WO2017110834A1 - スピントロニクス素子 - Google Patents

スピントロニクス素子 Download PDF

Info

Publication number
WO2017110834A1
WO2017110834A1 PCT/JP2016/087999 JP2016087999W WO2017110834A1 WO 2017110834 A1 WO2017110834 A1 WO 2017110834A1 JP 2016087999 W JP2016087999 W JP 2016087999W WO 2017110834 A1 WO2017110834 A1 WO 2017110834A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
boron
diffusion
recording layer
spintronic device
Prior art date
Application number
PCT/JP2016/087999
Other languages
English (en)
French (fr)
Inventor
創志 佐藤
正昭 丹羽
本庄 弘明
正二 池田
佐藤 英夫
大野 英男
哲郎 遠藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to KR1020187011210A priority Critical patent/KR102398740B1/ko
Priority to JP2017558170A priority patent/JP6841508B2/ja
Publication of WO2017110834A1 publication Critical patent/WO2017110834A1/ja
Priority to US16/013,093 priority patent/US10424725B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a spintronic device.
  • a spintronic device including a boron (B) in a ferromagnetic layer, such as a magnetic tunnel junction device (MTJ) using a ferromagnetic material for a recording layer and a reference layer
  • a ferromagnetic layer such as a magnetic tunnel junction device (MTJ) using a ferromagnetic material for a recording layer and a reference layer
  • MTJ magnetic tunnel junction device
  • the outward diffusion of boron after the dry etching process has a greater influence on the boron profile inside the device.
  • the spintronic device 50 when the spintronic device 50 is miniaturized and the pattern size is reduced (d ⁇ d ′; d> d ′), the layer whose magnetic characteristics are deteriorated due to the outward diffusion of boron (the hatched line in the drawing) The range of 51) in the entire device increases. For this reason, the deterioration of the magnetic characteristics of the entire element becomes more remarkable as the size is reduced.
  • FIG. 4 also shows that variations in the dimensions of the spintronic device 50 cause variations in the boron profile inside the device, causing variations in magnetic properties.
  • the present invention has been made paying attention to such problems, and can prevent deterioration of magnetic characteristics due to outdiffusion of boron, has excellent magnetic characteristics, and magnetic characteristics due to dimensional variations accompanying miniaturization.
  • An object of the present invention is to provide a spintronic device capable of preventing variations in the above.
  • an object of the present invention is to provide a spintronic device capable of preventing deterioration of magnetic characteristics due to redistribution of nitrogen from the outside and variation in magnetic characteristics due to dimensional variations accompanying miniaturization.
  • a spintronic device has a ferromagnetic layer containing boron and a diffusion prevention film provided to prevent outward diffusion of boron contained in the ferromagnetic layer. It is characterized by that.
  • the spintronic device according to the present invention can prevent boron contained in the ferromagnetic layer from diffusing outward by the diffusion preventing film. For this reason, the concentration distribution of boron along the horizontal direction with respect to the film surface of the ferromagnetic layer inside the element can be maintained uniformly in the optimum state at the time of formation, and deterioration of magnetic characteristics can be prevented. .
  • the spintronic device according to the present invention has excellent magnetic properties. Even if the dimensions of the element vary, the boron concentration distribution along the horizontal direction with respect to the film surface of the ferromagnetic layer inside the element does not vary within the element, and is maintained uniformly in an optimum state. Therefore, variations in magnetic characteristics can be prevented.
  • the spintronic device according to the present invention can prevent variations in magnetic characteristics even with variations accompanying the progress of miniaturization.
  • the diffusion prevention film include BSG (boron silicate glass), BPSG (boron phosphorus silicate glass), Al 2 O 3 , Y 2 O 3 , ZrO 2 , MoO 2 , HfO 2 , Ta 2 O 5 , WO 3 , WO 3 , It consists of an oxide film in which CeO 2 , MgO or Gd 2 O 3 is doped with B, or a boron oxide film.
  • the diffusion prevention film is preferably provided so as to cover the entire side surface of the ferromagnetic layer, but may cover a part of the side surface of the ferromagnetic layer.
  • the anti-diffusion film covers the entire side surface of the ferromagnetic layer, boron out-diffusion from the side surface of the ferromagnetic layer can be prevented, and deterioration of magnetic properties due to boron out-diffusion is largely prevented. can do.
  • the diffusion prevention film covers a part of the side surface of the ferromagnetic layer, the outward diffusion of boron from the side surface of the ferromagnetic layer can be prevented to some extent, and the deterioration of magnetic properties can be prevented.
  • the diffusion prevention film preferably contains boron at a concentration higher than the concentration of boron contained in the ferromagnetic layer, and is particularly contained in a side edge portion of the ferromagnetic layer. It is preferable that boron is contained at a concentration higher than that of boron. In this case, the boron concentration gradient can prevent boron from diffusing from the side edge portion of the ferromagnetic layer toward the diffusion prevention film. Even when an oxidation treatment or a heat treatment is performed, boron contained in the diffusion preventing film may diffuse outward, but the outward diffusion of boron from the ferromagnetic layer can be suppressed.
  • the diffusion prevention film is preferably configured to prevent nitrogen from entering the spintronic device from the outside.
  • the diffusion preventing film can prevent nitrogen from being redistributed inside the element from a film formed outside the element, such as a SiN film. For this reason, it is possible to prevent deterioration of magnetic characteristics due to redistribution of nitrogen.
  • the diffusion preventing film does not contain nitrogen. In this case, it is possible to prevent the magnetic properties from being deteriorated due to redistribution of nitrogen from the diffusion preventing film to the inside of the ferromagnetic layer or the like. In addition, it is possible to prevent the magnetic characteristics from being varied due to dimensional variations accompanying miniaturization.
  • the spintronic device includes a magnetic tunnel junction device having a recording layer and a reference layer each having the ferromagnetic layer, and an insulating layer disposed between the recording layer and the reference layer,
  • the diffusion prevention film may be provided so as to cover the side surface of the magnetic tunnel junction element. In this case, deterioration of the magnetic characteristics of the magnetic tunnel junction element can be prevented.
  • the spintronic device may include, for example, a tunnel magnetoresistive device, a tunnel magnetoresistive memory device, a spin Hall effect device, an inverse spin Hall effect device, a domain wall motion memory device, or a spin torque high frequency device.
  • the diffusion preventing film can prevent the magnetic characteristics of each element from deteriorating.
  • a spintronic device that can prevent deterioration of magnetic properties due to out-diffusion of boron, has excellent magnetic properties, and can prevent variations in magnetic properties due to dimensional variations associated with miniaturization. can do.
  • a spintronic device capable of preventing the deterioration of magnetic characteristics due to redistribution of nitrogen from the outside and the variation of magnetic characteristics due to dimensional variations accompanying miniaturization.
  • FIG. 6A is a cross-sectional view showing a first modification example in which the recording layer has a multilayer structure
  • FIG. 5B is a cross-sectional view showing a second modification example in which the recording layer has a multilayer structure. is there.
  • the spintronic device 10 includes a magnetic tunnel junction device 11 and a diffusion prevention film 12.
  • the magnetic tunnel junction element (MTJ) 11 includes a recording layer 21 and a reference layer 22 made of a ferromagnetic layer, and an insulating layer 23 disposed between the recording layer 21 and the reference layer 22.
  • the recording layer 21 and the reference layer 22 are made of a ferromagnetic material and contain boron (B).
  • the recording layer 21 and the reference layer 22 are made of, for example, a magnetic layer made of an alloy such as CoB, FeB, or CoFeB, or a magnetic layer containing one or more of these alloys.
  • the insulating layer 23 is made of an insulating material, for example, MgO.
  • the magnetic tunnel junction element 11 is formed by depositing each layer by sputtering, which is physical vapor deposition, molecular beam epitaxy (MBE), or the like.
  • the diffusion preventing film 12 is provided so as to cover the side surface of the magnetic tunnel junction element 11.
  • the diffusion preventing film 12 is boron contained in the side edge of the recording layer 21, that is, the portion where the recording layer 21 is in contact with the diffusion preventing film 12 and the vicinity thereof (for example, within 5 nm from the portion in contact with the diffusion preventing film 12).
  • concentration of boron contained in the side edge of the reference layer 22, that is, the portion where the reference layer 22 is in contact with the diffusion prevention film 12 and the vicinity thereof for example, within 5 nm from the portion in contact with the diffusion prevention film 12).
  • the diffusion preventing film 12 prevents the outward diffusion of boron contained in the recording layer 21 and the reference layer 22.
  • the diffusion prevention film 12 contains boron at a concentration higher than the concentration of boron contained in the entire recording layer 21 and the entire reference layer 22, and prevents outward diffusion of boron contained in the recording layer 21 and the reference layer 22. You may come to do.
  • the diffusion preventing film 12 is made of, for example, BSG (boron silicate glass) or BPSG (boron phosphorus silicate glass).
  • the diffusion preventing film 12 is formed by, for example, a CVD method.
  • the recording layer 21 and reference layer 22 is made of (Co 25 Fe 75) 70 B 30, (Co 25 Fe 75) 70 molar mass of B 30 is 42.877 g / mol, density 8.2 g / Since it is cm 3 , the boron number concentration in the recording layer 21 and the reference layer 22 is 3.45 ⁇ 10 22 cm ⁇ 3 .
  • the diffusion preventing film 12 is formed so as to contain boron at a concentration higher than the number concentration.
  • the spintronic device 10 prevents boron contained in the recording layer 21 and the reference layer 22 from diffusing from the side edge portions of the recording layer 21 and the reference layer 22 toward the diffusion preventing film 12 due to the boron concentration gradient. And out diffusion of boron contained in the recording layer 21 and the reference layer 22 can be prevented. For this reason, the concentration distribution of boron along the horizontal direction with respect to the film surfaces of the recording layer 21 and the reference layer 22 inside the magnetic tunnel junction element 11 can be maintained uniformly in the optimum state at the time of formation. .
  • the boron profile along the direction perpendicular to the film surfaces of the recording layer 21 and the reference layer 22 that are ferromagnetic films can be maintained in an optimum state, and therefore the magnetic characteristics of the magnetic tunnel junction element 11 are deteriorated. Can be prevented. Even if the dimensions of the element vary, the boron concentration distribution along the horizontal direction with respect to the film surfaces of the recording layer 21 and the reference layer 22 inside the magnetic tunnel junction element 11 does not vary within the element, and the optimum. Therefore, the boron profile along the direction perpendicular to the film surfaces of the recording layer 21 and the reference layer 22 that are ferromagnetic films can be maintained in an optimal state, and variations in magnetic characteristics can be achieved. It can also be prevented.
  • the spintronic device 10 has excellent magnetic properties.
  • the spintronic device 10 can prevent variations in magnetic characteristics against variations due to progress in miniaturization.
  • the spintronic device 10 can prevent nitrogen from entering the inside of the magnetic tunnel junction device 11 such as the recording layer 21 and the reference layer 22 by the diffusion preventing film 12. For this reason, it is possible to prevent nitrogen from being redistributed inside the device from a film formed outside the device, such as a SiN film. For this reason, it is possible to prevent deterioration of magnetic characteristics due to redistribution of nitrogen. In addition, it is possible to prevent the magnetic characteristics from being varied due to a variation in the element due to nitrogen due to dimensional variations accompanying miniaturization.
  • the diffusion prevention film 12 does not contain nitrogen. In this case, it is possible to prevent the magnetic characteristics from deteriorating due to redistribution of nitrogen from the diffusion prevention film 12 to the inside of the magnetic tunnel junction element 11 as well as from the outside of the element.
  • the diffusion prevention film 12 is provided so as to cover the entire side surfaces of the recording layer 21 and the reference layer 22, but covers a part of each of the side surfaces of the recording layer 21 and the reference layer 22. It may be provided. Even in this case, the outward diffusion of boron from the side surfaces of the recording layer 21 and the reference layer 22 can be prevented to some extent, and the deterioration of magnetic characteristics can be prevented.
  • the side surfaces of the recording layer 21 and the reference layer 22 are integrally covered with one diffusion prevention film 12, but the side surfaces of the recording layer 21 and the reference layer 22 are respectively separate diffusion prevention films. 12 may be covered.
  • the diffusion prevention film 12 covering the side surface of the recording layer 21 contains boron at a concentration higher than the concentration of boron contained in the side edge of the recording layer 21, and the diffusion prevention film 12 covering the side surface of the reference layer 22.
  • it is sufficient that boron is contained at a concentration higher than the concentration of boron contained in the side edge portion of the reference layer 22.
  • boron contained in the recording layer 21 and the reference layer 22 can be prevented from diffusing outward, and deterioration of magnetic characteristics can be prevented.
  • the diffusion prevention film 12 is formed outside the magnetic tunnel junction element 11, but boron ions are formed on the side edges of the recording layer 21 and the reference layer 22 using an ion implantation method or a plasma doping method. May be formed to form portions containing boron at a higher concentration than the central portions of the recording layer 21 and the reference layer 22, respectively.
  • the side edge portions of the recording layer 21 and the reference layer 22 into which boron has been introduced serve as the diffusion preventing film 12, and outward diffusion of boron contained in the central portions of the recording layer 21 and the reference layer 22 can be prevented.
  • each of the recording layer 21 and the reference layer 22 is not limited to a single ferromagnetic layer, and a plurality of ferromagnetic layers and layers other than ferromagnetic layers such as a non-ferromagnetic layer and a cap layer are stacked. It may be formed.
  • the recording layer 21 may have a structure in which a nonmagnetic coupling layer 33 made of Ta is sandwiched between a pair of ferromagnetic layers 31 and 32 made of CoFeB. Good.
  • an insulating layer 34 made of MgO is formed on the surface of the recording layer 21 opposite to the insulating layer 23.
  • the nonmagnetic coupling layer 33 is made of Ta, but is not limited to Ta, and is made of W, Hf, Zr, Nb, Mo, Ti, Mg, MgO, or the like. May be.
  • the recording layer 21 may have a structure in which thin CoFe layers 36 and 37 are formed on both sides of the CoFeB layer 35, respectively.
  • insulating layers 38 and 39 made of MgO are formed on the surface of the CoFe layers 36 and 37 opposite to the CoFeB layer 36. These insulating layers 38 and 39 can constitute the insulating layer 23 and the insulating layer 34.
  • the recording layer 21 has a multilayer structure, but the reference layer 22 may have a similar multilayer structure.
  • the spintronic device 10 includes the magnetic tunnel junction device 11.
  • the spintronic device 10 is not limited to the magnetic tunnel junction device 11, and any device can be used as long as it has a ferromagnetic layer containing boron. You may have.
  • it may be composed of a tunnel magnetoresistive element, a tunnel magnetoresistive memory element, a spin Hall effect element, an inverse spin Hall effect element, a domain wall motion memory element, or a spin torque high frequency element.
  • a magnetic tunnel junction element (MTJ) 11 shown in FIG. 1 was manufactured, and a tunnel magnetoresistance ratio (TMR ratio) was measured.
  • TMR ratio tunnel magnetoresistance ratio
  • an MTJ without the diffusion prevention film 12 was also prepared and the TMR ratio was measured.
  • Both the MTJ of FIG. 1 having the diffusion prevention film 12 and the MTJ not having the diffusion prevention film 12 are formed in a columnar shape, and the configuration of the recording layer, the reference layer, and the insulating layer other than the diffusion prevention film 12 Were the same.
  • the actual MTJ is not a true cylinder due to processing variations, but the MTJ diameter is assumed to be a cylinder from the resistance value of the element. Calculated.
  • Table 1 shows the measurement results of the TMR ratio of each MTJ.
  • the TMR ratio in Table 1 is expressed as a ratio (percentage) to the TMR ratio before the heat treatment (after the dry etching process) in each MTJ manufacturing process.
  • the TMR ratio was lowered by the heat treatment because the magnetic properties deteriorated due to the outward diffusion of boron by the heat treatment. Further, in the MTJ that does not have the diffusion prevention film 12, as the diameter becomes smaller, the ratio of the layer having deteriorated magnetic characteristics to the entire element increases as the diameter becomes smaller, so that the decrease rate of the TMR ratio also increases. It was confirmed that In contrast, in the MTJ of FIG. 1 having the diffusion prevention film 12, the diffusion prevention film 12 can prevent the outward diffusion of boron, so that the TMR ratio does not decrease after heat treatment but rather increases. Was confirmed.
  • the spintronic device includes, for example, a magnetoresistive change memory (MRAM) using spin injection magnetization reversal (STT), that is, a general-purpose memory product equipped with STT-MRAM and a mixed SoC (System-on-a-chip). ) It can be suitably used for products.
  • MRAM magnetoresistive change memory
  • STT spin injection magnetization reversal

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】ホウ素の外方拡散による磁気特性の劣化を防ぐことができ、優れた磁気特性を有するとともに、微細化に伴う寸法ばらつきによる磁気特性のばらつきを防ぐことができるスピントロニクス素子を提供する。 【解決手段】ホウ素を含む強磁性層から成る記録層21および参照層22と、記録層21と参照層22との間に配置された絶縁層23とを有する磁気トンネル接合素子11と、記録層21および参照層22に含まれるホウ素の外方拡散を防止するよう設けられた拡散防止膜12とを有している。拡散防止膜12は、記録層21および参照層22の側縁部に含まれるホウ素の濃度より高い濃度でホウ素を含んでおり、記録層21および参照層22の側面を覆うよう設けられている。また、拡散防止膜12は、窒素を含まず、外部からスピントロニクス素子10の内部に窒素が侵入するのを防止するよう構成されている。

Description

スピントロニクス素子
 本発明は、スピントロニクス素子に関する。
 記録層と参照層とに強磁性体を用いた磁気トンネル接合素子(MTJ)などの、強磁性層にホウ素(B)を含むスピントロニクス素子では、磁気特性を最適化するために、素子内部でのホウ素プロファイル(記録層および参照層の膜面に対して垂直方向に沿ったホウ素の濃度分布)を最適化し、記録層および参照層の膜面に対して水平方向で、ホウ素濃度を均一に保つ必要がある。しかし、従来のスピントロニクス素子では、その製造過程において、ドライエッチング処理後の熱処理や表面の酸化処理等により、素子の端面からホウ素が外方に拡散し、素子の端面付近においてホウ素の濃度分布が変化するため、磁気特性が劣化してしまうという問題があった。
 特に、近年のスピントロニクス素子の微細化の進展につれて、ドライエッチング処理後のホウ素の外方拡散が、素子内部のホウ素プロファイルに与える影響が大きくなっている。例えば、図4に示すように、スピントロニクス素子50が微細化し、パターン寸法が小さくなると(d→d’;d>d’)、ホウ素の外方拡散により磁気特性が劣化した層(図中の斜線の範囲)51の素子全体に占める割合が増加する。このため、微細化すればするほど、素子全体の磁気特性の劣化が顕著になっていく。また、図4から、スピントロニクス素子50の寸法のばらつきが、素子内部のホウ素プロファイルのばらつきをもたらし、磁気特性のばらつきの原因となっていることもわかる。
 従来、スピントロニクス素子の磁気特性を改善するために、エッチング処理後、磁気トンネル接合素子の表面を酸化する方法が提案されている(例えば、特許文献1、非特許文献1または2参照)。また、磁気トンネル接合素子の側壁部分に側壁金属層を形成し、その側壁金属層を酸化して絶縁性の側壁金属酸化物層を形成する方法も提案されている(例えば、特許文献2参照)。これらの方法によれば、素子の側壁に酸化した絶縁層を形成することにより、側壁を介した短絡を防止したり、ウェット洗浄処理等から保護したりすることもできる。
 なお、磁気特性を改善するものではないが、配線抵抗を下げるために、抵抗変化型メモリ素子部をBPSGやBSGなどの膜で保護した抵抗変化型メモリ集積回路が提案されている(例えば、特許文献3参照)。
特開2012-119684号公報 特開2012-119564号公報 米国特許出願公開第2013/0170281号明細書
 特許文献1、非特許文献1および2に記載の磁気トンネル接合素子の製造方法では、素子がホウ素を含んでいる場合、酸化処理によって、素子に含まれるホウ素が酸化層から外方に拡散してしまうため、ホウ素の外方拡散による磁気特性の劣化の問題を解決することはできないという課題があった(例えば、S. Sato, et. al, IEEE Trans. Magn. Vol. 51, Issue11, 3400804参照)。また、特許文献2に記載の磁気トンネル接合素子の製造方法でも、酸化処理またはその後の熱処理によって、素子に含まれるホウ素が側壁金属酸化物層やその外方に拡散してしまうため、ホウ素の外方拡散による磁気特性の劣化の問題を解決することはできないという課題があった。このため、微細化に伴う寸法ばらつきにより素子の劣化の度合いが大きくばらつき、結果として磁気特性のばらつきにつながるという問題点もまだ解決されていないという課題もあった。なお、特許文献3に記載の回路では、BPSGやBSGなどの膜が、素子に含まれるホウ素の外方拡散を防ぐかどうかは不明である。
 本発明は、このような課題に着目してなされたもので、ホウ素の外方拡散による磁気特性の劣化を防ぐことができ、優れた磁気特性を有するとともに、微細化に伴う寸法ばらつきによる磁気特性のばらつきを防ぐことができるスピントロニクス素子を提供することを目的とする。
 なお、スピントロニクス素子では、RIE等のドライエッチング処理後、SiN膜で覆うことにより大気中での変質を防ぐことが、一般的に行われている。しかし、この場合、スピントロニクス素子の内部に、SiN膜から窒素(N)が再分布し、磁気特性を劣化させてしまうという課題があった。また、微細化に伴う寸法ばらつきにより、窒素による素子の劣化の度合いが大きくばらつき、結果として磁気特性のばらつきにつながるという課題もあった。そこで、本発明は、外部からの窒素の再分布による磁気特性の劣化および、微細化に伴う寸法ばらつきによる磁気特性のばらつきを防ぐことができるスピントロニクス素子を提供することも目的とする。
 上記目的を達成するために、本発明に係るスピントロニクス素子は、ホウ素を含む強磁性層と、前記強磁性層に含まれるホウ素の外方拡散を防止するよう設けられた拡散防止膜とを、有することを特徴とする。
 本発明に係るスピントロニクス素子は、拡散防止膜により、強磁性層に含まれるホウ素が外方に拡散するのを防ぐことができる。このため、素子内部の強磁性層の膜面に対して水平方向に沿ったホウ素の濃度分布を、形成時の最適な状態で均一に維持することができ、磁気特性の劣化を防ぐことができる。このように、本発明に係るスピントロニクス素子は、優れた磁気特性を有している。また、素子の寸法がばらついても、素子内部の強磁性層の膜面に対して水平方向に沿ったホウ素の濃度分布が、素子内にてばらつかず、最適な状態で均一に維持されるため、磁気特性のばらつきを防止することもできる。このように、本発明に係るスピントロニクス素子は、微細化の進展に伴うばらつきに対しても、磁気特性のばらつきを防止することができる。拡散防止膜は、例えばBSG(boron silicate glass)、またはBPSG(boron phosphorus silicate glass)、またはAl2O3, Y2O3, ZrO2, MoO2, HfO2, Ta2O5, WO3, CeO2, MgOもしくはGd2O3にBをドープした酸化膜、またはホウ素の酸化膜から成っている。
 本発明に係るスピントロニクス素子で、前記拡散防止膜は、前記強磁性層の側面の全体を覆うよう設けられていることが好ましいが、前記強磁性層の側面の一部を覆っていてもよい。拡散防止膜が強磁性層の側面の全体を覆う場合には、強磁性層の側面からのホウ素の外方拡散を防ぐことができ、ホウ素の外方拡散に起因する磁気特性の劣化を概ね防止することができる。また、拡散防止膜が強磁性層の側面の一部を覆っている場合でも、強磁性層の側面からのホウ素の外方拡散をある程度防ぐことができ、磁気特性の劣化を防止することができる。
 本発明に係るスピントロニクス素子で、前記拡散防止膜は、前記強磁性層に含まれるホウ素の濃度より高い濃度でホウ素を含んでいることが好ましく、特に、前記強磁性層の側縁部に含まれるホウ素の濃度より高い濃度でホウ素を含んでいることが好ましい。この場合、ホウ素の濃度勾配により、強磁性層の側縁部から拡散防止膜に向かってホウ素が拡散するのを防ぐことができる。酸化処理や熱処理を行ったときでも、拡散防止膜に含まれるホウ素が外方に拡散する可能性はあるが、強磁性層からのホウ素の外方拡散を抑制することができる。
 本発明に係るスピントロニクス素子で、前記拡散防止膜は、外部から前記スピントロニクス素子の内部に窒素が侵入するのを防止するよう構成されていることが好ましい。この場合、拡散防止膜により、例えばSiN膜などの、素子の外部に形成された膜から素子の内部に窒素が再分布するのを防ぐことができる。このため、窒素の再分布による磁気特性の劣化を防止することができる。また、微細化に伴う寸法ばらつきにより、窒素による素子の劣化の割合が異なるために磁気特性がばらつくのを、防止することができる。
 本発明に係るスピントロニクス素子で、前記拡散防止膜は、窒素を含んでいないことが好ましい。この場合、拡散防止膜から強磁性層などの内部に窒素が再分布して磁気特性が劣化するのを防ぐことができる。また、微細化に伴う寸法ばらつきにより磁気特性がばらつくのを防止することができる。
 本発明に係るスピントロニクス素子は、それぞれ前記強磁性層を有する記録層および参照層と、前記記録層と前記参照層との間に配置された絶縁層とを有する磁気トンネル接合素子を有し、前記拡散防止膜は、前記磁気トンネル接合素子の側面を覆うよう設けられていてもよい。この場合、磁気トンネル接合素子の磁気特性の劣化を防ぐことができる。
 また、本発明に係るスピントロニクス素子は、例えば、トンネル磁気抵抗素子、トンネル磁気抵抗メモリ素子、スピンホール効果素子、逆スピンホール効果素子、磁壁移動メモリ素子またはスピントルク高周波素子を有していてもよい。この場合、拡散防止膜により、各素子の磁気特性の劣化を防ぐことができる。
 本発明によれば、ホウ素の外方拡散による磁気特性の劣化を防ぐことができ、優れた磁気特性を有するとともに、微細化に伴う寸法ばらつきによる磁気特性のばらつきを防ぐことができるスピントロニクス素子を提供することができる。また、外部からの窒素の再分布による磁気特性の劣化および、微細化に伴う寸法ばらつきによる磁気特性のばらつきを防ぐことができるスピントロニクス素子を提供することもできる。
本発明の実施の形態のスピントロニクス素子を示す断面図である。 本発明の実施の形態のスピントロニクス素子の(a)記録層が多層構造を有する第1の変型例を示す断面図、(b)記録層が多層構造を有する第2の変形例を示す断面図である。 本発明の実施の形態のスピントロニクス素子の、磁壁移動メモリ素子を有する変形例を示す断面図である。 従来のスピントロニクス素子が微細化したときの、素子に対する磁気特性が劣化した層の分布を示す断面図である。
 以下、図面に基づいて、本発明の実施の形態について説明する。
 図1乃至図3は、本発明の実施の形態のスピントロニクス素子10を示している。
 図1に示すように、スピントロニクス素子10は、磁気トンネル接合素子11と拡散防止膜12とを有している。
 磁気トンネル接合素子(MTJ)11は、強磁性層から成る記録層21および参照層22と、記録層21と参照層22との間に配置された絶縁層23とを有している。記録層21および参照層22は、強磁性の材料から成り、ホウ素(B)を含んでいる。記録層21および参照層22は、例えば、CoB、FeBもしくはCoFeB等の合金から成る磁性層、またはこれらの合金のうちの1つ以上を含む磁性層から成っている。絶縁層23は、絶縁性を有する材料から成り、例えばMgOから成っている。磁気トンネル接合素子11は、物理蒸着法であるスパッタ法、分子線エピタキシャル成長法(MBE法)などにより、各層を堆積して形成されている。
 拡散防止膜12は、磁気トンネル接合素子11の側面を覆うよう設けられている。拡散防止膜12は、記録層21の側縁部、すなわち記録層21が拡散防止膜12と接する部分とその近傍(例えば、拡散防止膜12と接する部分から5nm以内の範囲)、に含まれるホウ素の濃度、および、参照層22の側縁部、すなわち参照層22が拡散防止膜12と接する部分とその近傍(例えば、拡散防止膜12と接する部分から5nm以内の範囲)、に含まれるホウ素の濃度より高い濃度でホウ素を含んでいる。これにより、拡散防止膜12は、記録層21および参照層22に含まれるホウ素の外方拡散を防止するようになっている。なお、拡散防止膜12は、記録層21の全体および参照層22の全体に含まれるホウ素の濃度より高い濃度でホウ素を含み、記録層21および参照層22に含まれるホウ素の外方拡散を防止するようになっていてもよい。拡散防止膜12は、例えばBSG(boron silicate glass)やBPSG(boron phosphorus silicate glass)から成っている。拡散防止膜12は、例えばCVD法により形成されている。
 具体的な一例として、記録層21および参照層22が(Co25Fe757030から成る場合、(Co25Fe757030のモル質量が 42.877 g/mol、密度が 8.2 g/cm3 であるため、記録層21および参照層22中のホウ素の個数濃度は、3.45×1022 cm-3 となる。拡散防止膜12は、この個数濃度より高い濃度でホウ素を含むよう形成されている。
 次に、作用について説明する。
 スピントロニクス素子10は、ホウ素の濃度勾配により、記録層21および参照層22に含まれるホウ素が、記録層21および参照層22の側縁部からそれぞれ拡散防止膜12に向かって拡散するのを防ぐことができ、記録層21および参照層22に含まれるホウ素の外方拡散を防ぐことができる。このため、磁気トンネル接合素子11の内部の、記録層21および参照層22の膜面に対して水平方向に沿ったホウ素の濃度分布を、形成時の最適な状態で均一に維持することができる。これにより、強磁性膜である記録層21および参照層22の膜面に垂直な方向に沿ったホウ素のプロファイルを最適な状態に保つことができるため、磁気トンネル接合素子11の磁気特性の劣化を防ぐことができる。また、素子の寸法がばらついても、磁気トンネル接合素子11の内部の、記録層21および参照層22の膜面に対して水平方向に沿ったホウ素の濃度分布が素子内においてばらつかず、最適な状態で均一に維持されるため、強磁性膜である記録層21および参照層22の膜面に垂直な方向に沿ったホウ素のプロファイルを最適な状態に保つことができ、磁気特性のばらつきを防止することもできる。
 また、酸化処理や熱処理を行ったときでも、拡散防止膜12に含まれるホウ素が外方に拡散する可能性はあるが、記録層21および参照層22からのホウ素の外方拡散を抑制することができる。このように、スピントロニクス素子10は、優れた磁気特性を有している。また、スピントロニクス素子10は、微細化の進展に伴うばらつきに対しても、磁気特性のばらつきを防止することができる。
 スピントロニクス素子10は、拡散防止膜12により、外部から記録層21や参照層22などの磁気トンネル接合素子11の内部に窒素が侵入するのを防ぐことができる。このため、例えばSiN膜などの、素子の外部に形成された膜から素子の内部に窒素が再分布するのを防ぐことができる。このため、窒素の再分布による磁気特性の劣化を防止することができる。また、微細化に伴う寸法ばらつきにより、窒素による素子の劣化の割合が異なるために磁気特性がばらつくのを、防止することができる。
 なお、スピントロニクス素子10は、拡散防止膜12が窒素を含んでいないことが好ましい。この場合、素子の外部からだけでなく、拡散防止膜12から磁気トンネル接合素子11の内部に窒素が再分布して磁気特性が劣化するのを防ぐことができる。
 また、図1に示す一例では、拡散防止膜12は、記録層21および参照層22の側面の全体を覆うよう設けられているが、記録層21および参照層22の側面のそれぞれ一部を覆うよう設けられていてもよい。この場合でも、記録層21および参照層22の側面からのホウ素の外方拡散をある程度防ぐことができ、磁気特性の劣化を防止することができる。
 また、図1に示す一例では、記録層21および参照層22の側面を1つの拡散防止膜12で一体的に覆っているが、記録層21および参照層22の側面をそれぞれ別の拡散防止膜12で覆っていてもよい。この場合、記録層21の側面を覆う拡散防止膜12が、記録層21の側縁部に含まれるホウ素の濃度より高い濃度でホウ素を含んでおり、参照層22の側面を覆う拡散防止膜12が、参照層22の側縁部に含まれるホウ素の濃度より高い濃度でホウ素を含んでいればよい。これにより、記録層21および参照層22に含まれるホウ素が外方に拡散するのを防ぐことができ、磁気特性の劣化を防ぐことができる。
 また、図1に示す一例では、磁気トンネル接合素子11の外側に拡散防止膜12を形成したが、記録層21および参照層22の側縁部に、イオン注入法やプラズマドーピング法を用いてホウ素を導入して、それぞれ記録層21および参照層22の中央部より高い濃度でホウ素を含む部分を形成してもよい。この場合、ホウ素を導入した記録層21および参照層22の側縁部が、拡散防止膜12となり、記録層21および参照層22の中央部に含まれるホウ素の外方拡散を防ぐことができる。
 また、記録層21および参照層22はそれぞれ、1つの強磁性層から成るものに限らず、強磁性層と、非強磁性層やキャップ層などの強磁性層以外の層とが複数積層されて形成されていてもよい。例えば、図2(a)に示すように、記録層21が、CoFeBから成る1対の強磁性層31,32の間に、Taから成る非磁性結合層33を挟んだ構造から成っていてもよい。なお、図2(a)に示す一例では、記録層21の絶縁層23とは反対側の表面に、MgOから成る絶縁層34が形成されている。また、図2(a)に示す一例では、非磁性結合層33は、Taから成っているが、Taに限らず、W,Hf,Zr,Nb,Mo,Ti,Mg,MgO等から成っていてもよい。
 また、図2(b)に示すように、記録層21が、CoFeB層35の両面に、それぞれ薄いCoFe層36,37が形成された構造から成っていてもよい。なお、図2(b)に示す一例では、CoFe層36,37のCoFeB層36とは反対側の表面に、MgOから成る絶縁層38,39が形成されている。これらの絶縁層38,39は、絶縁層23や絶縁層34を構成可能である。図2(a)および(b)に示す一例では、記録層21が多層構造から成る構成を示したが、参照層22が同様の多層構造を有していてもよい。
 図1に示す一例では、スピントロニクス素子10は、磁気トンネル接合素子11を含むものから成っているが、磁気トンネル接合素子11に限らず、ホウ素を含む強磁性層を有する素子であれば、いかなる素子を有していてもよい。例えば、トンネル磁気抵抗素子、トンネル磁気抵抗メモリ素子、スピンホール効果素子、逆スピンホール効果素子、磁壁移動メモリ素子またはスピントルク高周波素子を有するものから成っていてもよい。
 例えば、図3に示すように、磁壁移動メモリ素子を有するものから成る場合、磁気トンネル接合素子11の側面に拡散防止膜12を設けることにより、磁気トンネル接合素子11に含まれるホウ素の外方拡散を防ぐことができ、磁気特性の劣化を防止することができる。
 図1に示す磁気トンネル接合素子(MTJ)11を作製し、トンネル磁気抵抗比(TMR比)の測定を行った。また、比較のため、拡散防止膜12を有さないMTJも作製し、TMR比の測定を行った。拡散防止膜12を有する図1のMTJ、および拡散防止膜12を有さないMTJの双方とも、円柱状になるように形成し、拡散防止膜12以外の記録層、参照層、絶縁層の構成は同じとした。拡散防止膜12を有するMTJ、および拡散防止膜12を有さないMTJの双方とも、実際のMTJは加工ばらつきのため真の円柱ではないが、MTJの直径は素子の抵抗値から円柱と仮定し算出した。また、拡散防止膜12を有さないMTJについては、直径が異なる3つのサイズの円柱状のMTJを作製した。各MTJのTMR比の測定結果を、表1に示す。なお、表1中のTMR比は、各MTJ製造過程の熱処理前(ドライエッチング処理後)のTMR比に対する比率(百分率)で表している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、拡散防止膜12を有さないMTJでは、熱処理によるホウ素の外方拡散で、磁気特性が劣化するため、熱処理によりTMR比が低下していることが確認された。また、拡散防止膜12を有さないMTJでは、図4に示すように、直径が小さくなるに従って、磁気特性が劣化した層の素子全体に占める割合が増加するため、TMR比の低下率も増加していることが確認された。これに対し、拡散防止膜12を有する図1のMTJでは、拡散防止膜12によりホウ素の外方拡散を防止することができるため、熱処理後もTMR比が低下せず、むしろ増加していることが確認された。
 本発明に係るスピントロニクス素子は、例えば、スピン注入磁化反転(STT)を利用した磁気抵抗変化型メモリ(MRAM)、すなわちSTT-MRAMを搭載した汎用メモリ製品および混載SoC(System-on-a-chip)製品に好適に利用することができる。
 10 スピントロニクス素子
 11 磁気トンネル接合素子
  21 記録層
  22 参照層
  23 絶縁層
 12 拡散防止膜
 
 31,32 強磁性層
 33 非磁性結合層
 34 絶縁層
 35 CoFeB層
 36,37 CoFe層
 38,39 絶縁層
 
 50 スピントロニクス素子
 51 磁気特性が劣化した層
 

Claims (8)

  1.  ホウ素を含む強磁性層と、
     前記強磁性層に含まれるホウ素の外方拡散を防止するよう設けられた拡散防止膜とを、
     有することを特徴とするスピントロニクス素子。
  2.  前記拡散防止膜は、外部から前記スピントロニクス素子の内部に窒素が侵入するのを防止するよう構成されていることを特徴とする請求項1記載のスピントロニクス素子。
  3.  前記拡散防止膜は、前記強磁性層の側面の一部または全体を覆うよう設けられていることを特徴とする請求項1または2記載のスピントロニクス素子。
  4.  前記拡散防止膜は、前記強磁性層の側縁部に含まれるホウ素の濃度より高い濃度でホウ素を含んでいることを特徴とする請求項1乃至3のいずれか1項に記載のスピントロニクス素子。
  5.  前記拡散防止膜は、前記強磁性層に含まれるホウ素の濃度より高い濃度でホウ素を含んでいることを特徴とする請求項1乃至3のいずれか1項に記載のスピントロニクス素子。
  6.  前記拡散防止膜は、窒素を含んでいないことを特徴とする請求項1乃至5のいずれか1項に記載のスピントロニクス素子。
  7.  それぞれ前記強磁性層を有する記録層および参照層と、前記記録層と前記参照層との間に配置された絶縁層とを有する磁気トンネル接合素子を有し、
     前記拡散防止膜は、前記磁気トンネル接合素子の側面を覆うよう設けられていることを
     特徴とする請求項1乃至6のいずれか1項に記載のスピントロニクス素子。
  8.  トンネル磁気抵抗素子、トンネル磁気抵抗メモリ素子、スピンホール効果素子、逆スピンホール効果素子、磁壁移動メモリ素子またはスピントルク高周波素子を有することを特徴とする請求項1乃至7のいずれか1項に記載のスピントロニクス素子。
     

     
PCT/JP2016/087999 2015-12-25 2016-12-20 スピントロニクス素子 WO2017110834A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187011210A KR102398740B1 (ko) 2015-12-25 2016-12-20 스핀트로닉스 소자
JP2017558170A JP6841508B2 (ja) 2015-12-25 2016-12-20 スピントロニクス素子
US16/013,093 US10424725B2 (en) 2015-12-25 2018-06-20 Spintronics element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252942 2015-12-25
JP2015-252942 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/013,093 Continuation US10424725B2 (en) 2015-12-25 2018-06-20 Spintronics element

Publications (1)

Publication Number Publication Date
WO2017110834A1 true WO2017110834A1 (ja) 2017-06-29

Family

ID=59089433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087999 WO2017110834A1 (ja) 2015-12-25 2016-12-20 スピントロニクス素子

Country Status (4)

Country Link
US (1) US10424725B2 (ja)
JP (1) JP6841508B2 (ja)
KR (1) KR102398740B1 (ja)
WO (1) WO2017110834A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522752B1 (en) * 2018-08-22 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic layer for magnetic random access memory (MRAM) by moment enhancement
CN110224063B (zh) * 2019-05-16 2023-04-25 杭州电子科技大学 一种非易失自旋轨道转矩元件及其转矩方法
JP7081694B2 (ja) 2019-10-03 2022-06-07 Tdk株式会社 磁気記録層、磁壁移動素子及び磁気記録アレイ
WO2022137284A1 (ja) 2020-12-21 2022-06-30 Tdk株式会社 磁気抵抗効果素子
US11696512B2 (en) * 2021-01-05 2023-07-04 Tdk Corporation Magnetic domain wall moving element and magnetic array

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048820A (ja) * 2005-08-08 2007-02-22 Alps Electric Co Ltd 磁気検出素子
JP2009260164A (ja) * 2008-04-21 2009-11-05 Alps Electric Co Ltd 磁気センサ
JP2015060970A (ja) * 2013-09-19 2015-03-30 株式会社東芝 磁気抵抗素子および磁気メモリ
JP2015184036A (ja) * 2014-03-20 2015-10-22 株式会社東芝 圧力センサ、マイクロフォン、血圧センサおよびタッチパネル

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274080B1 (en) * 2003-08-22 2007-09-25 International Business Machines Corporation MgO-based tunnel spin injectors
JP2009099741A (ja) * 2007-10-16 2009-05-07 Fujitsu Ltd 強磁性トンネル接合素子、強磁性トンネル接合素子の製造方法、磁気ヘッド、磁気記憶装置、及び磁気メモリ装置
JP5509017B2 (ja) * 2009-10-15 2014-06-04 日本特殊陶業株式会社 グロープラグ
JP2012038815A (ja) * 2010-08-04 2012-02-23 Toshiba Corp 磁気抵抗素子の製造方法
KR20120058113A (ko) 2010-11-29 2012-06-07 삼성전자주식회사 자기 터널 접합 구조체의 제조 방법 및 이를 이용하는 자기 메모리 소자의 제조 방법
JP5601181B2 (ja) 2010-12-02 2014-10-08 富士通セミコンダクター株式会社 磁気抵抗効果素子及びその製造方法
KR20130077374A (ko) 2011-12-29 2013-07-09 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
JP6068158B2 (ja) * 2012-03-30 2017-01-25 株式会社クボタ アルミナバリア層を有する鋳造製品
US20150221847A1 (en) * 2012-08-10 2015-08-06 The University Of Manitoba Seebeck rectification enabled by intrinsic thermoelectric coupling in magnetic tunneling junctions
US8981505B2 (en) * 2013-01-11 2015-03-17 Headway Technologies, Inc. Mg discontinuous insertion layer for improving MTJ shunt
US20150070981A1 (en) * 2013-09-06 2015-03-12 Yoshinori Kumura Magnetoresistance element and magnetoresistive memory
US20150069554A1 (en) * 2013-09-06 2015-03-12 Masahiko Nakayama Magnetic memory and method of manufacturing the same
KR101476932B1 (ko) * 2013-11-20 2014-12-26 한양대학교 산학협력단 수직 자기 이방성을 갖는 mtj 구조, 이의 제조방법 및 이를 포함하는 자성소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007048820A (ja) * 2005-08-08 2007-02-22 Alps Electric Co Ltd 磁気検出素子
JP2009260164A (ja) * 2008-04-21 2009-11-05 Alps Electric Co Ltd 磁気センサ
JP2015060970A (ja) * 2013-09-19 2015-03-30 株式会社東芝 磁気抵抗素子および磁気メモリ
JP2015184036A (ja) * 2014-03-20 2015-10-22 株式会社東芝 圧力センサ、マイクロフォン、血圧センサおよびタッチパネル

Also Published As

Publication number Publication date
US20180301621A1 (en) 2018-10-18
JP6841508B2 (ja) 2021-03-10
KR20180098218A (ko) 2018-09-03
JPWO2017110834A1 (ja) 2018-10-25
US10424725B2 (en) 2019-09-24
KR102398740B1 (ko) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2017110834A1 (ja) スピントロニクス素子
US11309489B2 (en) Magnetic tunnel junction with low defect rate after high temperature anneal for magnetic device applications
JP5514256B2 (ja) 磁気記憶素子及びその製造方法
JP7161282B2 (ja) 磁気構造およびその形成方法
US8653614B2 (en) Semiconductor memory device and method for manufacturing the same
JP5502627B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法
JP2013008868A (ja) 半導体記憶装置
JP2012099741A (ja) 磁気ランダムアクセスメモリ及びその製造方法
JP2013048210A (ja) 磁気抵抗素子
KR102381009B1 (ko) 고성능 자기저항 랜덤 액세스 메모리(mram) 디바이스를 위한 자유층 측벽 산화 및 스페이서 보조 자기 터널 접합부(mtj) 에칭
US20170148848A1 (en) Magnetoresistive random access memory devices and methods of manufacturing the same
US9761792B2 (en) Magnetic random access memory devices and methods of manufacturing the same
US8685757B2 (en) Method for fabricating magnetic tunnel junction
WO2016189772A1 (ja) 磁気抵抗効果素子
KR20120108297A (ko) 저항 메모리 소자 제조 방법
JP2012156167A (ja) 磁気ランダムアクセスメモリ及びその製造方法
KR20120050235A (ko) 자기터널접합소자 및 그 제조 방법
CN111725387A (zh) 磁存储装置
KR101208697B1 (ko) 자기저항소자 및 그 제조 방법
KR20130016823A (ko) 자기저항소자 제조 방법
JP2017126613A (ja) 磁気抵抗効果素子及びその製造方法
KR20120094395A (ko) 저항 메모리 소자 제조 방법
KR20090114682A (ko) 자기터널접합 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558170

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187011210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878723

Country of ref document: EP

Kind code of ref document: A1