WO2017111503A1 - Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas - Google Patents

Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas Download PDF

Info

Publication number
WO2017111503A1
WO2017111503A1 PCT/KR2016/015112 KR2016015112W WO2017111503A1 WO 2017111503 A1 WO2017111503 A1 WO 2017111503A1 KR 2016015112 W KR2016015112 W KR 2016015112W WO 2017111503 A1 WO2017111503 A1 WO 2017111503A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
carbon dioxide
gas
hollow fiber
module
Prior art date
Application number
PCT/KR2016/015112
Other languages
French (fr)
Korean (ko)
Inventor
이평수
박유인
남승은
박호식
박아름이
김성중
장종산
박용기
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017111503A1 publication Critical patent/WO2017111503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to a method for capturing carbon dioxide from a steel by-product gas, a method for recovering hydrogen, and more particularly, to recovering hydrogen and recovering hydrogen by contacting the iron by-product gas supplied into the hollow fiber membrane with an absorbent to remove carbon dioxide.
  • a method and apparatus for capturing absorbed carbon dioxide is a method and apparatus for capturing absorbed carbon dioxide.
  • BFG Blast furnace gas
  • LDG Linz-Donawitz Converter Gas
  • CO 2 carbon dioxide
  • CO carbon monoxide
  • the absorption method using the ammonia-based absorbent has a disadvantage in that it consumes much energy because it depends largely on the thermodynamic equilibrium.
  • the amount of the adsorbent and other facilities are ideally used to treat a large flow rate of the by-product by-product gas. It is hard to realize it realistically because it enters.
  • the membrane method significantly reduces energy consumption and enables a compact structure, but in the case of a membrane material using a polymer membrane, it is difficult to use due to the low separation rate of hydrogen / carbon dioxide ( ⁇ 2), and an inorganic particle (zeolite, In the case of carbon, metal-organic framework (MOF), etc.), the separation efficiency is very low as 10 or less.
  • the present inventors have developed a method and apparatus for recovering hydrogen by selectively absorbing carbon dioxide having high solubility from by-product gas by contacting gas-liquid contact, seasonal by-product gas and absorber through an absorbent circulating the porous hollow fiber membrane.
  • the present invention has been completed.
  • An object of the present invention is to provide a method and apparatus for collecting carbon dioxide and recovering hydrogen from steel by-product gas with improved energy efficiency.
  • step 2 Injecting seasonal by-product gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber separator (step 2);
  • It provides a method for capturing carbon dioxide and recovering hydrogen from the iron and steel by-product gas comprising the step of separating and discharging the gas inside the hollow fiber containing the carbon dioxide dissolved absorbent and hydrogen not dissolved in the absorbent (step 4).
  • a hollow fiber separator mounted in the housing; And an absorbent filler space defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane.
  • An absorbent supply unit for supplying an absorbent to the absorbent filling space of the absorbent module
  • a gas supply unit for supplying iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module;
  • It provides a carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-product gas, including; a discharge port for discharging the gas containing hydrogen not dissolved in the absorber to the outside of the absorption module.
  • the method and apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas according to the present invention have advantages such as simpler, smaller size, lower installation cost, and lower running cost than the prior art through hollow fiber membranes and absorbents.
  • carbon dioxide in the case of a gas containing water and other impurities after the water gas reaction (WGS), carbon dioxide can be stably separated, and hydrogen can be recovered, thereby reducing the burden of pretreatment and having high energy efficiency.
  • FIG. 1 is a diagram showing the gas composition of blast furnace gas (BFG) and converter gas (LDG), which are seasonal by-product gases, and the gas composition when the gases undergo a water gas conversion process and a water removal process;
  • BFG blast furnace gas
  • LDG converter gas
  • FIG. 2 is a schematic diagram schematically showing an example of an absorption module in a carbon dioxide capture and hydrogen recovery apparatus from steelmaking by-product gas according to the present invention
  • FIG. 3 is a schematic diagram schematically showing an example of an absorption module and a degassing module in a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention
  • FIG. 4 is a schematic diagram schematically showing an example of an absorption module, a degassing module and an absorbent degassing tank in the carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention
  • Example 5 is a graph showing the hydrogen recovery and carbon dioxide removal rate of Example 1 and Example 2 according to the present invention.
  • a carbon dioxide capture and hydrogen recovery system was constructed from the steel production by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 ⁇ m, and the effective membrane area was 0.2 m 2 .
  • Polypropylene was used.
  • two absorption modules were provided in series.
  • As the steel by-product gas a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
  • Step 1 Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
  • Step 2 The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
  • Step 3 The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
  • Step 4 The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
  • the absorbent water was allowed to be continuously supplied from an external device.
  • a carbon dioxide capture and hydrogen recovery system was constructed from steel by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 ⁇ m, and the effective membrane area was 0.2 m 2 .
  • Polypropylene was used.
  • two absorption modules were provided in series.
  • As the steel by-product gas a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
  • Step 1 Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
  • Step 2 The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
  • Step 3 The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
  • Step 4 The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
  • the degassing module 300 and the absorbent degassing tank 500 for separating the gas containing hydrogen and the carbon dioxide dissolved absorbent, the gas containing hydrogen as the seasonal by-product gas passed through the absorbent module 100, the carbon dioxide dissolved in the absorbent ) was further added to degas the carbon dioxide.
  • the average pore size of the hollow fiber membrane 301 of the degassing module 300 is 0.2 ⁇ m
  • the effective membrane area is 0.2 m 2
  • the material was polypropylene.
  • two degassing modules were provided in series.
  • the absorbent in which carbon dioxide was dissolved in the step 4 was supplied to the absorbent degassing tank 500, and degassed partially dissolved carbon dioxide by depressurizing to a pressure of 0.8 atm.
  • Step a The absorbent supplied from the absorbent degassing tank was supplied to the absorbent filling space 302 of the degassing module 300.
  • Step b The gas inside the hollow fiber membrane 301 of the degassing module 300 was discharged to the outside.
  • Step c The gas inside the hollow fiber membrane was depressurized to 0.02 atm using the first pressure reducing pump 400 so that the carbon dioxide dissolved in the absorbent of step a could be degassed into the hollow fiber membrane 301.
  • Step d The carbon dioxide degassed absorbent and the degassed carbon dioxide in the hollow fiber membrane 301 of the degassing module 300 was separated and discharged.
  • Example 1 having a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention showed a hydrogen recovery rate of about 90% and a carbon dioxide removal rate, and Example 2 of about 95% or more of hydrogen. It was confirmed that the recovery rate and the carbon dioxide removal rate were shown. Therefore, the degassing module 300 and the absorbent degassing tank 500 were further provided, and it was confirmed that Example 2, which has undergone the step of degassing the carbon dioxide dissolved in the absorbent, has a high hydrogen recovery rate and a carbon dioxide removal rate.
  • the present invention is a.
  • step 1 Supplying an absorbent to the absorbent filling space 102 of the absorbent module 100 (step 1);
  • step 2 Injecting the seasonal by-product gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber separator 101 (step 2);
  • It provides a method for capturing carbon dioxide and recovering hydrogen from the iron and steel by-product gas comprising the step of separating and discharging the gas inside the hollow fiber containing the carbon dioxide dissolved absorbent and hydrogen not dissolved in the absorbent (step 4).
  • FIG. 2 to 4 schematically illustrate an example of a hydrogen recovery apparatus and method according to the present invention through a schematic diagram.
  • step 1 is a step of supplying an absorbent to the absorbent filling space 102 of the absorption module 100.
  • the absorbent is supplied to the absorbent filling space 102 of the absorbent module 100 so that the steelmaking by-product gas and the absorbent may have gas-liquid contact.
  • the absorbent is supplied from the absorbent degassing tank 500 to the absorbent filling space through the absorbent supply unit 200, where the flow rate of the absorbent is supplied in correspondence with the flow rate of the steel-produced by-product gas supplied to the pump in the absorbent supply unit. It is desirable to change the flow rate through.
  • the flow rate supplied with the absorbent may be 100 ml / min to 1000 ml / min when one absorption module is provided, and may be 200 ml / min to 800 ml / min, but can be in effective contact with the seasonal by-product gas If the flow rate is not limited to this, it can be changed by further comprising an additional absorption module.
  • the absorbent is supplied from the lower end of the absorbent module 100 and flows through the absorbent filling space 102, and then is discharged through the outlet 104 to the upper end of the absorbent module, but the absorbent module is designed horizontally, Absorbents passing through the absorbent module may be supplied and discharged in the opposite direction, but are not limited thereto.
  • the absorbent does not pass through the hollow fiber membrane 101 of the absorption module, it may be in contact only with the gas inside the hollow fiber membrane.
  • step 2 includes the hollow fiber of the hollow fiber membrane 101 of the steel by-product by-product containing hydrogen (H 2 ) and carbon dioxide (CO 2 ). Injecting it into the inside.
  • step 2 a steel by-product gas containing hydrogen and carbon dioxide is supplied into the hollow fiber of the hollow fiber membrane 101 so as to be in gas-liquid contact with the absorbent supplied in step 1.
  • the steelmaking by-product gas of step 2 may be supplied through the gas supply part 700, and the flow rate supplied may be adjusted through the gas supply part.
  • the flow rate of the supplied steel by-product gas may be 50 ml / min to 1000 ml / min, preferably 100 ml / min to 500 ml / min, the flow rate that the iron and steel by-product gas can effectively contact the absorbent If not limited to this.
  • the supplied iron by-product gas is supplied into the hollow fiber membrane 101 through the gas supply unit 700, the iron by-product gas is diffused into the pores of the hollow fiber membrane, and is introduced into the absorbent filler space 102 In contact with the absorbent, most of the carbon dioxide of the seasonal by-product gas is selectively dissolved. The remaining gas which is not dissolved is discharged through the outlet 103 to the outside of the absorption module 100.
  • Steelmaking by-product gas of step 2 may include 0.1% by volume to 80% by volume of hydrogen, preferably 0.3% by volume to 45% by volume of hydrogen.
  • the seasonal by-product gas of step 2 may include 0.1% to 80% by volume of carbon dioxide, preferably 3% to 50% by volume of carbon dioxide.
  • the seasonal by-product gas may further include nitrogen, carbon monoxide, water, oxygen and the like.
  • the steel by-product gas of step 2 may be used as the steel by-product gas is a water-gas shift (WGS; Water-Gas Shift) process, wherein the steel by-product gas is water conversion 15% by volume to 50 It may comprise volume percent hydrogen, preferably from 15 volume percent to 40 volume percent hydrogen.
  • WGS Water-Gas Shift
  • the method for capturing carbon dioxide and recovering hydrogen from the steel by-product by-product according to the present invention can efficiently perform the carbon dioxide separation step to be described later, even if the steel-containing by-product is included in the water, so that the water gas conversion process must be performed. It is not necessary.
  • the steel by-product gas subjected to the water gas conversion process may include 20% by volume to 50% by volume of carbon dioxide, preferably 20% by volume to 40% by volume of carbon dioxide.
  • the water gas conversion is a process of generating hydrogen by reacting carbon monoxide contained in blast furnace gas (BFG), iron furnace by-product gas, and converter gas (LDG; Linz-Donawitz Converter Gas) with water vapor again. It is as follows.
  • the carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-product gas according to the present invention is a gas containing water and carbon monoxide. There is also an advantage that carbon capture and hydrogen recovery is possible.
  • a water removal process may be further added to the gas from the water gas shift reaction using an adsorbent.
  • 1 shows an example of the composition of the steel by-product gas, the steel by-product gas in which the water gas conversion is performed, and the steel by-product gas which has undergone the water removal process after the conversion of the water gas.
  • the flow rate ratio of the steel by-product gas and the absorbent may be 0.01 to 1, may be 0.05 to 1, preferably 0.1 to 1, steel production by-product gas and absorbent If the flow rate ratio that can be efficiently contacted is not limited thereto.
  • step 3 is to adjust the pressure in the absorption module 100 so that carbon dioxide in the steel by-product gas can be selectively dissolved in the absorbent. .
  • step 3 the pressure in the absorbent module 100 is adjusted to effectively dissolve the carbon dioxide into the absorbent.
  • the pressure of the steel by-product by-products in the absorption module may be 0.1 atm to 15 atm, preferably 0.5 to 10 atm, but is not limited to this if the pressure of carbon dioxide can be effectively dissolved in the absorbent.
  • the pressure of the absorbent in the absorbent module 100 may be 0.1 atm to 15 atm, preferably 0.5 to 10 atm, but is not limited thereto as long as carbon dioxide can be effectively dissolved in the absorbent.
  • step 4 is a step of discharging a gas containing an absorbent in which carbon dioxide is dissolved and hydrogen not dissolved in the absorbent.
  • step 4 the hydrogen is not dissolved in the absorbent, and the hydrogen-containing gas and the absorbent are separated and discharged to easily recover the hydrogen.
  • step of degassing carbon dioxide from the absorbent in which the carbon dioxide dissolved in step 4 may further include.
  • the absorbent separated and discharged in step 4 may be transferred to and stored in the absorbent degassing tank 500.
  • the pressure in the absorbent degassing tank may be atmospheric pressure or vacuum, but if the pressure in which the carbon dioxide in the absorbent is degassed is limited thereto. It is not.
  • carbon dioxide dissolved in some absorbents may be degassed and supplied to the hollow fiber membrane 101 of the absorbent module 100.
  • the present invention provides a step (step a) of supplying the absorbent dissolved carbon dioxide separated in the absorbent module 100 to the absorbent filling space 302 of the degassing module 300; Discharging the gas inside the hollow fiber separation membrane 301 of the degassing module to the outside (step b); Adjusting the pressure in the degassing module so that carbon dioxide dissolved in the absorbent can be degassed (step c); Separating and discharging the carbon dioxide degassed absorbent and the degassed carbon dioxide (step d); may further include.
  • step a similar to step 1, the absorbent absorbing carbon dioxide through the absorbent module 100 is supplied to the absorbent filling space of the degassing module 300 so that carbon dioxide in the absorbent can be degassed.
  • the absorbent may be supplied from the upper end of the absorbent module 100 to flow through the absorbent filling space 302 of the degassing module 300 and then discharged to the lower end of the degassing module.
  • Absorbents passing through the degassing module may be supplied and discharged in the opposite direction, but are not limited thereto.
  • the absorbent may not pass into the hollow fiber membrane 301 of the degassing module, and may only contact gas inside the hollow fiber membrane.
  • the absorbent having performed step a may be discharged through the outlet 305 to the outside of the degassing module 300, and may be supplied to the absorption module 100 and circulated again.
  • the gas inside the hollow fiber membrane 301 of the degassing module 300 may be adjusted to a normal pressure or a vacuum state so as to be discharged to the outside, but is not limited thereto.
  • Carbon dioxide dissolved in the absorbent may be degassed and supplied to the inner space of the hollow fiber membrane 301 of step b, and the carbon dioxide may be finally separated and discharged through the outlet 304.
  • step c the pressure in the degassing module 300 is adjusted so that the carbon dioxide dissolved in the absorbent can be effectively degassed into the hollow fiber membrane 301 of the degassing module.
  • the pressure of the gas and the absorbent in the degassing module 300 is adjusted through the first decompression pump 400.
  • the pressure of the carbon dioxide which is a gas in the degassing module 300 may be 0.01 atm to 2 atm, preferably 0.1 atm to 1.5 atm, but if the pressure of the carbon dioxide dissolved in the absorbent can be effectively degassed, it is limited thereto. It is not.
  • step d the carbon dioxide desorbed absorbent and the degassed carbon dioxide are separated and discharged (each gas containing degassed carbon dioxide through an outlet 304 and the carbon dioxide desorbed through an outlet 305), and the carbon dioxide degassed.
  • the absorbent may be supplied back to the absorbent module 100 and circulated.
  • the present invention may further comprise the step (step 6) of purifying hydrogen (H 2 ) using a gas separation membrane gas containing hydrogen separated and discharged in the step 4.
  • nitrogen may be separated from the gas containing hydrogen in step 4 through a gas separation membrane, or, most preferably, gas other than hydrogen may be separated to finally purify hydrogen.
  • the gas separation membrane used for the nitrogen separation or gas separation except hydrogen may be one known by a person skilled in the art.
  • An absorbent module (100) including an absorbent filler space (102) defined by an outer side of the hollow fiber separator and the inside of the housing constituting the hollow fiber separator;
  • An absorbent supply unit 200 for supplying an absorbent to the absorbent filling space of the absorbent module
  • the apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas includes: a housing preventing and protecting leakage of an internal fluid; A porous hollow fiber membrane 101 mounted in the housing; And an absorbent filler space 102 defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane.
  • An absorbent supply unit 200 for supplying an absorbent to the absorbent filling space of the absorbent module;
  • a gas supply unit 700 for supplying an iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module;
  • An outlet 103 for discharging the gas containing hydrogen not dissolved into the absorbent to the outside of the absorbent module.
  • the surface of the hollow fiber separation membrane 101 is in the form of fine pores, the diffusion of the absorbent is impossible, and the steel production by-product gas can pass through.
  • the hollow fiber membrane may be in contact with the absorbent.
  • carbon dioxide has a high solubility in the absorbent at high pressure, but the remaining gases hydrogen, nitrogen and the like are not high in the absorbent. Therefore, the steel by-product gas passing through the hollow fiber membrane is separated by dissolving carbon dioxide at the interface between the hollow fiber membrane and the absorbent, and the remaining undissolved gas is discharged.
  • a gas pressure control unit controlling a pressure of the steel production by-product gas in the absorption module
  • a degassing module 300 connected with the absorbing module and through which the absorbent passes; And a first pressure reducing pump 400 for adjusting a pressure in the degassing module.
  • the degassing module The degassing module,
  • a hollow fiber separator 301 mounted in the housing and into which the separated carbon dioxide is introduced into the hollow fiber;
  • a carbon dioxide degassing space 303 inside the hollow fiber membrane constituting the hollow fiber membrane.
  • the degassing module 300 may use a hollow fiber membrane similar to the absorbent module 100.
  • the absorbent is circulated and supplied as described above, and thus the same as that of the absorbent module.
  • the absorbent that has passed through the absorbent module has a large amount of carbon dioxide dissolved therein, it is possible to degas the carbon dioxide dissolved in the absorbent in the degassing module.
  • the absorbent supplied to the outside of the hollow fiber membrane 301 of the degassing module is in contact with the gas present in the carbon dioxide degassing space 303 inside the hollow fiber membrane and the hollow fiber membrane, the carbon dioxide dissolved in the absorber carbon dioxide degassing space It is degassed and discharged separately from the absorbent in which the degassing is performed.
  • An absorbent degassing tank 500 connected to the absorbing module 100 and the degassing module 300; And a second pressure reducing pump 600 for adjusting a pressure in the absorbent degassing tank.
  • the absorbent degassing tank 500 stores the absorbent circulating through the absorbent module 100 and the degassing module 300. At this time, the second pressure reducing pump to adjust the pressure inside the absorbent degassing tank may be reduced to a pressure of 0.5 atm to 0.9 atm, wherein the carbon dioxide dissolved in the absorbent may be partially separated, the partial separated Carbon dioxide may be transferred into the hollow fiber membrane 101 of the absorption module.
  • It may further include a gas separation membrane connected to the absorption module and configured to purify hydrogen (H 2 ) from the gas discharged from the absorption module.
  • a gas separation membrane connected to the absorption module and configured to purify hydrogen (H 2 ) from the gas discharged from the absorption module.
  • Hydrogen may be finally purified by separating nitrogen from a gas containing hydrogen that has passed through the absorption module through the gas separation membrane, or by separating gas other than hydrogen.
  • a gas separation membrane used for nitrogen separation or gas separation except hydrogen may be one known by a person skilled in the art.
  • the hollow fiber membranes of the absorption module and the degassing module are polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), perfluoroalkoxy alkanes ), Fluorinated ethylene propylene, ethylene tetrafluoroethylene (ETFE), ethylene fluorinated ethylene propylene (EFEP) and polyphenylene may be used. It can be, if the material to prevent the diffusion of the absorbent and to form a hollow fiber membrane having a fine pore is not limited thereto.
  • the average pore size of the hollow fiber membranes of the absorption module and the degassing module may be 0.001 ⁇ m to 2 ⁇ m, and may be 0.001 ⁇ m to 1 ⁇ m, but gas-liquid contact may be made through the hollow fiber membranes of the absorption module and the degassing module.
  • the pore size that can be effectively achieved is not limited thereto.
  • the porosity of the hollow fiber membranes of the absorption module and the degassing module may be 10% to 90%, and may be 20% to 80%, but gas-liquid contact is effectively achieved through the hollow fiber membranes of the absorption module and the degassing module. If possible porosity is not limited to this.
  • the absorbent of the absorption module and the degassing module may be water, polypropylene carbonate (PC) and polyethylene glycol dimethyl ether (PEGDME) and the like, preferably water may be used, but can selectively absorb carbon dioxide and hollow fiber membrane If the fluid does not pass through it is not limited thereto.
  • PC polypropylene carbonate
  • PEGDME polyethylene glycol dimethyl ether
  • At least one absorption module or degassing module may be connected in series or in parallel, or in series and parallel mixing.
  • the outlet of the absorption module is provided with an outlet 104 for separating and discharging the absorbent selectively absorbing carbon dioxide from the seasonal by-product gas and an outlet 103 for separating and discharging the gas (gas containing hydrogen) from which carbon dioxide has been removed.
  • the discharge port may be organically connected to the absorption module or may be directly installed in the absorption module.
  • the degassing module like the absorption module,
  • the outlet of the degassing module is provided with a discharge port 304 for degassing carbon dioxide from the absorbent and finally discharging and discharging the gas containing carbon dioxide and a discharge port 305 for discharging the absorbent after carbon dioxide is degassed.
  • the outlet may be organically connected to the degassing module or may be installed directly in the degassing module.
  • each module described above may be circulated such that it can be organically connected or reused with a subsequent device that allows further processing of the gas or absorbent discharged from the module.
  • a carbon dioxide capture and hydrogen recovery system was constructed from the steel production by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 ⁇ m, and the effective membrane area was 0.2 m 2 .
  • Polypropylene was used.
  • two absorption modules were provided in series.
  • As the steel by-product gas a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
  • Step 1 Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
  • Step 2 The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
  • Step 3 The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
  • Step 4 The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
  • the absorbent water was allowed to be continuously supplied from an external device.
  • a carbon dioxide capture and hydrogen recovery system was constructed from steel by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 ⁇ m, and the effective membrane area was 0.2 m 2 .
  • Polypropylene was used.
  • two absorption modules were provided in series.
  • As the steel by-product gas a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
  • Step 1 Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
  • Step 2 The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
  • Step 3 The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
  • Step 4 The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
  • the degassing module 300 and the absorbent degassing tank 500 for separating the gas containing hydrogen and the carbon dioxide dissolved absorbent, the gas containing hydrogen as the seasonal by-product gas passed through the absorbent module 100, the carbon dioxide dissolved in the absorbent ) was further added to degas the carbon dioxide.
  • the average pore size of the hollow fiber membrane 301 of the degassing module 300 is 0.2 ⁇ m
  • the effective membrane area is 0.2 m 2
  • the material was polypropylene.
  • two degassing modules were provided in series.
  • the absorbent in which carbon dioxide was dissolved in the step 4 was supplied to the absorbent degassing tank 500, and degassed partially dissolved carbon dioxide by depressurizing to a pressure of 0.8 atm.
  • Step a The absorbent supplied from the absorbent degassing tank was supplied to the absorbent filling space 302 of the degassing module 300.
  • Step b The gas inside the hollow fiber membrane 301 of the degassing module 300 was discharged to the outside.
  • Step c The gas inside the hollow fiber membrane was depressurized to 0.02 atm using the first pressure reducing pump 400 so that the carbon dioxide dissolved in the absorbent of step a could be degassed into the hollow fiber membrane 301.
  • Step d The carbon dioxide degassed absorbent and the degassed carbon dioxide in the hollow fiber membrane 301 of the degassing module 300 was separated and discharged.
  • Example 1 having a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention showed a hydrogen recovery rate of about 90% and a carbon dioxide removal rate, and Example 2 of about 95% or more of hydrogen. It was confirmed that the recovery rate and the carbon dioxide removal rate were shown. Therefore, the degassing module 300 and the absorbent degassing tank 500 were further provided, and it was confirmed that Example 2, which has undergone the step of degassing the carbon dioxide dissolved in the absorbent, has a high hydrogen recovery rate and a carbon dioxide removal rate.
  • the method and apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas according to the present invention have advantages such as simpler, smaller size, lower installation cost, and lower running cost than the prior art through hollow fiber membranes and absorbents.
  • carbon dioxide in the case of a gas containing water and other impurities after the water gas reaction (WGS), carbon dioxide can be stably separated, and hydrogen can be recovered, thereby reducing the burden of pretreatment and having high energy efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

The present invention provides a method for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas. A method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas according to the present invention have the advantages in that by using a hollow fiber separating membrane and an absorbent the process is simpler than the prior art technology, the apparatus can be made smaller, and the apparatus has low installation and operating costs, etc. In addition, even in the case of gas which has not undergone a water-gas shift (WGS) reaction and contains moisture and other impurities, carbon dioxide can be stably separated and hydrogen can be recovered, thus providing the advantages in that the burden of pretreatment is low and energy efficiency is high.

Description

제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치Carbon dioxide capture and hydrogen recovery method from seasonal off-gas
본 발명은 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 이의 장치에 관한 것으로, 더욱 상세하게는 중공사 분리막 내부로 공급되는 제철 부생가스를 흡수제와 접촉시켜 이산화탄소를 제거함으로써, 수소를 회수하고 흡수제에 흡수된 이산화탄소를 포집하기 위한 방법 및 장치에 관한 것이다.The present invention relates to a method for capturing carbon dioxide from a steel by-product gas, a method for recovering hydrogen, and more particularly, to recovering hydrogen and recovering hydrogen by contacting the iron by-product gas supplied into the hollow fiber membrane with an absorbent to remove carbon dioxide. A method and apparatus for capturing absorbed carbon dioxide.
제철 부생가스의 종류인 고로가스(BFG;Blast Furnace Gas) 및 전로가스(LDG;Linz-Donawitz Converter Gas) 등은 도 1에 나타낸 바와 같이 다량의 이산화탄소(CO2) 및 일산화탄소(CO)를 함유하고 있다. 기존 제철 부생가스의 사용은 체계적인 전환, 분리 및 회수 방법이 없었기 때문에 연소를 통해 열원을 생성하는 원료 가스로 사용되어 왔다(대한민국 공개특허 제10-2013-0002151호).Blast furnace gas (BFG) and converter gas (LDG; Linz-Donawitz Converter Gas), which are types of steel by-products, contain a large amount of carbon dioxide (CO 2 ) and carbon monoxide (CO), as shown in FIG. have. Existing steel by-product gas has been used as a source gas for generating a heat source through combustion because there is no systematic conversion, separation and recovery method (Korean Patent No. 10-2013-0002151).
이 밖에 코크스로 가스(COG;Coke Oven Gas), 파이넥스 부생가스(FOG;Finex Off Gas) 등의 제철 부생가스도 있으며, 특히. 연소 후 생성되는 제철 부생가스는 다량의 이산화탄소를 함유하고 있어 아민 흡수법 등을 통해 2차적으로 이산화탄소를 제거하는 공정이 필요하다.In addition, there are seasonal by-product gases such as COG (Coke Oven Gas) and Finex Off Gas (FOG). The steel off-product by-product generated after combustion contains a large amount of carbon dioxide, and thus, a process of secondaryly removing carbon dioxide through an amine absorption method is required.
현재 제철 부생가스를 효율적으로 사용하기 위하여 수성가스 전환(WGS;Water-Gas Shift) 공정을 통해 수소를 생산하는 방법이 연구되고 있으며, 추가 반응 생성물은 이산화탄소이다. 수성가스 전환 반응 후 온도는 일반적으로 40 ℃ 이하이며, 이산화탄소와 수소를 분리하기 위한 전처리로 흡착제 등을 이용하여 수분을 제거하게 된다. 이때 수분 제거 후 이산화탄소를 제거하고 수소를 회수하기 위해서 흡수, 흡착, 분리막 법 등을 이용할 수 있다.Currently, a method of producing hydrogen through a water-gas shift (WGS) process has been studied in order to efficiently use steel by-product gas, and an additional reaction product is carbon dioxide. After the water gas conversion reaction, the temperature is generally 40 ° C. or less, and water is removed using an adsorbent as a pretreatment for separating carbon dioxide and hydrogen. At this time, in order to remove carbon dioxide and recover hydrogen after water removal, absorption, adsorption, separation membrane, etc. may be used.
다만, 암모니아 계열의 흡수제를 이용한 흡수법의 경우 열역학적 평형에 크게 의존하기 때문에 에너지 소모가 많은 단점이 있고, 흡착법의 경우, 제철 부생가스의 많은 유량을 처리하기 위해서는 비이상적으로 흡착제의 양 및 기타 설비들이 들어가기 때문에 현실적으로 실현하기 어렵다.However, the absorption method using the ammonia-based absorbent has a disadvantage in that it consumes much energy because it depends largely on the thermodynamic equilibrium. In the case of the adsorption method, the amount of the adsorbent and other facilities are ideally used to treat a large flow rate of the by-product by-product gas. It is hard to realize it realistically because it enters.
또한, 분리막 법은 에너지 소모를 획기적으로 줄이고, 조밀한 구조가 가능하지만, 고분자막을 사용한 분리막 소재의 경우 낮은 수소/이산화탄소의 분리도(<2) 때문에 사용이 어려우며, 미세 기공을 갖는 무기(제올라이트, 탄소, 금속-유기 골격체(MOF) 등)재료의 경우에도 분리도가 10 이하로 분리 효율이 매우 떨어진다.In addition, the membrane method significantly reduces energy consumption and enables a compact structure, but in the case of a membrane material using a polymer membrane, it is difficult to use due to the low separation rate of hydrogen / carbon dioxide (<2), and an inorganic particle (zeolite, In the case of carbon, metal-organic framework (MOF), etc.), the separation efficiency is very low as 10 or less.
나아가, 팔라듐(Pd) 막을 이용한 수소/이산화탄소 분리의 경우 높은 분리도를 얻을 수 있지만 소재가 고가이며, 400 ℃ 이상에서 운용이 가능하기 때문에 현장 적용이 어렵다.Furthermore, in the case of hydrogen / carbon dioxide separation using a palladium (Pd) membrane, a high degree of separation can be obtained, but the material is expensive, and it is difficult to apply the field because it can be operated at 400 ° C. or higher.
이에, 본 발명자들은 다공성 중공사막을 순환하는 흡수제를 통해 기체-액체 접촉, 제철 부생가스와 흡수제가 접촉하여, 부생가스로부터 용해도가 높은 이산화탄소를 선택적으로 흡수하여 수소를 회수하는 방법 및 장치를 개발하고, 본 발명을 완성하였다.Accordingly, the present inventors have developed a method and apparatus for recovering hydrogen by selectively absorbing carbon dioxide having high solubility from by-product gas by contacting gas-liquid contact, seasonal by-product gas and absorber through an absorbent circulating the porous hollow fiber membrane. The present invention has been completed.
본 발명의 목적은 에너지 효율이 향상된 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법 및 장치를 제공하는 데 있다.An object of the present invention is to provide a method and apparatus for collecting carbon dioxide and recovering hydrogen from steel by-product gas with improved energy efficiency.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하는 단계(단계 1);Supplying an absorbent to the absorbent filling space of the absorbent module (step 1);
수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 중공사(hollow fiber) 분리막의 중공사 내부로 주입하는 단계(단계 2);Injecting seasonal by-product gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber separator (step 2);
제철 부생가스 중 이산화탄소가 선택적으로 흡수제에 용해될 수 있도록 상기 흡수 모듈 내의 압력을 조절하는 단계(단계 3); 및Adjusting the pressure in the absorption module so that carbon dioxide in the seasonal by-product gas can be selectively dissolved in the absorbent (step 3); And
이산화탄소가 용해된 흡수제와 흡수제에 용해되지 않은 수소를 포함하는 중공사 내부의 가스를 분리 배출하는 단계(단계 4);를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법을 제공한다.It provides a method for capturing carbon dioxide and recovering hydrogen from the iron and steel by-product gas comprising the step of separating and discharging the gas inside the hollow fiber containing the carbon dioxide dissolved absorbent and hydrogen not dissolved in the absorbent (step 4).
또한, 본 발명은In addition, the present invention
하우징; 상기 하우징 내에 장착된 중공사 분리막; 및 상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간;을 포함하는 흡수 모듈;housing; A hollow fiber separator mounted in the housing; And an absorbent filler space defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane.
상기 흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하기 위한 흡수제 공급부;An absorbent supply unit for supplying an absorbent to the absorbent filling space of the absorbent module;
상기 흡수 모듈의 중공사 분리막의 중공사 내부로 수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 공급하기 위한 가스 공급부; 및A gas supply unit for supplying iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module; And
상기 흡수제로 용해되지 않은 수소를 포함하는 기체를 상기 흡수 모듈 외부로 배출하는 배출구;를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 제공한다.It provides a carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-product gas, including; a discharge port for discharging the gas containing hydrogen not dissolved in the absorber to the outside of the absorption module.
본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법 및 장치는 중공사 분리막과 흡수제를 통해 종래 기술보다 공정이 단순하고, 소형화 할 수 있으며, 낮은 설치비 및 운전 비용 등의 장점이 있다. 또한, 수성가스 반응(WGS) 이후 수분 및 기타 불순물이 함유되어 있는 가스의 경우에도 안정적으로 이산화탄소를 분리할 수 있고, 수소를 회수할 수 있어 전처리의 부담이 적고 에너지 효율이 높은 장점이 있다.The method and apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas according to the present invention have advantages such as simpler, smaller size, lower installation cost, and lower running cost than the prior art through hollow fiber membranes and absorbents. In addition, in the case of a gas containing water and other impurities after the water gas reaction (WGS), carbon dioxide can be stably separated, and hydrogen can be recovered, thereby reducing the burden of pretreatment and having high energy efficiency.
도 1은 제철 부생가스인 고로가스(BFG) 및 전로가스(LDG)의 기체 조성과, 상기 가스들이 수성가스 전환 공정과 수분제거 공정을 거칠 때의 기체 조성을 나타낸 도표이고;1 is a diagram showing the gas composition of blast furnace gas (BFG) and converter gas (LDG), which are seasonal by-product gases, and the gas composition when the gases undergo a water gas conversion process and a water removal process;
도 2는 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치에서 흡수 모듈의 일례를 개략적으로 나타낸 모식도이고;FIG. 2 is a schematic diagram schematically showing an example of an absorption module in a carbon dioxide capture and hydrogen recovery apparatus from steelmaking by-product gas according to the present invention; FIG.
도 3은 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치에서 흡수 모듈과 탈기 모듈의 일례를 개략적으로 나타낸 모식도이고;3 is a schematic diagram schematically showing an example of an absorption module and a degassing module in a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention;
도 4는 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치에서 흡수 모듈, 탈기 모듈 및 흡수제 탈기 탱크의 일례를 개략적으로 나타낸 모식도이고;4 is a schematic diagram schematically showing an example of an absorption module, a degassing module and an absorbent degassing tank in the carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention;
도 5는 본 발명에 따른 실시예 1 및 실시예 2의 수소 회수율과 이산화탄소 제거율을 나타낸 그래프이다.5 is a graph showing the hydrogen recovery and carbon dioxide removal rate of Example 1 and Example 2 according to the present invention.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by the following Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시예에 의해 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only for illustrating the present invention and the scope of the invention is not limited by the Examples.
<실시예 1> 제철 부생가스로부터 수소 회수 및 이산화탄소 포집Example 1 Hydrogen Recovery and Carbon Dioxide Capture from Steel Off-Gas
도 2에 나타낸 바와 같이 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구성하였으며, 이때 흡수 모듈(100)의 중공사 분리막의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 흡수 모듈을 2개를 구비하여 직렬 연결하였다. 제철 부생가스로는 수성가스 전환(WGS)을 수행한 H2(20.6 %), N2(44.4%), CO2(35%)의 조성을 갖는 가스를 사용하였다.As shown in FIG. 2, a carbon dioxide capture and hydrogen recovery system was constructed from the steel production by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 μm, and the effective membrane area was 0.2 m 2 . Polypropylene was used. In addition, two absorption modules were provided in series. As the steel by-product gas, a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
단계 1 : 흡수제로 물을 사용하여, 흡수제 충진 공간으로 500 ㎖/min의 유량으로 공급하였다.Step 1: Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
단계 2 : 흡수 모듈의 중공사 분리막 내부로 상기 제철 부생가스를 200 ㎖/min의 유량으로 공급하였다.Step 2: The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
단계 3 : 상기 흡수 모듈 내 흡수제는 3 atm의 압력을 유지하였고, 제철 부생가스는 2.5 atm의 압력을 유지하였다.Step 3: The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
단계 4 : 흡수 모듈을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리 배출하였다.Step 4: The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
상기 흡수제인 물은 외부 장치로부터 지속적으로 공급되도록 하였다.The absorbent water was allowed to be continuously supplied from an external device.
<실시예 2> 제철 부생가스로부터 수소 회수 및 이산화탄소 포집Example 2 Hydrogen Recovery and Carbon Dioxide Capture from Steel Off-Gas
도 4에 나타낸 바와 같이 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구성하였으며, 이때 흡수 모듈(100)의 중공사 분리막의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 흡수 모듈을 2개를 구비하여 직렬 연결하였다. 제철 부생가스로는 수성가스 전환(WGS)을 수행한 H2(20.6 %), N2(44.4%), CO2(35%)의 조성을 갖는 가스를 사용하였다.As shown in FIG. 4, a carbon dioxide capture and hydrogen recovery system was constructed from steel by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 μm, and the effective membrane area was 0.2 m 2 . Polypropylene was used. In addition, two absorption modules were provided in series. As the steel by-product gas, a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
단계 1 : 흡수제로 물을 사용하여, 흡수제 충진 공간으로 500 ㎖/min의 유량으로 공급하였다.Step 1: Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
단계 2 : 흡수 모듈의 중공사 분리막 내부로 상기 제철 부생가스를 200 ㎖/min의 유량으로 공급하였다.Step 2: The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
단계 3 : 상기 흡수 모듈 내 흡수제는 3 atm의 압력을 유지하였고, 제철 부생가스는 2.5 atm의 압력을 유지하였다.Step 3: The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
단계 4 : 흡수 모듈을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리 배출하였다.Step 4: The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
이때, 상기 흡수 모듈(100)을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리하되, 흡수제에 용해된 이산화탄소를 분리하는 탈기 모듈(300)과, 흡수제 탈기 탱크(500)를 더 구성하여, 이산화탄소를 탈기하는 단계를 추가하였다.At this time, the degassing module 300 and the absorbent degassing tank 500 for separating the gas containing hydrogen and the carbon dioxide dissolved absorbent, the gas containing hydrogen as the seasonal by-product gas passed through the absorbent module 100, the carbon dioxide dissolved in the absorbent ) Was further added to degas the carbon dioxide.
이때 상기 탈기 모듈(300)의 중공사 분리막(301)의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 탈기 모듈을 2개를 구비하여 직렬 연결하였다.At this time, the average pore size of the hollow fiber membrane 301 of the degassing module 300 is 0.2 ㎛, the effective membrane area is 0.2 m 2 , the material was polypropylene. Also, two degassing modules were provided in series.
상기 단계 4를 수행한 이산화탄소가 용해된 흡수제를 흡수제 탈기 탱크(500)로 공급하고, 0.8 atm의 압력으로 감압하여 일부 용해된 이산화탄소를 탈기시켰다.The absorbent in which carbon dioxide was dissolved in the step 4 was supplied to the absorbent degassing tank 500, and degassed partially dissolved carbon dioxide by depressurizing to a pressure of 0.8 atm.
단계 a : 상기 흡수제 탈기 탱크에서 공급된 흡수제를 탈기 모듈(300)의 흡수제 충진 공간(302)으로 공급하였다.Step a: The absorbent supplied from the absorbent degassing tank was supplied to the absorbent filling space 302 of the degassing module 300.
단계 b : 탈기 모듈(300)의 중공사 분리막(301) 내부 기체를 외부로 배출하는 것을 진행하였다.Step b: The gas inside the hollow fiber membrane 301 of the degassing module 300 was discharged to the outside.
단계 c : 상기 단계 a의 흡수제에 용해된 이산화탄소가 중공사 분리막(301) 내부로 탈기될 수 있도록, 제1 감압 펌프(400)를 이용하여 중공사 분리막 내부 기체를 0.02 atm으로 감압하였다.Step c: The gas inside the hollow fiber membrane was depressurized to 0.02 atm using the first pressure reducing pump 400 so that the carbon dioxide dissolved in the absorbent of step a could be degassed into the hollow fiber membrane 301.
단계 d : 이산화탄소가 탈기된 흡수제와 탈기 모듈(300)의 중공사 분리막(301) 내부에서 탈기된 이산화탄소를 분리 배출하였다.Step d: The carbon dioxide degassed absorbent and the degassed carbon dioxide in the hollow fiber membrane 301 of the degassing module 300 was separated and discharged.
<실험예 1> 수소 회수율 및 이산화탄소 제거율 분석Experimental Example 1 Analysis of Hydrogen Recovery and Carbon Dioxide Removal
본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치의 수소 회수 및 이산화탄소 제거 능력을 확인하기 위하여, 상기 실시예 1 및 실시예 2에서 분리한 수소를 포함하는 가스를 가스분석기(Gas Chromatography)를 통하여 분석였으며, 그 결과를 도 5에 나타내었다.In order to confirm the hydrogen recovery and carbon dioxide removal capability of the carbon dioxide capture and hydrogen recovery apparatus from the steel production by-product gas according to the present invention, a gas analyzer (Gas Chromatography) to the gas containing hydrogen separated in Examples 1 and 2 Through analysis, the results are shown in FIG.
도 5에 나타낸 바와 같이, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구비한 실시예 1은 대략 90%의 수소 회수율과 이산화탄소 제거율을 나타냈으며, 실시예 2는 대략 95 % 이상의 수소 회수율과 이산화탄소 제거율을 나타낸 것을 확인할 수 있었다. 따라서, 탈기 모듈(300) 및 흡수제 탈기 탱크(500)을 더 구비하여, 흡수제에 용해된 이산화탄소를 탈기하는 단계를 더 거친 실시예 2가 수소 회수율 및 이산화탄소 제거율이 높은 것을 확인할 수 있었다.As shown in FIG. 5, Example 1 having a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention showed a hydrogen recovery rate of about 90% and a carbon dioxide removal rate, and Example 2 of about 95% or more of hydrogen. It was confirmed that the recovery rate and the carbon dioxide removal rate were shown. Therefore, the degassing module 300 and the absorbent degassing tank 500 were further provided, and it was confirmed that Example 2, which has undergone the step of degassing the carbon dioxide dissolved in the absorbent, has a high hydrogen recovery rate and a carbon dioxide removal rate.
본 발명은The present invention
흡수 모듈(100)의 흡수제 충진 공간(102)으로 흡수제를 공급하는 단계(단계 1);Supplying an absorbent to the absorbent filling space 102 of the absorbent module 100 (step 1);
수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 중공사(hollow fiber) 분리막(101)의 중공사 내부로 주입하는 단계(단계 2);Injecting the seasonal by-product gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber separator 101 (step 2);
제철 부생가스 중 이산화탄소가 선택적으로 흡수제에 용해될 수 있도록 상기 흡수 모듈 내의 압력을 조절하는 단계(단계 3); 및Adjusting the pressure in the absorption module so that carbon dioxide in the seasonal by-product gas can be selectively dissolved in the absorbent (step 3); And
이산화탄소가 용해된 흡수제와 흡수제에 용해되지 않은 수소를 포함하는 중공사 내부의 가스를 분리 배출하는 단계(단계 4);를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법을 제공한다.It provides a method for capturing carbon dioxide and recovering hydrogen from the iron and steel by-product gas comprising the step of separating and discharging the gas inside the hollow fiber containing the carbon dioxide dissolved absorbent and hydrogen not dissolved in the absorbent (step 4).
이때, 도 2 내지 도 4에 본 발명에 따른 수소 회수 장치 및 방법의 일례를 모식도를 통해 개략적으로 나타내었으며,2 to 4 schematically illustrate an example of a hydrogen recovery apparatus and method according to the present invention through a schematic diagram.
이하, 도 2 내지 도 4를 참조하여, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법에 대하여 상세히 설명한다.Hereinafter, a method of capturing carbon dioxide and recovering hydrogen from a steelmaking by-product gas according to the present invention will be described in detail with reference to FIGS. 2 to 4.
먼저, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법에 있어서, 단계 1은 흡수 모듈(100)의 흡수제 충진 공간(102)으로 흡수제를 공급하는 단계이다.First, in the method for capturing carbon dioxide and recovering hydrogen from the steelmaking by-product gas according to the present invention, step 1 is a step of supplying an absorbent to the absorbent filling space 102 of the absorption module 100.
상기 단계 1에서는 흡수제를 흡수 모듈(100)의 흡수제 충진 공간(102)으로 공급하여, 제철 부생가스와 흡수제가 기체-액체 접촉을 할 수 있도록 한다.In the first step, the absorbent is supplied to the absorbent filling space 102 of the absorbent module 100 so that the steelmaking by-product gas and the absorbent may have gas-liquid contact.
일례로, 상기 흡수제는 흡수제 탈기 탱크(500)로부터 흡수제 공급부(200)를 통해 흡수제 충진 공간으로 공급되고, 이때 상기 흡수제가 공급되는 유량은 공급되는 제철 부생가스의 유량에 대응하여, 흡수제 공급부 내 펌프를 통해 유량을 변화시키는 것이 바람직하다.For example, the absorbent is supplied from the absorbent degassing tank 500 to the absorbent filling space through the absorbent supply unit 200, where the flow rate of the absorbent is supplied in correspondence with the flow rate of the steel-produced by-product gas supplied to the pump in the absorbent supply unit. It is desirable to change the flow rate through.
이때, 흡수제가 공급되는 유량은 흡수 모듈이 1개 구비 될 시 100 ㎖/min 내지 1000 ㎖/min 일 수 있고, 200 ㎖/min 내지 800 ㎖/min 일 수 있으나, 제철 부생가스와 효과적으로 접촉할 수 있는 유량이라면 이에 제한하는 것은 아니며, 추가적인 흡수 모듈을 더 구비함에 따라 변경될 수 있다.At this time, the flow rate supplied with the absorbent may be 100 ㎖ / min to 1000 ㎖ / min when one absorption module is provided, and may be 200 ㎖ / min to 800 ㎖ / min, but can be in effective contact with the seasonal by-product gas If the flow rate is not limited to this, it can be changed by further comprising an additional absorption module.
상기 흡수제는 흡수 모듈(100)의 하단에서 공급되어 상기 흡수제 충진 공간(102)을 흐른 후 상기 흡수 모듈의 상단으로 배출구(104)를 통해 배출되는 것이 바람직하나, 상기 흡수 모듈을 수평하게 설계하거나, 흡수 모듈을 통과하는 흡수제가 반대 방향으로 공급 및 배출할 수도 있어, 이에 제한하는 것은 아니다.The absorbent is supplied from the lower end of the absorbent module 100 and flows through the absorbent filling space 102, and then is discharged through the outlet 104 to the upper end of the absorbent module, but the absorbent module is designed horizontally, Absorbents passing through the absorbent module may be supplied and discharged in the opposite direction, but are not limited thereto.
이때, 상기 흡수제는 흡수 모듈의 중공사 분리막(101)의 내부로 통과하지 못하며, 단지 중공사 분리막 내부의 기체와 접촉할 수 있다.At this time, the absorbent does not pass through the hollow fiber membrane 101 of the absorption module, it may be in contact only with the gas inside the hollow fiber membrane.
다음으로, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법에 있어서, 단계 2는 수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 중공사 분리막(101)의 중공사 내부로 주입하는 단계이다.Next, in the method for capturing carbon dioxide and recovering hydrogen from the steel by-product by-product according to the present invention, step 2 includes the hollow fiber of the hollow fiber membrane 101 of the steel by-product by-product containing hydrogen (H 2 ) and carbon dioxide (CO 2 ). Injecting it into the inside.
상기 단계 2에서는 중공사 분리막(101)의 중공사 내부로 수소와 이산화탄소를 포함하는 제철 부생가스를 공급하여, 상기 단계 1에서 공급한 흡수제와 기체-액체 접촉을 할 수 있도록 한다.In step 2, a steel by-product gas containing hydrogen and carbon dioxide is supplied into the hollow fiber of the hollow fiber membrane 101 so as to be in gas-liquid contact with the absorbent supplied in step 1.
상기 단계 2의 제철 부생가스는 가스 공급부(700)를 통해 공급될 수 있고, 이때 공급되는 유량은 가스 공급부를 통해 조절될 수 있다.The steelmaking by-product gas of step 2 may be supplied through the gas supply part 700, and the flow rate supplied may be adjusted through the gas supply part.
상기 공급되는 제철 부생가스의 유량은 50 ㎖/min 내지 1000 ㎖/min 일 수 있고, 바람직하게는 100 ㎖/min 내지 500 ㎖/min 일 수 있으나, 제철 부생가스가 흡수제와 효과적으로 접촉할 수 있는 유량이라면 이에 제한하는 것은 아니다. The flow rate of the supplied steel by-product gas may be 50 ml / min to 1000 ml / min, preferably 100 ml / min to 500 ml / min, the flow rate that the iron and steel by-product gas can effectively contact the absorbent If not limited to this.
상기 공급되는 제철 부생가스는 가스 공급부(700)를 통해 중공사 분리막(101) 내부로 공급되며, 이렇게 공급된 제철 부생가스는 중공사 분리막의 기공으로 확산되며, 흡수제 충진 공간(102)으로 유입되는 흡수제와 접촉하고, 대부분 제철 부생가스의 이산화탄소만 선택적으로 용해된다. 용해되지 않은 나머지 가스는 흡수 모듈(100) 외부로 배출구(103)을 통해 배출된다.The supplied iron by-product gas is supplied into the hollow fiber membrane 101 through the gas supply unit 700, the iron by-product gas is diffused into the pores of the hollow fiber membrane, and is introduced into the absorbent filler space 102 In contact with the absorbent, most of the carbon dioxide of the seasonal by-product gas is selectively dissolved. The remaining gas which is not dissolved is discharged through the outlet 103 to the outside of the absorption module 100.
상기 단계 2의 제철 부생가스는 0.1 부피% 내지 80 부피%의 수소를 포함할 수 있고, 바람직하게는 0.3 부피% 내지 45 부피%의 수소를 포함할 수 있다.Steelmaking by-product gas of step 2 may include 0.1% by volume to 80% by volume of hydrogen, preferably 0.3% by volume to 45% by volume of hydrogen.
또한, 상기 단계 2의 제철 부생가스는 0.1 부피% 내지 80 부피%의 이산화탄소를 포함할 수 있고, 바람직하게는 3 부피% 내지 50 부피%의 이산화탄소를 포함할 수 있다.In addition, the seasonal by-product gas of step 2 may include 0.1% to 80% by volume of carbon dioxide, preferably 3% to 50% by volume of carbon dioxide.
이때, 상기 제철 부생가스는 질소, 일산화탄소, 물, 산소 등을 더 포함할 수 있다.In this case, the seasonal by-product gas may further include nitrogen, carbon monoxide, water, oxygen and the like.
또한, 상기 단계 2의 제철 부생가스는 수성가스 전환(WGS;Water-Gas Shift) 공정이 수행된 제철 부생가스를 사용할 수 있으며, 이때 수성가스 전환이 수행된 상기 제철 부생가스는 15 부피% 내지 50 부피%의 수소를 포함할 수 있고, 바람직하게는 15 부피% 내지 40 부피%의 수소를 포함할 수 있다.In addition, the steel by-product gas of step 2 may be used as the steel by-product gas is a water-gas shift (WGS; Water-Gas Shift) process, wherein the steel by-product gas is water conversion 15% by volume to 50 It may comprise volume percent hydrogen, preferably from 15 volume percent to 40 volume percent hydrogen.
다만, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법은 수분이 포함된 제철 부생가스라 할지라도 하기 후술할 이산화탄소 분리 단계를 효율적으로 수행 가능하여, 수성가스 전환 공정이 꼭 수행된 가스가 필요한 것은 아니다.However, the method for capturing carbon dioxide and recovering hydrogen from the steel by-product by-product according to the present invention can efficiently perform the carbon dioxide separation step to be described later, even if the steel-containing by-product is included in the water, so that the water gas conversion process must be performed. It is not necessary.
나아가, 상기 수성가스 전환 공정이 수행된 제철 부생가스는 20 부피% 내지 50 부피%의 이산화탄소를 포함할 수 있고, 바람직하게는 20 부피% 내지 40 부피%의 이산화탄소를 포함할 수 있다.Furthermore, the steel by-product gas subjected to the water gas conversion process may include 20% by volume to 50% by volume of carbon dioxide, preferably 20% by volume to 40% by volume of carbon dioxide.
상기 수성가스 전환이란, 제철 부생가스인 고로가스(BFG;Blast Furnace Gas), 전로가스(LDG;Linz-Donawitz Converter Gas) 등에 포함된 일산화탄소를 다시 수증기와 반응시켜 수소를 생성하는 공정이며, 반응식은 하기와 같다.The water gas conversion is a process of generating hydrogen by reacting carbon monoxide contained in blast furnace gas (BFG), iron furnace by-product gas, and converter gas (LDG; Linz-Donawitz Converter Gas) with water vapor again. It is as follows.
<반응식><Scheme>
CO + H2O ↔ CO2 + H2 CO + H 2 O ↔ CO 2 + H 2
수소의 생성을 극대화하기 위해서는 모든 일산화탄소를 이 반응을 사용하여 이산화탄소로 및 수소로 변환시키는 것이 바람직하나, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치는 물과 일산화탄소가 포함된 가스라 할지라도 이산화탄소 포집 및 수소 회수가 가능한 장점이 있다.In order to maximize the production of hydrogen, it is preferable to convert all carbon monoxide to carbon dioxide and hydrogen using this reaction, but the carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-product gas according to the present invention is a gas containing water and carbon monoxide. There is also an advantage that carbon capture and hydrogen recovery is possible.
또한, 상기 수성가스 전환 반응한 가스를 흡착제 등을 이용하여 수분 제거 공정을 더 추가할 수 있다.In addition, a water removal process may be further added to the gas from the water gas shift reaction using an adsorbent.
상기 제철 부생가스, 수성가스 전환이 수행된 제철 부생가스, 수성가스 전환 이후 수분 제거 공정을 거친 제철 부생가스의 조성의 일례를 도 1에 나타내었다.1 shows an example of the composition of the steel by-product gas, the steel by-product gas in which the water gas conversion is performed, and the steel by-product gas which has undergone the water removal process after the conversion of the water gas.
나아가, 상기 단계 2에서 제철 부생가스와 흡수제의 유량비(제철 부생가스 유량/흡수제 유량)는 0.01 내지 1일 수 있고, 0.05 내지 1일 수 있으며, 0.1 내지 1인 것이 바람직하나, 제철 부생가스와 흡수제가 효율적으로 접촉할 수 있는 유량비라면 이에 제한하는 것은 아니다.Further, in step 2, the flow rate ratio of the steel by-product gas and the absorbent (the steel by-product gas flow rate / absorbent flow rate) may be 0.01 to 1, may be 0.05 to 1, preferably 0.1 to 1, steel production by-product gas and absorbent If the flow rate ratio that can be efficiently contacted is not limited thereto.
다음으로, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법에 있어서, 단계 3은 제철 부생가스 중 이산화탄소가 선택적으로 흡수제에 용해될 수 있도록 상기 흡수 모듈(100) 내의 압력을 조절하는 단계이다.Next, in the method of capturing carbon dioxide and hydrogen from the steel by-product by-product according to the present invention, step 3 is to adjust the pressure in the absorption module 100 so that carbon dioxide in the steel by-product gas can be selectively dissolved in the absorbent. .
상기 단계 3에서는 상기 흡수 모듈(100) 내의 압력을 조절하여, 이산화탄소가 효과적으로 흡수제로 용해될 수 있도록 한다.In step 3, the pressure in the absorbent module 100 is adjusted to effectively dissolve the carbon dioxide into the absorbent.
상기 제철 부생가스의 경우, 이산화탄소만 선택적으로 흡수제에 용해되는 특성을 보이지만, 일반적인 대기압 하에서는 용해도가 그리 높지 않으므로 흡수제 압력제어부와 가스 압력제어부를 통해 흡수 모듈(100) 내의 제철 부생가스와 흡수제의 압력을 조절한다.In the case of the seasonal by-product gas, only carbon dioxide selectively dissolves in the absorbent, but since the solubility is not so high under general atmospheric pressure, the pressure of the steel by-product gas and the absorbent in the absorbent module 100 is absorbed through the absorbent pressure control unit and the gas pressure control unit. Adjust
이때, 흡수 모듈 내 제철 부생가스의 압력은 0.1 atm 내지 15 atm일 수 있고, 바람직하게는 0.5 atm 내지 10 atm 일 수 있으나, 이산화탄소가 효과적으로 흡수제에 용해될 수 있는 압력이라면 이에 제한하는 것은 아니다.At this time, the pressure of the steel by-product by-products in the absorption module may be 0.1 atm to 15 atm, preferably 0.5 to 10 atm, but is not limited to this if the pressure of carbon dioxide can be effectively dissolved in the absorbent.
또한, 흡수 모듈(100) 내 흡수제의 압력은 0.1 atm 내지 15 atm일 수 있고, 바람직하게는 0.5 atm 내지 10 atm 일 수 있으나, 이산화탄소가 효과적으로 흡수제에 용해될 수 있는 압력이라면 이에 제한하는 것은 아니다.In addition, the pressure of the absorbent in the absorbent module 100 may be 0.1 atm to 15 atm, preferably 0.5 to 10 atm, but is not limited thereto as long as carbon dioxide can be effectively dissolved in the absorbent.
이와 같이 흡수 모듈(100) 내 압력을 증가시키더라도 이산화탄소를 제외한 부생가스 내 다른 기체들은 흡수제에 용해되지 않으므로, 이산화탄소를 제철 부생가스로부터 효과적으로 분리할 수 있다.As such, even if the pressure in the absorption module 100 is increased, other gases in the by-product gas except carbon dioxide are not dissolved in the absorbent, so that the carbon dioxide can be effectively separated from the seasonal by-product gas.
다만, 흡수 모듈(100) 내 압력이 15 atm 을 초과하면, 중공사 분리막(101)이 붕괴될 우려가 있고, 0.1 atm 미만이면 이산화탄소가 효과적으로 용해되지 않을 수 있다.However, if the pressure in the absorption module 100 exceeds 15 atm, there is a fear that the hollow fiber membrane 101 is collapsed, if less than 0.1 atm carbon dioxide may not be effectively dissolved.
다음으로, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법에 있어서, 단계 4는 이산화탄소가 용해된 흡수제와 흡수제에 용해되지 않은 수소를 포함하는 가스를 배출하는 단계이다.Next, in the method of capturing carbon dioxide and recovering hydrogen from the steelmaking by-product gas according to the present invention, step 4 is a step of discharging a gas containing an absorbent in which carbon dioxide is dissolved and hydrogen not dissolved in the absorbent.
상기 단계 4에서는 흡수제에 용해되지 않고, 수소가 포함된 가스와 흡수제를 분리 배출하여 용이하게 수소를 회수할 수 있도록 한다.In step 4, the hydrogen is not dissolved in the absorbent, and the hydrogen-containing gas and the absorbent are separated and discharged to easily recover the hydrogen.
또한, 상기 단계 4의 이산화탄소가 용해된 흡수제로부터 이산화탄소를 탈기하는 단계(단계 5);를 더 포함할 수 있다.In addition, the step of degassing carbon dioxide from the absorbent in which the carbon dioxide dissolved in step 4 (step 5); may further include.
상기 단계 4에서 분리 배출된 흡수제는 흡수제 탈기 탱크(500)로 이송되어 저장될 수 있고, 이때 흡수제 탈기 탱크 내의 압력은 상압 또는 진공일 수 있으나, 흡수제 내 이산화탄소가 탈기될 수 있는 압력이라면 이에 제한하는 것은 아니다.The absorbent separated and discharged in step 4 may be transferred to and stored in the absorbent degassing tank 500. In this case, the pressure in the absorbent degassing tank may be atmospheric pressure or vacuum, but if the pressure in which the carbon dioxide in the absorbent is degassed is limited thereto. It is not.
이때, 일부 흡수제에 용해된 이산화탄소를 탈기 시킬 수 있으며 이를 흡수 모듈(100)의 중공사 분리막(101) 내부로 공급할 수 있다.In this case, carbon dioxide dissolved in some absorbents may be degassed and supplied to the hollow fiber membrane 101 of the absorbent module 100.
나아가, 본 발명은 상기 흡수 모듈(100)에서 분리된 이산화탄소가 용해된 흡수제를 탈기 모듈(300)의 흡수제 충진 공간(302)으로 공급하는 단계(단계 a); 탈기 모듈의 중공사 분리막(301) 내부 기체를 외부로 배출하는 단계(단계 b); 상기 흡수제에 용해된 이산화탄소가 탈기될 수 있도록 상기 탈기 모듈 내의 압력을 조절하는 단계(단계 c); 이산화탄소가 탈기된 흡수제와 탈기된 이산화탄소를 분리 배출하는 단계(단계 d);를 더 포함할 수 있다.Furthermore, the present invention provides a step (step a) of supplying the absorbent dissolved carbon dioxide separated in the absorbent module 100 to the absorbent filling space 302 of the degassing module 300; Discharging the gas inside the hollow fiber separation membrane 301 of the degassing module to the outside (step b); Adjusting the pressure in the degassing module so that carbon dioxide dissolved in the absorbent can be degassed (step c); Separating and discharging the carbon dioxide degassed absorbent and the degassed carbon dioxide (step d); may further include.
상기 단계 a에서는 상기 단계 1과 유사하게, 상기 흡수 모듈(100)을 통과하여 이산화탄소를 흡수한 흡수제를 탈기 모듈(300)의 흡수제 충진 공간으로 공급하여, 흡수제 내 이산화탄소가 탈기할 수 있도록 한다.In step a, similar to step 1, the absorbent absorbing carbon dioxide through the absorbent module 100 is supplied to the absorbent filling space of the degassing module 300 so that carbon dioxide in the absorbent can be degassed.
상기 흡수제는 흡수 모듈(100)의 상단에서 공급되어 상기 탈기 모듈(300)의 흡수제 충진 공간(302)을 흐른 후 상기 탈기 모듈의 하단으로 배출되는 것이 바람직하나, 상기 탈기 모듈을 수평하게 설계하거나, 탈기 모듈을 통과하는 흡수제를 반대 방향으로 공급 및 배출할 수도 있어, 이에 제한하는 것은 아니다.The absorbent may be supplied from the upper end of the absorbent module 100 to flow through the absorbent filling space 302 of the degassing module 300 and then discharged to the lower end of the degassing module. Absorbents passing through the degassing module may be supplied and discharged in the opposite direction, but are not limited thereto.
이때, 상기 흡수제는 탈기 모듈의 중공사 분리막(301)의 내부로 통과하지 못하며, 단지 중공사 분리막 내부의 기체와 접촉할 수 있다.In this case, the absorbent may not pass into the hollow fiber membrane 301 of the degassing module, and may only contact gas inside the hollow fiber membrane.
상기 단계 a를 수행한 흡수제는 탈기 모듈(300) 외부로 배출구(305)를 통해 배출되고 다시 상기 흡수 모듈(100)에 공급되어 순환될 수 있다.The absorbent having performed step a may be discharged through the outlet 305 to the outside of the degassing module 300, and may be supplied to the absorption module 100 and circulated again.
상기 단계 b에서는 탈기 모듈(300)의 중공사 분리막(301) 내부 기체가 외부로 배출될 수 있도록 상압 또는 진공 상태로 조절할 수 있으나, 이산화탄소가 탈기될 수 있는 압력이라면 이에 제한하는 것은 아니다.In step b, the gas inside the hollow fiber membrane 301 of the degassing module 300 may be adjusted to a normal pressure or a vacuum state so as to be discharged to the outside, but is not limited thereto.
상기 단계 b의 중공사 분리막(301) 내부 공간으로 중공사 분리막 외부에 흡수제에 용해된 이산화탄소가 탈기되어 공급될 수 있고, 이산화탄소가 최종적으로 분리되어 배출구(304)를 통해 배출될 수 있다.Carbon dioxide dissolved in the absorbent may be degassed and supplied to the inner space of the hollow fiber membrane 301 of step b, and the carbon dioxide may be finally separated and discharged through the outlet 304.
상기 단계 c에서는 상기 탈기 모듈(300) 내의 압력을 조절하여, 흡수제에 용해된 이산화탄소가 효과적으로 탈기 모듈의 중공사 분리막(301) 내부로 탈기될 수 있도록 한다.In step c, the pressure in the degassing module 300 is adjusted so that the carbon dioxide dissolved in the absorbent can be effectively degassed into the hollow fiber membrane 301 of the degassing module.
이때, 제1 감압 펌프(400)를 통해 탈기 모듈(300) 내의 기체와 흡수제의 압력을 조절한다.At this time, the pressure of the gas and the absorbent in the degassing module 300 is adjusted through the first decompression pump 400.
이때, 탈기 모듈(300) 내 기체인 이산화탄소의 압력은 0.01 atm 내지 2 atm일 수 있고, 바람직하게는 0.1 atm 내지 1.5 atm 일 수 있으나, 흡수제에 용해된 이산화탄소가 효과적으로 탈기될 수 있는 압력이라면 이에 제한하는 것은 아니다.At this time, the pressure of the carbon dioxide which is a gas in the degassing module 300 may be 0.01 atm to 2 atm, preferably 0.1 atm to 1.5 atm, but if the pressure of the carbon dioxide dissolved in the absorbent can be effectively degassed, it is limited thereto. It is not.
상기 단계 d에서는 이산화탄소가 탈기된 흡수제와 탈기된 이산화탄소가 분리 배출되며(각각, 탈기된 이산화탄소를 포함하는 가스는 배출구 304를 통해, 이산화탄소가 제거된 흡수제는 배출구 305를 통해), 상기 이산화탄소가 탈기된 흡수제는 다시 상기 흡수 모듈(100)로 재공급되어 순환할 수 있다.In step d, the carbon dioxide desorbed absorbent and the degassed carbon dioxide are separated and discharged (each gas containing degassed carbon dioxide through an outlet 304 and the carbon dioxide desorbed through an outlet 305), and the carbon dioxide degassed. The absorbent may be supplied back to the absorbent module 100 and circulated.
또한, 본 발명은 상기 단계 4에서 분리 배출된 수소를 포함하는 가스를 기체 분리막을 사용하여 수소(H2)를 정제하는 단계(단계 6);를 더 포함할 수 있다.In addition, the present invention may further comprise the step (step 6) of purifying hydrogen (H 2 ) using a gas separation membrane gas containing hydrogen separated and discharged in the step 4.
상기 단계 6에서는 기체 분리막을 통해 상기 단계 4의 수소를 포함하는 가스에서 질소를 분리하거나, 또는 가장 바람직하게는 수소를 제외한 가스를 분리하여, 최종적으로 수소를 정제할 수 있다. 이때 상기 질소 분리, 또는 수소를 제외한 가스 분리에 사용되는 기체 분리막은 통상의 기술자에 의해 공지 발명된 것을 사용할 수 있다.In step 6, nitrogen may be separated from the gas containing hydrogen in step 4 through a gas separation membrane, or, most preferably, gas other than hydrogen may be separated to finally purify hydrogen. In this case, the gas separation membrane used for the nitrogen separation or gas separation except hydrogen may be one known by a person skilled in the art.
또한, 본 발명은In addition, the present invention
하우징; 상기 하우징 내에 장착된 중공사 분리막(101) 및housing; Hollow fiber membrane 101 mounted in the housing and
상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간(102)을 포함하는 흡수 모듈(100);An absorbent module (100) including an absorbent filler space (102) defined by an outer side of the hollow fiber separator and the inside of the housing constituting the hollow fiber separator;
상기 흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하기 위한 흡수제 공급부(200);An absorbent supply unit 200 for supplying an absorbent to the absorbent filling space of the absorbent module;
상기 흡수 모듈의 중공사 분리막의 중공사 내부로 수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 공급하기 위한 가스 공급부(700); 및A gas supply unit 700 for supplying an iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module; And
상기 흡수제로 용해되지 않은 수소를 포함하는 기체를 상기 흡수 모듈 외부로 배출하는 배출구(103);를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 제공한다.It provides a carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-product gas containing; outlet 103 for discharging the gas containing hydrogen not dissolved in the absorber to the outside of the absorption module.
이때, 도 2 내지 도 4에 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치의 일례를 모식도를 통해 개략적으로 나타내었으며,2 to 4 schematically illustrate an example of a carbon dioxide capture and hydrogen recovery apparatus from the steel production by-product gas according to the present invention through a schematic diagram,
이하, 도 2 내지 도 4를 참조하여, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치에 대하여 상세히 설명한다.Hereinafter, with reference to Figures 2 to 4, the carbon dioxide capture and hydrogen recovery apparatus from the steel production by-product gas according to the present invention will be described in detail.
본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치는, 내부 유체의 누출을 방지하고, 보호하는 하우징; 상기 하우징 내에 장착된 다공성의 중공사 분리막(101); 및 상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간(102);을 포함하는 흡수 모듈(100);로 구성될 수 있고,The apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas according to the present invention includes: a housing preventing and protecting leakage of an internal fluid; A porous hollow fiber membrane 101 mounted in the housing; And an absorbent filler space 102 defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane.
상기 흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하기 위한 흡수제 공급부(200); 상기 흡수 모듈의 중공사 분리막의 중공사 내부로 수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 공급하기 위한 가스 공급부(700); 및 상기 흡수제로 용해되지 않은 수소를 포함하는 기체를 상기 흡수 모듈 외부로 배출하는 배출구(103);를 포함한다.An absorbent supply unit 200 for supplying an absorbent to the absorbent filling space of the absorbent module; A gas supply unit 700 for supplying an iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module; And an outlet 103 for discharging the gas containing hydrogen not dissolved into the absorbent to the outside of the absorbent module.
이때, 상기 중공사 분리막(101)의 표면은 미세 기공 형태이며, 흡수제의 확산은 불가능하고, 제철 부생가스는 통과 가능하다. 또한, 상기 중공사 분리막은 흡수제와 접촉하는 형태를 이룰 수 있다.In this case, the surface of the hollow fiber separation membrane 101 is in the form of fine pores, the diffusion of the absorbent is impossible, and the steel production by-product gas can pass through. In addition, the hollow fiber membrane may be in contact with the absorbent.
나아가, 상기 중공사 분리막(101) 내부에 공급되는 제철 부생가스 중, 이산화탄소는 고압에서 흡수제에 대한 용해도는 높지만, 나머지 기체인 수소, 질소 등은 흡수제에 대한 용해도가 높지 않다. 따라서 중공사 분리막 내부를 통과하는 제철 부생가스는 상기 중공사 분리막과 흡수제의 계면에서 이산화탄소가 흡수제 용해되어 분리되고, 나머지 용해되지 않은 가스는 배출된다.Further, in the steelmaking by-product gas supplied into the hollow fiber membrane 101, carbon dioxide has a high solubility in the absorbent at high pressure, but the remaining gases hydrogen, nitrogen and the like are not high in the absorbent. Therefore, the steel by-product gas passing through the hollow fiber membrane is separated by dissolving carbon dioxide at the interface between the hollow fiber membrane and the absorbent, and the remaining undissolved gas is discharged.
또한, 상기 장치는,In addition, the apparatus,
상기 흡수 모듈 내 제철 부생가스의 압력을 제어하는 가스 압력제어부; 및A gas pressure control unit controlling a pressure of the steel production by-product gas in the absorption module; And
상기 흡수 모듈 내 흡수제의 압력을 제어하는 흡수제 압력제어부;를 더 포함할 수 있다.It may further include; absorbent pressure control unit for controlling the pressure of the absorbent in the absorbent module.
상기 제철 부생가스의 경우, 이산화탄소만 선택적으로 흡수제에 용해되는 특성을 보이지만, 일반적인 대기압 하에서는 이산화탄소의 용해도가 그리 높지 않으므로 흡수제 압력제어부와 가스 압력제어부를 통해 흡수 모듈 내의 제철 부생가스와 흡수제의 압력을 조절한다. 상기와 같이 흡수 모듈 내 압력을 증가시키더라도 이산화탄소를 제외한 부생가스 내 다른 기체들은 흡수제에 용해되지 않으므로, 이산화탄소를 선택적으로 제철 부생가스로부터 효과적으로 분리할 수 있다.In the case of the seasonal by-product gas, only carbon dioxide selectively dissolves in the absorbent, but under normal atmospheric pressure, since the solubility of carbon dioxide is not so high, the pressure of the seasonal by-product gas and the absorbent in the absorption module is controlled through the absorbent pressure control unit and the gas pressure control unit. do. As described above, even if the pressure in the absorption module is increased, other gases in the by-product gas except carbon dioxide are not dissolved in the absorbent, so that carbon dioxide may be selectively separated from the steel production by-product.
나아가, 상기 장치는,Further, the apparatus,
상기 흡수 모듈과 연결되어 흡수제가 통과하는 탈기 모듈(300); 및 상기 탈기 모듈 내부의 압력을 조절하는 제1 감압 펌프(400);를 더 포함할 수 있고,A degassing module 300 connected with the absorbing module and through which the absorbent passes; And a first pressure reducing pump 400 for adjusting a pressure in the degassing module.
상기 탈기 모듈은,The degassing module,
하우징; 상기 하우징 내에 장착되어 상기 분리된 이산화탄소가 중공사 외부로 투입되는 중공사 분리막(301); 상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간(302); 및 상기 중공사 분리막을 구성하는 중공사 분리막 내부인 이산화탄소 탈기 공간(303);을 포함한다.housing; A hollow fiber separator 301 mounted in the housing and into which the separated carbon dioxide is introduced into the hollow fiber; An absorbent filler space 302 defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane; And a carbon dioxide degassing space 303 inside the hollow fiber membrane constituting the hollow fiber membrane.
상기 탈기 모듈(300)은 상기 흡수 모듈(100)과 유사한 중공사 분리막을 사용할 수 있으며, 흡수제는 상기 기술한 바와 같이 순환하며 공급되므로, 상기 흡수 모듈의 흡수제와 동일하다. 다만, 상기 흡수 모듈을 통과한 흡수제는 이산화탄소가 다량 용해되어 있어, 탈기 모듈에서 상기 흡수제에 용해된 이산화탄소를 탈기할 수 있다.The degassing module 300 may use a hollow fiber membrane similar to the absorbent module 100. The absorbent is circulated and supplied as described above, and thus the same as that of the absorbent module. However, since the absorbent that has passed through the absorbent module has a large amount of carbon dioxide dissolved therein, it is possible to degas the carbon dioxide dissolved in the absorbent in the degassing module.
구체적으로, 탈기 모듈의 중공사 분리막(301) 외부에 공급되는 흡수제는 상기 중공사 분리막과 중공사 분리막 내부 이산화탄소 탈기 공간(303)에 존재하는 기체와 접촉하고, 흡수제에 용해된 이산화탄소가 이산화탄소 탈기 공간으로 탈기되어 탈기가 수행된 흡수제와 분리 배출된다.Specifically, the absorbent supplied to the outside of the hollow fiber membrane 301 of the degassing module is in contact with the gas present in the carbon dioxide degassing space 303 inside the hollow fiber membrane and the hollow fiber membrane, the carbon dioxide dissolved in the absorber carbon dioxide degassing space It is degassed and discharged separately from the absorbent in which the degassing is performed.
또한, 상기 장치는,In addition, the apparatus,
상기 흡수 모듈(100) 및 탈기 모듈(300)과 연결된 흡수제 탈기 탱크(500); 및 상기 흡수제 탈기 탱크 내부의 압력을 조절하는 제2 감압 펌프(600);를 더 포함할 수 있다.An absorbent degassing tank 500 connected to the absorbing module 100 and the degassing module 300; And a second pressure reducing pump 600 for adjusting a pressure in the absorbent degassing tank.
상기 흡수제 탈기 탱크(500)는 상기 흡수 모듈(100) 및 탈기 모듈(300)을 순환하는 흡수제를 저장한다. 이때, 상기 흡수제 탈기 탱크 내부의 압력을 조절하는 제2 감압 펌프를 통해 0.5 atm 내지 0.9 atm의 압력으로 감압할 수 있고, 이때 흡수제 내부에 용해되어 있던 이산화탄소가 일부 분리될 수 있으며, 상기 일부 분리된 이산화탄소는 흡수 모듈의 중공사 분리막(101) 내부로 이송될 수 있다. The absorbent degassing tank 500 stores the absorbent circulating through the absorbent module 100 and the degassing module 300. At this time, the second pressure reducing pump to adjust the pressure inside the absorbent degassing tank may be reduced to a pressure of 0.5 atm to 0.9 atm, wherein the carbon dioxide dissolved in the absorbent may be partially separated, the partial separated Carbon dioxide may be transferred into the hollow fiber membrane 101 of the absorption module.
또한, 상기 장치는,In addition, the apparatus,
상기 흡수 모듈과 연결되고, 흡수 모듈에서 배출되는 가스에서 수소(H2)를 정제하기 위한 기체 분리막을 더 포함할 수 있다.It may further include a gas separation membrane connected to the absorption module and configured to purify hydrogen (H 2 ) from the gas discharged from the absorption module.
상기 기체 분리막을 통해 상기 흡수 모듈을 통과한 수소를 포함하는 가스에서 질소를 분리하거나, 또는 수소를 제외한 가스를 분리하여, 최종적으로 수소를 정제할 수 있다. 이때 질소 분리, 또는 수소를 제외한 가스 분리에 사용되는 기체 분리막은 통상의 기술자에 의해 공지 발명된 것을 사용할 수 있다.Hydrogen may be finally purified by separating nitrogen from a gas containing hydrogen that has passed through the absorption module through the gas separation membrane, or by separating gas other than hydrogen. In this case, a gas separation membrane used for nitrogen separation or gas separation except hydrogen may be one known by a person skilled in the art.
상기 흡수 모듈 및 탈기 모듈의 중공사 분리막은 폴리테트라플루오르에틸렌(PTFE), 폴리클로로트리플루오르에틸렌(PCTFE), 폴리비닐리덴플로라이드(PVDF), 폴리프로필렌(PP), 퍼플루오르알콕시 알칸(perfluoroalkoxy alkanes), 플루오리네이티드 에틸렌 프로필렌(fluorinated ethylene propylene), 에틸렌테트라플루오로에틸렌(ETFE), 에틸렌플루오리네이티드에틸렌프로필렌(EFEP) 및 폴리페닐린(polyphenylene) 등을 사용할 수 있으나, 제철 부생가스를 통과시킬 수 있고, 흡수제의 확산을 방지하며 미세 기공을 갖는 중공사형 분리막을 형성할 수 있는 소재라면 이에 제한하는 것은 아니다.The hollow fiber membranes of the absorption module and the degassing module are polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), perfluoroalkoxy alkanes ), Fluorinated ethylene propylene, ethylene tetrafluoroethylene (ETFE), ethylene fluorinated ethylene propylene (EFEP) and polyphenylene may be used. It can be, if the material to prevent the diffusion of the absorbent and to form a hollow fiber membrane having a fine pore is not limited thereto.
상기 흡수 모듈 및 탈기 모듈의 중공사 분리막의 평균 기공 크기는 0.001 ㎛ 내지 2 ㎛일 수 있고, 0.001 ㎛ 내지 1 ㎛일 수 있으나, 상기 흡수 모듈 및 탈기 모듈의 중공사 분리막을 통해 기체-액체 접촉이 효과적으로 이루어질 수 있는 기공 크기라면 이에 제한하는 것은 아니다.The average pore size of the hollow fiber membranes of the absorption module and the degassing module may be 0.001 μm to 2 μm, and may be 0.001 μm to 1 μm, but gas-liquid contact may be made through the hollow fiber membranes of the absorption module and the degassing module. The pore size that can be effectively achieved is not limited thereto.
상기 흡수 모듈 및 탈기 모듈의 중공사 분리막의 기공율은 10 % 내지 90 %일 수 있고, 20 % 내지 80 % 일 수 있으나, 상기 흡수 모듈 및 탈기 모듈의 중공사 분리막을 통해 기체-액체 접촉이 효과적으로 이루어질 수 있는 기공율이라면 이에 제한하는 것은 아니다.The porosity of the hollow fiber membranes of the absorption module and the degassing module may be 10% to 90%, and may be 20% to 80%, but gas-liquid contact is effectively achieved through the hollow fiber membranes of the absorption module and the degassing module. If possible porosity is not limited to this.
상기 흡수 모듈 및 탈기 모듈의 흡수제는 물, 폴리프로필렌 카보네이트(PC) 및 폴리에틸렌글리콜 디메틸 에테르(PEGDME) 등을 사용할 수 있고, 바람직하게는 물을 사용할 수 있으나, 이산화탄소를 선택적으로 흡수 가능하고 중공사형 분리막을 통과하지 못하는 유체라면 이에 제한하는 것은 아니다.The absorbent of the absorption module and the degassing module may be water, polypropylene carbonate (PC) and polyethylene glycol dimethyl ether (PEGDME) and the like, preferably water may be used, but can selectively absorb carbon dioxide and hollow fiber membrane If the fluid does not pass through it is not limited thereto.
상기 흡수 모듈 또는 탈기 모듈은 적어도 1개 이상이 직렬 연결 또는 병렬 연결 또는 직렬 병렬 혼합 연결될 수 있다.At least one absorption module or degassing module may be connected in series or in parallel, or in series and parallel mixing.
한편, 본 발명의 상기 방법 및 장치에 있어서,On the other hand, in the method and apparatus of the present invention,
흡수 모듈의 배출구는 최종적으로 제철 부생가스로부터 이산화탄소를 선택적으로 흡수시킨 흡수제를 분리 배출하는 배출구(104) 및 이산화탄소가 제거된 가스(수소를 포함하는 가스)를 분리 배출하는 배출구(103)를 각각 구비하여 배출시키는 것이 바람직하고, 상기 배출구는 흡수 모듈과 유기적으로 연결되어 있거나, 또는 흡수 모듈에 직접적으로 장치되어 있을 수 있다.The outlet of the absorption module is provided with an outlet 104 for separating and discharging the absorbent selectively absorbing carbon dioxide from the seasonal by-product gas and an outlet 103 for separating and discharging the gas (gas containing hydrogen) from which carbon dioxide has been removed. The discharge port may be organically connected to the absorption module or may be directly installed in the absorption module.
또한, 탈기 모듈에서도 상기 흡수 모듈과 같이,In the degassing module, like the absorption module,
탈기 모듈의 배출구는 흡수제로부터 이산화탄소를 탈기시킨 후, 최종적으로 이산화탄소를 포함하는 가스를 분리 배출하는 배출구(304) 및 이산화탄소가 탈기된 후의 흡수제를 배출하는 배출구(305)를 각각 구비하여 배출시키는 양태가 바람직하고, 상기 배출구는 탈기 모듈과 유기적으로 연결되어 있거나, 또는 탈기 모듈에 직접적으로 장치되어 있을 수 있다.The outlet of the degassing module is provided with a discharge port 304 for degassing carbon dioxide from the absorbent and finally discharging and discharging the gas containing carbon dioxide and a discharge port 305 for discharging the absorbent after carbon dioxide is degassed. Preferably, the outlet may be organically connected to the degassing module or may be installed directly in the degassing module.
상술된 각각의 모듈의 배출구는 모듈로부터 배출되는 가스 또는 흡수제를 추가의 공정을 수행할 수 있도록 하는 후속 장치와 유기적으로 연결되거나, 또는 재사용 할 수 있도록 순환될 수 있다.The outlet of each module described above may be circulated such that it can be organically connected or reused with a subsequent device that allows further processing of the gas or absorbent discharged from the module.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail by the following Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시예에 의해 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only for illustrating the present invention and the scope of the invention is not limited by the Examples.
<실시예 1> 제철 부생가스로부터 수소 회수 및 이산화탄소 포집Example 1 Hydrogen Recovery and Carbon Dioxide Capture from Steel Off-Gas
도 2에 나타낸 바와 같이 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구성하였으며, 이때 흡수 모듈(100)의 중공사 분리막의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 흡수 모듈을 2개를 구비하여 직렬 연결하였다. 제철 부생가스로는 수성가스 전환(WGS)을 수행한 H2(20.6 %), N2(44.4%), CO2(35%)의 조성을 갖는 가스를 사용하였다.As shown in FIG. 2, a carbon dioxide capture and hydrogen recovery system was constructed from the steel production by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 μm, and the effective membrane area was 0.2 m 2 . Polypropylene was used. In addition, two absorption modules were provided in series. As the steel by-product gas, a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
단계 1 : 흡수제로 물을 사용하여, 흡수제 충진 공간으로 500 ㎖/min의 유량으로 공급하였다.Step 1: Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
단계 2 : 흡수 모듈의 중공사 분리막 내부로 상기 제철 부생가스를 200 ㎖/min의 유량으로 공급하였다.Step 2: The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
단계 3 : 상기 흡수 모듈 내 흡수제는 3 atm의 압력을 유지하였고, 제철 부생가스는 2.5 atm의 압력을 유지하였다.Step 3: The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
단계 4 : 흡수 모듈을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리 배출하였다.Step 4: The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
상기 흡수제인 물은 외부 장치로부터 지속적으로 공급되도록 하였다.The absorbent water was allowed to be continuously supplied from an external device.
<실시예 2> 제철 부생가스로부터 수소 회수 및 이산화탄소 포집Example 2 Hydrogen Recovery and Carbon Dioxide Capture from Steel Off-Gas
도 4에 나타낸 바와 같이 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구성하였으며, 이때 흡수 모듈(100)의 중공사 분리막의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 흡수 모듈을 2개를 구비하여 직렬 연결하였다. 제철 부생가스로는 수성가스 전환(WGS)을 수행한 H2(20.6 %), N2(44.4%), CO2(35%)의 조성을 갖는 가스를 사용하였다.As shown in FIG. 4, a carbon dioxide capture and hydrogen recovery system was constructed from steel by-product gas, in which the average pore size of the hollow fiber membrane of the absorption module 100 was 0.2 μm, and the effective membrane area was 0.2 m 2 . Polypropylene was used. In addition, two absorption modules were provided in series. As the steel by-product gas, a gas having a composition of H 2 (20.6%), N 2 (44.4%), and CO 2 (35%) that was subjected to water gas conversion (WGS) was used.
단계 1 : 흡수제로 물을 사용하여, 흡수제 충진 공간으로 500 ㎖/min의 유량으로 공급하였다.Step 1: Water was used as the absorbent and fed into the absorbent filling space at a flow rate of 500 ml / min.
단계 2 : 흡수 모듈의 중공사 분리막 내부로 상기 제철 부생가스를 200 ㎖/min의 유량으로 공급하였다.Step 2: The iron by-product gas was supplied into the hollow fiber membrane of the absorption module at a flow rate of 200 ml / min.
단계 3 : 상기 흡수 모듈 내 흡수제는 3 atm의 압력을 유지하였고, 제철 부생가스는 2.5 atm의 압력을 유지하였다.Step 3: The absorbent in the absorbent module was maintained at a pressure of 3 atm, and the seasonal by-product gas at a pressure of 2.5 atm.
단계 4 : 흡수 모듈을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리 배출하였다.Step 4: The gas containing hydrogen, which is the seasonal by-product gas passed through the absorption module, and the absorbent in which carbon dioxide was dissolved were discharged.
이때, 상기 흡수 모듈(100)을 통과한 제철 부생가스인 수소를 포함하는 가스와 이산화탄소가 용해된 흡수제를 분리하되, 흡수제에 용해된 이산화탄소를 분리하는 탈기 모듈(300)과, 흡수제 탈기 탱크(500)를 더 구성하여, 이산화탄소를 탈기하는 단계를 추가하였다.At this time, the degassing module 300 and the absorbent degassing tank 500 for separating the gas containing hydrogen and the carbon dioxide dissolved absorbent, the gas containing hydrogen as the seasonal by-product gas passed through the absorbent module 100, the carbon dioxide dissolved in the absorbent ) Was further added to degas the carbon dioxide.
이때 상기 탈기 모듈(300)의 중공사 분리막(301)의 평균 기공 크기는 0.2 ㎛이고, 유효막 면적은 0.2 m2이며, 소재는 폴리프로필렌을 사용하였다. 또한, 상기 탈기 모듈을 2개를 구비하여 직렬 연결하였다.At this time, the average pore size of the hollow fiber membrane 301 of the degassing module 300 is 0.2 ㎛, the effective membrane area is 0.2 m 2 , the material was polypropylene. Also, two degassing modules were provided in series.
상기 단계 4를 수행한 이산화탄소가 용해된 흡수제를 흡수제 탈기 탱크(500)로 공급하고, 0.8 atm의 압력으로 감압하여 일부 용해된 이산화탄소를 탈기시켰다.The absorbent in which carbon dioxide was dissolved in the step 4 was supplied to the absorbent degassing tank 500, and degassed partially dissolved carbon dioxide by depressurizing to a pressure of 0.8 atm.
단계 a : 상기 흡수제 탈기 탱크에서 공급된 흡수제를 탈기 모듈(300)의 흡수제 충진 공간(302)으로 공급하였다.Step a: The absorbent supplied from the absorbent degassing tank was supplied to the absorbent filling space 302 of the degassing module 300.
단계 b : 탈기 모듈(300)의 중공사 분리막(301) 내부 기체를 외부로 배출하는 것을 진행하였다.Step b: The gas inside the hollow fiber membrane 301 of the degassing module 300 was discharged to the outside.
단계 c : 상기 단계 a의 흡수제에 용해된 이산화탄소가 중공사 분리막(301) 내부로 탈기될 수 있도록, 제1 감압 펌프(400)를 이용하여 중공사 분리막 내부 기체를 0.02 atm으로 감압하였다.Step c: The gas inside the hollow fiber membrane was depressurized to 0.02 atm using the first pressure reducing pump 400 so that the carbon dioxide dissolved in the absorbent of step a could be degassed into the hollow fiber membrane 301.
단계 d : 이산화탄소가 탈기된 흡수제와 탈기 모듈(300)의 중공사 분리막(301) 내부에서 탈기된 이산화탄소를 분리 배출하였다.Step d: The carbon dioxide degassed absorbent and the degassed carbon dioxide in the hollow fiber membrane 301 of the degassing module 300 was separated and discharged.
<실험예 1> 수소 회수율 및 이산화탄소 제거율 분석Experimental Example 1 Analysis of Hydrogen Recovery and Carbon Dioxide Removal
본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치의 수소 회수 및 이산화탄소 제거 능력을 확인하기 위하여, 상기 실시예 1 및 실시예 2에서 분리한 수소를 포함하는 가스를 가스분석기(Gas Chromatography)를 통하여 분석였으며, 그 결과를 도 5에 나타내었다.In order to confirm the hydrogen recovery and carbon dioxide removal capability of the carbon dioxide capture and hydrogen recovery apparatus from the steel production by-product gas according to the present invention, a gas analyzer (Gas Chromatography) to the gas containing hydrogen separated in Examples 1 and 2 Through analysis, the results are shown in FIG.
도 5에 나타낸 바와 같이, 본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치를 구비한 실시예 1은 대략 90%의 수소 회수율과 이산화탄소 제거율을 나타냈으며, 실시예 2는 대략 95 % 이상의 수소 회수율과 이산화탄소 제거율을 나타낸 것을 확인할 수 있었다. 따라서, 탈기 모듈(300) 및 흡수제 탈기 탱크(500)을 더 구비하여, 흡수제에 용해된 이산화탄소를 탈기하는 단계를 더 거친 실시예 2가 수소 회수율 및 이산화탄소 제거율이 높은 것을 확인할 수 있었다.As shown in FIG. 5, Example 1 having a carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas according to the present invention showed a hydrogen recovery rate of about 90% and a carbon dioxide removal rate, and Example 2 of about 95% or more of hydrogen. It was confirmed that the recovery rate and the carbon dioxide removal rate were shown. Therefore, the degassing module 300 and the absorbent degassing tank 500 were further provided, and it was confirmed that Example 2, which has undergone the step of degassing the carbon dioxide dissolved in the absorbent, has a high hydrogen recovery rate and a carbon dioxide removal rate.
본 발명에 따른 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법 및 장치는 중공사 분리막과 흡수제를 통해 종래 기술보다 공정이 단순하고, 소형화 할 수 있으며, 낮은 설치비 및 운전 비용 등의 장점이 있다. 또한, 수성가스 반응(WGS) 이후 수분 및 기타 불순물이 함유되어 있는 가스의 경우에도 안정적으로 이산화탄소를 분리할 수 있고, 수소를 회수할 수 있어 전처리의 부담이 적고 에너지 효율이 높은 장점이 있다.The method and apparatus for capturing carbon dioxide and recovering hydrogen from steelmaking by-product gas according to the present invention have advantages such as simpler, smaller size, lower installation cost, and lower running cost than the prior art through hollow fiber membranes and absorbents. In addition, in the case of a gas containing water and other impurities after the water gas reaction (WGS), carbon dioxide can be stably separated, and hydrogen can be recovered, thereby reducing the burden of pretreatment and having high energy efficiency.
100 : 흡수 모듈100: absorption module
101 : 흡수 모듈의 중공사 분리막101: hollow fiber membrane of the absorption module
102 : 흡수 모듈의 흡수제 충진 공간102: absorbent filling space of the absorbent module
103 : 배출구(가스)103: discharge port (gas)
104 : 배출구(흡수제)104: outlet (absorbent)
200 : 흡수제 공급부200: absorbent supply unit
300 : 탈기 모듈300: degassing module
301 : 탈기 모듈의 중공사 분리막301: hollow fiber membrane of the degassing module
302 : 탈기 모듈의 흡수제 충진 공간302: absorbent filling space of the degassing module
303 : 이산화탄소 탈기 공간303: carbon dioxide degassing space
304 : 배출구(가스)304 outlet (gas)
305 : 배출구(흡수제)305: outlet (absorbent)
400 : 제1 감압 펌프400: first pressure reducing pump
500 : 흡수제 탈기 탱크500: Absorbent Degassing Tank
600 : 제2 감압 펌프600: second pressure reducing pump
700 : 가스 공급부700 gas supply unit

Claims (16)

  1. 흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하는 단계(단계 1);Supplying an absorbent to the absorbent filling space of the absorbent module (step 1);
    수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 중공사(hollow fiber) 분리막의 중공사 내부로 주입하는 단계(단계 2);Injecting seasonal by-product gas containing hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber separator (step 2);
    제철 부생가스 중 이산화탄소가 선택적으로 흡수제에 용해될 수 있도록 상기 흡수 모듈 내의 압력을 조절하는 단계(단계 3); 및Adjusting the pressure in the absorption module so that carbon dioxide in the seasonal by-product gas can be selectively dissolved in the absorbent (step 3); And
    이산화탄소가 용해된 흡수제와 흡수제에 용해되지 않은 수소를 포함하는 중공사 내부의 가스를 분리 배출하는 단계(단계 4);를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.And separating and discharging the gas inside the hollow fiber including the absorbent in which carbon dioxide is dissolved and hydrogen not dissolved in the absorbent (step 4).
  2. 제1항에 있어서,The method of claim 1,
    상기 단계 2의 제철 부생가스는 0.1 부피% 내지 80 부피%인 수소 및 0.1 부피% 내지 80 부피%인 이산화탄소를 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.Steelmaking by-product gas of the step 2 is a carbon dioxide capture and hydrogen recovery method from the seasonal by-product gas, characterized in that it comprises 0.1 to 80% by volume of hydrogen and 0.1 to 80% by volume of carbon dioxide.
  3. 제1항에 있어서,The method of claim 1,
    상기 단계 2의 제철 부생가스는 수성가스 전환(WGS;Water-Gas Shift) 공정이 수행된 제철 부생가스 또는 수성가스 전환이 수행되지 않은 제철 부생가스이고, 상기 수성가스 전환이 수행된 제철 부생가스는 15 부피% 내지 50 부피%인 수소 및 20 부피% 내지 50 부피%인 이산화탄소를 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.The steel by-product gas of step 2 is a steel by-product gas subjected to a water-gas shift (WGS) process or a steel by-product gas not subjected to the water gas conversion, and the steel by-product gas subjected to the water gas conversion A method for capturing and recovering hydrogen from a seasonal by-product gas, comprising 15% by volume to 50% by volume of hydrogen and 20% by volume to 50% by volume of carbon dioxide.
  4. 제1항에 있어서,The method of claim 1,
    상기 단계 4의 이산화탄소가 용해된 흡수제로부터 이산화탄소를 탈기하는 단계(단계 5);를 더 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.Degassing carbon dioxide from the absorbent in which the carbon dioxide is dissolved in step 4 (step 5); Carbon dioxide capture and hydrogen recovery method from the iron and steel by-products, characterized in that it further comprises.
  5. 제1항에 있어서,The method of claim 1,
    상기 제철 부생가스와 흡수제의 유량비(제철 부생가스 유량/흡수제 유량)는 0.01 내지 1인 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.The flow rate ratio (steel production by-product gas flow rate / absorbent flow rate) of the steel production by-product gas and the absorbent is 0.01 to 1, carbon dioxide capture and hydrogen recovery method from the steel production by-product gas.
  6. 제1항에 있어서,The method of claim 1,
    상기 단계 4에서 분리된 수소를 포함하는 가스를 기체 분리막을 사용하여 수소(H2)를 정제하는 단계(단계 6);를 더 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.Purifying hydrogen (H 2 ) using a gas separation membrane of the gas containing hydrogen separated in the step 4 (step 6); Carbon dioxide capture and hydrogen recovery method from the iron and steel by-products further comprising.
  7. 제1항에 있어서,The method of claim 1,
    상기 단계 3에서 흡수 모듈 내의 압력은 0.1 atm 내지 15 atm으로 조절되는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 방법.In step 3, the pressure in the absorption module is adjusted to 0.1 atm to 15 atm, carbon dioxide capture and hydrogen recovery method from the iron and iron by-product gas.
  8. 하우징; 상기 하우징 내에 장착된 중공사 분리막; 및 상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간;을 포함하는 흡수 모듈;housing; A hollow fiber separator mounted in the housing; And an absorbent filler space defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane.
    상기 흡수 모듈의 흡수제 충진 공간으로 흡수제를 공급하기 위한 흡수제 공급부;An absorbent supply unit for supplying an absorbent to the absorbent filling space of the absorbent module;
    상기 흡수 모듈의 중공사 분리막의 중공사 내부로 수소(H2) 및 이산화탄소(CO2)를 포함하는 제철 부생가스를 공급하기 위한 가스 공급부; 및A gas supply unit for supplying iron and steel by-product gas including hydrogen (H 2 ) and carbon dioxide (CO 2 ) into the hollow fiber of the hollow fiber membrane of the absorption module; And
    상기 흡수제로 용해되지 않은 수소를 포함하는 기체를 상기 흡수 모듈 외부로 배출하는 배출구;를 포함하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.Apparatus for capturing carbon dioxide from the seasonal iron by-product gas and hydrogen recovery apparatus comprising a discharge port for discharging the gas containing hydrogen not dissolved in the absorber to the outside of the absorption module.
  9. 제8항에 있어서,The method of claim 8,
    상기 장치는,The device,
    상기 흡수 모듈 내 제철 부생가스의 압력을 제어하는 가스 압력제어부; 및A gas pressure control unit controlling a pressure of the steel production by-product gas in the absorption module; And
    상기 흡수 모듈 내 흡수제의 압력을 제어하는 흡수제 압력제어부;를 더 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.Absorber pressure control unit for controlling the pressure of the absorbent in the absorbent module; Carbon dioxide capture and hydrogen recovery apparatus from the steelmaking by-product gas further comprises.
  10. 제8항에 있어서,The method of claim 8,
    상기 장치는,The device,
    상기 흡수 모듈과 연결되어 흡수제가 통과하는 탈기 모듈; 및A degassing module connected to the absorbing module and through which an absorbent passes; And
    상기 탈기 모듈 내부의 압력을 조절하는 제1 감압 펌프;를 더 포함하고,Further comprising: a first pressure reducing pump for adjusting the pressure in the degassing module,
    상기 탈기 모듈은,The degassing module,
    하우징; 상기 하우징 내에 장착되어 상기 분리된 이산화탄소가 중공사 외부로 투입되는 중공사 분리막; 상기 중공사 분리막을 구성하는 중공사 분리막 외측과 상기 하우징 내측에 의해 정의되는 흡수제 충진 공간; 및 상기 중공사 분리막을 구성하는 중공사 분리막 내부인 이산화탄소 탈기 공간;을 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.housing; A hollow fiber separator mounted in the housing and into which the separated carbon dioxide is introduced into the hollow fiber; An absorbent filler space defined by an outer side of the hollow fiber membrane and an inner side of the housing constituting the hollow fiber membrane; And a carbon dioxide degassing space inside the hollow fiber separator constituting the hollow fiber separator. 2.
  11. 제8항에 있어서,The method of claim 8,
    상기 장치는,The device,
    상기 흡수 모듈과 연결되고, 흡수 모듈에서 배출되는 가스에서 수소(H2)를 정제하기 위한 기체 분리막을 더 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.And a gas separation membrane connected to the absorption module and configured to purify hydrogen (H 2 ) from the gas discharged from the absorption module.
  12. 제10항에 있어서,The method of claim 10,
    상기 장치는,The device,
    상기 흡수 모듈 및 탈기 모듈과 연결된 흡수제 탈기 탱크; 및An absorbent degassing tank connected to the absorbing module and the degassing module; And
    상기 흡수제 탈기 탱크 내부의 압력을 조절하는 제2 감압 펌프;를 더 포함하는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.And a second decompression pump for adjusting the pressure in the absorbent degassing tank.
  13. 제8항 또는 제10항에 있어서,The method of claim 8 or 10,
    상기 중공사 분리막은 폴리테트라플루오르에틸렌(PTFE), 폴리클로로트리플루오르에틸렌(PCTFE), 폴리비닐리덴플로라이드(PVDF), 폴리프로필렌(PP), 퍼플루오르알콕시 알칸(perfluoroalkoxy alkanes), 플루오리네이티드 에틸렌 프로필렌(fluorinated ethylene propylene), 에틸렌테트라플루오로에틸렌(ETFE), 에틸렌플루오리네이티드에틸렌프로필렌(EFEP) 및 폴리페닐린(polyphenylene)으로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.The hollow fiber separator is polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polypropylene (PP), perfluoroalkoxy alkanes, fluorinated ethylene Captured carbon dioxide from steel by-product gas, characterized in that it is one kind selected from the group consisting of fluorinated ethylene propylene, ethylene tetrafluoroethylene (ETFE), ethylene fluorinated ethylene propylene (EFEP) and polyphenylene. And a hydrogen recovery device.
  14. 제8항 또는 제10항에 있어서,The method of claim 8 or 10,
    상기 중공사 분리막의 평균 기공 크기는 0.001 ㎛ 내지 1 ㎛이고, 기공율은 10 % 내지 90 %인 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.The average pore size of the hollow fiber membrane is 0.001 ㎛ to 1 ㎛, porosity is a carbon dioxide capture and hydrogen recovery apparatus from the iron and steel by-products, characterized in that 10% to 90%.
  15. 제8항 또는 제10항에 있어서,The method of claim 8 or 10,
    상기 흡수제는 물, 폴리프로필렌 카보네이트(PC) 및 폴리에틸렌글리콜 디메틸 에테르(PEGDME)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.The absorbent is a carbon dioxide capture and hydrogen recovery device from the iron and iron by-product gas, characterized in that at least one selected from the group consisting of water, polypropylene carbonate (PC) and polyethylene glycol dimethyl ether (PEGDME).
  16. 제8항 또는 제10항에 있어서,The method of claim 8 or 10,
    상기 흡수 모듈 또는 탈기 모듈은 적어도 1개 이상이 직렬 연결 또는 병렬 연결 또는 직렬 병렬 혼합 연결되는 것을 특징으로 하는 제철 부생가스로부터 이산화탄소 포집 및 수소 회수 장치.At least one absorption module or degassing module is a carbon dioxide capture and hydrogen recovery device from the iron and steel by-products, characterized in that at least one in series connection or parallel connection or series parallel mixed connection.
PCT/KR2016/015112 2015-12-22 2016-12-22 Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas WO2017111503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150183578A KR101759101B1 (en) 2015-12-22 2015-12-22 Process and apparatus of capturing carbon dioxide, recovering hydrogen from byproduct gas
KR10-2015-0183578 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017111503A1 true WO2017111503A1 (en) 2017-06-29

Family

ID=59089624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015112 WO2017111503A1 (en) 2015-12-22 2016-12-22 Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas

Country Status (2)

Country Link
KR (1) KR101759101B1 (en)
WO (1) WO2017111503A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101986632B1 (en) * 2017-08-10 2019-06-07 울산과학기술원 Blast furnace top gas recycle system
KR102032417B1 (en) * 2017-12-20 2019-10-16 재단법인 포항산업과학연구원 Method for producing high concentration effective gas using multi membrane from by-product gas generated from steelworks and device for the same
KR102622341B1 (en) * 2018-12-28 2024-01-11 주식회사 금강씨엔티 Device and Process for simultaneous carbon dioxide capture and hydrogen production with hybrid process of hydrogen separation and carbon dioxide sorption
KR102350033B1 (en) * 2019-12-16 2022-01-11 주식회사 포스코 Method and apparatus for recovering hydrogen from FINEX off gas
KR102548309B1 (en) * 2020-12-18 2023-06-26 주식회사 포스코 Manufacturing appratus of molten iron reducing emission of carbon dioxide and manufacturing method of the same
KR102503631B1 (en) 2020-12-18 2023-02-24 주식회사 포스코 Gas processing device and hydrogen gas manufacturing method
KR102578044B1 (en) 2021-05-25 2023-09-15 한국화학연구원 Method for separating carbon dioxide, hydrogen and carbon monoxide from steel by-product gas
CN113522007B (en) * 2021-07-30 2023-03-21 哈尔滨工业大学 Double-membrane aeration membrane biofilm reactor for biogas purification and use method thereof
KR102579471B1 (en) * 2021-09-15 2023-09-14 경북대학교 산학협력단 System and process for producing syngas and carbon monoxide using dioxide dry sorbents
WO2024090946A1 (en) * 2022-10-25 2024-05-02 한국화학연구원 Method for preparing raw material for plastics by using steel by-product gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042656A (en) * 2002-11-15 2004-05-20 한국화학연구원 Absorbent for the removal of carbon dioxide in hollow fiber membrane contactor
JP2007254229A (en) * 2006-03-24 2007-10-04 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method and apparatus for producing hydrogen
KR20100105908A (en) * 2008-03-18 2010-09-30 제이에프이 스틸 가부시키가이샤 Method for separating blast furnace gas
KR20140049702A (en) * 2012-10-18 2014-04-28 한국화학연구원 Biogas upgrading process and plants using microporous hollow fiber membranes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042656A (en) * 2002-11-15 2004-05-20 한국화학연구원 Absorbent for the removal of carbon dioxide in hollow fiber membrane contactor
JP2007254229A (en) * 2006-03-24 2007-10-04 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Method and apparatus for producing hydrogen
KR20100105908A (en) * 2008-03-18 2010-09-30 제이에프이 스틸 가부시키가이샤 Method for separating blast furnace gas
KR20140049702A (en) * 2012-10-18 2014-04-28 한국화학연구원 Biogas upgrading process and plants using microporous hollow fiber membranes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, WEI-HSIN ET AL.: "An Evaluation of Hydrogen Production from the Perspective of Using Blast Furnace Gas and Coke Oven Gas as Feedstocks", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 36, no. 18, 2011, pages 11727 - 11737, XP028271006 *

Also Published As

Publication number Publication date
KR20170075057A (en) 2017-07-03
KR101759101B1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2017111503A1 (en) Method and apparatus for collecting carbon dioxide and recovering hydrogen from steelmaking byproduct gas
WO2016043427A1 (en) Multistage membrane separation and purification process and apparatus for separating high purity methane gas
WO2020256450A1 (en) Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
WO2016114523A1 (en) Dust collecting apparatus
WO2017111451A1 (en) Wafer accommodation container
WO2012124952A2 (en) Durability testing device according to desert climate
WO2013070022A9 (en) Apparatus and method for transmitting and receiving a quasi-cyclic low density parity check code in a multimedia communication system
WO2015199409A1 (en) Vacuum exhaust system of sterilizer
WO2016204522A1 (en) Plasma-catalyst type scrubber
WO2020055188A1 (en) Cross-linked polyolefin separator and method for producing same
WO2018143553A1 (en) Experimental water tank mounted in mesocosm simulation system
WO2023121379A1 (en) Method for preparing ethylene-vinyl alcohol copolymer
WO2016204560A1 (en) Heat recovery apparatus
WO2017146443A1 (en) Method for preparing polyethylene glycol dialdehyde derivative
WO2017074140A1 (en) Humidification and purification device
WO2014065477A1 (en) Carbon dioxide capturing apparatus capable of inhibiting volatilization of absorbent in carbon dioxide capturing process
WO2019194327A1 (en) Wafer storage container
WO2020138617A1 (en) Apparatus for washing 3d printing structure and method for washing 3d printing structure using same
WO2015072692A1 (en) Thermally rearranged poly(benzoxazole-imide) copolymer having cross-linked structure, gas separation membrane comprising same and preparation method therefor
WO2021080370A2 (en) Desalination device using solvent extraction method, and desalination method using same
WO2024025303A1 (en) Apparatus and process for capturing carbon dioxide in exhaust gas
WO2023182636A1 (en) Fluid recovery system and fluid recovery method using same
WO2015072694A1 (en) Flue gas separation membrane comprising thermally rearranged poly(benzoxazole-imide) copolymer having cross-linked structure, and preparation method therefor
WO2020141867A1 (en) Exhaust gas treatment apparatus, and ship comprising same
WO2018080079A1 (en) Fuel cell stack unit and fuel cell stack comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879370

Country of ref document: EP

Kind code of ref document: A1