WO2017104615A1 - 無線受信機 - Google Patents

無線受信機 Download PDF

Info

Publication number
WO2017104615A1
WO2017104615A1 PCT/JP2016/086921 JP2016086921W WO2017104615A1 WO 2017104615 A1 WO2017104615 A1 WO 2017104615A1 JP 2016086921 W JP2016086921 W JP 2016086921W WO 2017104615 A1 WO2017104615 A1 WO 2017104615A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
error rate
envelope
correction
comparator
Prior art date
Application number
PCT/JP2016/086921
Other languages
English (en)
French (fr)
Inventor
李 還幇
三浦 龍
久 西川
敦史 長田
Original Assignee
国立研究開発法人情報通信研究機構
株式会社日本ジー・アイ・ティー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構, 株式会社日本ジー・アイ・ティー filed Critical 国立研究開発法人情報通信研究機構
Priority to EP16875592.4A priority Critical patent/EP3393050B1/en
Priority to US16/061,963 priority patent/US10277263B2/en
Publication of WO2017104615A1 publication Critical patent/WO2017104615A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/71637Receiver aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/061Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection providing hard decisions only; arrangements for tracking or suppressing unwanted low frequency components, e.g. removal of dc offset
    • H04L25/063Setting decision thresholds using feedback techniques only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a radio receiver capable of improving reception sensitivity while using an impulse type ultra-wide band (UWB).
  • UWB impulse type ultra-wide band
  • impulse UWB information is transmitted by using a pulse signal having a very short time width of 1 nanosecond or less and changing the position, amplitude or phase of the pulse signal on the time axis.
  • the frequency band occupied by the UWB signal is very wide from 500 MHz to several GHz or more, but since a pulse signal with a very short time width of 1 nanosecond is used, signal transmission at a high data rate and high-precision distance measurement are possible. Can be realized.
  • the configuration of the transceiver can be simplified, the manufacturing cost can be reduced, and the power consumption can be reduced.
  • OOK On-Off Keying
  • PPM Pulse Position Modulation
  • the received wave received by the receiver contains noise other than the target wave, and the received wave height value varies greatly depending on the airborne propagation path.
  • the threshold value is set high, if the target wave is weak, the receiver cannot detect the pulse of the signal, leading to a decrease in reception sensitivity.
  • the present invention has been devised in view of the above-described problems, and an object thereof is to provide a wireless receiver capable of improving reception sensitivity while using UWB.
  • a radio receiver is a radio receiver using an impulse UWB, a receiving antenna that receives the impulse UWB, amplifies the received impulse UWB, and detects an envelope of the impulse UWB
  • a receiver a maximum peak detector that detects a maximum value of the envelope, a minimum peak detector that detects a minimum value of the envelope, and a comparator that obtains signal data from the envelope using an initial threshold;
  • a baseband unit that measures an error rate of the signal data, an MPU that calculates a correction value based on the error rate, a correction threshold value that is calculated based on the maximum value, the minimum value, and the correction value, and is transmitted to the comparator
  • the comparator is configured to output the signal data from the envelope based on the correction threshold value transmitted from the calculator.
  • the calculation unit calculates the correction threshold value Vt by performing the calculation of Expression (1) based on the maximum value X, the minimum value Y, and the correction value Z.
  • a radio receiver is characterized in that, in the first or second invention, a bit error rate is used as the error rate, and the MPU calculates the correction value based on the bit error rate. .
  • a wireless receiver is characterized in that, in the first or second invention, a packet error rate is used as the error rate, and the MPU calculates the correction value based on the packet error rate. .
  • the wireless receiver includes a plurality of the receiving units and an adder that adds the envelopes from the plurality of the receiving units. It is characterized by that.
  • a wireless receiver is characterized in that, in any one of the first to fifth aspects, the error rate measurement by the baseband unit is performed every predetermined period.
  • FIG. 1 is a system configuration block diagram showing a radio receiver according to an embodiment of the present invention.
  • a wireless receiver 1 according to the present embodiment includes an antenna 2, a low noise amplifier (LNA) 3, an envelope detector 4, a comparator 5, a baseband unit 6, an MPU (Micro Processing Unit). ) 7, a maximum peak detection unit 8, a minimum peak detection unit 9, and two stages of calculation units 10 and 11.
  • LNA low noise amplifier
  • MPU Micro Processing Unit
  • Antenna 2 is an antenna for receiving the impulse UWB emitted from the transmitter.
  • the LNA 3 amplifies the UWB signal while suppressing noise superimposed on the impulse UWB received via the antenna 2 during the amplification process.
  • the envelope detector 4 detects the amplitude of the voltage with respect to this signal based on the envelope of the signal output from the LNA 3.
  • the antenna 2, the LNA 3, and the envelope detector 4 are collectively defined as a receiving unit.
  • the comparator 5 compares the signal strength of the voltage detected by the envelope detector 4 with a predetermined threshold, and determines that the signal strength above the threshold is the target wave signal and the signal strength below the threshold is no target wave signal. .
  • the baseband unit 6 demodulates the received data, generates a digital signal by setting the state with the target wave signal as 1 and the state without the target wave signal as 0 in the detection result of the comparator 5, and outputs other digital data.
  • Modulation / demodulation for data transmission / reception can be performed by an arbitrary method, for example, pulse density modulation / demodulation can be used.
  • the baseband unit 6 measures the error rate of received data.
  • the error rate to be measured any one such as a bit error rate or a packet error rate can be adopted.
  • the error rate measurement by the baseband unit can be performed at an arbitrary timing, for example, for each of a plurality of predetermined packets.
  • the MPU 7 is a control mechanism that controls the entire configuration of the wireless receiver 1.
  • the maximum peak detector 8 detects the maximum value of the envelope detected by the envelope detector 4 over a predetermined period. Let X be the maximum value of the envelope for the predetermined period.
  • the minimum peak detector 9 detects the minimum value of the envelope detected by the envelope detector 4 over a predetermined period. Let Y be the minimum value of the envelope for this predetermined period.
  • the calculation unit 10 calculates (XY) / Z.
  • Z is a correction value, which is a value that is calculated by the MPU and that minimizes the error rate of the received signal.
  • the calculation unit 11 adds Y to the calculation result obtained by the calculation unit 10.
  • the calculation units 10 and 11 perform the calculation shown in the following formula (1) to calculate the correction threshold value Vt.
  • the calculated correction threshold value Vt is transmitted to the comparator 5 and used for the subsequent processing of the comparator 5.
  • FIG. 2 is a graph showing a waveform detected by the wireless receiver.
  • FIG. 2 shows the relationship between Vt, X, and Y.
  • the comparator 5 determines that the target wave signal is present for the portion where the envelope is equal to or greater than the threshold value Vt, and that the target wave signal is absent for the portion where the envelope is less than the threshold value Vt.
  • the antenna 2 of the wireless receiver 1 receives the impulse UWB transmitted from the external wireless transmitter, and transmits the received impulse UWB to the LNA 3.
  • the LNA 3 amplifies the impulse UWB while suppressing noise mixed in the impulse UWB received by the antenna 2. By doing so, the impulse UWB that is a weak signal and easily affected by noise can be suppressed and the signal can be detected accurately.
  • the LNA 3 then transmits the amplified impulse UWB to the envelope detector 4.
  • the envelope detector 4 detects the amplitude of the voltage with respect to this signal based on the envelope of the signal output from the LNA 3.
  • the envelope detector 4 transmits the detected voltage amplitude to the comparator 5, the maximum peak detector 8, and the minimum peak detector 9.
  • the comparator 5 compares the signal strength of the voltage detected by the envelope detector 4 with a predetermined threshold value, the signal strength above the threshold is the target wave signal, and the signal strength below the threshold is no target wave signal. And digital data is generated.
  • the baseband unit 6 demodulates the received data, generates a digital signal by setting the signal presence state to 1 and the signal absence state to 0 in the detection result of the comparator 5, and outputs other data (not shown) as output data.
  • the baseband unit 6 measures the error rate of received data.
  • the error rate is measured based on, for example, the correction rate of data applied to the received data and the result of error detection. However, the error rate may be measured not only in this mode but also in other modes. .
  • the error rate measured by the baseband unit 6 is transmitted from the baseband unit 6 to the MPU 7.
  • the MPU 7 calculates Z that minimizes the error rate of the received signal based on the error rate obtained by the baseband unit 6.
  • the calculated correction value Z is transmitted from the MPU 7 to the calculation unit 10.
  • the maximum peak detector 8 detects the maximum value X of the amplitude of the voltage transmitted from the envelope detector 4 and transmits it to the calculator 10.
  • the minimum peak detection unit 9 detects the minimum value Y of the amplitude of the voltage transmitted from the envelope detector 4 and transmits it to the calculation unit 10 and the calculation unit 11.
  • the calculation unit 10 uses the maximum value X transmitted from the maximum peak detection unit 8, the minimum value Y transmitted from the minimum peak detection unit 9, and the correction value Z transmitted from the MPU 7 to (XY). / Z is calculated.
  • the calculation result by the calculation unit 10 is transmitted from the calculation unit 10 to the calculation unit 11.
  • the calculation unit 11 performs the calculation of the above formula (1) using the calculation result of (XY) / Z by the calculation unit 10 and the minimum value Y detected by the minimum peak detection unit 9, and the correction threshold value Vt is calculated.
  • the correction threshold value Vt calculated in this way is transmitted from the calculation unit 11 to the comparator 5.
  • the comparator 5 that has received the correction threshold value Vt performs the subsequent operations using the correction threshold value Vt.
  • the determination result of the presence / absence of a signal by the comparator 5 performed using the correction threshold value Vt is transmitted to the baseband unit 6, and thereafter, the radio receiver 1 performs the error rate measurement again in the same manner as the above-described processing. From this, a new correction threshold value Vt is calculated.
  • the wireless receiver 1 it is possible to detect a weak received wave by adjusting the threshold according to the communication status, and as a result, it is possible to extend the communication distance even when the impulse UWB is used. Become.
  • each of the wireless receivers 1 includes a single receiving unit, that is, one antenna 2, one LNA 3, and one envelope detector 4.
  • the present invention is not limited to this, and a mode in which a plurality of receiving units are provided may be used.
  • an adder for adding envelopes output from a plurality of receiving units is provided between the receiving unit and the comparator 5.
  • the power of impulse UWB received by a plurality of receiving units theoretically doubles according to the number of receiving units.
  • the reception power of the impulse UWB can be increased, and wireless communication over a longer distance than before can be realized.
  • Radio receiver 2 Antenna 3 Low noise amplifier (LNA) 4 Envelope detector 5 Comparator 6 Baseband unit 7 MPU (Micro Processing Unit) 8 Maximum peak detection unit 9 Minimum peak detection unit 10, 11 Calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Circuits Of Receivers In General (AREA)
  • Noise Elimination (AREA)

Abstract

[課題]インパルス型UWBを用いつつ受信感度を向上することのできる無線受信機を実現する。 [解決手段]インパルスUWBを用いる無線受信機(1)であって、前記インパルスUWBを受信する受信アンテナ(2)と、受信した前記インパルスUWBを増幅するとともに前記インパルスUWBの包絡線の検波を行う受信部(3,4)と、前記包絡線の最大値を検出する最大ピーク検出部(8)と、前記包絡線の最小値を検出する最小ピーク検出部(9)と、前記包絡線から初期閾値を用いて信号データを得るコンパレータ(5)と、前記信号データのエラー率を測定するベースバンド部(6)と、前記エラー率に基づき補正値を算出するMPU(7)と、前記最大値、前記最小値及び前記補正値に基づき補正閾値を算出し、前記コンパレータに送信する演算部(10,11)と、を備え、前記コンパレータは前記演算部から送信された前記補正閾値に基づき前記包絡線から前記信号データを得ることを特徴とする無線受信機。

Description

無線受信機
 本発明は、インパルス型超広帯域(UWB:Ultra Wide Band)を用いつつ受信感度を向上することのできる無線受信機に関するものである。
 近年注目されている無線通信技術として、時間幅が極めて小さいパルスを用いて通信を行うインパルスUWBを用いる技術がある(特許文献1参照)。
 インパルスUWBでは、1ナノ秒以下の非常に短い時間幅のパルス信号を利用し、そのパルス信号の時間軸上の位置や振幅又は位相等を変化させることで情報の伝送が行われる。
 UWB信号が占有する周波数帯域は500MHzから数GHz以上と非常に広くなるが、1ナノ秒の非常に短い時間幅のパルス信号を用いることから、高いデータレートの信号伝送や高精度の測距が実現され得る。
 また、インパルスUWBを用いる無線通信方式では、送受信機の構成をシンプルなものにすることができ、製造コストを低く抑えることができるとともに、消費電力も低く抑えることが可能となる。
特開2015-61105号公報
 こうしたインパルスUWBを用いる場合には、パルスのオンオフ制御に基づくOOK(On-Off Keying)変調や、パルスの位置に基づくPPM(Pulse Position Modulation)変調を基本処理とし、受信機ではいずれも電力検波を行う必要がある。
 そして、受信機側では受信したデータの復調プロセスにおいてパルスの有無の判断処理を行う必要があり、ノイズや受信波形の変動の影響を排除し、目的波のみを正確に捉えるかが重要となる。
 具体的には、受信機が受信する受信波には目的波以外のノイズが含まれ、また空中伝搬経路によっては受信波高値が大幅に変動する。
 そこで、ノイズを誤って信号のパルスと判断しないように、信号のパルスとノイズとを区別する閾値を高く設定することが考えられる。
 しかし、閾値を高く設定してしまうと、目的波が弱いものである場合には受信機が信号のパルスを検出することができず、受信感度の低下を招いてしまう。
 そこで、本発明は、上述した問題点に鑑みて案出されたものであり、UWBを用いつつ受信感度を向上することのできる無線受信機を提供することを目的とする。
 第1発明に係る無線受信機は、インパルスUWBを用いる無線受信機であって、前記インパルスUWBを受信する受信アンテナと、受信した前記インパルスUWBを増幅するとともに前記インパルスUWBの包絡線の検波を行う受信部と、前記包絡線の最大値を検出する最大ピーク検出部と、前記包絡線の最小値を検出する最小ピーク検出部と、前記包絡線から初期閾値を用いて信号データを得るコンパレータと、前記信号データのエラー率を測定するベースバンド部と、前記エラー率に基づき補正値を算出するMPUと、前記最大値、前記最小値及び前記補正値に基づき補正閾値を算出し、前記コンパレータに送信する演算部と、を備え、前記コンパレータは前記演算部から送信された前記補正閾値に基づき前記包絡線から前記信号データを得る、ことを特徴とする。
 第2発明に係る無線受信機は、第1発明において、前記演算部は前記最大値X、前記最小値Y及び前記補正値Zに基づき式(1)の演算を行い、補正閾値Vtを算出し、前記補正閾値Vtを前記コンパレータに送信することを特徴とする請求項1記載の無線受信機。
Figure JPOXMLDOC01-appb-M000002
 第3発明に係る無線受信機は、第1発明又は第2発明において、前記エラー率としてビットエラーレートが用いられ、前記MPUは前記ビットエラーレートに基づき前記補正値を算出することを特徴とする。
 第4発明に係る無線受信機は、第1発明又は第2発明において、前記エラー率としてパケットエラーレートが用いられ、前記MPUは前記パケットエラーレートに基づき前記補正値を算出することを特徴とする。
 第5発明に係る無線受信機は、第1発明乃至第4発明の何れか1つにおいて、複数の前記受信部と、複数の前記受信部からの前記包絡線を加算する加算器と、を備えることを特徴とする。
 第6発明に係る無線受信機は、第1発明乃至第5発明の何れか1つにおいて、前記ベースバンド部による前記エラー率の測定は所定期間毎に行われることを特徴とする。
 上述した構成からなる本発明によれば、インパルスUWBを用いつつ受信感度を向上することのできる無線受信機を提供することが可能となる。
本発明の実施形態に係る無線受信機を示すシステム構成ブロック図である。 無線受信機による検出波形を示すグラフである。
 以下、本発明の実施形態に係る無線受信機及び無線通信システムについて説明する。
 <無線受信機>
 図1は、本発明の実施形態に係る無線受信機を示すシステム構成ブロック図である。本実施形態に係る無線受信機1は、アンテナ2と、低ノイズ増幅器(LNA)3と、包絡線検出器4と、コンパレータ5と、ベースバンド部6と、MPU(Micro Processing Unit
)7と、最大ピーク検出部8と、最小ピーク検出部9と、2段の演算部10、11と、を備えて構成されている。
 アンテナ2は、送信機から発せられたインパルスUWBを受信するためのアンテナである。
 LNA3は、アンテナ2を介して受信したインパルスUWBについて、増幅過程で重畳される雑音を抑えつつ、UWB信号の増幅を行う。
 包絡線検出器4は、LNA3から出力された信号の包絡線に基づき、この信号に対する電圧の振幅を検出する。なお、便宜のためアンテナ2、LNA3及び包絡線検出器4をまとめて受信部と定義する。
 コンパレータ5は、包絡線検出器4により検出された電圧の信号強度を、所定の閾値と比較し、閾値以上の信号強度を目的波信号あり、閾値未満の信号強度を目的波信号無しとして判定する。
 ベースバンド部6は、受信データを復調し、コンパレータ5による検出結果のうち目的波信号有りの状態を1、目的波信号無しの状態を0としてデジタル信号の生成を行い、出力データとして図示しない他の装置による処理のために提供する。データの送受信のための変復調は任意の方式で行うことができ、例えばパルス密度変復調を用いることができる。
 また、ベースバンド部6は、受信データのエラー率の測定を行う。測定されるエラー率としてはビットエラーレートやパケットエラーレート等、任意のものを採用することができる。ベースバンド部によるエラー率の測定は任意のタイミングで行うことができ、例えば所定の複数のパケット毎に行われる。
 MPU7は、無線受信機1の構成全体の制御を行う制御機構である。
 最大ピーク検出部8は、所定期間にわたっての包絡線検出器4により検出された包絡線の最大値を検出する。この所定期間の包絡線の最大値をXとする。
 最小ピーク検出部9は、所定期間にわたっての包絡線検出器4により検出された包絡線の最小値を検出する。この所定期間の包絡線の最小値をYとする。
 演算部10は、(X-Y)/Zの演算を行う。ここでZは補正値であり、MPUにより算出される、受信信号のエラー率が最小となる値である。
 演算部11は、演算部10による演算結果に対してYの加算を行う。
 すなわち、演算部10、11により、以下の式(1)に示す演算が行われ、補正閾値Vtが算出される。
Figure JPOXMLDOC01-appb-M000003
 そして算出された補正閾値Vtはコンパレータ5へと送信され、コンパレータ5の以後の処理に供される。
 図2は、無線受信機による検出波形を示すグラフである。図2にVtとX、Yの関係が示されている。コンパレータ5により、包絡線が閾値Vt以上の部分について目的波信号あり、閾値Vt未満の部分について目的波信号無し、と判定される。
 次に、上述した構成を有する無線受信機1による動作について詳細に説明する。
 まず、無線受信機1のアンテナ2が、外部の無線送信器から送信されたインパルスUWBの受信を行い、受信したインパルスUWBをLNA3へと送信する。
 次に、LNA3が、アンテナ2により受信されたインパルスUWBに混入されている雑音を抑えつつ、インパルスUWBの増幅を行う。こうすることで、微弱な信号であり雑音による影響を受けやすいインパルスUWBについて、雑音による影響を抑制し、信号の検出を精度よく行うことができる。そしてLNA3は、増幅したインパルスUWBを包絡線検出器4へと送信する。
 次に、包絡線検出器4が、LNA3から出力された信号の包絡線に基づき、この信号に対する電圧の振幅を検出する。そして包絡線検出器4は、検出した電圧の振幅をコンパレータ5、最大ピーク検出部8及び最小ピーク検出部9へと送信する。
 次に、コンパレータ5は、包絡線検出器4により検出された電圧の信号強度を、所定の閾値と比較し、閾値以上の信号強度を目的波信号あり、閾値未満の信号強度を目的波信号無しとして判定し、デジタルデータの生成を行う。
 次に、ベースバンド部6は、受信データを復調し、コンパレータ5による検出結果のうち信号有りの状態を1、信号無しの状態を0としてデジタル信号の生成を行い、出力データとして図示しない他の装置による処理のために提供する。また、受信データのエラー率の測定をベースバンド部6で行う。
 エラー率の測定は、例えば受信データに対して施されているデータの修正率や誤り検出の結果に基づき行われるが、この態様に限らず他の態様によりエラー率の測定が行われてもよい。
 ベースバンド部6により測定されたエラー率は、ベースバンド部6からMPU7へと送信される。
 次に、MPU7が、ベースバンド部6により得られたエラー率に基づき、受信信号のエラー率が最少となるZを算出する。算出された補正値Zは、MPU7から演算部10へと送信される。
 一方、最大ピーク検出部8は、包絡線検出器4から送信された電圧の振幅の最大値Xを検出し、演算部10へと送信する。
 また、最小ピーク検出部9は、包絡線検出器4から送信された電圧の振幅の最小値Yを検出し、演算部10及び演算部11へと送信する。
 演算部10は、最大ピーク検出部8から送信された最大値Xと、最小ピーク検出部9から送信された最小値Y、そしてMPU7から送信された補正値Zを用いて、(X-Y)/Zの演算を行う。演算部10による演算結果は、演算部10から演算部11へと送信される。
 演算部11は、演算部10による(X-Y)/Zの演算結果と、最小ピーク検出部9により検出された最小値Yを用いて、上述した式(1)の演算を行い、補正閾値Vtの算出を行う。
 こうして算出された補正閾値Vtは、演算部11からコンパレータ5へと送信される。補正閾値Vtを受信したコンパレータ5は、以後の動作をこの補正閾値Vtを用いて行う。
 そして、この補正閾値Vtを用いて行われたコンパレータ5による信号の有無の判定結果はベースバンド部6へと送信され、以後無線受信機1は、上述した処理と同様に再度のエラー率の測定から新たな補正閾値Vtの算出を行う。
 本実施形態に係る無線受信機1によると、通信状況に応じて閾値の調節を行うことで弱い受信波の検出が可能となり、その結果インパルスUWBを用いた場合でも通信距離を伸ばすことが可能となる。
 なお、上述した実施形態に係る無線受信機1はそれぞれ単一の受信部、すなわちアンテナ2、LNA3及び包絡線検出器4を1つずつ備えて構成されていた。しかし、本発明においてはこれに限らず、受信部が複数設けられている態様であってもよい。
 この場合、複数の受信部から出力される包絡線を加算する加算器が、受信部とコンパレータ5の間に設けられる。
 このように加算器を設けることで、複数の受信部により受信したインパルスUWBの電力が理論上受信部の数に応じて倍増する。これによりインパルスUWBの受信電力を高めることができ、従来よりも長距離の無線通信を実現することができる。
1 無線受信機
2 アンテナ
3 低ノイズ増幅器(LNA)
4 包絡線検出器
5 コンパレータ
6 ベースバンド部
7 MPU(Micro Processing Unit)
8 最大ピーク検出部
9 最小ピーク検出部
10、11 演算部

Claims (6)

  1.  インパルスUWBを用いる無線受信機であって、
     前記インパルスUWBを受信する受信アンテナと、
     受信した前記インパルスUWBを増幅するとともに前記インパルスUWBの包絡線の検波を行う受信部と、
     前記包絡線の最大値を検出する最大ピーク検出部と、
     前記包絡線の最小値を検出する最小ピーク検出部と、
     前記包絡線から初期閾値を用いて信号データを得るコンパレータと、
     前記信号データのエラー率を測定するベースバンド部と、
     前記エラー率に基づき補正値を算出するMPUと、
     前記最大値、前記最小値及び前記補正値に基づき補正閾値を算出し、前記コンパレータに送信する演算部と、
    を備え、
     前記コンパレータは前記演算部から送信された前記補正閾値に基づき前記包絡線から前記信号データを得る、
     ことを特徴とする無線受信機。
  2.  前記演算部は前記最大値X、前記最小値Y及び前記補正値Zに基づき式(1)の演算を行い、補正閾値Vtを算出し、前記補正閾値Vtを前記コンパレータに送信することを特徴とする請求項1記載の無線受信機。
    Figure JPOXMLDOC01-appb-M000001
  3.  前記エラー率としてビットエラーレートが用いられ、前記MPUは前記ビットエラーレートに基づき前記補正値を算出することを特徴とする請求項1又は2記載の無線受信機。
  4.  前記エラー率としてパケットエラーレートが用いられ、前記MPUは前記パケットエラーレートに基づき前記補正値を算出することを特徴とする請求項1又は2記載の無線受信機。
  5.  複数の前記受信部と、
     複数の前記受信部からの前記包絡線を加算する加算器と、
    を備えることを特徴とする請求項1乃至4の何れか1項記載の無線受信機。
  6.  前記ベースバンド部による前記エラー率の測定は所定期間毎に行われることを特徴とする請求項1乃至5の何れか1項記載の無線受信機。
PCT/JP2016/086921 2015-12-18 2016-12-12 無線受信機 WO2017104615A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16875592.4A EP3393050B1 (en) 2015-12-18 2016-12-12 Wireless receiver
US16/061,963 US10277263B2 (en) 2015-12-18 2016-12-12 Radio receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015246900A JP6653838B2 (ja) 2015-12-18 2015-12-18 無線受信機
JP2015-246900 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104615A1 true WO2017104615A1 (ja) 2017-06-22

Family

ID=59056645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086921 WO2017104615A1 (ja) 2015-12-18 2016-12-12 無線受信機

Country Status (4)

Country Link
US (1) US10277263B2 (ja)
EP (1) EP3393050B1 (ja)
JP (1) JP6653838B2 (ja)
WO (1) WO2017104615A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163877A (ja) * 1996-11-28 1998-06-19 Sony Corp 復調回路における多値コンパレータのしきい値制御回路
JP2000078211A (ja) * 1998-09-03 2000-03-14 Sony Corp 情報復調装置および方法、並びに提供媒体
JP2015061105A (ja) 2013-09-17 2015-03-30 独立行政法人情報通信研究機構 無線送信機、無線受信機、無線通信システム及び無線通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209523B1 (en) * 1997-05-16 2007-04-24 Multispectral Solutions, Inc. Ultra-wideband receiver and transmitter
US7539271B2 (en) * 2002-08-16 2009-05-26 Wisair Ltd. System and method for multi-band ultra-wide band signal generators
KR100818246B1 (ko) * 2007-04-18 2008-04-02 삼성전자주식회사 혼돈신호를 이용한 통신장치 및 그 방법
KR101141050B1 (ko) * 2009-12-15 2012-05-03 한국전기연구원 임펄스 신호 및 임펄스 신호 열 검출장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163877A (ja) * 1996-11-28 1998-06-19 Sony Corp 復調回路における多値コンパレータのしきい値制御回路
JP2000078211A (ja) * 1998-09-03 2000-03-14 Sony Corp 情報復調装置および方法、並びに提供媒体
JP2015061105A (ja) 2013-09-17 2015-03-30 独立行政法人情報通信研究機構 無線送信機、無線受信機、無線通信システム及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAYA SASAKI ET AL.: "A Study on Multi-User Access in Energy Detection UWB-IR Receiver, Spread Spectrum Techniques and Applications (ISITA", 2010 IEEE 11TH INTERNATIONAL SYMPOSIUM, 20 October 2010 (2010-10-20), pages 141 - 146, XP031812178 *
QIN ZHOU ET AL.: "A Flexible Back-end with Optimum Threshold Estimation for OOK Based Energy Detection IR-UWB Receivers, Ultra- Wideband(ICUWB", 2011 IEEE INTERNATIONAL CONFERENCE, 16 September 2011 (2011-09-16), pages 130 - 134, XP032115634 *
See also references of EP3393050A4

Also Published As

Publication number Publication date
US10277263B2 (en) 2019-04-30
JP6653838B2 (ja) 2020-02-26
EP3393050A4 (en) 2019-08-21
JP2017112553A (ja) 2017-06-22
US20180367176A1 (en) 2018-12-20
EP3393050A1 (en) 2018-10-24
EP3393050B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
JP5438196B2 (ja) 遠隔通信装置の間の見通し線(los)距離を判定する方法
US9264280B1 (en) Automatic received gain control
US8837307B2 (en) Two-way ranging messaging scheme
US8879407B2 (en) Two-way ranging messaging scheme
JP6225041B2 (ja) 受信装置
KR20150081666A (ko) 저전력 엔벨로프 검출 수신기에서 간섭 신호를 검출하는 방법 및 장치
US20080043649A1 (en) Reliable Packet Detection In A Wireless Receiver When Packets Contain A Known Repetitive Sequence
US20110038309A1 (en) System and method for transmission and detection of frame including bursts of pulses
MX2020008714A (es) Método de detección de colisiones.
JP2006174126A (ja) ダイバーシティ受信装置及び方法
US8787440B2 (en) Determination of receive data values
CN103001654B (zh) 一种自适应变中频射频接收机
WO2017104615A1 (ja) 無線受信機
JP2009273053A (ja) 送信装置、受信装置及び通信システム
JP5993326B2 (ja) 無線通信装置及び無線通信方法
JP4506343B2 (ja) 無線受信装置
de Francisco et al. An interference robust multi-carrier wake-up radio
EP2980601B1 (en) Method of secure rf ranging under strong multipath reflections
JP5575742B2 (ja) エネルギー検出受信器の入力信号の圧伸のシステム及び方法
JP4937805B2 (ja) 無線通信装置および無線通信装置における距離測定方法
JP6256739B2 (ja) 無線送信機、無線受信機、無線通信システム及び無線通信方法
US10050666B2 (en) Devices for detecting ultra-wide band signals
KR101141044B1 (ko) 연속 펄스를 사용하여 신호감지 확률을 높이는 에너지 검출 기반 ir-uwb 시스템
JP5234658B2 (ja) 受信装置
JP2007201626A (ja) 受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875592

Country of ref document: EP