WO2017107362A1 - 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法 - Google Patents

复合载荷模式力电热磁耦合材料性能原位测试仪器与方法 Download PDF

Info

Publication number
WO2017107362A1
WO2017107362A1 PCT/CN2016/081477 CN2016081477W WO2017107362A1 WO 2017107362 A1 WO2017107362 A1 WO 2017107362A1 CN 2016081477 W CN2016081477 W CN 2016081477W WO 2017107362 A1 WO2017107362 A1 WO 2017107362A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
module
test
tensile
load
Prior art date
Application number
PCT/CN2016/081477
Other languages
English (en)
French (fr)
Inventor
赵宏伟
刘长宜
马志超
任露泉
刘先华
周永臣
孙霁雯
乔元森
任壮
洪坤
张富
范尊强
张志辉
呼咏
董景石
Original Assignee
吉林大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林大学 filed Critical 吉林大学
Priority to EP16877176.4A priority Critical patent/EP3396353B1/en
Publication of WO2017107362A1 publication Critical patent/WO2017107362A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/62Manufacturing, calibrating, or repairing devices used in investigations covered by the preceding subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/18Performing tests at high or low temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/48Investigating hardness or rebound hardness by performing impressions under impulsive load by indentors, e.g. falling ball
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/54Performing tests at high or low temperatures

Definitions

  • the invention relates to the field of precision scientific instruments, in particular to an in-situ testing instrument and method for performance of a composite load mode force electro-magneto-magnetic coupling material.
  • the in-situ testing instrument and method for material microscopic properties under the combined load mode electro-thermal-thermal-magnetic multiphysics coupling loading condition of the invention can provide four mechanical loads of "stretching/compression-low cycle fatigue-torsion-bending" One or more of them can also perform microscopic performance tests under the multi-physics coupling of “stress field-temperature field (high/low temperature)-electric field-magnetic field” for typical functional materials. Parallel loading test with coexistence of load modes.
  • in-situ micro-nano indentation test module embedded in the instrument, it is possible to accurately measure the dynamic evolution of the indentation curve, hardness, elastic modulus and other parameters of the material sample under complex load conditions.
  • in-situ monitoring platform for material samples in complex stress state multi-physics coupling, precise dynamic monitoring of complex loads during and after the action, physical properties of materials, deformation damage, microstructure changes and performance evolution are related to The important data information of material service performance, reliability and service life provides effective means and methods for testing the micromechanical properties of materials under service conditions.
  • the development and application of new materials and new processes is the basis of industrial development, and the continuous development of materials technology also depends on the in-depth study of various mechanical properties and physical properties of materials.
  • the material mechanical property testing technology is mainly used to obtain the macroscopic mechanical parameters such as the elastic modulus and shear modulus of the material.
  • various new materials are emerging, and the testing and analysis of the specificity of these new materials has gradually become a research hotspot in the international academic and engineering circles.
  • the traditional material mechanical property testing method is difficult to fully reflect the physical properties of the new material. Especially under the actual working conditions, the material often works under the combined load. The physical properties and mechanical properties of the material cannot be tested under a single load. The performance is assessed.
  • the material performance test is mostly in the background of the off-site process, and a material that can be based on the composite load mode force-electric-thermal-magnetic multiphysics coupling environment is developed.
  • In-situ testing instruments for micromechanical properties and corresponding test methods have become the development trend of new material testing instruments.
  • the object of the present invention is to provide an in-situ testing instrument and method for the performance of a composite load mode force electro-magneto-magnetic coupling material, and to solve the in-situ test of material performance under the coupling of force-electric-thermal-magnetic multiphysics coupling in the existing instrument equipment.
  • the invention can realize the integration of other mechanical loading forms on the basis of the stretching/compression loading, and can also construct the multi-physics coupling condition of the high temperature field/low temperature field-electric field-magnetic field, and utilize the in-situ micro-nano embedded in the instrument.
  • the indentation test module can accurately measure the dynamic evolution of parameters such as indentation curve, hardness and elastic modulus of material samples under these complex loading conditions.
  • the instrument can realize any combination of stretching/compression, bending, torsion, low cycle fatigue, temperature field, electric field and magnetic field, and can realize up to seven kinds of loads at the same time.
  • Parallel loading test with coexistence of modes provides effective means and methods for testing microscopic mechanical properties of materials under service conditions.
  • the instrument's embedded optical microscopic imaging monitoring module, micro-Raman monitoring module and other types of in-situ monitoring modules it can accurately and dynamically monitor the physical performance parameters and deformation damage of the material during and after the complex load.
  • micro-organizational changes and performance evolution are important data information about material service performance, reliability and service life.
  • the invention can integrate the whole machine with the vacuum chamber to simulate a more abundant experimental environment, such as a low pressure environment, a vacuum environment, an inert gas environment and the like.
  • the loading mode and the experimental condition of the invention are closer to the actual service condition of the material, and the richer material performance parameters are obtained, which provides an effective test method for studying the mechanical properties, physical properties, microstructure and material failure mechanism of the material. .
  • Composite load mode force electro-thermal magnetic coupling material performance in-situ test instrument including composite load-multiphysics loading test platform 1, in-situ monitoring platform 2 and vibration isolation base 3, the vibration isolation base 3 is used for supporting composite load - Multi-physics loading test platform 1, in-situ monitoring platform 2, providing basic installation positioning and providing effective vibration isolation treatment for the test process;
  • the composite load-multiphysics loading test platform 1 is based on test conditions Applying tensile/compression, bending, torsion, and low-cycle fatigue load mode mechanical loading to the sample to be tested, and simultaneously detecting the load signal and deformation signal, and then realizing the mechanical properties of the material under the composite load mode;
  • Condition apply force, electric, thermal, magnetic multi-field load to the sample of the tested material, and achieve accurate measurement of external field loading parameters and corresponding physical performance parameters of the material;
  • under the coupling of composite load-multiphysics loading test platform 1 A complex load is applied to the sample of the material to be tested, which is close to the mechanical and external field coupling under service conditions, and
  • the composite load-multiple field loading test platform 1 includes a tensile/compression loading module 11, a torsional loading module 12, a bending loading module 13, a low cycle fatigue loading module 14, a micro/nano indentation testing module 15, and a high temperature loading module 16.
  • the low temperature loading module 17, the magnetic field loading module 18, the electric field loading module 19, the core device DC power supply and the circulating refrigeration pump of the low temperature loading module 17, the electric field loading module 19 are external devices; the stretching/compression loading module 11
  • the torsion loading module 12 is divided into two parts, a torsional loading active unit 1201 and a torsional loading and fixing unit 1202, which are respectively mounted on the torsion end stretching slide 1103 of the tensile/compression loading module 11 and the fatigue end.
  • the low-cycle fatigue loading module 14 is mounted on the fatigue end stretching slide 1104 and connected to the tail of the torsional loading fixing unit 1202, the bending loading module 13, the micro-nano indentation testing module 15, and infrared thermal imaging monitoring.
  • the modules 22 are respectively fixed to the bending feeding unit 2401, the indentation feeding unit 2403, and the infrared thermal imager feeding unit 2402 of the lateral loading observation module 24, and
  • the device is mounted on the function switching unit 2404; the reciprocating motion of the function switching unit 2404 realizes the position selection and station switching of the bending loading module 13, the micro-nano indentation testing module 15, the infrared thermal imaging monitoring module 22, and the infrared thermal imager feeding
  • the linear motion of the unit 2402 adjusts the visual range of the infrared thermal imaging monitoring module 22.
  • the linear motion of the curved feeding unit 2401 drives the bending ram 1302 to achieve bending load loading, and the linear motion of the indentation feeding unit 2403 drives the indentation ram 1509.
  • the initial positioning of the press-in position is performed; the high-temperature loading module 16 is connected to the magnetic field loading module 18 through the adjusting sliding seat 1602 and the adjusting sliding rail 1805, and the magnetic field loading module 18 and the lateral loading observation module 24 are respectively fixed in the tensile/compression loading. Both sides of the main axis of the module 11.
  • the composite load-multiphysics loading test platform (1) integrates other mechanical loading test modes on the basis of implementing the tensile/compression loading test, and can also construct a high temperature/low temperature-electric field-magnetic field physical field environment.
  • the micro-mechanical properties of the material can be analyzed by means of press-in detection; at most, "stretching-fatigue-bending-torsion-high temperature field/low temperature field-electric field” can be realized.
  • Composite load-multi-physics coupled loading test of magnetic field” or “compression-bending-torsion-high temperature field/low temperature field-electric field-magnetic field” simulating a rich test environment, obtaining rich physical property parameters of materials, and simulating specific work In this case, select one or several of the functions for coupled loading.
  • the composite load-multiple physics loading test platform, the in-situ monitoring platform 2 and the vacuum chamber 4 are integrated to realize a composite load-multiple physics coupled loading test and in-situ monitoring in a vacuum environment; the vibration isolation base 3 Integrated in the vacuum chamber 4, the vibration generated during the operation of the vacuum pump is prevented from affecting the in-situ monitoring effect of the instrument; under the condition of the vacuum chamber, the composite load-multiphysics loading test platform 1 is placed on the yaw support module 25, The yoke table 2501 of the pendulum support module 25 is placed on the heavy-duty guide rail 2502.
  • the composite load-multi-physics loading test platform 1 is partially withdrawn from the vacuum chamber 4 together with the yaw table 2501, so that the material sample can be replaced;
  • the docking of the load tool cart 6 and the vibration isolation base 3 in the vacuum chamber 4, the composite load-multiphysics loading test platform 1 is completely pulled out of the vacuum chamber 4, so as to facilitate debugging and maintenance.
  • the tension/compression loading module 11 adopts a biaxial stretching structure, and the two-way screw 1102 is driven by the tension and compression servo motor 1101 to drive the torsion end stretching slide 1103 and the fatigue end stretching slide 1104 to ensure the stroke on both sides.
  • the moving speed is the same, and the loading of the tensile/compression load is realized, and the tensile/compression loading deformation is measured by the linear grating reading heads I, II1105, and 1118.
  • the torsional loading module 12 includes two parts: a torsion loading active unit 1201 and a torsional loading and fixing unit 1202.
  • the torsion loading active unit 1201 is a loading end, and the torsion servo motor 120104 drives the torsional driving gear 120108.
  • the torsion driven gear 120109 drives the active end clamp body 120116 to achieve torque loading;
  • the torsional loading and fixing unit 1202 is a fixed end, and the fixed end clamp body 120204 and the connecting shaft 120209 transmit torque to the pull-torsion composite sensor 120210, thereby realizing the tensile force, Torque size determination;
  • the active end clamp specific 120116, the fixed end clamp specific 120204 are respectively installed with a circular grating reading head I, II120117, 120202, and the accurate measurement of the torsion angle is realized by measuring the angular difference read during the torsion test;
  • the rotary joint 120106 of the torsional loading active unit 1201 is divided into a rotary joint stator 120106B and a rotary joint rotor 120106A.
  • the rotary joint rotor 120106A is provided with a ring groove, which is connected with the through port on the rotary joint stator 120106B.
  • the fluid can be transported, and the connecting end flange 120107 is used to connect the flow path of the active end clamp 120116 with the flow path of the rotary joint 120106, so that when the active end clamp 120116 is rotated by the torsional loading,
  • the refrigerant liquid is introduced and circulated;
  • the low temperature loading module 17 relies on the active end clamp specific 120116, the fixed end clamp specific 120204 built-in refrigeration flow passage, and uses an external cryogenic refrigeration pump to pump the refrigerant liquid to the active end clamp specific 120116, the fixed end In the flow channel opened inside the clamp 120204, the material sample is cooled by means of heat conduction, and a low temperature test environment is created for the material sample.
  • the inner frame of the fatigue loading module flexible hinge 1402 of the low cycle fatigue loading module 14 is fixed on the fatigue loading module base 1401, and the outer frame is connected with the connecting plate 120211; the fatigue loading module piezoelectric stack 1403 passes the fatigue loading module flexible hinge 1402, the connecting plate 120211, the pull-torsion composite sensor 120210 drives the fixed end clamp 120204 to generate high-frequency reciprocating micro-displacement, thereby achieving fatigue loading of the tensile material sample 51 under the pre-tension load; under large tensile load,
  • the unloading plate 120212 is fastened to the connecting plate 120211 and the fatigue end stretching slide 1104 by tightening the screw, thereby unloading the large tensile force load, and protecting the fatigue loading module piezoelectric stack 1403 from damage.
  • the micro-nano indentation test module 15 realizes the indentation initial feeding by the linear motion of the indentation feeding unit 2403, and the indentation test module piezoelectric stack 1505 drives the indentation indenter 1509 through the indentation flexible hinge 1502 to achieve precision.
  • the press-in force during the press-fitting process is collected by the press-in force sensor 1508, and the press-in depth of the indentation press head 1509 is monitored by the capacitive micro-displacement sensor 1506.
  • the high temperature loading module 16 includes a halogen heating lamp 1601, an adjustment sliding seat 1602, a halogen lamp mounting plate 1603, and the halogen heating lamp 1601 is connected to the halogen lamp mounting plate 1603 by screws, and is mounted on the adjusting sliding seat 1602, and the high temperature field is Loading is performed by a halogen heating lamp 1601 focusing the material sample;
  • the magnetic field loading module 18 includes a lower yoke 1801, a coil 1802, an upper yoke 1803, a magnetic pole head 1804, and an adjustment slide rail 1805.
  • the loading of the magnetic field is realized by a controllable electromagnet, and the controllable electromagnet is controlled by the lower yoke 1801.
  • the coil 1802, the upper yoke 1803, and the magnetic pole head 1804 are formed.
  • the two pole poles 1804 are arranged up and down, respectively fixed on the lower yoke 1801 and the upper yoke 1803, and the material samples are placed on the two magnetic pole ends 1804.
  • the halogen heating lamp 1601 can be removed when the high temperature field function is not required, preventing the occlusion of the optical path of the in-situ monitoring module;
  • the electric field loading module 19 is externally connected with a high-voltage DC power supply, and the two wires are respectively connected to two opposite planes of the material sample by using conductive silver glue, and a DC high-voltage electric field is applied at both ends of the wire to realize electric field loading;
  • the placement of the test instrument in the vacuum chamber 4 helps to reduce the breakdown voltage between the two electrodes to increase the electric field strength of the electric field loading test.
  • the in-situ monitoring platform 2 is used for dynamically monitoring the deformation damage, microstructure change and performance evolution of the material sample under the complex mechanical load and the multi-physics load, and the complex adjustment of the posture of each monitoring module is realized to realize the complexity.
  • Real-time dynamic in-situ monitoring of microscopic deformation, damage mechanism, microstructure change and performance evolution of material samples under load conditions including optical microscopy imaging module 21, infrared thermal imaging monitoring module 22, micro-Raman spectroscopy monitoring module 23.
  • the lateral loading observation module 24, the yaw support module 25, the optical microscopic imaging monitoring module 21, and the micro-Raman spectroscopy monitoring module 23 are disposed on both sides of the composite load-multiphysics loading test platform 1, and are installed at intervals
  • the yaw supporting module 25 is mounted on the vibration isolating base 3, and carries a composite load-multiphysics loading test platform 1 while providing a richer viewing position for each in-situ observation module.
  • the infrared thermal imaging monitoring module 22 is mounted on the lateral loading observation module 24, and the lateral loading observation module 24 is mounted on the composite load-multiphysics loading test platform 1.
  • the optical microscopic imaging monitoring module 21 and the micro-Raman spectroscopy monitoring module 23 can realize the position adjustment in the three directions of X, Y and Z, complete the transformation of the display field of view and the focusing of the imaging instrument by the X-axis.
  • Motion unit I, II 2101, 2301, Y-axis motion unit I, II 2102, 2302, Z-axis motion unit I, II 2104, 2304 are implemented; micro Raman spectrometer 2315 adjusts the initial monitoring angle by adjusting the rotating bracket 2305 and the pitch hand 2313 Adjusted with the initial monitoring position to achieve a richer monitoring range; the Raman microscope 2315 is a built-in CCD format, and the rear is integrated with a Raman spectrometer through a standard C interface, according to the microscopic image within the visible range.
  • the local micro-area is selected to analyze the microstructure of the micro-region by Raman spectroscopy; the optical micro-imaging monitoring module 21 and the micro-Raman spectroscopy monitoring module 23 respectively realize the microstructure of the material sample under the composite load-multiphysics coupling test. Monitoring of the structure and monitoring of changes in tissue composition; the infrared thermal imaging monitoring module 22 monitors the temperature distribution of the material sample in the temperature field in real time.
  • Another object of the present invention is to provide an in-situ test method for the performance of a composite load mode force electro-thermal magnetic coupling material, and an in-situ test method for the micro-performance of a force-electric thermomagnetic multiphysics coupling material based on a tensile test, through an active end
  • the tensile clamp platen 120115 and the fixed end tensile clamp platen 120205 fix the tensile material sample 51 to the active end clamp body 120116, the fixed end clamp body 120204, and the tensile/compression loading module 11 drives the torsion end stretching slide.
  • the fatigue end stretching slide 1104 is moved backward to realize the tensile loading of the tensile material sample 51; the torsional loading of the tensile material sample 51 is realized by the torsional loading module 12; respectively, through the linear grating reading head I1105, the circular grating reading The head 120117I measures the tensile strain of the tensile material sample 51 And the torsional strain, the tensile stress and the torsional stress are measured by the tensile-torsion composite sensor 120210; the low-cycle fatigue loading module 14 can apply a low-cycle fatigue load to the tensile material sample 51 under the tensile load; the lateral loading observation module 24
  • the bending loading module 13 is driven to the working position, the bending load is applied to the tensile material sample 51, and the bending force is measured by the pressure sensor 1303; the electric field loading module 19 is used to stretch the material sample 51 to apply an electric field while applying the composite mechanical load, and the magnetic field is loaded by the module.
  • the infrared thermal imaging monitoring module 22 is moved to the working position to measure the temperature field information of the tensile material sample 51 by the lateral loading observation module 24; in addition, the low temperature loading module 17 can apply a low temperature to the tensile material sample 51; Deformation of the tensile material sample 51 by the optical microscopy imaging monitoring module 21 during operation The damage and failure modes are observed in situ; at any time during the test, the micro-nano indentation test module 15 can be switched to the working position by the lateral loading observation module 24, and the micro-nano indentation test is performed on the surface of the test piece, and the indentation is performed.
  • the linear motion of the feeding unit 2403 realizes the initial feeding of the indentation; the indentation test module piezoelectric stack 1505 drives the indentation indenter 1509 through the indentation flexible hinge 1502 and the pressing force sensor 1508 to realize precise feeding; and the pressing force sensor 1508 is used.
  • the indentation force and the indentation information collected by the capacitive micro-displacement sensor 1506 depict a micro-nano indentation curve; the process can adjust the composite load-multiphysics loading test platform 1 to the micro-Raman spectroscopy through the yaw support module 25
  • the observation range of the monitoring module 23 is performed, and the in-press test is performed in-situ, and the Raman spectrum information of the local micro-region is acquired.
  • the instrument of the invention can realize four kinds of load loadings of "stretching/compression-torsion-bending-low-cycle fatigue", and can also construct a high-temperature/low-temperature-electric field-magnetic field physical field environment, and can realize "stretching at most" - low cycle fatigue - bending - torsion - high temperature field (low temperature field) - electric field - magnetic field” or "compression - bending - torsion - high temperature field (low temperature field) - electric field - magnetic field” composite load - multiphysics coupling test, Simulate a rich test environment, obtain rich physical properties of materials, simulate specific conditions, and select one or several functions for coupling loading, such as tensile-twist-low temperature, tensile-fatigue-high temperature, compression- Electric field, etc.
  • the instrument of the invention utilizes an in-situ observation platform consisting of an optical microscopy imaging monitoring module, an infrared thermal imaging monitoring module, and a micro-Raman spectroscopy monitoring module, which can be dynamically monitored in situ under complex mechanical loads and multi-physics loads. Deformation damage, microstructure changes and performance evolution of material samples.
  • the instrument of the invention can integrate a vacuum chamber to provide a test environment for a sample of the material to be tested, such as a low pressure, a vacuum, an inert gas, etc., in order to perform a composite load-multiphysics coupling test of the material sample under the above environment.
  • a sample of the material to be tested such as a low pressure, a vacuum, an inert gas, etc.
  • the electronic control part of the instrument can be integrated in the lower part of the vibration isolation base, and the instrument tool cart can be integrated to make the instrument structure more compact, convenient to operate and complete in function.
  • Figure 1 is a schematic view of the whole machine of the present invention
  • FIG. 2 is a schematic diagram of a composite load-multiphysics loading test platform of the present invention
  • Figure 3 is an assembly diagram of the tensile/die-molding module of the present invention.
  • Figure 5 is an assembled view of the torsional loading and fixing unit of the present invention.
  • Figure 6 is an assembled view of the lateral loading observation module of the present invention.
  • Figure 7 is a schematic view of a trimming unit of the present invention.
  • Figure 8 is a schematic view of a refrigeration flow path of the present invention.
  • Figure 9 is a schematic view showing the clamping of the tensile material sample of the present invention.
  • Figure 10 is a schematic view showing the clamping of the compressed material sample of the present invention.
  • Figure 11 is an assembled view of the high temperature loading module and the magnetic field loading module of the present invention.
  • Figure 12 is an assembly view of the yaw support module of the present invention.
  • Figure 13 is an assembly diagram of an optical microscopic imaging monitoring module of the present invention.
  • Figure 14 is an assembled view of the micro-Raman spectroscopy monitoring module of the present invention.
  • Figure 15 is a schematic view showing the vacuum chamber arrangement and the composite load-multiphysics loading test platform of the present invention.
  • 16 and 17 are schematic views showing the operation of the yaw table of the present invention.
  • Figure 18 is a schematic diagram of the mechanical loading of the composite load mode of the present invention.
  • Figure 19 is a schematic diagram of multi-physics loading according to the present invention.
  • the in-situ testing instrument for the performance of the composite load mode force electro-magneto-magnetic coupling material of the present invention comprises a composite load-multi-physics loading test platform 1, an in-situ monitoring platform 2 and a vibration isolation base 3,
  • the vibration isolation base 3 is used for supporting a composite load-multiphysics load test platform 1 and an in-situ monitoring platform 2, providing basic installation positioning and providing effective vibration isolation treatment for the test process;
  • Block 3 provides the support of the whole machine for the test instrument and a stable and vibration-free experimental environment. If a vacuum environment is required, the core part of the composite load-multi-physics loading test platform and the in-situ monitoring platform 2 can be integrated with the vacuum chamber 4.
  • the composite load-multiple physics coupling loading test and in-situ monitoring under vacuum environment can be realized; the vibration isolation base 3 is integrated in the vacuum chamber 4, and the vibration generated when the vacuum pump works is prevented from affecting the in-situ monitoring effect of the instrument.
  • the yaw support module 25 is arranged in the middle of the vibration isolation base surface, and the composite load-multiphysics loading test platform 1 is fixed at the center of the yoke table 2501, and the tension/compression axis is coaxial with the yaw axis of the yaw table, mechanical The loading platform is based on the stretch/compression loading module 11.
  • the vacuum chamber 4 is used to realize the in-situ test of the micro-performance of the force-electric-thermal-magnetic multiphysics coupling material in the composite load mode under vacuum environment.
  • the loading test platform is placed on the yaw supporting module 25, wherein the yoke table 2501 is placed on the heavy-duty rail 2502.
  • the loading test platform and the yoke table 2501 can be partially withdrawn from the vacuum chamber 4, so that the material sample can be replaced.
  • the load tool cart 6 can be connected with the vibration isolation base 3 in the vacuum chamber 4 through the docking of the guide rails, and the loading test platform is completely pulled out of the vacuum chamber 4 to facilitate debugging and maintenance.
  • the invention can realize the integration of other mechanical loading forms on the basis of the stretching/compression loading, and can also construct the multi-physics coupling condition of the high temperature field/low temperature field-electric field-magnetic field, and utilize the in-situ micro-nano embedded in the instrument.
  • the indentation test module 15 can accurately measure the dynamic evolution of the indentation curve, hardness, elastic modulus and other parameters of the material sample under these complex load conditions.
  • the instrument can realize any combination of stretching/compression, bending, torsion, low cycle fatigue, temperature field, electric field and magnetic field.
  • the parallel loading test of the above seven kinds of load modes can be realized at the same time, which is the micromechanical property of the material under the service condition. Testing provides effective means and methods.
  • the yaw table 2501 of the yaw support module 25 is placed on the heavy-duty guide rail 2502.
  • the composite load-multi-physics loading test platform 1 together with the yaw table 2501 can be partially withdrawn from the vacuum chamber 4 to facilitate material sample replacement;
  • the load-carrying tool cart 6 can be connected to the vibration-isolating base 3 in the vacuum chamber 4 through the docking of the guide rails, and the composite load-multi-physics loading test platform 1 is completely pulled out of the vacuum chamber 4 to facilitate debugging thereof.
  • the composite load-multiphysics loading test platform 1 applies mechanical loading of various load modes such as tensile/compression, bending, torsion, low cycle fatigue, etc. to the test material sample according to the test conditions, and simultaneously applies load signals and deformation signals.
  • the precise detection in order to achieve the mechanical properties of the material under the composite load mode; according to the test conditions, the force, electric, thermal, magnetic and other external field loads are applied to the sample of the tested material, and the external field loading parameters and the corresponding physical performance parameters of the material are realized.
  • quantitative analysis through the micro-nano indentation test, the dynamic evolution of basic mechanical parameters such as hardness and elastic modulus of materials under various external loads can be determined.
  • the composite load-multiple field loading test platform 1 includes a tensile/compression loading module 11, a torsional loading module 12, a bending loading module 13, a low cycle fatigue loading module 14, a micro-nano indentation testing module 15, and a high temperature loading module. 16.
  • the low-temperature loading module 17, the magnetic field loading module 18, the electric field loading module 19, the low-temperature loading module 17, the core device of the electric field loading module 19, the DC power supply and the circulating refrigeration pump are external devices, and the numerals in FIG. 3 and FIG. 8 respectively indicate the high voltage.
  • the tension/compression loading module 11 is fixed on the table of the deflection table 2501, and the torsion loading module 12 is divided into two parts: a torsional loading active unit 1201 and a torsional loading and fixing unit 1202, which are respectively mounted on the torsion/compression loading module 11
  • the end stretch slide 1103 and the fatigue end stretch slide 1104 are mounted on the fatigue end stretch slide 1104 and connected to the tail of the torsional load fixing unit 1202.
  • the tracking test module 15 and the infrared thermal imaging monitoring module 22 are respectively fixed to the bending feeding unit 2401, the indentation feeding unit 2403, and the infrared thermal imager feeding unit 2402 of the lateral loading observation module 24 by screws.
  • the reciprocating motion of the function switching unit 2404 realizes bending loading, indentation loading, position selection and station switching of infrared thermal imaging, and linear motion of the infrared thermal imager feeding unit 2402 adjusts infrared heat
  • the visual range of the imaging monitoring module 22, the linear motion of the bending feed unit 2401 drives the bending ram 1302 to achieve bending load loading, and the indentation feeding unit 24
  • the linear motion of 03 drives the indentation ram 1509 to perform the initial positioning of the press-in point;
  • the high-temperature loading module 16 is connected to the magnetic field loading module 18 through the adjustment slider 1602, the adjustment slide rail 1805, the magnetic field loading module 18, and the lateral loading observation
  • the modules 24 are respectively fixed to both sides of the main axis of the tension/compression loading module 11.
  • the tension/compression loading module 11 of the present invention adopts a biaxial stretching structure, and the two-way screw 1102 is driven by the tension and compression servo motor 1101 to drive the torsion end stretching slide 1103 and the fatigue end. Stretching the slide 1104, ensuring uniform stroke and moving speed on both sides, and realizing the loading of the tensile/compression load.
  • the tensile/compression loading deformation is measured by the linear grating reading heads I, II1105, 1118, including the tension and compression servo motor 1101.
  • the bi-directional spindle 1102 is positioned on the substrate 1115 by a lead screw mount assembly 1110.
  • the two-way screw 1102 and the nuts I, II1120, and 1122 form two sets of nut pairs.
  • the nuts I, II1120, and 1122 are fixed to the fatigue end stretching slide 1104 and the torsion end stretching slide 1103 through the nut seats I, II1111, and 1123, respectively.
  • the fatigue end stretching slide 1104 and the torsion end stretching slide 1103 are mounted on the stretching rail 1111 by the stretching platform slider 1107.
  • the linear grating read heads I, II1105, and 1118 are respectively mounted on the fatigue end stretching slide 1104 and the torsion end stretching slide 1103 through the linear grating read head bracket 1113. on.
  • the linear encoders I, II1106, and 1119 are mounted on the substrate 1115 via the scale fixing pieces 1114.
  • the limit switch 1117 is mounted on the substrate 1115 via the limit switch bracket 1116.
  • the magnetic field loading module positioning key 1112 is mounted on the substrate 1115.
  • the servo motor 1101 drives the two-way screw 1102 to rotate, and realizes the constant velocity and opposite movement of the nuts I, II1120 and 1122, and drives the fatigue end stretching slide 1104 and the torsion end stretching slide 1103 to achieve the constant velocity anisotropy. motion.
  • the amount of tensile/compression deformation of the material sample is obtained by the relative motion between the linear grating read heads I, II1105, 1118 and the linear scales I, II1106, 1119.
  • the limit switch 1117 prevents the stretching platform slider 1107 from sliding out of the stretching rail 1111.
  • the torsional loading module 12 of the present invention is divided into two parts: a torsional loading active unit 1201 and a torsional loading and fixing unit 1202.
  • the twisting loading active unit 1201 is fixed by one end twisting end.
  • the torsion drive gear 120108 is driven by the torsion servo motor 120104, and the torsion driven gear 120109 drives the active end clamp 120116 to achieve torque loading;
  • the torsional loading and fixing unit 1202 is a fixed end, and the fixed end clamp 120204 and the connecting shaft 120209
  • the torque is transmitted to the pull-torsion composite sensor 120210 to measure the tensile force and the torque;
  • the active end clamp 120116 and the fixed end clamp 120204 are respectively mounted with the circular grating read heads I, II120117, 120202, and are read by measuring the torsion test. The angular difference taken achieves an accurate measurement of the torsion angle.
  • the torsional loading active unit 1201 includes a torsion bearing frame 120101, a transmission shaft 120102, a torsion motor bearing 120103, a torsion servo motor 120104, a rotary joint support 120105, a rotary joint 120106, a connecting flange 120107, a torsion drive gear 120108, and a twisting Dynamic gear 120109, angular contact bearing end cover 120110, spacer I120111, angular contact bearing housing 120112, angular contact ball bearing 120113, circular encoder I120114, active end tension clamp platen 120115, active end clamp specific 120116, circular grating read head 120117, the active end compression clamp head 120118, the motor shaft of the torsion servo motor 120104 is keyed with the transmission shaft 120102, the torsion drive gear 120108 is connected with the transmission shaft 120102, the torsion driven gear 120109 and the active end clamp specific 120116 are keys.
  • the torsional servo motor 120104 is fixed to the torsion end extension slide 1103 by a torsion motor mount 120103.
  • the torsion bearing frame 120101 is fixed to the torsion end stretching slide 1103.
  • the drive shaft 120102 is mounted on the torsion bearing frame 120101.
  • the rotary joint 120106 is divided into a rotary joint stator 120106B and a rotary joint rotor 120106A, wherein the rotary joint stator 120106B is coupled to the rotary joint holder 120105, and the rotary joint rotor 120106A is coupled to the active end clamp portion 120116 via a connecting flange 120107.
  • the active end clamp body 120116 is mounted on the angular contact bearing housing 120112 by a pair of back-to-back angular contact ball bearings 120113, the angular contact bearing end cover 120110, the spacer I120111 is mounted on the angular contact bearing housing 120112, and the angular contact ball bearing 120113 is angled.
  • the contact bearing end cap 120110 is pressed, and the angular contact bearing housing 120112 is mounted on the torsion end extension slide 1103 by screws.
  • the circular encoder I120114 is mounted on the active end clamp body 120116, and the circular grating read head 120117 is mounted on the angular contact bearing housing 120112.
  • the active end tensioning clamp platen 120115 and the active end compression clamp head 120118 are mounted for tensile/compression testing and active end clamp specific 120116 for clamping the tensile material sample 51/compressed material sample 52.
  • the torsion servo motor 120104 transmits the torque from the transmission shaft 120102, the torsion drive gear 120108, and the torsion driven gear 120109 to the active end clamp body 120116, and drives the material sample to twist.
  • the torsional loading and fixing unit 1202 includes a circular grating ruler II120203, a circular grating readhead II120202, a fixed end clamp specific 120204, a fixed end tensile clamp pressure plate 120205, a cylindrical roller bearing 120206, a gasket II120207, and a cylindrical roller bearing end cover.
  • the two ends of the connecting shaft 120209 are respectively connected to the fixed end clamp body 120204 and the pull-torsion composite sensor 120210 by screws, and the pull-twist composite sensor 120210 is connected to the connecting plate 120211 by screws.
  • the cylindrical roller bearing housing 120201 and the relief plate 120212 are connected to the fatigue end stretching slide 1104. Cylindrical roller bearing end cap 120208 and spacer II120207 are mounted on cylindrical roller bearing housing 120201.
  • the circular encoder II120203 is mounted on the fixed end clamp 120204, and the circular grating readhead II120202 is mounted on the cylindrical roller bearing housing 120201.
  • the fixed end tensile clamp platen 120205 and the fixed end compression clamp head 120213 are mounted for tensile/compression testing and fixed end clamp specific 120204 for clamping the tensile material sample 51/compressed material sample 52.
  • the tensile/compression force and the torque are transmitted to the pull-torsion composite sensor 120210 by the fixed end clamp body 120204 and the connecting shaft 120209, and the tensile force/compression force and the torque load are measured.
  • the active end clamp specific 120116 and the fixed end clamp specific 120204 are respectively equipped with circular grating scales I, II120114, 120203, and the grating grating reading heads I, II120117, 120202 are used to measure the grating angle difference in the torsion test to realize accurate measurement of the torsion angle.
  • the unloading plate 120212 is fastened to the connecting plate 120211 and the fatigue end stretching slide 1104 by tightening the screw, thereby unloading the large tensile force load, and protecting the fatigue loading module piezoelectric stack 1403 Will not be damaged.
  • the clamping method of the material sample is characterized by a plate shape for the tensile material sample 51 used in the tensile test, and the tensile material sample 51 is clamped on both sides by the inclined surface of the active end clamp specific 120116 and the fixed end clamp specific 120204.
  • the active end stretching jig platen 120115 and the fixed end stretching jig platen 120205 are respectively mounted on the clip to realize the clamping of the tensile material sample 51.
  • the compressed material sample 52 used for the compression test is a cubic feature, and the active end compression clamp head 120118, the fixed end compression clamp head 120213, the active end compression clamp head 120118 and the fixed end compression clamp head 120213 are respectively mounted on the side clamps.
  • a square groove is formed to snap the compressed material sample 52 into the groove to effect clamping of the compressed material sample 52 during compression, bending, and torsional loading.
  • the low cycle fatigue loading module 14 of the present invention comprises a fatigue loading module flexible hinge 1402, a fatigue loading module piezoelectric stack 1403, a fatigue module slider 1404, a fatigue module rail 1406, and fatigue loading.
  • the module base 1401, the end fixing plate 1405, the fatigue loading module flexible hinge 1402 is divided into a fixed end and a deformation output end, and the fixed end of the fatigue loading module flexible hinge 1402 is fixedly connected with the fatigue loading module base 1401 by screws, and the fatigue loading module base 1401
  • the end surface fixing plate 1405 is fixedly connected to the fatigue end stretching slide 1104, and the output end of the fatigue loading module flexible hinge 1402 is connected to the torsion loading and fixing unit 1202 by screws, and is mounted on the fatigue module slider 1404, and the fatigue loading module is stacked.
  • the stack 1403 drives the fatigue loading module flexible hinge 1402 to deform, so that the output end of the fatigue loading module flexible hinge 1402 drives the torsional loading and fixing unit 1202 along the fatigue module rail 1406 to generate a slight displacement, thereby achieving low cycle fatigue loading.
  • the inner frame of the fatigue loading module flexible hinge 1402 is fixed on the fatigue loading module base 1401, and the outer frame is connected with the connecting plate 120211; the fatigue loading module piezoelectric stack 1403 passes the fatigue loading module flexible hinge 1402, the connecting plate 120211, and the pulling and twisting composite sensor.
  • the 120210 or the like drives the fixed end clamp 120204 to generate a high-frequency reciprocating minute displacement, which can achieve fatigue loading of the tensile material sample 51 under the pre-tension load.
  • the bending loading module 13 of the present invention includes a bending loading module support 1301, a support shaft 1304, a pressure sensor 1303, a bending ram 1302, the bending loading module support 1301, a support shaft 1304,
  • the pressure sensor 1303 and the bending ram 1302 are sequentially connected by screws, the bending load module holder 1301 is screwed to the bending feeding unit 2401, and finally fixed to the function switching unit 2404 by screws, and the function switching unit 2404 drives the bending loading module 13
  • the adjustment of the bending station along the axial direction of the material sample is realized, and the bending load is completed by the bending feeding unit 2401 driving the bending indenter 1302 through the motor and the ball screw.
  • the micro-nano indentation test module 15 of the present invention includes a wedge block 1501, an indentation flexible hinge 1502, The indentation test module support 1503, the fine adjustment unit 1504, the indentation test module piezoelectric stack 1505, the press-in force sensor 1508, the flap 1507, the indentation indenter 1509, the capacitive micro-displacement sensor 1506, wherein the fine adjustment unit 1504 is The movable plate 150401, the displacement sensor bracket 150402, the displacement sensor pressing plate 150403, the fixing plate 150404, and the handle 150405 are composed.
  • the indentation test module piezoelectric stack 1505 mounted within the indented flexible hinge 1502 is pretensioned by a wedge block 1501, pressed into the force sensor 1508 and positioned between the indentation indenter 1509 and the indented flexible hinge 1502 and threaded.
  • An indentation flexible hinge 1502 is mounted on the indentation test module mount 1503.
  • a flap 1507 is mounted on the indentation ram 1509.
  • the fixing plate 150404 is screwed to the indentation test module holder 1503
  • the movable plate 150401 is screwed to the displacement sensor holder 150402, and the displacement sensor platen 150403 clamps the capacitive micro displacement sensor 1506.
  • the working position of the capacitive micro-displacement sensor 1506 is adjusted by rotating the handle 150405 to adjust the relative position of the movable plate 150401 and the fixed plate 150404 to enter the range of the sensor, and the capacitive micro-displacement sensor 1506 and the blocking piece 1507 are measured. The distance between them is used to characterize the indentation depth of the indentation head 1509.
  • the function switching unit 2404 drives the micro-nano indentation test module 15 to realize the adjustment of the press-in position along the axial direction of the material sample, and the linear motion of the indentation feeding unit 2403 realizes the initial feeding of the indentation.
  • the indentation test module piezoelectric stack 1505 drives the indentation indenter 1509 through the indentation flexible hinge 1502 and the press-in force sensor 1508 to achieve precise feed.
  • the press-in force during the press-in process is collected by the press-in force sensor 1508, and the press-in depth of the indentation head 1509 is monitored by the capacitive micro-displacement sensor 1506.
  • the micro-nano indentation test module 15 is embedded in the instrument as a material mechanical property monitoring method, which can accurately measure the indentation curve, hardness, elastic modulus and other parameters in the local micro-region under the complex load condition of the material sample. Dynamic evolution.
  • the bending loading module 13, the micro-nano indentation testing module 15 and the infrared thermal imaging monitoring module 22 of the present invention are respectively fixed to the bending feeding unit 2401, the indentation feeding unit 2403 by screws, and infrared thermal imaging in the same manner.
  • the instrument feeding unit 2402 is mounted together with the function switching unit 2404. The reciprocating motion of the function switching unit 2404 enables function switching of bending loading, indentation loading, and infrared thermal imaging.
  • the infrared thermal imaging monitoring module 22 is mounted on the infrared thermal imager feeding unit 2402, and the function switching unit 2404 drives the infrared thermal imaging monitoring module 22 to realize the adjustment of the infrared imaging station along the axial direction of the material sample, and the infrared thermal imager feeding unit
  • the linear motion of 2402 completes the focal length adjustment of the infrared thermal imaging monitoring module 22 to achieve the purpose of monitoring the temperature distribution of the material samples in the test.
  • the cryogenic loading module 17 of the present invention is implemented by an external cryogenic refrigeration pump that is passed to a refrigeration flow passage.
  • the active end clamp specific 120116 and the fixed end clamp specific 120204 have a built-in refrigeration flow passage, and the external low temperature refrigeration pump is used to pump the refrigerant liquid to the active end clamp specific 120116, the fixed end clamp specific 120204 inside the open flow passage, through the heat conduction
  • the method is to cool the material sample and create a low temperature test environment for the material sample.
  • the rotary joint 120106 is divided into a rotary joint stator 120106B and a rotary joint rotor 120106A.
  • the rotary joint rotor 120106A is provided with a ring groove, which communicates with the through port on the rotary joint stator 120106B, and can still realize fluid when there is relative rotation between the stator rotors.
  • the connecting flange 120107 is used to connect the flow path of the active end clamp body 120116 with the flow path of the rotary joint 120106, so that the refrigerant liquid is introduced and circulated when the active end clamp body 120116 is rotated by the torsional loading.
  • the material sample clamping operation of the present invention is mainly performed by the active end tensile clamp platen 120115, the active end clamp specific 120116, the fixed end clamp specific 120204, the fixed end tensile clamp platen 120205, and the active end compression.
  • the clamp head 120118 and the fixed end compression clamp head 120213 are realized. Between the active end clamp body 120116 and the active end tensile clamp platen 120115 and the active end compression clamp head 120118, the fixed end clamp specific 120204 and the fixed end tensile clamp platen 120205 and the fixed end compression clamp head 120213 are connected by screws.
  • the stretching clamp active end clamp specific 120116 and the fixed end clamp specific 120204 are designed The side structure matched with the clamping end of the tensile material sample 51, the material sample is positioned on both sides by stretching, and the material sample is pressed by the active end stretching jig platen 120115 and the fixed end stretching jig platen 120205 to realize the pair Reliable clamping of the tensile material sample 51.
  • the active end compression clamp head 120118 and the fixed end compression clamp head 120213 are designed with grooves that cooperate with the ends of the compressed material sample 52, and the material sample is pressed against the active end compression clamp head 120118 by gravity.
  • the active end compression clamp head 120118 and the fixed end compression clamp head 120213 compress the both end faces of the compressed material sample 52 to achieve reliable clamping of the compressed material sample 52.
  • the high temperature loading module 16 of the present invention comprises a halogen heating lamp 1601, an adjustment slider 1602, a halogen lamp mounting plate 1603, and a halogen heating lamp 1601 is connected to the halogen lamp mounting plate 1603 by screws, and is installed and adjusted.
  • Slider 1602. The adjustment carriage 1602 can adjust the focal length of the halogen heat lamp 1601 along the adjustment carriage rail 1805.
  • the halogen heating lamp 1601 emits light and is focused on the surface of the material sample by a curved surface to achieve high temperature loading.
  • the magnetic field loading module 18 includes a lower yoke 1801, a coil 1802, an upper yoke 1803, a magnetic pole tip 1804, and an adjustment slider rail 1805.
  • the two pole poles 1804 are arranged up and down, and are respectively fixed to the lower yoke 1801 and the upper yoke. At 1803, magnetic field loading in the vertical direction of the material sample is achieved by loading current to the coil 1802.
  • the loading of the high temperature field is realized by the halogen heating lamp 1601 focusing the material sample, and the loading of the magnetic field is realized by the controllable electromagnet.
  • the controllable electromagnet is composed of the lower yoke 1801, the coil 1802, the upper yoke 1803, and the magnetic pole head 1804.
  • the sample is placed between the two pole poles 1804, and the magnetic field strength is controlled by adjusting the current applied to the coil 1802; by adjusting the slider 1602, the halogen heat lamp 1601 can be removed when the high temperature field function is not required, thereby preventing It shields the optical path of the module in situ.
  • the electric field loading module 19 needs to be connected to a high-voltage DC power supply.
  • the two wires are respectively connected to the opposite planes of the material sample by using conductive silver glue, and a DC high-voltage electric field is applied to both ends of the wire to realize electric field loading. Placing the entire test apparatus in the vacuum chamber 4 helps to reduce the breakdown voltage between the two electrodes, and the electric field strength of the electric field loading test can be improved.
  • In-situ monitoring platform 2 is used to dynamically monitor deformation damage, microstructure changes and performance evolution of material samples under complex mechanical loads and multi-physics loads. Through the precise adjustment of the poses of each monitoring module, complex load conditions are realized. Real-time dynamic in-situ monitoring of microscopic deformation, damage mechanism, microstructure change and performance evolution of the underlying material sample, including optical microscopy imaging monitoring module 21, infrared thermal imaging monitoring module 22, microscopic Raman spectroscopy monitoring module 23, The observation module 24 and the yaw support module 25 are laterally loaded.
  • the optical microscopic imaging monitoring module 21 and the micro-Raman spectroscopy monitoring module 23 are arranged on both sides of the composite load-multiphysics loading test platform 1, and are mounted on the vibration isolation base 3, and the yaw support module 25 is mounted on the vibration isolation.
  • On the pedestal 3, carrying the composite load-multiphysics loading test platform 1 provides a richer viewing position for each in-situ observation module.
  • the infrared thermal imaging monitoring module 22 is mounted on the lateral loading observation module 24, and the lateral loading observation module 24 is mounted on the composite load-multiphysics loading test platform 1.
  • the yaw support module 25 of the present invention comprises a positioning profile 2503, a heavy-duty guide rail 2502, a deflection table 2501, a positioning key 2504, a yaw servo motor 2505, and a tensile module.
  • the substrate 1115 and the mesa of the deflection stage 2501 are positioned by the positioning key 2504, and the deflection stage 2501 moves along the heavy-duty rail 2502.
  • the heavy-duty rail 2502 is attached to the vibration-isolating base 3 via a positioning profile 2503.
  • the yaw table 2501 can drive the composite load-multiphysics load test platform 1 to achieve a deflection of 0°-45° under the driving of the yaw servo motor 2505, so as to adjust the overall attitude of the material sample to facilitate the in-situ monitoring function.
  • a certain monitoring angle is set, and the indentation process can be monitored in situ.
  • Micro Raman can be achieved by adjusting the yaw angle
  • the spectrum monitoring module 23 vertically monitors the indentation of the material sample after pressing, and facilitates collection and analysis of the indentation microstructure and composition.
  • the invention can be integrated with the vacuum chamber 4.
  • the composite load-multiphysics loading test platform 1 together with the deflection table 2501 can be partially withdrawn from the vacuum chamber 4 for easy replacement of material samples.
  • the load-carrying tool cart 6 is connected with the vibration-isolating base 3 in the vacuum chamber 4, and the composite load-multi-physics loading test platform 1 is completely pulled out of the vacuum chamber 4, so as to facilitate It is commissioned and overhauled.
  • the optical microscopic imaging monitoring module 21 of the present invention comprises an X-axis motion unit I2101, an X-axis support unit I2107, a Y-axis motion unit I2102, a Z-axis motion unit I2104, a support plate I2103, an optical microscope support 2105,
  • the optical microscope 2106, the X-axis moving unit I2101 and the X-axis supporting unit I2107 are respectively superposed with the Y-axis moving unit I2102, and the Y-axis moving unit I2102 and the Z-axis moving unit I2104 are connected by the supporting plate I2103.
  • the optical microscope 2106 is coupled to the Z-axis motion unit I2104 via an optical microscope stand 2105.
  • the observation position of the optical microscope 2106 can be adjusted in a wide range, and the X-axis support unit I2107 can effectively prevent the tilt caused by the uneven distribution.
  • the micro-Raman spectroscopy monitoring module 23 of the present invention includes an X-axis motion unit II2301, a Y-axis motion unit II2302, a support plate II2303, a Z-axis motion unit II2304, a rotating bracket 2305, a tilting seat 2306, and a tuning.
  • the X-axis support unit II2316, the X-axis motion unit II2301 and the X-axis support unit II2316 are respectively superposed with the Y-axis motion unit II2302, and the Y-axis motion unit II2302 and the Z-axis motion unit II2304 are connected by the support plate II2303.
  • the rotating bracket 2305 is mounted on the Z-axis moving unit II2304.
  • the angle adjusting seat 2306 is simultaneously hinged with the rotating bracket 2305 and the angle adjusting nut 2307, and the angle adjusting screw 2309 is hinged with the rotating bracket 2305.
  • the angled handwheel 2308 is fixed to the angled screw 2309. After the guide post 2310 is welded to the rack 2311, it is connected to the rotating bracket 2305 by screws.
  • the micro Raman spectrometer 2315 is mounted on the guide post 2310 through a micro Raman connection plate 2314, a holder 2312, and a pitch hand wheel 2313.
  • the X-axis motion unit II2301, the Y-axis motion unit II2302, and the Z-axis motion unit II2304 are used to drive the micro-Raman spectrometer 2315 to complete the preliminary adjustment of the monitoring position, and the angle-increasing nut 2307 is rotated along the angle-adjusting screw by rotating the angle-increasing hand wheel 2308.
  • 2309 movement change guide column 2310 and micro Raman spectrometer 2315 monitor the angle between the axis and the vertical direction, and rotate the pitch hand wheel 2313 to realize the movement of the Raman microscope 2315 along the guide column 2310 to complete the micro Raman spectrometer Further adjustment of the 2315 monitoring point.
  • the Raman microscope 2315 enables the measurement of non-contact strain in the test and the monitoring of changes in the microscopic composition of the material sample.
  • the optical microscopic imaging monitoring module 21 and the microscopic Raman spectroscopy monitoring module 23 can realize the position adjustment in the three directions of X, Y and Z, complete the transformation of the display field of view and the focusing of the imaging instrument, and the X-axis motion unit I, II2101, 2301, Y-axis motion unit I, II 2102, 2302, Z-axis motion unit I, II2104, 2304 are realized; the micro-Raman spectrometer 2315 can adjust the initial monitoring angle and initial monitoring by adjusting the rotating bracket 2305 and the pitching hand wheel 2313. The position is adjusted to achieve a richer monitoring range.
  • the Raman microscope 2315 is a built-in CCD form.
  • the rear part is integrated with the Raman spectrometer through a standard C interface.
  • the local micro-area can be selected according to the microscopic image.
  • the Raman spectrometer can be used to realize the organization of the micro-area. Analysis of ingredients.
  • the two monitoring modules respectively realize the monitoring of the microstructure and the change of the microstructure of the material sample under the composite load-multiple field coupling test; the infrared thermal imaging monitoring module 22 monitors the temperature distribution of the material sample under the temperature field in real time.
  • the invention combines a detection control module composed of a signal acquisition unit, a control unit and the like, simulates a load environment by controlling a mechanical loading and a multi-physics loading test platform and an in-situ monitoring platform, and realizes in-situ observation.
  • Use the acquisition module to collect relevant Force, strain, electric field strength, magnetic field strength, temperature and other parameter information, generate test curves, and then measure physical properties of related materials.
  • Composite in-situ test method for in-situ testing of performance of electro-thermal magnetic coupling materials For in-situ testing of micro-performance of force-electric thermo-magnetic multiphysics coupling materials based on tensile test, through active end tensioning clamp plate 120115, fixed end stretching The clamp platen 120205 fixes the tensile material sample 51 to the active end clamp body 120116 and the fixed end clamp body 120204, and causes the tensile/compression loading module 11 to drive the torsion end stretching slide 1103 and the fatigue end stretching slide 1104 back.
  • the tensile loading of the tensile material sample 51 is achieved; the torsional loading of the tensile material sample 51 is achieved by the torsional loading module 12; the tensile material sample 51 is measured by the linear grating reading head I1105 and the circular grating reading head 120117I, respectively.
  • the tensile strain and the torsional strain are measured by the tensile-torsion composite sensor 120210 to measure the tensile stress and the torsional stress; the low-cycle fatigue loading module 14 can apply the low-cycle fatigue load to the tensile material sample 51 under the tensile load; 24 driving the bending load module 13 to the working position, applying a bending load to the tensile material sample 51 through the pressure sensor 1303 Calculating the bending force; applying an electric field by the electric field loading module 19 while applying the composite mechanical load, applying a magnetic field to the tensile material sample 51 through the magnetic field loading module 18, controlling the intensity of the applied electric field and the magnetic field by the relevant instrument, and The hysteresis loop and the hysteresis loop are measured during the test; the high temperature loading module 16 applies a high temperature to the tensile material sample 51, and the infrared thermal imaging monitoring module 22 is moved to the work by the lateral loading observation module 24.
  • the low temperature loading module 17 can apply a low temperature to the tensile material sample 51; during the operation, the deformation deformation of the tensile material sample 51 by the optical microscopic imaging monitoring module 21 is The failure mode is observed in situ; at any time during the test, the micro-nano indentation test module 15 can be switched to the working position by the lateral loading observation module 24, and the micro-nano indentation test is performed on the surface of the test piece, and the indentation feed is performed.
  • the linear motion of unit 2403 enables indentation priming; indentation test module piezoelectric stack 1505 through indentation flexible hinge 150 2.
  • the pressing force sensor 1508 drives the indentation indenter 1509 to achieve precise feeding; and the indentation force and the indentation information collected by the pressing force sensor 1508 and the capacitive micro displacement sensor 1506 are used to describe the micro-nano indentation curve;
  • the pendulum support module 25 adjusts the composite load-multiphysics loading test platform 1 to the observation range of the micro-Raman spectroscopy monitoring module 23, and performs in-situ testing of the press-in process while acquiring Raman spectral information of the local micro-region. .
  • the composite load-multiphysics loading test platform 1 of the present invention can integrate other mechanical loading test modes on the basis of realizing the tensile/compression loading test, and can also construct a high temperature/low temperature-electric field-magnetic field physical field environment. In addition, it is possible to analyze the micromechanical properties of the material by means of press-in detection.
  • a composite load-multiphysics of "tensile-fatigue-bending-torsion-high temperature field (low temperature field)-electric field-magnetic field” or “compression-bending-torsion-high temperature field (low temperature field)-electric field-magnetic field” can be realized at most Coupling loading test, simulating a rich test environment, obtaining rich physical property parameters of materials, and simulating specific working conditions, selecting one or several functions for coupling loading, such as tensile-twist-low temperature, tensile-fatigue- High temperature, compression-electric field, etc., all the composite load modes that can be achieved by the present invention are as follows:
  • Single load tensile load, compressive load, bending load, torsional load, low cycle fatigue load, high temperature field, low temperature field, electric field, magnetic field.
  • Tensile-bending-torsing-high temperature field-electric field-magnetic field compounding tensile-bending-torsing-low temperature field-electric field-magnetic field compounding, compression-bending-torsing-high temperature field-electric field-magnetic field compounding, compression-bending-twisting- Low temperature field-electric field-magnetic field compounding, stretching-low cycle fatigue-bending-high temperature field-electric field-magnetic field compounding, stretching-low cycle fatigue-torsion-high temperature field-electric field-magnetic field compounding, stretching-low cycle fatigue-bending -Cryogenic field-electric field-magnetic field combination, tensile-low cycle fatigue-torsion-low temperature field-electric field-magnetic field combination, low cycle fatigue-bending-torsion-high temperature field-electric field-magnetic field combination, low cycle fatigue-bending-twisting- Low temperature field-electric field-magnetic field composite
  • F 1 is a tensile force
  • F' 1 is a compressive force
  • F 2 is a bending force
  • F 3 is a press-in force
  • M is a torque.
  • the physics loading method of the present invention is as follows: bonding high-voltage electrodes at both ends of the material sample to complete electric field loading; high-temperature loading of the material sample by irradiation with a halogen heating lamp, and cooling liquid for the jig (water) Cold to prevent the clamp from overheating; to pass the coolant (ethanol, liquid nitrogen, etc.) to the fixture to complete the cooling of the material sample; the magnetic arrangement placed up and down in the middle of the material sample Extremely, the vertical magnetic field is loaded after being energized.
  • F 1 is the tensile force and A is the cross-sectional area of the material sample.
  • ⁇ l is the elongation of the material sample and l is the original length of the material sample
  • ⁇ l is the amount of material sample compressed
  • G is the shear modulus and I P is the section polar moment of inertia
  • D is the diameter of the material sample
  • G is the shear modulus and GI t is the torsional stiffness of the member
  • is the coefficient associated with h/b
  • ⁇ ' f is the fatigue strength coefficient
  • b is the fatigue strength index
  • c is the fatigue plasticity index
  • E is the elastic modulus
  • is the end face shrinkage.
  • P is the real-time load of a certain indentation depth
  • S is the projected area of the contact area between the indentation indenter and the material sample at this time
  • the projected area S of a typical indenter is calculated as follows:
  • h is the indentation depth and a is the radius of the contact circle
  • E s is the elastic modulus of the material sample
  • Er is the reduced modulus
  • v s is the Poisson's ratio of the material sample
  • E i is the elastic modulus of the diamond indenter (1050 GPa)
  • v i is the diamond indenter Poisson's ratio (0.07);
  • the surface of the material sample is a dangerous point.
  • the calculation formula of the dangerous point equivalent stress ⁇ r3 is:
  • F 1 is the axial tensile force
  • A is the cross-sectional area of the material sample
  • M is the torque
  • W P is the torsional section coefficient
  • the tension side of the middle section of the gauge length of the material sample is a dangerous point.
  • the calculation formula of the dangerous point equivalent stress ⁇ r3 is:
  • M 1 is the bending moment
  • W is the bending section coefficient
  • F 1 is the axial tensile force
  • A is the cross-sectional area of the material sample
  • M is the torque
  • W P is the torsional section coefficient
  • U is the heating lamp loading voltage
  • I is the current when the heating lamp is working
  • t is the heating time
  • h is the convective heat transfer surface heat transfer coefficient
  • t f is the ambient temperature
  • C is the perimeter of the material sample cross section
  • A is the cross-sectional area of the material sample
  • the invention is mainly used for in-situ testing of materials under combined load-multiphysics coupled loading, and integrates various types of mechanical loading modes such as bending, torsion and low cycle fatigue on the basis of realizing tensile/compression loading.
  • various types of mechanical loading modes such as bending, torsion and low cycle fatigue on the basis of realizing tensile/compression loading.
  • a test environment in which a high temperature/low temperature-electric field magnetic field multiphysics coupling is introduced is introduced.
  • the instrument can achieve stretching / compression, bending, torsion, low cycle fatigue, temperature field, Any combination of electric field and magnetic field can simultaneously realize the parallel loading test of the above seven kinds of load modes.
  • the dynamic evolution of the indentation curve, hardness, elastic modulus and other parameters of the material sample can be accurately measured under these complex load conditions.
  • various types of in-situ monitoring modules such as the optical microscopy imaging monitoring module 21 and the micro-Raman monitoring module embedded in the instrument, can accurately and dynamically monitor the physical property parameters and deformation of the material during and after the complex load. Damage, microstructural changes, and performance evolution are important data information about material serviceability, reliability, and service life. Provide effective means and methods for testing the micromechanical properties of materials under service conditions.
  • the invention fully considers the structure miniaturization and light weight in design, so that the vacuum chamber can be optionally placed in the instrument body to provide a test environment such as low pressure, vacuum, inert gas, etc. for the sample to be tested. It can test the mechanical properties of material samples of any one, two, three or even four load loading modes of four load modes: tensile/compression, bending, torsion and low cycle fatigue. It can test the physical properties of materials samples in any one, two or three external field loading modes of electricity, heat and magnetism. It can test the microscopic properties of material samples under the coupled loading conditions of any one, two, three or four kinds of mechanical loads and any one, two or three external field loads. Up to seven kinds of load modes can be realized.
  • the embedded micro-nano indentation test module can dynamically measure and analyze the changes of basic mechanical parameters such as hardness and elastic modulus of the material samples induced by the above complex loads.
  • the microstructure evolution and performance weakening mechanism of the material samples under the above complex load conditions can be dynamically monitored and analyzed, and the micro-mechanical behavior and deformation damage mechanism of the material under the service conditions are obtained. Correlation law with load action and material properties.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种复合载荷模式力电热磁耦合材料性能原位测试仪器与方法,属于精密科学仪器领域。该仪器包括复合载荷-多物理场加载试验平台(1)、原位监测平台(2)和隔振基座(3)三大部分。隔振基座(3)主要用于支承复合载荷-多物理场加载试验平台(1)、原位监测平台(2),并为其安装提供定位,同时在测试中为各类精密驱动加载元件、检测元件以及原位监测元件提供有效的隔振处理。原位监测平台(2)通过对各监测模块位姿的精确调整,实现对上述复杂载荷条件下材料样品的微观变形、损伤机制、微观组织结构变化以及性能演化进行实时的动态原位监测。优点在于:结构小型化和轻量化,可选配真空腔将仪器主体置于其中,从而为被测材料样品提供如低压、真空、惰性气体等测试环境。实用性强。

Description

复合载荷模式力电热磁耦合材料性能原位测试仪器与方法 技术领域
本发明涉及精密科学仪器领域,特别涉及一种复合载荷模式力电热磁耦合材料性能原位测试仪器与方法。本发明的复合载荷模式力-电-热-磁多物理场耦合加载条件下的材料微观性能原位测试仪器与方法可以提供“拉伸/压缩-低周疲劳-扭转-弯曲”四种力学载荷中的一种或多种,也可针对典型功能材料开展在“应力场-温度场(高/低温)-电场-磁场”多物理场耦合作用下的微观性能测试,最多可同时实现上述七种载荷方式共存的并行加载测试。利用仪器内嵌的原位微纳米压痕测试模块,可以精准测量复杂载荷条件作用下,材料样品压痕曲线、硬度、弹性模量等参量的动态演变情况。利用原位监测平台对材料样品在复杂应力状态、多物理场耦合情况下,精确的动态监测复杂载荷作用过程中及作用后,材料的物理性能参数、变形损伤、微观组织变化与性能演变等关乎材料服役性能、可靠性与使用寿命的重要数据信息,为接近服役条件下材料微观力学性能测试提供有效的手段和方法。
背景技术
新材料新工艺的研发与应用是工业发展的基础,而材料科技的不断发展也依赖于对材料各类力学性能与物理性能的深入研究。材料力学性能测试技术,主要为了获取材料的弹性模量、切变模量等宏观上的力学参数。但是,随着材料科技的快速发展,各类新材料不断涌现,而对这些新材料的特异性的测试分析也逐渐成为国际学术界和工程界的研究热点。传统的材料力学性能测试手段难以全面反映新材料的物理特性,特别是材料在实际工况下,往往是在复合载荷作用下工作,材料的各类物理性能与力学性能已经不能以单一载荷测试下的性能进行评定。
在现有的研究水平下,针对单一载荷的材料测试技术已趋于成熟,针对两种或两种以上复合载荷作用的材料测试理论方法和仪器设备也已被广泛研究。但是这些仅仅是针对应力场加载的仪器设备,并不能真实的反映出材料的实际工况,并且其测试原理多为离位测试,不能对测试过程中材料样品的微观组织形貌进行实时动态的观察,很难将材料微观组织变化的内在机理与材料宏观力学性能有效地结合起来综合分析材料的性能。因此,在现有的仪器难以满足上述复合载荷作用下,材料性能测试多为离位过程的背景下,开发一种能够基于复合载荷模式力-电-热-磁多物理场耦合环境下的材料微观力学性能原位测试仪器,并提出相应的测试方法,已成为新型材料测试仪器的发展趋势。
发明内容
本发明的目的在于提供一种复合载荷模式力电热磁耦合材料性能原位测试仪器与方法,解决现有仪器设备不能实现力-电-热-磁多物理场耦合作用下的材料性能原位测试的问题。本发明可以实现在拉伸/压缩加载的基础上,集成其他的力学加载形式,同时还可以构建高温场/低温场-电场-磁场的多物理场耦合条件,利用仪器内嵌的原位微纳米压痕测试模块,可以精准测量在这些复杂载荷条件作用下,材料样品压痕曲线、硬度、弹性模量等参量的动态演变情况。仪器可实现拉伸/压缩、弯曲、扭转、低周疲劳、温度场、电场、磁场的任意组合,最多可同时实现上述七种载荷 方式共存的并行加载测试,为接近服役条件下材料微观力学性能测试提供有效的手段和方法。同时,借助仪器嵌入的光学显微成像监测模块、显微拉曼监测模块等多种类型原位监测模块,能精确的动态监测复杂载荷作用过程中及作用后,材料的物理性能参数、变形损伤、微观组织变化与性能演变等关乎材料服役性能、可靠性与使用寿命的重要数据信息。本发明可整机与真空腔集成,模拟更为丰富的实验环境,如低气压环境、真空环境、惰性气体环境等。本发明的加载模式及试验条件更能接近材料的实际服役情况,获取更为丰富的材料性能参数,为研究材料的力学性能、物理性能、微观组织形貌与材料失效机理提供了有效的测试方法。
本发明的上述目的通过以下技术方案实现:
复合载荷模式力电热磁耦合材料性能原位测试仪器,包括复合载荷-多物理场加载试验平台1、原位监测平台2和隔振基座3,所述隔振基座3用于支承复合载荷-多物理场加载试验平台1、原位监测平台2,为其提供基础性的安装定位,并为测试过程提供有效的隔振处理;所述复合载荷-多物理场加载试验平台1依据试验条件,对被测材料样品施加拉伸/压缩、弯曲、扭转、低周疲劳载荷模式的力学加载,同时对载荷信号和变形信号的精密检测,进而实现复合载荷模式下材料的力学性能测试;依据试验条件,对被测材料样品施加力、电、热、磁多外场载荷,并实现对外场加载参数和材料相应物理性能参数的精确测量;在复合载荷-多物理场加载试验平台1耦合作用下,实现对被测材料样品施加接近服役条件下的力学与外场耦合作用的复杂载荷,同时对材料基本物理性能参数进行精确测量和定量分析;通过微纳米压痕测试试验,可测定在各类外部载荷作用下材料硬度、弹性模量基本力学参数的动态演化情况;
所述复合载荷-多物理场加载试验平台1包括拉伸/压缩加载模块11、扭转加载模块12、弯曲加载模块13、低周疲劳加载模块14、微纳米压痕测试模块15、高温加载模块16、低温加载模块17、磁场加载模块18、电场加载模块19,所述低温加载模块17、电场加载模块19的核心装置直流电源和循环制冷泵为外置设备;所述拉伸/压缩加载模块11固定于偏摆台2501台面上,扭转加载模块12分为扭转加载主动单元1201、扭转加载固定单元1202两部分,分别安装于拉伸/压缩加载模块11的扭转端拉伸滑座1103、疲劳端拉伸滑座1104上,低周疲劳加载模块14安装于疲劳端拉伸滑座1104上与扭转加载固定单元1202的尾部连接,弯曲加载模块13、微纳米压痕测试模块15、红外热成像监测模块22分别固定于侧向加载观测模块24的弯曲进给单元2401、压痕进给单元2403、红外热成像仪进给单元2402上,并一同安装于功能切换单元2404上;功能切换单元2404的往复运动实现弯曲加载模块13、微纳米压痕测试模块15、红外热成像监测模块22的位置选择和工位切换,红外热成像仪进给单元2402的直线运动调节红外热成像监测模块22的可视范围,弯曲进给单元2401的直线运动带动弯曲压头1302实现弯曲载荷加载,压痕进给单元2403的直线运动带动压痕压头1509进行压入点位的初定位;高温加载模块16通过调整滑座1602、调整滑座导轨1805与磁场加载模块18连接,磁场加载模块18、侧向加载观测模块24分别固定在拉伸/压缩加载模块11主轴线的两侧。
所述复合载荷-多物理场加载试验平台(1)在实现拉伸/压缩加载测试的基础上,集成其他的力学加载测试模式,同时还可构建高温/低温-电场-磁场的物理场环境,此外能够实现利用压入式检测手段分析材料的微观力学性能;最多可以实现“拉伸-疲劳-弯曲-扭转-高温场/低温场-电场- 磁场”或“压缩-弯曲-扭转-高温场/低温场-电场-磁场”的复合载荷-多物理场耦合加载试验,模拟丰富的试验环境,获取丰富的材料物理性能参数,也可以模拟特定工况,选择其中一种或几种功能进行耦合加载。
所述的复合载荷-多物理场加载试验平台1、原位监测平台2与真空腔4集成,实现对真空环境下的复合载荷-多物理场耦合加载试验和原位监测;隔振基座3集成于真空腔4内,防止真空泵工作时产生的振动影响仪器的原位监测效果;在配备真空腔的条件下,复合载荷-多物理场加载试验平台1放置于偏摆支承模块25上,偏摆支承模块25的偏摆台2501放置于重载导轨2502上,试验结束时将复合载荷-多物理场加载试验平台1连同偏摆台2501部分抽出真空腔4,便于更换材料样品;同时通过导轨的对接,将载物工具车6与真空腔4内的隔振基座3连接,将复合载荷-多物理场加载试验平台1完全抽出真空腔4外,以方便对其进行调试、检修。
所述的拉伸/压缩加载模块11采用双向拉伸结构,由拉压伺服电机1101驱动双向丝杠1102,带动扭转端拉伸滑座1103和疲劳端拉伸滑座1104,保证两侧行程、移动速度一致,实现拉伸/压缩载荷的加载,由直线光栅读数头Ⅰ、Ⅱ1105、1118测得拉伸/压缩加载变形。
所述的扭转加载模块12包括扭转加载主动单元1201、扭转加载固定单元1202两部分,采用一端扭转一端固定的方式,扭转加载主动单元1201为加载端,由扭转伺服电机120104驱动扭转主动齿轮120108、扭转从动齿轮120109带动主动端夹具体120116实现扭矩的加载;扭转加载固定单元1202为固定端,由固定端夹具体120204、连接轴120209将扭矩传递给拉扭复合传感器120210,实现拉伸力、扭矩大小的测定;主动端夹具体120116、固定端夹具体120204分别安装有圆光栅读数头Ⅰ、Ⅱ120117、120202,通过测量扭转试验时读取的角度差实现扭转角的精准测定;
所述扭转加载主动单元1201的旋转接头120106分为旋转接头定子120106B、旋转接头转子120106A,所述旋转接头转子120106A上开有环槽,与旋转接头定子120106B上的通流口联通,在定子转子间存在相对转动时仍能实现流体的输送,并利用连接法兰120107实现将主动端夹具体120116的流道与旋转接头120106的流道对接,实现在主动端夹具体120116因扭转加载产生转动时制冷液导入与循环;低温加载模块17依靠主动端夹具体120116、固定端夹具体120204的内置制冷流道,利用外置的低温制冷泵,将制冷液泵送至主动端夹具体120116、固定端夹具体120204内部开通的流道内,通过热传导的方式为材料样品制冷,为材料样品营造低温试验环境。
所述的低周疲劳加载模块14的疲劳加载模块柔性铰链1402的内框固定在疲劳加载模块底座1401上,外框与连接板120211连接;疲劳加载模块压电叠堆1403通过疲劳加载模块柔性铰链1402、连接板120211、拉扭复合传感器120210驱动固定端夹具体120204产生高频的往复微小位移,实现在预先拉伸载荷作用下对拉伸材料样品51的疲劳加载;在大拉伸载荷下,通过拧紧螺钉使卸荷板120212与连接板120211、疲劳端拉伸滑座1104紧固,实现对大拉伸力载荷的卸荷,保护疲劳加载模块压电叠堆1403不会损坏。
所述的微纳米压痕测试模块15通过压痕进给单元2403的直线运动实现压痕初进给,压痕测试模块压电叠堆1505通过压痕柔性铰链1502驱动压痕压头1509实现精准进给,通过压入力传感器1508采集压入过程中的压入力,通过电容式微小位移传感器1506监测压痕压头1509的压入深度。
所述的高温加载模块16包括卤素加热灯1601、调整滑座1602、卤素灯安装板1603,卤素加热灯1601通过螺钉与卤素灯安装板1603连接,并安装于调整滑座1602上,高温场的加载由卤素加热灯1601聚焦照射材料样品实现;
所述磁场加载模块18包括下磁轭1801、线圈1802、上磁轭1803、磁极极头1804、调整滑座导轨1805,磁场的加载由可控电磁铁实现,可控电磁铁由下磁轭1801、线圈1802、上磁轭1803、磁极极头1804组成,两个磁极极头1804采用上下布置,分别固定于下磁轭1801与上磁轭1803上,材料样品放置于两个磁极极头1804之间,通过对线圈1802加载电流的调整实现对磁场强度的控制;通过调整滑座1602,可以在不需要高温场功能时将卤素加热灯1601取下,防止其对原位监测模块光路的遮挡;电场加载模块19外接一台高压直流电源,利用导电银胶将两根导线分别接于材料样品相对的两个平面上,并在导线两端施加一个直流高压电场,从而实现电场的加载;将整个测试仪器放置于真空腔4内有助于降低两个电极间的击穿电压,以提高电场加载试验的电场强度。
所述的原位监测平台2用于动态监测在复杂力学载荷和多物理场载荷作用下材料样品的变形损伤、微观组织变化与性能演变,通过对各监测模块位姿的精确调整,实现对复杂载荷条件下材料样品的微观变形、损伤机制、微观组织结构变化以及性能演化进行实时的动态原位监测,包括光学显微成像监测模块21、红外热成像监测模块22、显微拉曼光谱监测模块23、侧向加载观测模块24、偏摆支承模块25,光学显微成像监测模块21、显微拉曼光谱监测模块23布置于复合载荷-多物理场加载试验平台1的两侧,安装在隔振基座3上,偏摆支承模块25安装在隔振基座3上,承载复合载荷-多物理场加载试验平台1的同时为各个原位观测模块提供更丰富的观测位置。红外热成像监测模块22安装于侧向加载观测模块24上,侧向加载观测模块24安装于复合载荷-多物理场加载试验平台1上。
所述的光学显微成像监测模块21、显微拉曼光谱监测模块23均能实现X、Y、Z三个方向的位置调整,完成显示视野的变换和成像仪器的的调焦,由X轴运动单元Ⅰ、Ⅱ2101、2301、Y轴运动单元Ⅰ、Ⅱ2102、2302、Z轴运动单元Ⅰ、Ⅱ2104、2304实现;显微拉曼光谱仪2315通过调整旋转支架2305与调距手轮2313对初始监测角度和初始监测位置进行调整,能够实现更为丰富的监测范围;显微拉曼光谱仪2315为内置CCD形式,后部通过一个标准C接口与拉曼光谱仪集成,根据显微图像在可视的范围内选择局部微小区域利用拉曼光谱仪,实现对微区的组织成分的分析;光学显微成像监测模块21、显微拉曼光谱监测模块23分别实现复合载荷-多物理场耦合试验下材料样品微观组织结构的监测和组织成分变化的监测;红外热成像监测模块22实时监测温度场下材料样品的温度分布。
本发明的另一目的在于提供一种复合载荷模式力电热磁耦合材料性能原位测试方法,对于以拉伸试验为基础的力电热磁多物理场耦合材料微观性能原位测试方法,通过主动端拉伸夹具压板120115、固定端拉伸夹具压板120205将拉伸材料样品51固定于主动端夹具体120116、固定端夹具体120204上,并使拉伸/压缩加载模块11驱动扭转端拉伸滑座1103、疲劳端拉伸滑座1104背向运动,实现拉伸材料样品51的拉伸加载;通过扭转加载模块12实现拉伸材料样品51的扭转加载;分别通过直线光栅读数头Ⅰ1105、圆光栅读数头120117Ⅰ测算拉伸材料样品51的拉伸应变 与扭转应变,通过拉扭复合传感器120210测算拉伸应力与扭转应力;低周疲劳加载模块14可以在拉伸载荷下给拉伸材料样品51施加低周疲劳载荷;通过侧向加载观测模块24将弯曲加载模块13驱动至工作位置,给拉伸材料样品51施加弯曲载荷通过压力传感器1303测算弯曲力;在施加复合力学载荷的同时通过电场加载模块19拉伸材料样品51施加电场,通过磁场加载模块18对拉伸材料样品51施加磁场,通过相关仪器控制施加电场、磁场的强度,并对试验过程中的电滞回线、磁滞回线进行测量;通过高温加载模块16给拉伸材料样品51施加高温,此时通过侧向加载观测模块24将红外热成像监测模块22移动至工作位置测量拉伸材料样品51的温度场信息;此外可以通过低温加载模块17给拉伸材料样品51施加低温;在工作过程中通过光学显微成像监测模块21对拉伸材料样品51的变形损伤、失效形式进行原位观测;在试验中的任意时刻,可以通过侧向加载观测模块24将微纳米压痕测试模块15切换至工作位置,对试件表面进行微纳米压痕测试,压痕进给单元2403的直线运动实现压痕初进给;压痕测试模块压电叠堆1505通过压痕柔性铰链1502、压入力传感器1508驱动压痕压头1509实现精准进给;并用压入力传感器1508、电容式微小位移传感器1506采集的压入力、压入量信息描绘微纳米压痕曲线;该过程可以通过偏摆支承模块25将复合载荷-多物理场加载试验平台1调节到显微拉曼光谱监测模块23的观测范围内,并对压入过程进行原位测试,同时获取局部微区域的拉曼光谱信息。
本发明的有益效果在于:
1、本发明仪器可实现“拉伸/压缩-扭转-弯曲-低周疲劳”四种形式载荷单独加载,同时还可以构建高温/低温-电场-磁场的物理场环境,最多可以实现“拉伸-低周疲劳-弯曲-扭转-高温场(低温场)-电场-磁场”或“压缩-弯曲-扭转-高温场(低温场)-电场-磁场”的复合载荷-多物理场耦合加载试验,模拟丰富的试验环境,获取丰富的材料物理性能参数,也可以模拟特定工况,选择其中一种或几种功能进行耦合加载,如拉伸-扭转-低温、拉伸-疲劳-高温、压缩-电场等。
2、本发明仪器利用由光学显微成像监测模块、红外热成像监测模块、显微拉曼光谱监测模块组成的原位观测平台,可以原位动态监测在复杂力学载荷和多物理场载荷作用下材料样品的变形损伤、微观组织变化与性能演变等。
3、本发明仪器可集成真空腔,从而为被测材料样品提供如低压、真空、惰性气体等氛围的测试环境,以实现在上述环境下对材料样品进行复合载荷-多物理场耦合加载的测试,为研究接近服役条件下材料的微观组织形貌和失效机制,提供更为丰富的测试手段。仪器电控部分可集成布置于隔振基座下部,并可集成载物工具车使仪器结构更为紧凑、操作方便、功能齐全。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明整机示意图;
图2为本发明复合载荷-多物理场加载试验平台示意图;
图3为本发明拉伸/压模加载模块装配图;
图4为本发明扭转加载主动单元装配图;
图5为本发明扭转加载固定单元装配图;
图6为本发明侧向加载观测模块装配图;
图7为本发明微调单元示意图;
图8为本发明制冷流道示意图;
图9为本发明拉伸材料样品夹持示意图;
图10为本发明压缩材料样品夹持示意图;
图11为本发明高温加载模块与磁场加载模块装配图;
图12为本发明偏摆支承模块装配图;
图13为本发明光学显微成像监测模块装配图;
图14为本发明显微拉曼光谱监测模块装配图;
图15为本发明真空腔布置及复合载荷-多物理场加载试验平台抽出示意图;
图16、图17为本发明偏摆台工作示意图;
图18为本发明复合载荷模式力学加载原理图;
图19为本发明多物理场加载原理图。
图中:1、复合载荷-多物理场加载试验平台;2、原位监测平台;3、隔振基座;4、真空腔;51、拉伸材料样品;52、压缩材料样品;6、载物工具车;11、拉伸/压缩加载模块;12、扭转加载模块;13、弯曲加载模块;14、低周疲劳加载模块;15、微纳米压痕测试模块;16、高温加载模块;17、低温加载模块;18、磁场加载模块;19、电场加载模块;21、光学显微成像监测模块;22、红外热成像监测模块;23、显微拉曼光谱监测模块;24、侧向加载观测模块;25、偏摆支承模块;1101、拉压伺服电机;1102、双向丝杠;1103、扭转端拉伸滑座;1104、疲劳端拉伸滑座;1105、直线光栅读数头Ⅰ;1106、直线光栅尺Ⅰ;1107、拉伸平台滑块;1108、拉伸电机支座;1109、联轴器;1110、丝杠支座组件;1111、拉伸导轨;1112、磁场加载模块定位键;1113、直线光栅读数头支架;1114、光栅尺固定片;1115、基板;1116、限位开关支架;1117、限位开关;1118、直线光栅读数头Ⅱ;1119、直线光栅尺Ⅱ;1120、螺母Ⅰ;1121、螺母座Ⅰ;1122、螺母Ⅱ;1123、螺母座Ⅱ;1201、扭转加载主动单元;1202、扭转加载固定单元;120101、扭转轴承架;120102、传动轴;120103、扭转电机支座;120104、扭转伺服电机;120105、旋转接头支座;120106、旋转接头;120107、连接法兰;120108、扭转主动齿轮;120109、扭转从动齿轮;120110、角接触轴承端盖;120111、垫片Ⅰ;120112、角接触轴承座;120113、角接触球轴承;120114、圆光栅尺Ⅰ;120115、主动端拉伸夹具压板;120116、主动端夹具体;120117、圆光栅读数头Ⅰ;120118、主动端压缩夹具头;120201、圆柱滚子轴承座;120202、圆光栅读数头Ⅱ;120203、圆光栅尺Ⅱ;120204、固定端夹具体;120205、固定端拉伸夹具压板;120206、圆柱滚子轴承;120207、垫片Ⅱ;120208、圆柱滚子轴承端盖;120209、连接轴;120210、拉扭复合传感器;120211、连接板;120212、卸荷板;120213、固定端压缩夹具头;1301、弯曲加载模块支座;1302、弯曲压头;1303、压力传感器;1304、支承轴;1401、疲劳加载模块底座;1402、疲劳加载模块柔性铰链;1403、疲劳加载模块压电叠堆;1404、疲劳模块滑块;1405、端面固定板;1406、疲劳模块导轨;1501、楔形块;1502、压痕柔性铰链;1503、压痕测试模块支座;1504、微调单元;1505、压痕测试模块压电叠堆;1506、电容式微小位移传感器;1507、挡片;1508、压入力传感器;1509、 压痕压头;150401、可动板;150402、位移传感器支架;150403、位移传感器压板;150404、固定板;150405、手柄;1601、卤素加热灯;1602、调整滑座;1603、卤素灯安装板;1801、下磁轭;1802、线圈;1803、上磁轭;1804、磁极极头;1805、调整滑座导轨;
2101、X轴运动单元Ⅰ;2102、Y轴运动单元Ⅰ;2103、支承板;2104、Z轴运动单元Ⅰ;2105、光学显微镜支架;2106、光学显微镜;2107、X轴支承单元Ⅰ;2301、X轴运动单元Ⅱ;2302、Y轴运动单元Ⅱ;2303、支承板Ⅱ;2304、Z轴运动单元Ⅱ;2305、旋转支架;2306、调角座;2307、调角螺母;2308、调角手轮;2309、调角丝杆;2310、导向柱;2311、齿条;2312、夹持器;2313、调距手轮;2314、显微拉曼连接板;2315、显微拉曼光谱仪;2316、X轴支承单元Ⅱ;2401、弯曲进给单元;2402、红外热成像仪进给单元;2403、压痕进给单元;2404、功能切换单元;2501、偏摆台;2502、重载导轨;2503、定位型材;2504、定位键;2505、偏摆伺服电机。
具体实施方式
下面结合附图进一步说明本发明的详细内容及其具体实施方式。
参见图1至图19所示,本发明的复合载荷模式力电热磁耦合材料性能原位测试仪器,包括复合载荷-多物理场加载试验平台1、原位监测平台2和隔振基座3,所述隔振基座3用于支承复合载荷-多物理场加载试验平台1、原位监测平台2,为其提供基础性的安装定位,并为测试过程提供有效的隔振处理;隔振基座3为测试仪器提供整机的支承和一个稳定无振动的实验环境,如果需要营造真空环境,复合载荷-多物理场加载试验平台1、原位监测平台2等核心部分可与真空腔4集成,可以实现对真空环境下的复合载荷-多物理场耦合加载试验和原位监测;隔振基座3集成于真空腔4内,防止真空泵工作时产生的振动影响仪器的原位监测效果。偏摆支承模块25布置于隔振基座面正中,复合载荷-多物理场加载试验平台1固定于偏摆台2501台面中心,并保证拉伸/压缩轴线与偏摆台回转轴线同轴,机械加载平台以拉伸/压缩加载模块11为基础。
参见图15所示,利用真空腔4实现对真空环境下复合载荷模式力-电-热-磁多物理场耦合材料微观性能原位测试。其中加载试验平台放置于偏摆支承模块25上,其中的偏摆台2501放置于重载导轨2502上,试验结束时可以将加载试验平台连同偏摆台2501部分抽出真空腔4,便于更换材料样品。同时可以通过导轨的对接,将载物工具车6与真空腔4内的隔振基座3连接,将加载试验平台完全抽出真空腔4外,以方便对其进行调试、检修。
本发明可以实现在拉伸/压缩加载的基础上,集成其他的力学加载形式,同时还可以构建高温场/低温场-电场-磁场的多物理场耦合条件,利用仪器内嵌的原位微纳米压痕测试模块15,可以精准测量这些复杂载荷条件作用下,材料样品压痕曲线、硬度、弹性模量等参量的动态演变情况。仪器可实现拉伸/压缩、弯曲、扭转、低周疲劳、温度场、电场、磁场的任意组合,最多可同时实现上述七种载荷方式共存的并行加载测试,为接近服役条件下材料微观力学性能测试提供有效的手段和方法。
偏摆支承模块25的偏摆台2501放置于重载导轨2502上,试验结束时可以将复合载荷-多物理场加载试验平台1连同偏摆台2501部分抽出真空腔4,便于更换材料样品;同时可以通过导轨的对接,将载物工具车6与真空腔4内的隔振基座3连接,将复合载荷-多物理场加载试验平台1完全抽出真空腔4外,以方便对其进行调试、检修;
所述复合载荷-多物理场加载试验平台1依据试验条件,对被测材料样品施加拉伸/压缩、弯曲、扭转、低周疲劳等多种载荷模式的力学加载,同时对载荷信号和变形信号的精密检测,进而实现复合载荷模式下材料的力学性能测试;依据试验条件,对被测材料样品施加力、电、热、磁等多外场载荷,并实现对外场加载参数和材料相应物理性能参数的精确测量;在复合载荷-多物理场加载试验平台1耦合作用下,实现对被测材料样品施加接近服役条件下的力学与外场耦合作用的复杂载荷,同时对材料基本物理性能参数进行精确测量和定量分析;通过微纳米压痕测试试验,可测定在各类外部载荷作用下材料硬度、弹性模量等基本力学参数的动态演化情况。
所述的复合载荷-多物理场加载试验平台1包括拉伸/压缩加载模块11、扭转加载模块12、弯曲加载模块13、低周疲劳加载模块14、微纳米压痕测试模块15、高温加载模块16、低温加载模块17、磁场加载模块18、电场加载模块19,低温加载模块17、电场加载模块19的核心装置直流电源和循环制冷泵为外置设备,图3、图8中标号分别表示高压电源接入的导线和低温流体接入的流道。实际工作中,可以根据实际需求对上述模块进行选配。
所述拉伸/压缩加载模块11固定于偏摆台2501台面上,扭转加载模块12分为扭转加载主动单元1201、扭转加载固定单元1202两部分,分别安装于拉伸/压缩加载模块11的扭转端拉伸滑座1103、疲劳端拉伸滑座1104上,低周疲劳加载模块14安装于疲劳端拉伸滑座1104上与扭转加载固定单元1202的尾部连接,弯曲加载模块13、微纳米压痕测试模块15、红外热成像监测模块22分别以相同的方式由螺钉固定于侧向加载观测模块24的弯曲进给单元2401、压痕进给单元2403、红外热成像仪进给单元2402上,并一同安装于功能切换单元2404上;功能切换单元2404的往复运动实现弯曲加载、压痕加载、红外热成像的位置选择和工位切换,红外热成像仪进给单元2402的直线运动调节红外热成像监测模块22的可视范围,弯曲进给单元2401的直线运动带动弯曲压头1302实现弯曲载荷加载,压痕进给单元2403的直线运动带动压痕压头1509进行压入点位的初定位;高温加载模块16通过调整滑座1602、调整滑座导轨1805与磁场加载模块18连接,磁场加载模块18、侧向加载观测模块24分别固定在拉伸/压缩加载模块11主轴线的两侧。
参见图2至图5所示,本发明所述的拉伸/压缩加载模块11采用双向拉伸结构,由拉压伺服电机1101驱动双向丝杠1102,带动扭转端拉伸滑座1103和疲劳端拉伸滑座1104,保证两侧行程、移动速度一致,实现拉伸/压缩载荷的加载,由直线光栅读数头Ⅰ、Ⅱ1105、1118测得拉伸/压缩加载变形,包括拉压伺服电机1101、双向丝杠1102、扭转端拉伸滑座1103、拉伸电机支座1108、联轴器1109、丝杠支座组件1110、拉伸导轨1111、拉伸平台滑块1107、疲劳端拉伸滑座1104、磁场加载模块定位键1112、直线光栅读数头支架1113、直线光栅读数头Ⅰ、Ⅱ1105、1118、直线光栅尺Ⅰ、Ⅱ1106、1119、光栅尺固定片1114、基板1115、限位开关支架1116、限位开关1117、螺母Ⅰ、Ⅱ1120、1122、螺母座Ⅰ、Ⅱ1121、1123,所述基板1115是拉伸/压缩加载模块11的固定部分,拉压伺服电机1101通过拉伸电机支座1108与基板1115固定,拉压伺服电机1101通过联轴器1109与双向丝杠1102连接。双向丝杠1102通过丝杠支座组件1110定位在基板1115上。双向丝杠1102与螺母Ⅰ、Ⅱ1120、1122组成两组螺母副。螺母Ⅰ、Ⅱ1120、1122通过螺母座Ⅰ、Ⅱ1121、1123分别与疲劳端拉伸滑座1104、扭转端拉伸滑座1103固定。疲劳端拉伸滑座1104、扭转端拉伸滑座1103通过拉伸平台滑块1107安装在拉伸导轨1111上。直线光栅读数头Ⅰ、Ⅱ1105、1118通过直线光栅读数头支架1113分别安装于疲劳端拉伸滑座1104、扭转端拉伸滑座1103 上。直线光栅尺Ⅰ、Ⅱ1106、1119通过光栅尺固定片1114安装于基板1115上。限位开关1117通过限位开关支架1116安装于基板1115上。磁场加载模块定位键1112安装于基板1115上。
工作时拉压伺服电机1101驱动双向丝杠1102转动,实现螺母Ⅰ、Ⅱ1120、1122的等速异向运动,并带动疲劳端拉伸滑座1104、扭转端拉伸滑座1103实现等速异向运动。利用直线光栅读数头Ⅰ、Ⅱ1105、1118与直线光栅尺Ⅰ、Ⅱ1106、1119之间的相对运动获取材料样品的拉伸/压缩变形量。限位开关1117防止拉伸平台滑块1107滑出拉伸导轨1111。
参见图2、图4及图5所示,本发明所述的扭转加载模块12分为扭转加载主动单元1201、扭转加载固定单元1202两部分,采用一端扭转一端固定的方式,扭转加载主动单元1201为加载端,由扭转伺服电机120104驱动扭转主动齿轮120108、扭转从动齿轮120109带动主动端夹具体120116实现扭矩的加载;扭转加载固定单元1202为固定端,由固定端夹具体120204、连接轴120209将扭矩传递给拉扭复合传感器120210,实现拉伸力、扭矩大小的测定;主动端夹具体120116、固定端夹具体120204分别安装有圆光栅读数头Ⅰ、Ⅱ120117、120202,通过测量扭转试验时读取的角度差实现扭转角的精准测定。
所述扭转加载主动单元1201包括扭转轴承架120101、传动轴120102、扭转电机支座120103、扭转伺服电机120104、旋转接头支座120105、旋转接头120106、连接法兰120107、扭转主动齿轮120108、扭转从动齿轮120109、角接触轴承端盖120110、垫片Ⅰ120111、角接触轴承座120112、角接触球轴承120113、圆光栅尺Ⅰ120114、主动端拉伸夹具压板120115、主动端夹具体120116、圆光栅读数头120117、主动端压缩夹具头120118,所述扭转伺服电机120104的电机轴与传动轴120102键连接、扭转主动齿轮120108与传动轴120102键连接、扭转从动齿轮120109与主动端夹具体120116均为键连接。扭转伺服电机120104通过扭转电机支座120103固定在扭转端拉伸滑座1103上。扭转轴承架120101固定在扭转端拉伸滑座1103上。传动轴120102安装于扭转轴承架120101上。旋转接头120106分为旋转接头定子120106B、旋转接头转子120106A,其中旋转接头定子120106B与旋转接头支座120105连接,旋转接头转子120106A通过连接法兰120107与主动端夹具体120116连接。主动端夹具体120116由一对背靠背布置的角接触球轴承120113安装于角接触轴承座120112上,角接触轴承端盖120110、垫片Ⅰ120111安装于角接触轴承座120112,角接触球轴承120113由角接触轴承端盖120110压紧,角接触轴承座120112由螺钉安装于扭转端拉伸滑座1103上。圆光栅尺Ⅰ120114安装于主动端夹具体120116上,圆光栅读数头120117安装于角接触轴承座120112上。主动端拉伸夹具压板120115、主动端压缩夹具头120118针对拉伸/压缩试验与主动端夹具体120116安装,用于夹持拉伸材料样品51/压缩材料样品52。工作时扭转伺服电机120104将力矩由传动轴120102、扭转主动齿轮120108、扭转从动齿轮120109传递至主动端夹具体120116,并带动材料样品扭转。
所述的扭转加载固定单元1202包括圆光栅尺Ⅱ120203、圆光栅读数头Ⅱ120202、固定端夹具体120204、固定端拉伸夹具压板120205、圆柱滚子轴承120206、垫片Ⅱ120207、圆柱滚子轴承端盖120208、连接轴120209、拉扭复合传感器120210、连接板120211、卸荷板120212、圆柱滚子轴承座120201、固定端压缩夹具头120213,所述固定端夹具体120204通过圆柱滚子轴承120206安装于圆柱滚子轴承座120201上,连接轴120209两端分别通过螺钉与固定端夹具体120204和拉扭复合传感器120210连接,拉扭复合传感器120210通过螺钉与连接板120211连接。 圆柱滚子轴承座120201、卸荷板120212与疲劳端拉伸滑座1104连接。圆柱滚子轴承端盖120208、垫片Ⅱ120207安装于圆柱滚子轴承座120201上。圆光栅尺Ⅱ120203安装于固定端夹具体120204上,圆光栅读数头Ⅱ120202安装于圆柱滚子轴承座120201上。固定端拉伸夹具压板120205、固定端压缩夹具头120213针对拉伸/压缩试验与固定端夹具体120204安装,用于夹持拉伸材料样品51/压缩材料样品52。
扭转时由固定端夹具体120204、连接轴120209将拉伸/压缩力和扭矩传递给拉扭复合传感器120210,实现拉伸力/压缩力、扭矩载荷大小的测定。主动端夹具体120116、固定端夹具体120204分别安装有圆光栅尺Ⅰ、Ⅱ120114、120203,利用圆光栅读数头Ⅰ、Ⅱ120117、120202测量扭转试验时光栅角度差实现扭转角的精准测定。在大拉伸载荷下,通过拧紧螺钉使卸荷板120212与连接板120211和疲劳端拉伸滑座1104紧固,实现对大拉伸力载荷的卸荷,保护疲劳加载模块压电叠堆1403不会损坏。
材料样品的夹持方式,针对拉伸试验所用的拉伸材料样品51为板状的特点,利用主动端夹具体120116、固定端夹具体120204上的斜面卡紧拉伸材料样品51,在两侧夹具体上分别安装主动端拉伸夹具压板120115、固定端拉伸夹具压板120205,实现对拉伸材料样品51的夹持。针对压缩试验所用的压缩材料样品52为立方体的特点,在两侧夹具体上分别安装主动端压缩夹具头120118、固定端压缩夹具头120213,主动端压缩夹具头120118及固定端压缩夹具头120213上开有方槽,将压缩材料样品52卡入槽内,使其在压缩、弯曲、扭转加载过程中实现对压缩材料样品52的夹持。
参见图2及图5所示,本发明所述的低周疲劳加载模块14包括疲劳加载模块柔性铰链1402、疲劳加载模块压电叠堆1403、疲劳模块滑块1404、疲劳模块导轨1406、疲劳加载模块底座1401、端面固定板1405,所述疲劳加载模块柔性铰链1402分为固定端和形变输出端,疲劳加载模块柔性铰链1402固定端通过螺钉与疲劳加载模块底座1401固连,疲劳加载模块底座1401通过端面固定板1405与疲劳端拉伸滑座1104固连,疲劳加载模块柔性铰链1402输出端通过螺钉与扭转加载固定单元1202相连,且安装于疲劳模块滑块1404上,疲劳加载模块压电叠堆1403驱动疲劳加载模块柔性铰链1402发生形变,使疲劳加载模块柔性铰链1402输出端沿疲劳模块导轨1406方向带动扭转加载固定单元1202产生微小位移,从而实现低周疲劳加载。
疲劳加载模块柔性铰链1402的内框固定在疲劳加载模块底座1401上,外框与连接板120211连接;疲劳加载模块压电叠堆1403通过疲劳加载模块柔性铰链1402、连接板120211、拉扭复合传感器120210等驱动固定端夹具体120204产生高频的往复微小位移,可以实现在预先拉伸载荷作用下对拉伸材料样品51的疲劳加载。
参见图2及图6所示,本发明的弯曲加载模块13包括弯曲加载模块支座1301、支承轴1304、压力传感器1303、弯曲压头1302,所述弯曲加载模块支座1301、支承轴1304、压力传感器1303、弯曲压头1302依次由螺钉连接,将弯曲加载模块支座1301与弯曲进给单元2401用螺钉连接,最后通过螺钉固定于功能切换单元2404上,功能切换单元2404带动弯曲加载模块13实现沿材料样品轴线方向弯曲工位的调整,由弯曲进给单元2401通过电机和滚珠丝杠驱动弯曲压头1302完成弯曲加载。
参见图6及图7所示,本发明的微纳米压痕测试模块15包括楔形块1501、压痕柔性铰链1502、 压痕测试模块支座1503、微调单元1504、压痕测试模块压电叠堆1505、压入力传感器1508、挡片1507、压痕压头1509、电容式微小位移传感器1506,其中微调单元1504由可动板150401、位移传感器支架150402、位移传感器压板150403、固定板150404、手柄150405组成。安装在压痕柔性铰链1502内的压痕测试模块压电叠堆1505由楔形块1501预紧,压入力传感器1508且位于压痕压头1509及压痕柔性铰链1502之间,并用螺纹连接。压痕柔性铰链1502安装在压痕测试模块支座1503上。挡片1507安装在压痕压头1509上。微调单元1504中,固定板150404通过螺钉连接到压痕测试模块支座1503上,可动板150401用螺钉与位移传感器支架150402连接,位移传感器压板150403将电容式微小位移传感器1506夹紧。通过旋动手柄150405调整可动板150401与固定板150404的相对位置来调整电容式微小位移传感器1506的工作位置,使其进入传感器的量程范围,通过测量电容式微小位移传感器1506与挡片1507之间的距离来表征压痕压头1509的压入深度。功能切换单元2404带动微纳米压痕测试模块15实现沿材料样品轴线方向压入位置的调整,压痕进给单元2403的直线运动实现压痕初进给。压痕测试模块压电叠堆1505通过压痕柔性铰链1502、压入力传感器1508驱动压痕压头1509实现精准进给。通过压入力传感器1508采集压入过程中的压入力,通过电容式微小位移传感器1506监测压痕压头1509的压入深度。微纳米压痕测试模块15作为一种材料力学性能监测手段内嵌于仪器中,可以精准测量材料样品复杂载荷条件作用下,其局部微小区域内的压痕曲线、硬度、弹性模量等参量的动态演变情况。
参见图6本发明的弯曲加载模块13、微纳米压痕测试模块15和红外热成像监测模块22分别以相同的方式由螺钉固定于弯曲进给单元2401、压痕进给单元2403、红外热成像仪进给单元2402上,并一同安装于功能切换单元2404。功能切换单元2404的往复运动实现弯曲加载、压痕加载、红外热成像的功能切换。其中红外热成像监测模块22安装于红外热成像仪进给单元2402上,功能切换单元2404带动红外热成像监测模块22实现沿材料样品轴线方向红外成像工位的调整,红外热成像仪进给单元2402的直线运动完成红外热成像监测模块22的焦距调整,达到监测试验中材料样品的温度分布的目的。
参见图8所示,本发明的低温加载模块17利用外置的低温制冷泵,通入制冷流道来实现。主动端夹具体120116、固定端夹具体120204内置制冷流道,利用外置的低温制冷泵,将制冷液泵送至主动端夹具体120116、固定端夹具体120204内部开通的流道内,通过热传导的方式为材料样品制冷,为材料样品营造低温试验环境。旋转接头120106分为旋转接头定子120106B、旋转接头转子120106A,旋转接头转子120106A上开有环槽,与旋转接头定子120106B上的通流口联通,在定子转子间存在相对转动时仍能实现流体的输送,并利用连接法兰120107实现将主动端夹具体120116的流道与旋转接头120106的流道对接,实现在主动端夹具体120116因扭转加载产生转动时制冷液导入与循环。
参见图9、图10所示,本发明的材料样品夹持动作主要由主动端拉伸夹具压板120115、主动端夹具体120116、固定端夹具体120204、固定端拉伸夹具压板120205、主动端压缩夹具头120118、固定端压缩夹具头120213实现。主动端夹具体120116与主动端拉伸夹具压板120115及主动端压缩夹具头120118间、固定端夹具体120204与固定端拉伸夹具压板120205及固定端压缩夹具头120213间均由螺钉连接。
对于拉伸材料样品51的夹持,拉伸夹具主动端夹具体120116和固定端夹具体120204设计有 与拉伸材料样品51夹持端相配合的侧面结构,拉伸时材料样品由此两侧面定位,并通过主动端拉伸夹具压板120115、固定端拉伸夹具压板120205压紧材料样品,实现对拉伸材料样品51的可靠夹持。
对于压缩材料样品52的夹持,主动端压缩夹具头120118及固定端压缩夹具头120213设计有与压缩材料样品52两端相配合的凹槽,材料样品依靠重力贴紧在主动端压缩夹具头120118、固定端压缩夹具头120213上,当加载压缩载荷时,主动端压缩夹具头120118与固定端压缩夹具头120213将压缩材料样品52两端面压紧,实现对压缩材料样品52的可靠夹持。
参见图11所示,本发明所述的高温加载模块16包括卤素加热灯1601、调整滑座1602、卤素灯安装板1603,卤素加热灯1601通过螺钉与卤素灯安装板1603连接,并安装于调整滑座1602上。调整滑座1602可沿调整滑座导轨1805调节卤素加热灯1601的焦距。卤素加热灯1601发光并经弧面聚焦于材料样品表面,实现高温加载。
磁场加载模块18包括下磁轭1801、线圈1802、上磁轭1803、磁极极头1804、调整滑座导轨1805,两个磁极极头1804采用上下布置,分别固定于下磁轭1801与上磁轭1803上,通过对线圈1802加载电流实现对材料样品垂直方向的磁场加载。
高温场的加载由卤素加热灯1601聚焦照射材料样品实现,磁场的加载由可控电磁铁实现,可控电磁铁由下磁轭1801、线圈1802、上磁轭1803、磁极极头1804组成,材料样品放置于两个磁极极头1804之间,通过对线圈1802加载电流的调整实现对磁场强度的控制;通过调整滑座1602,可以在不需要高温场功能时将卤素加热灯1601取下,防止其对原位监测模块光路的遮挡。电场加载模块19需要外接一台高压直流电源,利用导电银胶将两根导线分别接于材料样品相对的两个平面上,并在导线两端施加一个直流高压电场,从而实现电场的加载。将整个试验装置放置于真空腔4内有助于降低两个电极间的击穿电压,可以提高电场加载试验的电场强度。
原位监测平台2用于动态监测在复杂力学载荷和多物理场载荷作用下材料样品的变形损伤、微观组织变化与性能演变等,通过对各监测模块位姿的精确调整,实现对复杂载荷条件下材料样品的微观变形、损伤机制、微观组织结构变化以及性能演化进行实时的动态原位监测,包括光学显微成像监测模块21、红外热成像监测模块22、显微拉曼光谱监测模块23、侧向加载观测模块24、偏摆支承模块25。光学显微成像监测模块21、显微拉曼光谱监测模块23布置于复合载荷-多物理场加载试验平台1的两侧,安装在隔振基座3上,偏摆支承模块25安装在隔振基座3上,承载复合载荷-多物理场加载试验平台1的同时为各个原位观测模块提供更丰富的观测位置。红外热成像监测模块22安装于侧向加载观测模块24上,侧向加载观测模块24安装于复合载荷-多物理场加载试验平台1上。
参见图12、图15至图17所示,本发明所述的偏摆支承模块25包括定位型材2503、重载导轨2502、偏摆台2501、定位键2504、偏摆伺服电机2505,拉伸模块的基板1115与偏摆台2501的台面由定位键2504定位,偏摆台2501沿重载导轨2502运动。重载导轨2502通过定位型材2503安装于隔振基座3上。
所述偏摆台2501在偏摆伺服电机2505的驱动下可带动复合载荷-多物理场加载试验平台1实现0°-45°的偏转,以调整材料样品的整体姿态便于实现原位监测功能。在压痕压头1509压入过程中,设置一定的监测角度,能够对压入过程进行原位监测。通过调整偏摆角度可以实现显微拉曼 光谱监测模块23对材料样品压入后的压痕进行垂直监测,便于对压痕微观形貌、成分进行采集与分析。
本发明可以与真空腔4集成,试验结束时可以将复合载荷-多物理场加载试验平台1连同偏摆台2501部分抽出真空腔4,便于更换材料样品。同时可以通过重载导轨2502的对接,使载物工具车6与真空腔4内的隔振基座3连接,将复合载荷-多物理场加载试验平台1完全抽出真空腔4外,以方便对其进行调试、检修。
参见图13所示,本发明的光学显微成像监测模块21包括X轴运动单元Ⅰ2101、X轴支承单元Ⅰ2107、Y轴运动单元Ⅰ2102、Z轴运动单元Ⅰ2104、支承板Ⅰ2103、光学显微镜支架2105、光学显微镜2106,所述X轴运动单元Ⅰ2101、X轴支承单元Ⅰ2107分别与Y轴运动单元Ⅰ2102叠加安装,Y轴运动单元Ⅰ2102与Z轴运动单元Ⅰ2104通过支承板Ⅰ2103连接。光学显微镜2106通过光学显微镜支架2105连接在Z轴运动单元Ⅰ2104上。能够实现大范围调整光学显微镜2106的观测位置,X轴支承单元Ⅰ2107能有效防止由分布不均产生的倾斜。
参见图14所示,本发明的显微拉曼光谱监测模块23包括X轴运动单元Ⅱ2301、Y轴运动单元Ⅱ2302、支承板Ⅱ2303、Z轴运动单元Ⅱ2304、旋转支架2305、调角座2306、调角螺母2307、调角手轮2308、调角丝杆2309、导向柱2310、齿条2311、夹持器2312、调距手轮2313、显微拉曼连接板2314、显微拉曼光谱仪2315、X轴支承单元Ⅱ2316,所述X轴运动单元Ⅱ2301、X轴支承单元Ⅱ2316分别与Y轴运动单元Ⅱ2302叠加安装,Y轴运动单元Ⅱ2302与Z轴运动单元Ⅱ2304通过支承板Ⅱ2303连接。旋转支架2305安装于Z轴运动单元Ⅱ2304上,调角座2306同时与旋转支架2305、调角螺母2307铰接,调角丝杆2309与旋转支架2305铰接。调角手轮2308与调角丝杆2309固定。导向柱2310与齿条2311焊接后,通过螺钉与旋转支架2305连接。显微拉曼光谱仪2315通过显微拉曼连接板2314、夹持器2312、调距手轮2313安装在导向柱2310上。
利用X轴运动单元Ⅱ2301、Y轴运动单元Ⅱ2302、Z轴运动单元Ⅱ2304带动显微拉曼光谱仪2315完成监测位置的初步调整,通过旋动调角手轮2308使调角螺母2307沿调角丝杆2309移动改变导向柱2310及显微拉曼光谱仪2315监测轴线与竖直方向的夹角,旋动调距手轮2313实现显微拉曼光谱仪2315沿导向柱2310方向移动,完成显微拉曼光谱仪2315监测点的进一步调整。显微拉曼光谱仪2315能够实现试验中非接触式应变的测量和材料样品微观组分变化的监测。
光学显微成像监测模块21、显微拉曼光谱监测模块23均可以实现X、Y、Z三个方向的位置调整,完成显示视野的变换和成像仪器的调焦,由X轴运动单元Ⅰ、Ⅱ2101、2301、Y轴运动单元Ⅰ、Ⅱ2102、2302、Z轴运动单元Ⅰ、Ⅱ2104、2304实现;显微拉曼光谱仪2315可通过调整旋转支架2305与调距手轮2313对初始监测角度和初始监测位置进行调整,能够实现更为丰富的监测范围。显微拉曼光谱仪2315为内置CCD形式,后部通过一个标准C接口与拉曼光谱仪集成,可以根据显微图像在可视的范围内选择局部微小区域利用拉曼光谱仪,实现对微区的组织成分的分析。两个监测模块分别实现复合载荷-多物理场耦合试验下材料样品微观组织结构的监测和组织成分变化的监测;红外热成像监测模块22实时监测温度场下材料样品的温度分布。
本发明结合由信号采集单元、控制单元等构成的检测控制模块,通过控制力学加载和多物理场加载试验平台和原位监测平台,模拟载荷环境,并实现原位观测。利用采集模块采集相关的应 力、应变、电场强度、磁场强度、温度等参数信息,生成试验曲线,进而测量相关材料物理性能参数。
复合载荷模式力电热磁耦合材料性能原位测试方法,对于以拉伸试验为基础的力电热磁多物理场耦合材料微观性能原位测试方法,通过主动端拉伸夹具压板120115、固定端拉伸夹具压板120205将拉伸材料样品51固定于主动端夹具体120116、固定端夹具体120204上,并使拉伸/压缩加载模块11驱动扭转端拉伸滑座1103、疲劳端拉伸滑座1104背向运动,实现拉伸材料样品51的拉伸加载;通过扭转加载模块12实现拉伸材料样品51的扭转加载;分别通过直线光栅读数头Ⅰ1105、圆光栅读数头120117Ⅰ测算拉伸材料样品51的拉伸应变与扭转应变,通过拉扭复合传感器120210测算拉伸应力与扭转应力;低周疲劳加载模块14可以在拉伸载荷下给拉伸材料样品51施加低周疲劳载荷;通过侧向加载观测模块24将弯曲加载模块13驱动至工作位置,给拉伸材料样品51施加弯曲载荷通过压力传感器1303测算弯曲力;在施加复合力学载荷的同时通过电场加载模块19拉伸材料样品51施加电场,通过磁场加载模块18对拉伸材料样品51施加磁场,通过相关仪器控制施加电场、磁场的强度,并对试验过程中的电滞回线、磁滞回线进行测量;通过高温加载模块16给拉伸材料样品51施加高温,此时通过侧向加载观测模块24将红外热成像监测模块22移动至工作位置测量拉伸材料样品51的温度场信息;此外可以通过低温加载模块17给拉伸材料样品51施加低温;在工作过程中通过光学显微成像监测模块21对拉伸材料样品51的变形损伤、失效形式进行原位观测;在试验中的任意时刻,可以通过侧向加载观测模块24将微纳米压痕测试模块15切换至工作位置,对试件表面进行微纳米压痕测试,压痕进给单元2403的直线运动实现压痕初进给;压痕测试模块压电叠堆1505通过压痕柔性铰链1502、压入力传感器1508驱动压痕压头1509实现精准进给;并用压入力传感器1508、电容式微小位移传感器1506采集的压入力、压入量信息描绘微纳米压痕曲线;该过程可以通过偏摆支承模块25将复合载荷-多物理场加载试验平台1调节到显微拉曼光谱监测模块23的观测范围内,并对压入过程进行原位测试,同时获取局部微区域的拉曼光谱信息。
本发明的复合载荷-多物理场加载试验平台1可以在实现拉伸/压缩加载测试的基础上,集成其他的力学加载测试模式,同时还可构建高温/低温-电场-磁场的物理场环境,此外能够实现利用压入式检测手段分析材料的微观力学性能。最多可以实现“拉伸-疲劳-弯曲-扭转-高温场(低温场)-电场-磁场”或“压缩-弯曲-扭转-高温场(低温场)-电场-磁场”的复合载荷-多物理场耦合加载试验,模拟丰富的试验环境,获取丰富的材料物理性能参数,也可以模拟特定工况,选择其中一种或几种功能进行耦合加载,如拉伸-扭转-低温、拉伸-疲劳-高温、压缩-电场等,本发明能够实现的所有复合载荷模式如下:
单一载荷:拉伸载荷、压缩载荷、弯曲载荷、扭转载荷、低周疲劳载荷、高温场、低温场、电场、磁场。
两种载荷:
拉伸-弯曲复合、拉伸-扭转复合、拉伸-低周疲劳复合、拉伸-高温场复合、拉伸-低温场复合、拉伸-电场复合、拉伸-磁场复合、压缩-弯曲复合、压缩-扭转复合、压缩-高温场复合、压缩-低温场复合、压缩-电场复合、压缩-磁场复合、弯曲-扭转复合、弯曲-低周疲劳复合、弯曲-高温场复 合、弯曲-低温场复合、弯曲-电场复合、弯曲-磁场复合、扭转-低周疲劳复合、扭转-高温场复合、扭转-低温场复合、扭转-电场复合、扭转-磁场复合、高温场-电场复合、高温场-磁场复合、低温场-电场复合、低温场-磁场复合、电场-磁场复合、低周疲劳-高温场复合、低周疲劳-低温场复合、低周疲劳-电场复合、低周疲劳-磁场复合。
三种载荷:
拉伸-弯曲-扭转复合、拉伸-弯曲-高温场复合、拉伸-弯曲-低温场复合、拉伸-弯曲-电场复合、拉伸-弯曲-磁场复合、拉伸-扭转-高温场复合、拉伸-扭转-低温场复合、拉伸-扭转-电场复合、拉伸-扭转-磁场复合、拉伸-低周疲劳-弯曲复合、拉伸-低周疲劳-扭转复合、拉伸-低周疲劳-高温场复合、拉伸-低周疲劳-低温场复合、拉伸-低周疲劳-电场复合、拉伸-低周疲劳-磁场复合、拉伸-高温场-磁场复合、拉伸-高温场-电场复合、拉伸-低温场-磁场复合、拉伸-低温场-电场复合、压缩-弯曲-扭转复合、压缩-弯曲-高温场复合、压缩-弯曲-低温场复合、压缩-弯曲-电场复合、压缩-弯曲-磁场复合、压缩-扭转-高温场复合、压缩-扭转-低温场复合、压缩-扭转-电场复合、压缩-扭转-磁场复合、压缩-高温场-磁场复合、压缩-高温场-电场复合、压缩-低温场-磁场复合、压缩-低温场-电场复合、弯曲-扭转-高温场复合、弯曲-扭转-低温场复合、弯曲-扭转-电场复合、弯曲-扭转-磁场复合、高温场-电场-磁场复合、低温场-电场-磁场复合、弯曲-扭转复合-低周疲劳复合、弯曲-低周疲劳-高温场复合、弯曲-低周疲劳-低温场复合、弯曲-低周疲劳-电场复合、弯曲-低周疲劳-磁场复合、扭转-低周疲劳-高温场复合、扭转-低周疲劳-低温场复合、扭转-低周疲劳-电场复合、扭转-低周疲劳-磁场复合、低周疲劳-高温场-电场复合、低周疲劳-高温场-磁场复合、低周疲劳-低温场-磁场复合、低周疲劳-低温场-电场复合。
四种载荷:
拉伸-弯曲-扭转-低周疲劳复合、拉伸-弯曲-扭转-高温场复合、拉伸-弯曲-扭转-低温场复合、拉伸-弯曲-扭转-电场复合、拉伸-弯曲-扭转-磁场复合、拉伸-低周疲劳-弯曲-高温场复合、拉伸-低周疲劳-弯曲-低温场复合、拉伸-低周疲劳-弯曲-电场复合、拉伸-低周疲劳-弯曲-磁场复合、拉伸-低周疲劳-扭转-高温场复合、拉伸-低周疲劳-扭转-低温场复合、拉伸-低周疲劳-扭转-电场复合、拉伸-低周疲劳-扭转-磁场复合、低周疲劳-弯曲-扭转-高温场复合、低周疲劳-弯曲-扭转-低温场复合、低周疲劳-弯曲-扭转-电场复合、低周疲劳-弯曲-扭转-磁场复合、拉伸-弯曲-高温场-磁场复合、拉伸-弯曲-高温场-电场复合、拉伸-弯曲-低温场-磁场复合、拉伸-弯曲-低温场-电场复合、拉伸-弯曲-磁场-电场复合、拉伸-扭转-高温场-磁场复合、拉伸-扭转-高温场-电场复合、拉伸-扭转-低温场-磁场复合、拉伸-扭转-低温场-电场复合、拉伸-扭转-磁场-电场复合、拉伸-低周疲劳-高温场-电场复合、拉伸-低周疲劳-高温场-磁场复合、拉伸-低周疲劳-低温场-电场复合、拉伸-低周疲劳-低温场-磁场复合、拉伸-低周疲劳-磁场-电场复合、低周疲劳-弯曲-高温场-电场复合、低周疲劳-弯曲-高温场-磁场复合、低周疲劳-弯曲-低温场-电场复合、低周疲劳-弯曲-低温场-磁场复合、低周疲劳-弯曲-磁场-电场复合、低周疲劳-扭转-高温场-电场复合、低周疲劳-扭转-高温场-磁场复合、低周疲劳-扭转-低温场-电场复合、低周疲劳-扭转-低温场-磁场复合、低周疲劳-扭转-磁场-电场复合、低周疲劳-高温场-磁场-电场复合、低周疲劳-低温场-磁场-电场复合、拉伸-高温场-磁场-电场复合、拉伸-低温场-磁场-电场复合、压缩-弯曲-扭转-高温场复合、压缩-弯曲-扭转-低温场复合、压缩-弯曲-扭转-电场复合、压缩-弯曲-扭转-磁场复合、压缩-弯曲-高温场-磁场复合、压缩-弯曲- 高温场-电场复合、压缩-弯曲-低温场-磁场复合、压缩-弯曲-低温场-电场复合、压缩-弯曲-磁场-电场复合、压缩-扭转-高温场-磁场复合、压缩-扭转-高温场-电场复合、压缩-扭转-低温场-磁场复合、压缩-扭转-低温场-电场复合、压缩-扭转-磁场-电场复合、压缩-高温场-磁场-电场复合、压缩-低温场-磁场-电场复合、弯曲-扭转-高温场-电场复合、弯曲-扭转-高温场-磁场复合、弯曲-扭转-低温场-电场复合、弯曲-扭转-低温场-磁场复合、弯曲-高温场-磁场-电场复合、弯曲-低温场-磁场-电场复合、扭转-高温场-磁场-电场复合、扭转-低温场-磁场-电场复合。
五种载荷:
拉伸-弯曲-扭转-低周疲劳-高温场复合、拉伸-弯曲-扭转-低周疲劳-低温场复合、拉伸-弯曲-扭转-低周疲劳-电场复合、拉伸-弯曲-扭转-低周疲劳-磁场复合、拉伸-弯曲-扭转-高温场-电场复合、拉伸-弯曲-扭转-高温场-磁场复合、拉伸-弯曲-扭转-低温场-电场复合、拉伸-弯曲-扭转-低温场-磁场复合、拉伸-低周疲劳-扭转-高温场-电场复合、拉伸-低周疲劳-扭转-高温场-磁场复合、拉伸-低周疲劳-扭转-低温场-电场复合、拉伸-低周疲劳-扭转-低温场-磁场复合、拉伸-低周疲劳-弯曲-高温场-电场复合、拉伸-低周疲劳-弯曲-高温场-磁场复合、拉伸-低周疲劳-弯曲-低温场-电场复合、拉伸-低周疲劳-弯曲-低温场-磁场复合、低周疲劳-弯曲-扭转-高温场-电场复合、低周疲劳-弯曲-扭转-高温场-磁场复合、低周疲劳-弯曲-扭转-低温场-电场复合、低周疲劳-弯曲-扭转-低温场-磁场复合、低周疲劳-弯曲-高温场-磁场-电场复合、低周疲劳-扭转-高温场-磁场-电场复合、低周疲劳-弯曲-扭转-高温场-电场-磁场复合、低周疲劳-弯曲-扭转-低温场-电场-磁场复合、拉伸-低周疲劳-高温场-电场-磁场复合、拉伸-低周疲劳-低温场-电场-磁场复合、拉伸-弯曲-高温场-电场-磁场复合、拉伸-弯曲-低温场-电场-磁场复合、拉伸-扭转-高温场-电场-磁场复合、拉伸-扭转-低温场-电场-磁场复合、压缩-弯曲-扭转-高温场-电场复合、压缩-弯曲-扭转-高温场-磁场复合、压缩-弯曲-扭转-低温场-电场复合、压缩-弯曲-扭转-低温场-磁场复合、压缩-弯曲-高温场-电场-磁场复合、压缩-弯曲-低温场-电场-磁场复合、压缩-扭转-高温场-电场-磁场复合、压缩-扭转-低温场-电场-磁场复合、弯曲-扭转-高温场-电场-磁场复合、弯曲-扭转-低温场-电场-磁场复合。
六种载荷:
拉伸-弯曲-扭转-高温场-电场-磁场复合、拉伸-弯曲-扭转-低温场-电场-磁场复合、压缩-弯曲-扭转-高温场-电场-磁场复合、压缩-弯曲-扭转-低温场-电场-磁场复合、拉伸-低周疲劳-弯曲-高温场-电场-磁场复合、拉伸-低周疲劳-扭转-高温场-电场-磁场复合、拉伸-低周疲劳-弯曲-低温场-电场-磁场复合、拉伸-低周疲劳-扭转-低温场-电场-磁场复合、低周疲劳-弯曲-扭转-高温场-电场-磁场复合、低周疲劳-弯曲-扭转-低温场-电场-磁场复合
七种载荷:拉伸-低周疲劳-弯曲-扭转-高温场-电场-磁场复合、拉伸-低周疲劳-弯曲-扭转-低温场-电场-磁场复合。
参见图18所示,本发明的加载示意图中,F1为拉伸力,F′1为压缩力,F2为弯曲力,F3为压入力,M为扭矩。
参见图19所示,本发明的物理场加载方式如下:在材料样品两端粘接高压电极,完成电场加载;由卤素加热灯照射完成对材料样品的高温加载,同时对夹具用冷却液(水)冷以防止夹具体过热;对夹具通冷却液(乙醇、液氮等),完成对材料样品的制冷;在材料样品中部上下布置的磁 极,通电后实现垂直磁场的加载。
本发明载荷加载的相关公式如下:
1.拉伸条件下
应力σ计算公式:
Figure PCTCN2016081477-appb-000001
式中,F1为拉伸力,A为材料样品的横截面积,
应变ε计算公式:
Figure PCTCN2016081477-appb-000002
式中,Δl为材料样品伸长量,l为材料样品原长;
2.压缩条件下
应力σ计算公式:
Figure PCTCN2016081477-appb-000003
式中,F′1为压缩力;
压缩条件下的应变ε计算公式:
Figure PCTCN2016081477-appb-000004
式中,Δl为材料样品压缩量;
3.扭转条件下
针对圆截面材料样品
最大切应力τmax计算公式:
Figure PCTCN2016081477-appb-000005
式中,M为扭矩,Wp为抗扭截面系数;
扭转角
Figure PCTCN2016081477-appb-000006
计算公式:
Figure PCTCN2016081477-appb-000007
式中,G为切变模量,IP为截面极惯性矩;
Figure PCTCN2016081477-appb-000008
Figure PCTCN2016081477-appb-000009
式中,D为材料样品的直径;
针对矩形截面材料样品
最大切应力τmax计算公式:
Figure PCTCN2016081477-appb-000010
式中,M为扭矩,h为矩形截面的长边,b为矩形截面的短边,α为与h/b有关的系数;扭转角
Figure PCTCN2016081477-appb-000011
计算公式
Figure PCTCN2016081477-appb-000012
式中,G为切变模量,GIt为杆件的抗扭刚度;
It=βhb3         (11)
式中,β为与h/b有关的系数;
4.低周疲劳下
低周疲劳寿命公式:
Figure PCTCN2016081477-appb-000013
式中σ′f为疲劳强度系数,b为疲劳强度指数,ε′f疲劳塑性系数,c为疲劳塑性指数,E为弹性模量,ψ为端面收缩率。
5.弯曲下
在弹性范围内弯曲时,受拉侧表面的最大弯曲应力计算公式:
Figure PCTCN2016081477-appb-000014
式中,M为最大弯矩,W为材料样品抗弯截面系数
三点弯曲时:
Figure PCTCN2016081477-appb-000015
式中Ls为材料样品跨距
圆柱材料样品时:
Figure PCTCN2016081477-appb-000016
矩形材料样品时:
Figure PCTCN2016081477-appb-000017
6.压痕测试中,被测材料的硬度H的计算公式:
Figure PCTCN2016081477-appb-000018
式中,P为某一压痕深度的实时载荷,S为此时压痕压头与材料样品接触区域的投影面积;
典型压头的投影面积S计算公式如下:
玻氏压头:S=24.56h2        (18)
立方角压头:S=2.5981h2              (19)
维氏压头:S=24.504h2         (20)
锥形压头:S=πa2         (21)
球形压头:S=πa2          (22)
式中,h为压入深度,a为接触圆半径;
X(Y)向压痕测试中,被测材料的弹性模量Es的计算公式,以压痕压头材质以金刚石为例:
Figure PCTCN2016081477-appb-000019
式中,Es为材料样品的弹性模量,Er为缩减模量,vs为材料样品的泊松比,Ei为金刚石压头的弹性模量(1050GPa),vi为金刚石压头的泊松比(0.07);
7.拉伸/压缩-扭转复合载荷下
材料样品的表面都是危险点,根据第三强度理论,危险点相当应力σr3的计算公式为:
Figure PCTCN2016081477-appb-000020
式中,F1为轴向拉伸力,A为材料样品的横截面积,M为扭矩,WP为抗扭截面系数;
根据第四强度理论,危险点相当应力σr4的计算公式为:
Figure PCTCN2016081477-appb-000021
8.拉伸/压缩-弯曲复合载荷下
材料样品的标距中间截面的受拉侧为危险点,根据第三强度理论,危险点相当应力σr3的计算公式为:
Figure PCTCN2016081477-appb-000022
式中,M1为弯矩,W为抗弯截面系数,F1为轴向拉伸力,A为材料样品的横截面积,M为扭矩,WP为抗扭截面系数;
9.加载高温/低温场情况下
卤素加热灯通电后辐射至材料样品表面的热量Q:
Q=UIt     (27)
式中,U为加热灯加载电压,I为加热灯工作时电流,t为加热时间。
取材料样品长度为dx的微元段来分析,对流换热的热量
Figure PCTCN2016081477-appb-000023
为:
Figure PCTCN2016081477-appb-000024
式中,h对流传热表面传热系数,tf为环境温度,C为材料样品截面的周长,A为材料样品的横截面积
对于材料样品施加高温场时,通过其横截面的热流量Φ为:
Figure PCTCN2016081477-appb-000025
本发明主要用于复合载荷-多物理场耦合加载作用下的材料原位测试,在实现拉伸/压缩加载的基础上,集成了弯曲、扭转、低周疲劳等多种类型的力学加载模式,特别是引入了高温/低温-电场磁场多物理场耦合加载的试验环境。仪器可实现拉伸/压缩、弯曲、扭转、低周疲劳、温度场、 电场、磁场的任意组合,最多可同时实现上述七种载荷方式共存的并行加载测试。利用仪器内嵌的原位微纳米压痕测试模块,可以精准测量这些复杂载荷条件作用下,材料样品压痕曲线、硬度、弹性模量等参量的动态演变情况。同时,借助仪器嵌入的光学显微成像监测模块21、显微拉曼监测模块等多种类型原位监测模块,能精确的动态监测复杂载荷作用过程中及作用后,材料的物理性能参数、变形损伤、微观组织变化与性能演变等关乎材料服役性能、可靠性与使用寿命的重要数据信息。为接近服役条件下材料微观力学性能测试提供有效的手段和方法。
本发明在设计上充分考虑了结构小型化和轻量化,因此可选配真空腔将仪器主体置于其中,从而为被测材料样品提供如低压、真空、惰性气体等测试环境。可实现拉伸/压缩、弯曲、扭转、低周疲劳这四种载荷模式的任意一种、两种、三种乃至四种载荷加载模式的材料样品力学性能测试。可实现电、热、磁任意一种、两种乃至三种外场加载模式下材料样品物理性能的测试。可实现任意一种、两种、三种乃至四种机械载荷与任意一种、两种、三种外场载荷组合的耦合加载条件下的材料样品微观性能的测试,最多可实现上述七种载荷方式共存的并行加载方式下接近服役条件的材料微观性能测试。特别可通过内嵌的微纳米压痕测试模块,动态测量分析上述复杂载荷作用下诱发导致的材料样品硬度、弹性模量等基本力学参数的变化情况。特别是借助内嵌的多种类型原位监测模块,可动态监测分析上述复杂载荷条件下材料样品的微观组织结构演变与性能弱化机制,获取接近服役条件下材料微观力学行为、变形损伤机制及其与载荷作用和材料性能间的相关性规律。
以上所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡对本发明所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:包括复合载荷-多物理场加载试验平台(1)、原位监测平台(2)和隔振基座(3),所述隔振基座(3)用于支承复合载荷-多物理场加载试验平台(1)、原位监测平台(2),为其提供基础性的安装定位,并为测试过程提供有效的隔振处理;所述复合载荷-多物理场加载试验平台(1)依据试验条件,对被测材料样品施加拉伸/压缩、弯曲、扭转、低周疲劳载荷模式的力学加载,同时对载荷信号和变形信号的精密检测,进而实现复合载荷模式下材料的力学性能测试;依据试验条件,对被测材料样品施加力、电、热、磁多外场载荷,并实现对外场加载参数和材料相应物理性能参数的精确测量;在复合载荷-多物理场加载试验平台(1)耦合作用下,实现对被测材料样品施加接近服役条件下的力学与外场耦合作用的复杂载荷,同时对材料基本物理性能参数进行精确测量和定量分析;通过微纳米压痕测试试验,可测定在各类外部载荷作用下材料硬度、弹性模量基本力学参数的动态演化情况;
    所述复合载荷-多物理场加载试验平台(1)包括拉伸/压缩加载模块(11)、扭转加载模块(12)、弯曲加载模块(13)、低周疲劳加载模块(14)、微纳米压痕测试模块(15)、高温加载模块(16)、低温加载模块(17)、磁场加载模块(18)、电场加载模块(19),所述低温加载模块(17)、电场加载模块(19)的核心装置直流电源和循环制冷泵为外置设备;所述拉伸/压缩加载模块(11)固定于偏摆台(2501)台面上,扭转加载模块(12)分为扭转加载主动单元(1201)、扭转加载固定单元(1202)两部分,分别安装于拉伸/压缩加载模块(11)的扭转端拉伸滑座(1103)、疲劳端拉伸滑座(1104)上,低周疲劳加载模块(14)安装于疲劳端拉伸滑座(1104)上与扭转加载固定单元(1202)的尾部连接,弯曲加载模块(13)、微纳米压痕测试模块(15)、红外热成像监测模块(22)分别固定于侧向加载观测模块(24)的弯曲进给单元(2401)、压痕进给单元(2403)、红外热成像仪进给单元(2402)上,并一同安装于功能切换单元(2404)上;功能切换单元(2404)的往复运动实现弯曲加载模块(13)、微纳米压痕测试模块(15)、红外热成像监测模块(22)的位置选择和工位切换,红外热成像仪进给单元(2402)的直线运动调节红外热成像监测模块(22)的可视范围,弯曲进给单元(2401)的直线运动带动弯曲压头(1302)实现弯曲载荷加载,压痕进给单元(2403)的直线运动带动压痕压头(1509)进行压入点位的初定位;高温加载模块(16)通过调整滑座(1602)、调整滑座导轨(1805)与磁场加载模块(18)连接,磁场加载模块(18)、侧向加载观测模块(24)分别固定在拉伸/压缩加载模块(11)主轴线的两侧;
    所述复合载荷-多物理场加载试验平台(1)在实现拉伸/压缩加载测试的基础上,同时还可构建高温/低温-电场-磁场的物理场环境,此外能够实现利用压入式检测手段分析材料的微观力学性能;最多可以实现“拉伸-疲劳-弯曲-扭转-高温场/低温场-电场-磁场”或“压缩-弯曲-扭转-高温场/低温场-电场-磁场”的复合载荷-多物理场耦合加载试验,模拟丰富的试验环境,获取丰富的材料物理性能参数,也可以模拟特定工况,选择其中一种或几种功能进行耦 合加载。
  2. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的复合载荷-多物理场加载试验平台(1)、原位监测平台(2)与真空腔(4)集成,实现对真空环境下的复合载荷-多物理场耦合加载试验和原位监测;隔振基座(3)集成于真空腔(4)内,防止真空泵工作时产生的振动影响仪器的原位监测效果;在配备真空腔的条件下,复合载荷-多物理场加载试验平台(1)放置于偏摆支承模块(25)上,偏摆支承模块(25)的偏摆台(2501)放置于重载导轨(2502)上,试验结束时将复合载荷-多物理场加载试验平台(1)连同偏摆台(2501)部分抽出真空腔(4),便于更换材料样品;同时通过导轨的对接,将载物工具车(6)与真空腔(4)内的隔振基座(3)连接,将复合载荷-多物理场加载试验平台(1)完全抽出真空腔(4)外,以方便对其进行调试、检修。
  3. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的拉伸/压缩加载模块(11)采用双向拉伸结构,由拉压伺服电机(1101)驱动双向丝杠(1102),带动扭转端拉伸滑座(1103)和疲劳端拉伸滑座(1104),保证两侧行程、移动速度一致,实现拉伸/压缩载荷的加载,由直线光栅读数头Ⅰ、Ⅱ(1105、1118)测得拉伸/压缩加载变形。
  4. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的扭转加载模块(12)包括扭转加载主动单元(1201)、扭转加载固定单元(1202)两部分,采用一端扭转一端固定的方式,扭转加载主动单元(1201)为加载端,由扭转伺服电机(120104)驱动扭转主动齿轮(120108)、扭转从动齿轮(120109)带动主动端夹具体(120116)实现扭矩的加载;扭转加载固定单元(1202)为固定端,由固定端夹具体(120204)、连接轴(120209)将扭矩传递给拉扭复合传感器(120210),实现拉伸力、扭矩大小的测定;主动端夹具体(120116)、固定端夹具体(120204)分别安装有圆光栅读数头Ⅰ、Ⅱ(120117、120202),通过测量扭转试验时读取的角度差实现扭转角的精准测定;
    所述扭转加载主动单元(1201)的旋转接头(120106)分为旋转接头定子(120106B)、旋转接头转子(120106A),所述旋转接头转子(120106A)上开有环槽,与旋转接头定子(120106B)上的通流口联通,在定子转子间存在相对转动时仍能实现流体的输送,并利用连接法兰(120107)实现将主动端夹具体(120116)的流道与旋转接头(120106)的流道对接,实现在主动端夹具体(120116)因扭转加载产生转动时制冷液导入与循环;低温加载模块(17)依靠主动端夹具体(120116)、固定端夹具体(120204)的内置制冷流道,利用外置的低温制冷泵,将制冷液泵送至主动端夹具体(120116)、固定端夹具体(120204)内部开通的流道内,通过热传导的方式为材料样品制冷,为材料样品营造低温试验环境。
  5. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的低周疲劳加载模块(14)的疲劳加载模块柔性铰链(1402)的内框固定在疲劳加载模块底座(1401)上,外框与连接板(120211)连接;疲劳加载模块压电叠堆(1403)通过疲劳加载模块柔性铰链(1402)、连接板(120211)、拉扭复合传感器(120210)驱动固 定端夹具体(120204)产生高频的往复微小位移,实现在预先拉伸载荷作用下对拉伸材料样品(51)的疲劳加载;在大拉伸载荷下,通过拧紧螺钉使卸荷板(120212)与连接板(120211)、疲劳端拉伸滑座(1104)紧固,实现对大拉伸力载荷的卸荷,保护疲劳加载模块压电叠堆(1403)不会损坏。
  6. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的微纳米压痕测试模块(15)通过压痕进给单元(2403)的直线运动实现压痕初进给,压痕测试模块压电叠堆(1505)通过压痕柔性铰链(1502)驱动压痕压头(1509)实现精准进给,通过压入力传感器(1508)采集压入过程中的压入力,通过电容式微小位移传感器(1506)监测压痕压头(1509)的压入深度。
  7. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的高温加载模块(16)包括卤素加热灯(1601)、调整滑座(1602)、卤素灯安装板(1603),卤素加热灯(1601)通过螺钉与卤素灯安装板(1603)连接,并安装于调整滑座(1602)上,高温场的加载由卤素加热灯(1601)聚焦照射材料样品实现;
    所述磁场加载模块(18)磁场的加载由可控电磁铁实现,可控电磁铁由下磁轭(1801)、线圈(1802)、上磁轭(1803)、磁极极头(1804)组成,两个磁极极头(1804)采用上下布置,分别固定于下磁轭(1801)与上磁轭(1803)上,材料样品放置于两个磁极极头(1804)之间,通过对线圈(1802)加载电流的调整实现对磁场强度的控制;通过调整滑座(1602),可以在不需要高温加载功能时将卤素加热灯(1601)取下,防止其对原位监测模块光路的遮挡;电场加载模块(19)外接一台高压直流电源,利用导电银胶将两根导线分别接于材料样品相对的两个平面上,并在导线两端施加一个直流高压电场,从而实现电场的加载;将整个测试仪器放置于真空腔(4)内有助于降低两个电极间的击穿电压,以提高电场加载试验的电场强度。
  8. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征在于:所述的原位监测平台(2)用于动态监测在复杂力学载荷和多物理场载荷作用下材料样品的变形损伤、微观组织变化与性能演变;通过对各监测模块位姿的精确调整,实现对复杂载荷条件下材料样品的微观变形、损伤机制、微观组织结构变化以及性能演化进行实时的动态监测;原位监测平台(2)包括光学显微成像监测模块(21)、红外热成像监测模块(22)、显微拉曼光谱监测模块(23)、侧向加载观测模块(24)、偏摆支承模块(25),所述光学显微成像监测模块(21)、显微拉曼光谱监测模块(23)布置于复合载荷-多物理场加载试验平台(1)的两侧,安装在隔振基座(3)上,偏摆支承模块(25)安装在隔振基座(3)上,承载复合载荷-多物理场加载试验平台(1)的同时为各个原位观测模块提供更丰富的观测位置;红外热成像监测模块(22)安装于侧向加载观测模块(24)上,侧向加载观测模块(24)安装于复合载荷-多物理场加载试验平台(1)上。
  9. 根据权利要求1所述的复合载荷模式力电热磁耦合材料性能原位测试仪器,其特征 在于:所述的光学显微成像监测模块(21)、显微拉曼光谱监测模块(23)均能实现X、Y、Z三个方向的位置调整,完成显示视野的变换和成像仪器的的调焦,由X轴运动单元Ⅰ、Ⅱ(2101、2301)、Y轴运动单元Ⅰ、Ⅱ(2102、2302)、Z轴运动单元Ⅰ、Ⅱ(2104、2304)实现;显微拉曼光谱仪(2315)通过调整旋转支架(2305)与调距手轮(2313)对初始监测角度和初始监测位置进行调整,能够实现更为丰富的监测范围;显微拉曼光谱仪(2315)为内置CCD形式,后部通过一个标准C接口与拉曼光谱仪集成,根据显微图像在可视的范围内选择局部微小区域利用拉曼光谱仪,实现对微区组织成分的分析;光学显微成像监测模块(21)、显微拉曼光谱监测模块(23)分别实现复合载荷-多物理场耦合试验下材料样品微观组织结构的监测和组织成分变化的监测;红外热成像监测模块(22)实时监测温度场下材料样品的温度分布。
  10. 根据权利要求1至9中任意一项所述的复合载荷模式力电热磁耦合材料性能原位测试仪器的测试方法,其特征在于:对于以拉伸试验为基础的力电热磁多物理场耦合材料微观性能原位测试方法,通过主动端拉伸夹具压板(120115)、固定端拉伸夹具压板(120205)将拉伸材料样品(51)固定于主动端夹具体(120116)、固定端夹具体(120204)上,并使拉伸/压缩加载模块(11)驱动扭转端拉伸滑座(1103)、疲劳端拉伸滑座(1104)背向运动,实现拉伸材料样品(51)的拉伸加载;通过扭转加载模块(12)实现拉伸材料样品(51)的扭转加载;分别通过直线光栅读数头Ⅰ(1105)、圆光栅读数头(120117)Ⅰ测算拉伸材料样品(51)的拉伸应变与扭转应变,通过拉扭复合传感器(120210)测算拉伸应力与扭转应力;低周疲劳加载模块(14)可以在拉伸载荷下给拉伸材料样品(51)施加低周疲劳载荷;通过侧向加载观测模块(24)将弯曲加载模块(13)驱动至工作位置,给拉伸材料样品(51)施加弯曲载荷通过压力传感器(1303)测算弯曲力;在施加复合力学载荷的同时通过电场加载模块(19)拉伸材料样品(51)施加电场,通过磁场加载模块(18)对拉伸材料样品(51)施加磁场,通过相关仪器控制施加电场、磁场的强度,并对试验过程中的电滞回线、磁滞回线进行测量;通过高温加载模块(16)给拉伸材料样品(51)施加高温,此时通过侧向加载观测模块(24)将红外热成像监测模块(22)移动至工作位置测量拉伸材料样品(51)的温度场信息;此外可以通过低温加载模块(17)给拉伸材料样品(51)施加低温;在工作过程中通过光学显微成像监测模块(21)对拉伸材料样品(51)的变形损伤、失效形式进行原位观测;在试验中的任意时刻,可以通过侧向加载观测模块(24)将微纳米压痕测试模块(15)切换至工作位置,对试件表面进行微纳米压痕测试,压痕进给单元(2403)的直线运动实现压痕初进给;压痕测试模块压电叠堆(1505)通过压痕柔性铰链(1502)、压入力传感器(1508)驱动压痕压头(1509)实现精准进给;并用压入力传感器(1508)、电容式微小位移传感器(1506)采集的压入力、压入量信息描绘微纳米压痕曲线;该过程可以通过偏摆支承模块(25)将复合载荷-多物理场加载试验平台(1)调节到显微拉曼光谱监测模块(23)的观测范围内,并对压入过程进行原位测试,同时获取局部微区域的拉曼光谱信息。
PCT/CN2016/081477 2015-12-23 2016-05-10 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法 WO2017107362A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16877176.4A EP3396353B1 (en) 2015-12-23 2016-05-10 Material property testing apparatus and method for in situ testing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510973083.7 2015-12-23
CN201510973083.7A CN105628487B (zh) 2015-12-23 2015-12-23 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法

Publications (1)

Publication Number Publication Date
WO2017107362A1 true WO2017107362A1 (zh) 2017-06-29

Family

ID=56043626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081477 WO2017107362A1 (zh) 2015-12-23 2016-05-10 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法

Country Status (3)

Country Link
EP (1) EP3396353B1 (zh)
CN (1) CN105628487B (zh)
WO (1) WO2017107362A1 (zh)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742454A (zh) * 2017-11-15 2018-02-27 湖南长庆机电科教有限公司 机械设计基础实验实训平台
CN107806835A (zh) * 2017-12-08 2018-03-16 江西省煤炭工业科学研究所 光栅尺测量矿用插销二倍最大静载荷永久变形量的装置
CN107941624A (zh) * 2017-12-13 2018-04-20 吉林大学 高温高频材料力学性能原位测试装置
CN107966377A (zh) * 2018-01-12 2018-04-27 吉林大学 基于仿生压电驱动原位纳米压痕/刻划测试装置
CN108132189A (zh) * 2018-01-26 2018-06-08 吉林大学 连续变温下高温原位双轴加载测试装置
CN108519291A (zh) * 2018-05-25 2018-09-11 吉林大学 基于电动缸驱动的高温拉伸-疲劳力学性能测试仪及方法
CN108562422A (zh) * 2018-05-31 2018-09-21 吉林大学 复杂环境下液体动力学特性试验装置
CN108871951A (zh) * 2018-06-07 2018-11-23 兰州大学 一种低温和磁场下超导带材的拉弯扭综合加载装置
CN108896405A (zh) * 2018-07-13 2018-11-27 无锡东逸电液伺服技术有限公司 结构力学性能测试装置
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN108931544A (zh) * 2018-09-29 2018-12-04 内蒙古工业大学 用于原位电子背散射衍射研究的样品夹持装置及测试方法
CN109085075A (zh) * 2018-08-13 2018-12-25 中国电力科学研究院有限公司 一种复合绝缘子的大扰度屈曲测试装置
CN109358249A (zh) * 2018-10-23 2019-02-19 新疆皇瑞磁元有限公司 一种磁性元器件热测机
CN109883833A (zh) * 2019-03-12 2019-06-14 吉林大学 拉伸-弯曲复合载荷下材料疲劳力学性能测试装置与方法
CN110044753A (zh) * 2019-05-21 2019-07-23 吉林大学 具有惰性气体保护功能的高温微纳米压痕测试装置及方法
CN110187135A (zh) * 2019-06-20 2019-08-30 东北大学 大批量自动化的复合材料动态疲劳耐久性试验***及方法
CN110726635A (zh) * 2019-12-02 2020-01-24 吉林大学 基于应变片的同轴度调整***及同轴度降维调整方法
CN110926640A (zh) * 2019-12-31 2020-03-27 吉林大学 用于原位监测与提升力学性能的金属增材制造挤出机构
CN111141699A (zh) * 2020-02-05 2020-05-12 天津大学 一种用于红外光谱仪原位分析的力热耦合疲劳试验装置
CN111187719A (zh) * 2020-02-20 2020-05-22 西南交通大学 一种力电耦合加载平台
CN111579360A (zh) * 2020-05-21 2020-08-25 钢研纳克检测技术股份有限公司 一种高通量小试样拉、压、弯测试***及方法
CN111830121A (zh) * 2020-07-26 2020-10-27 吉林大学 可控磁场环境下的磁致变形材料测试装置及方法
CN111929154A (zh) * 2020-07-09 2020-11-13 北京明宣生物技术有限公司 一种原位纳米压痕测试装置及方法
CN111965243A (zh) * 2020-07-29 2020-11-20 华南理工大学 实验用磁场加载动态控制装置
CN111982727A (zh) * 2020-08-14 2020-11-24 浙江工业大学 适用于实验室和野外测试的双立柱双横梁便携式压入仪
CN112034024A (zh) * 2020-09-24 2020-12-04 河北工业大学 一种用于电化学体系的原位载荷加载装置
CN112179595A (zh) * 2020-09-25 2021-01-05 中国直升机设计研究所 一种直升机机身整流罩振动疲劳试验验证方法
CN112504864A (zh) * 2020-11-27 2021-03-16 天津大学 一种同步辐射光源的高温力学加载装置
CN112710537A (zh) * 2020-12-14 2021-04-27 太原科技大学 一种原位微纳米压痕/划痕测试平台
CN112881210A (zh) * 2021-01-18 2021-06-01 西北工业大学 疲劳裂纹观测设备和疲劳裂纹测试装置
CN112964544A (zh) * 2021-03-11 2021-06-15 天津大学 一种用于铅铋环境下的原位双轴力学试验装置
CN113252092A (zh) * 2020-02-13 2021-08-13 中国科学院理化技术研究所 一种应变温控实验测试装置及其测试方法
CN113405811A (zh) * 2021-06-11 2021-09-17 湘潭地通汽车制品有限公司 乘用车扭转梁台架试验***
CN113433010A (zh) * 2021-06-22 2021-09-24 杨荣 一种高端设备制造用金属表面硬度测试装置
CN113625091A (zh) * 2021-08-23 2021-11-09 中国电子科技集团公司第九研究所 一种用于环行器/隔离器功率试验测温设备
CN113820199A (zh) * 2021-09-23 2021-12-21 浙江大学 一种可模拟超高压环境的磁控软材料性能检测装置
US20220018748A1 (en) * 2020-07-14 2022-01-20 Jilin University Traceable In-Situ Micro- and Nano-Indentation Testing Instrument and Method under Variable Temperature Conditions
CN114155624A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种轧制联轴器的应力数字孪生体的构建方法
CN114414483A (zh) * 2022-01-14 2022-04-29 内蒙古民族大学 一种用于物理光功能材料实验装置
CN114486558A (zh) * 2022-04-06 2022-05-13 四川省公路规划勘察设计研究院有限公司 一种面向预应力工件的受力测定方法及测力装置
CN114544332A (zh) * 2022-03-03 2022-05-27 重庆科技学院 一种热力电同时加载的动态力学分析***
CN114543682A (zh) * 2022-02-24 2022-05-27 北京工业大学 一种压接式igbt功率循环中微动位移测量装置及方法
CN114608965A (zh) * 2022-05-10 2022-06-10 中铁二局集团有限公司 一种地铁轨道交通的清理维护设备
CN114923796A (zh) * 2022-05-18 2022-08-19 福州大学 一种焊接钻杆接头弯扭疲劳试验机及其工作方法
CN115343153A (zh) * 2022-04-06 2022-11-15 深圳市雷诺表业有限公司 一种金属表带质量测试机及测试方法
CN115364792A (zh) * 2021-08-06 2022-11-22 西安理工大学 电磁热多复合场下制备柔性电子功能层的方法及其装置
CN115468870A (zh) * 2022-09-28 2022-12-13 福州大学 一种多轴旋转弯曲疲劳试验机
CN116202886A (zh) * 2023-04-21 2023-06-02 四川职业技术学院 一种金属材料剪切模量的检测装置及其检测方法
CN116803550A (zh) * 2023-08-29 2023-09-26 之江实验室 一种针对晶上***的测试组装方法及装置
CN117129355A (zh) * 2023-10-23 2023-11-28 北京大学 一种高温可视化微米压痕试验装置及方法
CN117168796A (zh) * 2023-10-26 2023-12-05 昆山玮硕恒基智能科技股份有限公司 转轴结构的扭力测试设备
CN117782790A (zh) * 2024-02-28 2024-03-29 烟台大学 一种基于复合材料力学性能的测试设备及方法
CN117902263A (zh) * 2024-03-19 2024-04-19 山西戴德测控技术股份有限公司 一种滚轮式在线皮带硬度检测装置
CN118032539A (zh) * 2024-04-15 2024-05-14 北京航空航天大学 一种考虑织物中挤压影响的纱线弯曲性能测试方法及装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018707B (zh) * 2016-07-20 2018-06-19 兰州大学 强磁场环境下力-电耦合加载与非接触式光测变形***
CN106501109A (zh) * 2016-09-13 2017-03-15 北京理工大学 一种电‑化‑热氛围下储能材料的原位纳米压痕测试平台
CN106545549B (zh) * 2016-11-24 2017-12-26 北京交通大学 伺服阀性能稳定性试验加载装置
CN106840907B (zh) * 2017-01-20 2023-07-25 西华大学 一种可控金属试块应力状态的可靠性测试***
CN106610358A (zh) * 2017-01-21 2017-05-03 吉林大学 力电热垂直磁场耦合条件下材料性能原位测试仪器及方法
CN106950104B (zh) * 2017-03-10 2019-11-12 哈尔滨工业大学 一种组合卧式试验台及其材料性能测试方法和***
CN107024465A (zh) * 2017-04-21 2017-08-08 深圳大学 一种拉曼光谱仪样品台及其原位测试光谱的方法
CN107144483B (zh) * 2017-05-11 2023-10-03 兰州大学 一种基于液氮制冷的纳米压痕多场测试***
CN106996897B (zh) * 2017-06-13 2023-07-21 吉林大学 中子衍射高温测角仪及其专用力学加载装置
CN107703012B (zh) * 2017-10-20 2024-02-02 吉林大学 变温可转位微纳米压痕测试装置
CN107643104A (zh) * 2017-10-30 2018-01-30 佛山科学技术学院 一种具有高低温及气氛环境控制的多功能测试装置
CN108132188A (zh) * 2018-01-26 2018-06-08 吉林大学 贴片通电加热式高温原位双轴测试仪器及方法
CN108254315B (zh) * 2018-02-05 2019-05-14 深圳大学 拉曼光谱仪样品台及其测量方法
CN108801818A (zh) * 2018-05-30 2018-11-13 上海与德通讯技术有限公司 折弯机构
CN108982206B (zh) * 2018-08-27 2020-09-25 北京工业大学 一种应变控制的拉-扭热机械疲劳试验方法
CN109239273A (zh) * 2018-09-26 2019-01-18 北京理工大学 力-磁-热多场耦合环境下磁致材料的动态响应测试平台
CN109520820B (zh) * 2018-12-07 2021-07-30 潍坊卓远检测仪器科技有限公司 一种电动平台升降钢筋标距仪
CN109900569B (zh) * 2019-03-14 2024-01-30 岭南师范学院 一种冰糖硬度检测装置
CN109975134A (zh) * 2019-04-02 2019-07-05 北京理工大学 一种扭转疲劳损伤检测试验平台
CN110044751A (zh) * 2019-04-15 2019-07-23 吉林大学 变温-强磁场复合条件下的纳米压痕测试仪器
CN110044752B (zh) * 2019-04-28 2024-02-20 吉林大学 用于锥束ct成像的原位高/低温压痕测试装置
CN110333134A (zh) * 2019-07-04 2019-10-15 西北工业大学 一种与中子散射联用的单轴拉伸装置和实验方法
CN110441163B (zh) * 2019-09-12 2022-05-24 吉林大学 高温超声疲劳原位测试仪器及测试方法
CN110579404B (zh) * 2019-09-12 2021-10-15 吉林大学 高温复杂机械载荷下材料力学性能原位测试仪器与方法
CN110907286B (zh) * 2019-11-20 2022-01-18 华南理工大学 一种大比例尺模型试验vhm组合荷载加载***
CN110836830B (zh) * 2019-12-02 2024-04-30 吉林大学 可调整同轴度的疲劳试验机及加载链对中调整方法
CN110927640A (zh) * 2019-12-05 2020-03-27 吉林大学 静动态力-磁耦合材料性能测试仪器
CN111060388B (zh) * 2019-12-17 2022-10-04 吉林大学 材料力学性能多参量原位监测平台及多数据融合分析方法
CN113495236B (zh) * 2020-04-07 2024-06-11 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) 有背景磁场的超导磁体振动试验***
CN111912705A (zh) * 2020-07-20 2020-11-10 吉林大学 静动态力-电-热耦合压电材料综合性能测试仪器
CN112326422A (zh) * 2020-10-16 2021-02-05 北京航空航天大学 一种基于光学显微镜的原位力学性能测试平台
KR102404931B1 (ko) * 2020-11-23 2022-06-07 한국기초과학지원연구원 복수 개의 물성을 동시에 분석 가능한 장치
CN112611453B (zh) * 2020-12-23 2022-03-29 吉林大学 复眼原位监测单元、微观调节单元及其多光谱成像***
CN113029806B (zh) * 2021-03-04 2022-09-13 武汉科技大学 一种外加磁场的材料高温性能可视化检测设备
CN113155496B (zh) * 2021-03-12 2022-12-27 中国科学院宁波材料技术与工程研究所 多卡效应测试装置
CN113237733B (zh) * 2021-05-14 2022-03-01 东南大学 一种原位力热电多场耦合测试芯片及其制备方法
CN113237504A (zh) * 2021-05-24 2021-08-10 中国科学院宁波材料技术与工程研究所 一种用于柔性传感器的按压测试装置及测试方法
CN113790988B (zh) * 2021-10-20 2024-07-05 天津大学 基于柔性机构的宏微耦合次摆线微纳划痕实验机
CN114035132B (zh) * 2022-01-06 2022-04-01 成都理工大学 一种模拟复合载荷条件下的力磁耦合测试装置
CN114383833A (zh) * 2022-01-07 2022-04-22 吉林大学 一种动态加载的五轴数控机床摇篮式摆台可靠性试验***
CN114577467B (zh) * 2022-03-18 2024-05-07 盛瑞传动股份有限公司 一种齿轮焊接组件试验方法及扭转疲劳试验台
CN115219533A (zh) * 2022-05-11 2022-10-21 吉林大学 一种多功能的多场耦合x射线原位测试装置
CN116148070B (zh) * 2023-04-21 2023-07-18 长沙凯普乐科技有限责任公司 一种原位拉伸装置及其工作方法
CN116223266B (zh) * 2023-05-05 2023-07-18 四川善邦交大建设工程有限公司 一种基于限位的钢结构生产用硬度检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
CN102323160A (zh) * 2011-07-19 2012-01-18 兰州大学 373-4.2k环境下超导材料的多场耦合测试***
CN102589984A (zh) * 2012-02-14 2012-07-18 北京大学 多场耦合加载微纳米压入测试***和测试方法
CN103499483A (zh) * 2013-09-26 2014-01-08 吉林大学 多载荷多物理场耦合材料微观性能原位测试试验机
CN103512803A (zh) * 2013-09-26 2014-01-15 吉林大学 多载荷多物理场耦合材料微观力学性能原位测试仪器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353431B (zh) * 2013-07-12 2015-03-04 吉林大学 基于拉压、疲劳复合载荷模式下的原位压痕力学测试装置
CN203551383U (zh) * 2013-09-26 2014-04-16 吉林大学 多载荷多物理场耦合材料微观力学性能原位测试仪器
CN204374017U (zh) * 2015-01-26 2015-06-03 吉林大学 具有真空防护性的变温微纳米压痕测试***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109382A1 (ja) * 2005-03-14 2006-10-19 National University Corporation Okayama University 磁気的インピーダンス計測装置
CN102323160A (zh) * 2011-07-19 2012-01-18 兰州大学 373-4.2k环境下超导材料的多场耦合测试***
CN102589984A (zh) * 2012-02-14 2012-07-18 北京大学 多场耦合加载微纳米压入测试***和测试方法
CN103499483A (zh) * 2013-09-26 2014-01-08 吉林大学 多载荷多物理场耦合材料微观性能原位测试试验机
CN103512803A (zh) * 2013-09-26 2014-01-15 吉林大学 多载荷多物理场耦合材料微观力学性能原位测试仪器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396353A4 *

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742454A (zh) * 2017-11-15 2018-02-27 湖南长庆机电科教有限公司 机械设计基础实验实训平台
CN107806835B (zh) * 2017-12-08 2024-04-16 江西省煤炭工业科学研究所 光栅尺测量矿用插销二倍最大静载荷永久变形量的装置
CN107806835A (zh) * 2017-12-08 2018-03-16 江西省煤炭工业科学研究所 光栅尺测量矿用插销二倍最大静载荷永久变形量的装置
CN107941624A (zh) * 2017-12-13 2018-04-20 吉林大学 高温高频材料力学性能原位测试装置
CN107941624B (zh) * 2017-12-13 2023-12-22 吉林大学 高温高频材料力学性能原位测试装置
CN107966377A (zh) * 2018-01-12 2018-04-27 吉林大学 基于仿生压电驱动原位纳米压痕/刻划测试装置
CN107966377B (zh) * 2018-01-12 2023-08-29 吉林大学 基于仿生压电驱动原位纳米压痕/刻划测试装置
CN108132189B (zh) * 2018-01-26 2024-02-02 吉林大学 连续变温下高温原位双轴加载测试装置
CN108132189A (zh) * 2018-01-26 2018-06-08 吉林大学 连续变温下高温原位双轴加载测试装置
CN108519291A (zh) * 2018-05-25 2018-09-11 吉林大学 基于电动缸驱动的高温拉伸-疲劳力学性能测试仪及方法
CN108519291B (zh) * 2018-05-25 2023-07-04 吉林大学 基于电动缸驱动的高温拉伸-疲劳力学性能测试仪及方法
CN108562422A (zh) * 2018-05-31 2018-09-21 吉林大学 复杂环境下液体动力学特性试验装置
CN108562422B (zh) * 2018-05-31 2023-12-22 吉林大学 复杂环境下液体动力学特性试验装置
CN108871951B (zh) * 2018-06-07 2024-02-27 兰州大学 一种低温和磁场下超导带材的拉弯扭综合加载装置
CN108871951A (zh) * 2018-06-07 2018-11-23 兰州大学 一种低温和磁场下超导带材的拉弯扭综合加载装置
CN108896394A (zh) * 2018-07-13 2018-11-27 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN108896405A (zh) * 2018-07-13 2018-11-27 无锡东逸电液伺服技术有限公司 结构力学性能测试装置
CN108896405B (zh) * 2018-07-13 2023-09-22 无锡东逸电液伺服技术有限公司 结构力学性能测试装置
CN108896394B (zh) * 2018-07-13 2023-12-29 中国工程物理研究院总体工程研究所 材料双轴压缩加载装置
CN109085075A (zh) * 2018-08-13 2018-12-25 中国电力科学研究院有限公司 一种复合绝缘子的大扰度屈曲测试装置
CN108931544A (zh) * 2018-09-29 2018-12-04 内蒙古工业大学 用于原位电子背散射衍射研究的样品夹持装置及测试方法
CN108931544B (zh) * 2018-09-29 2023-08-04 内蒙古工业大学 用于原位电子背散射衍射研究的样品夹持装置及测试方法
CN109358249A (zh) * 2018-10-23 2019-02-19 新疆皇瑞磁元有限公司 一种磁性元器件热测机
CN109883833A (zh) * 2019-03-12 2019-06-14 吉林大学 拉伸-弯曲复合载荷下材料疲劳力学性能测试装置与方法
CN109883833B (zh) * 2019-03-12 2024-04-30 吉林大学 拉伸-弯曲复合载荷下材料疲劳力学性能测试装置与方法
CN110044753B (zh) * 2019-05-21 2022-04-01 吉林大学 具有惰性气体保护功能的高温微纳米压痕测试装置及方法
CN110044753A (zh) * 2019-05-21 2019-07-23 吉林大学 具有惰性气体保护功能的高温微纳米压痕测试装置及方法
CN110187135B (zh) * 2019-06-20 2023-10-27 东北大学 大批量自动化的复合材料动态疲劳耐久性试验***及方法
CN110187135A (zh) * 2019-06-20 2019-08-30 东北大学 大批量自动化的复合材料动态疲劳耐久性试验***及方法
CN110726635A (zh) * 2019-12-02 2020-01-24 吉林大学 基于应变片的同轴度调整***及同轴度降维调整方法
CN110726635B (zh) * 2019-12-02 2024-04-30 吉林大学 基于应变片的同轴度调整***及同轴度降维调整方法
CN110926640B (zh) * 2019-12-31 2024-05-24 吉林大学 用于原位监测与提升力学性能的金属增材制造挤出机构
CN110926640A (zh) * 2019-12-31 2020-03-27 吉林大学 用于原位监测与提升力学性能的金属增材制造挤出机构
CN111141699A (zh) * 2020-02-05 2020-05-12 天津大学 一种用于红外光谱仪原位分析的力热耦合疲劳试验装置
CN113252092A (zh) * 2020-02-13 2021-08-13 中国科学院理化技术研究所 一种应变温控实验测试装置及其测试方法
CN113252092B (zh) * 2020-02-13 2022-11-01 中国科学院理化技术研究所 一种应变温控实验测试装置及其测试方法
CN111187719A (zh) * 2020-02-20 2020-05-22 西南交通大学 一种力电耦合加载平台
CN111579360A (zh) * 2020-05-21 2020-08-25 钢研纳克检测技术股份有限公司 一种高通量小试样拉、压、弯测试***及方法
CN111929154A (zh) * 2020-07-09 2020-11-13 北京明宣生物技术有限公司 一种原位纳米压痕测试装置及方法
US11635361B2 (en) * 2020-07-14 2023-04-25 Jilin University Traceable in-situ micro- and nano-indentation testing instrument and method under variable temperature conditions
US20220018748A1 (en) * 2020-07-14 2022-01-20 Jilin University Traceable In-Situ Micro- and Nano-Indentation Testing Instrument and Method under Variable Temperature Conditions
CN111830121A (zh) * 2020-07-26 2020-10-27 吉林大学 可控磁场环境下的磁致变形材料测试装置及方法
CN111830121B (zh) * 2020-07-26 2022-11-11 吉林大学 可控磁场环境下的磁致变形材料测试装置及方法
CN111965243A (zh) * 2020-07-29 2020-11-20 华南理工大学 实验用磁场加载动态控制装置
CN111982727A (zh) * 2020-08-14 2020-11-24 浙江工业大学 适用于实验室和野外测试的双立柱双横梁便携式压入仪
CN112034024A (zh) * 2020-09-24 2020-12-04 河北工业大学 一种用于电化学体系的原位载荷加载装置
CN112179595B (zh) * 2020-09-25 2022-06-21 中国直升机设计研究所 一种直升机机身整流罩振动疲劳试验验证方法
CN112179595A (zh) * 2020-09-25 2021-01-05 中国直升机设计研究所 一种直升机机身整流罩振动疲劳试验验证方法
CN112504864B (zh) * 2020-11-27 2024-04-30 天津大学 一种同步辐射光源的高温力学加载装置
CN112504864A (zh) * 2020-11-27 2021-03-16 天津大学 一种同步辐射光源的高温力学加载装置
CN112710537B (zh) * 2020-12-14 2023-07-14 太原科技大学 一种原位微纳米压痕/划痕测试平台
CN112710537A (zh) * 2020-12-14 2021-04-27 太原科技大学 一种原位微纳米压痕/划痕测试平台
CN112881210A (zh) * 2021-01-18 2021-06-01 西北工业大学 疲劳裂纹观测设备和疲劳裂纹测试装置
CN112881210B (zh) * 2021-01-18 2024-04-26 西北工业大学 疲劳裂纹观测设备和疲劳裂纹测试装置
CN112964544B (zh) * 2021-03-11 2023-02-28 天津大学 一种用于铅铋环境下的原位双轴力学试验装置
CN112964544A (zh) * 2021-03-11 2021-06-15 天津大学 一种用于铅铋环境下的原位双轴力学试验装置
CN113405811A (zh) * 2021-06-11 2021-09-17 湘潭地通汽车制品有限公司 乘用车扭转梁台架试验***
CN113405811B (zh) * 2021-06-11 2023-11-07 湘潭地通汽车制品有限公司 乘用车扭转梁台架试验***
CN113433010A (zh) * 2021-06-22 2021-09-24 杨荣 一种高端设备制造用金属表面硬度测试装置
CN115364792A (zh) * 2021-08-06 2022-11-22 西安理工大学 电磁热多复合场下制备柔性电子功能层的方法及其装置
CN113625091A (zh) * 2021-08-23 2021-11-09 中国电子科技集团公司第九研究所 一种用于环行器/隔离器功率试验测温设备
CN113820199A (zh) * 2021-09-23 2021-12-21 浙江大学 一种可模拟超高压环境的磁控软材料性能检测装置
CN114155624A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种轧制联轴器的应力数字孪生体的构建方法
CN114155624B (zh) * 2021-11-26 2023-10-24 湖南华菱湘潭钢铁有限公司 一种轧制联轴器的应力数字孪生体的构建方法
CN114414483A (zh) * 2022-01-14 2022-04-29 内蒙古民族大学 一种用于物理光功能材料实验装置
CN114543682A (zh) * 2022-02-24 2022-05-27 北京工业大学 一种压接式igbt功率循环中微动位移测量装置及方法
US11698248B1 (en) 2022-02-24 2023-07-11 Beijing University Of Technology Device and method for measuring fretting displacement in power cycle of press-pack IGBT
CN114544332A (zh) * 2022-03-03 2022-05-27 重庆科技学院 一种热力电同时加载的动态力学分析***
CN114544332B (zh) * 2022-03-03 2024-01-16 重庆科技学院 一种热力电同时加载的动态力学分析***
CN114486558B (zh) * 2022-04-06 2022-07-15 四川省公路规划勘察设计研究院有限公司 一种面向预应力工件的受力测定方法及测力装置
CN114486558A (zh) * 2022-04-06 2022-05-13 四川省公路规划勘察设计研究院有限公司 一种面向预应力工件的受力测定方法及测力装置
CN115343153A (zh) * 2022-04-06 2022-11-15 深圳市雷诺表业有限公司 一种金属表带质量测试机及测试方法
CN114608965A (zh) * 2022-05-10 2022-06-10 中铁二局集团有限公司 一种地铁轨道交通的清理维护设备
CN114923796A (zh) * 2022-05-18 2022-08-19 福州大学 一种焊接钻杆接头弯扭疲劳试验机及其工作方法
CN115468870A (zh) * 2022-09-28 2022-12-13 福州大学 一种多轴旋转弯曲疲劳试验机
CN116202886A (zh) * 2023-04-21 2023-06-02 四川职业技术学院 一种金属材料剪切模量的检测装置及其检测方法
CN116202886B (zh) * 2023-04-21 2023-07-18 四川职业技术学院 一种金属材料剪切模量的检测装置及其检测方法
CN116803550B (zh) * 2023-08-29 2023-12-22 之江实验室 一种针对晶上***的测试组装方法及装置
CN116803550A (zh) * 2023-08-29 2023-09-26 之江实验室 一种针对晶上***的测试组装方法及装置
CN117129355B (zh) * 2023-10-23 2024-02-13 北京大学 一种高温可视化微米压痕试验装置及方法
CN117129355A (zh) * 2023-10-23 2023-11-28 北京大学 一种高温可视化微米压痕试验装置及方法
CN117168796B (zh) * 2023-10-26 2024-02-20 昆山玮硕恒基智能科技股份有限公司 转轴结构的扭力测试设备
CN117168796A (zh) * 2023-10-26 2023-12-05 昆山玮硕恒基智能科技股份有限公司 转轴结构的扭力测试设备
CN117782790A (zh) * 2024-02-28 2024-03-29 烟台大学 一种基于复合材料力学性能的测试设备及方法
CN117782790B (zh) * 2024-02-28 2024-05-07 烟台大学 一种基于复合材料力学性能的测试设备及方法
CN117902263A (zh) * 2024-03-19 2024-04-19 山西戴德测控技术股份有限公司 一种滚轮式在线皮带硬度检测装置
CN117902263B (zh) * 2024-03-19 2024-05-28 山西戴德测控技术股份有限公司 一种滚轮式在线皮带硬度检测装置
CN118032539A (zh) * 2024-04-15 2024-05-14 北京航空航天大学 一种考虑织物中挤压影响的纱线弯曲性能测试方法及装置

Also Published As

Publication number Publication date
CN105628487A (zh) 2016-06-01
EP3396353A4 (en) 2019-08-28
EP3396353A1 (en) 2018-10-31
CN105628487B (zh) 2018-08-10
EP3396353B1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2017107362A1 (zh) 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法
US10012576B2 (en) In-situ testing equipment for testing micromechanical properties of material in multi-load and multi-physical field coupled condition
US10444130B2 (en) Material in-situ detection device and method under multi-load and multi-physical field coupled service conditions
CN105842080B (zh) 一种感应加热模式下复合载荷材料力学测试***
CN103487315B (zh) 一种材料力学性能测试装置
CN107607390B (zh) 变温拉扭复合载荷材料力学性能原位测试装置及方法
CN102331370B (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
CN104913974B (zh) 材料微观力学性能双轴拉伸‑疲劳测试***及其测试方法
CN106525571B (zh) 一种适配于光学显微镜上的显微镜拉伸仪
CN103308404A (zh) 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪
CN104913981A (zh) 高温原位拉伸-疲劳测试***及其测试方法
CN108507882B (zh) 用于中子散射分析的材料力学性能原位测试仪器
CN202305330U (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
JPH08512402A (ja) 走査電子顕微鏡用の現場引張試験機械および試料
CN111678785B (zh) 适用于板材预加载下的激光扫描试验***
CN106996897B (zh) 中子衍射高温测角仪及其专用力学加载装置
CN106483021B (zh) 与纳米压痕仪联用的非晶合金薄带拉伸装置及其使用方法
CN105758740A (zh) 可控磁场强度的小型扭转疲劳材料力学性能原位测试仪
CN105158057A (zh) 多场耦合下原位三轴拉伸疲劳测试装置及方法
CN203337492U (zh) 基于可调式拉伸-弯曲预载荷的原位纳米压痕测试仪
CN113514319B (zh) 扫描电子显微镜中原位静-动态疲劳力学性能测试仪器
CN206488994U (zh) 拉伸疲劳‑四点弯曲疲劳原位力学测试装置
CN103528889B (zh) 一种基于尺蠖型压电驱动器的原位拉伸实验仪
CN208171759U (zh) 用于中子散射分析的材料力学性能原位测试仪器
CN220960895U (zh) 一种应用于中子实验的低温耦合拉伸装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE