WO2017118048A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2017118048A1
WO2017118048A1 PCT/CN2016/096729 CN2016096729W WO2017118048A1 WO 2017118048 A1 WO2017118048 A1 WO 2017118048A1 CN 2016096729 W CN2016096729 W CN 2016096729W WO 2017118048 A1 WO2017118048 A1 WO 2017118048A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
display panel
crystal display
display device
Prior art date
Application number
PCT/CN2016/096729
Other languages
English (en)
French (fr)
Inventor
牛小辰
董学
陈小川
赵文卿
高健
卢鹏程
杨明
王倩
许睿
王磊
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/516,800 priority Critical patent/US10488702B2/en
Publication of WO2017118048A1 publication Critical patent/WO2017118048A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • Embodiments of the present invention relate to a display device and a method of driving the same.
  • 3D display technology has attracted much attention, which can make the picture stereoscopic.
  • the principle of 3D display is that the left eye and the right eye of the viewer respectively receive images with slight differences, and the two images are integrated through the comprehensive analysis of the viewer's brain, so that the viewer perceives the depth of the object presented by the image, thereby generating a three-dimensional sense.
  • the known naked-eye 3D display device includes: a liquid crystal display panel 100 and a slit grating 110 on the light-emitting side of the liquid crystal display panel 100; wherein the liquid crystal display panel 100 includes a plurality of first display units 101 and more a second display unit 102, and the first display unit 101 displays a left eye image L, and the second display unit 102 displays a right eye image R; the slit grating 110 includes a light transmitting area 111 and a light shielding area 112, and the slit grating 110 has a minute
  • the effect is such that the left eye of the viewer sees only the left eye image L, and the right eye only sees the right eye image R, thereby generating a three-dimensional stereoscopic effect.
  • the above 3D display device needs to realize 3D display by means of a slit grating, which increases the overall thickness of the 3D display device, and the color filter function of the color filter layer in the liquid crystal display panel consumes at least 60% of the light energy, and the backlight is improved by
  • the brightness of the module satisfies the brightness requirements of the 3D display device, which undoubtedly increases the power consumption of the 3D display device.
  • embodiments of the present invention provide a display device and a driving method thereof that can thin the overall thickness of a 3D display device and increase its light transmittance.
  • an embodiment of the present invention provides a display device including: a liquid crystal display panel and a backlight module located on a light incident side of the liquid crystal display panel;
  • the backlight module is provided with a diffraction grating structure on a surface facing the liquid crystal display panel, and the diffraction grating structure is configured to cause light emitted by the backlight module to be incident on the liquid crystal display panel in a three-dimensional display mode.
  • the backlight module includes: a light guide plate and a first light source located at a first side of the light guide plate;
  • the diffraction grating structure is located on a surface of the light guide plate facing the liquid crystal display panel;
  • the first side surface of the light guide plate is a sloped surface configured to cause light emitted by the first light source to be reflected multiple times in the light guide plate and emitted from the diffraction grating structure.
  • the liquid crystal display panel includes: a plurality of gate lines, a plurality of data lines, and a plurality of sub-pixels arranged in a matrix; wherein each of the two adjacent gate lines and each phase Two adjacent data lines of the adjacent one of the sub-pixels;
  • Each of the bright stripe patterns corresponds to a column of the sub-pixels
  • each of the dark stripe patterns corresponds to a column of the sub-pixels.
  • the backlight module further includes: a second light source located on the second side of the light guide plate; the second side is opposite to the first side;
  • the second side surface of the light guide plate is a sloped surface configured to cause light emitted by the second light source to be reflected multiple times in the light guide plate and emitted from the diffraction grating structure in a two-dimensional display mode, whereby, a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each of the dark stripe patterns.
  • the inclination angle of the first side is different from the inclination angle of the second side.
  • the backlight module further includes: a reflective film on a side of the light guide plate facing away from the liquid crystal display panel.
  • the backlight module further includes: a scattering film on a side of the light guide plate facing the liquid crystal display panel.
  • the first light source and the second light source are polarized light sources;
  • the liquid crystal display panel further includes: an opposite array substrate and an opposite substrate, and the array substrate and the array substrate a liquid crystal layer between the opposite substrates;
  • the side of the array substrate facing away from the opposite substrate is a light exiting side
  • the liquid crystal display panel further includes: a first polarizer located on a side of the array substrate facing away from the opposite substrate; or
  • the side of the opposite substrate facing away from the array substrate is a light exiting side
  • the liquid crystal display panel further includes: a first polarizer located on a side of the opposite substrate facing away from the array substrate.
  • the first light source and the second light source are unpolarized light sources
  • the liquid crystal display panel further includes: an opposite array substrate and an opposite substrate, a liquid crystal layer between the array substrate and the opposite substrate, located on a side of the opposite substrate facing away from the array substrate a second polarizer, and a third polarizer on a side of the array substrate facing away from the opposite substrate.
  • the diffraction grating structure is a sinusoidal phase grating structure.
  • an embodiment of the present invention further provides a driving method of a display device, including:
  • the first light source is turned on, and the light emitted by the first light source is incident on the liquid crystal display panel through the diffraction grating to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, arranged in order.
  • the at least three bright stripe patterns are a group, and the colors of each of the bright stripe patterns included in each group are different from each other.
  • the foregoing driving method further includes:
  • the first light source and the second light source are in an on state, and the light emitted by the first light source is incident on the liquid crystal display panel through the diffraction grating to form a light and dark phase and a lateral direction.
  • a stripe pattern arranged in a longitudinal direction and a set of at least three bright stripe patterns arranged in sequence, and each of the bright stripe patterns included in each group has a color different from each other; and light emitted by the second light source
  • the liquid crystal display panel After passing through the diffraction grating, the liquid crystal display panel is incident, and a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each of the dark stripe patterns.
  • the display device includes a liquid crystal display panel and a backlight module on the light incident side of the liquid crystal display panel.
  • the backlight module is disposed on the surface of the liquid crystal display panel with a diffraction grating structure.
  • the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in which at least three bright stripe patterns are sequentially arranged, and each group contains The colors of the respective stripe patterns are different from each other; thus, by using the diffraction grating structure on the surface of the backlight module instead of the color film layer in the liquid crystal display panel and the slit grating on the light exit side of the liquid crystal display panel, the display device can be thinned not only The overall thickness and the loss of light due to the color film layer of the color resist material can be avoided, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
  • FIG. 1 is a schematic structural view of a known three-dimensional display device
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a display device in a two-dimensional display mode or a three-dimensional display mode according to an embodiment of the present invention
  • FIG. 4a is a schematic structural diagram of a diffraction grating structure in a display device according to an embodiment of the present invention
  • Figure 4b is a cross-sectional view of Figure 4a along the AA direction;
  • FIG. 5 and FIG. 6 are respectively a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 7 is a stripe pattern formed by light emitted by a first light source and a second light source in a display device according to an embodiment of the present invention.
  • a display device includes: a liquid crystal display panel 1 and a backlight module 2 on the light incident side of the liquid crystal display panel 1; and a backlight module 2 facing the surface of the liquid crystal display panel 1
  • the diffraction grating structure 20 is configured to form a light-dark, laterally-arranged and longitudinally extending stripe pattern after the light emitted by the backlight module 2 is incident on the liquid crystal display panel 1 in the three-dimensional display mode;
  • the at least three bright stripe patterns arranged in sequence are a group, and the colors of the respective stripe patterns included in each group are different from each other.
  • three bright stripe patterns are sequentially arranged in a group (shown by a broken line frame as shown in FIG. 3), and the color of each of the three bright stripe patterns included in each group is red. (R1), green (G1), and blue (B1).
  • the light emitted from the diffraction grating forms a light and dark stripe pattern, and is irradiated to the sub-pixel 10 in the liquid crystal display panel, so that the left eye of the viewer can only see the left eye image, and the right eye only sees the right eye image, the left eye.
  • the image is slightly different from the right eye image to achieve a 3D display effect.
  • the four bright stripe patterns arranged in sequence may be grouped, and the four bright stripe patterns included in each group may have different colors, for example, red, green, blue, and yellow, respectively.
  • the embodiments of the present invention are not limited thereto, and will not be described herein.
  • the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally arranged and longitudinally extending stripe pattern, wherein the bright stripe pattern is equivalent to a color backlight.
  • the dark stripe pattern is equivalent to the slit grating, so that the diffraction grating structure on the surface of the backlight module can be used instead of the color film layer in the liquid crystal display panel and the slit grating on the light exit side of the liquid crystal display panel, which can not only thin the display device
  • the overall thickness and the loss of light due to the color film layer of the color resist material can be avoided, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
  • the diffraction grating structure may be a sinusoidal phase grating structure, which can modulate the exit angle of the light and cause the light to be dispersed.
  • the diffraction grating structure on the surface of the backlight module in the above display device provided by the embodiment of the present invention may be any other known structure capable of generating color stripes between light and dark, which is not limited herein.
  • the diffraction grating structure can be formed on the surface of the backlight module by a photolithography process.
  • FIG. 4b is a cross-sectional view of FIG. 4a along the AA direction
  • the sinusoidal phase grating structure has an inclination angle of ⁇ G , a grating constant of ⁇ , a grating length of L, a grating thickness of d, and a sinusoidal variation.
  • the refractive index of the grating is ⁇ n (or, it can be assumed that the thickness d of the sinusoidal phase grating structure is fixed, and the refractive index ⁇ n is sinusoidal), and the complex amplitude projection coefficient is
  • J q represents the q-order first-order Bessel function
  • r q ( ⁇ q , ⁇ q , ⁇ q ) describes the direction cosine of the outgoing light
  • the cosine of the outgoing light becomes ( ⁇ q , ⁇ q , ⁇ q ), the direction cosine of the outgoing light and the cosine of the direction of the incident light have the following relationship:
  • the exit angle of the light is only related to the tilt angle ⁇ G of the grating, the grating constant ⁇ , and the wavelength ⁇ of the outgoing light.
  • the overall thickness can also avoid light loss caused by the color film layer of the color resist material, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.
  • the backlight module 2 may include a light guide plate 21 and a first light source 22 located at a first side of the light guide plate 21; 5 is not shown) is located on the surface of the light guide plate 21 facing the liquid crystal display panel 1; the first side surface of the light guide plate 21 is a sloped surface, and is arranged such that the light emitted by the first light source 22 is reflected multiple times in the light guide plate 21 and is diffracted.
  • the grating structure is emitted (as shown by the solid line shown in FIG.
  • the light emitted by the first light source 22 is reflected to the side of the light guide plate 21 provided with the diffraction grating structure, and can be emitted from the diffraction grating structure, and the first
  • the light emitted by the light source 22 is reflected to the other surface of the light guide plate 21, it is reflected back to the surface on which the diffraction grating structure is disposed and is emitted from the diffraction grating structure; when the light emitted by the first light source 22 is white light, the light emitted from the diffraction grating structure is emitted.
  • the light forms a light-dark, laterally-arranged, and longitudinally extending stripe pattern, in a group of, for example, three bright stripe patterns, and the three bright stripe patterns included in each group are respectively red (R) Green (G), blue (B).
  • the liquid crystal display panel may include a plurality of gate lines, a plurality of data lines, and a plurality of sub-pixels arranged in a matrix; wherein each adjacent two gate lines and Each adjacent two data lines defines one sub-pixel.
  • each bright stripe pattern may correspond to a column of sub-pixels
  • each dark stripe pattern may correspond to a column of sub-pixels.
  • each of the bright stripe patterns may correspond to a plurality of columns of sub-pixels
  • each of the dark stripe patterns may correspond to a plurality of columns of sub-pixels, which is not limited herein.
  • the parameters of the diffraction grating structure may be set according to actual needs, and the number of columns of sub-pixels corresponding to each of the bright stripe patterns and each dark stripe pattern may be adjusted.
  • the The light emitted by a light source is emitted from the diffraction grating to form a light and dark stripe pattern and is irradiated onto the liquid crystal display panel, so that the left eye of the viewer can only see the left eye image, and the right eye only sees the right eye image;
  • the left eye image and the right eye image have slight differences, so that the viewer perceives the depth of the object to generate a three-dimensional stereoscopic effect, and realizes a 3D display effect; in the two-dimensional display mode, the left eye image is the same as the right eye image. Achieve 2D display effects.
  • the backlight module 2 may further include: a second light source 23 located on the second side of the light guide plate 21; Opposite to the first side; the second side of the light guide plate 21 is a sloped surface, and the light emitted by the second light source 23 is reflected multiple times in the light guide plate 21 and is emitted from the diffraction grating structure (not shown in FIG.
  • FIG. 6 As shown by the dotted line, for example, the light emitted by the second light source 23 is reflected to the side of the light guide plate 21 where the diffraction grating structure is disposed, and can be emitted from the diffraction grating structure, and the light emitted by the second light source 23 is reflected to the guide. The other side of the light plate 21 is reflected back to the side provided with the diffraction grating structure and emerges from the diffraction grating structure; in the two-dimensional display mode, the first light source 22 and the second light source 23 are both in an open state, and the first light source 22 is emitted.
  • a light-dark stripe pattern (dark, R1, dark, G1, dark, B1, dark) as shown in FIG. 3 is formed, and the light emitted by the second light source 23 is emitted from the diffraction grating.
  • Each of the striped patterns shown in 3 A bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at the stripe pattern, thereby obtaining a stripe pattern as shown in FIG. 7 (G2, R1, B2, G1, R2, B1). G2); each of the stripe patterns in the stripe pattern shown in FIG.
  • the left eye and the right eye of the viewer can respectively receive the images formed by all the sub-pixels in the liquid crystal display panel in the two-dimensional display mode, so that the above-mentioned embodiments provided by the embodiments of the present invention can be
  • the resolution of the display device is doubled in the two-dimensional display mode.
  • the inclination angle of the first side surface and the inclination angle of the second side surface may be set differently, so that the first light source 22 can be emitted.
  • the angle at which the light is incident on the light guide plate 21 is different from the angle at which the light emitted from the second light source 23 enters the light guide plate 21, so that the position of the stripe pattern formed by the light emitted from the first light source 22 from the diffraction grating and the second light source 23 a stripe pattern formed by the emitted light emerging from the diffraction grating
  • the positions are different to obtain a stripe pattern as shown in FIG.
  • the backlight module 2 may further include: a reflective film 24 located on a side of the light guide plate 21 facing away from the liquid crystal display panel 1;
  • a reflective film 24 located on a side of the light guide plate 21 facing away from the liquid crystal display panel 1;
  • the light emitted by the second light source 23 is irradiated to the side of the light guide plate 21 where the diffraction grating structure is not disposed, it is totally reflected back to the side on which the diffraction grating structure is disposed and is emitted from the diffraction grating structure, thereby improving The light utilization rate of the second light source 23.
  • the backlight module 2 may further include: the light guide plate 21 facing the liquid crystal display panel.
  • the scattering film 25 on one side; the light emitted from the diffraction grating structure can be uniformly propagated in various directions after passing through the scattering film 25.
  • the first light source and the second light source may be polarized light sources; or the first light source and the second light source may be non-polarized light sources, which are not limited herein.
  • the first light source and the second light source in the display device are both polarized light sources.
  • the liquid crystal display panel may further include: an opposite array substrate 11 and an opposite direction.
  • the side of the array substrate 11 facing away from the array substrate is disposed on the side of the array substrate facing away from the array substrate, that is, the backlight module is located on the side of the opposite substrate facing away from the array substrate.
  • the backlight module is located on the side of the opposite substrate facing away from the array substrate.
  • the liquid crystal display panel may further include: a first polarizer 14 on a side of the opposite substrate 12 facing away from the array substrate 11,
  • a polarizer on the side of the array substrate 11 facing away from the counter substrate 12, which not only can reduce the overall thickness of the display device, but can further improve the light utilization efficiency of the backlight module 2.
  • the liquid crystal display panel may further include: a first polarizer located on a side of the array substrate facing away from the opposite substrate, so that it is not necessary to provide a polarizer on a side of the opposite substrate facing away from the array substrate, thereby not only reducing the display device
  • the overall thickness can further improve the light utilization efficiency of the backlight module.
  • the first light source and the second light source in the display device are both unpolarized light sources.
  • the liquid crystal display panel may further include: an array substrate 11 opposite to each other and The opposite substrate 12, the liquid crystal layer 13 between the array substrate 11 and the opposite substrate 12, the second polarizer 15 on the side of the opposite substrate 12 facing away from the array substrate 11, and the array substrate 11 facing away from the opposite substrate 12 The third polarizer 16 on the side.
  • the side of the opposite substrate 12 facing away from the array substrate 11 may be disposed as a light exiting side, that is, the backlight module 2 is located on a side of the array substrate 11 facing away from the opposite substrate 12 ;
  • the side of the array substrate facing away from the array substrate may be disposed as a light-emitting side, that is, the backlight module is located on a side of the opposite substrate facing away from the array substrate, which is not limited herein.
  • the embodiment of the present invention further provides a driving method for a display device, which includes: in a three-dimensional display mode, the first light source is turned on, and the light emitted by the first light source is The diffraction grating is then incident on the liquid crystal display panel to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in which at least three distinct stripe patterns are sequentially arranged, and the color of each bright stripe pattern included in each group Different from each other.
  • the light emitted by the first light source is emitted from the diffraction grating to form a light and dark stripe pattern and is irradiated onto the liquid crystal display panel, so that the left eye of the viewer can only see the left eye.
  • the right eye only sees the right eye image;
  • the left eye image and the right eye image have slight differences, so that the viewer perceives the depth of the object to generate a three-dimensional stereoscopic effect, and realizes a 3D display effect;
  • the left eye image is the same as the right eye image, achieving a 2D display effect.
  • the driving method provided by the embodiment of the present invention may further include: in the two-dimensional display mode, the first light source and the second light source are in an on state, and the light emitted by the first light source is incident on the liquid crystal after passing through the diffraction grating.
  • a light-dark, laterally-arranged and longitudinally extending stripe pattern is formed on the display panel, and the at least three bright stripe patterns are sequentially arranged in a group, and each of the bright stripe patterns included in each group has different colors;
  • Light The light emitted from the source is incident on the liquid crystal display panel through the diffraction grating, and a bright stripe pattern having a color different from that of the two bright stripe patterns adjacent to the dark stripe pattern is formed at each dark stripe pattern; thus, in two dimensions In the display mode, the viewer's left and right eyes can respectively receive images formed by all sub-pixels in the liquid crystal display panel, thereby doubling the resolution in the two-dimensional display mode.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, which are not limited herein.
  • the embodiment of the present invention provides a display device including a liquid crystal display panel and a backlight module on the light incident side of the liquid crystal display panel, and the backlight module faces the surface of the liquid crystal display panel.
  • a diffraction grating structure There is a diffraction grating structure.
  • the light emitted by the backlight module is incident on the liquid crystal display panel through the diffraction grating structure to form a light-dark, laterally-arranged and longitudinally extending stripe pattern, in order to arrange at least three
  • the stripe pattern is a group, and the color of each bright stripe pattern included in each group is different from each other, so that the diffraction grating structure on the surface of the backlight module is used instead of the color film layer in the liquid crystal display panel and the narrow side of the light emitting side of the liquid crystal display panel.
  • the slit grating can not only reduce the overall thickness of the display device, but also avoid light loss caused by the color film layer of the color resist material, thereby improving the light transmittance of the display device and correspondingly reducing the power consumption of the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种显示装置及其驱动方法。显示装置包括液晶显示面板(1)和位于液晶显示面板(1)的入光侧的背光模组(2),背光模组(2)面向液晶显示面板(1)的表面设置有衍射光栅结构(20),在三维显示模式下,背光模组(2)发出的光经衍射光栅结构(20)入射到液晶显示面板(1)后可以形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,每组包含的明条纹图案的颜色互不相同。该显示装置不仅可以减薄显示装置的整体厚度,而且可以提高显示装置的光透过率,相应地降低显示装置的功耗。

Description

显示装置及其驱动方法 技术领域
本发明的实施例涉及一种显示装置及其驱动方法。
背景技术
目前,三维(Three-Dimensional,3D)显示技术已经备受关注,它可以使画面变得立体逼真。3D显示的原理是观看者的左眼和右眼分别接收具有细微差异的图像,两幅图像经过观看者大脑的综合分析后整合,使观看者感知画面呈现物体的深度,从而产生三维立体感。
已知的裸眼3D显示装置如图1所示,包括:液晶显示面板100以及位于液晶显示面板100的出光侧的狭缝光栅110;其中,液晶显示面板100包括多个第一显示单元101和多个第二显示单元102,且第一显示单元101显示左眼图像L、第二显示单元102显示右眼图像R;狭缝光栅110包括透光区111和遮光区112,狭缝光栅110具有分像作用,使观看者的左眼只看到左眼图像L,右眼只看到右眼图像R,从而产生三维立体感。
上述3D显示装置需要借助狭缝光栅来实现3D显示,会增加3D显示装置的整体厚度,并且,液晶显示面板中彩膜层的色阻滤光原理会损耗至少60%的光能,通过提高背光模组的亮度来满足3D显示装置的亮度要求,这无疑会增加3D显示装置的功耗。
发明内容
有鉴于此,本发明的实施例提供了一种显示装置及其驱动方法,其可以减薄3D显示装置的整体厚度并提高其光透过率。
上述目的通过以下技术方案实现。
一方面,本发明的实施例提供了一种显示装置,包括:液晶显示面板和位于所述液晶显示面板的入光侧的背光模组;
所述背光模组在面向所述液晶显示面板的表面设置有衍射光栅结构,所述衍射光栅结构配置以在三维显示模式下、使所述背光模组发出的光入射到所述液晶显示面板后形成明暗相间的、横向排列并且纵向延伸的条纹图案; 其中,以依次排列的至少三个明条纹图案为一组,并且每组包含的各所述明条纹图案的颜色互不相同。
在一种可能的实现方式中,所述背光模组包括:导光板和位于所述导光板的第一侧面的第一光源;
所述衍射光栅结构位于所述导光板面向所述液晶显示面板的表面;
所述导光板的所述第一侧面为斜面,配置以使所述第一光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射。
在一种可能的实现方式中,所述液晶显示面板包括:多条栅线、多条数据线以及呈矩阵排列的多个亚像素;其中,每相邻的两条所述栅线和每相邻的两条所述数据线限定一个所述亚像素;
每个所述明条纹图案对应一列所述亚像素,每个暗条纹图案对应一列所述亚像素。
在一种可能的实现方式中,所述背光模组还包括:位于所述导光板的第二侧面的第二光源;所述第二侧面与所述第一侧面相对;
所述导光板的所述第二侧面为斜面,配置以在二维显示模式下、使所述第二光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射,从而在每个所述暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
在一种可能的实现方式中,所述第一侧面的倾斜角度与所述第二侧面的倾斜角度不同。
在一种可能的实现方式中,所述背光模组还包括:位于所述导光板背离所述液晶显示面板一侧的反射膜。
在一种可能的实现方式中,所述背光模组还包括:位于所述导光板面向所述液晶显示面板一侧的散射膜。
在一种可能的实现方式中,所述第一光源和所述第二光源为偏振光源;所述液晶显示面板还包括:相对而置的阵列基板和对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;
所述阵列基板背离所述对向基板的一侧为出光侧,所述液晶显示面板还包括:位于所述阵列基板背离所述对向基板一侧的第一偏光片;或者,
所述对向基板背离所述阵列基板的一侧为出光侧,所述液晶显示面板还包括:位于所述对向基板背离所述阵列基板一侧的第一偏光片。
在一种可能的实现方式中,所述第一光源和所述第二光源为非偏振光源;
所述液晶显示面板还包括:相对而置的阵列基板和对向基板,位于所述阵列基板与所述对向基板之间的液晶层,位于所述对向基板背离所述阵列基板一侧的第二偏光片,以及位于所述阵列基板背离所述对向基板一侧的第三偏光片。
在一种可能的实现方式中,所述衍射光栅结构为正弦相位光栅结构。
另一方面,本发明的实施例还提供了一种显示装置的驱动方法,包括:
在三维显示模式下,将第一光源处于开启状态,使所述第一光源发出的光经衍射光栅后入射到液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的各所述明条纹图案的颜色互不相同。
在一种可能的实现方式中,上述驱动方法还包括:
在二维显示模式下,将所述第一光源和第二光源处于开启状态,使所述第一光源发出的光经所述衍射光栅后入射到所述液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的各所述明条纹图案的颜色互不相同;以及,使所述第二光源发出的光经所述衍射光栅后入射到所述液晶显示面板,在每个暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
根据本发明实施例的技术方案,显示装置包括液晶显示面板和位于液晶显示面板的入光侧的背光模组,背光模组面向液晶显示面板的表面设置有衍射光栅结构,在三维显示模式下,背光模组发出的光经衍射光栅结构入射到液晶显示面板后可以形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的各明条纹图案的颜色互不相同;这样,通过利用背光模组表面的衍射光栅结构代替液晶显示面板中的彩膜层以及液晶显示面板的出光侧的狭缝光栅,不仅可以减薄显示装置的整体厚度,而且可以避免由于色阻材料的彩膜层所导致的光损失,从而可以提高显示装置的光透过率,相应地降低显示装置的功耗。
附图说明
以下将结合附图对本发明的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本发明,其中:
图1为已知的三维显示装置的结构示意图;
图2为本发明实施例提供的显示装置的结构示意图之一;
图3为本发明实施例提供的显示装置在二维显示模式或三维显示模式下的示意图;
图4a为本发明实施例提供的显示装置中的衍射光栅结构的结构示意图;
图4b为图4a沿AA方向的剖视图;
图5和图6分别为本发明实施例提供的显示装置的结构示意图之二;
图7为本发明实施例提供的显示装置中的第一光源和第二光源发出的光形成的条纹图案。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
本发明实施例提供的一种显示装置如图2所示,包括:液晶显示面板1和位于液晶显示面板1的入光侧的背光模组2;背光模组2面向液晶显示面板1的表面设置有衍射光栅结构20,衍射光栅结构20配置以在三维显示模式下、使背光模组2发出的光入射到液晶显示面板1后形成明暗相间的、横向排列并且纵向延伸的条纹图案;其中,以依次排列的至少三个明条纹图案为一组,并且每组包含的各明条纹图案的颜色互不相同。
在一个示例中,如图3所示,以依次排列的三个明条纹图案为一组(如图3所示的虚线框所示),每组包含的三个明条纹图案的颜色分别为红色(R1)、绿色(G1)和蓝色(B1)。从衍射光栅出射的光形成明暗相间的条纹图案,照射到液晶显示面板中的亚像素10处,可以使观看者的左眼只看到左眼图像,右眼只看到右眼图像,左眼图像与右眼图像具有细微差异,从而实现3D显示效果。当然,也可以以依次排列的四个明条纹图案为一组,并且每组包含的四个明条纹图案的颜色各不相同,例如可分别为红色、绿色、蓝色和黄色。本发明的实施例不限于此,并且在此不作赘述。
本发明实施例提供的上述显示装置中,背光模组发出的光经衍射光栅结构入射到液晶显示面板后形成明暗相间的、横向排列并且纵向延伸的条纹图案,其中,明条纹图案相当于彩色背光,暗条纹图案相当于狭缝光栅,这样,可以利用背光模组表面的衍射光栅结构代替液晶显示面板中的彩膜层以及液晶显示面板的出光侧的狭缝光栅,不仅可以减薄显示装置的整体厚度,而且可以避免由于色阻材料的彩膜层所导致的光损失,从而可以提高显示装置的光透过率,相应地降低显示装置的功耗。
在本发明实施例提供的上述显示装置的一个示例中,衍射光栅结构可以为正弦相位光栅结构,其可以调制光的出射角度并使光发生色散。当然,本发明实施例提供的上述显示装置中背光模组表面的衍射光栅结构还可以为能够产生明暗相间的彩色条纹的其他任意已知结构,在此不做限定。在一个示例中,可以通过光刻工艺在背光模组的表面形成该衍射光栅结构。
下面对正弦相位光栅结构的具体结构和原理进行详细说明。如图4a和图4b所示,其中图4b为图4a沿AA方向的剖视图,正弦相位光栅结构的倾斜角度为θG,光栅常数为Λ,光栅长度为L,光栅厚度为d并且呈正弦变化,光栅的折射率为Δn(或者,也可以假设正弦相位光栅结构的厚度d固定,而折射率Δn呈正弦变化),复振幅投射系数为
Figure PCTCN2016096729-appb-000001
其中,Jq代表q阶第一类贝塞尔函数,u=1/Λ代表光栅的空间频率,rq=(αqqq)描述出射光的方向余弦,出射光的强度由v=2πΔnd/λ进行调制,其中,λ为出射光的波长。由此可见,正弦相位光栅结构能够调制入射光的相位,例如,方向余弦为(α,β,γ)的入射光经过正弦相位光栅结构后,出射光的方向余弦变为(αqqq),出射光的方向余弦与入射光的方向余弦之间具有如下关系:
Figure PCTCN2016096729-appb-000002
由此可知,光的出射角度只与光栅的倾斜角度θG、光栅常数Λ以及出射光的波长λ相关,通过合理地设置正弦相位光栅结构的参数,可以使经过正弦相位光栅结构后形成的衍射条纹为如图3所示的效果,由此实现利用背光模组表面的衍射光栅结构代替液晶显示面板中的彩膜层以及液晶显示面板的出光侧的狭缝光栅,这不仅可以减薄显示装置的整体厚度,而且可以避免由于色阻材料的彩膜层所导致的光损失,从而可以提高显示装置的光透过率,相应地降低显示装置的功耗。
在本发明实施例提供的上述显示装置的一个示例中,如图5所示,背光模组2可以包括导光板21和位于导光板21的第一侧面的第一光源22;衍射光栅结构(图5中未示出)位于导光板21面向液晶显示面板1的表面;导光板21的第一侧面为斜面,配置以使第一光源22发出的光在导光板21内发生多次反射并从衍射光栅结构出射(如图5所示的实线所示);例如,第一光源22发出的光被反射到导光板21的设置有衍射光栅结构的一面时可以从衍射光栅结构出射,而第一光源22发出的光被反射到导光板21的另一面时会被反射回设置有衍射光栅结构的一面并从衍射光栅结构出射;第一光源22发出的光为白光,则从衍射光栅结构出射的光形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的例如三个明条纹图案为一组,并且每组包含的三个明条纹图案的颜色分别为红色(R)、绿色(G)、蓝色(B)。
在本发明实施例提供的上述显示装置的一个示例中,液晶显示面板可以包括多条栅线、多条数据线和呈矩阵排列的多个亚像素;其中,每相邻的两条栅线和每相邻的两条数据线限定一个亚像素。例如,每个明条纹图案可以对应一列亚像素,每个暗条纹图案可以对应一列亚像素。又例如,每个明条纹图案可以对应多列亚像素,每个暗条纹图案也可以对应多列亚像素,在此不做限定。可以根据实际需要设置衍射光栅结构的参数,调整每个明条纹图案与每个暗条纹图案对应的亚像素的列数。
在本发明实施例提供的上述显示装置的示例性操作中,背光模组中的第 一光源发出的光从衍射光栅出射后形成明暗相间的条纹图案并且照射到液晶显示面板上,可以使观看者的左眼只看到左眼图像,右眼只看到右眼图像;在三维显示模式下,左眼图像与右眼图像具有细微差异,使观看者感知画面呈现物体的深度而产生三维立体感,实现3D显示效果;在二维显示模式下,左眼图像与右眼图像相同,实现2D显示效果。
值得注意的是,本发明实施例提供的上述显示装置在二维显示模式下,观看者的左眼和右眼分别接收由液晶显示面板中一半的亚像素形成的图像,因此,相应地,分辨率损失了一半。基于此,在本发明实施例提供的上述显示装置的一个示例中中,如图6所示,背光模组2还可以包括:位于导光板21的第二侧面的第二光源23;第二侧面与第一侧面相对;导光板21的第二侧面为斜面,第二光源23发出的光在导光板21内发生多次反射并从衍射光栅结构(图6中未示出)出射(如图6所示的虚线所示),例如,第二光源23发出的光被反射到导光板21设置有衍射光栅结构的一面时可以从衍射光栅结构出射,而第二光源23发出的光被反射到导光板21的另一面时会被反射回设置有衍射光栅结构的一面并从衍射光栅结构出射;在二维显示模式下,第一光源22和第二光源23均处于开启状态,第一光源22发出的光从衍射光栅出射后形成如图3所示的明暗相间的条纹图案(暗、R1、暗、G1、暗、B1、暗),第二光源23发出的光从衍射光栅出射后在如图3所示的条纹图案中的每个暗条纹图案处形成颜色和与该暗条纹图案相邻的两个明条纹图案的颜色不同的明条纹图案,从而得到如图7所示的条纹图案(G2、R1、B2、G1、R2、B1、G2);如图7所示的条纹图案中的每个明条纹图案与液晶显示面板中的一列亚像素相对应,并且如图7所示的整个条纹图案相当于彩色背光。本发明实施例提供的上述显示装置在二维显示模式下,观看者的左眼和右眼可以分别接收由液晶显示面板中全部的亚像素形成的图像,从而可以使本发明实施例提供的上述显示装置在二维显示模式下的分辨率提高一倍。
在本发明实施例提供的上述显示装置的一个示例中,如图6所示,可以将第一侧面的倾斜角度与第二侧面的倾斜角度设置为不同,这样,可以使第一光源22发出的光射入导光板21的角度与第二光源23发出的光射入导光板21的角度不同,从而使第一光源22发出的光从衍射光栅出射后形成的条纹图案的位置与第二光源23发出的光从衍射光栅出射后形成的条纹图案的 位置不同,以得到如图7所示的条纹图案。
在本发明实施例提供的上述显示装置的一个示例中,如图5和图6所示,背光模组2还可以包括:位于导光板21背离液晶显示面板1一侧的反射膜24;这样,第一光源22发出的光照射到导光板21中未设置衍射光栅结构的一面时,会被全部反射回设置有衍射光栅结构的一面并从衍射光栅结构出射,从而可以提高第一光源22的光利用率;同理,第二光源23发出的光照射到导光板21中未设置衍射光栅结构的一面时,会被全部反射回设置有衍射光栅结构的一面并从衍射光栅结构出射,从而可以提高第二光源23的光利用率。
值得注意的是,在本发明实施例提供的上述显示装置中,由于第一光源发出的光在导光板内发生多次反射,因此,从衍射光栅结构出射的光的出射角度一致,也就是说,第一光源发出的光从衍射光栅结构出射后只沿某一方向传播,这样,会使本发明实施例提供的上述显示装置的视角较窄。基于此,为了实现宽视角显示,在本发明实施例提供的上述显示装置的一个示例中中,如图5和图6所示,背光模组2还可以包括:位于导光板21面向液晶显示面板1一侧的散射膜25;从衍射光栅结构出射的光经散射膜25后可以沿各个方向均匀传播。
在本发明实施例提供的上述显示装置第一个示例中,第一光源和第二光源可以为偏振光源;或者,第一光源和第二光源也可以为非偏振光源,在此不做限定。
在一个示例中,上述显示装置中的第一光源和第二光源均为偏振光源,在此情况下,如图5所示,液晶显示面板还可以包括:相对而置的阵列基板11和对向基板12,以及位于阵列基板11与对向基板12之间的液晶层13;如图5所示,可以将对向基板12背离阵列基板11的一侧设置为出光侧,即:背光模组2位于阵列基板11背离对向基板12的一侧,或者,也可以将阵列基板背离对向基板的一侧设置为出光侧,即:背光模组位于对向基板背离阵列基板的一侧,在此不做限定。例如,如图5所示,在对向基板12背离阵列基板11的一侧为出光侧时,液晶显示面板还可以包括:位于对向基板12背离阵列基板11一侧的第一偏光片14,这样,无需在阵列基板11背离对向基板12的一侧设置偏光片,不仅可以降低显示装置的整体厚度,还可以进一步地提高背光模组2的光利用率。又例如,在阵列基板背离对向基板的一 侧为出光侧时,液晶显示面板还可以包括:位于阵列基板背离对向基板一侧的第一偏光片,这样,无需在对向基板背离阵列基板的一侧设置偏光片,不仅可以降低显示装置的整体厚度,还可以进一步地提高背光模组的光利用率。
在另一示例中,上述显示装置中的第一光源和第二光源均为非偏振光源,在此情况下,如图6所示,液晶显示面板还可以包括:相对而置的阵列基板11和对向基板12,位于阵列基板11与对向基板12之间的液晶层13,位于对向基板12背离阵列基板11一侧的第二偏光片15,以及位于阵列基板11背离对向基板12一侧的第三偏光片16。需要说明的是,如图6所示,可以将对向基板12背离阵列基板11的一侧设置为出光侧,即:背光模组2位于阵列基板11背离对向基板12的一侧;或者,也可以将阵列基板背离对向基板的一侧设置为出光侧,即:背光模组位于对向基板背离阵列基板的一侧,在此不做限定。
针对本发明实施例提供的上述显示装置,本发明实施例还提供了一种显示装置的驱动方法,包括:在三维显示模式下,将第一光源处于开启状态,使第一光源发出的光经衍射光栅后入射到液晶显示面板上,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个各明条纹图案为一组,并且每组包含的各明条纹图案的颜色互不相同。
本发明实施例提供的上述显示装置的驱动方法,第一光源发出的光从衍射光栅出射后形成明暗相间的条纹图案并且照射到液晶显示面板上,可以使观看者的左眼只看到左眼图像,右眼只看到右眼图像;在三维显示模式下,左眼图像与右眼图像具有细微差异,使观看者感知画面呈现物体的深度而产生三维立体感,实现3D显示效果;在二维显示模式下,左眼图像与右眼图像相同,实现2D显示效果。
需要说明的是,本发明实施例提供的上述驱动方法,在二维显示模式下,观看者的左眼和右眼分别接收由液晶显示面板中一半的亚像素形成的图像,使得二维显示模式下的分辨率损失了一半。基于此,在本发明实施例提供的上述驱动方法还可以包括:在二维显示模式下,将第一光源和第二光源处于开启状态,使第一光源发出的光经衍射光栅后入射到液晶显示面板上,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个各明条纹图案为一组,并且每组包含的各明条纹图案的颜色互不相同;第二光 源发出的光经衍射光栅后入射到液晶显示面板,在每个暗条纹图案处形成颜色和与该暗条纹图案相邻的两个明条纹图案的颜色不同的明条纹图案;这样,在二维显示模式下,观看者的左眼和右眼可以分别接收由液晶显示面板中全部的亚像素形成的图像,从而可以使二维显示模式下的分辨率提高一倍。
本发明实施例提供的上述驱动方法的实施与本发明实施例提供的上述显示装置的实施例类似,重复之处不再赘述。
需要说明的是,本发明实施例提供的上述显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,在此不做限定。
如上所述,本发明实施例提供了一种显示装置及其驱动方法,该显示装置包括液晶显示面板和位于液晶显示面板的入光侧的背光模组,背光模组面向液晶显示面板的表面设置有衍射光栅结构,在三维显示模式下,背光模组发出的光经衍射光栅结构入射到液晶显示面板后可以形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的各明条纹图案的颜色互不相同,这样,利用背光模组表面的衍射光栅结构代替液晶显示面板中的彩膜层以及液晶显示面板的出光侧的狭缝光栅,不仅可以减薄显示装置的整体厚度,而且可以避免由于色阻材料的彩膜层所导致的光损失,从而可以提高显示装置的光透过率,相应地降低显示装置的功耗。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2016年1月8日提交的名称为“一种显示装置及其驱动方法”的中国专利申请No.201610012370.6的优先权,该申请全文以引用方式合并于本文。

Claims (12)

  1. 一种显示装置,包括:液晶显示面板和位于所述液晶显示面板的入光侧的背光模组;
    所述背光模组面向所述液晶显示面板的表面设置有衍射光栅结构,所述衍射光栅结构被配置以在三维显示模式下使所述背光模组发出的光入射到所述液晶显示面板后形成明暗相间的、横向排列并且纵向延伸的条纹图案;其中,以依次排列的至少三个明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同。
  2. 如权利要求1所述的显示装置,其中,所述背光模组包括:导光板和位于所述导光板的第一侧面的第一光源;
    所述衍射光栅结构位于所述导光板面向所述液晶显示面板的表面;
    所述导光板的所述第一侧面为斜面并且被配置为使所述第一光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射。
  3. 如权利要求2所述的显示装置,其中,所述液晶显示面板包括:多条栅线、多条数据线以及呈矩阵排列的多个亚像素;其中,每相邻的两条所述栅线和每相邻的两条所述数据线限定一个所述亚像素;
    每个所述明条纹图案对应一列所述亚像素,每个暗条纹图案对应一列所述亚像素。
  4. 如权利要求3所述的显示装置,其中,所述背光模组还包括:位于所述导光板的第二侧面的第二光源,所述第二侧面与所述第一侧面相对;
    所述导光板的所述第二侧面为斜面并且被配置为在二维显示模式下使所述第二光源发出的光在所述导光板内发生多次反射并从所述衍射光栅结构出射,在每个所述暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
  5. 如权利要求4所述的显示装置,其中,所述第一侧面的倾斜角度与所述第二侧面的倾斜角度不同。
  6. 如权利要求1-5任一项所述的显示装置,其中,所述背光模组还包括:位于所述导光板背离所述液晶显示面板一侧的反射膜。
  7. 如权利要求1-5任一项所述的显示装置,其中,所述背光模组还包括:位于所述导光板面向所述液晶显示面板一侧的散射膜。
  8. 如权利要求1-5任一项所述的显示装置,其中,所述第一光源和所述第二光源为偏振光源,并且
    所述液晶显示面板还包括:相对而置的阵列基板和对向基板,以及位于所述阵列基板与所述对向基板之间的液晶层;
    其中,所述阵列基板背离所述对向基板的一侧为出光侧,所述液晶显示面板还包括位于所述阵列基板背离所述对向基板一侧的第一偏光片;或者,所述对向基板背离所述阵列基板的一侧为出光侧,所述液晶显示面板还包括位于所述对向基板背离所述阵列基板一侧的第一偏光片。
  9. 如权利要求1-5任一项所述的显示装置,其中,所述第一光源和所述第二光源为非偏振光源,并且
    所述液晶显示面板还包括:相对而置的阵列基板和对向基板,位于所述阵列基板与所述对向基板之间的液晶层,位于所述对向基板背离所述阵列基板一侧的第二偏光片,以及位于所述阵列基板背离所述对向基板一侧的第三偏光片。
  10. 如权利要求1-5任一项所述的显示装置,其中,所述衍射光栅结构为正弦相位光栅结构。
  11. 一种如权利要求1-10任一项所述的显示装置的驱动方法,包括:
    在三维显示模式下,将第一光源处于开启状态,使所述第一光源发出的光经衍射光栅后入射到液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同。
  12. 如权利要求11所述的驱动方法,还包括:
    在二维显示模式下,将所述第一光源和第二光源处于开启状态;
    使所述第一光源发出的光经所述衍射光栅后入射到所述液晶显示面板,形成明暗相间的、横向排列并且纵向延伸的条纹图案,以依次排列的至少三个所述明条纹图案为一组,并且每组包含的所述明条纹图案的颜色互不相同;
    使所述第二光源发出的光经所述衍射光栅后入射到所述液晶显示面板,在每个暗条纹图案处形成颜色和与该暗条纹图案相邻的两个所述明条纹图案的颜色不同的明条纹图案。
PCT/CN2016/096729 2016-01-08 2016-08-25 显示装置及其驱动方法 WO2017118048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/516,800 US10488702B2 (en) 2016-01-08 2016-08-25 Display device having diffraction grating structure and driving method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610012370.6A CN106959551B (zh) 2016-01-08 2016-01-08 一种显示装置及其驱动方法
CN201610012370.6 2016-01-08

Publications (1)

Publication Number Publication Date
WO2017118048A1 true WO2017118048A1 (zh) 2017-07-13

Family

ID=59273327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096729 WO2017118048A1 (zh) 2016-01-08 2016-08-25 显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10488702B2 (zh)
CN (1) CN106959551B (zh)
WO (1) WO2017118048A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307935A (zh) * 2018-11-13 2019-02-05 深圳创维新世界科技有限公司 空间投影显示设备
CN113900273A (zh) * 2021-10-09 2022-01-07 广东未来科技有限公司 裸眼3d显示方法及相关设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180010791A (ko) * 2016-07-22 2018-01-31 삼성전자주식회사 지향성 백라이트 유닛, 이의 제작방법, 이를 포함하는 입체 영상 표시 장치
CN107561724B (zh) * 2017-11-01 2020-08-07 京东方科技集团股份有限公司 立体显示装置和显示设备
CN109799003A (zh) * 2019-02-27 2019-05-24 广西师范大学 一种基于新型mim布拉格光栅的温度传感器
CN112305779A (zh) * 2020-11-25 2021-02-02 万维科研有限公司 显示装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001107A1 (en) * 1995-07-06 2002-01-03 Nobuhiko Ichikawa Hologram color filter, and its fabrication method
CN101339310A (zh) * 2007-07-02 2009-01-07 财团法人工业技术研究院 三维影像显示装置以及双模式影像显示装置
CN203630766U (zh) * 2013-12-11 2014-06-04 深圳市宇顺电子股份有限公司 3d显示电容式触摸屏模组
CN104601974A (zh) * 2014-12-30 2015-05-06 深圳市亿思达科技集团有限公司 基于人眼追踪的全息显示器及全息显示装置
CN105044962A (zh) * 2015-07-13 2015-11-11 上海理工大学 一种彩色全息聚合物分散液晶光栅的制备方法
CN205334016U (zh) * 2016-01-08 2016-06-22 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU0401057D0 (en) * 2004-05-26 2004-08-30 Balogh Tibor Method and apparatus for generating 3d images
CN101479643B (zh) * 2006-06-27 2013-08-28 Nlt科技股份有限公司 显示面板,显示装置和终端装置
TWI317433B (en) * 2006-10-04 2009-11-21 Ind Tech Res Inst Light guide plate and back-lighted module having light guide plate
WO2008062363A2 (en) * 2006-11-22 2008-05-29 Koninklijke Philips Electronics N.V. Illumination system and display device
EP1983513A1 (en) * 2007-04-19 2008-10-22 Deutsche Thomson OHG Apparatus for reading from and/or writing to holographic storage media
TWI372264B (en) * 2008-10-13 2012-09-11 Ind Tech Res Inst Three-dimensional image displaying apparatus
CN102236201B (zh) * 2010-04-30 2014-06-04 京东方科技集团股份有限公司 双视显示器、双视彩膜结构及其制造方法
CN102906536A (zh) * 2010-05-19 2013-01-30 株式会社尼康 形状测定装置及形状测定方法
US9778202B2 (en) * 2010-10-12 2017-10-03 Indian Institute Of Technology Kanpur Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample
KR101724065B1 (ko) * 2010-11-01 2017-04-07 삼성전자주식회사 지향성 도광판, 지향성 면광원 및 지향성 면광원을 채용한 3d 영상 디스플레이 장치
KR101921172B1 (ko) * 2011-05-18 2018-11-23 삼성디스플레이 주식회사 표시장치 및 이의 제조 방법
TWI476482B (zh) * 2012-02-06 2015-03-11 Innocom Tech Shenzhen Co Ltd 液晶顯示器
CN102799024A (zh) * 2012-08-09 2012-11-28 深圳市华星光电技术有限公司 可切换二维/三维影像的液晶显示器
CN102830555B (zh) * 2012-08-31 2015-01-07 北京京东方光电科技有限公司 一种触控液晶光栅及3d触控显示装置
CN102944961B (zh) * 2012-11-15 2016-03-30 深圳市华星光电技术有限公司 裸眼3d显示装置及其液晶透镜
CN103135280B (zh) * 2012-11-15 2016-05-25 中航华东光电有限公司 一种液晶障栅立体显示***
TWI504988B (zh) * 2012-11-28 2015-10-21 Innocom Tech Shenzhen Co Ltd 背光模組及液晶顯示裝置
JP5915556B2 (ja) * 2013-01-30 2016-05-11 オムロン株式会社 導光板
TW201431714A (zh) * 2013-02-08 2014-08-16 Ind Tech Res Inst 影像分層組合結構
CN104238185B (zh) * 2013-06-19 2017-04-12 扬升照明股份有限公司 光源模块、显示装置及驱动光源模块的方法
CN103345068B (zh) * 2013-07-10 2016-01-20 京东方科技集团股份有限公司 一种立体显示装置
TWI495904B (zh) * 2013-07-12 2015-08-11 Vision Technology Co Ltd C 配合軟體光柵來產生立體影像的場色序法液晶顯示器及配合軟體光柵來產生立體影像的方法
WO2015010871A1 (de) * 2013-07-22 2015-01-29 Evonik Industries Ag Lichtleitplatte und verfahren zu deren herstellung
PT2938919T (pt) * 2013-07-30 2019-01-21 Leia Inc Retroiluminação à base de rede de difração multifeixe
KR102367515B1 (ko) * 2014-11-19 2022-02-25 삼성전자주식회사 백라이트 유닛, 이를 포함하는 디스플레이 장치 및 백라이트 유닛 제조방법
KR102372085B1 (ko) * 2015-01-27 2022-03-08 삼성전자주식회사 2차원/3차원 전환 가능한 백라이트 유닛 및 이를 이용한 영상표시 장치
KR102364848B1 (ko) * 2015-08-20 2022-02-18 삼성전자주식회사 곡면형 백라이트 유닛 및 이를 포함하는 곡면형 디스플레이 장치
KR102390375B1 (ko) * 2015-08-26 2022-04-25 삼성전자주식회사 백라이트 유닛 및 이를 포함한 입체 영상 표시 장치
KR102458240B1 (ko) * 2016-01-06 2022-10-24 삼성전자주식회사 백라이트 유닛 및 이를 포함하는 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020001107A1 (en) * 1995-07-06 2002-01-03 Nobuhiko Ichikawa Hologram color filter, and its fabrication method
CN101339310A (zh) * 2007-07-02 2009-01-07 财团法人工业技术研究院 三维影像显示装置以及双模式影像显示装置
CN203630766U (zh) * 2013-12-11 2014-06-04 深圳市宇顺电子股份有限公司 3d显示电容式触摸屏模组
CN104601974A (zh) * 2014-12-30 2015-05-06 深圳市亿思达科技集团有限公司 基于人眼追踪的全息显示器及全息显示装置
CN105044962A (zh) * 2015-07-13 2015-11-11 上海理工大学 一种彩色全息聚合物分散液晶光栅的制备方法
CN205334016U (zh) * 2016-01-08 2016-06-22 京东方科技集团股份有限公司 一种显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307935A (zh) * 2018-11-13 2019-02-05 深圳创维新世界科技有限公司 空间投影显示设备
CN109307935B (zh) * 2018-11-13 2023-12-01 深圳创维新世界科技有限公司 空间投影显示设备
CN113900273A (zh) * 2021-10-09 2022-01-07 广东未来科技有限公司 裸眼3d显示方法及相关设备
CN113900273B (zh) * 2021-10-09 2023-12-26 广东未来科技有限公司 裸眼3d显示方法及相关设备

Also Published As

Publication number Publication date
CN106959551A (zh) 2017-07-18
US10488702B2 (en) 2019-11-26
US20180267359A1 (en) 2018-09-20
CN106959551B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
WO2017118048A1 (zh) 显示装置及其驱动方法
US10429567B2 (en) Multi-view pixel directional backlight module and naked-eye 3D display device
US10684408B2 (en) Display device and image display method
US9201270B2 (en) Directional backlight with a modulation layer
US10627664B2 (en) Display panel, display device and display method
EP2859402B1 (en) Directional backlight with a modulation layer
US20190121171A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
WO2018072508A1 (zh) 显示装置及其显示方法
TWI474080B (zh) Liquid crystal display device
WO2017148024A1 (zh) 液晶显示器以及电子设备
WO2017117907A1 (zh) 一种3d显示装置
CN108474943B (zh) 用于执行子像素压缩以减少包括多个显示器的显示***中的莫尔干涉的方法和***
WO2017152521A1 (zh) 显示装置
JP5657508B2 (ja) 液晶表示装置、電子機器、および光学装置
US10705349B2 (en) Dual-view naked-eye 3D display device and manufacturing method thereof, liquid crystal display device
KR20150092424A (ko) 표시 장치
WO2014196125A1 (ja) 画像表示装置及び液晶レンズ
KR20130080766A (ko) 표시 장치
JP2015004698A (ja) 立体表示装置
US10854146B1 (en) Directional optical waveguide, directional backlight module, and display device
WO2013069387A1 (ja) 表示装置およびその駆動方法と製造方法
WO2016011770A1 (zh) 立体显示装置和立体显示方法
JP2012137762A (ja) 偏光板、表示装置及び偏光板の製造方法
KR20120108729A (ko) 표시 장치
CN106959544B (zh) 一种背光模组、液晶显示器及其制备工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15516800

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883178

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883178

Country of ref document: EP

Kind code of ref document: A1