限公司 资源分配的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023825A2 (en) * 2007-08-15 2009-02-19 Qualcomm Incorporated Antenna switching and uplink sounding channel measurement
CN101674122A (zh) * 2008-09-11 2010-03-17 大唐移动通信设备有限公司 一种在tdd***中获取上行完整信道矩阵的方法和装置
CN101765125A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 一种在多输入多输出***中发送上行探测信号的方法
CN103457647A (zh) * 2012-06-04 2013-12-18 普天信息技术研究院有限公司 一种双流波束赋形方法及装置
CN105071846A (zh) * 2015-08-11 2015-11-18 北京北方烽火科技有限公司 一种双流预编码矩阵的构造方法及基站

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014031062A1 (en) * 2012-08-21 2014-02-27 Telefonaktiebolaget L M Ericsson (Publ) Beamforming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023825A2 (en) * 2007-08-15 2009-02-19 Qualcomm Incorporated Antenna switching and uplink sounding channel measurement
CN101674122A (zh) * 2008-09-11 2010-03-17 大唐移动通信设备有限公司 一种在tdd***中获取上行完整信道矩阵的方法和装置
CN101765125A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 一种在多输入多输出***中发送上行探测信号的方法
CN103457647A (zh) * 2012-06-04 2013-12-18 普天信息技术研究院有限公司 一种双流波束赋形方法及装置
CN105071846A (zh) * 2015-08-11 2015-11-18 北京北方烽火科技有限公司 一种双流预编码矩阵的构造方法及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210392669A1 (en) * 2019-05-06 2021-12-16 Indian Institute Of Technology Hyderabad Method for wireless communication using beamformed physical downlink control channel (pdcch)
US11902969B2 (en) * 2019-05-06 2024-02-13 Indian Institute Of Technology Hyderabad (Iith) Method for wireless communication using beamformed physical downlink control channel (PDCCH)

Also Published As

Publication number Publication date
CN106953669B (zh) 2020-01-21
CN106953669A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
US10014916B2 (en) 2D active antenna array operation for wireless communication systems
US11996910B2 (en) Doppler codebook-based precoding and CSI reporting for wireless communications systems
US11451274B2 (en) Adaptive downlink multi user multiple input multiple output (MU-MIMO)precoding using uplink signal subspace tracking for active antenna systems AAS
US11632208B2 (en) Channel covariance feedback for enhanced FD-MIMO
US9287958B2 (en) Method and apparatus for processing feedback information in wireless communication system supporting beamforming
EP3646476B1 (en) Precoding in a multi-user multiple-input multiple-output wireless communication system
US9148208B2 (en) Antenna selection codebook for full dimensional MIMO systems
CN113841342B (zh) 使用波束管理的mu-mimo的报告
CN111213325A (zh) 在无线通信***中报告信道状态信息的方法及其装置
WO2018143662A1 (ko) 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 이를 위한 장치
CN103475401A (zh) 一种下行波束赋形方法与装置
WO2013068915A2 (en) Precoding feedback for cross-polarized antennas with magnitude information
WO2022144778A1 (en) Methods for reducing overhead of nr type ii channel state information feedback using angle and delay reciprocity
WO2017118079A1 (zh) 一种双流波束赋形的方法、装置及基站
CN108540190A (zh) 波束赋形方法和装置
WO2023170655A1 (en) Type ii precoder matrix indicator (pmi) enhancement for coherent joint transmission (cjt)
EP3633873B1 (en) Method for transmitting feedback information in wireless communication system and apparatus therefor
WO2022267853A1 (zh) 通道相位校正的方法和相关装置
CN103188006A (zh) 一种下行协作多点传输方法和***
EP3662586B1 (en) Improved block-diagnolization based beamforming
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
CN109120321B (zh) 一种波束赋形的方法、装置、基站及计算机可读存储介质
CN107888261B (zh) 一种信道矩阵确定方法及相关设备
US20240007155A1 (en) Beamforming setting selection
Esswie et al. Directional spatial channel estimation for massive FD-MIMO in next generation 5G networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883209

Country of ref document: EP

Kind code of ref document: A1