WO2017113545A1 - 一种即吸即测液体检测装置 - Google Patents

一种即吸即测液体检测装置 Download PDF

Info

Publication number
WO2017113545A1
WO2017113545A1 PCT/CN2016/079280 CN2016079280W WO2017113545A1 WO 2017113545 A1 WO2017113545 A1 WO 2017113545A1 CN 2016079280 W CN2016079280 W CN 2016079280W WO 2017113545 A1 WO2017113545 A1 WO 2017113545A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sample
contrast
concentration
reaction chamber
Prior art date
Application number
PCT/CN2016/079280
Other languages
English (en)
French (fr)
Inventor
吕苗
李一帆
林北辰
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2017113545A1 publication Critical patent/WO2017113545A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Definitions

  • the invention relates to the field of chemical analysis technology and environmental water body detection, in particular to a liquid absorption detecting device which is prepared by using a 3D printing mold.
  • Patent CN104792777 proposes an economical and quick colorimetric test kit and method for determining the hexavalent chromium concentration of water, and adjusts the sample pH, color reaction and comparison with a prefabricated standard color chart by pretreatment; the invention overcomes The general water body detection method is complicated and expensive, and a new idea of targeted and complementary detection is proposed.
  • the technical solution disclosed in this patent does not have a corresponding special access device for the test liquid, and the detection is completely based on manual visual inspection, and the use environment and effects are limited.
  • the main technical problem to be solved by the present invention is to provide a liquid detecting device which is a suction and measurement, which can reduce the detection cost and realize real-time and high-efficiency analysis of samples.
  • the present invention provides a liquid absorption detecting device, comprising a detecting device body and an analyzing device;
  • the detecting device body comprises an upper cover plate and a lower cover plate which are placed facing each other and are combined into a plurality of closed spaces; the closed space comprises a reaction chamber, a contrast chamber, a developer chamber, a sample suction tube, a filter membrane and Diversion tube
  • One end of the sample suction tube is connected to the sample to be tested, and the other end is connected to the reaction chamber or the contrast chamber through a filter membrane; the developer chamber is connected to the reaction chamber through the draft tube;
  • the upper cover is made of an elastic material. When the upper cover is pressed and released, the sample is sucked into the reaction chamber and the contrast cavity, and the color developer is sucked into the contrast cavity to mix with the sample;
  • the analysis device is a universal handheld mobile terminal, including a camera and an APP installed in the smart terminal; using the camera to capture images of the reaction cavity and the contrast cavity, through the APP To determine the concentration of the sample to be tested;
  • the APP stores pre-measured "gray-density" standard curve data; the image of the reaction cavity and the contrast cavity captured by the camera is imported into the APP, and the RGB value of the picture can be read;
  • Gr A*C+B, where Gr represents grayscale and C represents concentration
  • the gray value of the sample to be tested in the reaction chamber is Gr 1
  • the gray value read by the sample to be tested in the comparison chamber is Gr 2 ; if it is brought into the “gray-concentration” standard curve, the reaction can be obtained.
  • the concentration of the sample to be tested is C 1
  • the concentration of the sample to be tested is C 2 ;
  • the corrected reaction chamber concentration can be obtained.
  • the upper cover is made of silicone rubber.
  • the upper cover is obtained by casting a silicone rubber using a 3D printed structure as a mold.
  • the material of the lower cover is one of glass, plastic, resin, and silicone rubber.
  • the upper and lower covers are treated with plasma or ozone After direct bonding.
  • the developer is any agent capable of undergoing a specific color reaction with a substance to be tested in a sample.
  • the developer introduced into the developer chamber is different depending on the detection target.
  • the analysis device may be a smart phone, and the APP stores pre-measured "gray-density" standard curve data.
  • the developer chambers are connected in parallel.
  • the developer chamber may be plural.
  • the present invention has the following beneficial effects:
  • the invention provides a liquid absorption detecting device, which is prepared by using silicone rubber and has flexibility.
  • the sample suction tube can be drawn into the sample by squeezing the reaction chamber and the contrast chamber.
  • Silicone rubber has high stability, acid and alkali resistance.
  • a plurality of developers can be injected into the developer chamber, and a device in which a specific developer is injected is used according to different detection substances.
  • the invention provides a liquid absorption detecting device which is capable of quickly processing a mold which cannot be or is difficult to manufacture by a conventional method by processing a mold by using a 3D printing method.
  • the 3D printing technology "printing" products are naturally seamlessly connected, and the stability and connection strength between the structures are much higher than the traditional methods.
  • the upper cover is made of silicone rubber. Because silicone rubber has a small Young's modulus, it has good flexibility after curing, and the silicone rubber is chemically stable, acid and alkali resistant, and does not react with common color developers. .
  • the use of silicone rubber as the material of the device takes full advantage of the two properties of silicone rubber. First, using its flexibility, it can realize the differential pressure drive formed by extrusion. The moving sample and the developer flow; secondly, with its chemical stability, a variety of developers can be used, which greatly expands the use of the device.
  • the sensitizing liquid detecting device is injected into different chromogenic agents and packaged, and then carried around.
  • devices with different chromogenic agents are used according to different targets, and the device is pressed and relaxed.
  • the sample and the developer are inhaled in the middle of the sample chamber and the contrast chamber. After a specific color reaction of the sample and the developer, the sample is detected by a mobile phone camera and colorimetric software.
  • the liquid detection device proposed by the present application uses a 3D printing integrated molding die to avoid complicated manufacturing processes.
  • the volume, weight and ease of use are similar to those of the test strip method, but with higher sensitivity.
  • Various contaminants can be monitored by adding different developers, and the application range is far wider than that of the test paper.
  • this application makes full use of the flexibility and stability of PDMS to achieve “ie, absorb and measure”, reduce the use of other samples and reagent extraction equipment; use mobile phones and mobile phone software to record reactants in real time.
  • the contrast image in turn, can get the amount of contaminants in the sample in real time, without the need for large detection equipment, and has the advantages of simplicity and low cost.
  • the technical solution proposed by the application has simple device, simple test operation and high sensitivity, and is very suitable for field work, and is convenient for non-professional use.
  • Figure 1 is a perspective view of an integrally formed mold used in a preferred embodiment of the present invention
  • Figure 2 is a plan view of an integrally formed mold used in a preferred embodiment of the present invention.
  • FIG. 3 is a perspective perspective view showing the structure of a detecting device body according to a preferred embodiment of the present invention.
  • Figure 4 is a top perspective view showing the structure of the body of the detecting device in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a perspective view of the structure of a preferred embodiment of the present invention.
  • a suction-measured liquid detection device which includes a detection device body 90 and an analysis device 80.
  • the detecting device body 90 includes an upper cover plate 91 and a lower cover plate 92, which are placed facing each other and are combined into a plurality of sealed spaces; the sealed space includes a reaction chamber 2, a contrast chamber 3, a developer chamber 4, and two sets of sample inhalation. Tube 1, filter 7 and draft tube 6. One end of the two sets of sample suction tubes 1 is respectively connected to the sample to be tested, and the other end is communicated with the reaction chamber 2 and the contrast chamber 2 through the filter membrane 7 respectively; the developer chamber 4 passes through the draft tube 6 It is in communication with the reaction chamber 2.
  • the upper cover 91 is made of silicone rubber.
  • the upper cover 91 is obtained by casting a silicone rubber using a 3D printing structure as a mold.
  • the material of the lower cover 92 is one of glass, plastic, resin, and silicone rubber.
  • the upper cover 91 and the lower cover 92 are directly bonded after being treated by plasma or ozone.
  • the upper cover 91 is made of an elastic material, when the upper cover 91 is pressed and released, the sample can be sucked into the reaction chamber 2 and the contrast chamber 3; at the same time, the developer in the developer chamber 4 is also sucked. The sample is mixed with the sample in the comparison chamber 3.
  • the analysis device 80 is a universal handheld mobile terminal including a camera 18, a chip 82, and a display screen 83.
  • the pre-measured "gray-density" standard song is stored in the APP of the chip 82. Line data.
  • the image of the reaction chamber and the contrast cavity captured by the mobile phone is imported into the APP, and the RGB value of the picture can be read;
  • Gr A*C+B, where Gr represents grayscale and C represents concentration
  • the gray value of the sample to be tested in the reaction chamber is Gr 1
  • the gray value read by the sample to be tested in the comparison chamber is Gr 2 ; if it is brought into the “gray-concentration” standard curve, the reaction can be obtained.
  • the concentration of the sample to be tested is C 1
  • the concentration of the sample to be tested is C 2 ;
  • the corrected reaction chamber concentration can be obtained.
  • the color developer is any reagent capable of reacting specifically with a substance to be tested in a sample.
  • the color developer injected into the developer chamber is different depending on the detection target.
  • the detecting device body 90 is fabricated by using a 3D printer, and the specific preparation steps thereof include:
  • the PDMS mixture was spin-coated in the glass piece for 20 s at a rotation speed of 300 r/min, and placed in an oven at 100 ° C for 10 minutes. On the basis of this, spin coating and curing several times to obtain a uniform sheet of 2 mm thick, which is the lower cover of the device.
  • the lower cover of the device can also be made of transparent or white materials such as glass, plastic, resin, silicone rubber.
  • the total phosphorus content in the water is measured by a colorimetric method.
  • phosphorus standard solution potassium dihydrogen phosphate
  • 1.0 mL of ascorbic acid solution was added and mixed, and 2.0 mL of the molybdate solution was thoroughly mixed.
  • the obtained mixed solution was placed in a Petri dish (solution thickness of about 0.5 mm), and photographed separately, by extracting RGB values, after gradation conversion
  • the detecting device has two color developing agent chambers, one is filled with ascorbic acid solution, and one is filled with molybdate solution.
  • the volume ratio of the two color developing agent chambers is 1:2, and the volume of the sample chamber is about color developing agent.
  • the total volume of the cavity is 30 times.
  • the measured water quality is neutral and the pH is about 7.
  • the water is clear and contains almost no solid impurities. Therefore, it can be directly tested using this device.
  • the developer does not flow into the sample chamber under tension.
  • the sample is inhaled by the air pressure, and the same amount of sample and developer are simultaneously inhaled in the sample cavity, thereby forming a blue complex.
  • one developer chamber is filled with sulfosalicylic acid
  • the other developer chamber is filled with an aqueous ammonia solution.
  • the device is placed on other white objects such as white paper, and the image of the reaction chamber and the contrast cavity is recorded by using the mobile phone camera without sunlight, and the content of iron ions in the sample can be obtained by the analysis function of the mobile phone APP.
  • the invention relates to a suction-measuring liquid detecting device, which presses and loosens the upper cover plate made of silicone rubber in the sample cavity by fingers, and the sample to be tested enters the reaction cavity and the contrast cavity through the sample suction pipe, respectively, and the color developing agent passes through the diversion flow.
  • the tube is drawn into the reaction chamber.
  • Use the mobile phone camera to capture the image of the reaction chamber and the contrast cavity, and then use the customized APP color/gray analysis function to obtain the quantitative data of the reaction cavity and the contrast cavity chromatic aberration, and calibrate the curve according to the concentration/color difference obtained in advance, thereby APP software Directly output the concentration of a specific contaminant in the sample to be tested. It can be conveniently used for a variety of liquid detection and has good industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种即吸即测液体检测装置,涉及化学分析技术和环境水体检测领域。该装置包括反应腔(2)、对比腔(3)、显色剂腔(4)、样品吸入管(1)、滤膜(7)、导流管(6)。通过手指按压和放松样品腔硅橡胶制成的上盖板(91),待测样品通过样品吸入管(1)分别进入反应腔(2)和对比腔(3),同时显色剂通过导流管(6)被吸入反应腔(2)中。经过一段特定的反应时间,反应腔(2)中的待测样品与显色剂发生显色反应;而对比腔(3)中的样品颜色不发生变化。使用手机摄像头(18)拍摄反应腔(2)和对比腔(3)的图像,再使用定制的APP色彩/灰度分析功能得到反应腔(2)和对比腔(3)色差的量化数据,并根据预先实验得到的浓度/色差标定曲线,由此APP软件直接输出待测样品中特定污染物的浓度。

Description

一种即吸即测液体检测装置 技术领域
本发明涉及化学分析技术和环境水体检测领域,尤其涉及一种使用3D打印模具制备的即吸即测液体检测装置。
背景技术
近年来,社会对水质量的重视日趋加强,迫切需求能够实时、快速地检测水体中多污染物的技术。现有技术中,通常需要将样品采集回实验室进行一系列的处理、分析。实验室内设备齐全,更容易得到精确详实的数据和结果,但通常需要几小时乃至几天时间才能得到结果。但在很多情况下需快速的、定性的确定某一种物质的存在,这时送到实验室检测费时费力,会错过处置水体污染的最佳时机,造成更为严重的后果。
公开文献《基于分光光度法的多参数在线水质监测仪的研究与设计》研究并设计了一个使用紫外——可见光进行测量的多参数分光光度法测量***,可通过替换不同的显色剂模组完成用户可选的多种污染物的测量。该***集成了光源、光纤、光谱仪、上位机、下位机以及比色皿、注射器等多种仪器,还需要实现数据采集、分析、显示等复杂的软件***,该研究体现了目前国内外在线监控的主流情况。这种复杂的在线检测***的确可实现精确的测量,但实现成本非常高,软硬件***复杂,不易操作,一般置于特定的水域长期使用,不便携 带。
专利CN104792777提出了一种经济快捷型比色测定水质六价铬浓度的测试包和测定方法,通过前处理调节样品pH、显色反应及与预制标准比色卡对比实现样品的检测;该发明克服了一般水体检测方法操作复杂、价格昂贵的的缺点,提出了一种具有针对性、配套化检测的新思路。但该专利公开的技术方案没有相应的测试液专门存取装置,且检测完全凭人工目测,使用环境及效果受局限。
发明内容
本发明所要解决的主要技术问题是提供一种即吸即测液体检测装置,降低检测成本,实现实时、高效的分析样品。
为了解决上述的技术问题,本发明提供了一种即吸即测液体检测装置,包括检测装置本体和分析设备;
所述检测装置本体包括一上盖板和下盖板,其相向放置并拼合为若干个封闭空间;所述封闭空间包括有反应腔、对比腔、显色剂腔、样品吸入管、滤膜和导流管;
所述样品吸入管的一端与待测样品连接,另一端通过滤膜与所述反应腔或对比腔连通;所述显色剂腔通过所述导流管与反应腔连通;
所述上盖板为弹性材料制作,按压上盖板再松开时,所述样品被吸入反应腔和对比腔中,显色剂被吸入对比腔中与样品混合;
所述分析设备为通用的手持移动终端,包括一摄像头和安装于智能终端中的APP;使用摄像头拍摄反应腔和对比腔的图像,通过APP 来确定待测样品的浓度;
该APP存储有事先测得的“灰度-浓度”标准曲线数据;将摄像头拍摄的反应腔和对比腔的图像导入APP中,即可读取图片的RGB值;根据
Figure PCTCN2016079280-appb-000001
即可将RGB值转化为灰度值;
由于灰度和浓度成一定的线性关系:
Gr=A*C+B,其中Gr表示灰度,C表示浓度;
因此,假设反应腔待测样品读取的灰度值为Gr1,对比腔待测样品读取的灰度值为Gr2;将其带入“灰度-浓度”标准曲线,则可得到反应腔待测样品浓度C1,对比腔待测样品浓度C2
假设初始光强I0,透过反应腔的光强为I1,透过对比腔的光强为I2,则有:
Figure PCTCN2016079280-appb-000002
根据以上公式,如果以对比腔为参考,可以得到校正后的反应腔待测物浓度。
在一较佳实施例中:所述上盖板为硅橡胶材质。
在一较佳实施例中:所述上盖板使用3D打印结构作为模具,浇筑硅橡胶而得。
在一较佳实施例中:所述下盖板的材质为玻璃,塑料,树脂,硅橡胶中的一种。
在一较佳实施例中:所述上盖板和下盖板经过等离子或臭氧处理 后直接键合。
在一较佳实施例中:所述显色剂是任何能够与样品中的待测物质发生特异性显色反应的试剂。
在一较佳实施例中:根据不同的检测目的物,所述显色剂腔中注入的显色剂不同。
在一较佳实施例中:所述分析设备可以是智能手机,其APP存储有事先测得的“灰度-浓度”标准曲线数据。
在一较佳实施例中:所述显色剂腔为两个并联连接。
在一较佳实施例中:所述显色剂腔可以是多个。
相较于现有技术,本发明具备以下有益效果:
本发明提供了一种即吸即测液体检测装置,上盖板使用硅橡胶制备,具有柔韧性。可通过挤压反应腔和对比腔使得样品吸入管吸入样品。硅橡胶有高稳定性,耐酸耐碱。在显色剂腔中可注入多种显色剂,根据不同检测物质使用注有特定显色剂的装置。
本发明提供了一种即吸即测液体检测装置,采用3D打印方法加工模具可以快速加工出传统方法无法或难以制作的模具。其次3D打印技术“打印”的产品是自然无缝连接的,结构之间的稳固性和连接强度要远远高于传统方法。
上盖板使用硅橡胶制备,由于硅橡胶具有很小的杨氏模量,固化后具有很好的柔韧性,且硅橡胶化学性质稳定,耐酸耐碱,跟常见的显色剂不会起反应。使用硅橡胶作为装置的材料,充分利用了硅橡胶的两个性质。其一,利用它的柔韧性可实现通过挤压形成的气压差驱 动样品和显色剂流动;其二,利用它的化学性质稳定,可选用多种显色剂,大大扩展了该装置的使用场景。
在实验室对该即吸即测液体检测装置注入不同的显色剂并封装后,可随身携带,在室外环境中,根据不同的目标物使用装有不同显色剂的装置,通过按压和放松样品腔和对比腔中间部位吸入样品和显色剂,待样品和显色剂发生特异性的显色反应后,通过手机摄像头和比色软件检测样品。
与原有快速检测技术相比,本申请提出的即吸即测液体检测装置,使用3D打印的一体成型模具,避免了复杂的制作工艺。体积、重量和使用的便利性与试纸法类似,但具有更高的灵敏度,通过添加不同的显色剂可以监测多种污染物,应用范围远也比试纸广。和大型专业的测试方法相比,本申请充分利用了PDMS的柔韧性和稳定性实现了“即吸即测”,减少其他样品、试剂提取设备的使用;使用手机和手机软件实时记录反应物和对比物图像,继而可实时得到样品中污染物的量,不需要大型检测设备,具有简捷、低成本的优势。本申请提出的技术方案装置制作简单、测试操作简便,灵敏度较高,非常适合在野外作业,便于非专业人士的使用。
附图说明
图1为本发明优选实施例使用的一体成型模具的立体图;
图2为本发明优选实施例使用的一体成型模具的俯视图;
图3为本发明优选实施例检测装置本体的结构立体透视图;
图4为本发明优选实施例检测装置本体的结构俯视透视图;
图5为本发明优选实施例的结构立体透视图
具体实施方式
下面通过附图和具体实施例对本发明进行具体说明。
如图1-5所示,一种即吸即测液体检测装置,它包括检测装置本体90和分析设备80.
检测装置本体90包括一上盖板91和下盖板92,其相向放置并拼合为若干个密封空间;所述密封空间包括反应腔2、对比腔3、显色剂腔4、两组样品吸入管1、滤膜7和导流管6。所述两组样品吸入管1的一端分别与待测样品连接,另一端分别通过滤膜7与所述反应腔2和对比腔2连通;所述显色剂腔4通过所述导流管6与反应腔2连通。
上盖板91为硅橡胶材质。所述上盖板91使用3D打印结构作为模具,浇筑硅橡胶而得。所述下盖板92的材质为玻璃,塑料,树脂,硅橡胶中的一种。所述上盖板91和下盖板92经过等离子或臭氧处理后直接键合。
由于上盖板91为弹性材料制作,按压上盖板91再松开时,所述样品可以被吸入反应腔2和对比腔3中;同时,显色剂腔4内的显色剂也被吸入对比腔3中与样品混合。
分析设备80为通用的手持移动终端,包括有摄像头18、芯片82、显示屏83。芯片82的APP中存储有事先测得的“灰度-浓度”标准曲 线数据。
检测时,将手机拍摄的反应腔和对比腔的图像导入APP中,即可读取图片的RGB值;根据
Figure PCTCN2016079280-appb-000003
即可将RGB值转化为灰度值;
由于灰度和浓度成一定的线性关系:
Gr=A*C+B,其中Gr表示灰度,C表示浓度;
因此,假设反应腔待测样品读取的灰度值为Gr1,对比腔待测样品读取的灰度值为Gr2;将其带入“灰度-浓度”标准曲线,则可得到反应腔待测样品浓度C1,对比腔待测样品浓度C2
假设初始光强I0,透过反应腔的光强为I1,透过对比腔的光强为I2,则有:
Figure PCTCN2016079280-appb-000004
根据上述公式,如果以对比腔为参考,可以得到校正后的反应腔待测物浓度。
其中:所述显色剂是任何能够与样品中的待测物质发生特异性显色反应的试剂。根据不同的检测目的物,所述显色剂腔中注入的显色剂不同。
检测装置本体90采用3D打印机制作,其具体制备步骤包括:
1)使用SolidWorks绘制模具三维图。
2)将模具三维图导入3D打印机中,使用尼龙打印成型。
3)将PDMS和固化剂以10:1的质量比充分混合搅拌,置于真空箱 中待气泡消失后备用。
4)将模具三维图用502胶水固定于无盖玻璃盒内,使用三甲基氯硅烷浸润模具上表面和玻璃盒内侧。
5)浇筑上述PDMS混合物,浇筑高度低于显色剂注入口位置。
6)将浇筑有PDMS的模具置于100℃烘箱中10分钟后,将PDMS剥离,在样品吸入管和反应腔、对比腔连接处分别使用少量的PDMS粘贴滤膜,得到装置上盖板。
7)用三甲基氯硅烷浸润玻璃片后,在玻璃片旋涂步骤3所述PDMS混合物20s,转速300r/min,置于100℃烘箱加热10min。再在此基础上旋涂、固化多次得到2mm厚的均匀薄片,即为装置下盖板。该装置下盖板也可使用玻璃,塑料,树脂,硅橡胶等透明或白色材料。
8)将步骤6中和步骤7中得到的装置上下盖板置于等离子去胶机中进行等离子处理(100w,15s),键合。
9)将键合得到的装置切割露出样品吸入管,并将显色剂通过显色剂注入口注入到显色剂腔,然后用键合的方法,使用PDMS薄片把显色剂注入口封住。
在本实施例中,利用比色法测定水体中总磷含量。在现场测定之前,先在实验室配置好了不同浓度的磷标准溶液(磷酸二氢钾)各30mL,并设置分别加入1.0mL抗坏血酸溶液混匀,2.0mL钼酸盐溶液充分混匀。放置5min后,各取所得混合溶液放置于培养皿中(溶液厚度约0.5mm),分别拍照,通过提取RGB值,经过灰度转换后即
可得到下表数据,具体的浓度和灰度的关系式为:
C=1.0987*Gr-88.999
编号 浓度/(mg/L) 红色(R) 绿色(G) 蓝色(B) 灰度(Grey)
1 0.00 20 89 133 81.358
2 31.51 56 120 151 108.906
3 34.84 60 120 170 111.701
4 45.54 69 137 177 125.560
5 53.45 82 136 191 128.590
6 64.39 93 147 200 139.004
本实施例中检测装置有两个显色剂腔,一个装入抗坏血酸溶液,一个装入钼酸盐溶液,两个显色剂腔体体积比为1:2,样品腔体积约为显色剂腔体总体积30倍。所测水质为中性,PH约为7。且水质清澈,几乎不含固态杂质。故可直接使用本装置检测。
当装置没有受到外力作用时,受张力作用,显色剂不会流入样品腔中。挤压又放松样品腔和对比腔中间部位后,受气压影响,对比腔吸入样品,而样品腔中会同时吸入等量样品和显色剂,经过从而可生成蓝色的络合物。
将该装置置于白纸等其他白色物品上5min后,在没有阳光斜射条件下使用手机摄像头记录反应腔和对比腔的图像,得到反映腔中图像:R=56,G=129,B=153,计算得到浓度C1=37.923mg/L;对比腔中图像:R=20,G=91,B=132,计算得到浓度C2=1.783mg/L。那么C=C1-C2,为36.140mg/L。而使用分光光度计测得的浓度为35.440mg/L,两 种方法所测得的浓度基本相同。
本实施例中,有两个显色剂腔,一个显色剂腔装入磺基水杨酸,另一个显色剂腔中装入氨水溶液。当装置没有受到外力作用时,受张力作用,显色剂不会流入样品腔中。挤压又放松样品腔和对比腔中间部位后,受气压影响,对比腔吸入样品,而样品腔中会同时吸入显色剂和等量样品,经过从而可生成红色或黄色的络合物。
将该装置置于白纸等其他白色物品上,在没有阳光斜射条件下使用手机摄像头记录反应腔和对比腔的图像,通过手机APP的分析功能即可得到样品中铁离子的含量。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明一种即吸即测液体检测装置,通过手指按压和放松样品腔硅橡胶制成的上盖板,待测样品通过样品吸入管分别进入反应腔和对比腔,同时显色剂通过导流管被吸入反应腔中。使用手机摄像头拍摄反应腔和对比腔的图像,再使用定制的APP色彩/灰度分析功能得到反应腔和对比腔色差的量化数据,并根据预先实验得到的浓度/色差标定曲线,由此APP软件直接输出待测样品中特定污染物的浓度。可方便的用于多种液体检测,具有良好的工业实用性。

Claims (11)

  1. 一种即吸即测液体检测装置,其特征在于:包括检测装置本体和分析设备;
    所述检测装置本体包括一上盖板和下盖板,其相向放置并拼合为若干个封闭空间;所述封闭空间包括有反应腔、对比腔、显色剂腔、样品吸入管、滤膜和导流管;
    所述样品吸入管的一端与待测样品连接,另一端通过滤膜与所述反应腔或对比腔连通;所述显色剂腔通过所述导流管与反应腔连通;
    所述上盖板为弹性材料制作,按压上盖板再松开时,所述样品被吸入反应腔和对比腔中,显色剂被吸入对比腔中与样品混合;
    所述分析设备为通用的手持移动终端,包括一摄像头和安装于智能终端中的APP;使用摄像头拍摄反应腔和对比腔的图像,通过APP来确定待测样品的浓度;
    该APP存储有事先测得的“灰度-浓度”标准曲线数据;将摄像头拍摄的反应腔和对比腔的图像导入APP中,即可读取图片的RGB值;
    将其带入“灰度-浓度”标准曲线,并与对比腔待测样品浓度比较,从而可得到反应腔待测样品浓度。
  2. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述上盖板为硅橡胶材质。
  3. 根据权利要求2所述的一种即吸即测液体检测装置,其特征在于:所述上盖板使用3D打印结构作为模具,浇筑硅橡胶而得。
  4. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在 于:所述下盖板的材质为玻璃,塑料,树脂,硅橡胶中的一种。
  5. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述上盖板和下盖板经过等离子或臭氧处理后直接键合。
  6. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述显色剂是任何能够与样品中的待测物质发生特异性显色反应的试剂。
  7. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:根据不同的检测目的物,所述显色剂腔中注入的显色剂不同。
  8. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述分析设备可以是智能手机,其APP存储有事先测得的“灰度-浓度”标准曲线数据。
  9. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述显色剂腔为两个并联连接。
  10. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述显色剂腔可以是多个。
  11. 根据权利要求1所述的一种即吸即测液体检测装置,其特征在于:所述检测时,将手机拍摄的反应腔和对比腔的图像导入APP中,即可读取图片的RGB值;根据
    Figure PCTCN2016079280-appb-100001
    即可将RGB值转化为灰度值;
    由于灰度和浓度成一定的线性关系:
    Gr=A*C+B,其中Gr表示灰度,C表示浓度;
    因此,假设反应腔待测样品读取的灰度值为Gr1,对比腔待测样品读取的灰度值为Gr2;将其带入“灰度-浓度”标准曲线,则可得到反应腔待测样品浓度C1,对比腔待测样品浓度C2
    假设初始光强I0,透过反应腔的光强为I1,透过对比腔的光强为I2,则有:
    Figure PCTCN2016079280-appb-100002
    根据上述公式,如果以对比腔为参考,可以得到校正后的反应腔待测物浓度。
PCT/CN2016/079280 2015-12-29 2016-04-14 一种即吸即测液体检测装置 WO2017113545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511015457.0 2015-12-29
CN201511015457.0A CN105651767B (zh) 2015-12-29 2015-12-29 一种使用3d打印模具制备的即吸即测液体检测装置

Publications (1)

Publication Number Publication Date
WO2017113545A1 true WO2017113545A1 (zh) 2017-07-06

Family

ID=56477362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079280 WO2017113545A1 (zh) 2015-12-29 2016-04-14 一种即吸即测液体检测装置

Country Status (2)

Country Link
CN (1) CN105651767B (zh)
WO (1) WO2017113545A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833515A (zh) * 2017-12-04 2018-03-23 上海申得欧有限公司 一种用于检测光催化材料降解有害气体效果的装置
CN110954488A (zh) * 2019-12-30 2020-04-03 长沙协大生物科技有限公司 一种基于颜色识别的***分泌物样本检测装置及其方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106323968A (zh) * 2016-11-23 2017-01-11 厦门大学 一种用于快速水质检测的数据采集装置及数据采样方法
CN109164097A (zh) * 2018-09-30 2019-01-08 重庆师范大学 基于智能手机拍照功能快速检测红酒中抗氧化剂的方法
CN113203532A (zh) * 2021-04-15 2021-08-03 上海市食品药品包装材料测试所 基于真空衰减法的注射剂包装完整性测试工具的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131892A1 (en) * 2001-03-16 2002-09-19 Baruch Glattstein Molded casing for a test kit
CN101995479A (zh) * 2009-08-07 2011-03-30 霍夫曼-拉罗奇有限公司 用于液体样品处理的处理单元和方法
CN101995477A (zh) * 2009-08-07 2011-03-30 霍夫曼-拉罗奇有限公司 用于液体样品分析的***
WO2011123064A1 (en) * 2010-03-30 2011-10-06 Clearbridge Bioloc Pte Ltd. Assay
US20120261256A1 (en) * 2011-04-13 2012-10-18 Chang Chia-Pin Sample holders and analytical instrument for point-of-care qualification of clinical samples
US20140287520A1 (en) * 2012-04-03 2014-09-25 Redxdefense, Llc System and Method for Optical Detection Using Capillary Action
CN204479457U (zh) * 2015-03-27 2015-07-15 北京普析通用仪器有限责任公司 比色法快速检测的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020131892A1 (en) * 2001-03-16 2002-09-19 Baruch Glattstein Molded casing for a test kit
CN101995479A (zh) * 2009-08-07 2011-03-30 霍夫曼-拉罗奇有限公司 用于液体样品处理的处理单元和方法
CN101995477A (zh) * 2009-08-07 2011-03-30 霍夫曼-拉罗奇有限公司 用于液体样品分析的***
WO2011123064A1 (en) * 2010-03-30 2011-10-06 Clearbridge Bioloc Pte Ltd. Assay
US20120261256A1 (en) * 2011-04-13 2012-10-18 Chang Chia-Pin Sample holders and analytical instrument for point-of-care qualification of clinical samples
US20140287520A1 (en) * 2012-04-03 2014-09-25 Redxdefense, Llc System and Method for Optical Detection Using Capillary Action
CN204479457U (zh) * 2015-03-27 2015-07-15 北京普析通用仪器有限责任公司 比色法快速检测的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833515A (zh) * 2017-12-04 2018-03-23 上海申得欧有限公司 一种用于检测光催化材料降解有害气体效果的装置
CN110954488A (zh) * 2019-12-30 2020-04-03 长沙协大生物科技有限公司 一种基于颜色识别的***分泌物样本检测装置及其方法

Also Published As

Publication number Publication date
CN105651767A (zh) 2016-06-08
CN105651767B (zh) 2018-06-05

Similar Documents

Publication Publication Date Title
WO2017113545A1 (zh) 一种即吸即测液体检测装置
CN106353312B (zh) 一种基于微流控纸芯片技术的茶多酚含量快速检测方法
CN105115911A (zh) 一种水质检测方法及其专用微流控芯片
ATE322009T1 (de) Einleitung eines analytischen messungverfahrens für blut
CN104897907B (zh) 一种检测糖化血红蛋白的试剂盒及其检测方法
CN105372195B (zh) 一种微量紫外分光光度计质量检测方法和检测试剂盒
CN103399006B (zh) 基于颜色rgb分量的尿液分析装置及尿液半定量分析方法
CN106442515B (zh) 一种简单的银离子目视定量检测方法
CN204128953U (zh) 自动进样气相分子吸收光谱仪
CN202916200U (zh) 医用荧光定量分析仪
CN103063663A (zh) 一种基于图像分析土壤中总磷含量的测定方法
CN105784706A (zh) 一种基于智能手机检测***的黄曲霉素b1速测方法
CN106525826B (zh) 基于颜色主波长和补色波长的分子智能手机速测方法
CN104931488B (zh) 一种基于指示剂阵列检测阴离子的方法
CN205808918U (zh) 一种基于酚试剂法的现场便携式甲醛检测仪
CN204241366U (zh) 一种检测土壤中重金属的装置
CN104964940A (zh) 一种快速检测水样中总磷含量的检测装置及其检测方法
CN108303555A (zh) 一种养殖水体中铅镉汞即时检测装置及方法
CN106680267B (zh) 尿碘定量分析***
CN114200134B (zh) 用于微生物检测的自动化快速检测装置、***及方法
CN204789319U (zh) 一种快速检测水样中总磷含量的检测装置
CN106769907A (zh) 定量分析仪
CN206248539U (zh) 定量分析仪
CN104977334B (zh) 一种测量生物需氧量的实验装置和方法
CN212228721U (zh) 一种铝含量在线式检测***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880353

Country of ref document: EP

Kind code of ref document: A1