WO2017101654A1 - 一种基于微藻的多技术耦合净化高盐水*** - Google Patents

一种基于微藻的多技术耦合净化高盐水*** Download PDF

Info

Publication number
WO2017101654A1
WO2017101654A1 PCT/CN2016/107183 CN2016107183W WO2017101654A1 WO 2017101654 A1 WO2017101654 A1 WO 2017101654A1 CN 2016107183 W CN2016107183 W CN 2016107183W WO 2017101654 A1 WO2017101654 A1 WO 2017101654A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
anode
microalgae
cathode
desalination
Prior art date
Application number
PCT/CN2016/107183
Other languages
English (en)
French (fr)
Inventor
王冰
Original Assignee
王冰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王冰 filed Critical 王冰
Publication of WO2017101654A1 publication Critical patent/WO2017101654A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/322Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Definitions

  • the invention relates to a system for high salt water desalination and various wastewater treatment, in particular to a multi-technology coupling purification high salt water system based on microalgae.
  • the high-purity purification mainly refers to the desalination treatment of seawater.
  • desalination is an effective way to solve the problem of water shortage in coastal areas.
  • seawater desalination methods widely used in industry are mainly classified into two methods: membrane method (reverse osmosis RO) and thermal method (multi-stage flash MSF and low-temperature multi-effect MED).
  • membrane method reverse osmosis RO
  • thermal method multi-stage flash MSF and low-temperature multi-effect MED
  • the system recovery rate of traditional reverse osmosis seawater desalination project is generally 30%-40%; the system recovery rate of thermal seawater desalination project is generally 15-40%; recovery rate It is a very critical parameter in the design of the RO system, which determines the size and footprint of the influent treatment system (water intake, pretreatment system and high pressure pump). The recovery rate is also one of the key parameters in the design of thermal desalination plants. Increasing system recovery means lowering the amount of treated water in the influent system, reducing power consumption and chemicals, and ultimately reducing costs.
  • the object of the present invention is to overcome the deficiencies of the prior art, and provide a coupling photobioreactor, a photosynthetic microbial desalination battery, a supercritical water oxidation reaction process for treating waste and wastewater, and the products of each process are added to other processes as a reaction.
  • the material enables the energy of the whole system to be internally circulated, effectively removes nitrogen and phosphorus, and has no secondary pollution.
  • a multi-technology coupling purification high salt water system based on microalgae comprising: high salt water pretreatment device, photobioreactor, concentration pool, photobio-desalting battery, solid waste pretreatment device, sewage pretreatment device, super a critical water oxidation reaction system; the supercritical water oxidation reaction system comprises a reactor, a slurry mixer; the high brine pretreatment device, the photobioreactor, and the concentration tank are connected in sequence; and the salt bioreactor is inoculated with salt tolerance Microalgae in the concentration pool Providing a dielectric electrophoresis film;
  • the photobio-desalination battery comprises a cathode chamber, an anode chamber, a desalting chamber and a tank body, wherein the cathode chamber, the anode chamber and the desalting chamber are disposed in the tank body, and are separated from each other by an anode film, and the desalination chamber is located at the cathode Between the chamber and the anode chamber, the liquid output end of the concentration tank is connected to the desalting chamber of the photobio-desalination battery; the extracellular electrogenerated bacteria are added to the inside of the anode, and the anode electrode is inserted therein; The algae is inserted into the cathode electrode coated with the catalyst coating; a set of capacitors composed of capacitor plates is arranged in the desalination chamber, and the capacitor plates are divided into a positive capacitor plate and a negative capacitance plate, and a positive capacitor pole The plate and the negative capacitor plate are interposed, and an insulating layer is disposed between the adjacent two capacitor plates, the negative capacitor
  • the output end of the algae liquid of the cathode chamber is connected to the inlet of the concentration tank; the output end of the algae body of the concentration tank, the solid waste pretreatment device, and the sewage pretreatment device are all connected to the pulping mixer, and the outlet of the pulping mixer is connected.
  • the material inlet of the reactor is connected to the inlet of the concentration tank.
  • O 2 is generated in the cathode chamber, CO 2 , electrons and protons are generated in the anode chamber, and the protons pass through the anode film to reach the cathode chamber, and under the action of the catalyst, O 2 released by photosynthesis of the microalgae Electrochemical action occurs to form a stable oxide; the proton is H + , and the reaction chemical formula includes:
  • the supercritical steam outlet of the reactor is connected to the hot steam inlet of the evaporator, the concentrated brine outlet and the concentrated liquid outlet of the photobio-desalting battery are connected to the cold water inlet of the evaporator, and the inorganic salt is evaporated to be recovered and produced. Water vapor is recovered as pure water;
  • the water outlet of the desalination chamber of the photobio-desalination battery is connected to the water inlet of the filter device, and the filtered water can be discharged as industrial water.
  • the supercritical steam of the supercritical water oxidation reaction system is converted into a low temperature water gas by heat exchange in the evaporator, and then connected to a pressure energy recovery device and a gas-liquid separation device, and the pure water and CO are output after pressure energy recovery and gas-liquid separation.
  • CO 2 is added to the photobioreactor together with the inorganic salt crystallized by the evaporator to participate in the algae cultivation, and the residual heat of the evaporator is sent to the photobioreactor.
  • the concentration pool is a concentration tank provided with a dielectrophoresis membrane system, and the dielectrophoresis membrane system comprises a plurality of dielectrophoresis membrane elements, each of the dielectrophoresis membrane elements comprises two membranes, and between the two membranes a dielectrophoretic electrode set disposed in the water producing chamber, the dielectrophoretic electrode component is two sets of electrodes respectively connected to different output ends of the power source, and the electrodes of different groups are spaced apart; the anode electrode and the cathode electrode of the photobio-desalting battery The two sets of electrodes of the concentrated cell dielectrophoresis electrode set are connected to each other to supply power to the concentration cell.
  • the photobioreactor is a column, a tube, a plate, an airlift, an open pool or a combination thereof, and has a bottom multi-point aeration device;
  • the salt-tolerant microalgae is a salt-tolerant pellet after domestication
  • the anode electrode of the photobio-desalination battery is made of carbon fiber and titanium wire, and the cathode electrode of the photo-bio-desalination battery is covered with a conductive carbon cloth coated with a carboplatin catalyst.
  • the capacitor plate of the photobio-desalination battery is an activated carbon cloth fiber capacitor plate.
  • the space around the capacitor group of the desalination chamber of the photobio-desalination battery leaves a space for the protons generated in the anode chamber to flow into the cathode chamber to participate in the redox reaction.
  • the volume of the cathode chamber is 1.5 to 2 times that of the anode chamber.
  • the volume ratio of the cathode chamber, the anode chamber, and the desalting chamber is 1.55:1.0:0.9.
  • the extracellular electrogenic bacteria of the anode chamber of the photobio-desalination battery are desulfurization, common Proteus, Pseudomonas, Clostridium, Geobacterium, Vibrio, Siwa, sulfate reduction One or more of bacteria, reduced desulfurization photobacteria, and the like.
  • the anode film is overlapped by two cation exchange membranes, and the cation exchange membrane is an industrial electrodialysis cation exchange membrane having a transmittance of not less than 90%, a thickness of 0.2 to 0.5 mm, and a bursting strength of not less than 0.3 MPa, the insulation
  • the layers are overlapped by two layers of plastic mesh.
  • the reaction process inside the photobio-desalting battery is:
  • the microalgae absorbs most of the N, P and a small amount of nutrients such as small molecular carbon sources that can be utilized in the rich wastewater in the cathode chamber, and photosynthetically produces O 2 ;
  • H + protons in the cathode chamber are combined with O 2 under the action of a catalyst to form a stable oxidation product
  • the negative capacitor plate When the ions adsorbed by the positive capacitor plate and the negative capacitor plate are close to saturation, the negative capacitor plate is connected to the cathode electrode.
  • the positive capacitor plate is connected to the anode electrode, so that the ions adsorbed on the capacitor plate are desorbed into the solution and discharged.
  • micro-algae-based multi-technology coupling purification high salt water system of the invention overcomes the pollution problem of the original organisms, bacteria and the like in the algae cultivation, and realizes the micro-algae
  • the accumulation of algae biomass significantly reduced the effluent nitrogen and phosphorus value and improved the effluent water quality.
  • the photosynthetic capacitor desalination microbial desalination battery was used for desalting, and the generated electric energy was continuously supplied to the dielectrophoresis membrane system through the transformer; the concentrated algae liquid was organic Garbage, sludge and other biomass are ground and pulverized into the supercritical water oxidation system, which is used to heat the refractory wastewater with low COD value.
  • the excess heat generated by the supercritical water oxidation system is transferred to the evaporator. Heating evaporation accelerates the rate of salt crystallization.
  • the remaining heat is reused in the photoreactor to adjust the temperature inside the reactor to overcome the seasonal limitation of algae growth.
  • part of the inorganic salt and CO 2 produced by the supercritical water oxidation system are recovered into the photoreactor to promote the microalgae. Growth.
  • the whole process system has low energy consumption and diverse functions.
  • the desalination-decontamination-biomass accumulation of high-salt wastewater/contaminated seawater is realized, which reduces the separation of desalination and removal by traditional processes. Processing costs.
  • the micro-algae-based multi-technology coupling purification high salt water system of the invention has a high salt content in the high salt water/sea water, and has a certain inhibitory effect on the growth of microorganisms such as protozoa and pathogenic bacteria in the water body, so the whole process Do not consider the pollution of microorganisms.
  • the domesticated salt-tolerant microalgae can adapt well to the high-salt environment, and use the nutrient elements in the water to achieve rapid accumulation of their biomass.
  • micro-algae-based multi-technology coupling purification high salt water system of the invention in the photobio-desalting battery, the high-salt wastewater enters the desalting chamber, the nutrient-rich wastewater enters the anode and cathode chambers, and is in the anode chamber, extracellular Electrolytic bacteria oxidize organic pollutants to produce electrons and protons (H + ); in the cathode chamber, microalgae use photosynthesis to release oxygen instead of traditional air cathodes, and absorb self-growth by absorbing light energy and nitrogen and phosphorus in sewage.
  • the invention can realize the functions of electric energy output, removal of heavy metals in water, removal of nitrogen and phosphorus, decomposition of COD, desalination of high-salt sewage, and acquisition of high-value-added products such as microalgae biomass without external voltage.
  • micro-algae-based multi-technology coupling purification high salt water system of the invention when the capacitor electrode is close to the adsorption saturation, the yin and yang bioelectrodes are reversely connected to the capacitor electrode, and the polarity of the electrode plate is changed to make the electrode adsorbed. Ion desorption into the solution and discharge together with the rinsing liquid, not only the in-situ removal of salt ions on the capacitor plate, but also the reaction of the anode and cathode chambers continues during the regeneration of the capacitor plates. Continuously.
  • micro-algae-based multi-technology coupling purification high salt water system of the present invention since H + can pass through the anodic membrane and shuttle between the three chambers, the pH value of the three chambers is balanced, thereby avoiding the cathode chamber caused by ion transfer.
  • the problem of unbalanced liquid salinity and pH in the anode chamber provides a guarantee for long-term operation of the system.
  • micro-algae-based multi-technology coupling purification high salt water system of the present invention since the volume of the desalting chamber is not limited by the distance of the capacitor plates, the removal efficiency of the soluble solids is improved compared with the photosynthetic microbial desalination battery.
  • FIG. 1 is a schematic structural view of a system of the present invention
  • FIG. 2 is a schematic structural view of a photobio-desalting battery of the present invention.
  • Figure 3 is a schematic view showing the reaction of Part A in the desalting compartment of Figure 1.
  • 1-High salt water pretreatment device 2-photobioreactor, 3-concentration tank, 4-photobio-dehydration battery, 5-filter device, 6-solid waste pretreatment device, 7-sewage pretreatment device, 8-super Critical water oxidation reaction system, 9-evaporator, 10-slurry mixer, 41-cathode chamber, 42-anode chamber, 43-desalting chamber, 44-tank, 45-anode film, 46-anode electrode, 47- Cathode electrode, 48-capacitor group, 49-insulation layer, 410-anode wire, 411-cathode wire.
  • the system includes a high salt water pretreatment device 1, a photobioreactor 2, a concentration cell 3, a photobiodemineralization cell 4, a filtration device 5, a solid waste pretreatment device 6, a sewage pretreatment device 7, and a super
  • the treatment targets of this system include high salt water and refractory wastewater.
  • the high salt water includes near-shore contaminated seawater, marine sewage, mustard production wastewater, food production, etc.
  • the refractory wastewater includes chemical wastewater, medical wastewater, printing and dyeing wastewater, and leather wastewater. Wait.
  • the high salt water pretreatment device 1, the photobioreactor 2, and the concentration pool 3 are sequentially connected; the high brine input high salt pretreatment device 1 performs simple pretreatment to remove large particulate matter and inorganic sand particles in the water body, for example.
  • the pH of the water cannot meet the requirements of secondary biochemical treatment, and it is also necessary to adjust the pH before entering the photobioreactor 2.
  • the photobioreactor 2 is inoculated with salt-tolerant microalgae obtained by domestication screening, such as one or more of domesticated chlorella, spirulina, Scenedesmus, and Dunaliella salina, and domesticated salt-tolerant micro-algae Algae can maintain a good growth rate in wastewater with high salt content, and realize the accumulation of its own biomass by absorbing light energy and small molecular organic matter, nitrogen, phosphorus and inorganic salts in wastewater, and accomplish most of the nitrogen and phosphorus in water. Nutrient elements and a small part of COD and salt removal.
  • domestication screening such as one or more of domesticated chlorella, spirulina, Scenedesmus, and Dunaliella salina
  • domesticated salt-tolerant micro-algae Algae can maintain a good growth rate in wastewater with high salt content, and realize the accumulation of its own biomass by absorbing light energy and small molecular organic matter, nitrogen, phosphorus and inorganic salts in wastewater, and accomplish
  • the concentration of the algae liquid is completed by the dielectrophoresis membrane system, and the effluent salt content of the concentration tank 3 is still high, so further desalination treatment is required.
  • the liquid output end of the concentration tank 3 is connected to the desalination of the photobiodemineralization battery 4
  • the algae liquid output end of the cathode chamber 41 is connected to the inlet of the concentration tank 3, and the load of the concentration tank 3 can be connected between the anode electrode 46 and the cathode electrode 47 to supply power to the concentration tank 3.
  • the photobiodemineralization battery 4 includes a cathode chamber 41, an anode chamber 42, a desalting chamber 43, and a tank body 44.
  • the cathode chamber 41, the anode chamber 42, and the desalting chamber 43 are disposed inside the tank body 44, and are mutually
  • the desalination chamber 43 is located between the cathode chamber 41 and the anode chamber 42 by the anodic film 45.
  • the anode chamber 42 is an electrogenic bacteria culture chamber, and extracellular electrogenic bacteria are internally added, and an anode electrode 46 made of carbon fiber and titanium wire is inserted therein.
  • the cathode chamber 41 is a microalgae photoreaction chamber, and microalgae and a catalyst are internally added thereto, and a cathode electrode 47 is inserted therein, and the cathode electrode 47 is covered with a conductive carbon cloth coated with a carbon platinum catalyst.
  • a capacitor group 48 and an insulating layer 49 are disposed in the desalination chamber 43.
  • the capacitor group 48 is placed in the middle of the desalination chamber 43, and the protons (H + ) generated in the anode chamber 42 are allowed to flow into the cathode chamber 41 to participate in the redox reaction. space.
  • the electrode plate of the capacitor group 48 is an activated carbon cloth fiber electrode plate, which is divided into a positive electrode plate and a negative electrode plate. The positive electrode plate and the negative electrode plate are interspersed, and an insulating layer 49 is placed between the adjacent two electrode plates to provide insulation. effect.
  • Capacitor bank 48 constitutes a battery circuit in which capacitor bank 48 acts as an energy storage component.
  • the volume of the cathode chamber 41 is about 1.5 to 2 times that of the anode chamber 42, preferably the cathode chamber 41 and the anode chamber 42.
  • the volume ratio of the desalting chamber 43 is 1.55:1.0:0.9.
  • the anodic film 45 is preferably overlapped by two cation exchange membranes which are non-toxic industrial electrodialysis cation exchange membranes having a transmittance of not less than 90%, a thickness of 0.2 to 0.5 mm, and a bursting strength of not less than 0.3 MPa.
  • the insulating layer 49 preferably overlaps two layers of plastic mesh.
  • the high-COD wastewater (such as domestic sewage, pre-treated aquaculture wastewater, etc.) is passed into the cathode chamber 41 and the anode chamber 42 to pass the high-salt wastewater into the desalting chamber, 43.
  • the cathode chamber 41 in a case where the light absorption microalgae high COD wastewater majority of N, P, and a small portion of small molecules that can be utilized carbon sources and other nutrients, photosynthesis and CO 2 absorption, generate O 2 It can be used as an electron acceptor to realize the accumulation of its own biomass.
  • the concentrated water with high COD remaining in the cathode chamber 41 is pumped out, and after the microalgae is collected, the concentrated water is directly used as the anode chamber 42. The water enters the circulation.
  • extracellular electrogenic bacteria utilize the remaining nitrogen and phosphorus in the sewage to oxidatively decompose organic pollutants and residual algae into CO 2 , electrons and protons (H + ).
  • CO 2 can be enriched to the cathode chamber 41 by communication, promoting photosynthesis of the microalgae, electrons are transferred to the capacitor group 48 through the anode lead 410, and protons pass through the anode film 45 and the desalting chamber 43 to reach the cathode chamber 41.
  • protons, electrons and electron acceptors (O 2 produced by microalgae) react under the action of a catalyst to finally form a stable redox product (H 2 O).
  • Reaction chemical formulas include:
  • the negative electrode plate is connected to the cathode wire 411, and the positive electrode plate is connected to the anode wire 410, that is, the anode electrode 46 and the cathode electrode 47 are reversely connected.
  • an electric potential opposite to the desalination phase is formed between the electrode plates of the capacitor group 48, and the ions adsorbed on the electrode plate are desorbed by the isotropic phase repulsion and the opposite potential to form a concentrate. Can be recycled in subsequent processes.
  • the liquid output end of the concentration tank 3 is connected to the desalination chamber 43 of the photobiodemineralization battery 4, the algae liquid output end of the cathode chamber 41 is connected to the inlet of the concentration tank 3, and the load of the concentration pool 3 can be connected between the anode electrode 46 and the cathode electrode 47. Power is supplied to the concentration tank 3.
  • the water outlet of the desalination chamber 43 is connected to the water inlet of the filter device 5, and the obtained filtered water can be discharged as industrial water.
  • the negative electrode plate is connected to the cathode wire 411, and the positive electrode plate is connected to the anode wire 410, that is, the anode electrode 46 and the cathode electrode 47 are reversely connected.
  • an electric potential opposite to the desalination phase is formed between the electrode plates of the capacitor group 48, and the ions adsorbed on the electrode plate are desorbed by the isotropic phase repulsion and the opposite potential to form a concentrate.
  • the concentrate is input to the evaporator 9 for crystallization.
  • the concentration tank 3 concentrates the algal bodies from the photobiodemineralization battery 4 and the photobioreactor 2, and the algal body output end of the concentration tank 3 is connected to the algae inlet of the pulping mixer 10 as
  • the supercritical water oxidation reaction system 8 processes the refractory wastewater with low COD value as a carbon source supplement; the solid waste pretreatment device 6 connects the solid waste inlet of the pulping mixer 10, and the sewage pretreatment device 7 connects the sewage of the slurry mixer 10 Entrance.
  • the COD concentration of the slurry material reaches the requirement of supercritical water oxidation reaction, and the outlet of the slurry mixer 10 is connected to the supercritical water oxidation reaction system 8 The material inlet of the middle reactor.
  • the slurry material is subjected to supercritical water oxidation reaction in the reactor. Under the high temperature and high pressure condition exceeding the critical point of water, the slurry material is "burned and oxidized" by the oxidant, the reaction speed is fast, and more than 99.9% of the organic matter is rapidly burned and oxidized. It is a non-toxic and harmless end product such as CO 2 , H 2 O and inorganic salts.
  • the supercritical steam is withdrawn through the supercritical steam outlet at the top of the reactor and the brine is discharged through the inorganic salt outlet at the bottom.
  • the concentrated brine outlet of the supercritical water oxidation reaction system 8 and the concentrated brine outlet of the photobiodemineralization battery 4 are connected to the concentrated brine inlet of the evaporator 9, and the supercritical steam outlet of the supercritical water oxidation reaction system 8 is connected to the heat exchanger of the evaporator 9.
  • the evaporator 9 desorbs the concentrated brine produced by the supercritical water oxidation reaction system 8 and the concentrated liquid discharged from the photobio-salting battery 4, and evaporates to obtain an inorganic salt crystal, which is recovered, and the produced water vapor is recovered as pure water.
  • the supercritical steam is converted into a low-temperature aqueous gas by heat exchange, and after being recovered by pressure energy and separated by gas-liquid separation, pure water and CO 2 are output.
  • the inorganic salt obtained by the evaporator 9 and the CO 2 output from the supercritical water oxidation reaction system 8 can be added to the photobioreactor 2 to participate in algae cultivation.
  • the photobioreactor 2 adopts a column type, a tube type, a plate type, an air lift type, an open pool or a combination thereof, and the aeration device adopts a multi-point aeration at the bottom, because the high salt water entering the salt is relatively high. It has a greater inhibitory effect on bacteria and protozoa in the wastewater, so that the formation of biofilm in the closed reactor wall can be avoided to affect the transmittance of the light source, and the unfavorable factor of the open reactor being susceptible to microbial contamination is also avoided.
  • the microalgae can be quickly grown in a suitable growth environment. Growth, the accumulation of biomass.
  • the dielectrophoresis membrane system disposed in the concentration tank 3 includes a plurality of dielectrophoresis membrane elements, each of the dielectrophoresis membrane elements includes two membranes, and a dielectrophoretic electrode disposed in a water producing chamber between the two membranes
  • the dielectrophoretic electrode components are two sets of electrodes respectively connected to different output ends of the power source, and the electrodes of different groups are spaced apart.
  • the internal reaction process of the photobiodemineralization battery 4 is:
  • the microalgae absorbs most of the N, P and a small portion of the small molecular carbon source that can be utilized in the high COD wastewater in the cathode chamber 41, and performs photosynthesis to produce O 2 ;
  • ions of the high-salt wastewater in the desalination chamber 43 are respectively concentrated on the surface of the electrode plate of the capacitor group 48;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

基于微藻的多技术耦合净化高盐水***,其高盐水预处理装置(1)、光生物反应器(2)、浓缩池(3)依次连接,浓缩池(3)的液体输出端连接光生物脱盐电池(4)的脱盐室(43),阴极室(41)的藻液输出端连接浓缩池(3)的入口;浓缩池(3)的藻体输出端、固态垃圾预处理装置(6)及污水预处理装置(7)均连接至浆化混合器(10)进行混合,浆化混合器(10)的出口连接超临界水氧化反应***(8)中反应器的物料入口;超临界水氧化反应***(8)的超临界蒸汽出口连接蒸发器(9)的热蒸汽入口,超临界水氧化反应***(8)的浓盐水出口及光生物脱盐电池(4)的浓缩液出口连接蒸发器(9)的冷水入口。

Description

一种基于微藻的多技术耦合净化高盐水*** 技术领域
本发明涉及一种高盐水淡化及多种废水处理的***,特别是一种基于微藻的多技术耦合净化高盐水***。
背景技术
高盐水净化主要是指对海水的淡化处理,由于淡水资源短缺问题正日益影响国民经济和社会的可持续发展,海水淡化是解决沿海地区水资源短缺问题的有效途径。目前工业上广泛应用的海水淡化方法主要分为膜法(反渗透RO)和热法(多级闪蒸MSF与低温多效MED)两类。海水淡化的水回收率是影响其成本的主要因素,传统反渗透海水淡化工程的***回收率一般为30%-40%;热法海水淡化工程的***回收率一般为15-40%;回收率是RO***设计中一个非常关键的参数,决定着进水处理***(取水、预处理***和高压泵)的尺寸和占地面积,回收率也是热法海水淡化装置设计中的关键参数之一。提高***回收率,意味着能够降低进水***的处理水量、降低耗电量和化学药品的用量,最终降低成本。
但RO***回收率的提高一般需要较高的操作压力,由此带来较快的膜污染和频繁的膜元件清洗与更换,而热法淡化***回收率的提高需要较高的操作温度,由此带来换热管壁的结垢和换热效率的下降。同时上述两种方法的能耗也相当大,增加了运行成本,降低海水淡化的收益率,甚至投入高于效益,限制了海水淡化的使用。除此之外,RO***仅起到过滤浓缩的作用,向外排出大量的高含盐、高富氧化的浓水,浓水的排放又会导致二次污染、出水氮磷等营养盐含量高的问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种耦合光生物反应器、光合微生物脱盐电池、超临界水氧化反应处理垃圾和废水多套工艺,使各工艺的产物加入其它工艺中作为反应材料,使整套***的能量能够进行内循环、有效去除氮磷、无二次污染的基于微藻的多技术耦合净化高盐水***。
本发明决其技术问题是通过以下技术方案实现的:
一种基于微藻的多技术耦合净化高盐水***,其特征在于:包括高盐水预处理装置、光生物反应器、浓缩池、光生物脱盐电池、固态垃圾预处理装置、污水预处理装置、超临界水氧化反应***;所述超临界水氧化反应***包括反应器、浆化混合器;所述高盐水预处理装置、光生物反应器、浓缩池依次连接;在光生物反应器内接种耐盐微藻,在浓缩池 中设置介电电泳膜;
所述光生物脱盐电池包括阴极室、阳极室、脱盐室和槽体,所述阴极室、阳极室及脱盐室均设置于槽体内,相互之间通过阳极膜进行间隔,所述脱盐室位于阴极室与阳极室之间,所述浓缩池的液体输出端连接光生物脱盐电池的脱盐室;所述阳极室内部添加胞外产电细菌,并在其中***阳极电极;所述阴极室内部添加微藻并***涂有催化剂涂层的阴极电极;所述脱盐室中设置一组由电容极板构成的电容组,所述电容极板分为正电容极板和负容电容极板,正电容极板与负电容极板穿插放置,相邻的两电容极板间放置绝缘层,负电容极板与所述阳极电极连接,正电容极板与所述阴极电极连接
所述阴极室的藻液输出端连接浓缩池的入口;浓缩池的藻体输出端、固态垃圾预处理装置、污水预处理装置均连接至所述浆化混合器,浆化混合器的出口连接所述反应器的物料入口。
所述阴极室中产生O2,阳极室中产生CO2、电子和质子,所述质子穿过所述阳极膜到达所述阴极室,在催化剂的作用下,与微藻光合作用释放的O2发生电化学作用形成稳定氧化物;所述质子为H+,反应化学式包括:
阳极:C6H12O6+6H2O→6CO2+24H++24e-     (1)
阴极:O2+4H++4e-→2H2O       (2)。
所述反应器的超临界蒸汽出口连接所述蒸发器的热蒸汽入口,浓盐水出口和所述光生物脱盐电池的浓缩液出口连接蒸发器的冷水入口,蒸发得到无机盐结晶后回收,产出的水蒸气作为纯水回收;
光生物脱盐电池的脱盐室的产水出口连接过滤装置的入水口,所得过滤水可作为工业用水排出。
所述超临界水氧化反应***的超临界蒸汽经过蒸发器换热转换成低温含水气体,后连接至压力能回收装置及气液分离装置,经压力能回收及气液分离之后输出纯水和CO2,CO2与所述经蒸发器结晶的无机盐一同加入至光生物反应器中参与藻类培养,蒸发器剩余热量输送至光生物反应器。
所述的浓缩池为设置有介电电泳膜***的浓缩池,介电电泳膜***包括多个介电电泳膜元件,每个介电电泳膜元件包括两片膜片,及两膜片之间的产水腔中设置的介电电泳电极组,介电电泳电极组分为分别连接电源的不同输出端的两组电极,不同组的电极间隔设置;所述光生物脱盐电池的阳极电极和阴极电极之间连接浓缩池介电电泳电极组的两组电极,为浓缩池进行供电。
所述的光生物反应器为柱式、管式、板式、气升式、开放池或它们的组合,内置底部多点式曝气装置;所述耐盐微藻为驯化后的耐盐小球藻、螺旋藻、栅藻、杜氏盐藻中的一种或几种。
所述光生物脱盐电池的阳极电极由碳纤维和钛丝制成,所述光生物脱盐电池的阴极电极上覆盖涂抹碳铂催化剂的导电碳布。
所述的光生物脱盐电池的电容极板为活性碳布纤维电容极板。
所述光生物脱盐电池的脱盐室的电容组四周留有能使阳极室中产生的质子流动至阴极室中参与氧化还原反应的空间。
所述的阴极室的体积为阳极室的1.5~2倍。
所述的阴极室、阳极室、脱盐室的体积比为1.55:1.0:0.9。
所述光生物脱盐电池的阳极室的胞外产电细菌为脱硫弧菌类、普通变形杆菌、假单胞菌属、梭菌属、土杆菌属、泥弧菌属、西瓦、硫酸盐还原菌、还原脱硫光敏斑菌等中的一种或几种。
所述阳极膜采用两张阳离子交换膜交叠,阳离子交换膜为透过率不小于90%的工业用电渗析阳离子交换膜,厚度为0.2~0.5mm,***强度不小于0.3Mpa,所述绝缘层采用两层塑料网交叠。
所述的光生物脱盐电池内部的反应过程为:
1)在阴极室、阳极室中通入富养废水,高盐水经前期预处理及微藻净化后输入至脱盐室;将电容组的负电容极板通过阳极导线连接阳极电极,电容组的正电容极板通过阴极导线连接阴极电极;
2)阴极室中投放微藻藻种,在阳极室中投放胞外产电细菌;
3)微藻在阴极室中吸收富养废水中的大部分N、P及小部分可被利用的小分子碳源等营养物质,并进行光合作用产生O2
4)阴极室中污水采取连续化处理,通过停留时间的控制,保证大部分N、P得以去除,藻液浓度趋于稳定,对排出藻液进行藻细胞搜集及获取,出水进入阳极室;
5)在阳极室中,有机污染物及残余微藻在胞外产电细菌的作用下氧化分解为CO2、电子和H+质子,H+质子和CO2通过阳极膜和脱盐室进入阴极室,电子则通过阴极导线传递到电容组中储能;
6)阴极室中H+质子与O2在催化剂的作用下结合,生成稳定的氧化产物;
7)脱盐室中高盐废水的正负离子分别富集在电容组的负电容极板及正电容极板表面;
8)在正电容极板与负电容极板吸附的离子接近饱和时,将负电容极板连接阴极电极, 正电容极板连接阳极电极,使电容极板上吸附的离子脱附进入溶液中排出。
本发明的优点和有益效果为:
1、本发明的基于微藻的多技术耦合净化高盐水***,在光生物反应器内对耐盐微藻的驯化培养,克服了原生生物、细菌等在藻类培养中的污染问题,实现了微藻生物量的累积并显著降低了出水氮磷值,提升了出水水质,采用光合电容脱盐微生物脱盐电池在脱盐的同时,产生的电能通过变压器为介电电泳膜***持续供电;浓缩藻液同有机垃圾、污泥及其他生物质经过研磨粉碎后进入进入超临界水氧化***,为其处理COD值较低的难降解废水做热量补充,超临界水氧化***产生的多余热量传送至蒸发器,通过加热蒸发加速盐类结晶速率。余下的热量回用至光反应器,实现反应器内温度的调节,克服藻类生长的季节性限制,同时超临界水氧化***产生的部分无机盐、CO2回收至光反应器中,促进微藻的生长。整个工艺体系耗能低,功能多样,在能源及物质最大程度的循环利用的同时,实现了高盐废水/污染海水的脱盐-去污-生物量累积,降低了传统工艺将脱盐与去除分开的处理成本。
2、本发明的基于微藻的多技术耦合净化高盐水***,由于高盐水/海水具有较高的盐含量,对水体中原生动物、致病菌等微生物的生长具有一定抑制作用,因此整个工艺不用考虑微生物的污染作用。在光生物反应器中,经过驯化后的耐盐微藻可以很好适应高盐环境,利用水体中的营养元实现自身生物量的快速累积。
3、本发明的基于微藻的多技术耦合净化高盐水***,在光生物脱盐电池中,高盐废水进入脱盐室,富含营养物质的废水进入阴、阳极室,在阳极室中,胞外产电细菌氧化有机污染物产生电子和质子(H+);阴极室中利用微藻在进行光合作用释放出氧气代替传统的空气阴极,通过吸收光能和污水中氮磷等营养物质实现自身生长并产生氧气,并在催化剂的作用下,接收质子(H+)、电子生成稳定的氧化还原产物(H2O);从而在阴阳电极之间连接的电容组极板间产生电场,推动脱盐室中离子的去除。本发明无需外加电压,即可实现电能输出、去除水中重金属、氮磷脱除、分解COD、高盐污水淡化、获取微藻生物质等高附加值产品等功能。
4、本发明的基于微藻的多技术耦合净化高盐水***,当电容电极接近吸附饱和时,将阴阳两生物电极反接到电容电极上,通过改变电极板的极性,使电极上吸附的离子脱附进入溶液中并随冲洗液一同排放,既实现电容极板上盐离子的原位去除,并且在电容极板再生的过程中,阴、阳两极室的反应也持续进行,污水处理可连续化进行。
5、本发明的基于微藻的多技术耦合净化高盐水***,由于H+可以通过阳极膜,在三室之间穿梭,达到了平衡三室pH值的作用,从而避免了由于离子转移造成的阴极室、阳 极室内液盐度和pH不均衡的问题,为***长期运行提供了保障。
6、本发明的基于微藻的多技术耦合净化高盐水***,由于脱盐室的体积不受电容极板的距离限制,较光合微生物脱盐电池相比,提高了可溶性固体的去除效率。
附图说明
图1为本发明的***结构示意图;
图2为本发明的光生物脱盐电池结构示意图;
图3为图1中脱盐室内A部分反应示意图。
附图标记说明
1-高盐水预处理装置、2-光生物反应器、3-浓缩池、4-光生物脱盐电池、5-过滤装置、6-固态垃圾预处理装置、7-污水预处理装置、8-超临界水氧化反应***、9-蒸发器、10-浆化混合器、41-阴极室、42-阳极室、43-脱盐室、44-槽体、45-阳极膜、46-阳极电极、47-阴极电极、48-电容组、49-绝缘层、410-阳极导线、411-阴极导线。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
如图1所示,本***包括高盐水预处理装置1、光生物反应器2、浓缩池3、光生物脱盐电池4、过滤装置5、固态垃圾预处理装置6、污水预处理装置7、超临界水氧化反应***8、蒸发器9、浆化混合器10。本***的处理对象包括高盐水和难降解废水,其中高盐水包括近海岸受污染海水、海产品污水、榨菜生产废水、食品生产等,难降解废水包括化工废水、医疗废水、印染废水、皮革废水等。
高盐水预处理装置1、光生物反应器2、浓缩池3依次连接;高盐水输入高盐水预处理装置1中进行简单的预处理,去除水体中的大颗粒物质以及无机沙粒等物质,如来水pH无法满足二级生化处理要求,还需要在进入光生物反应器2前进行pH的调节。
在光生物反应器2内接种通过驯化筛选得到的耐盐微藻,如驯化后的小球藻、螺旋藻、栅藻、杜氏盐藻中的一种或几种,经过驯化后的耐盐微藻可以在盐含量较高的废水中依旧保持良好的生长速率,通过吸收光能及废水中的小分子有机物、氮磷及无机盐实现自身生物量累积的同时,完成水体中大部分氮磷等营养元素及小部分COD、盐类的去除。
在浓缩池3中,通过介电电泳膜***完成藻液的浓缩,浓缩池3的出水盐含量依旧较高,因此需要进一步进行脱盐处理。浓缩池3的液体输出端连接光生物脱盐电池4的脱盐 室43,阴极室41的藻液输出端连接浓缩池3的入口,阳极电极46和阴极电极47之间可连接浓缩池3的负载,为浓缩池3进行供电。
如图2所示,光生物脱盐电池4包括阴极室41、阳极室42、脱盐室43和槽体44,阴极室41、阳极室42、脱盐室43设置与槽体44之内,相互之间通过阳极膜45间隔,脱盐室43位于阴极室41与阳极室42之间。其中,阳极室42为产电细菌培养室,内部添加胞外产电细菌,并在其中***由碳纤维和钛丝制成的阳极电极46。阴极室41为微藻光反应室,内部添加微藻和催化剂,并在其中***阴极电极47,阴极电极47上覆盖涂抹碳铂催化剂的导电碳布。
脱盐室43中设置电容组48、绝缘层49,电容组48置于脱盐室43中部,四周留有能使阳极室42中产生的质子(H+)流动至阴极室41中参与氧化还原反应的空间。电容组48的电极板为活性碳布纤维电极板,分为正电极板和负电极板,正电极板与负电极板穿插放置,相邻的两电极板间放置绝缘层49,起到绝缘的作用。负电极板与阳极导线410的一端连接,正电极板与阴极导线411的一端连接,阳极导线410的另一端连接阳极电极46,阴极导线411的另一端连接阴极电极47,阳极电极46、阴极电极47、电容组48构成电池电路,其中电容组48作为储能元件。
本实施例中,由于阴极室41中光合速率相比于阳极室42中的细菌代谢速率慢,因此阴极室41的体积约为阳极室42的1.5~2倍,优选阴极室41、阳极室42、脱盐室43的体积比为1.55:1.0:0.9。阳极膜45优选采用两张阳离子交换膜交叠,阳离子交换膜为透过率不小于90%的无毒的工业用电渗析阳离子交换膜,厚度为0.2~0.5mm,***强度不小于0.3Mpa。绝缘层49优选两层塑料网交叠。
将高COD废水(如生活污水、经过预处理后的养殖废水等)通入阴极室41、阳极室42,将高盐废水通入脱盐室吗,43。在阴极室41中,微藻在光照的情况下吸收高COD废水中的大部分N、P及小部分可被利用的小分子碳源等营养物质,并吸收CO2进行光合作用,产生O2可作为电子受体,同时实现自身生物质的累积;待***稳定后,将阴极室41内存留的COD较高的浓水用泵引出,进行微藻收集后,将浓水直接作为阳极室42的入水进行循环。
在阳极室42中,胞外产电细菌利用污水中剩余的氮磷将有机污染物和残余藻体氧化分解为CO2、电子和质子(H+)。其中,CO2可被连通富集至阴极室41,促进微藻的光合作用,电子通过阳极导线410传递到电容组48中存储,质子则穿过阳极膜45和脱盐室43到达阴极室41。在阴极电极47表面,在催化剂的作用下,质子、电子和电子受体(微藻产生的O2)发生反应,最终生成稳定的氧化还原产物(H2O)。反应化学式包括:
阳极:C6H12O6+6H2O→6CO2+24H++24e-    (1)
阴极:O2+4H++4e-→2H2O       (2)。
如图3所示,由于脱盐室43中的电容组48的正电极板与负电极板具有相同的电势,进而在电极板表面与溶液间形成双电层,使脱盐室43中的离子分别富集在具有相反极性的电极板表面,从而实现去除大部分离子的目的。同时,H+可以通过阳极膜45,在三室之间穿梭,达到了平衡三室pH值的作用,从而避免了由于离子转移造成的阴极室41、阳极室42内液盐度和pH不均衡的问题。
在电容组48的正电极板与负电极板吸附的离子接近饱和时,将负电极板与阴极导线411连接,正电极板与阳极导线410连接,即将阳极电极46、阴极电极47反接到正电极板和负电极板上,这样在电容组48的电极板间就形成了与脱盐阶段相反的电势,吸附于电极板上的离子在同性相排斥及相反电势的驱动下解吸,形成浓缩液,可在后续工艺中回收利用。
浓缩池3的液体输出端连接光生物脱盐电池4的脱盐室43,阴极室41的藻液输出端连接浓缩池3的入口,阳极电极46和阴极电极47之间可连接浓缩池3的负载,为浓缩池3进行供电。脱盐室43的出水口连接过滤装置5的入水口,所得过滤水可作为工业用水排出。在电容组48的正电极板与负电极板吸附的离子接近饱和时,将负电极板与阴极导线411连接,正电极板与阳极导线410连接,即将阳极电极46、阴极电极47反接到正电极板和负电极板上,这样在电容组48的电极板间就形成了与脱盐阶段相反的电势,吸附于电极板上的离子在同性相排斥及相反电势的驱动下解吸,形成浓缩液,浓缩液输入至蒸发器9中结晶。
在超临界水氧化反应过程中,浓缩池3将来自光生物脱盐电池4和光生物反应器2的藻体进行浓缩,浓缩池3的藻体输出端连接浆化混合器10的藻体入口,为超临界水氧化反应***8处理低COD值的难降解废水做碳源补充;固态垃圾预处理装置6连接浆化混合器10的固态垃圾入口,污水预处理装置7连接浆化混合器10的污水入口。藻体、垃圾、污水在浆化混合器10中经过浆化和调制之后,浆化物料的COD浓度达到超临界水氧化反应的要求,浆化混合器10的出口连接超临界水氧化反应***8中反应器的物料入口。
浆化物料在反应器内进行超临界水氧化反应,在超过水的临界点的高温高压条件下,以氧化剂将浆化物料进行“燃烧氧化”,反应速度快,99.9%以上的有机物迅速燃烧氧化成CO2、H2O和无机盐等无毒无害的终端产物。通过反应器顶部的超临界蒸汽出口排出超临界蒸汽,通过底部的无机盐出口排出浓盐水。超临界水氧化反应***8的浓盐水出口和光生物脱盐电池4的浓盐水出口连接蒸发器9的浓盐水入口,超临界水氧化反应***8的超 临界蒸汽出口连接蒸发器9的换热器。蒸发器9将超临界水氧化反应***8产出的浓盐水和光生物脱盐电池4解吸输出的浓缩液,蒸发得到无机盐结晶后回收,产出的水蒸气作为纯水回收。超临界蒸汽经过换热转换成低温含水气体,经过压力能回收和气液分离之后,输出纯水和CO2。蒸发器9所得的无机盐和超临界水氧化反应***8输出的CO2,可加入光生物反应器2中参与藻类培养。
本实施例中,光生物反应器2采用柱式、管式、板式、气升式、开放池或它们的组合,曝气装置采用底部多点式曝气,由于进入的高盐水盐分相对较高,对废水中的细菌、原生动物有较大的抑制作用,因此可以避免封闭式反应器壁形成生物膜从而影响光源的透射性,也避免了开放式反应器易受微生物污染的不利因素。接种驯化后的耐盐小球藻、螺旋藻、栅藻、杜氏盐藻中的一种或几种,通过控制反应器的光照及温度等因素,即可使微藻在适宜的生长环境中快速生长,实现生物量的累积。
浓缩池3中设置的介电电泳膜***包括多个介电电泳膜元件,每个介电电泳膜元件包括两片膜片,及两膜片之间的产水腔中设置的介电电泳电极组,介电电泳电极组分为分别连接电源的不同输出端的两组电极,不同组的电极间隔设置。当电源接通时,在介电电泳电极组的周围产生能将藻体等固态物质向膜片的反方向推离的不匀称电场,克服了传统藻类收集的膜污染及堵塞问题,水通过透析膜由净水口排出,实现了藻液的浓缩及收集。
光生物脱盐电池4内部的反应过程为:
1)在阴极室41、阳极室42中通入高COD废水,在脱盐室43中通入高盐废水;电容组48的负电极板连接阳极电极46,正电极板连接阴极电极47;
2)阴极室41中投放微藻和催化剂,在阳极室42中投放胞外产电细菌;
3)微藻在阴极室41中吸收高COD废水中的大部分N、P及小部分可被利用的小分子碳源等营养物质,并进行光合作用产生O2
4)当测得阴极室41中的N、P含量趋于稳定之后,进行微藻收集和膜浓缩,之后所得浓水通入阳极室42;
5)在阳极室42中,有机污染物及残余微藻在胞外产电细菌的作用下氧化分解为CO2、电子和H+质子,质子和CO2通过阳极膜45和脱盐室43进入阴极室41,电子通过阴极导线411传递到电容组48中储能;
6)阴极室41中质子与O2在催化剂的作用下结合,生成稳定的氧化还原产物;
7)脱盐室43中高盐废水的离子分别富集在电容组48的电极板表面;
8)在正电极板与负电极板吸附的离子接近饱和时,将负电极板连接阴极电极47,正电极板连接阳极电极46,使电极板上吸附的离子脱附进入溶液中排出。
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (14)

  1. 一种基于微藻的多技术耦合净化高盐水***,其特征在于:包括高盐水预处理装置、光生物反应器、浓缩池、光生物脱盐电池、固态垃圾预处理装置、污水预处理装置、超临界水氧化反应***;所述超临界水氧化反应***包括反应器、浆化混合器;所述高盐水预处理装置、光生物反应器、浓缩池依次连接;在光生物反应器内接种耐盐微藻,在浓缩池中设置介电电泳膜;
    所述光生物脱盐电池包括阴极室、阳极室、脱盐室和槽体,所述阴极室、阳极室及脱盐室均设置于槽体内,相互之间通过阳极膜进行间隔,所述脱盐室位于阴极室与阳极室之间,所述浓缩池的液体输出端连接光生物脱盐电池的脱盐室;所述阳极室内部添加胞外产电细菌,并在其中***阳极电极;所述阴极室内部添加微藻并***涂有催化剂涂层的阴极电极;所述脱盐室中设置一组由电容极板构成的电容组,所述电容极板分为正电容极板和负容电容极板,正电容极板与负电容极板穿插放置,相邻的两电容极板间放置绝缘层,负电容极板与所述阳极电极连接,正电容极板与所述阴极电极连接
    所述阴极室的藻液输出端连接浓缩池的入口;浓缩池的藻体输出端、固态垃圾预处理装置、污水预处理装置均连接至所述浆化混合器,浆化混合器的出口连接所述反应器的物料入口。
  2. 如权利要求1所述的一种基于微藻的多技术耦合净化高盐水***,其特征在于:所述阴极室中产生O2,阳极室中产生CO2、电子和质子,所述质子穿过所述阳极膜到达所述阴极室,在催化剂的作用下,与微藻光合作用释放的O2发生电化学作用形成稳定氧化物;所述质子为H+,反应化学式包括:
    阳极:C6H12O6+6H2O→6CO2+24H++24e-     (1)
    阴极:O2+4H++4e-→2H2O                (2)。
  3. 如权利要求1或2所述的一种基于微藻的多技术耦合净化高盐水***,其特征在于:所述反应器的超临界蒸汽出口连接所述蒸发器的热蒸汽入口,浓盐水出口和所述光生物脱盐电池的浓缩液出口连接蒸发器的冷水入口,蒸发得到无机盐结晶后回收,产出的水蒸气作为纯水回收;
    光生物脱盐电池的脱盐室的产水出口连接过滤装置的入水口,所得过滤水可作为工业用水排出。
  4. 根据权利要求1所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所 述超临界水氧化反应***的超临界蒸汽经过蒸发器换热转换成低温含水气体,后连接至压力能回收装置及气液分离装置,经压力能回收及气液分离之后输出纯水和CO2,CO2与所述经蒸发器结晶的无机盐一同加入至光生物反应器中参与藻类培养,蒸发器剩余热量输送至光生物反应器。
  5. 根据权利要求1所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的浓缩池为设置有介电电泳膜***的浓缩池,介电电泳膜***包括多个介电电泳膜元件,每个介电电泳膜元件包括两片膜片,及两膜片之间的产水腔中设置的介电电泳电极组,介电电泳电极组分为分别连接电源的不同输出端的两组电极,不同组的电极间隔设置;所述光生物脱盐电池的阳极电极和阴极电极之间连接浓缩池介电电泳电极组的两组电极,为浓缩池进行供电。
  6. 根据权利要求1所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的光生物反应器为柱式、管式、板式、气升式、开放池或它们的组合,内置底部多点式曝气装置;所述耐盐微藻为驯化后的耐盐小球藻、螺旋藻、栅藻、杜氏盐藻中的一种或几种。
  7. 根据权利要求1或2或4或5所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述光生物脱盐电池的阳极电极由碳纤维和钛丝制成,所述光生物脱盐电池的阴极电极上覆盖涂抹碳铂催化剂的导电碳布。
  8. 根据权利要求1或2或4或5所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的光生物脱盐电池的电容极板为活性碳布纤维电容极板。
  9. 根据权利要求1或2所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述光生物脱盐电池的脱盐室的电容组四周留有能使阳极室中产生的质子流动至阴极室中参与氧化还原反应的空间。
  10. 根据权利要求1或2所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的阴极室的体积为阳极室的1.5~2倍。
  11. 根据权利要求10所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的阴极室、阳极室、脱盐室的体积比为1.55:1.0:0.9。
  12. 根据权利要求1或2或4或5所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述光生物脱盐电池的阳极室的胞外产电细菌为脱硫弧菌类、普通变形杆菌、假单胞菌属、梭菌属、土杆菌属、泥弧菌属、西瓦、硫酸盐还原菌、还原脱硫光敏斑菌等中的一种或几种。
  13. 根据权利要求1所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述阳极膜采用两张阳离子交换膜交叠,阳离子交换膜为透过率不小于90%的工业用电渗析阳离子交换膜,厚度为0.2~0.5mm,***强度不小于0.3Mpa,所述绝缘层采用两层塑料网交叠。
  14. 根据权利要求1或2或4或5或6或11或13所述的基于微藻的多技术耦合净化高盐水***,其特征在于:所述的光生物脱盐电池内部的反应过程为:
    1)在阴极室、阳极室中通入富养废水,高盐水经前期预处理及微藻净化后输入至脱盐室;将电容组的负电容极板通过阳极导线连接阳极电极,电容组的正电容极板通过阴极导线连接阴极电极;
    2)阴极室中投放微藻藻种,在阳极室中投放胞外产电细菌;
    3)微藻在阴极室中吸收富养废水中的大部分N、P及小部分可被利用的小分子碳源等营养物质,并进行光合作用产生O2
    4)阴极室中污水采取连续化处理,通过停留时间的控制,保证大部分N、P得以去除,藻液浓度趋于稳定,对排出藻液进行藻细胞搜集及获取,出水进入阳极室;
    5)在阳极室中,有机污染物及残余微藻在胞外产电细菌的作用下氧化分解为CO2、电子和H+质子,H+质子和CO2通过阳极膜和脱盐室进入阴极室,电子则通过阴极导线传递到电容组中储能;
    6)阴极室中H+质子与O2在催化剂的作用下结合,生成稳定的氧化产物;
    7)脱盐室中高盐废水的正负离子分别富集在电容组的负电容极板及正电容极板表面;
    8)在正电容极板与负电容极板吸附的离子接近饱和时,将负电容极板连接阴极电极,正电容极板连接阳极电极,使电容极板上吸附的离子脱附进入溶液中排出。
PCT/CN2016/107183 2015-12-18 2016-11-25 一种基于微藻的多技术耦合净化高盐水*** WO2017101654A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510964551.4A CN106892529A (zh) 2015-12-18 2015-12-18 一种基于微藻的多技术耦合净化高盐水***
CN201510964551.4 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017101654A1 true WO2017101654A1 (zh) 2017-06-22

Family

ID=59055797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107183 WO2017101654A1 (zh) 2015-12-18 2016-11-25 一种基于微藻的多技术耦合净化高盐水***

Country Status (2)

Country Link
CN (1) CN106892529A (zh)
WO (1) WO2017101654A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465694A (zh) * 2018-03-19 2018-08-31 南通市中京机械有限公司 超临界水氧化垃圾处理消融装置
CN109370884A (zh) * 2018-12-06 2019-02-22 黑龙江省能源环境研究院 一种去除餐厨垃圾盐分的微生物电池***
CN110436681A (zh) * 2019-08-23 2019-11-12 中国恩菲工程技术有限公司 处理废水的***
CN110615574A (zh) * 2019-08-29 2019-12-27 博天环境集团股份有限公司 一种臭氧催化氧化耦合微藻法废水处理***及工艺
CN111235022A (zh) * 2020-03-11 2020-06-05 西安交通大学 用于超临界水处理的微藻固碳及能源化利用***及方法
CN112225407A (zh) * 2020-10-26 2021-01-15 山东光华纸业集团有限公司 一种高浓盐水综合处理***
CN113213704A (zh) * 2021-05-12 2021-08-06 长沙工研院环保有限公司 一种水产品加工废水处理***及方法
CN113736617A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 开放式培养装置和含磷废水的处理方法
FR3117478A1 (fr) * 2020-12-15 2022-06-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé et système pour le traitement de produits animaux

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108128851B (zh) * 2018-01-26 2024-01-26 重庆三峡学院 一种回收高盐榨菜废水中氯化钠溶液的方法
CN109234353B (zh) * 2018-09-14 2021-10-29 暨南大学 微藻有效降解壬基酚的实验方法
CN109574194B (zh) * 2019-01-23 2024-06-07 南京新奥环保技术有限公司 超临界水氧化处理***
CN113479991B (zh) * 2021-06-02 2022-04-26 浙江大学 一种基于微生物电解池阴极去除地下水中砷酸盐的***和方法
CN114163086B (zh) * 2021-12-21 2023-04-07 海南大学 一种重金属污染废水的处理装置及方法
TWI790090B (zh) * 2022-01-12 2023-01-11 主典興業股份有限公司 污海水批次純化透析裝置
CN114275861A (zh) * 2022-01-24 2022-04-05 爱之馨(上海)家化有限公司 一种水体去离子过滤装置
CN115806367A (zh) * 2022-12-16 2023-03-17 湖南汉华京电清洁能源科技有限公司 一种有机废水处理***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266215A1 (en) * 2010-06-23 2011-11-03 AlgEvolve, LLC Advanced biologic water treatment using algae
US20120175301A1 (en) * 2011-01-05 2012-07-12 Pacific Advanced Civil Engineering, Inc. Method for treating contaminated water
CN104617322A (zh) * 2014-12-26 2015-05-13 湖南大学 一种微生物电容脱盐燃料电池技术
CN104829079A (zh) * 2015-03-23 2015-08-12 王冰 一种新型超临界水氧化处理污泥***及方法
CN105070936A (zh) * 2015-07-10 2015-11-18 重庆大学 耦合微藻培养和微生物燃料电池的集成***及方法
CN205328802U (zh) * 2015-12-18 2016-06-22 王冰 一种基于微藻的多技术耦合净化高盐水***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767893B (zh) * 2010-02-11 2012-11-14 清华大学 利用微藻深度处理污水耦合生产生物油的装置及方法
WO2012058756A1 (en) * 2010-11-01 2012-05-10 Rival Societe En Commandite Methods and apparatuses for producing microalgae
CN103663715A (zh) * 2013-12-25 2014-03-26 嘉兴学院 一种利用微藻高效净化沼液的生物处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266215A1 (en) * 2010-06-23 2011-11-03 AlgEvolve, LLC Advanced biologic water treatment using algae
US20120175301A1 (en) * 2011-01-05 2012-07-12 Pacific Advanced Civil Engineering, Inc. Method for treating contaminated water
CN104617322A (zh) * 2014-12-26 2015-05-13 湖南大学 一种微生物电容脱盐燃料电池技术
CN104829079A (zh) * 2015-03-23 2015-08-12 王冰 一种新型超临界水氧化处理污泥***及方法
CN105070936A (zh) * 2015-07-10 2015-11-18 重庆大学 耦合微藻培养和微生物燃料电池的集成***及方法
CN205328802U (zh) * 2015-12-18 2016-06-22 王冰 一种基于微藻的多技术耦合净化高盐水***

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465694B (zh) * 2018-03-19 2019-01-11 南通市中京机械有限公司 超临界水氧化垃圾处理消融装置
CN108465694A (zh) * 2018-03-19 2018-08-31 南通市中京机械有限公司 超临界水氧化垃圾处理消融装置
CN109370884A (zh) * 2018-12-06 2019-02-22 黑龙江省能源环境研究院 一种去除餐厨垃圾盐分的微生物电池***
CN110436681A (zh) * 2019-08-23 2019-11-12 中国恩菲工程技术有限公司 处理废水的***
CN110436681B (zh) * 2019-08-23 2024-05-28 中国恩菲工程技术有限公司 处理废水的***
CN110615574A (zh) * 2019-08-29 2019-12-27 博天环境集团股份有限公司 一种臭氧催化氧化耦合微藻法废水处理***及工艺
CN111235022A (zh) * 2020-03-11 2020-06-05 西安交通大学 用于超临界水处理的微藻固碳及能源化利用***及方法
CN111235022B (zh) * 2020-03-11 2024-04-09 西安交通大学 用于超临界水处理的微藻固碳及能源化利用***及方法
CN113736617B (zh) * 2020-05-29 2023-07-14 中国石油化工股份有限公司 开放式培养装置和含磷废水的处理方法
CN113736617A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 开放式培养装置和含磷废水的处理方法
CN112225407A (zh) * 2020-10-26 2021-01-15 山东光华纸业集团有限公司 一种高浓盐水综合处理***
WO2022128982A1 (fr) 2020-12-15 2022-06-23 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et systeme pour le traitement de produits animaux
FR3117478A1 (fr) * 2020-12-15 2022-06-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé et système pour le traitement de produits animaux
CN113213704A (zh) * 2021-05-12 2021-08-06 长沙工研院环保有限公司 一种水产品加工废水处理***及方法

Also Published As

Publication number Publication date
CN106892529A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2017101654A1 (zh) 一种基于微藻的多技术耦合净化高盐水***
Zhang et al. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges
Saeed et al. Microbial desalination cell technology: a review and a case study
WO2017101655A1 (zh) 一种多效光合微生物燃料电池及实现方法
CN101508514B (zh) 一种垃圾渗滤液零排放回用处理方法
CN102260006B (zh) 一种处理含重金属废水膜过滤浓缩液的方法
AU2015249375B2 (en) Electrodialysis stacks, systems, and methods for recovering ammonia and monovalent salts from anaerobic digestate
CN101624249B (zh) 膜电解电化学氢自养反硝化去除硝酸盐的方法
Chai et al. A coupled system of flow-through electro-Fenton and electrosorption processes for the efficient treatment of high-salinity organic wastewater
CN106219884B (zh) 高氨氮垃圾渗滤液的处理方法
CN207130086U (zh) 一种含盐废水处理装置
CN109704503B (zh) 一种高盐、高粘度厌氧发酵液资源化处理***及方法
KR102274447B1 (ko) 막 축전식 탈염 모듈을 이용한 에너지 자립형 고농도 염폐수와 반류수 처리 시스템, 및 그 방법
Kokabian et al. Microbial desalination systems for energy and resource recovery
CN112537883A (zh) 一种耦合的榨菜腌制高盐废水资源化处理工艺
Yadav et al. Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies
CN105906029A (zh) 电渗析离子交换膜生物反应器去除水中硝酸盐的方法
CN206318843U (zh) 一种高浓度有机废水处理***
CN205328802U (zh) 一种基于微藻的多技术耦合净化高盐水***
CN103319053A (zh) 一种硫氰酸红霉素生产废水的处理工艺及装置
CN204162579U (zh) 一种高盐废水资源化处理***
CN110590074A (zh) 一种高浓度泡菜废水处理工艺
CN104724881A (zh) 一种高盐度工业废水的处理方法
CN115093082A (zh) 一种垃圾渗滤液与dtro浓缩液的废水处理工艺及装置
CN107188378A (zh) 吡唑酮生产废水处理装置及其处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16874711

Country of ref document: EP

Kind code of ref document: A1