WO2017114315A1 - 一种键合机加热冷却装置及其制作方法 - Google Patents

一种键合机加热冷却装置及其制作方法 Download PDF

Info

Publication number
WO2017114315A1
WO2017114315A1 PCT/CN2016/111778 CN2016111778W WO2017114315A1 WO 2017114315 A1 WO2017114315 A1 WO 2017114315A1 CN 2016111778 W CN2016111778 W CN 2016111778W WO 2017114315 A1 WO2017114315 A1 WO 2017114315A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
cooling
heating wire
welding
bonding machine
Prior art date
Application number
PCT/CN2016/111778
Other languages
English (en)
French (fr)
Inventor
赵建军
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to SG11201805327PA priority Critical patent/SG11201805327PA/en
Priority to JP2018534560A priority patent/JP6791969B2/ja
Priority to KR1020187020545A priority patent/KR20180095664A/ko
Priority to US16/067,254 priority patent/US20190022788A1/en
Publication of WO2017114315A1 publication Critical patent/WO2017114315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/007Spot arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the invention relates to a bonding machine, in particular to a bonding machine heating and cooling device and a manufacturing method thereof, and belongs to the field of microelectromechanical systems (MEMS) manufacturing.
  • MEMS microelectromechanical systems
  • Wafer bonding technology can bond wafers of different materials. Wafer bonding is an important process for 3D processing of semiconductor devices. The main process steps for wafer bonding include wafer surface processing (cleaning, activation), wafer alignment, and final wafer bonding. Through these process steps, individual individual wafers are aligned and then bonded together to achieve their three-dimensional structure. Bonding is not only a packaging technology in microsystem technology, but also an organic component in the manufacture of three-dimensional devices. It is used in both the front and back processes of device fabrication. The bonder needs to place the material to be bonded between two heatable plates, and then apply external conditions such as pressure, temperature, voltage, etc., and bond the materials together by van der Waals force, molecular force or even atomic force. Therefore, the pressure and temperature applied by the two plates to the material to be bonded are two important indicators of the bonding machine.
  • the bonding machine uses a main body plate of a certain thickness, and after the two circular surfaces of the main body plate are respectively grooved, the heating wire and the cooling pipe are welded in the corresponding grooves, and finally the welding surface is welded. Ensure flatness. Such a process maintains uniformity in the flatness of the unslotted portion after heating, and the pressure uniformity of the grooved portion is poor, affecting the flatness of the flatness. Considering the bearing capacity of the main body plate after slotting on both sides, in order to prevent deformation, it is necessary to increase the thickness of the main body plate, which is disadvantageous for heating and cooling, and the vacuum chamber space required for bonding is relatively large, which increases the load of the vacuum pump. .
  • the technical problem to be solved by the present invention is to provide a bonding machine heating and cooling device with high heating and cooling speed and uniform flatness. There is also provided a method of making a bonding machine heating and cooling device that can completely remove air from the welding surface.
  • a bonding machine heating and cooling device comprising a heating wire bottom plate, a cooling pipe bottom plate, a heating wire, a cooling pipe and a welding layer, wherein the heating wire and the cooling pipe are respectively welded
  • the heating wire and the cooling pipe are uniformly welded together in a welding groove of the heating wire bottom plate and the cooling pipe bottom plate, and the heating wire is used for connection with an external heating device for external cooling Device connection.
  • the external heating device is an electric heater.
  • the cooling substance in the external cooling device is a coolant.
  • the heating wire and/or the cooling tube are of a uniform spiral structure.
  • the solder layer material is a vacuum solder.
  • the vacuum flux is a nickel based material.
  • the bonding machine heating and cooling device has a thickness of 22 mm to 25 mm.
  • the heating wire and the cooling pipe are integrated into one component by the above technical solution, and are uniformly welded together by the welding layer, thereby reducing the overall thickness, reducing the length of the heat transfer path, and increasing The effective cooling area, the cooling efficiency is improved, the process time is shortened, the yield is improved, the vacuum chamber space required for bonding is relatively reduced, the load of the vacuum pump is reduced, and the vacuum pumping time is saved.
  • the unslotted side is in contact with the material to be welded, thereby improving the flatness of the outer surface of the part and the pressure uniformity. The effect is better and the bonding precision is improved.
  • the present invention also includes a method for fabricating the above-described bonding machine heating and cooling device, the steps comprising:
  • Step 1 the heating wire and the cooling pipe are respectively placed in the welding trough of the heating wire bottom plate and the cooling pipe bottom plate, and are fixed by welding;
  • Step 2 filling a vacuum flux between the heating wire welding surface and the cooling pipe welding surface, and welding the outer ring of the two welding faces with small holes;
  • Step 3 heating in a vacuum device to melt the vacuum flux, and vacuuming the vacuum device, pressing the vacuum flux evenly between the heating wire and the cooling tube to remove the air between the two welding faces, and then The small hole is completely welded and closed;
  • Step 4. Finishing the upper and lower surfaces of the bonding machine heating and cooling device.
  • the heating wire is spot-welded in the welding groove of the heating wire bottom plate by argon arc welding
  • the cooling pipe is spot-welded in the welding groove of the cooling pipe bottom plate by argon arc welding.
  • step 2 the outer rings of the two weld faces are welded using argon arc welding.
  • the number of small holes in step 2 is two.
  • the heating temperature in step 3 is from 1000 to 1040 °C.
  • the heating time in step 3 is 0.5 hours.
  • step 3 the vacuum flux is uniformly covered by the press-fitting step between the heating wire and the cooling tube, and excess vacuum flux overflows from the small hole.
  • step 4 the upper and lower surfaces of the bonder heating and cooling device are finished by a milling machine.
  • the vacuum flux is a nickel based material.
  • the vacuum flux is filled between the heating wire and the cooling pipe, heated in a vacuum environment, and the vacuum flux is uniformly covered between the heating wire and the cooling pipe by pressing, and can be discharged.
  • the air between the two is prevented from causing the device to burst or the unevenness of the flatness due to the expansion of the gas during the subsequent bonding heating.
  • the upper and lower surfaces are finished to ensure that the flatness can reach higher requirements.
  • FIG. 1 is a schematic structural view of a heating and cooling device for a bonding machine according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the structure of a heating wire in an embodiment of the present invention.
  • 1 is a heating wire bottom plate
  • 2 is a cooling pipe bottom plate
  • 3 is a cooling pipe joint
  • 4 is a heater port
  • 5 is a heating wire
  • 6 is a cooling pipe.
  • FIG. 1 shows an embodiment of the bonder heating and cooling device of the present invention.
  • a bonding machine heating and cooling device comprises a heating wire bottom plate 1, a cooling pipe bottom plate 2, a heating wire 5, a cooling pipe 6 and a welding layer, and the heating wire 5 and the cooling pipe 6 are respectively welded to the heating wire bottom plate 1 and the cooling pipe
  • the heating wire 5 and the cooling pipe 6 are uniformly welded together in the welding groove of the bottom plate 2, and the heating wire 5 is connected to the external heating device through the heater interface 4, and the cooling pipe 6 is cooled externally.
  • the device is connected via a cooling tube connection 3.
  • the external heating device is an electric heater.
  • the cooling substance in the external cooling device is a coolant.
  • the heating wire 5 and the cooling tube 6 are of a uniform spiral structure.
  • the solder layer material is a vacuum solder.
  • the vacuum flux is a nickel based material.
  • the thickness of the bonding machine heating and cooling device is 22 mm to 25 mm.
  • the heating wire 5 and the cooling pipe 6 are integrated into one assembly, and are uniformly welded together by the welding layer, thereby reducing the overall thickness, reducing the length of the heat transfer path, increasing the effective cooling area, and cooling.
  • the efficiency is improved, the process time is shortened, the yield is improved, the vacuum chamber space required for bonding is relatively reduced, the load of the vacuum pump is reduced, and the vacuum pumping time is saved.
  • Fig. 2 shows an embodiment of the heating wire of the bonding machine heating and cooling device of the present invention.
  • the heating wire 5 and/or the cooling tube 6 are of a uniform spiral structure. With this structure, heat can be uniformly conducted, and the temperature of the heating wire bottom plate 1 and the cooling pipe bottom plate 2 can be made more uniform, which is advantageous for improving the precision of bonding.
  • a cooling tube bottom plate 2 of the above-described bonding machine heating and cooling device is connected to the control tube of the bonding machine, and is moved and pressurized by the control tube.
  • the cooling tube bottom plate 2 of the above-described bonding machine heating and cooling device is connected to the base of the bonding machine.
  • the two wafers aligned in position are placed by the jig of the bonding machine onto the surface of the heating wire substrate 1 of the lower bonding machine heating and cooling device.
  • the upper bonding machine heating and cooling device is controlled by the bonding machine, so that the plate of the heating wire substrate 1 is pressed against the wafer, and the external electric heater is controlled to be heated, and is connected to the electric heater.
  • the heating wire 5 conducts heat to the upper and lower heating wire substrates 1, controls the upper and lower heating wire substrates 1 while heating the wafer, and performs a bonding process. After the bonding is completed, the wafer is removed, the coolant in the cooling tube 6 is turned on, the heating wire substrate 1 is rapidly cooled, the process time is shortened, and the yield is improved.
  • the present invention further provides a manufacturing method of the above-mentioned bonding machine heating and cooling device, comprising:
  • Step 1 The heating wire 5 and the cooling pipe 6 are respectively placed in the welding trough of the heating wire bottom plate 1 and the cooling pipe bottom plate 2, and are fixed by welding; further, the heating wire 5 and the cooling pipe 6 are spot-welded and fixed by using argon arc welding respectively. In the welding groove of the heating wire bottom plate 1 and the cooling pipe bottom plate 2.
  • Step 2 Filling a vacuum flux between the heating wire welding surface and the cooling pipe welding surface, and welding the outer ring of the two welding faces with argon arc welding and leaving small holes; specifically, the vacuum flux is made of a nickel-based material.
  • Step 3 heating in a vacuum device to melt the vacuum flux, and simultaneously vacuuming the vacuum device, pressing the vacuum flux evenly between the heating wire 5 and the cooling tube 6, and cleaning the air between the two welding faces. Then, the small hole is completely welded and closed; further, the air pressure in the vacuum device is 0.01pa to 0.001pa, the heating temperature is 1000-1040° C., and the heating time is 0.5 hour, under which the vacuum flux can be completely melted.
  • the vacuum apparatus is evacuated to ensure that the air is completely removed. Preferably, excess vacuum flux escapes from the aperture during the lamination process.
  • the small holes are completely welded and closed by argon arc welding.
  • Step 4 Finishing the upper and lower surfaces of the bonding machine heating and cooling device. Further, the upper and lower surfaces of the heating and cooling device of the bonding machine are finished by a milling machine to ensure that the flatness of the upper and lower surfaces of the heating and cooling device of the bonding machine can reach 0.01 mm.
  • the number of the small holes is two, which are respectively located on both sides of the outer circumference of the welding surface of the heating wire 5 and the cooling pipe 6.
  • the heating wire 5 and the cooling pipe 6 are respectively placed in the welding trough of the heating wire bottom plate 1 and the cooling pipe bottom plate 2, and the heating wire 5 and the cooling pipe 6 are spot-welded and fixed to the heating wire bottom plate 1 and the cooling pipe by argon arc welding, respectively.
  • argon arc welding Inside the welding groove of the bottom plate 2.
  • a nickel-based material flux is filled between the heating wire welding surface and the cooling tube welding surface, and the outer rings of the two welding faces are welded by argon arc welding and a small hole is left on both sides.
  • the invention fills the vacuum flux between the heating wire 5 and the cooling pipe 6, heats in a vacuum environment, uniformly covers the vacuum flux between the heating wire and the cooling pipe by pressing, and exhausts the air between the two. Prevents the explosion of the gas during the subsequent bonding heating process from causing the device to burst or the unevenness of the flatness. After the welding is completed, the upper and lower surfaces are finished to ensure that the flatness can reach higher requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Wire Bonding (AREA)
  • Arc Welding In General (AREA)

Abstract

一种键合机加热冷却装置,包括加热丝底板(1)、冷却管底板(2)、加热丝(5)、冷却管(6)及焊接层,所述加热丝(5)和冷却管(6)分别焊接在加热丝底板(1)和冷却管底板(2)的焊接槽内,并通过焊接层均匀焊接在一起,所述加热丝(5)与外部加热装置连接,所述冷却管(6)与外部冷却装置连接。还公开了一种键合机加热冷却装置的制作方法。上述键合机加热冷却装置将加热丝和冷却管集成为一个组件,并通过焊接层均匀焊接在一起,减小了整体厚度和传热路径长度,冷却效率得到提高,降低了真空泵的负荷,同时改进了零件外表面的平面度,提高了键合精度。

Description

一种键合机加热冷却装置及其制作方法 技术领域
本发明涉及一种键合机,特别涉及一种键合机加热冷却装置及其制作方法,属于微机电***(MEMS)制造领域。
背景技术
晶圆键合技术可以将不同材料的晶圆结合在一起,晶圆键合是半导体器件三维加工的一个重要的工艺。晶圆键合的主要工艺步骤包括晶圆表面的处理(清洗、激活),晶圆的对准以及最终的晶圆键合。通过这些工艺步骤,独立的单张晶圆被对准,然后键合在一起,实现其三维结构。键合不仅是微***技术中的封装技术,而且也是三维器件制造中的一个有机组成部分,在器件制造的前道工艺和后道工艺中均有应用。键合机需要在两个可以加热的平板之间放入待键合材料,然后施加压力、温度、电压等外部条件,通过范德华力、分子力甚至原子力将材料键合在一起。因此,由该两个平板向待键合材料施加的压力和温度是键合机的两个重要指标。
现有技术提供的键合机使用一定厚度的主体板,在主体板相对的两个圆面分别开槽后将加热丝和冷却管焊接在相应的槽内,最后再进行铣焊接面的方式来确保平面度。这样的工艺在加热后其平面度只有未开槽的那部分保持一致,开槽部分压力均匀性很差,影响到其平面度的高低。考虑到两面开槽后主体板的承受力,为了防止变形,需要增加主体板的厚度,这样不利于加热和冷却,且在键合时需要的真空腔体空间相对较大,增加了真空泵的负荷。
另外,一般的焊接工艺在焊接完成后(例如前述加热丝和冷却管焊接在槽内之后)会出现空气未排净的现象,在零件测量过程中无法发现这样的问题,但是在使用过程中由于主体板内存在空气,受热后空气会膨胀,引起主 体板平面度不均匀的现象,严重会导致硅片碎裂。
发明内容
本发明所要解决的技术问题是提供一种加热和冷却速度快、平面度均匀的键合机加热冷却装置。另外还提供一种可以完全祛除焊接面中空气的键合机加热冷却装置的制作方法。
为了实现上述目的,本发明采用如下技术方案予以实现:一种键合机加热冷却装置,包括加热丝底板、冷却管底板、加热丝、冷却管及焊接层,所述加热丝和冷却管分别焊接在加热丝底板和冷却管底板的焊接槽内,并通过焊接层将所述加热丝和冷却管均匀焊接在一起,所述加热丝用于与外部加热装置连接,所述冷却管用于与外部冷却装置连接。
优选地,所述外部加热装置为电热器。
优选地,所述外部冷却装置中冷却物质为冷却剂。
优选地,所述加热丝和/或冷却管为均匀螺旋结构。
优选地,所述焊接层材料为真空焊剂。
优选地,所述真空焊剂为镍基材料。
优选地,所述键合机加热冷却装置的厚度为22mm~25mm。
与现有技术相比,采用上述技术方案,将加热丝和冷却管集成在一个组件内,并通过焊接层均匀焊接在一起,减小了整体的厚度,减小了传热路径长度,增大了有效冷却面积,冷却效率得到提高,缩短了工艺时间,提高了产率;键合时需要的真空腔体空间相对减小,降低了真空泵的负荷,也节省了真空泵抽真空的时间。同时,由于加热丝底板和冷却管底板仅有一面开槽,且开槽的一面相互焊接在一起,通过未开槽的一面与待焊接材料接触,改进了零件外表面的平面度,压力均匀性效果更好,提高了键合精度。
为了实现上述目的,本发明还包括一种上述键合机加热冷却装置的制作方法,步骤包括:
步骤1、将加热丝、冷却管分别放置到加热丝底板和冷却管底板的焊接槽内,焊接固定;
步骤2、在加热丝焊接面和冷却管焊接面之间填充真空焊剂,将两个焊接面的外圈焊接并留有小孔;
步骤3、在真空设备中进行加热使真空焊剂熔化,同时对真空设备抽真空,压合使真空焊剂均匀覆盖到加热丝和冷却管之间,去净两个焊接面之间的空气,然后将所述小孔完全焊接封闭;
步骤4、对键合机加热冷却装置的上下两个表面进行精加工。
优选地,步骤1中采用氩弧焊将加热丝点焊固定在加热丝底板的焊接槽内,采用氩弧焊将冷却管点焊固定在冷却管底板的焊接槽内。
优选地,步骤2中采用氩弧焊将两个焊接面的外圈焊接。
优选地,步骤2中所述小孔为2个。
优选地,步骤3中加热温度为1000~1040℃。
优选地,步骤3中加热时间为0.5小时。
优选地,步骤3中通过压合使真空焊剂均匀覆盖到加热丝和冷却管之间的步骤中,多余的真空焊剂从所述小孔中溢出。
优选地,步骤4中采用铣床对键合机加热冷却装置的上下两个表面进行精加工。
优选地,所述真空焊剂为镍基材料。
与现有技术相比,采用上述技术方案,在加热丝和冷却管之间填充真空焊剂,在真空环境中加热,通过压合使真空焊剂均匀覆盖到加热丝和冷却管之间,并能够排尽两者之间的空气,防止后续键合加热过程中气体膨胀引起设备爆裂或平面度不均匀的现象。焊接完成后,再对上下两个表面进行精加工,以保证平面度能达到更高的要求。
附图说明
图1是本发明一具体实施方式中键合机加热冷却装置的结构示意图;
图2是本发明一具体实施方式中加热丝的结构示意图。
图中,1是加热丝底板,2是冷却管底板,3是冷却管接口,4是加热器接口,5是加热丝,6是冷却管。
具体实施方式
下面结合附图对本发明作进一步详细说明。
图1示出了本发明键合机加热冷却装置的一种实施方式。一种键合机加热冷却装置,包括加热丝底板1、冷却管底板2、加热丝5、冷却管6及焊接层,所述加热丝5和冷却管6分别焊接在加热丝底板1和冷却管底板2的焊接槽内,并通过焊接层将所述加热丝5和冷却管6均匀焊接在一起,所述加热丝5与外部加热装置通过加热器接口4连接,所述冷却管6与外部冷却装置通过冷却管接口3连接。所述外部加热装置为电热器。所述外部冷却装置中冷却物质为冷却剂。所述加热丝5和冷却管6为均匀螺旋结构。所述焊接层材料为真空焊剂。所述真空焊剂为镍基材料。所述键合机加热冷却装置的厚度为22mm~25mm。
采用上述技术方案,将加热丝5和冷却管6集成为一个组件,并通过焊接层均匀焊接在一起,减小了整体的厚度,减小了传热路径长度,增大了有效冷却面积,冷却效率得到提高,缩短了工艺时间,提高了产率;键合时需要的真空腔体空间相对减小,降低了真空泵的负荷,也节省了真空泵抽真空的时间。
图2示出了本发明键合机加热冷却装置加热丝的一种实施方式。所述加热丝5和/或冷却管6为均匀螺旋结构。采用这种结构,可以均匀地传导热量,使加热丝底板1和冷却管底板2的温度更加均匀,有利于提高键合的精度。
在实际使用中,将一个制作好的上述键合机加热冷却装置的冷却管底板2连接在键合机的控制管上,在控制管的作用下进行移动和施加压力。将另一 个制作好的上述键合机加热冷却装置的冷却管底板2连接在键合机的底座上。通过键合机的夹具将对位完成的两个晶圆放置到下面的键合机加热冷却装置的加热丝底板1的板面上。在抽真空环境下,通过键合机控制移动上面的键合机加热冷却装置,使其加热丝底板1的板面对晶圆进行施加压力,控制外部电热器进行加热,与电热器相连接的加热丝5将热量传导给上、下加热丝底板1,控制上、下加热丝底板1同时对晶圆加热,进行键合过程。键合完成后,移走晶圆,开启冷却管6中的冷却剂,使加热丝底板1快速冷却,缩短工艺时间,提高了产率。
结合图1至图2所示,本发明还提供一种上述键合机加热冷却装置的制作方法,包括:
步骤1、将加热丝5、冷却管6分别放置到加热丝底板1和冷却管底板2的焊接槽内,焊接固定;进一步的,使用氩弧焊分别将加热丝5和冷却管6点焊固定在加热丝底板1和冷却管底板2的焊接槽内。
步骤2、在加热丝焊接面和冷却管焊接面之间填充真空焊剂,使用氩弧焊将两个焊接面的外圈焊接并留有小孔;具体地,所述真空焊剂采用镍基材料。
步骤3、在真空设备中进行加热使真空焊剂熔化,同时对真空设备抽真空,压合使真空焊剂均匀覆盖到加热丝5和冷却管6之间,去净两个焊接面之间的空气,然后将所述小孔完全焊接封闭;进一步的,该真空设备中的气压为0.01pa~0.001pa,加热温度为1000~1040℃,加热时间为0.5小时,该条件下可以使真空焊剂完全熔化,当然,在进行上述步骤的同时,对真空设备抽真空,以确保空气被完全祛除。较佳的,在压合过程中,多余的真空焊剂从所述小孔中溢出。当压合完成,空气完全排出后,采用氩弧焊将所述小孔完全焊接封闭。
步骤4、对键合机加热冷却装置的上下两个表面进行精加工。进一步的,采用铣床对键合机加热冷却装置的上下两个表面进行精加工,以保证键合机加热冷却装置的上下两个表面的平面度能达到0.01mm。
作为优选,所述小孔的数目为两个,分别位于加热丝5和冷却管6的焊接面外圈的两侧。
下面为本发明上述键合机加热冷却装置的制作方法的一个具体操作方式:
首先将加热丝5、冷却管6分别放置到加热丝底板1和冷却管底板2的焊接槽内,使用氩弧焊分别将加热丝5和冷却管6点焊固定在加热丝底板1和冷却管底板2的焊接槽内。然后在加热丝焊接面和冷却管焊接面之间填充镍基材料焊剂,将两个焊接面的外圈采用氩弧焊焊接并分别在两侧留有一个小孔。然后放置到真空设备中,在真空设备中进行抽真空至0.01pa,然后再进行1040℃高温加热0.5小时,使真空焊剂熔化,同时进行抽真空,祛除空气,再通过压合使真空焊剂均匀覆盖到加热丝和冷却管之间,去净两个焊接面的空气,多余的真空焊剂从所述小孔中溢出。然后采用氩弧焊将所述小孔完全焊接封闭。焊接完成后,采用铣床对键合机加热冷却装置的上下两个表面进行精加工,以保证键合机加热冷却装置的上下两个表面的平面度能达到0.01mm。
本发明通过在加热丝5和冷却管6之间填充真空焊剂,在真空环境中加热,通过压合使真空焊剂均匀覆盖到加热丝和冷却管之间,并排尽两者之间的空气,可以防止后续键合加热过程中气体膨胀引起设备爆裂或平面度不均匀的现象。焊接完成后,再对上下两个表面进行精加工,以保证平面度能达到更高的要求。

Claims (16)

  1. 一种键合机加热冷却装置,其特征在于,包括加热丝底板、冷却管底板、加热丝、冷却管及焊接层,所述加热丝和冷却管分别焊接在加热丝底板和冷却管底板的焊接槽内,并通过焊接层将所述加热丝和冷却管均匀焊接在一起,所述加热丝用于与外部加热装置连接,所述冷却管用于与外部冷却装置连接。
  2. 根据权利要求1所述的一种键合机加热冷却装置,其特征在于,所述外部加热装置为电热器。
  3. 根据权利要求1所述的一种键合机加热冷却装置,其特征在于,所述外部冷却装置中冷却物质为冷却剂。
  4. 根据权利要求1所述的一种键合机加热冷却装置,其特征在于,所述加热丝和/或冷却管为均匀螺旋结构。
  5. 根据权利要求1所述的一种键合机加热冷却装置,其特征在于,所述焊接层材料为真空焊剂。
  6. 根据权利要求5所述的一种键合机加热冷却装置,其特征在于,所述真空焊剂为镍基材料。
  7. 根据权利要求1所述的一种键合机加热冷却装置,其特征在于,所述键合机加热冷却装置的厚度为22mm~25mm。
  8. 一种权利要求1所述的键合机加热冷却装置的制作方法,其特征在于,步骤包括:
    步骤1、将加热丝、冷却管分别放置到加热丝底板和冷却管底板的焊接槽内,焊接固定;
    步骤2、在加热丝焊接面和冷却管焊接面之间填充真空焊剂,将两个焊接面的外圈焊接并留有小孔;
    步骤3、在真空设备中进行加热使真空焊剂熔化,同时对真空设备抽真空,压合使真空焊剂均匀覆盖到加热丝和冷却管之间,去净两个焊接面之间的空 气,然后将所述小孔完全焊接封闭;
    步骤4、对键合机加热冷却装置的上下两个表面进行精加工。
  9. 根据权利要求8所述的制作方法,其特征在于,步骤1中采用氩弧焊将加热丝点焊固定在加热丝底板的焊接槽内,采用氩弧焊将冷却管点焊固定在冷却管底板的焊接槽内。
  10. 根据权利要求8所述的制作方法,其特征在于,步骤2中采用氩弧焊将两个焊接面的外圈焊接。
  11. 根据权利要求8所述的制作方法,其特征在于,步骤2中所述小孔为2个。
  12. 根据权利要求8所述的制作方法,其特征在于,步骤3中加热温度为1000~1040℃。
  13. 根据权利要求8所述的制作方法,其特征在于,步骤3中加热时间为0.5小时。
  14. 根据权利要求8所述的制作方法,其特征在于,步骤3中通过压合使真空焊剂均匀覆盖到加热丝和冷却管之间的步骤中,多余的真空焊剂从所述小孔中溢出。
  15. 根据权利要求8所述的制作方法,其特征在于,步骤4中采用铣床对键合机加热冷却装置的上下两个表面进行精加工。
  16. 根据权利要求8所述的制作方法,其特征在于,所述真空焊剂为镍基材料。
PCT/CN2016/111778 2015-12-30 2016-12-23 一种键合机加热冷却装置及其制作方法 WO2017114315A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201805327PA SG11201805327PA (en) 2015-12-30 2016-12-23 Heating and cooling apparatus for bonding machine and manufacturing method thereof
JP2018534560A JP6791969B2 (ja) 2015-12-30 2016-12-23 ボンディング装置用の加熱冷却装置の製造方法
KR1020187020545A KR20180095664A (ko) 2015-12-30 2016-12-23 본딩 기계를 위한 가열 및 냉각 장비 및 그 제조 방법
US16/067,254 US20190022788A1 (en) 2015-12-30 2016-12-23 Heating and cooling apparatus for bonding machine and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511025791.4A CN106925867B (zh) 2015-12-30 2015-12-30 一种键合机加热冷却装置及其制作方法
CN201511025791.4 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017114315A1 true WO2017114315A1 (zh) 2017-07-06

Family

ID=59224482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111778 WO2017114315A1 (zh) 2015-12-30 2016-12-23 一种键合机加热冷却装置及其制作方法

Country Status (7)

Country Link
US (1) US20190022788A1 (zh)
JP (1) JP6791969B2 (zh)
KR (1) KR20180095664A (zh)
CN (1) CN106925867B (zh)
SG (1) SG11201805327PA (zh)
TW (1) TWI614079B (zh)
WO (1) WO2017114315A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613544B (zh) * 2020-06-04 2023-03-10 山东晶升电子科技有限公司 真空晶圆键合机
CN115394689B (zh) * 2022-09-05 2023-09-01 江苏富乐华功率半导体研究院有限公司 一种功率半导体器件热压烧结装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090082A (zh) * 2006-06-15 2007-12-19 中国科学院半导体研究所 多功能半导体晶片键合装置
CN101231937A (zh) * 2007-01-23 2008-07-30 中芯国际集成电路制造(上海)有限公司 一种芯片键合机台及其加热板
CN102502481A (zh) * 2011-11-03 2012-06-20 中国科学院半导体研究所 基于局域加热技术的圆片级低温键合***及装置
JP2013012539A (ja) * 2011-06-28 2013-01-17 Apic Yamada Corp 圧着装置および圧着方法
CN103426798A (zh) * 2012-05-25 2013-12-04 先进科技新加坡有限公司 用于在晶粒键合期间加热衬底的装置
US20140069989A1 (en) * 2012-09-13 2014-03-13 Texas Instruments Incorporated Thin Semiconductor Chip Mounting
CN104217976A (zh) * 2013-05-31 2014-12-17 无锡华润安盛科技有限公司 一种键合加热装置及加热方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532322B1 (ko) * 2003-06-04 2005-11-29 삼성전자주식회사 웨이퍼 베이킹 플레이트의 냉각 장치
JP4133958B2 (ja) * 2004-08-04 2008-08-13 日本発条株式会社 ワークを加熱または冷却するための装置と、その製造方法
JP4448749B2 (ja) * 2004-09-16 2010-04-14 神港精機株式会社 加熱及び冷却装置
JP2007035886A (ja) * 2005-07-26 2007-02-08 Ngk Insulators Ltd 給電部材及びそれを用いた半導体製造装置
JP2010114208A (ja) * 2008-11-05 2010-05-20 Nikon Corp 冷却装置および接合システム
CN101695785A (zh) * 2009-09-29 2010-04-21 陈亚 一种钛合金与不锈钢的真空焊接方法
CN103426793B (zh) * 2012-05-24 2016-02-03 沈阳芯源微电子设备有限公司 基板冷热处理装置
CN103855039A (zh) * 2012-11-28 2014-06-11 西安晶捷电子技术有限公司 一种bga加热炉结构
JP5980147B2 (ja) * 2013-03-08 2016-08-31 日本発條株式会社 基板支持装置
JP5590206B2 (ja) * 2013-09-20 2014-09-17 日本軽金属株式会社 伝熱板の製造方法
DE102013113052A1 (de) * 2013-11-26 2015-05-28 Aixtron Se Heizeinrichtung für einen CVD-Reaktor
CN204789075U (zh) * 2015-04-22 2015-11-18 郑州工匠机械设备有限公司 一种高聚物真空压片设备
CN104878370A (zh) * 2015-05-29 2015-09-02 沈阳拓荆科技有限公司 一种分体式可控温加热盘结构
CN105081590B (zh) * 2015-07-31 2017-06-09 湘潭电机股份有限公司 一种钎焊结构的冷板及制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090082A (zh) * 2006-06-15 2007-12-19 中国科学院半导体研究所 多功能半导体晶片键合装置
CN101231937A (zh) * 2007-01-23 2008-07-30 中芯国际集成电路制造(上海)有限公司 一种芯片键合机台及其加热板
JP2013012539A (ja) * 2011-06-28 2013-01-17 Apic Yamada Corp 圧着装置および圧着方法
CN102502481A (zh) * 2011-11-03 2012-06-20 中国科学院半导体研究所 基于局域加热技术的圆片级低温键合***及装置
CN103426798A (zh) * 2012-05-25 2013-12-04 先进科技新加坡有限公司 用于在晶粒键合期间加热衬底的装置
US20140069989A1 (en) * 2012-09-13 2014-03-13 Texas Instruments Incorporated Thin Semiconductor Chip Mounting
CN104217976A (zh) * 2013-05-31 2014-12-17 无锡华润安盛科技有限公司 一种键合加热装置及加热方法

Also Published As

Publication number Publication date
JP2019507494A (ja) 2019-03-14
SG11201805327PA (en) 2018-07-30
CN106925867A (zh) 2017-07-07
TW201722596A (zh) 2017-07-01
JP6791969B2 (ja) 2020-11-25
US20190022788A1 (en) 2019-01-24
TWI614079B (zh) 2018-02-11
KR20180095664A (ko) 2018-08-27
CN106925867B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
TWI434817B (zh) Ceramic - metal joint and its preparation method
JP5143184B2 (ja) ウエハー載置装置の製造方法
JP5895676B2 (ja) 半導体装置の製造方法
JP5347214B2 (ja) 載置台構造及び熱処理装置
JP5202175B2 (ja) シャフト付きヒータ
US8490856B2 (en) Joint apparatus, joint method, and computer storage medium
JP2008506270A (ja) 2つのウエハの相互接触のための方法および装置
JP2012199358A (ja) チップ加熱ヘッド
KR20130023265A (ko) 상온 접합 장치 및 상온 접합 방법
JP2013191840A (ja) チップ圧着装置およびその方法
WO2017114315A1 (zh) 一种键合机加热冷却装置及其制作方法
KR20180055696A (ko) 종합성능이 양호한 방열구조부재 및 그 제조 공정
TW201943680A (zh) 具有接合溝槽的陶瓷鋁總成
TWI588945B (zh) 積層型半導體封裝體的製造裝置
JP5229679B2 (ja) 加熱加圧システム
TWI630048B (zh) Bonding device, bonding system, bonding method, and computer memory medium
TW201620082A (zh) 積層型半導體封裝體的製造方法
KR102037368B1 (ko) 확산 접합 장치 및 방법
JP5376023B2 (ja) 載置台構造及び熱処理装置
WO2019211928A1 (ja) 保持装置の製造方法
JP7184578B2 (ja) 保持装置の製造方法
TWI481736B (zh) 靶材及靶材之製造方法
JP2012019096A (ja) 半導体チップの接合方法及び半導体チップの接合装置
JP5207215B2 (ja) 加熱加圧システム
JP5569169B2 (ja) 基板貼り合せ装置の制御方法、基板貼り合せ装置、積層半導体装置製造方法及び積層半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201805327P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018534560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187020545

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020545

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16881104

Country of ref document: EP

Kind code of ref document: A1