WO2017097236A1 - 一种单铝靶磁控溅射太阳能选择性吸收涂层 - Google Patents

一种单铝靶磁控溅射太阳能选择性吸收涂层 Download PDF

Info

Publication number
WO2017097236A1
WO2017097236A1 PCT/CN2016/109089 CN2016109089W WO2017097236A1 WO 2017097236 A1 WO2017097236 A1 WO 2017097236A1 CN 2016109089 W CN2016109089 W CN 2016109089W WO 2017097236 A1 WO2017097236 A1 WO 2017097236A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
nitrogen
film
layer
oxygen
Prior art date
Application number
PCT/CN2016/109089
Other languages
English (en)
French (fr)
Inventor
徐宝安
Original Assignee
淄博环能海臣环保技术服务有限公司
徐宝安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淄博环能海臣环保技术服务有限公司, 徐宝安 filed Critical 淄博环能海臣环保技术服务有限公司
Publication of WO2017097236A1 publication Critical patent/WO2017097236A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar selective absorbing coating for use in a solar collector.
  • the structure of the film layer is different, resulting in different principles of absorbing solar rays.
  • the gradual film is a multi-layer film whose absorption layer is generally 9 layers, which absorbs the solar rays layer by layer, and its absorption of light gradually becomes higher. Due to this gradual structure, the emission ratio increases with temperature.
  • the aluminum ions in the absorbing layer are greatly enhanced in activity at high temperatures and drift.
  • the internal structure of the film layer is disordered, causing the film layer to age. The diffusion of aluminum at high temperatures affects its reflection properties. When the temperature is high for a long time, the film layer will fall off, which affects the heat collecting efficiency and life of the vacuum heat collecting tube. technical problem
  • the composition of the ceramic diffusion barrier film layer is similar to that of the anti-reflection film, the film layer can be made more stable at high temperatures and the heat resistance can be achieved only by changing the process route in the case of manufacturing the vacuum heat collecting tube original tooling equipment. Increased, lower emissivity requirements.
  • the present invention is achieved by: a single aluminum target magnetron sputtering solar selective absorbing coating, the solar selective absorbing coating is deposited on the substrate as an underlayer to deposit on aluminum
  • the aluminum element ceramic on the reflective film is a diffusion barrier film layer
  • the aluminum element cermet composite component deposited on the aluminum element ceramic diffusion barrier film layer is a solar selective absorbing material film layer deposited on the aluminum element cermet composite
  • the aluminum element ceramic anti-reflection film on the film of the solar selective absorption material is used as the surface layer, and the solar selective absorption coating is coated by the single aluminum target magnetron sputtering vacuum coater in combination with the reaction gas and the working gas.
  • the substrate is a glass tube, non-reactive magnetron sputtering evaporation aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the film is on a glass tube, after which oxygen is injected, oxygen reacts with the magnetron-sputtered aluminum atom, and an A1 2 0 3 ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by injection of argon gas and nitrogen gas (or carbon monoxide).
  • nitrogen gas or carbon monoxide
  • nitrogen or carbon monoxide
  • nitrogen or carbon, oxygen
  • the ratio of the number also increases, and the thickness of the corresponding deposited absorbent material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum _ oxygen_nitrogen (or aluminum _ Carbon_oxygen-nitrogen, and finally a mixture of argon and carbon tetrafluoride is formed on the surface of the aluminum-based cermet composite component solar selective absorbing material to form aluminum.
  • _Nitrogen-fluorine (or aluminum-oxygen-fluorine) anti-reflection film as a surface layer.
  • the substrate is a glass tube, and non-reactive magnetron sputtering vapor deposition aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the film is placed on a glass tube, followed by nitrogen gas, nitrogen reacts with the magnetron-sputtered aluminum atom, and an A1N ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by a mixed gas of argon gas and nitrogen gas (or carbon monoxide).
  • the proportion of nitrogen in the gas is decreased, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen (or carbon, oxygen)
  • the ratio of the number of aluminum atoms also increases, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material layer is gradual, absorbing material
  • Aluminum_nitrogen (or aluminum_carbon_nitrogen) is finally injected with a mixed gas of argon and carbon tetrafluoride to form a solar compound in the aluminum element. It can selectively absorb the surface of the material film to form an aluminum-nitrogen-fluorine anti-reflection film as the surface layer.
  • the substrate is a glass tube, and non-reactive magnetron sputtering evaporation aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the film is on the glass tube, after which oxygen is injected, and the oxygen reacts with the aluminum atom of the magnetron sputtering to form an A1 2 0 3 ceramic film on the aluminum reflective film.
  • the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, along with nitrogen (or carbon monoxide).
  • the flow rate is gradually increased, the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms is also increased, and the thickness of the corresponding deposited absorbent material is increased to form an aluminum-based cermet composite component solar selective absorbing material film layer, and the composition of the absorbing material film layer is Gradual, absorbing material aluminum _ oxygen _ nitrogen (or aluminum _ carbon _ oxygen _ nitrogen), finally injected with argon and oxygen mixed gas, oxygen and magnetron sputtering aluminum atoms, formed in aluminum cermet composite solar energy On the surface of the selective absorption material film layer, a surface layer of an A1 2 0 3 ceramic anti-reflection film is formed.
  • the substrate is a glass tube, and non-reactive magnetron sputtering vapor deposition aluminum reflection in pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the film is placed on a glass tube, followed by nitrogen gas, nitrogen reacts with the magnetron-sputtered aluminum atom, and an A1N ceramic film is formed on the aluminum reflective film as a diffusion barrier film layer, followed by a mixed gas of argon gas and nitrogen gas (or carbon monoxide).
  • the proportion of nitrogen in the gas is decreased, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen (or carbon, oxygen)
  • the ratio of the number of aluminum atoms also increases, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material layer is gradual, absorbing material Aluminum-nitrogen (or aluminum_carbon_nitrogen), finally injecting a mixed gas of argon and nitrogen, and reacting nitrogen with magnetron-sputtered aluminum atoms in aluminum
  • the surface of the A1N ceramic film antireflection film is formed on the surface of the elemental cermet composite component solar selective absorbing material film.
  • the solar absorption rate of such a selective absorbing coating is significantly higher than that of the above-mentioned coating and its production.
  • the film layer has high absorption rate, good thermal stability, and thus excellent heat collecting performance
  • the baking temperature can be adjusted to 400_500 ° C, which will reduce the production cycle and production energy consumption.
  • FIG. 1 is a schematic structural view of a conventional aluminum-nitrogen-aluminum graded film layer
  • FIG. 2 is a graph showing the content distribution of elemental components of aluminum in a conventional aluminum-nitrogen-aluminum graded film layer
  • FIG. 3 is a schematic structural view of an aluminum-nitrogen-aluminum graded film layer with a diffusion barrier film according to the present invention
  • FIG. 4 is a distribution diagram of the content of elemental components of aluminum in an aluminum-nitrogen-aluminum graded film layer with a diffusion barrier film of the present invention
  • a single aluminum target magnetron sputtering solar selective absorbing coating the solar selective absorbing coating is deposited on the substrate as an underlying layer, and deposited on the aluminum reflective layer.
  • the aluminum element ceramic on the film is a diffusion barrier film layer
  • the aluminum element cermet composite component deposited on the aluminum element ceramic diffusion barrier film layer is a solar selective absorbing material film layer, and is deposited on the aluminum element cermet composite component solar energy selection.
  • the aluminum element ceramic anti-reflection film on the film of the absorbing material is used as the surface layer, and the solar selective absorbing coating is coated by the single aluminum target magnetron sputtering vacuum coater in combination with the reaction gas and the working gas.
  • a single aluminum target magnetron sputtering solar selective absorption coating wherein one of the structures is: the substrate is a glass tube, and pure argon gas is used in a single aluminum target magnetron sputtering vacuum coating machine.
  • the non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then oxygen is injected, and the oxygen reacts with the magnetron-sputtered aluminum atom to form on the aluminum reflective film.
  • the aluminum element cermet composite component solar energy selective absorbing material film layer, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum monooxygen nitrogen (or aluminum carbon monooxygen) has a thickness of 10 0nm-.260nm, finally injecting a mixed gas of argon gas and carbon tetrafluoride, formed on the surface of the aluminum-based cermet composite component solar selective absorbing material film layer to form aluminum_nitrogen-fluorine (or aluminum_oxygen-fluorine) minus
  • the reflective film is used as a surface layer, and the thickness of the surface of the anti-reflection film is 30 to 90 nm.
  • the second structure is: the substrate is Glass tube, in a single aluminum target magnetron sputtering vacuum coating machine, non-reactive magnetron sputtering in the pure aluminum argon gas vapor deposition aluminum reflective film on the glass tube, the thickness of the aluminum vapor deposited aluminum reflective film is not less than 100nm, then inject nitrogen The nitrogen reacts with the aluminum atom of the magnetron sputtering to form an A1N ceramic film on the aluminum reflective film as a diffusion barrier film layer, the thickness of the aluminum nitride is between 20 nm and 80 nm, and then the argon gas and the nitrogen gas (or carbon monoxide) are injected.
  • the proportion of nitrogen in the mixed gas is reduced, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased.
  • the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms is also increased, and the thickness of the corresponding deposited absorbing material is increased to form a layer of aluminum-based cermet composite component solar selective absorbing material, and the composition of the absorbing material film layer is gradual.
  • an aluminum-nitrogen-fluorine anti-reflection film is formed as a surface layer, and the thickness of the surface of the anti-reflection film is 30-90 nm.
  • the third structure is: the substrate is a glass tube, pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then oxygen is injected, and the oxygen reacts with the magnetron-sputtered aluminum atom to form on the aluminum reflective film.
  • the thickness of alumina is between 20nm and 80nm, after which a mixture of argon and nitrogen (or carbon monoxide) is injected, and the number of aluminum atoms is nitrogen (or carbon, oxygen).
  • the ratio also increases, and the thickness of the corresponding deposited absorbing material increases.
  • the flow rate of nitrogen (or carbon monoxide) increases, the ratio of nitrogen (or carbon, oxygen) to the number of aluminum atoms increases, and the thickness of the corresponding deposited absorbing material increases to form aluminum.
  • the elemental cermet composite component solar energy selective absorbing material film layer, the composition of the absorbing material film layer is gradual, and the absorbing material aluminum_oxygen-nitrogen (or aluminum-carbon-oxygen-nitrogen) has a thickness of 100 nm-.260 nm.
  • a mixed gas of argon and oxygen is injected, and the oxygen reacts with the aluminum atom of the magnetron sputtering to form a surface layer of the aluminum-based cermet composite component solar selective absorbing material to form a surface layer of the A1 2 0 3 ceramic anti-reflection film.
  • the thickness of the surface layer of the anti-reflection film is 30 to 90 nm.
  • the fourth structure is: the substrate is a glass tube, pure argon gas in a single aluminum target magnetron sputtering vacuum coating machine
  • the medium-non-reactive magnetron sputtering vapor deposition aluminum reflective film is on the glass tube, and the thickness of the aluminum vapor-deposited aluminum reflective film is not less than 100 nm, and then nitrogen gas, nitrogen gas is injected.
  • the aluminum atomic reaction of magnetron sputtering generates an A1N ceramic film on the aluminum reflective film as a diffusion barrier film layer, and the aluminum nitride has a thickness of between 20 nm and 80 nm, and then is injected into a mixed gas of argon and nitrogen (or carbon monoxide).
  • the proportion of nitrogen is reduced, the ratio of the number of aluminum atoms to nitrogen (or carbon, oxygen) is also increased, and the thickness of the corresponding deposited absorbent material is increased, and then the proportion of nitrogen in the mixed gas of argon and nitrogen (or carbon monoxide) is increased, nitrogen ( Or carbon/oxygen) increases the ratio of the number of aluminum atoms, and the thickness of the corresponding deposited absorbing material increases, forming a layer of aluminum-based cermet composite component solar selective absorbing material, the composition of the absorbing material layer is gradual, and the absorbing material aluminum A nitrogen (or aluminum-carbon-nitrogen) thickness of 100nm-.260nm, finally injected with argon and nitrogen mixed gas, nitrogen and magnetron sputtering aluminum atoms, in the aluminum element cermet composite solar energy selective absorption material film On the surface of the layer, an A1N ceramic film antireflection film surface layer is formed, and the thickness of the surface of the antireflection film is 30 to 90 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种单铝靶磁控溅射太阳能选择性吸收涂层,其太阳能选择性吸收涂层以沉积在衬底上的铝反射膜(2)作为底层,以沉积在铝反射膜(2)上的铝元素陶瓷为扩散阻挡膜层,以沉积在铝元素陶瓷扩散阻挡膜层上的铝元素金属陶瓷复合成分为太阳能选择性吸收材料膜层,以沉积在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层上的铝元素陶瓷减反射膜作为表层,太阳能选择性吸收涂层通过单铝靶磁控溅射真空镀膜机结合反应气体和工作气体实现镀膜。膜层具有高的吸收率,热稳定性好,因而集热性能优良,且具有实施简便的优点。表面挥发与放气少于金属-碳化物吸收材料。因此在制造集热管时,烘烤温度可调节到400-500℃,这将减少生产时间周期与生产能耗。

Description

发明名称:一种单铝靶磁控溅射太阳能选择性吸收涂层 技术领域
[0001] 本发明涉及一种太阳能选择性吸收涂层, 它用于太阳能集热器。
背景技术
[0002] 膜层结构不同, 导致吸收太阳光线的原理不同。 渐变膜, 为多层膜, 其吸收层 一般是 9层, 它对太阳光线是逐层吸收的, 而且其吸收光线的性能逐渐变高。 由 于这种渐变结构, 发射比随温度上升不断加大。 而且吸收层中的铝离子在高温 状态下, 活泼性大大增强, 并发生漂移。 这样膜层的内部结构发生错乱, 导致 膜层幵始老化。 铝存在高温下的扩散, 使其反射性能受到一定影响。 长期处于 这种高温状态下, 膜层就会脱落, 从而影响了真空集热管的集热效率和寿命。 技术问题
[0003] 在环境温度较低吋, 膜层的热损大, 集热效率下降, 影响正常使用; 尤其在空 晒超过 270°C吋, 膜层幵始老化、 脱落, 吸收率快速降低, 寿命大大缩短。 问题的解决方案
技术解决方案
[0004] 为了解决以上问题, 在金属反射膜上磁控溅射蒸镀化学性能更加稳定的陶瓷扩 散阻挡膜层, 则可实现金属反射膜与选择性吸收膜之间的隔离, 防止金属粒子 的扩散, 同吋, 陶瓷扩散阻挡膜层透光, 折射率较大, 有的陶瓷扩散阻挡膜层 有一定的消光系数, 可以实现对铝反射膜反射层发射的红外线实现有效的反射 , 进一步降低了吸热膜层的发射率,。 因为陶瓷扩散阻挡膜层的成分构成与减反 射膜相近, 所以使的在制造真空集热管原工装设备不变的情况下, 仅改变工艺 路线便可实现膜层在高温下更加稳定, 耐热性能提高, 发射率更低的要求。
[0005] 本发明是这样实现的: 一种单铝靶磁控溅射太阳能选择性吸收涂层, 其太阳能 选择性吸收涂层以沉积在衬底上的铝反射膜作为底层, 以沉积在铝反射膜上的 铝元素陶瓷为扩散阻挡膜层, 以沉积在铝元素陶瓷扩散阻挡膜层上的铝元素金 属陶瓷复合成分为太阳能选择性吸收材料膜层, 以沉积在铝元素金属陶瓷复合 成分太阳能选择性吸收材料膜层上的铝元素陶瓷减反射膜作为表层, 太阳能选 择性吸收涂层通过单铝靶磁控溅射真空镀膜机结合反应气体和工作气体实现镀 膜。
[0006] 单铝靶磁控溅射太阳能选择性吸收涂层, 其衬底为玻璃管, 在单铝靶磁控溅射 真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氧 气, 氧气与磁控溅射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩 散阻挡膜层, 之后注入氩气与氮气 (或一氧化碳) 混合气体, 铝原子数对氮 ( 或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 之后随着氮气 (或 一氧化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应 沉积的吸收材料厚度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材 料膜层, 吸收材料膜层的成分是渐变的, 吸收材料铝 _氧_氮 (或铝 _碳_氧 —氮) , 最后注入氩气与四氟化碳混合气体, 形成在铝元素金属陶瓷复合成分 太阳能选择性吸收材料膜层表面上, 生成铝 _氮_氟 (或铝 _氧_氟) 减反射 膜作为表层。
[0007] 单铝靶磁控溅射太阳能选择性吸收涂层, 其衬底为玻璃管, 在单铝靶磁控溅射 真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氮 气, 氮气与磁控溅射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散 阻挡膜层, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中氮气的份额减少 , 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气份额增加, 氮 (或碳 、 氧) 对铝原子数的比值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素 金属陶瓷复合成分太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的 , 吸收材料铝 _氮 (或铝 _碳_氮) 最后注入氩气与四氟化碳混合气体, 形成 在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层表面上, 生成铝 _氮_ 氟减反射膜作为表层。
[0008] 单铝靶磁控溅射太阳能选择性吸收涂层, 其衬底为玻璃管, 在单铝靶磁控溅射 真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氧 气, 氧气与磁控溅射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩 散阻挡膜层, 之后注入氩气与氮气 (或一氧化碳) 混合气体, 铝原子数对氮 ( 或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 随着氮气 (或一氧 化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应沉积 的吸收材料厚度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材料膜 层, 吸收材料膜层的成分是渐变的, 吸收材料铝 _氧_氮 (或铝 _碳_氧_氮 ) , 最后注入氩气与氧气混合气体, 氧气与磁控溅射的铝原子反应, 形成在铝 元素金属陶瓷复合成分太阳能选择性吸收材料膜层表面上, 生成 A1 20 3陶瓷减反 射膜表层。
[0009] 单铝靶磁控溅射太阳能选择性吸收涂层, 其衬底为玻璃管, 在单铝靶磁控溅射 真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氮 气, 氮气与磁控溅射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散 阻挡膜层, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中氮气的份额减少 , 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气份额增加, 氮 (或碳 、 氧) 对铝原子数的比值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素 金属陶瓷复合成分太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的 , 吸收材料铝一氮 (或铝 _碳_氮) , 最后注入氩气与氮气混合气体, 氮气与 磁控溅射的铝原子反应, 在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜 层表面上, 生成 A1N陶瓷薄膜减反射膜表层。
[0010] 这种选择性吸收涂层的太阳吸收率明显地高于, 并克服了上面提到的涂层及其 生产中的问题。
发明的有益效果
有益效果
[0011] 本发明的有益效果是: 膜层具有高的吸收率, 热稳定性好, 因而集热性能优良
, 且具有实施简便的优点。 表面挥发与放气少于金属 _碳化物吸收材料。 因此 在制造集热管吋, 烘烤温度可调节到 400_500°C, 这将减少生产吋间周期与生产 能耗。
对附图的简要说明 附图说明
[0012] 下面结合附图对本发明进一步说明。
[0013] 图 1是常规铝一氮一铝渐变膜层结构示意图;
[0014] 图 2是常规铝 _氮_铝渐变膜层中铝元素单质成分含量分布图;
[0015] 图 3是本发明带有扩散隔离膜的铝 _氮_铝渐变膜层结构示意图;
[0016] 图 4是本发明带有扩散隔离膜的铝 _氮_铝渐变膜层中铝元素单质成分含量分 布图;
[0017] 图中: 1玻璃管壁、 2反射膜、 3吸收膜、 4减反射膜、 5扩散隔离膜
[0018] 如图 3所示: 一种单铝靶磁控溅射太阳能选择性吸收涂层, 其太阳能选择性吸 收涂层以沉积在衬底上的铝反射膜为底层, 以沉积在铝反射膜上的铝元素陶瓷 为扩散阻挡膜层, 以沉积在铝元素陶瓷扩散阻挡膜层上的铝元素金属陶瓷复合 成分为太阳能选择性吸收材料膜层, 以沉积在铝元素金属陶瓷复合成分太阳能 选择性吸收材料膜层上的铝元素陶瓷减反射膜作为表层, 太阳能选择性吸收涂 层通过单铝靶磁控溅射真空镀膜机结合反应气体和工作气体实现镀膜。
[0019] 如图 4所示: 单铝靶磁控溅射太阳能选择性吸收涂层, 其中结构之一为: 衬底 为玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反 射膜在玻璃管上, 底层蒸镀的铝反射膜厚度不小于 100nm, 之后注入氧气, 氧气 与磁控溅射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩散阻挡膜 层, 三氧化二铝厚度为 20nm-80nm之间, 之后注入氩气与氮气 (或一氧化碳) 混 合气体, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度 增加, 之后随着氮气 (或一氧化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原 子数的比值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素金属陶瓷复合 成分太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的, 吸收材料铝 一氧一氮 (或铝一碳一氧一氮) 厚度在 100nm-.260nm, 最后注入氩气与四氟化 碳混合气体, 形成在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层表面 上, 生成铝 _氮_氟 (或铝 _氧_氟) 减反射膜作为表层, 减反射膜表层的厚 度为 30-90nm。
[0020] 如图 4所示: 单铝靶磁控溅射太阳能选择性吸收涂层, 第二种结构为: 衬底为 玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射 膜在玻璃管上, 底层蒸镀的铝反射膜厚度不小于 100nm, 之后注入氮气, 氮气与 磁控溅射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散阻挡膜层, 氮化铝厚度为 20nm -80nm之间, 之后注入的氩气与氮气 (或一氧化碳) 混合气 体中氮气的份额减少, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的 吸收材料厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气 份额增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应沉积的吸收材料厚 度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层, 吸收材料 膜层的成分是渐变的, 吸收材料铝一氮 (或铝一碳一氮) 厚度在 100nm-.260nm , 最后注入氩气与四氟化碳混合气体, 形成在铝元素金属陶瓷复合成分太阳能 选择性吸收材料膜层表面上, 生成铝 _氮_氟减反射膜作为表层, 减反射膜表 层的厚度为 30-90nm。
[0021] 如图 4所示: 单铝靶磁控溅射太阳能选择性吸收涂层, 第三种结构为: 衬底为 玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射 膜在玻璃管上, 底层蒸镀的铝反射膜厚度不小于 100nm, 之后注入氧气, 氧气与 磁控溅射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩散阻挡膜层 , 三氧化二铝厚度为 20nm -80nm之间, 之后注入氩气与氮气 (或一氧化碳) 混 合气体, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度 增加, 随着氮气 (或一氧化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原子数 的比值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素金属陶瓷复合成分 太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的, 吸收材料铝 _氧 一氮 (或铝一碳一氧一氮) 厚度在 100nm-.260nm, 最后注入氩气与氧气混合气 体, 氧气与磁控溅射的铝原子反应, 形成在铝元素金属陶瓷复合成分太阳能选 择性吸收材料膜层表面上, 生成 A1 20 3陶瓷减反射膜表层, 减反射膜表层的厚度 为 30-90nm。
[0022] 如图 4所示: 单铝靶磁控溅射太阳能选择性吸收涂层, 第四种结构为: 衬底为 玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反应磁控溅射蒸镀铝反射 膜在玻璃管上, 底层蒸镀的铝反射膜厚度不小于 100nm, 之后注入氮气, 氮气与 磁控溅射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散阻挡膜层, 氮化铝厚度为 20nm -80nm之间, 之后注入的氩气与氮气 (或一氧化碳) 混合气 体中氮气的份额减少, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的 吸收材料厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气 份额增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应沉积的吸收材料厚 度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层, 吸收材料 膜层的成分是渐变的, 吸收材料铝一氮 (或铝一碳一氮) 厚度在 100nm-.260nm , 最后注入氩气与氮气混合气体, 氮气与磁控溅射的铝原子反应, 在铝元素金 属陶瓷复合成分太阳能选择性吸收材料膜层表面上, 生成 A1N陶瓷薄膜减反射膜 表层, 减反射膜表层的厚度为 30-90nm。

Claims

权利要求书
[权利要求 1] 一种单铝靶磁控溅射太阳能选择性吸收涂层, 其特征是: 太阳能选择 性吸收涂层以沉积在衬底上的铝反射膜作为底层, 以沉积在铝反射膜 上的铝元素陶瓷为扩散阻挡膜层, 以沉积在铝元素陶瓷扩散阻挡膜层 上的铝元素金属陶瓷复合成分为太阳能选择性吸收材料膜层, 以沉积 在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层上的铝元素陶 瓷减反射膜作为表层, 太阳能选择性吸收涂层通过单铝靶磁控溅射真 空镀膜机结合反应气体和工作气体实现镀膜。
[权利要求 2] 根据权利要求 1所述的单铝靶磁控溅射太阳能选择性吸收涂层, 其特 征是: 衬底为玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反 应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氧气, 氧气与磁控溅 射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩散阻挡 膜层, 之后注入氩气与氮气 (或一氧化碳) 混合气体, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 之后随 着氮气 (或一氧化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原子数 的比值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素金属陶瓷 复合成分太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的 , 吸收材料铝一氧一氮 (或铝一碳一氧一氮) , 最后注入氩气与四氟 化碳混合气体, 形成在铝元素金属陶瓷复合成分太阳能选择性吸收材 料膜层表面上, 生成铝一氮一氟 (或铝一氧一氟) 减反射膜作为表层
[权利要求 3] 根据权利要求 1所述的单铝靶磁控溅射太阳能选择性吸收涂层, 其特 征是: 衬底为玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反 应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氮气, 氮气与磁控溅 射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散阻挡膜 层, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中氮气的份额减 少, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料 厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气 份额增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应沉积的吸 收材料厚度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材 料膜层, 吸收材料膜层的成分是渐变的, 吸收材料铝 _氮 (或铝 _碳 —氮) 最后注入氩气与四氟化碳混合气体, 形成在铝元素金属陶瓷复 合成分太阳能选择性吸收材料膜层表面上, 生成铝 _氮_氟减反射膜 作为表层。
[权利要求 4] 根据权利要求 1所述的单铝靶磁控溅射太阳能选择性吸收涂层, 其特 征是: 衬底为玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反 应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氧气, 氧气与磁控溅 射的铝原子反应, 在铝反射膜上生成 A1 20 3陶瓷薄膜, 作为扩散阻挡 膜层, 之后注入氩气与氮气 (或一氧化碳) 混合气体, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料厚度增加, 随着氮 气 (或一氧化碳) 的流量逐渐增加, 氮 (或碳、 氧) 对铝原子数的比 值亦增加, 相应沉积的吸收材料厚度增加, 形成铝元素金属陶瓷复合 成分太阳能选择性吸收材料膜层, 吸收材料膜层的成分是渐变的, 吸 收材料铝一氧一氮 (或铝一碳一氧一氮) , 最后注入氩气与氧气混合 气体, 氧气与磁控溅射的铝原子反应, 形成在铝元素金属陶瓷复合成 分太阳能选择性吸收材料膜层表面上, 生成 Al 20 3陶瓷减反射膜表层
[权利要求 5] 根据权利要求 1所述的单铝靶磁控溅射太阳能选择性吸收涂层, 其特 征是: 衬底为玻璃管, 在单铝靶磁控溅射真空镀膜机内纯氩气中非反 应磁控溅射蒸镀铝反射膜在玻璃管上, 之后注入氮气, 氮气与磁控溅 射的铝原子反应, 在铝反射膜上生成 A1N陶瓷薄膜, 作为扩散阻挡膜 层, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中氮气的份额减 少, 铝原子数对氮 (或碳、 氧) 的比值亦增加, 相应沉积的吸收材料 厚度增加, 之后注入的氩气与氮气 (或一氧化碳) 混合气体中的氮气 份额增加, 氮 (或碳、 氧) 对铝原子数的比值亦增加, 相应沉积的吸 收材料厚度增加, 形成铝元素金属陶瓷复合成分太阳能选择性吸收材 料膜层, 吸收材料膜层的成分是渐变的, 吸收材料铝 _氮 (或铝 _碳 —氮) , 最后注入氩气与氮气混合气体, 氮气与磁控溅射的铝原子反 应, 在铝元素金属陶瓷复合成分太阳能选择性吸收材料膜层表面上, 生成 A1N陶瓷薄膜减反射膜表层。
PCT/CN2016/109089 2015-12-10 2016-12-08 一种单铝靶磁控溅射太阳能选择性吸收涂层 WO2017097236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510911144.7A CN105546858A (zh) 2015-12-10 2015-12-10 一种单铝靶磁控溅射太阳能选择性吸收涂层
CN201510911144.7 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017097236A1 true WO2017097236A1 (zh) 2017-06-15

Family

ID=55826236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109089 WO2017097236A1 (zh) 2015-12-10 2016-12-08 一种单铝靶磁控溅射太阳能选择性吸收涂层

Country Status (2)

Country Link
CN (1) CN105546858A (zh)
WO (1) WO2017097236A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546858A (zh) * 2015-12-10 2016-05-04 淄博环能海臣环保技术服务有限公司 一种单铝靶磁控溅射太阳能选择性吸收涂层
CN107034468A (zh) * 2017-05-23 2017-08-11 上海子创镀膜技术有限公司 一种新型太阳能吸热膜的镀膜结构
CN108977769A (zh) * 2017-06-05 2018-12-11 深圳富泰宏精密工业有限公司 壳体及该壳体的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029853A (en) * 1975-06-20 1977-06-14 The United States Of America As Represented By The Secretary Of The Navy PbS-Al selective solar absorber
GB2079323A (en) * 1980-06-18 1982-01-20 Bfg Glassgroup Nitrogen-containing nickel coatings for solar collectors
CN87210032U (zh) * 1987-07-17 1988-01-27 清华大学 一种全玻璃真空太阳能集热管
CN102278833A (zh) * 2011-05-16 2011-12-14 山东桑乐光热设备有限公司 一种耐高温的选择性吸收涂层及制造方法
CN102433530A (zh) * 2011-12-16 2012-05-02 山东桑乐太阳能有限公司 一种太阳能选择性吸收涂层及制备方法
CN105546858A (zh) * 2015-12-10 2016-05-04 淄博环能海臣环保技术服务有限公司 一种单铝靶磁控溅射太阳能选择性吸收涂层

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724812A (zh) * 2008-10-24 2010-06-09 山东力诺新材料有限公司 一种涂层及其制造方法
CN103029374A (zh) * 2011-09-30 2013-04-10 中国科学院大连化学物理研究所 一种中高温太阳能光热选择性吸收涂层
CN102620456B (zh) * 2012-04-06 2013-10-09 中国科学院宁波材料技术与工程研究所 一种中低温太阳能选择吸收薄膜及其制备方法
CN102653151B (zh) * 2012-05-23 2015-02-11 皇明太阳能股份有限公司 一种太阳能选择性吸收涂层
CN103317788A (zh) * 2012-11-30 2013-09-25 北京天瑞星光热技术有限公司 一种光谱选择性吸收涂层及其制备方法
CN103528251B (zh) * 2013-10-14 2015-10-28 常州深蓝涂层技术有限公司 耐高温金属陶瓷太阳能选择性吸收涂层及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029853A (en) * 1975-06-20 1977-06-14 The United States Of America As Represented By The Secretary Of The Navy PbS-Al selective solar absorber
GB2079323A (en) * 1980-06-18 1982-01-20 Bfg Glassgroup Nitrogen-containing nickel coatings for solar collectors
CN87210032U (zh) * 1987-07-17 1988-01-27 清华大学 一种全玻璃真空太阳能集热管
CN102278833A (zh) * 2011-05-16 2011-12-14 山东桑乐光热设备有限公司 一种耐高温的选择性吸收涂层及制造方法
CN102433530A (zh) * 2011-12-16 2012-05-02 山东桑乐太阳能有限公司 一种太阳能选择性吸收涂层及制备方法
CN105546858A (zh) * 2015-12-10 2016-05-04 淄博环能海臣环保技术服务有限公司 一种单铝靶磁控溅射太阳能选择性吸收涂层

Also Published As

Publication number Publication date
CN105546858A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN102122006B (zh) 太阳光谱选择性吸收涂层及其制备方法
CN101793437B (zh) 多用途太阳光谱选择性吸收涂层及其制备方法
CN103162452B (zh) 抗氧化性太阳光谱选择性吸收涂层及其制备方法
ITRM20110308A1 (it) Assorbitore solare selettivo a base di materiali cermet del tipo doppio nitruro, e relativo procedimento di fabbricazione
WO2017097236A1 (zh) 一种单铝靶磁控溅射太阳能选择性吸收涂层
CN103383155A (zh) Ti合金氮化物选择性吸收膜系及其制备方法
CN100532997C (zh) 一种太阳能选择性吸收涂层及其制备方法
JP2013529251A (ja) 熱吸収材を提供する方法
CN102501459A (zh) 一种中高温太阳能选择性吸收涂层的制备方法
CN103317792B (zh) 非真空中高温太阳能选择性吸收周期涂层及其制备方法
CN103808048A (zh) 一种高温太阳光谱选择性吸收涂层
CN109338297B (zh) 一种二硼化铪-二硼化锆基高温太阳能吸收涂层及其制备方法
CN104279779A (zh) 一种金属氮化物太阳光谱选择性吸收涂层
CN109338295B (zh) 一种二硼化铪-二氧化铪基高温太阳能吸收涂层及其制备方法
CN103234293A (zh) 耐高温太阳能选择性吸收镀层及其制备方法
CN109338296B (zh) 一种二硼化锆-氧化锆基高温太阳能吸收涂层及其制备方法
Yang et al. Stress‐Induced Failure Study on a High‐Temperature Air‐Stable Solar‐Selective Absorber Based on W–SiO2 Ceramic Composite
CN116123741A (zh) 一种用于槽式热发电高温真空集热管的太阳光谱选择性吸收涂层及其制备方法
CN202388851U (zh) 一种太阳能选择性吸收涂层
CN109972111A (zh) 一种高掺杂MoOx基光热转换涂层及其制备方法
CN106322799A (zh) 一种中低真空环境使用的太阳光谱选择性吸热涂层
CN1020797C (zh) 光-热转换吸收薄膜及制备
CN109371373B (zh) 一种二硼化钛-二硼化锆基高温太阳能吸收涂层及其制备方法
CN108611610A (zh) 一种双介质层太阳光谱选择性吸收薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872425

Country of ref document: EP

Kind code of ref document: A1