WO2017104434A1 - 異方性導電フィルム、接続方法、及び接合体 - Google Patents

異方性導電フィルム、接続方法、及び接合体 Download PDF

Info

Publication number
WO2017104434A1
WO2017104434A1 PCT/JP2016/085800 JP2016085800W WO2017104434A1 WO 2017104434 A1 WO2017104434 A1 WO 2017104434A1 JP 2016085800 W JP2016085800 W JP 2016085800W WO 2017104434 A1 WO2017104434 A1 WO 2017104434A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive film
electronic component
resin
mass
Prior art date
Application number
PCT/JP2016/085800
Other languages
English (en)
French (fr)
Inventor
修治 小川
盛男 関口
孝男 加藤
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2017104434A1 publication Critical patent/WO2017104434A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to an anisotropic conductive film, a connection method, and a joined body.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • the anisotropic conductive film is, for example, a film-like connection material in which conductive particles are dispersed in an insulating binder containing a thermosetting resin.
  • the electrode parts of the electronic parts to be anisotropically connected are thermocompression-bonded via the ACF, whereby the binder containing the thermosetting resin is thermoset and connected.
  • the anisotropic conductive paste contains, for example, an insulating binder, conductive particles, and a solvent (see, for example, Patent Documents 1 and 2).
  • the method for using the ACP containing the solvent is, for example, as follows.
  • an electronic component such as a flexible printed circuit board (FPC)
  • FPC flexible printed circuit board
  • a coating film made of the ACP is formed on the electrode portion of the electronic component.
  • the FPC on which the coating film is formed by the ACP is often transported at room temperature in this state. Therefore, a type using a non-reactive binder that is not cured by heat is used as the ACP.
  • connection between electronic components is required to be performed at low temperature, low pressure, and in a short time.
  • Connection at low temperature reduces thermal damage to electronic components, and variation in heating temperature during connection (the heating temperature at the electrode varies depending on whether the component is connected to the tip of the wiring connected to the electrode. The variation is particularly noticeable when the mounting density is high, and is required in terms of reducing the load on the mounting equipment.
  • Connection at low pressure is required in terms of reducing damage to thin substrates and touch panels.
  • Connection in a short time is required in terms of productivity.
  • the conventional anisotropic conductive film uses a thermosetting resin, it is necessary to shorten the storage period because curing occurs during storage when trying to support connection at a low temperature and in a short time. There is a problem that it is not suitable for practical use.
  • anisotropic conductive films has been expanding, performance (chemical resistance) that maintains sufficient adhesion even when exposed to solvents, and adhesion even under high temperature and high humidity environments. There is a need for further improvement in performance (reliability).
  • the present invention is capable of low-temperature, low-pressure, and short-time connection while maintaining sufficient connection resistance, and further has an anisotropic conductive film excellent in chemical resistance and reliability, and the It aims at providing the connection method using an anisotropic conductive film, and the conjugate
  • Means for solving the problems are as follows. That is, ⁇ 1> An anisotropic conductive film for anisotropically conductively connecting a terminal of a first electronic component and a terminal of a second electronic component, Containing a crystalline resin, an amorphous resin, and conductive particles;
  • the amorphous resin includes a first amorphous resin and a second amorphous resin having a glass transition point lower than a glass transition point of the first amorphous resin.
  • ⁇ 3> The anisotropic conductive film according to ⁇ 2>, wherein the epoxy resin has a molecular weight of less than 2,900.
  • ⁇ 4> The anisotropic conductive film according to any one of ⁇ 2> to ⁇ 3>, wherein the content of the epoxy resin is 1.5% by mass to 3.0% by mass.
  • ⁇ 5> The ⁇ 1>, wherein a mass ratio (N1 / N2) between the first amorphous resin (N1) and the second amorphous resin (N2) is 0.3 to 2.0.
  • N1 / N2 a mass ratio between the first amorphous resin (N1) and the second amorphous resin (N2) is 0.3 to 2.0.
  • ⁇ 6> The anisotropic conductive film according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the amorphous resin is 40% by mass to 60% by mass.
  • a connection method for anisotropically connecting the terminals of the first electronic component and the terminals of the second electronic component A first disposing step of disposing the anisotropic conductive film according to any one of ⁇ 1> to ⁇ 6> on a terminal of the second electronic component; A second disposing step of disposing the first electronic component on the anisotropic conductive film such that a terminal of the first electronic component is in contact with the anisotropic conductive film; And a heating and pressing step of heating and pressing the first electronic component with a heating and pressing member.
  • the anisotropic conductive film is the anisotropic conductive film according to any one of ⁇ 1> to ⁇ 6>.
  • the conventional problems can be solved, the object can be achieved, and a connection at a low temperature, a low pressure, and a short time is possible while maintaining a sufficient connection resistance.
  • An anisotropic conductive film excellent in chemical resistance and reliability, a connection method using the anisotropic conductive film, and a joined body using the anisotropic conductive film can be provided.
  • the anisotropic conductive film of the present invention contains at least a crystalline resin, an amorphous resin, and conductive particles, preferably contains an epoxy resin, and further contains other components as necessary.
  • the anisotropic conductive film is an anisotropic conductive film that anisotropically connects the terminals of the first electronic component and the terminals of the second electronic component.
  • the anisotropic conductive film contains the crystalline resin and the amorphous resin, and can be connected at a low temperature, a low pressure, and in a short time while maintaining a sufficient connection resistance. Furthermore, the amorphous resin further includes a first amorphous resin and a second amorphous resin having a glass transition point lower than the glass transition point of the first amorphous resin. Excellent chemical resistance (performance to maintain sufficient adhesion even when exposed to a solvent) and reliability (performance to maintain adhesion even in a high temperature and high humidity environment).
  • the anisotropic conductive film enables connection at low temperature, low pressure and in a short time. This is considered to be because the anisotropic conductive film obtained is softened by heating, and then quickly solidifies due to the crystalline resin when the heating state is released and the temperature returns to room temperature.
  • the crystalline resin examples include a crystalline polyester resin, a crystalline polyurethane resin, a crystalline polyolefin resin, and a crystalline ethylene vinyl acetate copolymer resin.
  • the crystalline resin refers to a resin having a crystalline region, and whether or not the crystalline resin is the crystalline resin can be confirmed, for example, by observing an endothermic peak in a temperature rising process in differential scanning calorimetry.
  • the crystalline resin may be a mixture of resins having a crystalline region.
  • the content of the crystalline resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30% by mass to 70% by mass, more preferably 35% by mass to 60% by mass, and 45% by mass. % To 55% by mass is particularly preferred.
  • a numerical range defined by “to” is a numerical range including a lower limit value and an upper limit value. That is, “30 mass% to 70 mass%” is synonymous with “30 mass% or more and 70 mass% or less”.
  • the amorphous resin includes a first amorphous resin and a second amorphous resin.
  • the glass transition point of the second amorphous resin is lower than the glass transition point of the first amorphous resin.
  • the glass transition point of the first amorphous resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, considering practical pressure bonding conditions, 50 ° C. to 90 ° C. is preferable, and 60 More preferably, the temperature is from 80 ° C to 80 ° C.
  • the glass transition point of the second amorphous resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably ⁇ 20 ° C. to 20 ° C., more preferably ⁇ 10 ° C. to 10 ° C. .
  • the difference (Tg1 ⁇ Tg2) between the glass transition point (Tg1) of the first amorphous resin and the glass transition point (Tg2) of the second amorphous resin is not particularly limited. Although it can be appropriately selected depending on the conditions, it is preferably 40 ° C to 100 ° C, more preferably 50 ° C to 90 ° C.
  • the glass transition point can be determined by, for example, differential scanning calorimetry (DSC) in “JIS K 7121: 2012 Plastic Transition Temperature Measurement Method”.
  • said 1st amorphous resin and said 2nd amorphous resin there is no restriction
  • the content of the amorphous resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 25% by mass to 65% by mass, more preferably 30% by mass to 60% by mass, and 40% A mass% to 50 mass% is particularly preferred.
  • the mass ratio (N1 / N2) between the first amorphous resin (N1) and the second amorphous resin (N2) is not particularly limited and may be appropriately selected depending on the purpose. However, from the viewpoint of excellent compatibility between solvent resistance and reliability, 0.1 to 3.0 is preferable, 0.3 to 2.0 is more preferable, 0.5 to 1.6 is still more preferable, Particularly preferred is 0.7 to 1.3.
  • metal particle there is no restriction
  • the metal-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with metal, and can be appropriately selected according to the purpose.
  • the surface of the resin particles is nickel, silver, solder , Particles coated with at least one of copper, gold, and palladium.
  • particles in which the surface of resin particles is coated with silver are preferable.
  • the material of the resin particles is not particularly limited and may be appropriately selected depending on the intended purpose.
  • styrene-divinylbenzene copolymer styrene-divinylbenzene copolymer
  • benzoguanamine resin cross-linked polystyrene resin
  • acrylic resin styrene-silica composite resin, etc. Is mentioned.
  • the conductive particles only need to have conductivity during anisotropic conductive connection.
  • the conductive particle may be used as long as the particle is deformed during the anisotropic conductive connection and the metal particle is exposed.
  • the average particle diameter of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, still more preferably 10 ⁇ m to 25 ⁇ m, and even more preferably 10 ⁇ m. Particularly preferred is ⁇ 20 ⁇ m.
  • the average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily. The particle diameter can be measured, for example, by observation with a scanning electron microscope.
  • the content of the conductive particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1% by mass to 10% by mass, and more preferably 2% by mass to 8% by mass.
  • the epoxy resin further improves solvent resistance and reliability.
  • the epoxy resin is considered to have an effect of improving the compatibility between the first amorphous resin and the second amorphous resin in the anisotropic conductive film. And the action is considered to further improve the solvent resistance and reliability.
  • the epoxy resin does not belong to any of the crystalline resin and the amorphous resin. That is, the crystalline resin does not include a crystalline epoxy resin, and the amorphous resin does not include an amorphous epoxy resin.
  • these definitions are definitions for organizing the concept of the crystalline resin, the amorphous resin, and the epoxy resin, and the anisotropic conductive film contains the epoxy resin. This is not excluded.
  • epoxy resin there is no restriction
  • the molecular weight of the epoxy resin is not particularly limited and may be appropriately selected depending on the intended purpose. However, from the viewpoint of further improving solvent resistance and reliability, it is preferably less than 2,900, and 2,000 or less. Is more preferable, 1,500 or less is still more preferable, and 1,000 or less is particularly preferable. Further, the molecular weight of the epoxy resin is preferably 500 or more, and more preferably 800 or more.
  • the content of the said epoxy resin is particularly preferably 1.5% by mass to 3.0% by mass.
  • the first electronic component and the second electronic component are not particularly limited as long as they are electronic components having terminals, which are targets for anisotropic conductive connection using the anisotropic conductive film.
  • a glass substrate, a flexible substrate, a rigid substrate, an IC (Integrated Circuit) chip, a TAB (Tape Automated Bonding), a liquid crystal panel, and the like can be given.
  • IC Integrated Circuit
  • TAB Tape Automated Bonding
  • liquid crystal panel and the like
  • the IC chip include a liquid crystal screen control IC chip in a flat panel display (FPD).
  • the anisotropic conductive film does not contain a curing agent, and the resin is not crosslinked by heating. Therefore, even if it is an anisotropic conductive film used for a low-temperature and short-time connection, long-term storage is enabled.
  • the average thickness of the anisotropic conductive film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ⁇ m to 100 ⁇ m, more preferably 10 ⁇ m to 60 ⁇ m, and particularly preferably 20 ⁇ m to 50 ⁇ m.
  • the said crystalline resin, the said amorphous resin, and the said epoxy resin as needed Is then dissolved in a solvent to obtain a mixed varnish, and then the anisotropic conductive composition obtained by mixing the conductive particles with the mixed varnish is applied onto a peeled polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • connection method of the present invention includes at least a first arrangement step, a second arrangement step, and a heating and pressing step, and further includes other steps as necessary.
  • the connection method is a method in which the terminal of the first electronic component and the terminal of the second electronic component are anisotropically conductively connected.
  • the first arrangement step is not particularly limited as long as it is a step of arranging the anisotropic conductive film of the present invention on the terminal of the second electronic component, and can be appropriately selected according to the purpose. it can.
  • the second placement step is a step of placing the first electronic component on the anisotropic conductive film so that a terminal of the first electronic component is in contact with the anisotropic conductive film.
  • the second placement step is a step of placing the first electronic component on the anisotropic conductive film so that a terminal of the first electronic component is in contact with the anisotropic conductive film.
  • the heating and pressing step is not particularly limited as long as it is a step of heating and pressing the first electronic component with a heating and pressing member, and can be appropriately selected according to the purpose.
  • the heating and pressing member include a pressing member having a heating mechanism.
  • the pressing member having the heating mechanism include a heat tool.
  • the heating temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 ° C to 140 ° C.
  • the pressing pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 MPa to 10 MPa.
  • the heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 seconds to 10 seconds.
  • the joined body of the present invention includes at least a first electronic component, a second electronic component, and an anisotropic conductive film, and further includes other members as necessary.
  • the anisotropic conductive film is the anisotropic conductive film of the present invention.
  • the anisotropic conductive film is interposed between the first electronic component and the second electronic component to electrically connect the terminal of the first electronic component and the terminal of the second electronic component. Connected.
  • the joined body can be manufactured, for example, by the connection method of the present invention.
  • Aronmelt PES-111EE made by Toa Gosei Co., Ltd., crystalline resin mainly composed of crystalline polyester resin
  • Elitel UE3201
  • spherical Ag plating resin particles (conductive particles obtained by the following production method) having an average particle size of 20 ⁇ m were further added to the obtained mixed varnish to obtain an anisotropic conductive composition.
  • the obtained anisotropic conductive composition was applied onto a 50 ⁇ m-thick PET (polyethylene terephthalate) film so that the average thickness after drying was 35 ⁇ m, and dried at 80 ° C. for 10 minutes. Produced.
  • the joined body was manufactured by the following method and evaluated as follows. The results are shown in Table 1-1.
  • the anisotropic conductive film (film width 2.0 mm) obtained above was disposed on the terminal of the second electronic component.
  • the first electronic component was disposed on the anisotropic conductive film. Subsequently, the first electronic component is heated and pressed under the conditions of 120 ° C., 2 MPa, 3 seconds with a heating tool (width 2.0 mm) through a buffer material (silicone rubber, thickness 0.2 mm), A joined body was obtained.
  • a 90 ° peel test (JIS K6854-1) was conducted to peel the flexible printed circuit board from the printed wiring board in the 90 ° direction. A test piece cut to a width of 1 cm was used for the peel test. The peel strength was measured and evaluated according to the following evaluation criteria. The test was performed after the joined body was left in a high temperature and high humidity environment (60 ° C. and 95% RH environment) for 250 hours, 500 hours, and 750 hours. The test result when not exposed to a high temperature and high humidity environment was set as an initial value, and the ratio of the adhesive strength (peel strength) to the initial value (100%) was evaluated according to the following evaluation criteria.
  • Example 1 An anisotropic conductive film and a joined body were produced in the same manner as in Example 1 except that the type and formulation of the resin used were changed to those shown in Table 1-1. Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate
  • Nipponran N-5196 manufactured by Nippon Polyurethane Industry Co., Ltd., polyurethane elastomer with a polycarbonate skeleton, solid content of 30% by mass
  • Nipponran N-5196 manufactured by Nippon Polyurethane Industry Co., Ltd., polyurethane elastomer with a polycarbonate skeleton, solid content of 30% by mass
  • 4 parts by mass of spherical Ag plated resin particles having an average particle diameter of 20 ⁇ m (conductive particles obtained in Example 1) were further added to obtain an anisotropic conductive composition.
  • the obtained anisotropic conductive composition was applied onto a 50 ⁇ m-thick PET (polyethylene terephthalate) film so that the average thickness after drying was 35 ⁇ m, and dried at 80 ° C. for 10 minutes. Produced.
  • Example 2 Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate
  • Example 2 An anisotropic conductive film and a joined body were produced in the same manner as in Example 1 except that the type and formulation of the resin used were changed to those shown in Table 1-2. Evaluation similar to Example 1 was performed about the obtained anisotropic conductive film and conjugate
  • N1 / N2 is a mass ratio (N1 / N2) between the first amorphous resin (N1) and the second amorphous resin (N2).
  • PES-111EE Aronmelt PES-111EE, manufactured by Toa Gosei Co., Ltd., a crystalline resin based on a crystalline polyester resin Byron GA-6400: manufactured by Toyobo Co., Ltd., a crystalline resin based on a crystalline polyester resin UE3201 : Elitel UE3201, manufactured by Unitika Ltd., amorphous polyester resin, glass transition point (Tg): 65 ° C UE3220: Elitel UE3220, manufactured by Unitika Ltd., amorphous polyester resin, glass transition point (Tg): 5 ° C UE3600: Elitel UE3600, manufactured by Unitika Ltd., amorphous polyester resin, glass transition point (Tg): 75 ° C UE9400: Elitel UE9400, manufactured by Unitika Ltd., amorphous polyester resin, glass transition point (Tg): ⁇ 7 ° C.
  • UE3500 Elitel UE3500, manufactured by Unitika Ltd., amorphous polyester resin, glass transition point (Tg): 35 ° C N-5196: Nipponran N-5196, manufactured by Nippon Polyurethane Industry Co., Ltd., Polyurethane elastomer with polycarbonate skeleton Epicoat 1007: Made by Mitsubishi Chemical Corporation, epoxy resin Epicoat 1002: Made by Mitsubishi Chemical Corporation, Epoxy resin Epicoat 1001: Mitsubishi Chemical Corporation Company made, epoxy resin
  • Example 1 to 10 both the solvent resistance and the reliability were excellent. In particular, in Examples 6 to 10 containing an epoxy resin, the solvent resistance was further improved. In Examples 8 to 10 containing 2.0% by mass of an epoxy resin having a molecular weight of less than 2,900, the solvent resistance was improved. Both reliability and reliability were very good.
  • Comparative Examples 1 to 4 that do not include two types of amorphous resins having different glass transition points, the desired performance cannot be obtained even if the glass transition point of one type of amorphous resin contained therein is changed. It was.
  • the anisotropic conductive films of Examples 1 to 10 were all capable of being connected at a low temperature, a low pressure, and in a short time while maintaining a sufficient connection resistance.
  • the anisotropic conductive film of the present invention can be connected at a low temperature, a low pressure, and in a short time while maintaining a sufficient connection resistance, and further has excellent chemical resistance and reliability. It can use suitably as a connection material at the time of manufacturing a joined body by making the terminal and the terminal of an electronic component carry out anisotropic conductive connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、 結晶性樹脂と、非晶性樹脂と、導電性粒子とを含有し、 前記非晶性樹脂が、第1の非晶性樹脂と、前記第1の非晶性樹脂のガラス転移点より低いガラス転移点を有する第2の非晶性樹脂とを有する異方性導電フィルムである。

Description

異方性導電フィルム、接続方法、及び接合体
 本発明は、異方性導電フィルム、接続方法、及び接合体に関する。
 従来より、電子部品同士を接続する手段として、異方性導電フィルム(ACF;Anisotropic Conductive Film)、異方性導電ペースト(ACP;Anisotropic Conductive Paste)などの接続材料が用いられている。
 前記異方性導電フィルムは、例えば、熱硬化性樹脂を含んだ絶縁性バインダーに導電性粒子が分散されてなるフィルム状の接続材料である。異方導電接続したい電子部品同士の電極部分を、前記ACFを介して熱圧着することで、前記熱硬化性樹脂を含んだバインダーを熱硬化させて接続を行う。
 前記異方性導電ペーストは、例えば、絶縁性バインダーと、導電性粒子と、溶剤とを含有する(例えば、特許文献1及び2参照)。前記溶剤を含有する前記ACPの使用方法は、例えば、以下のとおりである。フレキシブルプリント基板(FPC;Flexible Printed Circuits)などの電子部品に前記ACPを印刷して加熱乾燥させると、前記電子部品の電極部に前記ACPからなる塗膜が形成される。前記ACPによる前記塗膜が形成された前記FPCは、この状態で室温輸送されることが多い。そのため、前記ACPは、熱で硬化しない非反応型バインダーを用いるタイプも使用されている。
 ところで、近年、電子部品同士の接続には、低温、低圧力、及び短時間での接続が要求されている。低温での接続は、電子部品の熱的ダメージを低減する点、接続の際の加熱温度のバラツキ(電極部に接続した配線の先に部品が繋がっているかどうかによって、電極部における加熱温度が変わり、バラツキになる。実装密度が高密度になるとバラツキは特に顕著になる。)を防ぐ点、及び実装設備への負荷の低減の点で要求されている。低圧力での接続は、薄い基板やタッチパネルへのダメージの低減の点で要求されている。短時間での接続は、生産性の点で要求されている。
 しかし、従来の前記異方性導電フィルムでは、熱硬化性樹脂を用いるため、低温及び短時間での接続に対応しようとすると、保管中に硬化が生じるために、保管期間を短くする必要があり、実用上適さないという問題がある。
 また、従来の前記異方性導電ペーストでは、低圧力での接続に対応しようとすると、前記ACPの粘度を下げる必要がある。前記ACPの粘度を下げると、熱圧着の終了直後に発生する電子部品の復元力に前記ACP中のバインダーが耐えきれずに、導電性粒子の潰れが維持できなくなり、接続抵抗が不十分になるという問題がある。
 そこで、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能な異方性導電フィルムが提案されている(例えば、特許文献3参照)。
 更に、近年、異方性導電フィルムの用途が広がりつつある中、溶剤に曝された場合でも十分な接着性を維持する性能(耐薬品性)、及び高温高湿環境下でも接着性を維持する性能(信頼性)の更なる向上が求められている。
特開2011-132304号公報 国際公開第99/01519号パンフレット 特開2014-60025号公報
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能であり、更に、耐薬品性、及び信頼性に優れる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
 結晶性樹脂と、非晶性樹脂と、導電性粒子とを含有し、
 前記非晶性樹脂が、第1の非晶性樹脂と、前記第1の非晶性樹脂のガラス転移点より低いガラス転移点を有する第2の非晶性樹脂とを有することを特徴とする異方性導電フィルムである。
 <2> 更にエポキシ樹脂を含有する前記<1>に記載の異方性導電フィルムである。
 <3> 前記エポキシ樹脂の分子量が、2,900未満である前記<2>に記載の異方性導電フィルムである。
 <4> 前記エポキシ樹脂の含有量が、1.5質量%~3.0質量%である前記<2>から<3>のいずれかに記載の異方性導電フィルムである。
 <5> 前記第1の非晶性樹脂(N1)と前記第2の非晶性樹脂(N2)との質量比率(N1/N2)が、0.3~2.0である前記<1>から<4>のいずれかに記載の異方性導電フィルムである。
 <6> 前記非晶性樹脂の含有量が、40質量%~60質量%である前記<1>から<5>のいずれかに記載の異方性導電フィルムである。
 <7> 第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、
 前記第2の電子部品の端子上に前記<1>から<6>のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
 前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
 前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法である。
 <8> 端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムとを有し、
 前記異方性導電フィルムが、前記<1>から<6>のいずれかに記載の異方性導電フィルムであることを特徴とする接合体である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能であり、更に、耐薬品性、及び信頼性に優れる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び前記異方性導電フィルムを用いた接合体を提供することができる。
(異方性導電フィルム)
 本発明の異方性導電フィルムは、結晶性樹脂と、非晶性樹脂と、導電性粒子とを少なくとも含有し、好ましくはエポキシ樹脂を含有し、更に必要に応じて、その他の成分を含有する。
 前記異方性導電フィルムは、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムである。
 前記異方性導電フィルムは、前記結晶性樹脂と前記非晶性樹脂とを含有することにより、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能である。更に、前記非晶性樹脂が、第1の非晶性樹脂と、前記第1の非晶性樹脂のガラス転移点より低いガラス転移点を有する第2の非晶性樹脂を有することにより、更に、耐薬品性(溶剤に曝された場合でも十分な接着性を維持する性能)、及び信頼性(高温高湿環境下でも接着性を維持する性能)に優れる。
<結晶性樹脂>
 前記結晶性樹脂としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記異方性導電フィルムは、低温、低圧力、及び短時間での接続を可能にする。これは、得られる異方性導電フィルムを加熱して軟化した後に、加熱状態が解かれて常温に戻る際に、前記結晶性樹脂に由来して速やかに凝固するためと考えられる。
 前記結晶性樹脂としては、例えば、結晶性ポリエステル樹脂、結晶性ポリウレタン樹脂、結晶性ポリオレフィン樹脂、結晶性エチレン酢酸ビニル共重合樹脂などが挙げられる。
 ここで、前記結晶性樹脂とは、結晶領域を有する樹脂をいい、前記結晶性樹脂かどうかは、例えば、示差走査熱量分析において、昇温過程で吸熱ピークが観察されることにより確認できる。
 前記結晶性樹脂は、結晶領域を有する樹脂の混合物であってもよい。
 前記結晶性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%~70質量%が好ましく、35質量%~60質量%がより好ましく、45質量%~55質量%が特に好ましい。
 なお、本明細書において、「~」で規定される数値範囲は、下限値及び上限値を含む数値範囲である。即ち、「30質量%~70質量%」は「30質量%以上70質量%以下」と同義である。
<非晶性樹脂>
 前記非晶性樹脂は、第1の非晶性樹脂と、第2の非晶性樹脂とを有する。
 前記第2の非晶性樹脂のガラス転移点は、前記第1の非晶性樹脂のガラス転移点よりも低い。
 前記第1の非晶性樹脂のガラス転移点としては、特に制限はなく、目的に応じて適宜選択することができるが、実用上の圧着条件を考慮すると、50℃~90℃が好ましく、60℃~80℃がより好ましい。
 前記第2の非晶性樹脂のガラス転移点としては、特に制限はなく、目的に応じて適宜選択することができるが、-20℃~20℃が好ましく、-10℃~10℃がより好ましい。
 前記第1の非晶性樹脂のガラス転移点(Tg1)と、前記第2の非晶性樹脂のガラス転移点(Tg2)との差(Tg1-Tg2)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~100℃が好ましく、50℃~90℃がより好ましい。
 前記ガラス転移点は、例えば、「JIS K 7121:2012 プラスチックの転移温度測定方法」における示差走査熱量測定(DSC)などにより求めることができる。
 前記第1の非晶性樹脂、及び前記第2の非晶性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、非晶性ポリエステル樹脂、非晶性フェノキシ樹脂、非晶性ポリウレタン樹脂などが挙げられる。
 前記非晶性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、25質量%~65質量%が好ましく、30質量%~60質量%がより好ましく、40質量%~50質量%が特に好ましい。
 前記第1の非晶性樹脂(N1)と前記第2の非晶性樹脂(N2)との質量比率(N1/N2)としては、特に制限はなく、目的に応じて適宜選択することができるが、耐溶剤性と信頼性との優れた両立の点から、0.1~3.0が好ましく、0.3~2.0がより好ましく、0.5~1.6が更により好ましく、0.7~1.3が特に好ましい。
<導電性粒子>
 前記導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
 前記金属粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ニッケル、コバルト、銀、銅、金、パラジウム、半田などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ニッケル、銀、銅が好ましい。これらの金属粒子は、表面酸化を防ぐ目的で、その表面に金、パラジウムを施していてもよい。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 前記金属被覆樹脂粒子としては、樹脂粒子の表面を金属で被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂粒子の表面をニッケル、銀、半田、銅、金、及びパラジウムの少なくともいずれかの金属で被覆した粒子などが挙げられる。更に、表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。低抵抗を考慮した接続の場合、樹脂粒子の表面を銀で被覆した粒子が好ましい。
 前記樹脂粒子への金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
 前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン-シリカ複合樹脂などが挙げられる。
 前記導電性粒子は、異方性導電接続の際に、導電性を有していればよい。例えば、金属粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際に前記粒子が変形し、前記金属粒子が露出するものであれば、前記導電性粒子である。
 前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、2μm~40μmが好ましく、5μm~30μmがより好ましく、10μm~25μmが更により好ましく、10μm~20μmが特に好ましい。
 前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
 前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
 前記導電性粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%~10質量%が好ましく、2質量%~8質量%がより好ましい。
<エポキシ樹脂>
 前記エポキシ樹脂は、耐溶剤性、及び信頼性を更に向上させる。
 前記エポキシ樹脂は、前記異方性導電フィルムにおいて前記第1の非晶性樹脂と前記第2の非晶性樹脂との相溶性を向上させる作用を有すると考えられる。そして、その作用が、耐溶剤性、及び信頼性を更に向上させると考えられる。
 なお、本明細書において、前記エポキシ樹脂は、前記結晶性樹脂、及び前記非晶性樹脂のいずれにも属さないものとする。即ち、前記結晶性樹脂は、結晶性エポキシ樹脂を含まず、前記非晶性樹脂は、非晶性エポキシ樹脂を含まない。ただし、これらの定義は、前記結晶性樹脂、前記非晶性樹脂、及び前記エポキシ樹脂の概念の範囲を整理するための定義であって、前記異方性導電フィルムが、前記エポキシ樹脂を含有することを排除するものではない。
 前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられる。
 これらの中でも、結晶性樹脂と、非晶性樹脂との相溶性を向上させる点で、ビスフェノールA型エポキシ樹脂が好ましい。
 前記エポキシ樹脂の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、耐溶剤性、及び信頼性を更に向上させる点から、2,900未満が好ましく、2,000以下がより好ましく、1,500以下が更により好ましく、1,000以下が特に好ましい。また、前記エポキシ樹脂の分子量は、500以上が好ましく、800以上がより好ましい。
 前記エポキシ樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、耐溶剤性、及び信頼性を更に向上させる点から、0.5質量%以上が好ましく、1.5質量%以上がより好ましい。また、前記含有量は、多くても異方性導電フィルムの特性向上が見込めないため、5.0質量%以下が好ましく、3.0質量%以下がより好ましい。即ち、前記エポキシ樹脂の含有量は、1.5質量%~3.0質量%が特に好ましい。
<第1の電子部品及び第2の電子部品>
 前記第1の電子部品及び前記第2の電子部品としては、前記異方性導電フィルムを用いた異方性導電接続の対象となる、端子を有する電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基板、フレキシブル基板、リジッド基板、IC(Integrated Circuit)チップ、TAB(Tape Automated Bonding)、液晶パネルなどが挙げられる。前記ガラス基板としては、例えば、Al配線形成ガラス基板、ITO配線形成ガラス基板などが挙げられる。前記ICチップとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
 前記異方性導電フィルムは、硬化剤を含有せず、加熱により樹脂が架橋しない。そのため、低温、かつ短時間の接続に使用する異方性導電フィルムであっても、長期保存を可能にする。
 前記異方性導電フィルムの平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、5μm~100μmが好ましく、10μm~60μmがより好ましく、20μm~50μmが特に好ましい。
 前記異方性導電フィルムの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記結晶性樹脂と、前記非晶性樹脂と、必要に応じて前記エポキシ樹脂とを溶剤に溶解させて混合ワニスを得た後に、前記混合ワニスに前記導電性粒子を混合して得た異方性導電組成物を、剥離処理したポリエチレンテレフタレート(PET)フィルム上に塗布する方法などが挙げられる。
 前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。
(接続方法)
 本発明の接続方法は、第1の配置工程と、第2の配置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
 前記接続方法は、第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる方法である。
 前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。
<第1の配置工程>
 前記第1の配置工程としては、前記第2の電子部品の端子上に本発明の前記異方性導電フィルムを配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<第2の配置工程>
 前記第2の配置工程としては、前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
<加熱押圧工程>
 前記加熱押圧工程としては、前記第1の電子部品を加熱押圧部材により加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
 前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、100℃~140℃が好ましい。
 前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5MPa~10MPaが好ましい。
 前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5秒間~10秒間が好ましい。
(接合体)
 本発明の接合体は、第1の電子部品と、第2の電子部品と、異方性導電フィルムとを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記第1の電子部品、及び前記第2の電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記第1の電子部品、及び前記第2の電子部品がそれぞれ挙げられる。
 前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
 前記異方性導電フィルムは、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続している。
 前記接合体は、例えば、本発明の前記接続方法により製造できる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<異方性導電フィルムの作製>
 結晶性樹脂であるアロンメルトPES-111EE(東亜合成株式会社製、結晶性ポリエステル樹脂を主成分とする結晶性樹脂)51質量部、第1の非晶性樹脂であるエリーテルUE3201〔ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):65℃〕15質量部、及び第2の非晶性樹脂であるエリーテルUE3220〔ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):5℃〕30質量部、及び混合溶剤〔トルエン:シクロヘキサノン=1:1(質量比)〕400質量部を混合及び撹拌し、混合ワニスを得た。
 続いて、得られた混合ワニスに、平均粒子径20μmの球状Agめっき樹脂粒子(下記の製造方法で得られた導電性粒子)4質量部を更に加えて、異方性導電組成物を得た。
 得られた異方性導電組成物を、50μm厚みのPET(ポリエチレンテレフタレート)フィルム上に乾燥後の平均厚みが35μmとなるように塗布し、80℃で10分間乾燥させ、異方性導電フィルムを作製した。
-導電性粒子の製造-
--ジビニルベンゼン系樹脂粒子の製造--
 ジビニルベンゼン、スチレン、及びブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕することにより、ジビニルベンゼン系樹脂粒子を得た。
--樹脂粒子の銀めっき--
 銀塩として硝酸銀4.25gを純水625mLに室温で溶解した溶液に、還元剤としてベンズイミダゾール15gを加えて溶解し、当初生成した沈殿が完全に溶解したのを確認した後、錯化剤としてコハク酸イミド5g、及びクエン酸1水和物3gを溶解し、その後、結晶調整剤としてグリオキシル酸13gを投入し完全溶解させ無電解銀メッキ液を調製した。
 次に、上記で得られた前記ジビニルベンゼン系樹脂粒子を前記無電解銀メッキ液に投入し、この液を攪拌しながら加熱して温度を50℃に保った。その後、ブフナー漏斗で濾別して粒子を分離し真空乾燥機で80℃2時間乾燥し、平均粒子径20μmの球状Agめっき樹脂粒子(導電性粒子)を得た。
<接合体の製造、及び接合体の評価>
 以下の方法により接合体を製造し、以下に示す評価を行った。結果を表1-1に示す。
 第2の電子部品として、プリント配線板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、銅パターン厚み35μm、ニッケル/金めっき処理、基材厚み1.0mm〕を用いた。
 第1の電子部品として、フレキシブルプリント基板〔0.4mmピッチ(ライン/スペース=0.2/0.2)、ポリイミド厚み25μm、銅パターン厚み12μm、ニッケル/金めっき処理〕を用いた。
 前記第2の電子部品の端子上に、上記で得られた異方性導電フィルム(フィルム幅2.0mm)を配置した。続いて、前記異方性導電フィルム上に、前記第1の電子部品を配置した。続いて、緩衝材(シリコーンラバー、厚み0.2mm)を介して、加熱ツール(幅2.0mm)により120℃、2MPa、3秒間の条件で、前記第1の電子部品を加熱及び押圧し、接合体を得た。
<<接着強度>>
-耐溶剤性試験-
 90質量%エタノール溶液中に、得られた接合体(測定サンプル)を浸漬させた。測定前に純水で測定サンプルを洗い、続いて水気をよく拭き取った後、フレキシブルプリント基板をプリント配線板から90°方向で剥離する90°剥離試験(JIS K6854-1)を行った。剥離試験には、1cm幅にカットした試験片を用いた。
 浸漬時間を、24時間、48時間、72時間、96時間として試験を行った。浸漬しない場合の試験結果を初期値とし、接着強度(ピール強度)について、初期値(100%)に対する割合を以下の評価基準で評価した。
〔評価基準〕
 ○:初期値の70%以上
 △:初期値の50%以上70%未満
 ×:初期値の50%未満
 なお、72時間の浸漬時間で「△」又は「○」評価であれば、十分な耐溶剤性が得られており、96時間の浸漬時間で、たとえ、「×」評価であっても、実用上問題となるものではない。
-信頼性試験-
 フレキシブルプリント基板をプリント配線板から90°方向で剥離する90°剥離試験(JIS K6854-1)を行った。剥離試験には、1cm幅にカットした試験片を用いた。ピール強度を測定し以下の評価基準で評価した。
 試験は、接合体を高温高湿環境(60℃95%RH環境)下に、250時間、500時間、750時間放置した後に行った。
 高温高湿環境に暴露しない場合の試験結果を初期値とし、接着強度(ピール強度)について、初期値(100%)に対する割合を以下の評価基準で評価した。
〔評価基準〕
 ○:初期値の70%以上
 △:初期値の50%以上70%未満
 ×:初期値の50%未満
 なお、500時間の暴露時間で「△」又は「○」評価であれば、十分な信頼性が得られており、750時間の暴露時間で、たとえ、「×」評価であっても、実用上問題となるものではない。
(実施例2~10)
 実施例1において、使用する樹脂の種類及び配合を表1-1に記載の種類及び配合に変えた以外は、実施例1と同様にして、異方性導電フィルム及び接合体を作製した。
 得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1-1に示す。
(比較例1)
<異方性導電フィルムの作製>
 結晶性樹脂であるアロンメルトPES-111EE(東亜合成株式会社製、結晶性ポリエステル樹脂を主成分とする結晶性樹脂)37質量部、非晶性樹脂であるエリーテルUE3500〔ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):35℃〕33質量部、及び混合溶剤(トルエン:メチルエチルケトン=1:1(質量比))400質量部を混合及び撹拌し、混合ワニスを得た。
 続いて、得られた混合ワニスに、固形分量で26質量部に相当する量のニッポランN-5196(日本ポリウレタン工業株式会社製、ポリカーボネート骨格のポリウレタン系エラストマー、固形分30質量%)を混合した。
 続いて、平均粒子径20μmの球状Agめっき樹脂粒子(実施例1で得られた導電性粒子)4質量部を更に加えて、異方性導電組成物を得た。
 得られた異方性導電組成物を、50μm厚みのPET(ポリエチレンテレフタレート)フィルム上に乾燥後の平均厚みが35μmとなるように塗布し、80℃で10分間乾燥させ、異方性導電フィルムを作製した。
 得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1-2に示す。
(比較例2~4)
 実施例1において、使用する樹脂の種類及び配合を表1-2に記載の種類及び配合に変えた以外は、実施例1と同様にして、異方性導電フィルム及び接合体を作製した。
 得られた異方性導電フィルム及び接合体について、実施例1と同様の評価を行った。結果を表1-2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1-1中、「N1/N2」は、第1の非晶性樹脂(N1)と第2の非晶性樹脂(N2)との質量比率(N1/N2)である。
 表中の商品名の詳細は以下のとおりである。
 PES-111EE:アロンメルトPES-111EE、東亜合成株式会社製、結晶性ポリエステル樹脂を主成分とする結晶性樹脂
 バイロンGA-6400:東洋紡株式会社製、結晶性ポリエステル樹脂を主成分とする結晶性樹脂
 UE3201:エリーテルUE3201、ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):65℃
 UE3220:エリーテルUE3220、ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):5℃
 UE3600:エリーテルUE3600、ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):75℃
 UE9400:エリーテルUE9400、ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):-7℃
 UE3500:エリーテルUE3500、ユニチカ株式会社製、非晶性ポリエステル樹脂、ガラス転移点(Tg):35℃
 N-5196:ニッポランN-5196、日本ポリウレタン工業株式会社製、ポリカーボネート骨格のポリウレタン系エラストマー
 エピコート1007:三菱化学株式会社製、エポキシ樹脂
 エピコート1002:三菱化学株式会社製、エポキシ樹脂
 エピコート1001:三菱化学株式会社製、エポキシ樹脂
 実施例1~10では、耐溶剤性、及び信頼性ともに優れた結果となった。特に、エポキシ樹脂を含有する実施例6~10では、耐溶剤性の更なる向上が見られ、分子量2,900未満のエポキシ樹脂を2.0質量%含む実施例8~10では、耐溶剤性及び信頼性の両方が非常に優れていた。
 一方、ガラス転移点の異なる2種類の非晶性樹脂を含まない比較例1~4では、含有する1種類の非晶性樹脂のガラス転移点を変化させても、所望の性能は得られなかった。
 なお、実施例1~10の異方性導電フィルムは、いずれも、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能であるものであった。
 本発明の異方性導電フィルムは、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続が可能であり、更に、耐薬品性、及び信頼性に優れるため、基板の端子と電子部品の端子とを異方性導電接続させて接合体を製造する際の接続材料として好適に用いることができる。
                        

Claims (8)

  1.  第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
     結晶性樹脂と、非晶性樹脂と、導電性粒子とを含有し、
     前記非晶性樹脂が、第1の非晶性樹脂と、前記第1の非晶性樹脂のガラス転移点より低いガラス転移点を有する第2の非晶性樹脂とを有することを特徴とする異方性導電フィルム。
  2.  更にエポキシ樹脂を含有する請求項1に記載の異方性導電フィルム。
  3.  前記エポキシ樹脂の分子量が、2,900未満である請求項2に記載の異方性導電フィルム。
  4.  前記エポキシ樹脂の含有量が、1.5質量%~3.0質量%である請求項2から3のいずれかに記載の異方性導電フィルム。
  5.  前記第1の非晶性樹脂(N1)と前記第2の非晶性樹脂(N2)との質量比率(N1/N2)が、0.3~2.0である請求項1から4のいずれかに記載の異方性導電フィルム。
  6.  前記非晶性樹脂の含有量が、40質量%~60質量%である請求項1から5のいずれかに記載の異方性導電フィルム。
  7.  第1の電子部品の端子と第2の電子部品の端子とを異方性導電接続させる接続方法であって、
     前記第2の電子部品の端子上に請求項1から6のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
     前記異方性導電フィルム上に前記第1の電子部品を、前記第1の電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
     前記第1の電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法。
  8.  端子を有する第1の電子部品と、端子を有する第2の電子部品と、前記第1の電子部品と前記第2の電子部品との間に介在して前記第1の電子部品の端子と前記第2の電子部品の端子とを電気的に接続する異方性導電フィルムとを有し、
     前記異方性導電フィルムが、請求項1から6のいずれかに記載の異方性導電フィルムであることを特徴とする接合体。
PCT/JP2016/085800 2015-12-16 2016-12-01 異方性導電フィルム、接続方法、及び接合体 WO2017104434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015245526A JP2017111978A (ja) 2015-12-16 2015-12-16 異方性導電フィルム、接続方法、及び接合体
JP2015-245526 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104434A1 true WO2017104434A1 (ja) 2017-06-22

Family

ID=59056348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085800 WO2017104434A1 (ja) 2015-12-16 2016-12-01 異方性導電フィルム、接続方法、及び接合体

Country Status (3)

Country Link
JP (1) JP2017111978A (ja)
TW (1) TW201724128A (ja)
WO (1) WO2017104434A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001519A1 (fr) * 1997-07-04 1999-01-14 Nippon Zeon Co., Ltd. Adhesif pour composants semi-conducteurs
JP2008019375A (ja) * 2006-07-14 2008-01-31 Toyobo Co Ltd ポリエステル樹脂組成物及びそれを含む接着剤
JP2011132304A (ja) * 2009-12-22 2011-07-07 Three Bond Co Ltd 異方導電性接着剤
JP2012052051A (ja) * 2010-09-02 2012-03-15 Asahi Kasei E-Materials Corp エポキシ樹脂用硬化剤組成物及び一液性エポキシ樹脂組成物
JP2014060025A (ja) * 2012-09-18 2014-04-03 Dexerials Corp 異方性導電フィルム、接続方法、及び接合体
WO2014103569A1 (ja) * 2012-12-25 2014-07-03 住友金属鉱山株式会社 導電性接着剤組成物及びそれを用いた電子素子
JP2015183118A (ja) * 2014-03-25 2015-10-22 日立化成株式会社 接着剤組成物、異方導電性接着剤組成物、回路接続材料及び接続体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001519A1 (fr) * 1997-07-04 1999-01-14 Nippon Zeon Co., Ltd. Adhesif pour composants semi-conducteurs
JP2008019375A (ja) * 2006-07-14 2008-01-31 Toyobo Co Ltd ポリエステル樹脂組成物及びそれを含む接着剤
JP2011132304A (ja) * 2009-12-22 2011-07-07 Three Bond Co Ltd 異方導電性接着剤
JP2012052051A (ja) * 2010-09-02 2012-03-15 Asahi Kasei E-Materials Corp エポキシ樹脂用硬化剤組成物及び一液性エポキシ樹脂組成物
JP2014060025A (ja) * 2012-09-18 2014-04-03 Dexerials Corp 異方性導電フィルム、接続方法、及び接合体
WO2014103569A1 (ja) * 2012-12-25 2014-07-03 住友金属鉱山株式会社 導電性接着剤組成物及びそれを用いた電子素子
JP2015183118A (ja) * 2014-03-25 2015-10-22 日立化成株式会社 接着剤組成物、異方導電性接着剤組成物、回路接続材料及び接続体

Also Published As

Publication number Publication date
JP2017111978A (ja) 2017-06-22
TW201724128A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
TWI636111B (zh) 各向異性導電薄膜、其連接方法及其接合體,以及接合體的製造方法
JP4556936B2 (ja) 電極接続用接着剤
KR101906025B1 (ko) 이방성 도전 필름 및 접속 방법 및 접합체
JP2006525641A (ja) 異方性導電接続用絶縁導電性粒子、その製造方法及びこれを用いた製品
KR100845875B1 (ko) 절연피복 도전입자
JP6532575B2 (ja) 異方性導電フィルム、接続方法、接合体、及び接合体の製造方法
JP2001164210A (ja) 異方導電フィルム及びそれを用いた電子機器
WO2017104434A1 (ja) 異方性導電フィルム、接続方法、及び接合体
JP6442628B2 (ja) 異方性導電フィルム、並びに、接合体の製造方法及び接合体
JP2020077645A (ja) 異方性導電フィルム、接続方法、及び接合体
JP3447201B2 (ja) 異方導電性接着剤
JP6285191B2 (ja) 異方性導電フィルム及びその製造方法、並びに、接続方法及び接合体
JP6352979B2 (ja) 異方性導電フィルム、接続方法、接合体、及び接合体の製造方法
JP6493968B2 (ja) 接続方法、接合体、異方性導電フィルム、及び接合体の前駆体
JP6542927B2 (ja) 異方性導電フィルム、並びに、接続方法及び接合体
JPH0329209A (ja) 異方性導電フィルム
JP6280017B2 (ja) 異方性導電フィルム、並びに、接続方法及び接合体
WO2024116988A1 (ja) 異方性導電フィルム、接続構造体および接続構造体の製造方法
JPH04118873A (ja) 異方導電性回路基材
JPH1135913A (ja) 異方導電性接着剤
JP2017098077A (ja) 異方性導電フィルム、及び接続方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875417

Country of ref document: EP

Kind code of ref document: A1