WO2017113901A1 - 一种信息传输方法及装置 - Google Patents

一种信息传输方法及装置 Download PDF

Info

Publication number
WO2017113901A1
WO2017113901A1 PCT/CN2016/099944 CN2016099944W WO2017113901A1 WO 2017113901 A1 WO2017113901 A1 WO 2017113901A1 CN 2016099944 W CN2016099944 W CN 2016099944W WO 2017113901 A1 WO2017113901 A1 WO 2017113901A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission
window
available subframes
transmission window
Prior art date
Application number
PCT/CN2016/099944
Other languages
English (en)
French (fr)
Inventor
陈宪明
戴博
方惠英
夏树强
石靖
刘锟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610012555.7A external-priority patent/CN106921468B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2018552103A priority Critical patent/JP6829266B2/ja
Priority to US16/065,973 priority patent/US10721013B2/en
Priority to EP16880694.1A priority patent/EP3399678B1/en
Priority to KR1020187021812A priority patent/KR102240324B1/ko
Publication of WO2017113901A1 publication Critical patent/WO2017113901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present invention relates to a Cellular Internet Of Things (C-IOT) technology, and more particularly to an information transmission method and apparatus.
  • C-IOT Cellular Internet Of Things
  • NB-IOT Narrowband-Cellular Internet Of Things
  • 3GPP 3rd Generation Partnership Project
  • the main research objectives include: improved indoor coverage, support for massive low-throughput user equipment, low latency sensitivity, and ultra-low Equipment cost, low equipment power loss and network architecture.
  • the uplink and downlink transmission bandwidth of the NB-IOT system is 180 kHz, which is the same as the bandwidth of a physical resource block (PRB) of the Long Term Evolution (LTE) system, which is beneficial for reuse in the NB-IOT system.
  • PRB physical resource block
  • LTE Long Term Evolution
  • the NB-IOT system supports three different modes of operation: 1) Stand-alone operation, such as using the currently enhanced data rate GSM EDGE Radio Access Network (GERAN) system. Spectrum to replace one or more GSM carriers; 2) Guard band operation, such as utilizing unused resource blocks within an LTE carrier guard band; 3) In-band operation For example, resource blocks in a normal LTE carrier range are utilized.
  • Stand-alone operation such as using the currently enhanced data rate GSM EDGE Radio Access Network (GERAN) system.
  • GSM EDGE Radio Access Network (GERAN) system Spectrum to replace one or more GSM carriers
  • Guard band operation such as utilizing unused resource blocks within an LTE carrier guard band
  • In-band operation For example, resource blocks in a normal LTE carrier range are utilized.
  • a first system information broadcast (SIB1) message is used to carry necessary system information.
  • the SIB1 message is transmitted in subframe 5 of each even radio frame, and the related channel coding or rate matching process depends on the single subframe, that is, the PRB allocated for the SIB1 message in each subframe 5.
  • the number of PRBs allocated for the SIB1 message can be dynamically adjusted according to the transport block size (TBS, Transport Block Size) of the SIB1 message to obtain a suitable coding rate, so in this case, based on the single subframe Channel coding or rate matching is possible.
  • TBS Transport Block Size
  • the bandwidth of the NB-IOT system is only 180 kHz, it is only equivalent to one PRB resource of the LTE system, that is, the number of PRBs allocated for the NB-IOT SIB1 message can be at most one, so that according to the existing If the SIB1 is sent, the number of allocated PRBs can no longer be dynamically adjusted according to the TBS of the NB-IOT SIB1 message. In this case, if the TBS of the NB-IOT SIB1 message exceeds a certain threshold, if it is still based on The channel coding or rate matching of a single subframe will undoubtedly severely limit the transmission performance of the NB-IOT SIB1 message.
  • Embodiments of the present invention provide an information transmission method and apparatus, which are applicable to system information transmission of an NB-IOT system and ensure transmission performance of system information.
  • an embodiment of the present invention provides an information transmission method, including:
  • one scheduling window includes K transmission windows, one transmission window includes P available subframes, K is an integer greater than 0, and P is an integer greater than one;
  • the information is transmitted using the available subframes in the transmission window.
  • one of the scheduling windows includes: N1 physical broadcast channel PBCH scheduling periods; or, N2 PBCH sub-block periods;
  • One of the transmission windows includes: half or M PBCH sub-block periods; or, across consecutive P available subframes;
  • N1, N2 and M are integers greater than 0;
  • Each PBCH scheduling period includes at least one PBCH sub-block period.
  • the transmitting the information by using the available subframes in the transmission window includes:
  • L is an integer greater than 0 and less than or equal to K
  • Q is an integer greater than one.
  • any one of the available subframes belongs to a set of remaining subframes other than the subframes in which the primary synchronization/secondary synchronization PSS/SSS and PBCH are transmitted in the specified subframe set.
  • the specified subframe set is a subframe set consisting of subframes with all subframe numbers 0, 4, 5, and 9;
  • the specified subframe set is a subframe set consisting of subframes with all subframe numbers 0, 1, 5, and 6; or, all subframe numbers are 1 and 6.
  • the transmitting the information on the obtained Q available subframes includes:
  • channel coded data of the information according to the number of available subframes Q for transmitting information within the transmission window, or according to the number of available subframes Q and the number of transmission windows in which information is transmitted within the transmission window; the channel to be obtained
  • the encoded data is mapped onto the Q available subframes and transmitted.
  • the obtaining the channel coded data of the information according to the number of available subframes Q and the number of the transmission window for transmitting information in the transmission window including:
  • the number of channel coded data of the information is obtained according to the number of available subframes Q for transmitting information in the transmission window, and the redundancy version RV of the channel coded data of the information is obtained according to the number of the transmission window.
  • the acquiring the L transmission windows for transmitting the information includes:
  • the location of the L transmission windows transmitting the information is predefined or signaled, or the location of the L transmission windows transmitting the information is determined based on the physical cell identity PCID.
  • the Q available subframes in the obtaining transmission window for transmitting the information include:
  • Predefining or signaling by means of signaling the location of the Q available subframes in the transmission window for transmitting the information, or determining the Q available subframes in the transmission window for transmitting the information according to the PCID and/or the number of the transmission window position.
  • the indication manner includes:
  • the L transmission windows for transmitting information in the K transmission windows are consecutive or discontinuous L transmission windows
  • Q available subframes for transmitting information in the transmission window are Continuous or discontinuous Q available subframes.
  • the method comprises: predefining or signaling the transmission window size and/or the scheduling window size.
  • P is equal to the Q.
  • the candidate locations of the L transmission windows include floor(K/L);
  • the L transmission windows corresponding to the jth candidate position are:
  • j is an integer greater than or equal to 1 and less than or equal to floor(K/L), and floor represents an integer operation downward.
  • determining, according to the PCID, a location of the L transmission windows of the transmission information including:
  • All PCIDs are classified into X classes according to a preset rule, where X is an integer greater than 0, indicating the number of candidate positions of L transmission windows in the scheduling window for transmitting information;
  • the X-type PCID is set to correspond one-to-one with the X candidate positions of the L transmission windows of the transmission information.
  • the preset rules include:
  • Equation 1 represents the remainder operation
  • floor represents the integer operation down
  • Y is an integer greater than 0, indicating the number of candidate positions of the Q available subframes in a transmission window.
  • candidate locations of Q available subframes for transmitting information in the transmission window include floor(P/Q);
  • the Q available subframes corresponding to the jth candidate position are:
  • the j is an integer greater than or equal to 1 and less than or equal to floor(P/Q), and floor represents an integer operation downward.
  • the method when determining the location of the Q available subframes in the transmission window according to the PCID and/or the number of the transmission window, the method includes:
  • All PCIDs are classified into Y classes according to a first preset rule, where Y is an integer greater than 0, indicating the number of candidate positions of Q available subframes in the transmission window; and setting the Y-type PCID and the One-to-one correspondence of Y candidate positions of Q available subframes of the transmission information; or
  • All the transmission window numbers are classified into Y classes according to a second preset rule, and the number of the Y-type transmission windows is set to correspond one-to-one with the Y candidate positions of the Q available subframes of the transmission information;
  • the number combination of all the PCIDs and the transmission window is divided into the Y class according to the third preset rule, and the number of the Y-type transmission window is set to correspond to the Y candidate positions of the Q available subframes of the transmission information. .
  • the first preset rule includes:
  • the second preset rule includes:
  • the third preset rule includes:
  • mod represents the remainder operation
  • floor represents the integer operation down
  • NTW represents the number of the repeating window
  • X is an integer greater than 0, indicating the number of candidate positions of the L repeating windows for transmitting information within a scheduling window.
  • the signaling is further used to indicate at least one of the following:
  • the ingress capability is used to indicate whether the base station can support the single-carrier and/or multi-carrier based uplink access mode and the corresponding carrier bandwidth.
  • the operating mode and the RS sequence are configured jointly.
  • the physical downlink channel carrying the number of the RS port number and the physical downlink channel received before receiving the physical downlink channel configured to carry the number of the RS port are all mapped according to the 4-port RS;
  • the physical downlink channel received after the physical downlink channel performs resource mapping according to the RS of the number of RS ports indicated by the number of RS port configurations;
  • All physical downlink channels are resource mapped according to a 4-port RS.
  • the RS sequence configuration includes one of: an index of a physical resource block PRB used as a NB-IOT narrowband, and a NB-IOT narrowband relative to an LTE system.
  • the frequency offset of the bandwidth center frequency is one of: an index of a physical resource block PRB used as a NB-IOT narrowband, and a NB-IOT narrowband relative to an LTE system.
  • the content of the information includes all configuration parameters related to the initial access.
  • the information occupies all orthogonal frequency division multiplexing OFDM symbol resources in the subframe under non-In-band operation; and/or, the size of the scheduling window does not exceed that under In-band operation.
  • the size of the scheduling window, and the size of the transmission window does not exceed the transmission window size under In-band operation.
  • the information includes, but is not limited to, an NB-IOT SIB1 message and a paging Paging message.
  • the signaling includes PBCH signaling.
  • the first 3 OFDM symbols of the primary/secondary synchronization PSS/SSS subframe are transmitted for the PBCH transmission.
  • An embodiment of the present invention further provides an information transmission apparatus, including a setting module and a processing module, where
  • one scheduling window includes K transmission windows, one transmission window includes P available subframes, K is an integer greater than 0, and P is an integer greater than one;
  • a processing module configured to utilize the available subframes in the transmission window to transmit information.
  • one of the scheduling windows includes: N1 PBCH scheduling periods; or, includes N2 PBCH sub-block periods;
  • One of the transmission windows includes: half or M PBCH sub-block periods; or, across consecutive P available subframes;
  • N1, N2 and M are integers greater than 0;
  • Each PBCH scheduling period includes at least one PBCH sub-block period.
  • processing module is specifically configured to:
  • L is an integer greater than 0 and less than or equal to K
  • Q is an integer greater than one.
  • the transmitting manner of transmitting information on the obtained Q available subframes includes:
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for performing the implementation of the information transmission in the above embodiment.
  • the technical solution of the present application includes: setting a transmission window in a scheduling window; wherein, one scheduling window includes K transmission windows, one transmission window includes P available subframes, and K is an integer greater than 0, P Is an integer greater than 1; the information is transmitted using available subframes in the transmission window.
  • the technical solution provided by the present invention by using at least two subframes in a transmission window to transmit information, so that channel coding or rate matching for system information such as SIB1 messages is no longer limited to a single subframe, and is applicable to NB-IOT.
  • the system's system information is transmitted, and the transmission performance of system information such as NB-IOT SIB1 messages is guaranteed.
  • FIG. 1 is a flow chart of a method for transmitting information according to the present invention
  • FIG. 2 is a schematic diagram of a definition of a transmission window of the present invention.
  • FIG. 3 is a schematic diagram of intermittently occupying a transmission window of the present invention, continuously occupying available subframes in the window;
  • FIG. 4 is a schematic diagram of intermittently occupying a transmission window of the present invention, intermittently occupying available subframes in the window;
  • 5 is a schematic diagram of continuously occupying a transmission window and continuously occupying available subframes in a window
  • FIG. 6 is a schematic diagram of continuously occupying a transmission window according to the present invention, and intermittently occupying available subframes in the window;
  • FIG. 7(a) is a schematic diagram showing an example of a candidate transmission window position of the present invention.
  • FIG. 7(b) is a schematic diagram showing another example of a candidate transmission window position of the present invention.
  • FIG. 9(a) is a schematic diagram showing an example of a candidate subframe position according to the present invention.
  • 9(b) is a schematic diagram showing another example of a candidate subframe position according to the present invention.
  • FIG. 10 is a schematic diagram of correspondence between different types of PCIDs and candidate subframe positions according to the present invention.
  • 11 is a schematic diagram of correspondence between different types of transmission window numbers and candidate subframe positions according to the present invention.
  • FIG. 13 is a schematic diagram of a second PBCH resource in a non-In-band operation according to the present invention.
  • FIG. 14 is a schematic structural diagram of a system information transmission apparatus according to the present invention.
  • FIG. 1 is a flowchart of a method for transmitting information according to the present invention. As shown in FIG. 1, the method includes:
  • Step 100 Setting a transmission window in the scheduling window; wherein, one scheduling window includes K transmission windows, one transmission window includes P available subframes, K is an integer greater than 0, and P is an integer greater than 1.
  • the scheduling window may also be referred to as a scheduling period, and the transmission window may also be referred to as a repetition period or a repeated transmission interval; the transmission of information within a transmission window of the scheduling window is regarded as a transmission of information within the scheduling window, one
  • the number of transmission windows K included in the scheduling window is equivalent to the maximum number of repeated transmissions supported by the scheduling window.
  • a transmission window includes P available subframes, and does not mean that one transmission window includes only P subframes. In other words, a transmission window may include more subframes than P, but among them, There are only P available subframes for transmitting information.
  • any one of the available subframes belongs to the specified subframe set
  • PSS/SSS Primary/Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the specified subframe set is a subframe set composed of subframes with all subframe numbers 0, 4, 5, and 9;
  • TDD Time Division Duplex
  • the specified subframe set is a subframe set composed of subframes with all subframe numbers 0, 1, 5, and 6, or is composed of all subframes
  • K transmission windows are defined within a scheduling window, where K is an integer greater than 0; and there is no overlap between different transmission windows.
  • the one of the scheduling windows includes N1 physical broadcast channel (PBCH) scheduling periods, or includes N2 PBCH sub-block periods; one transmission window includes half or M PBCH sub-block periods, or is continuous P available subframes.
  • N1, N2, and M are integers greater than 0; wherein each PBCH scheduling period includes at least one PBCH sub-block period, such as eight or the like.
  • the PBCH scheduling period or the PBCH sub-block period includes an integer number of radio frames, and the PBCH scheduling period may be referred to as a PBCH transmission time interval (TTI), indicating a time interval for transmitting the PBCH coding block, and a PBCH sub-block.
  • TTI PBCH transmission time interval
  • the period may be referred to as a PBCH (coded) sub-block interval or a PBCH (coded) sub-block transmission interval, indicating a time interval in which a PBCH coded sub-block is transmitted; wherein, one PBCH coded block includes at least one PBCH coded sub-block, and different PBCH code-sub-blocks
  • Step 101 Transmitting information by using available subframes in the transmission window.
  • the transmission information includes a transmission information and a reception information, which respectively correspond to the base station and the terminal device.
  • the step specifically includes: acquiring L transmission windows (such as L transmission windows numbered W0, W1, ..., Wi, ..., WL-1) for transmitting information such as SIB1 messages in the K transmission windows;
  • L is equivalent to the number of repeated transmissions of the information within the scheduling window;
  • the value of P when a transmission window is across consecutive P available subframes, the value of P may be set equal to the value of Q. In this case, there is only one candidate position for the Q available subframes in which information is transmitted in one transmission window.
  • transmitting information on the obtained Q available subframes includes:
  • the number of channel coded data of the information is equal to the number of channel coded data that can be carried by the Q available subframes; the channel coded data of the information is according to a radio frame, a subframe, and an Orthogonal Frequency Division Multiplexing (OFDM)
  • the number of symbols is sequentially mapped to Q available subframes, that is, the channel coded data is preferentially mapped to the numbered radio frame, subframe, and OFDM symbol; in this case, the above Q available subframes can be considered as jointly coded. .
  • the channel coding of the information is obtained according to the number of available subframes Q and the number of the transmission window in which the information is transmitted in the transmission window.
  • the data includes: obtaining a redundancy version (RV, Redundancy Version) of the channel coded data of the information according to the number of the transmission window according to the number of channel coded data obtained by the number of subframes Q in which the information is transmitted in the transmission window.
  • RV Redundancy Version
  • the channel coded data of which RV is specifically selected as the channel coded data of the current transmission window information depends on the number of the transmission window, for example, assuming two RVs are supported, even
  • the numbered transmission window may select channel coding data of the first RV, and the odd numbered transmission window may select channel coding data of the second RV; wherein the number of the transmission window is within the range of L transmission windows of the transmission information Number (logical number), ranging from 0 to (L-1).
  • obtaining L transmission windows for transmitting information includes:
  • the non-signaling indication mode can simplify the design and/or avoid the control signaling overhead, and the signaling indication mode can increase the flexibility of system design and scheduling.
  • determining the location of the L transmission windows of the transmission information according to the PCID includes:
  • All PCIDs are classified into X classes according to a preset rule, wherein X is an integer greater than 0, indicating the number of candidate positions of L transmission windows in the scheduling window for transmitting information; setting the X-type PCID and transmitting information
  • the X candidate positions of the L transmission windows are in one-to-one correspondence.
  • the pre-set rule includes: making the following expressions: mod (PCID, X) or mod (floor (PCID/Y), X) the same PCID of the same category.
  • mod (PCID, X) or mod (floor (PCID/Y), X) the same PCID of the same category.
  • the PCID whose value is 0 belongs to the PCID of the first type, and the PCID whose value is 1 belongs to the PCID of the second type, and so on, so that the PCID whose expression takes the value X-1 belongs to the Xth.
  • Class PCID for the first type of PCID, information is transmitted at the first candidate location, for the second type of PCID, information is transmitted at the second candidate location, and so on, for the first type of PCID, information is transmitted at the Yth candidate location.
  • mod represents a remainder operation
  • floor represents an integer operation down
  • Y is an integer greater than 0, representing the number of candidate positions of Q available subframes in a transmission window.
  • L transmission windows within the scheduling window may be randomly selected according to the PCID, and the adjacent transmission window intervals are random.
  • L different values may be randomly generated according to the PCID, and the value ranges from 0 to K-1, where K represents the number of transmission windows included in one scheduling window, and sequentially corresponds to the number of selected L transmission windows (equivalent to the transmission window position).
  • the L transmission windows numbered as the above values are used as L transmission windows for transmitting information.
  • Randomly generating L different values according to the PCID includes: first, generating a sufficiently long pseudo-random sequence according to the cell PCID, for example, using the PCID as an initialization value of the pseudo-random sequence generator, wherein the pseudo-random sequence generator can inherit the existing LTE system a pseudo-random sequence generator employed; then, generating L different values according to the pseudo-random sequence, for example, sequentially extracting K bit sequences of length D (an integer greater than 1) from the first bit of the pseudo-random sequence (number 0 to K-1), the above K bit sequences are reordered in ascending order of values (or from large to small), and the number of the preceding L bit sequences after sorting is used as L randomly generated according to the PCID. Different values.
  • the sequence number with the highest number is pre-defined to be larger (or smaller) than the sequence with the number lower. Value.
  • acquiring Q available subframes for transmitting information in the transmission window includes:
  • Predetermining or signaling the number of available subframes Q for transmitting information within the transmission window Predefining or signaling the location of the Q available subframes within the transmission window for transmitting the information, or, according to the PCID and / Or the number of the transmission window determines the location of the Q available subframes in the transmission window in which the information is transmitted.
  • the non-signaling indication mode can simplify the design and/or avoid the control signaling overhead, and the signaling indication mode can increase the flexibility of system design and scheduling.
  • Determining the locations of the Q available subframes in a transmission window including:
  • All PCIDs are classified into Y classes according to a first preset rule, where Y is an integer greater than 0, indicating the number of candidate positions of Q available subframes in the transmission window; and setting Q class PCID and Q information for transmitting information
  • the Y candidate positions of the available subframes are in one-to-one correspondence; wherein the first preset rule includes: making the following expression: mod (PCID, Y) or mod (floor (PCID/X), Y), the same PCID Belong to the same category.
  • mod (PCID, Y) or mod (floor (PCID/X), Y) the same PCID Belong to the same category.
  • the PCID whose value is 0 belongs to the PCID of the first type, so that the PCID whose expression takes the value 1 belongs to the PCID of the second type, and so on, so that the expression takes the value of the PCID of (Y-1).
  • Type 1 PCID Belongs to the Class Y PCID; for the Type 1 PCID to transmit information at the first candidate location, for the Type 2 PCID, to transmit information at the second candidate location, and so on, for the Type Y PCID, to transmit information at the Yth candidate location .
  • mod represents the remainder operation
  • floor represents the integer and operation down
  • X is an integer greater than 0, representing the number of candidate positions of the L repeating windows for transmitting information within a scheduling window.
  • all the transmission window numbers NTW are classified into the Y class according to the second preset rule, and the number of the Y-type transmission window is set to correspond one-to-one with the Y candidate positions of the Q available subframes of the transmission information; Including: make the following expression: mod (NTW, Y), the same repeating window number of the same category belongs to the same category.
  • mod (NTW, Y)
  • the NTW whose expression takes a value of 0 belongs to the first class number
  • the NTW whose expression takes the value 1 belongs to the second class number, and so on, so that the NTW whose expression takes the value Y-1 belongs to the first Y.
  • Class number for the first class number, information is transmitted at the first candidate position, for the second class number, information is transmitted at the second candidate position, and so on, and for the first class number, information is transmitted at the Yth candidate position.
  • mod represents the remainder operation.
  • the combination of all the PCIDs and the transmission window number NTW is divided into the Y class according to the third preset rule, and the number of the Y-type transmission window is set to correspond one-to-one with the Y candidate positions of the Q available subframes of the transmission information;
  • the third pre-set rule includes the following expression mod (PCID+NTW, Y) or mod(floor(PCID/X)+NTW, Y), and the combination of the PCID and the duplicate window number having the same value belongs to the same category.
  • the combination that makes the expression take the value of 0 belongs to the combination of the first type, so that the combination whose expression takes the value 1 belongs to the combination of the second type, and so on, so that the combination whose expression takes the value Y-1 belongs to the first Y.
  • Class combination for the first type of combination, information is transmitted at the first candidate position, for the second type of combination, information is transmitted at the second candidate position, and so on, and for the Yth type combination, information is transmitted at the Yth candidate position.
  • mod represents a remainder operation
  • floor represents an integer operation down
  • X is an integer greater than 0, indicating the number of candidate positions of L repeat windows for transmitting information within a scheduling window.
  • Q available subframes in the transmission window may be randomly selected according to the PCID and/or the transmission window number, and the intervals of adjacent available subframes are random.
  • Q different values may be randomly generated according to the PCID and/or the transmission window number, and the value range may be 0 to (P-1), where P represents the number of available subframes included in one transmission window, and sequentially corresponds to Q available sub-frames.
  • P represents the number of available subframes included in one transmission window, and sequentially corresponds to Q available sub-frames.
  • the number of frames (equivalent to the available subframe position), the Q available subframes numbered as the above values are used as the Q available subframes for transmitting information in the current transmission window.
  • the positions of the Q available subframes in which the different cells and/or different transmission windows transmit information in the transmission window are Random, this is advantageous to achieve randomization of interference between different cells, thereby facilitating the reduction of interference.
  • Generating Q different values according to the PCID and/or the transmission window number includes: first, generating a sufficiently long pseudo-random sequence, such as a PCID or transmission window number, based on the PCID and/or the transmission window number, or determining based on the PCID and the transmission window number.
  • a new value for example, a new value obtained by a summation operation
  • the pseudo-random sequence generator can inherit the pseudo-random sequence generator employed by the existing LTE system;
  • Generating Q different values according to the pseudo-random sequence for example, sequentially cutting P bit sequences (numbered from 0 to (P-1)) having a length of D (an integer greater than 1) from the first bit of the pseudo-random sequence,
  • P bit sequences are reordered according to the order of the values from small to large (or large to small), and the numbers of the preceding Q bit sequences after sorting are used as Q randomly generated according to the PCID and/or the transmission window number.
  • the sequence number of the pre-defined number is greater than (or less than) the number. The sequence value after.
  • the indication manner includes:
  • a joint encoding of the transmission window number L of the transmission information and the transport block size (TBS) of the information or a joint encoding of the number of available subframes Q of the information transmitted in the transmission window and the TBS of the information; or the number of transmission windows of the transmission information L and the joint coding of the number of available subframes Q in which the information is transmitted in the transmission window; or the number L of transmission windows of the transmission information, the number of available subframes Q in which the information is transmitted in the transmission window, and the joint coding of the TBS of the information.
  • the joint coding means that at least two contents are simultaneously indicated by using one field; for example, if the number L of transmission windows of the transmission information, the number of available subframes Q in which the information is transmitted in the transmission window, and the joint coding of the TBS of the information, that is, It means that the number of transmission windows L, the number of available subframes Q and the value of TBS are simultaneously indicated by one field.
  • the L transmission windows for transmitting information in the K transmission windows are consecutive or discontinuous L transmission windows
  • the Q available subframes for transmitting information in the transmission window are continuous or discontinuous.
  • the specific transmission scheme can include the following four categories:
  • the square hatching indicates available subframes intermittently occupied in the same transmission window, At the same time, it indicates that the transmission window for transmitting information is continuous.
  • the candidate positions of the L transmission windows of the transmission information include floor(K/L); the L transmission windows corresponding to the jth candidate position are:
  • L consecutive transmission windows starting from the transmission window numbered L ⁇ (j-1), or starting from the transmission window numbered (j-1) and the adjacent transmission window spacing is floor(K/L) L non-contiguous transmission windows; wherein j is an integer greater than or equal to 1 and less than or equal to floor(K/L), and floor represents an integer operation down.
  • candidate positions of Q available subframes in which information is transmitted in a transmission window including floor (P/Q);
  • Q available subframes corresponding to the jth candidate position are: from the number Q ⁇ (j- 1) Q consecutive available subframes starting from available subframes, or Q discontinuous starting from available subframes numbered (j-1) and adjacent available subframe spacing is floor(P/Q) A usable subframe; wherein j is an integer greater than or equal to 1 less than or equal to floor(P/Q), and floor represents an integer operation down.
  • the technical solution provided by the present invention by using at least two subframes in the transmission window to transmit information, so that channel coding or rate matching for system information such as SIB1 messages is no longer limited to a single subframe, and is particularly suitable for, for example, NB-
  • system information of the IOT system is transmitted, and the transmission performance of system information such as NB-IOT SIB1 messages is guaranteed.
  • the method of the present invention further includes:
  • the transmission window size and/or the scheduling window size are predefined or signaled.
  • the pre-defined way can simplify the design and avoid the control signaling overhead.
  • the signaling indication can increase the flexibility of system design and scheduling.
  • the signaling is further used to indicate at least one of the following:
  • one superframe includes at least two radio frames.
  • the frequency offset between different physical channels is applicable to the In-band operation, including: the NB-IOT physical broadcast channel PBCH center frequency point and the NB-IOT physical downlink control channel PDCCH/physical downlink shared channel PDSCH center frequency point
  • the relative frequency offset (for example, one or more subcarriers).
  • the RS sequence configuration is applicable to the In-band operation.
  • the non-In-band operation can reuse the RS sequence configuration parameters under the In-band operation;
  • the specific RS sequence configuration includes One of the following: an index of the PRB used as the narrowband of the NB-IOT, a frequency offset of the NB-IOT narrowband relative to the bandwidth center frequency of the LTE system; wherein the index of the PRB is expressed in the maximum LTE system bandwidth configuration (for example, 110 PRBs) Index of PRB, narrow-band phase
  • the offset to the bandwidth center frequency point of the LTE system indicates the frequency offset of the center or edge frequency of the NB-IOT narrowband relative to the bandwidth center frequency point of the LTE system (for example, one or more PRBs); according to any of the above two information
  • One can indirectly obtain the RS sequence value.
  • the uplink access capability of the base station includes, but is not limited to, indicating whether the base station can support a single-carrier (Multi-tone)-based uplink access mode and a corresponding carrier bandwidth (for example, 3.75 kHz or 15 kHz), the downlink control channel configuration is not limited to the time-frequency resource location for indicating the downlink control channel.
  • the operation mode and the RS sequence configuration may use joint coding. For example, if the field for indicating the above content includes 2 bits, and only the In-band operation requires the configuration of the RS sequence, the 00 may be used to indicate the non-In-band operation. Use 01 for In-band operation and first RS sequence configuration under In-band operation, 10 for In-band operation and second RS sequence configuration for In-band operation, and 11 for In-band operation And a third RS sequence configuration under In-band operation.
  • the physical downlink channel configured with the number of RS ports and the physical downlink received before receiving the physical downlink channel configured with the number of RS ports is mapped according to the port RS of 4 (the maximum number of ports supported by the cell-specific RS of the LTE system). (If the physical downlink channel that receives the number of RS ports is received, there is no need to receive other physical downlink channels, but only the RS is carried. The physical downlink channel of the number of ports is mapped according to the 4-port RS.
  • the physical downlink channel received after receiving the physical downlink channel configured with the number of RS ports is configured according to the number of RS ports (for example, 2 or 4) of the number of RS ports.
  • Resource mapping is performed; when the content of the signaling and the content of the information do not include the RS port number configuration, all physical downlink channels perform resource mapping according to the 4-port RS.
  • the physical downlink channel does not include the primary synchronization/secondary synchronization PSS/SSS signal; the resource mapping according to the RS of the 2 or 4 port means that the physical downlink channel data is not mapped to the transmission 2 or 4 port in the process of resource mapping.
  • the resource unit transmitting the RS of the 2 or 4 port does not carry the physical downlink channel data.
  • the method avoids the number of ports for the terminal device to blindly detect the RS, thereby reducing the implementation complexity of the terminal device.
  • the transmitted information occupies all OFDM symbols within the subframe.
  • the first three OFDM symbols in the subframe are used in the downlink control channel PDCCH region of the LTE system, so that they can no longer be used for other NB-IOT data (including the information) transmission; Under non-In-band operation, the first three OFDM symbols in the subframe can be used for other NB-IOT data transmission.
  • the operation mode of the NB-IOT system is In this case, all OFDM symbols in the subframe can be used to transmit the information.
  • the first 3 OFDM symbols of the primary/secondary synchronization (PSS/SSS) subframe are transmitted for PBCH transmission.
  • other OFDM symbols except the first 3 OFDM symbols in the first PBCH subframe are used as the first PBCH resource, and the front side of the second PBCH subframe is used in the non-In-band operation.
  • the 3 OFDM symbols are used as the second PBCH resource, which further improves the PBCH transmission performance under the non-In-band operation; wherein the first PBCH subframe is a subframe for transmitting the PBCH under the In-band operation, and the second PBCH sub-
  • the frame includes the above-described first PBCH subframe and a subframe in which the PSS/SSS is transmitted.
  • the transmitted information includes but is not limited to the NB-IOT SIB1 message and the paging Paging message; This includes but is not limited to PBCH signaling.
  • the content of the SIB1 message may include all configuration parameters related to the initial access.
  • the terminal device does not need to receive other system messages except the SIB1 message during the initial access process, thereby simplifying the access process and avoiding additional power loss of the terminal device, which is conducive to power saving.
  • information such as SIB1 messages may be transmitted using the same scheduling window and transmission window size.
  • setting the scheduling window includes The 4 PBCH scheduling periods and the transmission window include 2 PBCH sub-block periods; or, since for non-In-band operations, there may be more subframes for information such as SIB1 message transmission, for example, the FDD system may no longer be limited to the number.
  • the size of the scheduled window may not exceed the size of the scheduling window under In-band operation, and the size of the set transmission window may not exceed that under In-band operation.
  • the scheduling window includes four PBCH scheduling periods, and the transmission window includes two PBCH sub-block periods.
  • the scheduling window includes two PBCH scheduling periods.
  • the transmission window includes one PBCH sub-block period.
  • the first embodiment gives a preferred value of the scheduling window size, the transmission window size, and the number of available subframes Q for transmitting information within the transmission window.
  • the PBCH sub-block period is 8 radio frames and the PBCH scheduling period is 64 radio frames, that is, one PBCH scheduling period includes 8 PBCH sub-block periods; then, the preferred values of the transmission window size include : 8, 16 or 32 radio frames, that is, PBCH sub-block periods satisfying 1, 2, and 4 times; in addition, the preferred value of the scheduling window size includes: 64, 128, 256, or 512 radio frames, that is, 1, 2, 4 are satisfied. And 8 times the PBCH scheduling period.
  • Table 1 is a combination of the preferred values of the transmission window size and the scheduling window size, and the number K of transmission windows included in a corresponding scheduling window, as shown in Table 1:
  • the number of available sub-frames Q for transmitting information within the transmission window is typically only related to the information TBS, and does not depend on the transmission window size and the scheduling window size.
  • the preferred number of available subframes Q for transmitting information within the transmission window preferably includes: 4, 6, or 8 subframes.
  • the second embodiment gives a determination of the scheduling window size and the transmission window size.
  • the scheduling window size and the transmission window size may be set to a fixed value; or, the scheduling window size is set to a fixed value, the transmission window size is set to be configurable; or the scheduling window size is set to be configurable, and the transmission window size is set.
  • Set to configurable Table 2 is an example of a field (2 bits) used to jointly indicate the size of the scheduling window and the size of the transmission window when the scheduling window size and the transmission window size are set to configurable, as shown in Table 2:
  • the third embodiment shows the number of transmission windows L and the information TBS of the transmission information in the scheduling window when the number L of transmission windows for transmitting information in the scheduling window and the number of available subframes Q for transmitting information within one transmission window are indicated by signaling.
  • the number of information TBSs is six, as shown in Table 3.
  • the field for indicating the information TBS, the number of transmission windows L for transmitting information in the scheduling window, and the number of available subframes Q for transmitting information within the transmission window includes 5 bits.
  • the number of available subframes Q for transmitting information in the transmission window can be limited to 6 subframes, which is equivalent to the number of transmission windows L of the information TBS and the transmission information in the scheduling window. Joint encoding of parameters.
  • the fourth embodiment is set to determine a scheduling window including K transmission windows
  • One way is a predefined way. For example, suppose a scheduling window includes 16 (K) transmission windows, and the possible values of the number of transmission windows (L) for transmitting information in one scheduling window are 4 and 8; The mapping between the number of transmission windows for transmitting information in the scheduling window and the number of transmission windows for transmission information (equivalent to the position of the transmission window) is fixed, as shown in Table 4 below.
  • Transmission window number of transmission information L Number of L transmission windows for transmitting information 4 0,4,8,12 8 0,2,4,6,8,10,12
  • the number of the transmission window of the foregoing transmission information is a number (physical number) within a range of 16 transmission windows included in the scheduling window, and the value ranges from 0 to 15.
  • the location of the transmission window for transmitting information in one scheduling window is independent of the cell PCID. Different cells always occupy the same transmission window, that is, the transmission windows occupied by different cells completely overlap.
  • Another way is to determine the location of the L transmission windows that transmit information based on the PCID:
  • a scheduling window includes 8 (K) transmission windows, and 4 (L) transmission windows in one scheduling window are used to transmit information; at this time, candidates for 4 transmission windows for transmitting information in one scheduling window
  • the four transmission windows corresponding to one candidate position may be four consecutive transmission windows, as indicated by the hatched shading in FIG. 7(a); or may be four consecutive transmission windows, for example, The two transmission windows appear at equal intervals, as indicated by the shaded hatching in Figure 7(b).
  • the specific operation process includes:
  • PCIDs are classified into two categories according to the following expression: mod (PCID, 2) or mod (floor (PCID/Y), 2), where Y represents the number of candidate positions of available subframes for transmitting information within a transmission window ( For example, the value is 3); the PCID whose value is 0 belongs to the PCID of the first type, that is, the PCID of the first type is equivalent to the even PCID, and the PCID whose expression takes the value of 1 belongs to the PCID of the second type, that is, the first The type 2 PCID is equivalent to the odd PCID; the even and odd PCID respectively have a one-to-one correspondence with the two candidate positions, as shown in FIG. 8, that is, for the even PCID, the information is transmitted at the first candidate position, and for the odd PCID, Information is transmitted at the second candidate location.
  • the fifth embodiment provides a determination of a transmission window containing P available subframes
  • One way is a predefined way. For example, suppose a transmission window contains 16 (P) available subframes, and the possible values of the number of available subframes (Q) for transmitting information in one transmission window are 4, 6, and 8; The specific way is to fix the mapping between the number of available subframes in the transmission window and the number of available subframes (equivalent to the location of available subframes), as shown in Table 5.
  • Number of available subframes Q for transmitting information within the transmission window Number of available subframes 4 0,4,8,12 6 0,3,6,9,12,15 8 0,2,4,6,8,10,12,14
  • the location of the available subframes for transmitting information within a transmission window is independent of the PCID and the number of the transmission window, ie, the available information for the transmission of information for different cells and/or different transmission windows.
  • the frames are always the same, which helps simplify the design.
  • the six available subframes corresponding to one candidate location may be consecutive six available subframes, as shown by the hatched shading in FIG. 9(a); or may be discontinuous six available subframes, such as It is displayed at equal intervals of 3 available sub-frames, as shown by the shaded hatching in Figure 9(b).
  • the specific operation process includes:
  • PCIDs are classified into three categories according to the following expression: mod (PCID, 3) or mod (floor (PCID/X), 3), where X represents the number of candidate positions of the transmission window in which information is transmitted within a scheduling window (for example, The value is 2); the PCID whose value is 0 belongs to the PCID of the first type, so that the PCID whose expression takes the value 1 belongs to the PCID of the second type, and the PCID whose expression takes the value 2 belongs to the PCID of the third type.
  • the above three types of PCIDs are respectively in one-to-one correspondence with the three candidate positions, as shown in FIG. 10, that is, for the first type of PCID, the information is transmitted at the first candidate position, and for the second type of PCID, the second candidate position is transmitted.
  • Information, for the third type of PCID information is transmitted at the third candidate location.
  • the number of all transmission windows is NTW (for example, if the number L of transmission windows for transmitting information in a scheduling window is equal to 8, the value of NTW is 0 to 7) is classified into three categories according to the following expression: mod(NTW, 3).
  • the NTW whose expression takes a value of 0 belongs to the first class number, so that the NTW whose expression takes the value 1 belongs to the class 2 number, and the NTW whose expression takes the value 2 belongs to the class 3 number; the above three class numbers
  • PCID and transmission window number NTW for example, if the number L of transmission windows for transmitting information in one scheduling window is equal to 8, NTW ranges from 0 to 7
  • mod (PCID+NTW, 3) Or mod(floor(PCID/X)+NTW,3) is divided into three categories, where X represents the number of candidate positions of the transmission window in which information is transmitted within a scheduling window (for example, the value is 2);
  • the combination of 0 belongs to the combination of the first type, so that the combination whose expression takes the value 1 belongs to the combination of the second type, and the combination whose expression takes the value of 2 belongs to the combination of the third type; the above three types of combinations are respectively associated with the three candidate positions.
  • One-to-one correspondence as shown in FIG. 12, that is, for the first type of combination, information is transmitted at the first candidate position, for the second type of combination, information is transmitted at the second candidate position, and for the third type of combination, at the third type.
  • the candidate location transmits information.
  • the sixth embodiment gives an example of a second PBCH resource under non-In-band operation.
  • FIG. 13 is a schematic diagram of a second PBCH resource under non-In-band operation according to the present invention.
  • the remaining OFDM symbols except the first 3 OFDM symbols in the last subframe of each radio frame are used as PSS/SSS resources, as shown in FIG.
  • the OFDM symbol resource allocated to the PBCH sub-block includes two parts: the first part may be referred to as the first PBCH resource, as shown by the snowflake shade in FIG. 13, that is, the first in each radio frame.
  • the OFDM symbol resources other than the first 3 OFDM symbols in the subframe (the first PBCH subframe), and the second portion may be referred to as the second PBCH resource, as shown by the oblique checkered shadow in FIG. 13, that is, the PSS is transmitted.
  • /SSS subframe the last subframe of each radio frame
  • the first 3 OFDM symbols in the first PBCH subframe the first subframe in each radio frame.
  • the transmitted PBCH channel coded data is based on the number of second PBCH resources in one second PBCH subframe (the first and last subframes in each radio frame) (ie, 3 OFDM symbols) are generated, the number of generated PBCH channel coded data is equal to the number of PBCH channel coded data that can be carried by the second PBCH resource in one second PBCH subframe; the modulated PBCH channel coded data According to the number of the OFDM symbol, it is sequentially mapped to three OFDM symbol resources used as the second PBCH resource for each of the second PBCH subframes in one PBCH sub-block period, that is, 16 in one PBCH sub-block period.
  • the second PBCH resource of the second PBCH subframe is repeatedly transmitted 16 times.
  • FIG. 14 is a schematic structural diagram of a structure of an information transmission apparatus according to the present invention. As shown in FIG. 14, at least a setting module and a processing module are included;
  • one scheduling window includes K transmission windows, one transmission window includes P available subframes, K is an integer greater than 0, and P is an integer greater than one;
  • a processing module configured to utilize the available subframes in the transmission window to transmit information.
  • One of the scheduling windows includes N1 PBCH scheduling periods, or includes N2 PBCH sub-block periods;
  • One of the transmission windows includes half or M PBCH sub-block periods, or, across consecutive P available sub-frames;
  • N1, N2 and M are integers greater than 0;
  • Each PBCH scheduling period includes at least one PBCH sub-block period.
  • the processing module of the device of the present invention is specifically configured to:
  • L transmission windows (such as L transmission windows numbered W0, W1, ..., Wi, ..., WL-1) for transmitting information such as SIB1 messages in K transmission windows; for L transmission windows a transmission window, which acquires Q available subframes for transmitting information in the transmission window, and transmits information on the obtained Q available subframes; wherein L is an integer greater than 0 and less than or equal to K, and Q is greater than 1 The integer.
  • the information transmitted on the obtained Q available subframes includes:
  • the foregoing technical solution of the embodiment of the present invention may be applied to an information transmission process by setting a transmission window in a scheduling window; wherein, one scheduling window includes K transmission windows, and one transmission window includes P available subframes, and K is greater than An integer of 0, P is an integer greater than one; information is transmitted using available subframes in the transmission window.
  • the technical solution provided by the present invention by using at least two subframes in a transmission window to transmit information, so that channel coding or rate matching for system information such as SIB1 messages is no longer limited to a single subframe, and is applicable to NB-IOT.
  • the system's system information is transmitted, and the transmission performance of system information such as NB-IOT SIB1 messages is guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息传输方法及装置,包括:在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包含P个可用子帧,K为大于0的整数,P为大于1的整数;利用传输窗中的可用子帧传输信息。本发明提供的技术方案,通过使用一个传输窗中的至少两个子帧来传输信息的方式,使针对***信息如SIB1消息的信道编码或速率匹配不再局限于单子帧内,尤其适用于如NB-IOT***的***信息传输,并保证了***信息如NB-IOT SIB1消息的传输性能。

Description

一种信息传输方法及装置 技术领域
本发明涉及蜂窝物联网(C-IOT,Cellular Internet Of Things)技术,尤指一种信息传输方法及装置。
背景技术
为满足C-IOT需求,命名为窄带物联网(NB-IOT,NarrowBand-Cellular Internet Of Things)的新的接入***在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)组织第69次全会中被提出。其中,NB-IOT***关注低复杂度和低吞吐量的射频接入技术,主要的研究目标包括:改善的室内覆盖,巨量低吞吐量用户设备的支持,低的延时敏感性,超低设备成本,低的设备功率损耗以及网络架构。NB-IOT***的上下行的发射带宽都是180kHz,与长期演进(LTE,Long Term Evolution)***一个物理资源块(PRB,Physical Resource Block)的带宽相同,这有利于在NB-IOT***中重用现有LTE***的有关设计。另外,NB-IOT***还支持3种不同的操作模式:1)独立(Stand-alone)操作,如利用当前被增强型数据速率GSM演进无线接入网络(GERAN,GSM EDGE Radio Access Network)***使用的频谱以代替1个或多个GSM载波;2)保护带(Guard band)操作,如利用在一个LTE载波保护带范围内的未被使用的资源块;3)带内(In-band)操作,如利用在一个正常的LTE载波范围内的资源块。
在LTE***中,第一***信息广播(SIB1,System Information Broadcast)消息用于承载必要的***信息。其中,SIB1消息是在每一个偶数无线帧的子帧5被发送,相关的信道编码或速率匹配过程依赖于单子帧即每一个子帧5内为SIB1消息分配的PRB。由于在现有LTE***中,为SIB1消息分配的PRB数可以根据SIB1消息的传输块大小(TBS,Transport Block Size)动态调整以获取合适的编码速率,所以,在这种情况下,基于单子帧的信道编码或速率匹配是可行的。
但是,由于NB-IOT***的带宽仅为180kHz,只相当于LTE***的1个PRB资源,也就是说,为NB-IOT SIB1消息分配的PRB数至多只能为1个,这样,按照现有发送SIB1的方式,也就无法再根据NB-IOT SIB1消息的TBS动态调整分配的PRB数了,在这种情况下,当NB-IOT SIB1消息的TBS超过某一门限值时,如果还基于单子帧的信道编码或速率匹配,无疑将会严重限制NB-IOT SIB1消息的传输性能。
发明内容
本发明实施例提供一种信息传输方法及装置,适用于NB-IOT***的***信息传输,并保证***信息的传输性能。
为了达到本发明目的,本发明实施例提供了一种信息传输方法,包括:
在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包括P个可用子帧,K为大于0的整数,P为大于1的整数;
利用传输窗中的可用子帧传输信息。
可选地,一个所述调度窗包括:N1个物理广播信道PBCH调度周期;或者,N2个PBCH子块周期;
一个所述传输窗包括:半个或M个PBCH子块周期;或者,跨连续的P个可用子帧;
其中,N1、N2和M均是大于0的整数;
每个PBCH调度周期包括至少一个PBCH子块周期。
可选地,所述利用传输窗中的可用子帧传输信息包括:
获取在所述K个传输窗内用于传输所述信息的L个传输窗;
对于所述L个传输窗内的任一个传输窗,获取传输窗内用于传输所述信息的Q个可用子帧,并在获得的Q个可用子帧上传输所述信息;
其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
可选地,所述可用子帧中的任一个属于在指定子帧集合中除传输主同步/辅同步PSS/SSS和PBCH的子帧以外的剩余子帧的集合。
可选地,对于频分双工FDD***,所述指定子帧集合是由所有子帧编号为0、4、5和9的子帧所构成的子帧集合;
对于时分双工TDD***,所述指定子帧集合是由所有子帧编号为0、1、5和6的子帧所构成的子帧集合;或者,是由所有子帧编号为1和6的子帧所构成的子帧集合。
可选地,所述在获得的Q个可用子帧上传输所述信息包括:
根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取所述信息的信道编码数据;将获得的所述信道编码数据映射到所述Q个可用子帧上并传输。
可选地,所述根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取所述信息的信道编码数据,包括:
根据在传输窗内传输信息的可用子帧数Q获取所述信息的信道编码数据的数量,根据传输窗的编号获取所述信息的信道编码数据的冗余版本RV。
可选地,所述获取用于传输所述信息的L个传输窗包括:
预定义或通过信令指示传输所述信息的传输窗数L取值;
预定义或通过信令指示传输所述信息的L个传输窗的位置,或者根据物理小区标识PCID确定传输所述信息的L个传输窗的位置。
可选地,所述获取传输窗内用于传输所述信息的Q个可用子帧包括:
预定义或通过信令指示传输窗内传输所述信息的可用子帧数Q取值;
预定义或通过信令指示传输窗内传输所述信息的Q个可用子帧的位置,或者根据PCID和/或传输窗的编号确定所述传输窗内传输所述信息的Q个可用子帧的位置。
可选地,当通过所述信令指示所述传输所述信息的传输窗数L和/或所述传输窗内传输所述信息的可用子帧数Q时,指示方式包括:
所述传输所述信息的传输窗数L与所述信息的传输块大小TBS的联合编码;或者,所述传输窗内传输所述信息的可用子帧数Q与所述信息的TBS的联合编码;或者,所述传输所述信息的传输窗数L和所述传输窗内传输所述信息的可用子帧数Q的联合编码;或者,所述传输所述信息的传输窗数L、所述传输窗内传输所述信息的可用子帧数Q与所述***信息的TBS的联合编码。
可选地,所述在K个传输窗内用于传输信息的L个传输窗是连续或不连续的L个传输窗,以及,所述传输窗内用于传输信息的Q个可用子帧是连续或不连续的Q个可用子帧。
可选地,该方法包括:预定义或通过信令指示所述传输窗大小和/或调度窗大小。
可选地,在一个所述传输窗是跨连续的P个可用子帧时,P等于所述Q。
可选地,所述L个传输窗的候选位置包括floor(K/L)个;
第j个候选位置对应的L个传输窗为:
从编号为L·(j-1)的传输窗开始的L个连续传输窗;或者,从编号为(j-1)的传输窗开始且相邻传输窗间隔为floor(K/L)的L个非连续传输窗;
其中,所述j是大于或等于1且小于或等于floor(K/L)的整数,floor表示向下取整数运算。
可选地,根据PCID确定所述传输信息的L个传输窗的位置,包括:
将所有PCID按照预先设置的规则分为X类,其中,X是大于0整数,表示调度窗内传输信息的L个传输窗的候选位置数;
设置X类PCID与所述传输信息的L个传输窗的X个候选位置一一对应。
可选地,所述预先设置的规则包括:
使以下表达式:mod(PCID,X)或mod(floor(PCID/Y),X)取值相同的PCID属于相同类别;
其中,mod表示取余数运算,floor表示向下取整数运算,Y是大于0整数,表示一个传输窗内传输信息的Q个可用子帧的候选位置数。
可选地,传输窗内传输信息的Q个可用子帧的候选位置包括floor(P/Q)个;
第j个候选位置对应的Q个可用子帧为:
从编号为Q·(j-1)的可用子帧开始的Q个连续可用子帧,或者,
从编号为(j-1)的可用子帧开始且相邻可用子帧间隔为floor(P/Q)的Q个非连续可用子帧;
其中,所述j是大于或等于1且小于或等于floor(P/Q)的整数,floor表示向下取整数运算。
可选地,当根据所述PCID和/或传输窗的编号确定传输窗内传输信息的Q个可用子帧的位置时,包括:
将所有PCID按照第一预设规则分为Y类,其中,所述Y是大于0的整数,表示传输窗内传输信息的Q个可用子帧的候选位置数;设置所述Y类PCID与所述传输信息的Q个可用子帧的Y个候选位置一一对应;或者,
将所有传输窗编号按照第二预设规则分为Y类,设置所述Y类传输窗的编号与所述传输信息的Q个可用子帧的Y个候选位置一一对应;
或者,将所有PCID和传输窗的编号组合按照第三预设规则分为Y类,设置所述Y类传输窗的编号与所述传输信息的Q个可用子帧的Y个候选位置一一对应。
可选地,所述第一预先设置规则包括:
使以下表达式:mod(PCID,Y)或mod(floor(PCID/X),Y)取值相同的PCID属于相同类别;
所述第二预先设置规则包括:
使以下表达式:mod(NTW,Y)取值相同的重复窗编号属于相同类别;
所述第三预先设置规则包括:
使以下表达式:mod(PCID+NTW,Y)或mod(floor(PCID/X)+NTW,Y)取值相同的PCID和重复窗编号的组合属于相同类别;
其中,mod表示取余数操作,floor表示向下取整数操作,NTW表示重复窗的编号,X是大于0的整数,表示一个调度窗内传输信息的L个重复窗的候选位置数。
可选地,所述信令还用于指示以下内容中的至少一个:
无线帧编号、超帧编号、操作模式、参考信号RS序列配置、RS端口数配置、不同物理信道之间的频率偏置、基站上行接入能力和下行控制信道配置;其中,所述基站上行接入能力用于指示基站是否能支持基于单载波和/或多载波的上行接入方式和相应的载波带宽。
可选地,所述操作模式和所述RS序列配置联合编码。
可选地,对于In-band操作,
当所述信令指示的内容或所述信息的内容包括有RS端口数配置时,
承载所述RS端口数配置的物理下行信道以及在接收承载所述RS端口数配置的物理下行信道之前接收的物理下行信道,均按照4端口RS进行资源映射;在接收承载所述RS端口数配置的物理下行信道之后接收的物理下行信道按照所述RS端口数配置指示的RS端口数的RS进行资源映射;
当所述信令指示的内容或所述信息的内容不包括RS端口数配置时,
所有物理下行信道按照4端口RS进行资源映射。
可选地,当所述信令指示的内容包括有RS序列配置时,所述RS序列配置包括以下之一:用作NB-IOT窄带的物理资源块PRB的索引,NB-IOT窄带相对LTE***带宽中心频点的频率偏置。
可选地,所述信息的内容包括与初始接入相关的所有配置参数。
可选地,在非In-band操作下,所述信息占用子帧内的所有正交频分复用OFDM符号资源;和/或,所述调度窗的大小不超过在In-band操作下的调度窗的大小,以及,所述传输窗的大小不超过在In-band操作下的传输窗大小。
可选地,所述信息包括但不限于NB-IOT SIB1消息和寻呼Paging消息。
可选地,所述信令包括PBCH信令。
可选地,在非In-band操作下,传输主同步/辅同步PSS/SSS子帧前面3个OFDM符号用于所述PBCH传输。
本发明实施例还提供了一种信息传输装置,包括设置模块、处理模块;其中,
设置模块,设置为在调度窗中设置传输窗;
其中,一个调度窗包括K个传输窗,一个传输窗包括P个可用子帧,K是大于0的整数,P是大于1的整数;
处理模块,设置为利用传输窗中的可用子帧传输信息。
可选地,一个所述调度窗包括:N1个PBCH调度周期;或者,包括N2个PBCH子块周期;
一个所述传输窗包括:半个或M个PBCH子块周期;或者,跨连续的P个可用子帧;
其中,N1、N2和M均是大于0的整数;
每个PBCH调度周期包括至少一个PBCH子块周期。
可选地,所述处理模块具体设置为:
获取在所述K个传输窗内用于传输信息的L个传输窗;对于L个传输窗内的任一个传输窗,获取传输窗内用于传输信息的Q个可用子帧,并在获得的Q个可用子帧上传输所述信息;
其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
可选地,所述在获得的Q个可用子帧上传输信息的传输方式包括:
根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取信息的信道编码数据;将获得的信息的信道编码数据映射到所述Q个可用子帧上并传输。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述实施例中的信息传输的实现。
与现有技术相比,本申请技术方案包括:在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包含P个可用子帧,K为大于0的整数,P为大于1的整数;利用传输窗中的可用子帧传输信息。本发明提供的技术方案,通过使用一个传输窗中的至少两个子帧来传输信息的方式,使针对***信息如SIB1消息的信道编码或速率匹配不再局限于单子帧内,适用于NB-IOT***的***信息传输,并保证了***信息如NB-IOT SIB1消息的传输性能。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明信息传输方法的流程图;
图2为本发明传输窗的定义的示意图;
图3为本发明间歇占用传输窗,连续占用窗内可用子帧的示意图;
图4为本发明间歇占用传输窗,间歇占用窗内可用子帧的示意图;
图5为本发明连续占用传输窗,连续占用窗内可用子帧的示意图;
图6为本发明连续占用传输窗,间歇占用窗内可用子帧的示意图;
图7(a)为本发明候选传输窗位置的一种示例的示意图;
图7(b)为本发明候选传输窗位置的另一种示例的示意图;
图8为本发明不同类PCID与候选传输窗位置之间对应关系的示意图;
图9(a)为本发明候选子帧位置的一种示例的示意图;
图9(b)为本发明候选子帧位置的另一种示例的示意图;
图10为本发明不同类PCID与候选子帧位置之间对应关系的示意图;
图11为本发明不同类传输窗编号与候选子帧位置之间对应关系的示意图;
图12为本发明不同类PCID和传输窗编号组合,与候选子帧位置之间对应关系的示意图;
图13为本发明非In-band操作下的第二PBCH资源的示意图;
图14为本发明***信息传输装置的组成结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1为本发明信息传输方法的流程图,如图1所示,包括:
步骤100:在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包括P个可用子帧,K为大于0的整数,P为大于1的整数。
其中,调度窗又可以称为调度周期,传输窗又可以称为重复周期或重复传输间隔;信息在调度窗的一个传输窗范围内的传输被视为信息在该调度窗内的一次传输,一个调度窗包括的传输窗数K等价于该调度窗支持的最大重复传输次数。
需要说明的是,一个传输窗包括P个可用子帧,并不意味着一个传输窗只包括P个子帧,换句话说,一个传输窗包括的子帧数可能远超过P个,但其中的能够传输信息的可用子帧只有P个。
其中,可用子帧中的任一个属于在指定子帧集合中,
除传输主/辅同步(PSS/SSS,Primary/Secondary Synchronization Signal)和物理广播信道(PBCH,Physical Broadcast Channel)的子帧以外的剩余子帧的集合。特别地,对于频分双工(FDD,Frequency Division Duplex)***,所述指定子帧集合是由所有子帧编号为0、4、5和9的子帧所构成的子帧集合;对于时分双工(TDD,Time Division Duplex)***,所述指定子帧集合是由所有子帧编号为0、1、5和6的子帧所构成的子帧集合,或者,是由所有子 帧编号为1和6的子帧所构成的子帧集合。上述方法避免了信息的传输与PSS/SSS和PBCH传输之间的碰撞。
图2为本发明传输窗的定义的示意图,如图2所示,在一个调度窗范围内定义有K个传输窗,其中,K为大于0的整数;并且不同的传输窗之间没有重叠。
其中,一个调度窗包括N1个物理广播信道(PBCH,Physical Broadcast Channel)调度周期,或者,包括N2个PBCH子块周期;一个传输窗包括半个或M个PBCH子块周期,或者,跨连续的P个可用子帧。其中,N1、N2和M均是大于0的整数;其中,每个PBCH调度周期包括至少一个PBCH子块周期,比如8个等。在一个传输窗是跨连续的P个可用子帧时,如果一个调度窗包括的可用子帧总数非P的整数倍,最后剩余的数目小于P的可用子帧无法再构成一个完整的传输窗,从而不再用于信息的传输。
其中,一个PBCH调度周期或PBCH子块周期包括整数个无线帧,一个PBCH调度周期又可称为PBCH传输时间间隔(TTI,Transmission Time Internal),表示传输PBCH编码块的时间区间,一个PBCH子块周期又可称为PBCH(编码)子块区间或PBCH(编码)子块传输间隔,表示传输PBCH编码子块的时间区间;其中,一个PBCH编码块包括至少一个PBCH编码子块,不同PBCH编码子块使用不同扰码序列。步骤101:利用传输窗中的可用子帧传输信息。
其中,传输信息包括发送信息和接收信息,分别对应基站和终端设备。
本步骤具体包括:获取在K个传输窗内用于传输信息如SIB1消息的L个传输窗(如编号为W0,W1,…,Wi,…,WL-1的L个传输窗);其中,所述L等价于所述信息在调度窗内的重复传输次数;
对于L个传输窗内的任一个传输窗,获取传输窗内用于传输信息的Q个可用子帧,并在获得的Q个子帧上传输信息;其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
其中,在一个传输窗是跨连续的P个可用子帧时,可以设置P的取值等于Q的取值。在这种情况下,一个传输窗内传输信息的Q个可用子帧的候选位置只有唯一一个。
进一步地,在获得的Q个可用子帧上传输信息包括:
根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取信息的信道编码数据;将获得的信息的信道编码数据映射到所述Q个可用子帧上并传输。其中,信息的信道编码数据的数量等于Q个可用子帧能够承载的信道编码数据的数量;信息的信道编码数据按照无线帧、子帧和正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号的编号依次映射到Q个可用子帧,即信道编码数据优先映射到编号靠前的无线帧、子帧和OFDM符号;在这种情况下,可以认为上述Q个可用子帧是联合编码的。
其中,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取信息的信道编码 数据,包括:根据在传输窗内传输信息可用子帧数Q获取信息的信道编码数据的数量,根据传输窗的编号获取信息的信道编码数据的冗余版本(RV,Redundancy Version)。如果至少一个信道编码数据RV被信道编码器所支持,具体选择哪一个RV的信道编码数据作为当前传输窗内信息的信道编码数据依赖于传输窗的编号,例如,假设两个RV被支持,偶数编号的传输窗可以选择第1个RV的信道编码数据,奇数编号的传输窗可以选择第2个RV的信道编码数据;其中,上述传输窗的编号是在传输信息的L个传输窗范围内的编号(逻辑编号),取值范围为0至(L-1)。
进一步地,获取用于传输信息的L个传输窗包括:
预定义或通过信令指示传输信息的传输窗数L取值;
预定义或通过信令指示传输信息的L个传输窗的位置,或者,根据物理小区标识(PCID,Physical Cell Identity)确定传输所述信息的L个传输窗的位置。采用非信令指示方式可简化设计和/或避免控制信令开销,采用信令指示方式可增加***设计和调度的灵活性。
其中,根据PCID确定传输信息的L个传输窗的位置,包括:
将所有PCID按照预先设置的规则分为X类,其中,所述X是大于0的整数,表示调度窗内传输信息的L个传输窗的候选位置数;设置所述X类PCID与传输信息的L个传输窗的X个候选位置一一对应。其中,预先设置的规则包括:使以下表达式:mod(PCID,X)或mod(floor(PCID/Y),X)取值相同的PCID属于相同类别。其中,使表达式取值为0的PCID属于第1类PCID,使表达式取值为1的PCID属于第2类PCID,以此类推,使表达式取值为X-1的PCID属于第X类PCID;对于第1类PCID,在第1候选位置传输信息,对于第2类PCID,在第2候选位置传输信息,以此类推,对于第Y类PCID,在第Y候选位置传输信息。其中,mod表示取余数运算,floor表示向下取整数运算,Y是大于0的整数,表示一个传输窗内传输信息的Q个可用子帧的候选位置数。
或者,作为根据PCID确定传输窗位置的另一种选择,可以根据PCID随机选择调度窗内的L个传输窗,相邻传输窗间隔随机。具体可根据PCID随机生成L个不同数值,取值范围是0至K-1,其中K表示一个调度窗包括的传输窗数,依次对应选择的L个传输窗的编号(等价于传输窗位置),将编号为上述取值的L个传输窗,作为传输信息的L个传输窗。通过采用上述根据PCID随机选择调度窗内的L个传输窗的方法,不同小区在调度窗内传输信息的L个传输窗的位置是随机的,这样有利于实现不同小区之间的干扰的随机化,从而有利于减小干扰。
根据PCID随机生成L个不同数值包括:首先,根据小区PCID生成足够长的伪随机序列,例如,将PCID作为伪随机序列生成器的初始化值,其中,伪随机序列生成器可以沿用现有LTE***采用的伪随机序列生成器;然后,根据上述伪随机序列产生L个不同数值,例如,从伪随机序列的首个比特开始依次截取K个长度为D(大于1的整数)的比特序列(编号为0至K-1),将上述K个比特序列按照数值从小到大(或从大到小)的顺序重新排序,排序后位于前面的L个比特序列的编号作为根据PCID随机生成的L个不同数值。需要说明的是,作 为一种特殊情况的处理机制,如果在上述K个比特序列中存在数值相同的比特序列,对于数值相同的比特序列,可以预定义编号靠前的序列数值大于(或小于)编号靠后的序列数值。
进一步地,获取在传输窗内用于传输信息的Q个可用子帧包括:
预定义或通过信令指示传输窗内传输信息的可用子帧数Q取值;预定义或通过信令指示传输窗内传输所述信息的Q个可用子帧的位置,或者,根据PCID和/或传输窗的编号确定传输窗内传输所述信息的Q个可用子帧的位置。采用非信令指示方式可简化设计和/或避免控制信令开销,采用信令指示方式可增加***设计和调度的灵活性。
其中,根据PCID和/或传输窗的编号,
确定一个传输窗内传输信息的Q个可用子帧的位置,包括:
将所有PCID按照第一预设规则分为Y类,其中,Y是大于0的整数,表示传输窗内传输信息的Q个可用子帧的候选位置数;设置Y类PCID与传输信息的Q个可用子帧的Y个候选位置一一对应;其中的第一预先设置规则包括:使以下表达式:mod(PCID,Y)或mod(floor(PCID/X),Y),取值相同的PCID属于相同类别。其中,使表达式取值为0的PCID都属于第1类PCID,使表达式取值为1的PCID属于第2类PCID,以此类推,使表达式取值为(Y-1)的PCID属于第Y类PCID;对于第1类PCID在第1候选位置传输信息,对于第2类PCID,在第2候选位置传输信息,以此类推,对于第Y类PCID,在第Y候选位置传输信息。其中mod表示取余数运算,floor表示向下取整数与运算,X是大于0的整数,表示一个调度窗内传输信息的L个重复窗的候选位置数。
或者,将所有传输窗编号NTW按照第二预设规则分为Y类,设置Y类传输窗的编号与传输信息的Q个可用子帧的Y个候选位置一一对应;其中的二预先设置规则包括:使以下表达式:mod(NTW,Y),取值相同的重复窗编号属于相同类别。其中,使表达式取值为0的NTW属于第1类编号,使表达式取值为1的NTW属于第2类编号,以此类推,使表达式取值为Y-1的NTW属于第Y类编号;对于第1类编号,在第1候选位置传输信息,对于第2类编号,在第2候选位置传输信息,以此类推,对于第Y类编号,在第Y候选位置传输信息。其中,mod表示取余数运算。
或者,将所有PCID和传输窗编号NTW的组合按照第三预设规则分为Y类,设置Y类传输窗的编号与传输信息的Q个可用子帧的Y个候选位置一一对应;其中的第三预先设置规则包括:使以下表达式mod(PCID+NTW,Y)或mod(floor(PCID/X)+NTW,Y),取值相同的PCID和重复窗编号的组合属于相同类别。其中,使表达式取值为0的组合属于第1类组合,使表达式取值为1的组合属于第2类组合,以此类推,使表达式取值为Y-1的组合属于第Y类组合;对于第1类组合,在第1候选位置传输信息,对于第2类组合,在第2候选位置传输信息,以此类推,对于第Y类组合,在第Y候选位置传输信息。其中,mod表示取余数运算,floor表示向下取整数运算,X是大于0整数,表示一个调度窗内传输信息的L个重复窗的候选位置数。
或者,作为根据PCID和/或传输窗编号确定传输窗位置的另一种选择,可以根据PCID和/或传输窗编号随机选择传输窗内的Q个可用子帧,相邻可用子帧的间隔随机;具体可根据PCID和/或传输窗编号随机生成Q个不同数值,取值范围可以是0至(P-1),其中P表示一个传输窗包含的可用子帧数,依次对应Q个可用子帧的编号(等价于可用子帧位置),将编号为上述取值的Q个可用子帧作为当前传输窗内传输信息的Q个可用子帧。通过采用上述根据PCID和/或传输窗编号随机选择传输窗内的Q个可用子帧的方法,不同的小区和/或不同的传输窗在传输窗内传输信息的Q个可用子帧的位置是随机的,这样有利于实现不同小区之间的干扰的随机化,从而有利于减小干扰。
根据PCID和/或传输窗编号生成Q个不同数值包括:首先,根据PCID和/或传输窗编号生成足够长的伪随机序列,例如将PCID或传输窗编号,或者将根据PCID和传输窗编号确定的一个新的数值(例如通过求和操作获取新的数值),作为伪随机序列生成器的初始化值,其中,伪随机序列生成器可沿用现有LTE***采用的伪随机序列生成器;然后,根据上述伪随机序列产生Q个不同数值,例如,从伪随机序列的首个比特开始依次截取P个长度为D(大于1的整数)的比特序列(编号为0至(P-1)),将上述P个比特序列按照数值从小到大(或从大到小)的顺序重新进行排序,排序后位于前面的Q个比特序列的编号作为根据PCID和/或传输窗编号随机生成的Q个不同数值。需要说明的是,作为一种特殊情况处理机制,如果在上述P个比特序列中存在数值相同的比特序列,对于数值相同的序列,可预定义编号靠前的序列数值大于(或小于)编号靠后的序列数值。
其中,通过信令指示传输信息的传输窗数L和/或传输窗内传输信息的可用子帧数Q时,指示方式包括:
传输信息的传输窗数L与信息的传输块大小(TBS)的联合编码;或者,传输窗内传输信息的可用子帧数Q与该信息的TBS的联合编码;或者,传输信息的传输窗数L和传输窗内传输该信息的可用子帧数Q的联合编码;或者,传输信息的传输窗数L、传输窗内传输该信息的可用子帧数Q与信息的TBS的联合编码。其中,所谓联合编码是指使用1个字段同时指示至少两项内容;例如,如果传输信息的传输窗数L、传输窗内传输该信息的可用子帧数Q与信息的TBS的联合编码,即表示通过1个字段同时指示出上述传输窗数L、可用子帧数Q与TBS取值。
本步骤中,在K个传输窗内用于传输信息的L个传输窗是连续或不连续的L个传输窗,以及,传输窗内用于传输信息的Q个可用子帧是连续或不连续的Q个可用子帧。具体的传输方案可以包括以下四类:
间歇占用K个传输窗中的L个传输窗,连续占用在一个传输窗内的Q个可用子帧,如图3所示,方格阴影表示在同一个传输窗内连续占用的可用子帧,同时表示出传输信息的传输窗是间歇存在的。
间歇占用K个传输窗中的L个传输窗,间歇占用在一个传输窗内的Q个可用子帧,如图4所示,方格阴影表示在同一个传输窗内间歇占用的可用子帧,同时表示出传输信息的传输窗 是间歇存在的。
连续占用K个传输窗中的L个传输窗,连续占用在一个传输窗内的Q个可用子帧,如图5所示,方格阴影表示在同一个传输窗内连续占用的可用子帧,同时表示出传输信息的传输窗是连续存在的。
连续占用K个传输窗中的L个传输窗,间歇占用在一个传输窗内的Q个可用子帧,如图6所示,方格阴影表示在同一个传输窗内间歇占用的可用子帧,同时表示出传输信息的传输窗是连续存在的。
进一步地,传输信息的L个传输窗的候选位置包括floor(K/L)个;第j个候选位置对应的L个传输窗是:
从编号为L·(j-1)的传输窗开始的L个连续的传输窗,或者,从编号为(j-1)的传输窗开始且相邻传输窗间隔为floor(K/L)的L个非连续的传输窗;其中,所述j是大于或等于1且小于或等于floor(K/L)的整数,floor表示向下取整数运算。
进一步地,一个传输窗内传输信息的Q个可用子帧的候选位置,包括floor(P/Q)个;第j个候选位置对应的Q个可用子帧是:从编号为Q·(j-1)的可用子帧开始的Q个连续的可用子帧,或者,从编号为(j-1)的可用子帧开始且相邻可用子帧间隔为floor(P/Q)的Q个非连续的可用子帧;其中,所述j是大于等于1小于或等于floor(P/Q)的整数,floor表示向下取整数运算。
本发明提供的技术方案,通过使用传输窗中的至少两个子帧来传输信息的方式,使针对***信息如SIB1消息的信道编码或速率匹配不再局限于单子帧内,尤其适用于如NB-IOT***的***信息传输,并保证了***信息如NB-IOT SIB1消息的传输性能。
进一步地,本发明方法还包括:
预定义或通过信令指示所述传输窗大小和/或调度窗大小。
采用预定义方式可简化设计和避免控制信令开销,采用信令指示方式可增加***设计和调度的灵活性。
其中,所述信令还用于指示以下内容中的至少一个:
无线帧编号、超帧编号、操作模式、参考信号(RS,Reference Signal)序列配置、RS端口数配置、不同物理信道之间的频率偏置、基站上行接入能力和下行控制信道配置。其中,一个超帧包括至少两个无线帧。其中,不同物理信道之间的频率偏置适用于In-band操作,包括:NB-IOT物理广播信道PBCH中心频点与NB-IOT物理下行控制信道PDCCH/物理下行共享信道PDSCH中心频点之间的相对频率偏置(例如为一个或多个子载波)。其中RS序列配置适用于In-band操作,但是从统一设计的角度考虑,非In-band操作(Guard band或Standalone操作)可以重用In-band操作下的RS序列配置参数;具体的RS序列配置包括以下之一:用作NB-IOT窄带的PRB的索引、NB-IOT窄带相对LTE***带宽中心频点的频率偏置;其中的PRB的索引表示在最大LTE***带宽配置(例如110个PRB)下的PRB的索引,窄带相 对LTE***带宽中心频点的偏置表示NB-IOT窄带的中心或边缘频点相对LTE***带宽中心频点的频率偏置(例如为一个或多个PRB);根据以上两个信息中的任何一个都可以间接获取RS序列值。
其中,基站上行接入能力包括但不限于用于指示基站是否能够支持基于单载波(Single Tone)和/或多载波(Multi-tone)的上行接入方式和相应的载波带宽(例如3.75kHz或15kHz),下行控制信道配置但不限于用于指示下行控制信道的时频资源位置。其中,操作模式和RS序列配置可以使用联合编码,例如,假设用于指示上述内容的字段包括2比特,并且只有In-band操作需要进行RS序列的配置,则可使用00表示非In-band操作,使用01表示In-band操作和在In-band操作下的第一RS序列配置,使用10表示In-band操作和在In-band操作下的第二RS序列配置,使用11表示In-band操作和在In-band操作下的第三RS序列配置。
对于In-band操作,当信令指示的内容或信息的内容包括有RS端口数配置时,承载RS端口数配置的物理下行信道以及在接收承载RS端口数配置的物理下行信道之前接收的物理下行信道,均按照4(LTE***小区专有RS支持的最大端口数)端口RS进行资源映射(如果在接收承载RS端口数的物理下行信道之前,不需要接收其它的物理下行信道,则只是承载RS端口数的物理下行信道按照4端口RS进行资源映射);在接收承载RS端口数配置的物理下行信道之后接收的物理下行信道按照RS端口数配置指示的RS端口数(例如2或4)的RS进行资源映射;当信令指示的内容和信息的内容不包括RS端口数配置时,所有物理下行信道按照4端口RS进行资源映射。其中,物理下行信道不包括主同步/辅同步PSS/SSS信号;按照2或4端口的RS进行资源映射是指在资源映射的过程中,物理下行信道数据不会映射到传输2或4端口的RS的资源单元上,换句话说,传输2或4端口的RS的资源单元不会承载物理下行信道数据。该方法避免了终端设备盲检测RS的端口数,从而降低了终端设备的实现复杂度。
在非In-band操作下,传输的信息占用在子帧内的所有OFDM符号。
在In-band操作下,子帧内前面的3个OFDM符号是被用于LTE***下行控制信道PDCCH区域,从而无法再用于其它NB-IOT数据(包括所述信息)传输的目的;但在非In-band操作下,子帧内前面的3个OFDM符号却可用于其它NB-IOT数据传输;另外,又考虑到在NB-IOT终端设备接收信息时,NB-IOT***的操作模式是已知的,此时,在子帧内的所有OFDM符号可以用于传输所述信息。
在非In-band操作下,传输主同步/辅同步(PSS/SSS)子帧的前面3个OFDM符号用于PBCH传输。本发明实施例中,通过在非In-band操作下,将第一PBCH子帧内除前面3个OFDM符号以外的其它OFDM符号用作第一PBCH资源,以及将第二PBCH子帧内前面的3个OFDM符号用作第二PBCH资源,进一步提高了在非In-band操作下的PBCH传输性能;其中,第一PBCH子帧是在In-band操作下传输PBCH的子帧,第二PBCH子帧包括上述第一PBCH子帧和传输PSS/SSS的子帧。
本发明实施例中,传输的信息包括但不限于NB-IOT SIB1消息和寻呼Paging消息;信令 包括但不限于PBCH信令。
本发明方法中的信息为NB-IOT SIB1消息时,SIB1消息的内容可以包括与初始接入相关的所有配置参数。此时,终端设备在初始接入过程中不需要接收除SIB1消息以外的其它***消息,从而简化了接入流程,同时避免了终端设备额外的功率损耗,有利于节电。
进一步地,
对于不同操作下如In-band操作和非In-band操作,信息如SIB1消息的传输可以采用同样的调度窗和传输窗大小,比如对于In-band操作和非In-band操作,设置调度窗包括4个PBCH调度周期以及传输窗包括2个PBCH子块周期;或者,由于对于非In-band操作,可用于信息如SIB1消息传输的子帧可能更多,比如对于FDD***可以不再局限于编号为0、4、5和9的子帧,此时,设置的调度窗的大小可不超过在In-band操作下的调度窗大小,以及,设置的传输窗的大小可不超过在In-band操作下的传输窗大小;比如对于In-band操作,设置调度窗包括4个PBCH调度周期,以及传输窗包括2个PBCH子块周期;对于非In-band操作,设置调度窗包括2个PBCH调度周期,以及传输窗包括1个PBCH子块周期。
下面结合具体实施例对本发明方法进行详细描述。
第一实施例给出了调度窗大小、传输窗大小、传输窗内传输信息的可用子帧数Q的优选取值。在第一实施例中,假设PBCH子块周期为8个无线帧和PBCH调度周期为64个无线帧,即一个PBCH调度周期包括8个PBCH子块周期;那么,传输窗大小的优选取值包括:8、16或32无线帧,即满足1、2和4倍的PBCH子块周期;另外,调度窗大小优选取值包括:64、128、256或512无线帧,即满足1、2、4和8倍的PBCH调度周期。表1为传输窗大小和调度窗大小的优选取值的组合,以及相应的一个调度窗中所包括的传输窗数K,如表1所示:
Figure PCTCN2016099944-appb-000001
Figure PCTCN2016099944-appb-000002
表1
传输窗内传输信息的可用子帧数Q通常只与信息TBS有关,而不依赖于传输窗大小和调度窗大小。对于不同传输窗大小和调度窗大小配置,传输窗内传输信息的可用子帧数Q优选取值包括:4、6或8子帧。
第二实施例给出了调度窗大小和传输窗大小的确定方式。
其中,为了简化设计,调度窗大小和传输窗大小可以设置为固定值;或者,调度窗大小设置为固定值,传输窗大小设置为可配置;或者,调度窗大小设置为可配置,传输窗大小设置为可配置。其中,表2为当调度窗大小和传输窗大小设置为可配置时,用于联合指示调度窗大小和传输窗大小的一个字段(2bits)的示例,如表2所示:
Figure PCTCN2016099944-appb-000003
表2
第三实施例给出了当通过信令指示调度窗内传输信息的传输窗数L和一个传输窗内传输信息的可用子帧数Q时,调度窗内传输信息的传输窗数L、信息TBS以及一个传输窗内传输信息的可用子帧数Q联合编码的示例,假设以表1中如配置6所示的调度窗大小和传输窗大小为例,信息TBS的数目为6个,如表3所示,其中,用于指示信息TBS、调度窗内传输信息的传输窗数L和传输窗内传输信息的可用子帧数Q的字段包括5bits。
Figure PCTCN2016099944-appb-000004
Figure PCTCN2016099944-appb-000005
表3
需要说明的是,为进一步简化设计,可以限制传输窗内传输信息的可用子帧数Q固定为6个子帧,此时等价于信息TBS与调度窗内传输信息的传输窗数L这两个参数的联合编码。
第四实施例给出了确定一个包括K个传输窗的调度窗内,
传输信息的L个传输窗的位置的具体示例:
一种方式为预定义方式,例如,假设一个调度窗包括16(K)个传输窗,一个调度窗内传输信息的传输窗数(L)的可能取值是4和8;采用的具体方式是固定设置调度窗内传输信息的传输窗数与传输信息的传输窗的编号(等价于传输窗的位置)之间的映射,如下面的表4所示。
传输信息的传输窗数L 传输信息的L个传输窗的编号
4 0,4,8,12
8 0,2,4,6,8,10,12
表4
其中,上述传输信息的传输窗的编号为在调度窗包括的16个传输窗范围内的编号(物理编号),取值范围是0至15。采用如表4所示的预定义方式,一个调度窗内传输信息的传输窗的位置与小区PCID无关,不同小区始终占用相同的传输窗,即不同小区所占传输窗完全重叠。
另一种方式为根据PCID确定传输信息的L个传输窗的位置:
例如,假设一个调度窗包括8(K)个传输窗,一个调度窗内的4(L)个传输窗用于传输信息;此时,一个调度窗内用于传输信息的4个传输窗的候选位置总共包括2(X=K/L)个。
其中,一个候选位置所对应的4个传输窗可以是连续的4个传输窗,如图7(a)中的斜线阴影所示;或者也可以是不连续的4个传输窗,比如是以2个传输窗为间隔等间隔出现的,图7(b)的斜线阴影所示。
具体操作过程包括:
将所有PCID按照以下表达式:mod(PCID,2)或mod(floor(PCID/Y),2)分为两类,其中,Y表示一个传输窗内传输信息的可用子帧的候选位置数(例如取值为3);使表达式取值为0的PCID属于第1类PCID,即第1类PCID等价于偶数PCID,使表达式取值为1的PCID属于第2类PCID,即第2类PCID等价于奇数PCID;偶数和奇数PCID分别与两个候选位置之间设置一一对应关系,如图8所示,即对于偶数PCID,在第1候选位置传输信息,对于奇数PCID,在第2候选位置传输信息。
第五实施例给出了确定一个包含P个可用子帧的传输窗内,
传输信息的Q个可用子帧的位置的具体示例:
一种方式为预定义方式,例如,假设一个传输窗包含16(P)个可用子帧,一个传输窗内传输信息的可用子帧数(Q)的可能取值是4、6和8;采用的具体方式是固定设置传输窗内传输信息的可用子帧数与可用子帧的编号(等价于可用子帧的位置)之间的映射,如表5所示。
传输窗内传输信息的可用子帧数Q 可用子帧的编号
4 0,4,8,12
6 0,3,6,9,12,15
8 0,2,4,6,8,10,12,14
表5
采用如表5所示的预定义方式,一个传输窗内传输信息的可用子帧的位置与PCID和传输窗的编号无关,即对于不同的小区和/或不同的传输窗,传输信息的可用子帧始终相同,从而有利于简化设计。
另一种方式为根据小区PCID和/或传输窗的编号,确定传输窗内传输信息的Q个可用子帧的位置:例如,假设一个传输窗包含18(P)个可用子帧,一个传输窗内的6(Q)个可用子帧用于传输信息;此时,一个传输窗内用于传输信息的6个传输窗的候选位置总共包括3(Y=P/Q)个。
其中,一个候选位置对应的6个可用子帧可以是连续的6个可用子帧,如图9(a)中的斜线阴影所示;或者也可以是不连续的6个可用子帧,比如是以3个可用子帧为间隔等间隔出现,如图9(b)中的斜线阴影所示。
具体的操作过程包括:
将所有PCID按照以下表达式:mod(PCID,3)或mod(floor(PCID/X),3)分为3类,其中,X表示一个调度窗内传输信息的传输窗的候选位置数(例如取值为2);使表达式取值为0的PCID属于第1类PCID,使表达式取值为1的PCID属于第2类PCID,使表达式取值为2的PCID属于第3类PCID;以上3类PCID分别与3个候选位置之间一一对应,如图10所示,即对于第1类PCID,在第1候选位置传输信息,对于第2类PCID,在第2候选位置传输信息,对于第3类PCID,在第3候选位置传输信息。
或者,
将所有传输窗的编号NTW(例如,如果一个调度窗内传输信息的传输窗数L等于8,则NTW取值范围为0至7)按照以下表达式:mod(NTW,3)分为3类;使表达式取值为0的NTW属于第1类编号,使表达式取值为1的NTW属于第2类编号,使表达式取值为2的NTW属于第3类编号;以上3类编号分别与3个候选位置之间一一对应,如图11所示,即对于第1类NTW,在第1候选位置传输信息,对于第2类NTW,在第2候选位置传输信息,对于第3类NTW,在第3候选位置传输信息。
或者,
将所有PCID和传输窗编号NTW(例如,如果一个调度窗内传输信息的传输窗数L等于8,则NTW取值范围为0至7)的不同组合按照以下表达式mod(PCID+NTW,3)或mod(floor(PCID/X)+NTW,3)分为3类,其中,X表示一个调度窗内传输信息的传输窗的候选位置数(例如取值为2);使表达式取值为0的组合属于第1类组合,使表达式取值为1的组合属于第2类组合,使表达式取值为2的组合属于第3类组合;以上3类组合分别与3个候选位置之间一一对应,如图12所示,即对于第1类组合,在第1候选位置传输信息,对于第2类组合,在第2候选位置传输信息,对于第3类组合,在第3候选位置传输信息。
第六实施例给出了在非In-band操作下的第二PBCH资源的示例。
以1个PBCH子块周期(包括8个无线帧)为例,图13为本发明在非In-band操作下的第二PBCH资源的示意图。在非In-band操作下,如图13所示,每1个无线帧的最后1个子帧中除前面3个OFDM符号以外的剩余其它OFDM符号是用作PSS/SSS资源,如图13中的横线条阴影所示;分配给PBCH子块的OFDM符号资源包括两部分:第一部分可称为第一PBCH资源,如图13中的雪花点阴影所示,即在每1个无线帧中第1个子帧(第一PBCH子帧)内除前面3个OFDM符号以外的其它OFDM符号资源,第二部分可以称为第二PBCH资源,如图13中的斜方格阴影所示,即在传输PSS/SSS子帧(每个无线帧最后1个子帧)和上述第一PBCH子帧(每1个无线帧中第1个子帧)内的前面3个OFDM符号。
对于在第二PBCH资源上的PBCH传输,传输的PBCH信道编码数据是根据在1个第二PBCH子帧(每1个无线帧中第1个和最后1个子帧)内的第二PBCH资源数量(即3个OFDM符号)生成,所生成的PBCH信道编码数据的数量等于在1个第二PBCH子帧内的第二PBCH资源能够承载的PBCH信道编码数据的数量;经过调制的PBCH信道编码数据按照OFDM符号的编号依次映射到1个PBCH子块周期内每1个第二PBCH子帧的用作第二PBCH资源的3个OFDM符号资源上,即在1个PBCH子块周期内的16个第二PBCH子帧的第二PBCH资源上重复传输16次。
图14为本发明信息传输装置的组成结构示意图,如图14所示,至少包括设置模块、处理模块;其中,
设置模块,设置为在调度窗中设置传输窗;
其中,一个调度窗包括K个传输窗,一个传输窗包含P个可用子帧,K为大于0的整数,P为大于1的整数;
处理模块,设置为利用传输窗中的可用子帧传输信息。
其中,
一个所述调度窗包括N1个PBCH调度周期,或者,包括N2个PBCH子块周期;
一个所述传输窗包括半个或M个PBCH子块周期,或者,跨连续的P个可用子帧;
其中,N1、N2和M均是大于0的整数;
每个PBCH调度周期包括至少一个PBCH子块周期。
本发明装置的处理模块具体设置为:
获取在K个传输窗内用于传输信息如SIB1消息的L个传输窗(如编号为W0,W1,…,Wi,…,WL-1的L个传输窗);对于L个传输窗内任一个传输窗,获取传输窗内用于传输信息的Q个可用子帧,并在获得的Q个可用子帧上传输信息;其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
其中,在获得的Q个可用子帧上传输信息包括:
根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取信息的信道编码数据;将获得的信息的信道编码数据映射到所述Q个可用子帧上并传输。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例的上述技术方案,可以应用于信息传输过程中,通过在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包含P个可用子帧,K为大于0的整数,P为大于1的整数;利用传输窗中的可用子帧传输信息。本发明提供的技术方案,通过使用一个传输窗中的至少两个子帧来传输信息的方式,使针对***信息如SIB1消息的信道编码或速率匹配不再局限于单子帧内,适用于NB-IOT***的***信息传输,并保证了***信息如NB-IOT SIB1消息的传输性能。

Claims (32)

  1. 一种信息传输方法,包括:
    在调度窗中设置传输窗;其中,一个调度窗包括K个传输窗,一个传输窗包括P个可用子帧,K为大于0的整数,P为大于1的整数;
    利用传输窗中的可用子帧传输信息。
  2. 根据权利要求1所述的信息传输方法,其中,
    一个所述调度窗包括:N1个物理广播信道PBCH调度周期;或者,N2个PBCH子块周期;
    一个所述传输窗包括:半个或M个PBCH子块周期;或者,跨连续的P个可用子帧;
    其中,N1、N2和M均是大于0的整数;
    每个PBCH调度周期包括至少一个PBCH子块周期。
  3. 根据权利要求1所述的信息传输方法,其中,所述利用传输窗中的可用子帧传输信息包括:
    获取在所述K个传输窗内用于传输所述信息的L个传输窗;
    对于所述L个传输窗内的任一个传输窗,获取传输窗内用于传输所述信息的Q个可用子帧,并在获得的Q个可用子帧上传输所述信息;
    其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
  4. 根据权利要求1所述的信息传输方法,其中,
    所述可用子帧中的任一个属于在指定子帧集合中除传输主同步/辅同步PSS/SSS和PBCH的子帧以外的剩余子帧的集合。
  5. 根据权利要求4所述的信息传输方法,其中,
    对于频分双工FDD***,所述指定子帧集合是由所有子帧编号为0、4、5和9的子帧所构成的子帧集合;
    对于时分双工TDD***,所述指定子帧集合是由所有子帧编号为0、1、5和6的子帧所构成的子帧集合;或者,是由所有子帧编号为1和6的子帧所构成的子帧集合。
  6. 根据权利要求3所述的信息传输方法,其中,所述在获得的Q个可用子帧上传输所述信息包括:
    根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取所述信息的信道编码数据;将获得的所述信道编码数据映射到所述Q个可用子帧上并传输。
  7. 根据权利要求6所述的信息传输方法,其中,所述根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取所述信息的信道编码数据,包括:
    根据在传输窗内传输信息的可用子帧数Q获取所述信息的信道编码数据的数量,根据传输窗的编号获取所述信息的信道编码数据的冗余版本RV。
  8. 根据权利要求3所述的信息传输方法,其中,所述获取用于传输所述信息的L个传输窗包括:
    预定义或通过信令指示传输所述信息的传输窗数L取值;
    预定义或通过信令指示传输所述信息的L个传输窗的位置,或者根据物理小区标识PCID确定传输所述信息的L个传输窗的位置。
  9. 根据权利要求3所述的信息传输方法,其中,所述获取传输窗内用于传输所述信息的Q个可用子帧包括:
    预定义或通过信令指示传输窗内传输所述信息的可用子帧数Q取值;
    预定义或通过信令指示传输窗内传输所述信息的Q个可用子帧的位置,或者根据PCID和/或传输窗的编号确定所述传输窗内传输所述信息的Q个可用子帧的位置。
  10. 根据权利要求8和9所述的信息传输方法,其中,当通过所述信令指示所述传输所述信息的传输窗数L和/或所述传输窗内传输所述信息的可用子帧数Q时,指示方式包括:
    所述传输所述信息的传输窗数L与所述信息的传输块大小TBS的联合编码;或者,所述传输窗内传输所述信息的可用子帧数Q与所述信息的TBS的联合编码;或者,所述传输所述信息的传输窗数L和所述传输窗内传输所述信息的可用子帧数Q的联合编码;或者,所述传输所述信息的传输窗数L、所述传输窗内传输所述信息的可用子帧数Q与所述***信息的TBS的联合编码。
  11. 根据权利要求3所述的信息传输方法,其中,
    所述在K个传输窗内用于传输信息的L个传输窗是连续或不连续的L个传输窗,以及,所述传输窗内用于传输信息的Q个可用子帧是连续或不连续的Q个可用子帧。
  12. 根据权利要求1所述的信息传输方法,其中,该方法包括:预定义或通过信令指示所述传输窗大小和/或调度窗大小。
  13. 根据权利要求3所述的信息传输方法,其中,在一个所述传输窗是跨连续的P个可用子帧时,P等于所述Q。
  14. 根据权利要求3所述的信息传输方法,其中,所述L个传输窗的候选位置包括floor(K/L)个;
    第j个候选位置对应的L个传输窗为:
    从编号为L·(j-1)的传输窗开始的L个连续传输窗;或者,从编号为(j-1)的传输窗开始且相邻传输窗间隔为floor(K/L)的L个非连续传输窗;
    其中,所述j是大于或等于1且小于或等于floor(K/L)的整数,floor表示向下取整数运算。
  15. 根据权利要求8所述的信息传输方法,其中,根据PCID确定所述传输信息的L个传输窗的位置,包括:
    将所有PCID按照预先设置的规则分为X类,其中,X是大于0整数,表示调度窗内传输信息的L个传输窗的候选位置数;
    设置X类PCID与所述传输信息的L个传输窗的X个候选位置一一对应。
  16. 根据权利要求15所述的信息传输方法,其中,所述预先设置的规则包括:
    使以下表达式:mod(PCID,X)或mod(floor(PCID/Y),X)取值相同的PCID属于相同类别;
    其中,mod表示取余数运算,floor表示向下取整数运算,Y是大于0整数,表示一个传输窗内传输信息的Q个可用子帧的候选位置数。
  17. 根据权利要求3所述的信息传输方法,其中,传输窗内传输信息的Q个可用子帧的候选位置包括floor(P/Q)个;
    第j个候选位置对应的Q个可用子帧为:
    从编号为Q·(j-1)的可用子帧开始的Q个连续可用子帧,或者,
    从编号为(j-1)的可用子帧开始且相邻可用子帧间隔为floor(P/Q)的Q个非连续可用子帧;
    其中,所述j是大于或等于1且小于或等于floor(P/Q)的整数,floor表示向下取整数运算。
  18. 根据权利要求9所述的信息传输方法,其中,当根据所述PCID和/或传输窗的编号确定传输窗内传输信息的Q个可用子帧的位置时,包括:
    将所有PCID按照第一预设规则分为Y类,其中,所述Y是大于0的整数,表示传输窗内传输信息的Q个可用子帧的候选位置数;设置所述Y类PCID与所述传输信息的Q个可用子帧的Y个候选位置一一对应;或者,
    将所有传输窗编号按照第二预设规则分为Y类,设置所述Y类传输窗的编号与所述传输信息的Q个可用子帧的Y个候选位置一一对应;
    或者,将所有PCID和传输窗的编号组合按照第三预设规则分为Y类,设置所述Y类传输窗的编号与所述传输信息的Q个可用子帧的Y个候选位置一一对应。
  19. 根据权利要求18所述的信息传输方法,其中,
    所述第一预先设置规则包括:
    使以下表达式:mod(PCID,Y)或mod(floor(PCID/X),Y)取值相同的PCID属于相同类别;
    所述第二预先设置规则包括:
    使以下表达式:mod(NTW,Y)取值相同的重复窗编号属于相同类别;
    所述第三预先设置规则包括:
    使以下表达式:mod(PCID+NTW,Y)或mod(floor(PCID/X)+NTW,Y)取值相同的PCID和重复窗编号的组合属于相同类别;
    其中,mod表示取余数操作,floor表示向下取整数操作,NTW表示重复窗的编号,X是大于0的整数,表示一个调度窗内传输信息的L个重复窗的候选位置数。
  20. 根据权利要求8、9或12所述的信息传输方法,其中,所述信令还用于指示以下内容中的至少一个:
    无线帧编号、超帧编号、操作模式、参考信号RS序列配置、RS端口数配置、不同物理信道之间的频率偏置、基站上行接入能力和下行控制信道配置;其中,所述基站上行接入能力用于指示基站是否能支持基于单载波和/或多载波的上行接入方式和相应的载波带宽。
  21. 根据权利要求20所述的信息传输方法,其中,所述操作模式和所述RS序列配置联合编码。
  22. 根据权利要求1或20所述的信息传输方法,其中,
    对于In-band操作,
    当所述信令指示的内容或所述信息的内容包括有RS端口数配置时,
    承载所述RS端口数配置的物理下行信道以及在接收承载所述RS端口数配置的物理下行信道之前接收的物理下行信道,均按照4端口RS进行资源映射;在接收承载所述RS端口数配置的物理下行信道之后接收的物理下行信道按照所述RS端口数配置指示的RS端口数的RS进行资源映射;
    当所述信令指示的内容和所述信息的内容不包括RS端口数配置时,
    所有物理下行信道按照4端口RS进行资源映射。
  23. 根据权利要求20所述的信息传输方法,其中,当所述信令指示的内容包括有RS序列配置时,所述RS序列配置包括以下之一:
    用作窄带物联网NB-IOT窄带的物理资源块PRB的索引、NB-IOT窄带相对LTE***带宽中心频点的频率偏置。
  24. 根据权利要求1所述的信息传输方法,其中,所述信息的内容包括与初始接入相关的所有配置参数。
  25. 根据权利要求1所述的信息传输方法,其中,
    在非In-band操作下,所述信息占用子帧内的所有正交频分复用OFDM符号资源;和/或,所述调度窗的大小不超过在In-band操作下的调度窗的大小,以及,所述传输窗的大小不超过在In-band操作下的传输窗大小。
  26. 根据权利要求1所述的信息传输方法,其中,所述信息包括但不限于NB-IOT SIB1消息和寻呼Paging消息。
  27. 根据权利要求8、9或12所述的信息传输方法,其中,所述信令包括PBCH信令。
  28. 根据权利要求27所述的信息传输方法,其中,
    在非In-band操作下,传输主同步/辅同步PSS/SSS子帧前面3个OFDM符号用于所述PBCH传输。
  29. 一种信息传输装置,包括设置模块、处理模块;其中,
    设置模块,设置为在调度窗中设置传输窗;
    其中,一个调度窗包括K个传输窗,一个传输窗包括P个可用子帧,K是大于0的整数,P是大于1的整数;
    处理模块,设置为利用传输窗中的可用子帧传输信息。
  30. 根据权利要求29所述的***传输装置,其中,
    一个所述调度窗包括:N1个PBCH调度周期;或者,包括N2个PBCH子块周期;
    一个所述传输窗包括:半个或M个PBCH子块周期;或者,跨连续的P个可用子帧;
    其中,N1、N2和M均是大于0的整数;
    每个PBCH调度周期包括至少一个PBCH子块周期。
  31. 根据权利要求29所述的***传输装置,其中,所述处理模块具体设置为:
    获取在所述K个传输窗内用于传输信息的L个传输窗;对于L个传输窗内的任一个传输窗,获取传输窗内用于传输信息的Q个可用子帧,并在获得的Q个可用子帧上传输所述信息;
    其中,L为大于0且小于或等于K的整数,Q为大于1的整数。
  32. 根据权利要求31所述的***传输装置,其中,所述在获得的Q个可用子帧上传输信息的传输方式包括:
    根据在传输窗内传输信息的可用子帧数Q,或者,根据在传输窗内传输信息的可用子帧数Q和传输窗的编号,获取信息的信道编码数据;将获得的信息的信道编码数据映射到所述Q个可用子帧上并传输。
PCT/CN2016/099944 2015-12-28 2016-09-23 一种信息传输方法及装置 WO2017113901A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018552103A JP6829266B2 (ja) 2015-12-28 2016-09-23 情報伝送方法およびデバイス
US16/065,973 US10721013B2 (en) 2015-12-28 2016-09-23 Method and apparatus for information transmission
EP16880694.1A EP3399678B1 (en) 2015-12-28 2016-09-23 Information transmission method and device
KR1020187021812A KR102240324B1 (ko) 2015-12-28 2016-09-23 정보 전송 방법 및 디바이스

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201511003579.8 2015-12-28
CN201511003579 2015-12-28
CN201610012555.7 2016-01-08
CN201610012555.7A CN106921468B (zh) 2015-12-28 2016-01-08 一种信息传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017113901A1 true WO2017113901A1 (zh) 2017-07-06

Family

ID=59224504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099944 WO2017113901A1 (zh) 2015-12-28 2016-09-23 一种信息传输方法及装置

Country Status (1)

Country Link
WO (1) WO2017113901A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684848A (zh) * 2018-02-14 2020-09-18 华为技术有限公司 一种资源分配方法和装置
US20210045121A1 (en) * 2017-11-10 2021-02-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929779A (zh) * 2013-01-14 2014-07-16 中兴通讯股份有限公司 控制信息的发送、控制信息的接收方法和装置
US20140269633A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Coexistence of a wireless wide area network device in time division duplex (tdd) mode with a wireless access point (ap)
CN104104485A (zh) * 2013-04-11 2014-10-15 普天信息技术研究院有限公司 一种d2d的数据传输方法
CN104811264A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 一种***信息的传输方法、基站、终端和***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929779A (zh) * 2013-01-14 2014-07-16 中兴通讯股份有限公司 控制信息的发送、控制信息的接收方法和装置
US20140269633A1 (en) * 2013-03-14 2014-09-18 Qualcomm Incorporated Coexistence of a wireless wide area network device in time division duplex (tdd) mode with a wireless access point (ap)
CN104104485A (zh) * 2013-04-11 2014-10-15 普天信息技术研究院有限公司 一种d2d的数据传输方法
CN104811264A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 一种***信息的传输方法、基站、终端和***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210045121A1 (en) * 2017-11-10 2021-02-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in wireless communication system
US11856594B2 (en) * 2017-11-10 2023-12-26 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving control information in wireless communication system
CN111684848A (zh) * 2018-02-14 2020-09-18 华为技术有限公司 一种资源分配方法和装置
CN111684848B (zh) * 2018-02-14 2023-10-20 华为技术有限公司 一种资源分配方法和装置
US11864187B2 (en) 2018-02-14 2024-01-02 Huawei Technologies Co., Ltd. Resource allocation method and apparatus

Similar Documents

Publication Publication Date Title
CN111919411B (zh) 支持ss/pbch块的大子载波间隔的方法和装置
CN111567117B (zh) 无线通信***的资源分配方法、装置和***
CN106921468B (zh) 一种信息传输方法及装置
CN109586878B (zh) 基站、用户设备以及上行资源分配方法、上行传输方法
CN107046722B (zh) 调度定时间隔的确定方法及装置
CN113692059B (zh) 无线通信***中的方法和设备
CN105025574B (zh) 一种数据传输方法及装置
RU2529880C1 (ru) Способ и устройство для распределения ресурсов восходящей линии связи
US11683788B2 (en) System and method for data channel transmission and reception
US10536934B2 (en) EPDCCH search space design
US20130094411A1 (en) Methods and systems for csi-rs transmission in lte-advance systems
CN113966587B (zh) 无线通信***中的下行数据接收和harq-ack传输的方法、装置和***
WO2016106905A1 (zh) 一种用户设备、接入网设备和反馈信息发送和接收方法
US8446873B2 (en) Method for uplink transmission of control information in mobile communication system
WO2019052455A1 (zh) 数据信道参数配置方法及装置
WO2019095875A1 (zh) 一种信号发送方法及装置、计算机存储介质
WO2017133339A1 (zh) 调度定时间隔的确定方法及装置
CA3071690A1 (en) Methods and apparatuses for control resource mapping
WO2019029592A1 (en) AGGREGATION OF CREAMS
WO2017113901A1 (zh) 一种信息传输方法及装置
WO2017121413A1 (zh) 资源的使用方法及装置
CN103391626B (zh) E-pdcch的传输方法、时频资源确定方法及装置
WO2017107686A1 (zh) 窄带***中搜索空间的确定方法及装置
CN111586861B (zh) 一种随机接入方法、设备及***
KR20220115008A (ko) 무선 통신 시스템에서 셀 간 간섭 제어를 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018552103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187021812

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016880694

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880694

Country of ref document: EP

Effective date: 20180730