WO2017108652A1 - Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb - Google Patents

Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb Download PDF

Info

Publication number
WO2017108652A1
WO2017108652A1 PCT/EP2016/081650 EP2016081650W WO2017108652A1 WO 2017108652 A1 WO2017108652 A1 WO 2017108652A1 EP 2016081650 W EP2016081650 W EP 2016081650W WO 2017108652 A1 WO2017108652 A1 WO 2017108652A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion engine
internal combustion
phase
electric machine
torque
Prior art date
Application number
PCT/EP2016/081650
Other languages
English (en)
French (fr)
Inventor
Peter Weiland
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2017108652A1 publication Critical patent/WO2017108652A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0614Position of fuel or air injector
    • B60W2510/0619Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/068Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0622Air-fuel ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a method and a device for operating a motor vehicle with a hybrid drive, be ⁇ standing from an internal combustion engine and a Ele- electric machine, both of which act on a common drive train.
  • NOx storage catalyst NOx adsorber, NOx trap, NOx trap
  • NOx storage catalyst is limited, it is in a phase in which the internal combustion engine with rich
  • Air / fuel mixture is operated, regenerated.
  • the internal combustion engine is often operated close to their Be ⁇ operating limit. Changes in the operating state of the internal combustion engine, such as load jumps, due to the driver's request, can lead to demolition and thus incomplete regeneration cycles, as well as by changing the torque to impair driving behavior, in ⁇ particular driving comfort. Such problems can also occur when initiating and carrying out the desulphurization of components of the exhaust aftertreatment system or when setting an increased exhaust gas recirculation rate for lowering the temperature in the combustion chamber of the internal combustion engine.
  • hybrid powertrains for motor vehicles are known and are increasingly used to increase the performance of motor vehicles and ride comfort and their efficiency by reducing fuel consumption.
  • an internal combustion engine and at least one electric machine are combined in such a way that both the type-specific properties of an internal combustion engine and that of an electric machine for driving the vehicle can be utilized.
  • the electric ⁇ machine depending on the design of the hybrid powertrain can be arranged in various ways in the motor vehicle.
  • the term electric machine is understood to mean both an electric motor and a, in particular integrated, combination of an electric motor with an electric generator, for example in the form of a belt starter generator.
  • DE 10 2004 058 231 AI shows a control of an internal combustion engine in a hybrid vehicle, which reduces a torque ⁇ difference, which occurs in connection with a change of a combustion air / fuel ratio to the rich state in a rich control.
  • the method comprises the steps of: estimating the generated or recorded
  • the object of the present invention is to provide a method and a device for operating a motor vehicle with a hybrid output, in which or in which, even when unsteady operating states of the internal combustion engine, the influences on driveability and comfort are minimized.
  • the invention is characterized by a method and a corresponding device for operating a motor vehicle with a hybrid drive, consisting of a combustion ⁇ machine and an electric machine, both of which act on a ge ⁇ common hybrid powertrain and the internal combustion engine for operating components of an Ab - Gas aftertreatment plant operated at least temporarily in one phase with a rich air / fuel mixture or operated to reduce the exhaust gas temperature with an exhaust gas recirculation.
  • a hybrid drive consisting of a combustion ⁇ machine and an electric machine, both of which act on a ge ⁇ common hybrid powertrain and the internal combustion engine for operating components of an Ab - Gas aftertreatment plant operated at least temporarily in one phase with a rich air / fuel mixture or operated to reduce the exhaust gas temperature with an exhaust gas recirculation.
  • the internal combustion engine Since the electric machine supplies the required torque when additional load requirements occur, the internal combustion engine does not reach its load limit and measures for operating components of the exhaust gas aftertreatment, such as the regeneration or desulphurisation of a NOx storage catalytic converter do not need to be interrupted. Furthermore, the regeneration times can be shortened, resulting in a lower oil dilution and a reduction of the fuel ⁇ demand.
  • FIG. 1 shows a schematic view of components of a motor vehicle equipped with a hybrid drive train
  • FIGS. 2A to 2E show time profiles of various parameters when carrying out the method according to the invention.
  • FIG. 1 shows in a highly schematic manner a typical configuration of a hybrid drive train 1 for a motor vehicle 2.
  • the hybrid drive train 1 has an internal combustion engine 3 of conventional design (diesel engine, gasoline engine, gas-powered engine or Flexfuel engine) and an electric machine 4 on.
  • the electric machine 4 can in particular be designed as an integrated Star ⁇ tergenerator.
  • the hybrid powertrain 1 also has a first clutch 5, which is designed as a positive coupling, for example as a dog clutch.
  • the first clutch 5 is egg ⁇ neiji with a crankshaft 6 of the internal combustion engine
  • the hybrid drive train 1 has a second clutch 7, which is likewise designed as a form-locking coupling, for example as a dog clutch.
  • the second clutch 7 is connected on the one hand to a transmission input shaft 8 of a transmission 9 and on the other hand to the shaft of the electric machine 4, so that this connection can be closed or disconnected depending on demand.
  • the transmission 9 is designed for example as an automatic transmission or manual transmission.
  • a transmission output shaft 10 of the transmission 9 is mechanically connected to a differential gear 11 of a drive axle 12 of the motor vehicle 2.
  • the internal combustion engine 3 and the Electric machine 4 are arranged linearly one behind the other, so that the motor vehicle 2 can be driven both by means of the internal combustion engine 3 or the electric machine 4 or by both drive sources.
  • a vehicle electrical system 14 and a hybrid battery 15 is provided.
  • the hybrid battery is designed as a 48-volt hybrid battery, but the aspects of the invention are not limited in principle to a nominal voltage of 48 volts ⁇ limits.
  • the Nomi ⁇ nalnaps is only 42 volts, or even more than 48 volts.
  • a forth ⁇ grommliches 12-volt electrical system is arranged with a 12-volt car battery, are supplied with the various electrical loads in the motor vehicle 2 is preferred.
  • the hybrid drive system is adapted to automatically perform a recuperation of energy, or a change from a normal driving situation to a recuperation mode or vice versa.
  • the internal combustion engine 3 has an intake tract 16 and an exhaust tract 17. About the intake duct 16, the necessary for the combustion of the fuel air is supplied.
  • a throttle body 18 is provided in the intake duct 16, preferably as an electronic motor controllable throttle valve (E-GAS) is formed and its opening cross-section in addition to the operation of the driver (driver demand) depends on the operating range of the internal combustion engine 3 via signals one that burns 3 engine controlling and regulating electronic
  • E-GAS electronic motor controllable throttle valve
  • Control device 21 is adjustable. Upstream of the throttle body 18, a load sensor 19 in the form of an air mass meter or a Saugrohrdrucksensors is provided in the intake manifold 16 and each provide a corresponding load signal L.
  • a load sensor 19 in the form of an air mass meter or a Saugrohrchristsensors is provided in the intake manifold 16 and each provide a corresponding load signal L.
  • an exhaust aftertreatment system 20 is installed in the exhaust gas tract 17.
  • the exhaust aftertreatment system 20 may in particular contain a NO x storage catalytic converter and / or a soot particle filter.
  • a lambda sensor which detects a residual oxygen content of the exhaust gas and the measurement signal ⁇ (lambda) is characteristic of the air / fuel ratio in the cylinders of the combustion ⁇ combustion engine 3.
  • the electronic control device 21 Various sensors are assigned to record the measured quantities and determine the measured values of the measured variable.
  • the control device 21 controls depending on at least one of the operating variables, the actuators, which are associated with the internal combustion engine 3, and each of which corresponding actuators are assigned, by generating actuating signals for the actuators.
  • the sensors are for example the load sensor 19, the
  • Signals from other sensors that are necessary for controlling and / or regulating the internal combustion engine 3 and its ancillary components, such as temperature sensors for the intake air and for the coolant, a crank angle sensor, etc. are not explicitly shown in FIG. 1, but generally with the reference numeral ES marked.
  • the actuators, which controls the control device 21 by means of actuating signals, are, for example, the throttle element 18, gas inlet and gas outlet valves, fuel injection valves, spark plugs, etc. Such control signals for further actuators of the internal combustion engine 3 and their
  • Auxiliary units are generally indicated by the reference ES in the figure.
  • the control device 21 is coupled to the exchange of data with the electrical system 14 of the electric machine 4, in ⁇ example via a CAN bus.
  • the electronic control device 21 may also be referred to as an engine control unit.
  • Such control devices 21, which as a rule include one or more microprocessors, are known per se, so that in the following only the construction relevant in connection with the invention and its mode of operation will be discussed.
  • the control device 21 preferably comprises a computer unit 25 (processor), which is coupled to a program memory 26 and a value memory 27 (data memory).
  • program memory 26 In the program memory and the value memory programs or values are stored, which are necessary for the operation of the internal combustion engine 3.
  • a function of controlling the hybrid drive is implemented in software strand 1 in the program memory, as will be explained below with reference to Be ⁇ scription of Figures 2A to 2E.
  • a request is made to a specific operation of the internal combustion engine 3. It is in particular measures to influence the exhaust gas of the combustion engine 3 ⁇ in any way.
  • a measure for example, the regeneration phase of a NOx storage catalyst, the burning of a
  • Trigger signal TRIGG that jumps from a logical value of 0 to a logical value of 1 at the time tO.
  • the air ratio ⁇ at the time t0 is from a lambda actual value X_IST present at the time t0 in the direction of a predetermined value
  • Lambda setpoint X_SOLL adjusted. This is done by means of a conventional, known lambda control device. In the case of a requested regeneration of the NOx storage catalytic converter, the setpoint value X_SOLL ⁇ 1, the air / fuel mixture is thus enriched. The desired setpoint value X_SOLL is achieved somewhat delayed in time after request at time tO (FIG. 2B).
  • a load request (increase of the load L), which is equivalent to a torque request to the drive train of the internal combustion engine 3, takes place because e.g. the driver of the motor vehicle 2 presses on the accelerator pedal 24 (FIG. 2C).
  • the trigger signal TRIG therefore jumps from logic 1 to logic 0 at time t3. Since at time t3, no additional torque for embedding ⁇ penetrate ung of the exhaust gas more has to be applied, the electric machine 4 is controlled such that its output to the Hyb- rid-drivetrain 1 torque MD_EM is again reduced to the initial value, which prevailed prior to the load requirement (Time t4 in Fig. 2D).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Es wird ein Verfahren und eine Vorrichtung zum Betreiben eines Kraftfahrzeugs (2) mit einem Hybridantrieb beschrieben, bestehend aus einer Verbrennungskraftmaschine (3) und einer Elektromaschine (4), die beide auf einen gemeinsamen Hybrid-Antriebsstrang (1) einwirken und die Verbrennungskraftmaschine (3) zum Betreiben von Komponenten einer Abgasnachbehandlungsanlage (20) zumindest zeitweise in einer Phase mit einem fetten Luft-/Kraftstoffgemisch betrieben oder zur Senkung der Abgastemperatur mit einer Abgasrückführung betrieben wird. Beim Auftreten einer erhöhten Lastanforderung für die Verbrennungskraftmaschine (3) während der Phase des Betriebes mit einem fetten Luft-/Kraftstoffgemisch oder in der Phase des Betriebes mit Abgasrückführung wird das Drehmoment (MD_VKM) der Verbrennungskraftmaschine (3) konstant gehalten und das aufgrund der erhöhten Lastanforderung benötigte zusätzliche Drehmoment ausschließlich von der Elektromaschine (4) aufgebracht.

Description

Beschreibung
Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb, be¬ stehend aus einer Verbrennungskraftmaschine und einer Elekt- romaschine, die beide auf einen gemeinsamen Antriebsstrang einwirken.
Bei Betrieb einer Verbrennungskraftmaschine können Betriebs¬ arten auftreten, bei denen neben der Umsetzung des Fahrerwunsches weitere Kriterien, insbesondere hinsichtlich der Einhaltung der Abgasqualität und der Abgastemperatur zu berücksichtigen sind. Dabei kann es zu instationären Betriebszuständen der Verbrennungskraftmaschine kommen, insbesondere zu Schwankungen des von der Verbrennungskraftmaschine abgegebenen Drehmomentes, was im Hinblick auf den Fahrkomfort zu vermeiden ist.
Abgasnachbehandlungsanlagen moderner, zumindest teilweise mit Luftüberschuss betriebener Verbrennungskraftmaschinen weisen u.a. einen NOx-Speicherkatalysator (NOx-Adsorber, NOx-trap, NOx-Falle) auf, der in Betriebsphasen der Verbrennungskraft- maschine mit magerem Luft-/Kraftstoffgemisch die Stickoxide adsorbiert. Da die Aufnahmekapazität eines solchen
NOx-Speicherkatalysators begrenzt ist, wird er in einer Phase, in welcher die Verbrennungskraftmaschine mit fettem
Luft-/Kraftstoffgemisch betrieben wird, regeneriert. Hierbei wird die Verbrennungskraftmaschine oft nahe an ihrer Be¬ triebsgrenze betrieben. Änderungen des Betriebszustandes der Verbrennungskraftmaschine, wie beispielsweise Lastsprünge, bedingt durch den Fahrerwunsch, können zu Abbruch und damit unvollständigen Regenerationszyklen, sowie durch Änderung des Drehmomentes zur Beeinträchtigungen des Fahrverhaltens, ins¬ besondere des Fahrkomforts führen. Solche Probleme können auch bei dem Einleiten und Durchführen der Entschwefelung von Komponenten der Abgasnachbehandlungsanlage oder bei der Einstellung einer erhöhten Abgasrückführrate zur Senkung der Temperatur im Brennraum der Verbrennungskraftma- schine auftreten.
Anforderungen an die Abgasqualität und Abgastemperatur, die zur Darstellung der genannten Betriebsarten der Verbrennungskraftmaschine erforderlich sind, werden durch gezielte Anpassung der Verbrennungskraftmaschinenparameter in Abhängigkeit der angeforderten Motorlast eingeregelt.
Zukünftige Abgasgesetzgebungen, deren Fahrzyklen verschärfte Anforderungen hinsichtlich Dynamik und Vorhersehbarkeit haben, wie WLTC (Worldwide harmonized Light vehicle Test Cycle) , RDE (Real Driving Emmision) etc. werden die Komplexität einer robusten Darstellung von Betriebsarten mit speziellen Anforderungen an das Abgas weiter erhöhen. Desweiteren sind Hybridantriebe für Kraftfahrzeuge bekannt und werden zunehmend eingesetzt, um die Leistungsfähigkeit der Kraftfahrzeuge sowie den Fahrkomfort und deren Effizienz durch Reduzierung des Kraftstoffverbrauchs zu erhöhen. Dabei werden bei einem Hybridantrieb eine Verbrennungskraftmaschine und zumindest eine Elektromaschine derart kombiniert, dass dadurch sowohl die typspezifischen Eigenschaften einer Verbrennungskraftmaschine, als auch die einer Elektromaschine für den Antrieb des Fahrzeugs ausgenutzt werden können. Dazu kann die Elekt¬ romaschine je nach Ausgestaltung des Hybridantriebsstrangs auf verschiedene Weise in dem Kraftfahrzeug angeordnet werden. Unter dem Begriff Elektromaschine ist im Rahmen der Erfindung sowohl ein Elektromotor, als auch eine, insbesondere integrierte Kombination eines Elektromotors mit einem elektrischen Generator zu verstehen, z.B. in Form eines Riemenstartergenerators.
Es ist bekannt, einen solchen Hybridantriebsstrang auch zur Beeinflussung von Abgasnachbehandlungsstrategien einzusetzen. Die DE 10 2004 058 231 AI zeigt eine Steuerung einer Brennkraftmaschine in einem Hybridfahrzeug, das eine Drehmoment¬ differenz verringert, die im Zusammenhang mit einer Änderung eines Verbrennungsluft/Kraftstoff-Verhältnisses auf den fetten Zustand in einer Fett-Steuerung auftritt. Das Verfahren weist die Schritte auf: Schätzen des erzeugten oder aufgenommenen
Drehmoments und des aufnehmbaren Drehmoments des Mo¬ tor-Generators und Schätzen des erhöhten Drehmoments der Brennkraftmaschine aufgrund dessen, dass das Luft-Kraftstoff- Verhältnis auf den fetten Zustand versetzt wird, Beurteilen auf der Grundlage der geschätzten Drehmomente, ob das erhöhte Drehmoment nicht vollständig durch den Motor-Generator auf¬ genommen werden kann, und Durchführen einer Steuerung in diesem Fall zur Verringerung des von der Brennkraftmaschine erzeugten Drehmoments entsprechend dem Überschuss bei Durchführung der Fett-Steuerung .
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zum Betreiben eines Kraftfahrzeuges mit einem Hybridabtrieb bereitzustellen, bei dem bzw. bei der auch bei Auftreten von instationären Betriebszuständen der Verbrennungskraftmaschine die Einflüsse auf die Fahrbarkeit und den Komfort minimiert sind. Gelöst wird diese Aufgabe durch den Gegenstand der unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung zeichnet sich aus durch ein Verfahren und eine entsprechende Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb, bestehend aus einer Verbrennungskraft¬ maschine und einer Elektromaschine, die beide auf einen ge¬ meinsamen Hybrid-Antriebsstrang einwirken und die Verbrennungskraftmaschine zum Betreiben von Komponenten einer Ab- gasnachbehandlungsanlage zumindest zeitweise in einer Phase mit einem fetten Luft-/Kraftstoffgemisch betrieben oder zur Senkung der Abgastemperatur mit einer Abgasrückführung betrieben wird. Beim Auftreten einer erhöhten Lastanforderung für die Ver- brennungskraftmaschine während der Phase des Betriebes mit einem fetten Luft-/Kraftstoffgemisch oder in der Phase des Betriebes mit Abgasrückführung wird das Drehmoment der Verbrennungs¬ kraftmaschine konstant gehalten und das aufgrund der erhöhten Lastanforderung benötigte zusätzliche Drehmoment ausschließlich von der Elektromaschine aufgebracht.
Dadurch ergeben sich stabilere Betriebzustände in den genannten Betriebsarten der Verbrennungskraftmaschine und eine Erhöhung der Freiheitsgrade zur Erreichen von Abgassollwerten wie das Einstellen eines gewünschten Lambdawertes oder der Abgastemperatur .
Da die Elektromaschine bei Auftreten von zusätzlichen Last- anforderungen das hierzu nötige Drehmoment liefert, kommt die Verbrennungskraftmaschine nicht an ihre Lastgrenze und Maßnahmen zum Betrieb von Komponenten der Abgasnachbehandlung, wie die Regenerationen oder Entschwefelung eines NOx-Speicher- katalysators brauchen nicht abgebrochen werden. Weiterhin können die Regenerationszeiten verkürzt werden, es ergeben sich eine geringere Ölverdünnung und eine Verringerung des Kraftstoff¬ bedarfes .
Mit dem erfindungsgemäßen Verfahren bzw. der Vorrichtung werden durch entsprechendes Ansteuern des Hybrid-Antriebsstrangs alle möglichen Betriebssituationen der Verbrennungskraftmaschine, welche plötzliche Drehmomentänderungen aufgrund von Last¬ sprüngen hervorrufen, besonders zuverlässig bewältigt. Die Erfindung wird nun anhand der beigefügten Figuren näher erläutert, wobei sich aus der nachfolgenden Beschreibung von Ausführungsformen unter Bezugnahme auf die beigefügten Figuren weitere Vorteile der Erfindung ergeben. Es zeigen:
Figur 1 eine schematische Ansicht von Komponenten eines mit einem Hybrid-Antriebsstrang ausgestatteten Kraft- fahrzeugs und
Figuren 2A bis 2E zeitliche Verläufe verschiedener Parameter bei der Durchführung des erfindungsgemäßen Verfahrens Die Figur 1 zeigt stark schematisiert eine typische Konfiguration eines Hybrid-Antriebsstranges 1 für ein Kraftfahrzeug 2. Der Hybridantriebsstrang 1 weist eine Verbrennungskraftmaschine 3 herkömmlicher Bauart (Dieselmotor, Ottomotor, gasbetriebener Motor oder Flexfuel-Motor) und eine Elektromaschine 4 auf. Die Elektromaschine 4 kann insbesondere als integrierter Star¬ tergenerator ausgeführt sein.
Der Hybridantriebsstrang 1 weist ferner eine erste Kupplung 5 auf, die als formschlüssige Kupplung, beispielsweise als Klauenkupplung ausgebildet ist. Die erste Kupplung 5 ist ei¬ nerseits mit einer Kurbelwelle 6 der Verbrennungskraftmaschine
3 und anderseits mit einer Welle der Elektromaschine 4 verbunden, so dass bedarfsabhängig diese Verbindung geschlossen oder getrennt werden kann. Darüber hinaus weist der Hybridan- triebsstrang 1 eine zweite Kupplung 7 auf, die ebenfalls als formschlüssige Kupplung, beispielsweise als Klauenkupplung ausgebildet ist. Die zweite Kupplung 7 ist einerseits mit einer Getriebeeingangswelle 8 eines Getriebes 9 und anderseits mit der Welle der Elektromaschine 4 verbunden, so dass bedarfsabhängig diese Verbindung geschlossen oder getrennt werden kann. Das Getriebe 9 ist beispielsweise als ein Automatikgetriebe oder Schaltgetriebe ausgebildet. Eine Getriebeausausgangswelle 10 des Getriebes 9 ist mechanisch mit einem Differentialgetriebe 11 einer Antriebsachse 12 des Kraftfahrzeuges 2 verbunden.
Durch eine solche Anordnung ist ein Hybridantrieb für das Kraftfahrzeug 2 mit einer „Inline" angeordneten Elektromaschine
4 geschaffen, d.h. die Verbrennungskraftmaschine 3 und die Elektromaschine 4 sind linear hintereinander angeordnet, so dass das Kraftfahrzeug 2 sowohl mittels der Verbrennungskraftmaschine 3 oder der Elektromaschine 4 oder durch beide Antriebsquellen angetrieben werden kann.
Zur Steuerung bzw. Regelung der Elektromaschine 4 ist eine Bordnetzelektronik 14 und eine Hybridbatterie 15 vorgesehen. In bevorzugter Weise ist die Hybridbatterie als 48-Volt-Hybrid- batterie ausgebildet, die Aspekte der Erfindung sind aber prinzipiell nicht auf eine nominale Spannung von 48 Volt be¬ schränkt. Beispielsweise ist es auch denkbar, dass die Nomi¬ nalspannung lediglich 42 Volt beträgt, oder auch mehr als 48 Volt . Ferner ist in dem Kraftfahrzeug 2 bevorzugt noch ein her¬ kömmliches 12-Volt-Bordnetz mit einer 12-Volt-Fahrzeugbatterie angeordnet, mit der verschiedene elektrische Verbraucher versorgt werden.
Mit der 48-Volt-Bordnetzspannung kann im Vergleich zu der herkömmlichen 12-Volt-Bordnetzspannung eine höhere Leis- tungsfähigkeit sowie ein relativ hohes Drehmoment der elekt¬ rischen Maschine 4 erreicht werden. Ferner ergeben sich durch die erhöhte Bordnetzspannung geringere elektrische Verluste und ein höherer Wirkungsgrad, wobei insbesondere während des Start¬ vorgangs keine zusätzliche Belastung des herkömmlichen
12-Volt-Bordnetzes erfolgt. Ferner ist das Hybridantriebssystem dazu angepasst, eine Rekuperation von Energie, oder einen Wechsel aus einer normalen Fahrsituation in einen Rekuperationsmodus oder umgekehrt automatisch durchzuführen. Die Verbrennungskraftmaschine 3 weist einen Ansaugtrakt 16 und einen Abgastrakt 17 auf. Über den Ansaugtrakt 16 wird die zur Verbrennung des Kraftstoffes nötige Luft zugeführt. Zur Ein¬ stellung des Luftmassenstromes ist im Ansaugtrakt 16 ein Drosselorgan 18 vorgesehen, das bevorzugt als eine elektro- motorisch ansteuerbare Drosselklappe (E-GAS) ausgebildet ist und dessen Öffnungsquerschnitt neben der Betätigung des Fahrers (Fahrerwunsch) abhängig vom Betriebsbereich der Verbrennungskraftmaschine 3 über Signale einer, die Verbrennungs- kraftmaschine 3 steuernden und regelnden elektronischen
Steuerungseinrichtung 21 einstellbar ist. Stromaufwärts des Drosselorgans 18 ist in dem Ansaugtrakt 16 ein Lastsensor 19 in Form eines Luftmassenmessers oder eines Saugrohrdrucksensors vorgesehen und die jeweils ein entsprechendes Lastsignal L liefern. Zur Nachbehandlung der aufgrund der Verbrennung in den Zylindern der Verbrennungskraftmaschine 3 entstehenden Abgase ist im Abgastrakt 17 eine Abgasnachbehandlungsanlage 20 verbaut. Die Abgasnachbehandlungsanlage 20 kann insbesondere einen NOx-Speicherkatalysator und/oder einen Rußpartikelfilter enthalten .
In Strömungsrichtung des Abgases gesehen stromaufwärts der Abgasnachbehandlungsanlage 20 ist eine Lambdasonde 22 vorge- sehen, welche einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal λ (Lambda) charakteristisch ist für das Luft/KraftstoffVerhältnis in den Zylindern der Verbrennungs¬ kraftmaschine 3. Der elektronischen Steuerungseinrichtung 21 sind verschiedene Sensoren zugeordnet, die Messgrößen erfassen und die Messwerte der Messgröße ermitteln. Die Steuerungsvorrichtung 21 steuert abhängig von mindestens einer der Betriebsgrößen die Stellglieder, die der Verbrennungskraftmaschine 3 zugeordnet sind, und denen jeweils entsprechende Stellantriebe zugeordnet sind, durch das Erzeugen von Stellsignalen für die Stellantriebe an.
Die Sensoren sind beispielsweise der Lastsensor 19, die
Lambdasonde 22 und ein Pedalstellungsgeber 23, welcher die Stellung eines Fahrpedals 24 erfasst. Signale von weiteren Sensoren, die zur Steuerung und/oder Regelung der Verbrennungskraftmaschine 3 und deren Nebenaggregate nötig sind, wie beispielsweise Temperatursensoren für die Ansaugluft und für das Kühlmittel, ein Kurbelwinkelsensor etc. sind in der Figur 1 nicht explizit gargestellt, sondern allgemein mit dem Bezugszeichen ES gekennzeichnet . Die Stellglieder, welche die Steuerungseinrichtung 21 mittels Stellsignalen ansteuert, sind beispielsweise das Drosselorgan 18, Gaseinlass- und Gasauslassventile, Kraftstoffeinspritz- ventile, Zündkerzen etc. Solche Stellsignale für weitere Stellglieder der Verbrennungskraftmaschine 3 und deren
Nebenaggregate sind in der Figur allgemein mit dem Bezugszeichen ES gekennzeichnet.
Die Steuerungseinrichtung 21 ist zum Austausch von Daten mit der Bordnetzelektronik 14 der Elektromaschine 4 gekoppelt, bei¬ spielsweise über einen CAN-Bus .
Die elektronische Steuerungseinrichtung 21 kann auch als Motorsteuergerät bezeichnet werden. Solche Steuerungseinrich- tungen 21, die in der Regel einen oder mehrere Mikroprozessoren beinhalten, sind an sich bekannt, sodass im Folgenden nur auf den im Zusammenhang mit der Erfindung relevanten Aufbau und dessen Funktionsweise eingegangen wird. Die Steuerungseinrichtung 21 umfasst bevorzugt eine Recheneinheit 25 (Prozessor), die mit einem Programmspeicher 26 und einem Wertespeicher 27 (Datenspeicher) gekoppelt ist. In dem Programmspeicher und dem Wertespeicher sind Programme bzw. Werte gespeichert, die für den Betrieb der Verbrennungskraftmaschine 3 nötig sind. Unter anderem ist in dem Programmspeicher softwaremäßig eine Funktion zum Steuern des Hybrid-Antriebs- stranges 1 implementiert, wie es nachfolgend anhand der Be¬ schreibung der Figuren 2A bis 2E erläutert wird. Zum Zeitpunkt tO erfolgt eine Anforderung zu einem speziellen Betrieb der Verbrennungskraftmaschine 3. Dabei handelt es sich insbesondere um Maßnahmen, um das Abgas der Verbrennungs¬ kraftmaschine 3 in irgendeiner Weise zu beeinflussen. Eine derartige Maßnahme stellt beispielsweise die Regenerationsphase eines NOx-Speicherkatalysators , das Freibrennen eines
Rußpartikelfilters oder das Öffnen eines Abgasrückführventils dar, so dass Abgas in den Ansaugtrakt gelangen und sich dort mit der angesaugten Frischluft vermischen kann. In Fig. 2A ist eine solche Anforderung in Form eines
Triggersignals TRIGG dargestellt, das zum Zeitpunkt tO von einem logischen Wert 0 auf einen logischen Wert 1 springt. Zur Umsetzung der genannten Maßnahmen wird die Luftzahl λ zum Zeitpunkt tO von einem bis zum Zeitpunkt tO vorliegenden Lambda-Istwert X_IST in Richtung auf einen vorgegebenen
Lambda-Sollwert X_SOLL eingeregelt. Dies erfolgt mittels einer herkömmlichen, bekannten Lambda-Regelungseinrichtung . Im Falle einer angeforderten Regeneration des NOx- Speicherkatalysators ist der Sollwert X_SOLL < 1, das Luft-/Kraftstoffgemisch wird also angefettet. Der gewünschte Sollwert X_SOLL wird zeitlich etwas verzögert nach Anforderung zum Zeitpunkt tO erreicht (Fig. 2B) .
Zum Zeitpunkt tl erfolgt eine Lastanforderung (Erhöhung der Last L) , gleichbedeutend mit einer Drehmomentanforderung an den Antriebsstrang der Verbrennungskraftmaschine 3, weil z.B. der Fahrer des Kraftfahrzeugs 2 auf das Fahrpedal 24 drückt (Fig. 2C) .
Wird die Verbrennungskraftmaschine 3 schon in der Nähe ihrer Lastgrenze betrieben, so kann sie das zusätzlich angeforderte Drehmoment nicht aufbringen, ohne das in diesem Falle die zum Zeitpunkt tO eingeleitete Regenerationsphase für den
NOx-Speicherkatalysator oder das Freibrennen des
Rußpartikelfilters wieder abzubrechen. Um dies zu vermeiden, wird nicht das Drehmoment MD_VKM der Verbrennungskraftmaschine 3 erhöht, sondern zum Zeitpunkt tl das Drehmoment MD_EM der Elektromaschine 4 erhöht, bis zum Zeitpunkt t2 der gewünschte Sollwert für das angeforderte Drehmoment erreicht ist (Fig. 2D) .
Zum Zeitpunkt t3 besteht keine Notwendigkeit mehr, das Abgas der Verbrennungskraftmaschine 3 mittels zusätzlicher, spezieller Maßnahmen zu beeinflussen, sei es weil der NOx-Speicher- katalysator regeneriert oder das Rußpartikelfilter freigebrannt ist. Das Triggersignal TRIG springt deshalb zum Zeitpunkt t3 vom logischen Wert 1 auf den logischen Wert 0. Da zum Zeitpunkt t3 kein zusätzliches Drehmoment zur Beein¬ flussung des Abgases mehr aufgewendet werden muss, wird die Elektromaschine 4 derart angesteuert, dass sein an den Hyb- rid-Antriebsstrang 1 abgegebene Drehmoment MD_EM wieder auf den Ausgangswert reduziert wird, welcher vor der Lastanforderung vorherrschte (Zeitpunkt t4 in Fig. 2D) .
Die höhere Lastanforderung aufgrund des Fahrerwunsches zum Zeitpunkt tl besteht aber über den Zeitpunkt t3 hinaus (FIG. 2C) . Durch Wegfall des zusätzlich aufzubringenden Drehmoments zur Beeinflussung des Abgases kann nun diese erhöhte Last von der Verbrennungskraftmaschine 3 aufgebracht werden. Das Drehmoment MD_VKM der Verbrennungskraftmaschine wird in demselben Maße erhöht, wie das Drehmoment MD_EM der Elektromaschine 4 reduziert wird (Zeitspanne t4-t3, FIG. 2D und FIG. 2E) .
Zum Zeitpunkt t5 fällt die erhöhte Lastanforderung wieder weg (FIG. 2C) , beispielsweise, weil der Fahrer Gas weg nimmt und deshalb wird das Drehmoment MD_VKM ab diesem Zeitpunkt t5 wieder reduziert, so dass ein Wert erreicht wird, der zu dem Zeitpunkt tl vor der Lastanforderung vorherrschte (t6, FIG. 2E) .
Bezugs zeichenliste
1 Hybrid-Antriebsstrang
2 Kraftfahrzeug
3 Verbrennungskraftmaschine
4 Elektromaschine
5 erste Kupplung
6 Kurbelwelle
7 zweite Kupplung
8 Getriebeeingangswelle
9 Getriebe
10 Getriebeausgangswelle
11 Differentialgetriebe
12 Antriebsachse
14 Bordnetzelekronik
15 Hybridbatterie
16 Ansaugtrakt
17 Abgastrakt
18 Drosselorgan
19 Lastsensor
20 Abgasnachbehandlungsanlage
21 elektronische Steuerungseinrichtung
22 Lambdasonde
23 Pedalstellungsgeber
24 Fahrpedal
AS Ausgangssignale
ES Eingangssignale
L Lastsignal
λ Lambda
X_SOLL Lambda-Sollwert
X_IST Lambda-Istwert
MD_EM Drehmoment der Elektromaschine
MD_VKM Drehmoment der Verbrennungskraftmaschine t Zeit
t0-t6 Zeitpunkte TRIG Triggersignal

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Kraftfahrzeugs (2) mit einem Hybridantrieb, bestehend aus einer Verbrennungskraftmaschine (3) und einer Elektromaschine (4), die beide auf einen ge¬ meinsamen Hybrid-Antriebsstrang (1) einwirken und die Verbrennungskraftmaschine (3) zum Betreiben von Komponenten einer Abgasnachbehandlungsanlage (20) zumindest zeitweise in einer Phase mit einem fetten Luft-/Kraftstoffgemisch betrieben oder zur Senkung der Abgastemperatur mit einer Abgasrückführung betrieben wird, dadurch gekennzeichnet, dass
beim Auftreten einer erhöhten Lastanforderung für die Verbrennungskraftmaschine (3) während der Phase des Betriebes mit einem fetten Luft-/Kraftstoffgemisch oder in der Phase des Betriebes mit Abgasrückführung, das Drehmoment oder in der Phase (MD_VKM) der Verbrennungskraftmaschine (3) konstant gehalten wird und das aufgrund der erhöhten Lastanforderung benötigte zusätzliche Drehmoment ausschließlich von der Elektromaschine (4) aufgebracht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei Beendigung der Phase des Betriebes mit einem fetten
Luft-/Kraftstoffgemisch das zusätzliche Drehmoment (MD_EM) der Elektromaschine (4) auf einen Wert reduziert wird, der vor dem Auftreten der Lasterhöhung herrschte und das Drehmoment (MD_VKM) der Verbrennungskraftmaschine (3) erhöht wird, so dass die geforderte Lasterhöhung umgesetzt werden kann.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erhöhte Lastanforderung vom Fahrer des Kraftfahrzeugs (2) ausgelöst wird.
4. Vorrichtung zum Betreiben eines Kraftfahrzeugs (2) mit einem Hybridantrieb, die dazu ausgebildet ist, ein Verfahren nach einem der Ansprüche 1 bis 3 auszuführen.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Hybridantrieb als paralleler Hybridantrieb ausgebildet ist, bei dem die Drehmomente der beiden Antriebsquellen (3, 4) einzeln oder gleichzeitig auf den Hybrid-Antriebsstrang (1) verfügbar sind.
6. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Elektromaschine (4) als Riemenstartergenerator ausgebildet ist.
7. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Phase des Betriebes mit einem fetten Luft-/Kraftstoffgemisch einen Regenerationsbetrieb oder eine Entschwefelung eines NOx-Speicherkatalysators der Abgasnach¬ behandlungsanlage (20) umfasst.
8. Vorrichtung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Phase des Betriebes mit einem fetten Luft-/Kraftstoffgemisch das Freibrennen eines Partikelfilters der Abgasnachbehandlungsanlage (20) umfasst.
PCT/EP2016/081650 2015-12-21 2016-12-19 Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb WO2017108652A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015226216.2 2015-12-21
DE102015226216.2A DE102015226216A1 (de) 2015-12-21 2015-12-21 Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einem Hybridantrieb

Publications (1)

Publication Number Publication Date
WO2017108652A1 true WO2017108652A1 (de) 2017-06-29

Family

ID=57777590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/081650 WO2017108652A1 (de) 2015-12-21 2016-12-19 Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb

Country Status (2)

Country Link
DE (1) DE102015226216A1 (de)
WO (1) WO2017108652A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212807A1 (de) * 2017-07-26 2019-01-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regeneration eines Partikelfilters eines Fahrzeugs
DE102017217284A1 (de) 2017-09-28 2019-03-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs mit einer Verbrennungskraftmaschine und einer weiteren Maschine
DE102019103833A1 (de) * 2019-01-16 2020-07-16 Volkswagen Aktiengesellschaft Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors sowie Abgasnachbehandlungssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010668A1 (de) * 2004-07-28 2006-02-02 Robert Bosch Gmbh Verfahren zum betreiben eines hybridantriebs und vorrichtung zur durchführung des verfahrens
EP2058199A1 (de) * 2007-01-26 2009-05-13 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung eines kompressionszündungs-verbrennungsmotors
DE102012202679B3 (de) * 2012-02-22 2013-03-14 Ford Global Technologies, Llc Verfahren zur Einleitung und Aufrechterhaltung eines unterstöchiometrischen Betriebs einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
GB2504351A (en) * 2012-07-27 2014-01-29 Gm Global Tech Operations Inc Method of controlling hybrid powertrain having an engine operating under rich combustion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783712B2 (ja) 2003-12-03 2006-06-07 トヨタ自動車株式会社 ハイブリッド車両における内燃機関の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006010668A1 (de) * 2004-07-28 2006-02-02 Robert Bosch Gmbh Verfahren zum betreiben eines hybridantriebs und vorrichtung zur durchführung des verfahrens
EP2058199A1 (de) * 2007-01-26 2009-05-13 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung eines kompressionszündungs-verbrennungsmotors
DE102012202679B3 (de) * 2012-02-22 2013-03-14 Ford Global Technologies, Llc Verfahren zur Einleitung und Aufrechterhaltung eines unterstöchiometrischen Betriebs einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
GB2504351A (en) * 2012-07-27 2014-01-29 Gm Global Tech Operations Inc Method of controlling hybrid powertrain having an engine operating under rich combustion

Also Published As

Publication number Publication date
DE102015226216A1 (de) 2017-05-11

Similar Documents

Publication Publication Date Title
DE102017101177B4 (de) Verfahren zur Regeneration eines Partikelfilters sowie Abgasnachbehandlungsvorrichtung mit einem Partikelfilter
DE102007045817B4 (de) Verfahren und Vorrichtung zum Steuern des Motorbetriebs während der Regeneration eines Abgasnachbehandlungssystems
WO2017036705A1 (de) Verfahren und vorrichtung zum steuern einer verbrennungskraftmaschine während des kaltstarts und warmlaufs
DE102015222684B4 (de) Steuergerät für einen Verbrennungsmotor
DE102016120938A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters bei einem Kraftfahrzeug mit Hybridantrieb
DE102007061466A1 (de) Verfahren zum Betreiben eines elektronisch gesteuerten Brennkraftmotors
WO2017108652A1 (de) Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb
DE102012202679B3 (de) Verfahren zur Einleitung und Aufrechterhaltung eines unterstöchiometrischen Betriebs einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE102018203086A1 (de) Verfahren und Anordnung zum Regenerieren eines LNT-Katalysators, Steuereinheit und Kraftfahrzeug
DE112004002979B4 (de) Verbrennungsmotor-Steuerungsvorrichtung und Steuerungsverfahren für einen Verbrennungsmotor
DE102009014007B4 (de) Verfahren und Vorrichtung zum Steuern einer Hybridantriebsvorrichtung
EP1269010A1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
DE102015209979A1 (de) Verfahren zum Bestimmen eines Hybridantrieb-Drehmomentschwellwertes, zum Betrieb einer Hybridantriebsvorrichtung und Hybridfahrzeug
EP4095364B1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine
DE102012222107A1 (de) Verfahren zum Steuern einer Abgasrückführung
DE102018201487A1 (de) Verfahren und Anordnung zum Kühlen von Abgasnachbehandlungseinrichtungen, Kraftfahrzeug und Computerprogrammprodukt
DE102008044269A1 (de) Verfahren zum Einstellen der Abgasrückführrate einer Brennkraftmaschine
DE102015213250B4 (de) Verfahren zum Betreiben eines von einer Brennkraftmaschine angetriebenen Fahrzeugs in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug
WO2008003551A1 (de) Verfahren und vorrichtung zum steuern eines antriebssystems aus brennkraftmaschine und einem weiteren antriebsaggregat
DE102018200399B4 (de) Verfahren zur Analyse der Sauerstoffspeicherkapazität eines Katalysators und Antrieb für ein Kraftfahrzeug
DE102015010628A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs
WO2010020562A2 (de) Verfahren zum betreiben einer hybridantriebsvorrichtung, hybridantriebsvorrichtung und elektronisches steuergerät
DE102019219892A1 (de) Verfahren und Vorrichtung zur Regeneration eines beschichteten Partikelfilters im Abgastrakt eines benzinbetriebenen Kraftfahrzeugs
DE112019001382T5 (de) Steuergerät und steuerverfahren
DE102018205452B4 (de) Verfahren und Anordnung zur Bereitstellung von stabilen Betriebsbedingungen zur Überprüfung der Funktionsfähigkeit eines LNT-Katalysators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16825366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16825366

Country of ref document: EP

Kind code of ref document: A1