WO2017113458A1 - 一种用于mtca机框的双输入电源*** - Google Patents

一种用于mtca机框的双输入电源*** Download PDF

Info

Publication number
WO2017113458A1
WO2017113458A1 PCT/CN2016/072116 CN2016072116W WO2017113458A1 WO 2017113458 A1 WO2017113458 A1 WO 2017113458A1 CN 2016072116 W CN2016072116 W CN 2016072116W WO 2017113458 A1 WO2017113458 A1 WO 2017113458A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
nmos transistor
module
power supply
voltage
Prior art date
Application number
PCT/CN2016/072116
Other languages
English (en)
French (fr)
Inventor
陈德刚
Original Assignee
邦彦技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邦彦技术股份有限公司 filed Critical 邦彦技术股份有限公司
Publication of WO2017113458A1 publication Critical patent/WO2017113458A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H11/00Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
    • H02H11/002Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of power circuits, and more particularly to a dual input power system for an MTCA chassis.
  • MTCA is MicroTCA and its architecture is similar to a simplified version of ATCA. It is compatible with ATCA's high performance, high bandwidth, AMC flexibility, creating a very high level of integration, greatly reducing costs, reducing system space and scale, and eliminating the need for carrier board design to facilitate AMC modules. usage of. Therefore, it is well suited for applications in the low-end communications, industrial, military, medical, multimedia and other fields.
  • the power supply in the existing MTCA chassis is mostly AC 220V single input power or DC 48V single input power, which cannot achieve dual power input; general power supply does not support hot swap, which brings inconvenience to users using power supply equipment;
  • the power system is interfered by various external factors, voltage fluctuations occur, resulting in undervoltage or overvoltage conditions, resulting in unstable output of the communication power supply, affecting the normal operation of various power supply equipment.
  • an object of the present invention is to provide a dual input power supply system for an MTCA chassis, which can realize dual power input, is convenient for users, has flexible application, and has good reliability; and the input and output of the power supply are supported. Hot plugging, power board replacement without power off, very convenient; also supports input and output backup, power system stability.
  • the technical solution adopted by the present invention is: a dual input power system for an MTCA chassis, comprising an AC voltage input terminal, a DC voltage input terminal and a voltage output terminal, the dual input power system further comprising a slow start module and a voltage a conversion module and a combined output module, wherein an output end of the slow start module is connected to an input end of the voltage conversion module, an output end of the voltage conversion module is connected to an input end of the combined output module, and an output of the combined output module The terminal is connected to the voltage output of the dual input power system.
  • the combined output module includes a switch control chip, a first switch tube and a second switch tube, and the switch control chip is respectively connected to the first switch tube and the second switch tube and controls their turn-off.
  • first switch tube is a first NMOS tube
  • second switch tube is a second NMOS tube
  • the slow start module includes a DC slow start circuit, and an output end of the DC slow start circuit is connected to an input end of the voltage conversion module, and the DC slow start circuit includes a first resistor, a second resistor, and a third resistor. a fourth resistor, a fifth resistor, a sixth resistor, a seventh resistor, a first diode, a first Zener diode, a first capacitor, a second capacitor, a third NMOS transistor, and a fourth NMOS transistor; One end of a resistor is connected to the cathode of the first diode, the other end of the first resistor is connected to the anode of the first diode, and the other end of the first resistor is connected to one end of the second resistor, The other end of the second resistor is connected to the drain of the third NMOS transistor; one end of the second resistor is connected to the cathode of the first Zener diode, and the other end of the first Zener diode is connected to the an
  • the slow start module further includes an AC slow start circuit, and an output end of the AC slow start circuit is connected to an input end of the voltage conversion module.
  • the dual input power supply system for the MTCA chassis further includes a reverse connection protection module, and an output end of the reverse connection protection module is connected to an input end of the DC slow start circuit.
  • the reverse connection protection module is a reverse connection protection circuit
  • the reverse connection protection circuit includes an eighth resistor, a ninth resistor, a tenth resistor, an eleventh resistor, a second Zener diode, a third capacitor, and a third a fifth NMOS transistor and a sixth NMOS transistor
  • one end of the eighth resistor is an input end of the reverse connection protection circuit
  • the other end of the eighth resistor is connected to one end of the ninth resistor
  • the other end of the ninth resistor Connected to the gate of the fifth NMOS transistor
  • the source of the fifth NMOS transistor is connected to the source of the sixth NMOS transistor
  • the drain of the sixth NMOS transistor is connected to the drain of the fifth NMOS transistor
  • a gate of the sixth NMOS transistor is connected to one end of the tenth resistor
  • the other end of the tenth resistor is connected to one end of the ninth resistor
  • one end of the eleventh resistor is connected to one end of the ninth resistor, the
  • the dual input power system for the MTCA chassis further includes a filtering module, the filtering module includes a DC filtering module, and the DC voltage input end of the dual input power system is connected to the input end of the DC filtering module.
  • the output end of the DC filter module is connected to the input end of the reverse connection protection module.
  • the filtering module further includes an AC filter module, wherein the AC voltage input end of the dual input power system is connected to the input end of the AC filter module, and the output end of the AC filter module is connected to the input end of the AC slow start circuit. .
  • the dual input power system for the MTCA chassis further includes a heat dissipation module, and an output end of the voltage conversion module is connected to an input end of the heat dissipation module.
  • the invention has the beneficial effects that the invention has two voltage conversion circuits, can realize dual power input, is convenient for users, has flexible application and good reliability; the input and output of the invention both support hot swapping and replace the power board It is very convenient without power off; it also supports input and output backup, and the stability of the power system is good.
  • the invention has a reverse connection protection module, which can realize reverse connection protection to the DC power input; the invention has a filtering module, so that the dual input power system meets the requirements of electromagnetic emission and sensitivity; the invention also adds a heat dissipation module and improves the The stability of the dual input power system.
  • FIG. 1 is a block diagram showing the structure of a dual input power supply system for an MTCA chassis according to the present invention
  • FIG. 2 is a circuit diagram of a specific embodiment of a reverse connection protection module in a dual input power supply system for an MTCA chassis;
  • FIG. 3 is a circuit diagram of a specific embodiment of a DC slow start circuit in a dual input power supply system for an MTCA chassis;
  • FIG. 4 is a waveform diagram of a specific embodiment of a DC slow start circuit in a dual input power supply system for an MTCA chassis;
  • FIG. 5 is a circuit diagram of a specific embodiment of a combined output module in a dual input power system for an MTCA chassis.
  • FIG. 1 is a structural block diagram of the present invention, the dual input power supply system includes an AC voltage input terminal, a DC voltage input terminal, a filtering module, and a reverse connection protection module. , slow start module, voltage conversion module, combined output module, heat dissipation module and voltage output terminal.
  • the filtering module includes a DC filter module and an AC filter module, wherein the DC voltage input end is connected to an input end of the DC filter module, and an output end of the DC filter module is connected to an input end of the reverse connection protection module;
  • the voltage input end is connected to the input end of the AC filter module;
  • the slow start module includes a DC slow start circuit and an AC slow start circuit, and an output end of the reverse connection protection module is connected to an input end of the DC slow start circuit, and the exchange
  • the output end of the filter module is connected to the input end of the AC slow start circuit;
  • the output end of the slow start module is connected to the input end of the voltage conversion module;
  • the output end of the voltage conversion module is connected to the input end of the heat dissipation module;
  • the output end of the voltage conversion module is connected to the input end of the combined output module, and the output end of the combined output module is connected to the voltage output end of the dual input power system.
  • the DC filter module is responsible for filtering out DC input interference.
  • three-level common mode filtering is used, that is, the leakage inductance of the common mode inductor and the X capacitor are filtered out, and the X capacitor is X2 (X1/X3/MKP) to suppress the electromagnetic interference capacitor of the power supply.
  • the AC filtering module is responsible for filtering out AC input interference.
  • FIG. 2 is a circuit diagram of a specific embodiment of the reverse connection protection module of the present invention.
  • the reverse connection protection circuit includes an eighth resistor R8 and a ninth. Resistor R9, tenth resistor R10, eleventh resistor R11, second Zener diode E2, third capacitor C3, fifth NMOS transistor Q5 and sixth NMOS transistor Q6, one end of the eighth resistor R8 is reversed protection An input end of the circuit, the other end of the eighth resistor R8 is connected to one end of the ninth resistor R9; the other end of the ninth resistor R9 is connected to the gate of the fifth NMOS transistor Q5, the fifth NMOS transistor The source of Q5 is connected to the source of the sixth NMOS transistor Q6, the drain of the sixth NMOS transistor Q6 is connected to the drain of the fifth NMOS transistor Q5, and the gate of the sixth NMOS transistor Q6 is connected to the tenth resistor.
  • One end of the R10 is connected, and the other end of the tenth resistor R10 is connected to one end of the ninth resistor R9; one end of the eleventh resistor R11 is connected to one end of the ninth resistor R9, and the other end of the eleventh resistor R11 One end is connected to the drain of the fifth NMOS transistor Q5; the negative pole of the second Zener diode E2 is opposite to the eleventh resistor R11 The terminal is connected, the anode of the second Zener diode E2 is connected to the other end of the eleventh resistor R11; one end of the third capacitor C3 is connected to the cathode of the second Zener diode E2, and the third capacitor C3 is The other end is connected to the anode of the second Zener diode E2.
  • the voltage dividing resistors R8, R9, R10 and R11 in the reverse connection protection circuit ensure that the Vgs of the NMOS transistor is within the normal on-voltage range, and Vgs is the gate of the MOS transistor relative to The voltage of the source; when the DC input voltage is reversed, the NMOS transistor is not turned on, and the internal parasitic diode of the NMOS transistor acts as a reverse connection protection.
  • a double NMOS transistor is used for current sharing.
  • FIG. 3 is a circuit diagram of a specific embodiment of a DC slow start circuit according to the present invention.
  • the DC slow start circuit includes a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • the anode of the voltage diode E1 is connected, and the other end of the first capacitor C1 and the drain of the fourth NMOS transistor Q4
  • One end of the third resistor R3 is connected to one end of the first capacitor C1, the other end of the third resistor R3 is connected to the gate of the fourth NMOS transistor Q4; the other end of the first resistor R1 is One end of the fourth resistor R4 is connected, the other end of the fourth resistor R4 is connected to the gate of the third NMOS transistor Q3;
  • the drain of the third NMOS transistor Q3 is connected to one end of the fifth resistor R5, the fifth One end of the resistor R5 is connected to the drain of the fourth NMOS transistor Q4, and the other end of the fifth resistor R5 is connected to the source of the third NMOS transistor Q3; one end of the sixth resistor R6 and the fourth NMOS transistor Q4 a drain connection, the other end of the sixth resistor R6 is connected to the source of the third NMOS transistor Q3
  • Vgs(th) the threshold voltage at which the MOS tube conductance starts to conduct
  • Vds the voltage difference between the D pole and the S pole of the NMOS transistor
  • Ids current flowing through the NMOS transistor D, S pole
  • Vgs, miller The VGS voltage value corresponding to the Miller platform.
  • FIG. 4 is a waveform diagram of a specific embodiment of a DC slow-start circuit of the present invention, in which the NMOS transistor is turned on: in the process of increasing the voltage of Vgs from 0 V to Vgs (th), Ids is 0; when Vgs reaches Vgs ( When th), the NMOS transistor Ids starts to have a current, and as Vgs increases, Ids also gradually increases. When Vgs increases to Vgs, miller, Ids reaches the maximum value of the output.
  • the NMOS transistor When power-on, the NMOS transistor is turned on. Ids is the charging current of the power supply to the load capacitor. When the load is constant, the longer the charging time, the smaller the Ids. The essence of power-on slow-start and hot-swap is to reduce the Ids current at power-on.
  • the Vgs of the NMOS transistors Q3 and Q4 in the DC slow start circuit rise slowly, increasing the value of the NMOS transistor at the time t1, so that the Ids does not increase to a maximum value.
  • the load capacitor is fully charged, the inrush current at the start of the circuit can be reduced.
  • the time t1 mainly depends on the capacitance between the G and S electrodes of the NMOS transistor and the charging current to the capacitor.
  • the first capacitor C1 When the DC power source is pulled out, the first capacitor C1 is quickly discharged through the first diode D1, so that the Vgs of the NMOS transistors Q3 and Q4 are rapidly lowered to meet the needs of the next power-on slow start.
  • the input and output of the DC power supply of the dual input power system can be hot swapped.
  • the AC slow start circuit can realize a slow start when the AC power of the dual input power system is powered on, that is, the input and output of the AC power of the dual input power system can be hot swapped.
  • the voltage conversion module is responsible for converting the DC voltage and the AC voltage of the dual input power system into a required voltage.
  • the voltage conversion module includes a DC voltage conversion circuit and an AC voltage conversion circuit, and an output end of the DC slow start circuit is connected to an input end of the DC voltage conversion circuit, and an output end of the AC slow start circuit and an AC voltage conversion circuit The input is connected.
  • the description is made by using a plurality of AC voltages 220V and a DC voltage 24V.
  • the AC voltage conversion circuit includes an AQ0500IU48ECIND voltage converter, and the converter can convert an AC voltage of 220V into a DC voltage of 48V.
  • the voltage converter can also realize a slow start function when the AC power supply of the dual input power system is powered on, and the DC voltage conversion circuit can use different types of voltage converters to convert the DC voltage 24V into a DC voltage of 48V.
  • the voltage conversion module can use different types of voltage converters to realize voltage type conversion and voltage size conversion. Commonly used voltages are DC voltage 220V and DC voltage 48V. Therefore, the dual input power system can support multiple input voltage combinations: AC voltage 220V, DC voltage 220V, DC voltage 48V, DC voltage 24V. As an input voltage to the dual input power system, the utility of the dual input power system is improved.
  • the combined output module includes a switch control chip, a first switch tube and a second switch tube, and the switch control chip is respectively connected to the first switch tube and the second switch tube and controls their turn-off.
  • One of the AC voltage conversion circuit and the DC voltage conversion circuit normally outputs a voltage into the switch control chip, and the chip can output a normal and stable voltage to the external power supply device.
  • the first switching transistor is a first NMOS transistor Q1; and the second switching transistor is a second NMOS transistor Q2.
  • FIG. 5 is a circuit diagram of a specific embodiment of the combined output module of the present invention.
  • the switch control chip is an LTC4355I chip, and the GATE1 port of the LTC4355I chip is connected to the gate of the first NMOS transistor Q1.
  • the source of the first NMOS transistor Q1 is connected to the OUT port of the LTC4355I chip; the GATE2 port of the LTC4355I chip is connected to the gate of the second NMOS transistor Q2, and the source of the second NMOS transistor Q2 is connected to the OUT port of the LTC4355I chip.
  • the LTC4355I chip can achieve the beneficial effects of preventing current backflow and reducing conduction power consumption, facilitating heat dissipation and improving system power supply reliability.
  • the combined output module further includes a twelfth resistor R12, a thirteenth resistor R13, a fourteenth resistor R14, a fifteenth resistor R15, a sixteenth resistor R16, a seventeenth resistor R17, and a tenth Eight resistor R18, nineteenth resistor R19, twentieth resistor R20, third Zener diode E3, fourth Zener diode E4, fifth Zener diode E5, first LED LED1 and second LED LED2,
  • the output end of the DC voltage conversion circuit is connected to one end of the twelfth resistor R12, the other end of the twelfth resistor R12 is connected to the anode of the first LED L1, and the cathode of the first LED L1 is grounded;
  • the output of the DC voltage conversion circuit is connected to the drain of the first NMOS transistor Q1, the drain of the first NMOS transistor Q1 is connected to the IN1 terminal of the LTC4355I chip, and the drain and the tenth of the first
  • One end of the seven resistor R17 is connected, the source of the first NMOS transistor Q1 is connected to the source of the second NMOS transistor, and the gate of the first NMOS transistor Q1 is connected to one end of the fourteenth resistor R14.
  • the other end of the fourteen resistor R14 is connected to the GATE1 end of the LTC4355I chip;
  • the other end of the seventeenth resistor R17 is connected to the MON1 end of the LTC4355I chip, the other end of the seventeenth resistor R17 is connected to one end of the nineteenth resistor R19, and the other end of the nineteenth resistor R19 is grounded;
  • the output end of the alternating voltage conversion circuit is connected to one end of the thirteenth resistor R13, and the other end of the thirteenth resistor R13 is connected to the positive terminal of the second light emitting diode LED2
  • the cathode of the second LED diode 2 is grounded;
  • the output of the AC voltage conversion circuit is The drain of the second NMOS transistor Q2
  • the other end of the fifteenth resistor R15 is connected to the GATE2 terminal of the LTC4355I chip, the source of the second NMOS transistor Q2 is connected to the OUT terminal of the LTC4355I chip, and the source of the second NMOS transistor Q2 is connected to the fifth Zener diode.
  • the anode of E5 is connected, the anode of the fifth Zener diode E5 is grounded; the output of the AC voltage conversion circuit is connected to one end of the sixteenth resistor R16, and the other end of the sixteenth resistor R16 is connected to the LTC4355I chip.
  • the other end of the sixteenth resistor R16 is connected to one end of the eighteenth resistor R18, and the other end of the eighteenth resistor R18 is connected to the other end of the nineteenth resistor R19;
  • One end of the resistor R20 is connected to the SET end of the LTC4355I chip, and the other end of the twentieth resistor R20 is connected to the other end of the nineteenth resistor R19;
  • the GND end of the LTC4355I chip is grounded to the GND1 end;
  • the AC voltage conversion circuit is The output terminal and the negative terminal of the third Zener diode E3
  • the anode of the third Zener diode E3 is grounded;
  • the output of the DC voltage conversion circuit is connected to the cathode of the fourth Zener diode E4, and the anode of the fourth Zener diode E4 and the third Zener diode are connected.
  • the voltage actually output by the AC voltage conversion circuit is V1
  • the voltage actually output by the DC voltage conversion circuit is V2
  • the voltages V1 and V2 are input into the chip through the IN1 and IN2 ports of the LTC4355I chip, respectively.
  • the LTC4355I chip determines whether the GATE terminal outputs a high level to drive the NMOS transistor to conduct by detecting a difference VIN-OUT between the voltage input to the IN terminal and the voltage output from the OUT terminal.
  • the GATE terminal When the voltage difference VIN-OUT is higher than 25 mV, the GATE terminal outputs a high level, and the NMOS transistor is turned on; when the voltage difference VIN-OUT is lower than -25 mV, the GATE terminal outputs Low level, the NOMS tube does not work, and the voltage input to the chip is output through the parasitic diode in the NMOS tube, so that the combined output function of the dual power input system can be realized, that is, as long as the AC voltage conversion circuit and the DC One of the normal conversion voltages of the voltage conversion circuit enters the LTC4355I chip, and the chip can output a normal and stable voltage V-out to the external power supply device.
  • the magnitude of the voltage V-out is determined by a large voltage value among the voltages V1 and V2.
  • the magnitude of the voltage V1 is 48V ⁇ 1.5V
  • the magnitude of the voltage V2 is 45V ⁇ 1.5V. Therefore, in the present embodiment, power is preferentially supplied by the AC voltage conversion circuit. Details are as follows:
  • the voltage V-out is a voltage V1;
  • the voltage V-out is a voltage V2;
  • the voltage V-out is the voltage V1;
  • the voltage V-out alternates between voltage V1 and voltage V2. Since the NMOS transistor has a parasitic diode, the voltage V -out does not appear to be 0.
  • the dual input power system for the MTCA chassis further includes a heat dissipation module, and an output end of the voltage conversion module is connected to an input end of the heat dissipation module.
  • the heat dissipation module is responsible for the heat dissipation work of the entire dual input power system, avoiding the coefficient variation of the system due to the heat of the components, affecting the normal operation of the circuit, and improving the stability of the dual input power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

一种用于MTCA机框的双输入电源***,包括交流电压输入端、直流电压输入端和电压输出端,所述双输入电源***还包括缓启动模块、电压转换模块和合路输出模块,所述缓启动模块的输出端与电压转换模块的输入端连接,所述电压转换模块的输出端与合路输出模块的输入端连接,所述合路输出模块的输出端与双输入电源***的电压输出端连接。所述双输入电源***具有两路电压转换电路,可实现双电源输入,方便用户使用,应用灵活,可靠性好;所述双输入电源***的输入和输出均支持热插拔,进行电源板的更换无须断电,十分方便;也支持输入和输出备份,电源***的稳定性好,可广泛应用于电源领域。

Description

一种用于MTCA机框的双输入电源***
技术领域
本发明涉及电源电路领域,尤其是一种用于MTCA机框的双输入电源***。
背景技术
MTCA即MicroTCA,其架构类似于ATCA的一种简化版本。它兼容了ATCA的高性能,高带宽,AMC的灵活性,创造了极高集成度的同时,极大的降低了成本,减小了***空间和规模,无需载板的设计更加方便了AMC模块的使用。从而使其很好的满足中低端通信、工业、军事、医疗、多媒体等领域的应用.
目前,现有MTCA机框内的电源多是交流220V单输入电源或直流48V单输入电源,无法实现双电源输入;一般电源都不支持热插拔,给用户使用供电设备带来不便;现有电源***工作中受到各种外界因素干扰时,产生电压波动,造成欠电压或过电压等状况,导致通信电源的输出不稳定,影响各种供电设备的正常工作。
发明内容
为了解决上述技术问题,本发明的目的是提供一种用于MTCA机框的双输入电源***,其可实现双电源输入,方便用户使用,应用灵活,可靠性好;电源的输入和输出均支持热插拔,进行电源板的更换无须断电,十分方便;也支持输入和输出备份,电源***的稳定性好。
本发明所采用的技术方案是:一种用于MTCA机框的双输入电源***,包括交流电压输入端、直流电压输入端和电压输出端,所述双输入电源***还包括缓启动模块、电压转换模块和合路输出模块,所述缓启动模块的输出端与电压转换模块的输入端连接,所述电压转换模块的输出端与合路输出模块的输入端连接,所述合路输出模块的输出端与双输入电源***的电压输出端连接。
进一步地,所述合路输出模块包括开关控制芯片、第一开关管和第二开关管,所述开关控制芯片分别与第一开关管和第二开关管连接并控制它们的关断。
更进一步地,所述第一开关管为第一NMOS管;所述第二开关管为第二NMOS管。
进一步地,所述缓启动模块包括直流缓启动电路,所述直流缓启动电路的输出端与电压转换模块的输入端连接,所述直流缓启动电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第一二极管、第一稳压二极管、第一电容、第二电容、第三NMOS管和第四NMOS管;所述第一电阻的一端与第一二极管的负极连接,所述第一电阻的另一端与第一二极管的正极连接;所述第一电阻的另一端与第二电阻的一端连接,所述第二电阻的另一端与第三NMOS管的漏极连接;所述第二电阻的一端与第一稳压二极管的负极连接,所述第一稳压二极管的另一端与第二电阻的正极连接;所述第一电容的一端与第一稳压二极管的负极连接,所述第一电容的另一端与第一稳压二极管的正极连接,所述第一电容的另一端与第四NMOS管的漏极连接;所述第三电阻的一端与第一电容的一端连接,所述第三电阻的另一端与第四NMOS管的栅极连接;所述第一电阻的另一端与第四电阻的一端连接,所述第四电阻的另一端与第三NMOS管的栅极连接;所述第三NMOS管的漏极与第五电阻的一端连接,所述第五电阻的一端与第四NMOS管的漏极连接,所述第五电阻的另一端与第三NMOS管的源极连接;所述第六电阻的一端与第四NMOS管的漏极连接,所述第六电阻的另一端与第三NMOS管的源极连接;所述第七电阻的一端与第四NMOS管的漏极连接,所述第七电阻的另一端与第二电容的一端连接,所述第二电容的另一端与第三NMOS管的源极连接;所述第四NMOS管的源极与第三NMOS管的源极连接。
进一步地,所述缓启动模块还包括交流缓启动电路,所述交流缓启动电路的输出端与电压转换模块的输入端连接。
更进一步地,所述用于MTCA机框的双输入电源***还包括反接保护模块,所述反接保护模块的输出端与直流缓启动电路的输入端连接。
进一步地,所述反接保护模块为反接保护电路,所述反接保护电路包括第八电阻、第九电阻、第十电阻、第十一电阻、第二稳压二极管、第三电容、第五NMOS管和第六NMOS管,所述第八电阻的一端为反接保护电路的一输入端,所述第八电阻的另一端与第九电阻的一端连接;所述第九电阻的另一端与第五NMOS管的栅极连接,所述第五NMOS管的源极与第六NMOS管的源极连接,所述第六NMOS管的漏极与第五NMOS管的漏极连接,所述第六NMOS管的栅极与第十电阻的一端连接,所述第十电阻的另一端与第九电阻的一端连接;所述第十一电阻的一端与第九电阻的一端连接,所述第十一电阻的另一端与第五NMOS管的漏极连接;所述第二稳压二极管的负极与第十一电阻的一端连接,所述第二稳压二极管的正极与第十一电阻的另一端连接;所述第三电容的一端与第二稳压二极管的负极连接,所述第三电容的另一端与第二稳压二极管的正极连接。
更进一步地,所述用于MTCA机框的双输入电源***还包括滤波模块,所述滤波模块包括直流滤波模块,所述双输入电源***的直流电压输入端与直流滤波模块的输入端连接,所述直流滤波模块的输出端与反接保护模块的输入端连接。
进一步地,所述滤波模块还包括交流滤波模块,所述双输入电源***的交流电压输入端与交流滤波模块的输入端连接,所述交流滤波模块的输出端与交流缓启动电路的输入端连接。
更进一步地,所述用于MTCA机框的双输入电源***还包括散热模块,所述电压转换模块的输出端与散热模块的输入端连接。
本发明的有益效果是:本发明具有两路电压转换电路,可实现双电源输入,方便用户使用,应用灵活,可靠性好;本发明的输入和输出均支持热插拔,进行电源板的更换无须断电,十分方便;也支持输入和输出备份,电源***的稳定性好。
另外,本发明具有反接保护模块,可实现对直流电源输入的反接保护;本发明有滤波模块,使得双输入电源***符合电磁发射和敏感度的要求;本发明还增加散热模块,提高所述双输入电源***的稳定性。
附图说明
下面结合附图对本发明的具体实施方式作进一步说明:
图1是本发明一种用于MTCA机框的双输入电源***的结构框图;
图2是本发明一种用于MTCA机框的双输入电源***中反接保护模块的一具体实施例电路图;
图3是本发明一种用于MTCA机框的双输入电源***中直流缓启动电路的一具体实施例电路图;
图4是本发明一种用于MTCA机框的双输入电源***中直流缓启动电路的一具体实施例波形图;
图5是本发明一种用于MTCA机框的双输入电源***中合路输出模块的一具体实施例电路图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
一种用于MTCA机框的双输入电源***,参考图1,图1是本发明的结构框图,所述双输入电源***包括交流电压输入端、直流电压输入端、滤波模块、反接保护模块、缓启动模块、电压转换模块、合路输出模块、散热模块和电压输出端。
进一步地,所述滤波模块包括直流滤波模块和交流滤波模块,所述直流电压输入端与直流滤波模块的输入端连接,直流滤波模块的输出端与反接保护模块的输入端连接;所述交流电压输入端与交流滤波模块的输入端连接;所述缓启动模块包括直流缓启动电路和交流缓启动电路,所述反接保护模块的输出端与直流缓启动电路的输入端连接,所述交流滤波模块的输出端与交流缓启动电路的输入端连接;所述缓启动模块的输出端与电压转换模块的输入端连接;所述电压转换模块的输出端与散热模块的输入端连接;所述电压转换模块的输出端与合路输出模块的输入端连接,所述合路输出模块的输出端与双输入电源***的电压输出端连接。
所述直流滤波模块负责滤除直流输入干扰。本实施例中,采用三级共模滤波来实现,即由共模电感的漏感和X电容滤除,X电容为X2(X1/X3/MKP)抑制电源电磁干扰用电容。
所述交流滤波模块负责滤除交流输入干扰。
进一步地,所述反接保护模块为反接保护电路,参考图2,图2是本发明中反接保护模块的一具体实施例电路图,所述反接保护电路包括第八电阻R8、第九电阻R9、第十电阻R10、第十一电阻R11、第二稳压二极管E2、第三电容C3、第五NMOS管Q5和第六NMOS管Q6,所述第八电阻R8的一端为反接保护电路的一输入端,所述第八电阻R8的另一端与第九电阻R9的一端连接;所述第九电阻R9的另一端与第五NMOS管Q5的栅极连接,所述第五NMOS管Q5的源极与第六NMOS管Q6的源极连接,所述第六NMOS管Q6的漏极与第五NMOS管Q5的漏极连接,所述第六NMOS管Q6的栅极与第十电阻R10的一端连接,所述第十电阻R10的另一端与第九电阻R9的一端连接;所述第十一电阻R11的一端与第九电阻R9的一端连接,所述第十一电阻R11的另一端与第五NMOS管Q5的漏极连接;所述第二稳压二极管E2的负极与第十一电阻R11的一端连接,所述第二稳压二极管E2的正极与第十一电阻R11的另一端连接;所述第三电容C3的一端与第二稳压二极管E2的负极连接,所述第三电容C3的另一端与第二稳压二极管E2的正极连接。
当直流输入电压正常接入时,所述反接保护电路中的分压电阻R8、R9、R10和R11保证NMOS管的Vgs在正常的导通电压范围内,Vgs为MOS管的栅极相对于源极的电压;当直流输入电压出现反接时,NMOS管不导通,NMOS管内部寄生二极管起反接保护作用。本实施例中,因电路电流较大,故使用双NMOS管起均流作用。
进一步地,参考图3,图3是本发明中直流缓启动电路的一具体实施例电路图,所述直流缓启动电路包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第六电阻R6、第七电阻R7、第一二极管D1、第一稳压二极管E1、第一电容C1、第二电容C2、第三NMOS管Q3和第四NMOS管Q4;所述第一电阻R1的一端与第一二极管D1的负极连接,所述第一电阻R1的另一端与第一二极管D1的正极连接;所述第一电阻R1的另一端与第二电阻R2的一端连接,所述第二电阻R2的另一端与第三NMOS管Q3的漏极连接;所述第二电阻R2的一端与第一稳压二极管E1的负极连接,所述第一稳压二极管E1的正极与第二电阻R2的另一端连接;所述第一电容C1的一端与第一稳压二极管E1的负极连接,所述第一电容C1的另一端与第一稳压二极管E1的正极连接,所述第一电容C1的另一端与第四NMOS管Q4的漏极连接;所述第三电阻R3的一端与第一电容C1的一端连接,所述第三电阻R3的另一端与第四NMOS管Q4的栅极连接;所述第一电阻R1的另一端与第四电阻R4的一端连接,所述第四电阻R4的另一端与第三NMOS管Q3的栅极连接;所述第三NMOS管Q3的漏极与第五电阻R5的一端连接,所述第五电阻R5的一端与第四NMOS管Q4的漏极连接,所述第五电阻R5的另一端与第三NMOS管Q3的源极连接;所述第六电阻R6的一端与第四NMOS管Q4的漏极连接,所述第六电阻R6的另一端与第三NMOS管Q3的源极连接;所述第七电阻R7的一端与第四NMOS管Q4的漏极连接,所述第七电阻R7的另一端与第二电容C2的一端连接,所述第二电容C2的另一端与第三NMOS管Q3的源极连接;所述第四NMOS管Q4的源极与第三NMOS管Q3的源极连接。
当所述直流缓启动电路上电时,参考图4。
Vgs(th):MOS管导开始导通的门槛电压;
Vds:NMOS管D极和S极之间的电压差;
Ids:流过NMOS管D,S极的电流;
Vgs,miller:米勒平台对应的VGS电压值。
图4是本发明中直流缓启动电路的一具体实施例波形图,NMOS管的导通过程:在Vgs的电压从0V增加到Vgs(th)的过程中,Ids为0;当Vgs到达Vgs(th)时,NMOS管Ids开始有电流,随着Vgs的增大,Ids也逐渐增大,当Vgs增大到Vgs,miller时,Ids达到能输出的最大值。
上电时,NMOS管导通,Ids是电源对负载电容的充电电流,当负载一定时,充电时间越长,Ids越小。上电缓启动和热插拔的实质是降低上电时的Ids电流。当上电时所述第一电容C1开始缓慢充电,所述直流缓启动电路中的NMOS管Q3和Q4的Vgs缓慢上升,增大NMOS管处于t1时间的值,使Ids不用增达到最大值,负载电容就完成充电,则可以降低电路启动时的冲击电流。
从图4可知,时间t1主要取决于NMOS管的G和S极间的电容和对该电容的充电电流。NMOS管的G和S极间的电容越大,时间t1越大;充电电流越大,时间t1越小;时间t2主要取决于NMOS管G和D极间的电容和对该电容的充电电流。
当直流电源被拔出时,所述第一电容C1通过第一二极管D1快速放电,使所述NMOS管Q3和Q4的Vgs快速降低,以满足下次上电缓启动的需求,因此所述双输入电源***的直流电源的输入输出可以实现热插拔。
进一步地,所述交流缓启动电路可以实现双输入电源***的交流电源上电时的缓启动,即所述双输入电源***的交流电源的输入输出可以实现热插拔。
进一步地,所述电压转换模块负责将双输入电源***的直流电压和交流电压转换成需要的电压。所述电压转换模块包括直流电压转换电路和交流电压转换电路,所述直流缓启动电路的输出端与直流电压转换电路的输入端连接,所述交流缓启动电路的输出端与交流电压转换电路的输入端连接。在本实施例中,选择使用较多的交流电压220V和直流电压24V进行说明,所述交流电压转换电路包括AQ0500IU48ECIND电压转换器,所述转换器可以实现将交流电压220V转变为直流电压48V,所述电压转换器还可以实现双输入电源***的交流电源上电时的缓启动功能,所述直流电压转换电路可以使用不同型号的电压转换器,进而实现将直流电压24V转变为直流电压48V。
更进一步地,所述电压转换模块可以使用不同型号的电压转换器进而实现对电压的类型转换和电压大小转换。常用的电压还有直流电压220V和直流电压48V,因此,所述双输入电源***可以支持多种输入电压组合:交流电压220V、直流电压220V、直流电压48V、直流电压24V任意两组电源都可以作为所述双输入电源***的输入电压,提高了所述双输入电源***的实用性。
进一步地,所述合路输出模块包括开关控制芯片、第一开关管和第二开关管,所述开关控制芯片分别与第一开关管和第二开关管连接并控制它们的关断。
所述交流电压转换电路和直流电压转换电路其中一个正常地输出电压进入开关控制芯片中,芯片就可以向外部供电设备输出正常且稳定的电压。
更进一步地,所述第一开关管为第一NMOS管Q1;所述第二开关管为第二NMOS管Q2。
进一步地,参考图5,图5是本发明中合路输出模块的一具体实施例电路图,所述开关控制芯片为LTC4355I芯片,所述LTC4355I芯片的GATE1端口与第一NMOS管Q1的栅极连接,第一NMOS管Q1的源极与LTC4355I芯片的OUT端口连接;所述LTC4355I芯片的GATE2端口与第二NMOS管Q2的栅极连接,第二NMOS管Q2的源极与LTC4355I芯片的OUT端口连接。
采用LTC4355I芯片可以实现防止电流倒灌和降低导通功耗,方便散热,提高***电源的可靠性的有益效果。
参考图5,所述合路输出模块还包括第十二电阻R12、第十三电阻R13、第十四电阻R14、第十五电阻R15、第十六电阻R16、第十七电阻R17、第十八电阻R18、第十九电阻R19、第二十电阻R20、第三稳压二极管E3、第四稳压二极管E4、第五稳压二极管E5、第一发光二极管LED1和第二发光二极管LED2,所述直流电压转换电路的输出端与第十二电阻R12的一端连接,所述第十二电阻R12的另一端与第一发光二极管LED1的正极连接,所述第一发光二极管LED1的负极接地;所述直流电压转换电路的输出端与第一NMOS管Q1的漏极连接,所述第一NMOS管Q1的漏极与LTC4355I芯片的IN1端连接,所述第一NMOS管Q1的漏极与第十七电阻R17的一端连接,所述第一NMOS管Q1的源极与第二NMOS管的源极连接,所述第一NMOS管Q1的栅极与第十四电阻R14的一端连接,所述第十四电阻R14的另一端与LTC4355I芯片的GATE1端连接;所述第十七电阻R17的另一端与LTC4355I芯片的MON1端连接,所述第十七电阻R17的另一端与第十九电阻R19的一端连接,所述第十九电阻R19的另一端接地;所述交流电压转换电路的输出端与所述第十三电阻R13的一端连接,所述第十三电阻R13的另一端与第二发光二极管LED2的正极连接 ,所述第二发光二极管LED2的负极接地;所述交流电压转换电路的输出端与 第二NMOS管Q2的漏极连接,所述第二NMOS管Q2的漏极与LTC4355I芯片的IN2端连接,所述第二NMOS管Q2的栅极与第十五电阻R15的一端连接,所述第十五电阻R15的另一端与LTC4355I芯片的GATE2端连接,所述第二NMOS管Q2的源极与LTC4355I芯片的OUT端连接;所述第二NMOS管Q2的源极与第五稳压二极管E5的负极连接,所述第五稳压二极管E5的正极接地;所述交流电压转换电路的输出端与第十六电阻R16的一端连接,所述第十六电阻R16的另一端与LTC4355I芯片的MON2端连接,所述第十六电阻R16的另一端与第十八电阻R18的一端连接,所述第十八电阻R18的另一端与第十九电阻R19的另一端连接;所述第二十电阻R20的一端与LTC4355I芯片的SET端连接,第二十电阻R20的另一端与第十九电阻R19的另一端连接;所述LTC4355I芯片的GND端和GND1端接地;所述交流电压转换电路的输出端与第三稳压二极管E3的负极连接,所述第三稳压二极管E3的正极接地;所述直流电压转换电路的输出端与第四稳压二极管E4的负极连接,所述第四稳压二极管E4的正极与第三稳压二极管E3的正极连接。
所述交流电压转换电路实际输出的电压为V1,所述直流电压转换电路实际输出的电压为V2,所述电压V1和V2分别通过LTC4355I芯片的IN1和IN2端口输入所述芯片内。所述LTC4355I芯片通过检测IN端输入的电压与OUT端输出的电压的差值VIN-OUT来决定GATE端是否输出高电平驱动所述NMOS管导通。当所述电压差值VIN-OUT高于25mV时,所述GATE端输出高电平,所述NMOS管导通;当所述电压差值VIN-OUT低于-25mV时,所述GATE端输出低电平,所述NOMS管不工作,向芯片输入的电压经过NMOS管内的寄生二极管输出,如此即可实现所述双电源输入***的合路输出功能,即只要所述交流电压转换电路和直流电压转换电路其中一个正常地输出电压进入LTC4355I芯片中,芯片就可以向外部供电设备输出正常且稳定的电压V-out。
所述电压V-out的大小有电压V1和V2中电压值较大的决定。在本实施例中,所述电压V1的大小为48V±1.5V,所述电压V2的大小为45V±1.5V,因此,在本实施例中,优先由所述交流电压转换电路供电。具体情况如下:
A、只有所述交流电压转换电路向LTC4355I芯片输入电压时,所述电压V-out为电压V1;
B、只有所述直流电压转换电路向LTC4355I芯片输入电压时,所述电压V-out为电压V2;
C、所述交流电压转换电路和直流电压转换电路同时向LTC4355I芯片输入电压时,所述电压V-out为电压V1;
D、所述交流电压转换电路和直流电压转换电路交替向LTC4355I芯片输入电压时,所述电压V-out为电压V1和电压V2交替变化,由于所述NMOS管内有寄生二极管,故所述电压V-out不会出现为0的情况。
更进一步地,所述用于MTCA机框的双输入电源***还包括散热模块,所述电压转换模块的输出端与散热模块的输入端连接。
所述散热模块负责整个双输入电源***的散热工作,避免***因元件受热导致系数变化,影响电路正常工作,提高了所述双输入电源***的稳定性。
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种用于MTCA机框的双输入电源***,包括交流电压输入端、直流电压输入端和电压输出端,其特征在于:还包括缓启动模块、电压转换模块和合路输出模块,所述缓启动模块的输出端与电压转换模块的输入端连接,所述电压转换模块的输出端与合路输出模块的输入端连接,所述合路输出模块的输出端与双输入电源***的电压输出端连接。
  2. 根据权利要求1所述的用于MTCA机框的双输入电源***,其特征在于:所述合路输出模块包括开关控制芯片、第一开关管和第二开关管,所述开关控制芯片分别与第一开关管和第二开关管连接并控制它们的关断。
  3. 根据权利要求2所述的用于MTCA机框的双输入电源***,其特征在于:所述第一开关管为第一NMOS管;所述第二开关管为第二NMOS管。
  4. 根据权利要求1所述的用于MTCA机框的双输入电源***,其特征在于:所述缓启动模块包括直流缓启动电路,所述直流缓启动电路的输出端与电压转换模块的输入端连接,所述直流缓启动电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第六电阻、第七电阻、第一二极管、第一稳压二极管、第一电容、第二电容、第三NMOS管和第四NMOS管;所述第一电阻的一端与第一二极管的负极连接,所述第一电阻的另一端与第一二极管的正极连接;所述第一电阻的另一端与第二电阻的一端连接,所述第二电阻的另一端与第三NMOS管的漏极连接;所述第二电阻的一端与第一稳压二极管的负极连接,所述第一稳压二极管的另一端与第二电阻的正极连接;所述第一电容的一端与第一稳压二极管的负极连接,所述第一电容的另一端与第一稳压二极管的正极连接,所述第一电容的另一端与第四NMOS管的漏极连接;所述第三电阻的一端与第一电容的一端连接,所述第三电阻的另一端与第四NMOS管的栅极连接;所述第一电阻的另一端与第四电阻的一端连接,所述第四电阻的另一端与第三NMOS管的栅极连接;所述第三NMOS管的漏极与第五电阻的一端连接,所述第五电阻的一端与第四NMOS管的漏极连接,所述第五电阻的另一端与第三NMOS管的源极连接;所述第六电阻的一端与第四NMOS管的漏极连接,所述第六电阻的另一端与第三NMOS管的源极连接;所述第七电阻的一端与第四NMOS管的漏极连接,所述第七电阻的另一端与第二电容的一端连接,所述第二电容的另一端与第三NMOS管的源极连接;所述第四NMOS管的源极与第三NMOS管的源极连接。
  5. 根据权利要求4所述的用于MTCA机框的双输入电源***,其特征在于:所述缓启动模块还包括交流缓启动电路,所述交流缓启动电路的输出端与电压转换模块的输入端连接。
  6. 根据权利要求4所述的用于MTCA机框的双输入电源***,其特征在于:还包括反接保护模块,所述反接保护模块的输出端与直流缓启动电路的输入端连接。
  7. 根据权利要求6所述的用于MTCA机框的双输入电源***,其特征在于:所述反接保护模块为直流反接保护电路,所述反接保护电路包括第八电阻、第九电阻、第十电阻、第十一电阻、第二稳压二极管、第三电容、第五NMOS管和第六NMOS管,所述第八电阻的一端为反接保护电路的一输入端,所述第八电阻的另一端与第九电阻的一端连接;所述第九电阻的另一端与第五NMOS管的栅极连接,所述第五NMOS管的源极与第六NMOS管的源极连接,所述第六NMOS管的漏极与第五NMOS管的漏极连接,所述第六NMOS管的栅极与第十电阻的一端连接,所述第十电阻的另一端与第九电阻的一端连接;所述第十一电阻的一端与第九电阻的一端连接,所述第十一电阻的另一端与第五NMOS管的漏极连接;所述第二稳压二极管的负极与第十一电阻的一端连接,所述第二稳压二极管的正极与第十一电阻的另一端连接;所述第三电容的一端与第二稳压二极管的负极连接,所述第三电容的另一端与第二稳压二极管的正极连接。
  8. 根据权利要求6所述的用于MTCA机框的双输入电源***,其特征在于:还包括滤波模块,所述滤波模块包括直流滤波模块,所述双输入电源***的直流电压输入端与直流滤波模块的输入端连接,所述直流滤波模块的输出端与反接保护模块的输入端连接。
  9. 根据权利要求8所述的用于MTCA机框的双输入电源***,其特征在于:所述滤波模块还包括交流滤波模块,所述双输入电源***的交流电压输入端与交流滤波模块的输入端连接,所述交流滤波模块的输出端与交流缓启动电路的输入端连接。
  10. 根据权利要求8所述的用于MTCA机框的双输入电源***,其特征在于:还包括散热模块,所述电压转换模块的输出端与散热模块的输入端连接。
PCT/CN2016/072116 2015-12-31 2016-01-26 一种用于mtca机框的双输入电源*** WO2017113458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511030064.7 2015-12-31
CN201511030064.7A CN105515352A (zh) 2015-12-31 2015-12-31 一种用于mtca机框的双输入电源***

Publications (1)

Publication Number Publication Date
WO2017113458A1 true WO2017113458A1 (zh) 2017-07-06

Family

ID=55723092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072116 WO2017113458A1 (zh) 2015-12-31 2016-01-26 一种用于mtca机框的双输入电源***

Country Status (2)

Country Link
CN (1) CN105515352A (zh)
WO (1) WO2017113458A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195283A (zh) * 2018-09-14 2019-01-11 常州瑞阳电装有限公司 一种小型大灯控制器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106385169A (zh) * 2016-10-31 2017-02-08 北京新能源汽车股份有限公司 一种直流转直流控制器的高压输入电路结构及汽车
CN107623430B (zh) * 2017-09-07 2023-10-24 浙江凯耀照明股份有限公司 具有宽输出范围阻尼的防过冲电路
CN109104079A (zh) * 2018-10-17 2018-12-28 天津七二通信广播股份有限公司 一种直流电源防反接缓启动电路及实现方法
CN112421755B (zh) * 2020-10-30 2024-08-13 国家电网有限公司 基于物联网的电力监测用供电***
CN116131238B (zh) * 2023-04-14 2023-08-08 深圳市迅特通信技术股份有限公司 一种抑制热插拔浪涌电流的电路和可插拔模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715156A (en) * 1996-06-24 1998-02-03 Yilmaz; G. George Method and apparatus for providing AC or DC power for battery powered tools
US20060139975A1 (en) * 2004-12-28 2006-06-29 Zippy Technology Corp. Backup power supply with parallel AC power source and DC power source
CN201975994U (zh) * 2011-03-31 2011-09-14 上海硕尼电子科技有限公司 一种用于安防设备的交直流自适应电源装置
CN203027013U (zh) * 2012-08-21 2013-06-26 大中华云端计算股份有限公司 双输入电源供应器
CN103647339A (zh) * 2013-12-20 2014-03-19 广东威创视讯科技股份有限公司 多电源并联供电装置
CN205377647U (zh) * 2015-12-31 2016-07-06 邦彦技术股份有限公司 一种用于mtca机框的双输入电源***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157525A1 (en) * 2004-01-20 2005-07-21 Hanson George E. Dual AC and DC input DC power supply
CN101325411B (zh) * 2008-04-16 2011-04-06 中兴通讯股份有限公司 一种直流电源上电缓启动电路
CN101872971A (zh) * 2010-07-02 2010-10-27 北京星网锐捷网络技术有限公司 防反接电路、防反接处理方法和通讯设备
CN103633825A (zh) * 2012-08-23 2014-03-12 深圳市腾讯计算机***有限公司 双输入电源及相应的网络设备
CN103092314A (zh) * 2013-01-24 2013-05-08 浪潮电子信息产业股份有限公司 服务器合路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715156A (en) * 1996-06-24 1998-02-03 Yilmaz; G. George Method and apparatus for providing AC or DC power for battery powered tools
US20060139975A1 (en) * 2004-12-28 2006-06-29 Zippy Technology Corp. Backup power supply with parallel AC power source and DC power source
CN201975994U (zh) * 2011-03-31 2011-09-14 上海硕尼电子科技有限公司 一种用于安防设备的交直流自适应电源装置
CN203027013U (zh) * 2012-08-21 2013-06-26 大中华云端计算股份有限公司 双输入电源供应器
CN103647339A (zh) * 2013-12-20 2014-03-19 广东威创视讯科技股份有限公司 多电源并联供电装置
CN205377647U (zh) * 2015-12-31 2016-07-06 邦彦技术股份有限公司 一种用于mtca机框的双输入电源***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109195283A (zh) * 2018-09-14 2019-01-11 常州瑞阳电装有限公司 一种小型大灯控制器
CN109195283B (zh) * 2018-09-14 2023-08-25 常州瑞阳电装有限公司 一种小型大灯控制器

Also Published As

Publication number Publication date
CN105515352A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2017113458A1 (zh) 一种用于mtca机框的双输入电源***
US6262564B1 (en) Driver for a controllable switch in a power converter
WO2015096223A1 (zh) 一种电源转换电路
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
JP4968487B2 (ja) ゲートドライブ回路
WO2017219659A1 (zh) 适配器
WO2012100564A2 (zh) 自适应防雷防浪涌控制电路
WO2018227965A1 (zh) 供电装置和照明***
WO2010058923A2 (en) Ac light emitting device, driving device thereof, and driving method thereby
WO2016076517A1 (ko) 전력변환부
CN108462163B (zh) 满足负向浪涌要求的直流防反接电路
WO2016015356A1 (zh) 交流-直流转换电路
US6243278B1 (en) Drive circuit for synchronous rectifier and method of operating the same
WO2019024349A1 (zh) 空调器电流环通信电路及空调器
TWI677178B (zh) 整流器和相關整流電路
WO2014107926A1 (zh) Led驱动电路
CN109194126B (zh) 一种电源切换电路
WO2012019563A1 (zh) 电源管理集成电路的控制方法及电源管理集成电路
WO2023138161A1 (zh) 低边驱动电路及具有其的电子设备、车辆
WO2007046471A1 (ja) 突入電流低減回路および電気機器
WO2018040420A1 (zh) 背光驱动装置和电视机
CN105472823A (zh) 用于照明装置的驱动电路和照明装置
WO2014059736A1 (zh) Dc/dc变换电路的输出电压检测电路
CN212380941U (zh) 过压和浪涌保护电路以及电子设备
CN108768161A (zh) 一种内置补偿的固定导通时间电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880269

Country of ref document: EP

Kind code of ref document: A1