WO2017096692A1 - 一种烟气脱硝脱硫洗涤***及脱硝脱硫方法 - Google Patents

一种烟气脱硝脱硫洗涤***及脱硝脱硫方法 Download PDF

Info

Publication number
WO2017096692A1
WO2017096692A1 PCT/CN2016/070847 CN2016070847W WO2017096692A1 WO 2017096692 A1 WO2017096692 A1 WO 2017096692A1 CN 2016070847 W CN2016070847 W CN 2016070847W WO 2017096692 A1 WO2017096692 A1 WO 2017096692A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
denitration
tower
liquid
pipe
Prior art date
Application number
PCT/CN2016/070847
Other languages
English (en)
French (fr)
Inventor
熊靓
朱核光
Original Assignee
深圳广昌达环境科学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳广昌达环境科学有限公司 filed Critical 深圳广昌达环境科学有限公司
Publication of WO2017096692A1 publication Critical patent/WO2017096692A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants

Definitions

  • the invention belongs to the field of chemical industry, in particular to a flue gas denitration and desulfurization washing system.
  • SO 2 and NOx are two major gaseous atmospheric pollutants that are produced primarily by combustion or other chemical processes and are emitted to the atmosphere with the flue gases.
  • flue gas desulfurization mainly has two types of wet method and dry method.
  • the dry method uses lime slurry to spray into the desulfurization tower. Under the action of high temperature flue gas, the water in the slurry evaporates quickly, and the lime in the slurry is in the form of solid particles. Precipitation, and the SO 2 in the flue gas is adsorbed on the surface to be removed; the solid lime particles adsorbed with SO 2 are removed together with the dust in the flue gas by a bag filter in the back; the wet desulfurization is used sparsely.
  • the lime liquid elutes SO 2 in the spray tower, and the addition of lime is added according to the control requirements of pH, and the pH is generally controlled to an acidic range of about 6.
  • SO 2 is first absorbed into the aqueous phase, forms sulfurous acid in water and reacts with CaCO 3 (or Ca(OH) 2 ), calcium sulfite and calcium bisulfite and calcium sulfate, used as flue gas in addition to lime or limestone.
  • the desulfurized alkaline material is also NaOH, ammonia water, MgO, and the like.
  • the denitration of flue gas is divided into two types: reduction method and oxidation method.
  • the reduction method uses ammonia or urea as a reducing agent, V 5 O 2 as a catalyst at a temperature of 300-400 ° C, or no catalyst at a temperature of 1000 ° C. under conditions of the NO x in the flue gas is selectively reduced to nitrogen.
  • Selective catalytic reduction method requires the use of a catalyst containing transition metal elements. The catalyst is subject to wear and tear of the flue gas and needs to be replaced frequently. At the same time, there are problems such as ammonia leakage and harsh temperature conditions, and its use is limited. rule catalytic reduction denitration effect can not meet stringent NO x in emission standards, and thus its use is restricted.
  • Oxidation denitration has certain advantages in terms of cost of use and applicability due to its simple process, no need to use a catalyst, and a wide temperature range.
  • Na 2 SO 3 and EDTA are used as absorbents, and also on the gas-liquid surface. It participates in the reaction with NO 2 and affects the absorption of NO 2 , and these basic substances also neutralize the generated nitric acid and nitrous acid.
  • the presence of NaOH has no effect on the absorption rate of NO 2 , but the reaction product Na 2 SO 3 of SO 2 and NaOH absorbs NO 2 , while the use of Na 2 SO 3 as an absorbent, the presence of SO 2 is NO 2 . The absorption is inhibited.
  • the present invention provides a system capable of simultaneous desulfurization and denitrification, which saves cost and protects the environment.
  • the technical scheme adopted by the present invention is as follows:
  • a flue gas denitration desulfurization washing system wherein the washing system comprises a desulfurization tower, a denitration tower, a tower connecting pipe, a desulfurization liquid drainage pipe, a denitration liquid drainage pipe, and a desulfurization tower waste liquid discharge pipe,
  • the desulfurization tower is provided with a flue gas inlet and a desulfurization liquid circulation pipe for circulating the desulfurization liquid in the desulfurization tower, wherein the desulfurization liquid circulation pipe inlet is located at the bottom of the desulfurization tower, and the desulfurization liquid circulation pipe outlet is located at In the upper part of the desulfurization tower, the desulfurization liquid circulation pipe is provided with a desulfurization circulating pump for extracting the desulfurization liquid, and the desulfurization liquid circulation pipe is provided with a desulfurization liquid addition port;
  • the denitration tower is provided with a denitration liquid circulation pipe and a flue gas outlet for circulating the denitration liquid in the denitration tower, wherein the denitration liquid circulation pipe inlet is located at the bottom of the denitration tower, and the denitration liquid circulation pipe outlet is located at the upper part of the denitration pipe
  • the denitration liquid circulation pipe is provided with a denitration circulating pump for extracting the denitration liquid, the denitration liquid circulation pipe is provided with a denitration liquid addition port, and the flue gas outlet is arranged at the top of the denitration tower;
  • a tower connecting pipe is arranged between the desulfurization tower and the denitration tower, the inlet of the tower connecting pipe is located at the top of the desulfurization tower, and the outlet of the tower connecting pipe is located at the bottom of the denitration tower;
  • the desulfurization liquid circulation pipe is further connected to a desulfurization liquid discharge pipe for extracting desulfurization waste liquid from the bottom of the desulfurization tower and sent to the denitration tower, and the desulfurization liquid discharge pipe inlet is located at the bottom of the denitration tower, and the desulfurization liquid discharge pipe is arranged
  • a desulfurization waste liquid control valve for discharging the desulfurization liquid after the reaction to the denitration tube
  • the desulfurization liquid discharge pipe is connected with a desulfurization tower waste liquid discharge pipe for discharging the desulfurization waste liquid, and the desulfurization tower waste liquid discharge pipe is arranged Providing a desulfurization tower waste liquid discharge pipe valve;
  • the denitration liquid circulation pipe is connected with a denitration liquid discharge pipe for discharging the denitration liquid from the denitration tower to the desulfurization tower, and the denitration liquid discharge pipe is provided with a denitration liquid discharge pipe control valve 15.
  • the desulfurization tower is a spray tower or a venturi absorption tower.
  • the denitration tower is a packed tower or a spray tower.
  • the flue gas inlet is located at a lower middle portion of the desulfurization tower.
  • a flue gas denitration desulfurization method comprising the following steps,
  • the flue gas enters the desulfurization tower for desulfurization from the flue gas inlet, and the desulfurization liquid containing NaOH is added to the desulfurization tower from the desulfurization liquid addition port, and the desulfurization circulating pump extracts the desulfurization liquid from the bottom of the desulfurization tower, and the desulfurization liquid flows upward through the desulfurization liquid circulation pipe.
  • the desulfurization liquid further comprises Ca(OH) 2 .
  • the method of controlling the pH is used to control the addition amount of the desulfurization liquid, and the pH of the desulfurization liquid after the sulfur absorption in the tower is controlled to be 6-9.
  • the desulfurization reaction equation is as follows:
  • the exhaust gas containing SO 2 and NO 2 first enters the desulfurization tower, and SO 2 first reacts with NaOH in the desulfurization tower to form Na 2 SO 3 , and part of Na 2 SO 3 can be further used to react with SO 2 to form NaHSO 3 , and the two It will react with oxygen in the flue gas to form Na 2 SO 4 , which is a mixture of the three, wherein Na 2 SO 3 can account for 20-40% of the total salt, due to the residence time of the flue gas of the desulfurization tower Short, the general denitration effect in the desulfurization tower is limited.
  • the liquid contains a relatively high concentration of alkali solution, which is refluxed to the desulfurization tower for use as a supplement to the desulfurization tower alkali liquid NAOH.
  • the denitration liquid when the content of Na 2 SO 3 in the denitration liquid is less than 0.01 mol/L, the denitration liquid may also adopt other alkaline substances, and the desulfurized liquid after the reaction enters the desulfurization along the desulfurization liquid circulation pipe.
  • the liquid discharge pipe enters the denitration tower from the desulfurization liquid discharge pipe.
  • the desulfurization waste liquid control valve is closed.
  • the desulfurization liquid after the reaction is discharged from the desulfurization tower waste liquid discharge pipe, in order to maintain the concentration of the salt in the desulfurization tower, part of The desulfurization liquid or the desulfurization liquid after the reaction is discharged as waste water, and a part is discharged into the subsequent denitration tower, and the desulfurization liquid after the reaction contains Na 2 SO 3 to supplement the denitration liquid and discharge to the denitration tower.
  • the flow rate is determined according to the concentration of Na 2 SO 3 and the NO 2 concentration of the gas entering the denitration column, and is generally 10-50% of the desulfurization column circulating liquid.
  • step 1) the denitration liquid enters the denitration liquid discharge pipe from the denitration liquid circulation pipe from the denitration liquid circulation pipe, and the denitration discharge pipe enters the desulfurization tower to supply NaOH to the desulfurization tower, in order to control the total salt concentration in the denitration liquid, It is also necessary to remove a certain amount of denitration liquid after the reaction, and the denitration liquid after the reaction contains a relatively high concentration of NaOH, which can be discharged into the desulfurization tower through the denitration liquid discharge tube for supplementing the deionization liquid.
  • the invention has the beneficial effects of providing a system capable of simultaneous denitrification and desulfurization, and the desulfurization liquid and the denitration liquid between the two systems can be shared with each other, which greatly saves cost and improves efficiency.
  • Figure 1 is a schematic flow chart of the present invention.
  • a flue gas denitration desulfurization washing system includes a desulfurization tower 2, a denitration tower 4, a tower connection pipe 3, a desulfurization liquid discharge pipe 8, a denitration liquid discharge pipe 14, and a desulfurization tower waste liquid.
  • the discharge pipe 9, the desulfurization tower 2 is provided with a flue gas inlet 1 and a desulfurization liquid circulation pipe 7 for circulating the desulfurization liquid in the desulfurization tower 2, and the inlet of the desulfurization liquid circulation pipe 7 is located at the lower part of the desulfurization tower
  • the outlet of the desulfurization liquid circulation pipe 7 is disposed at the upper portion of the desulfurization tower 2, and the desulfurization liquid circulation pipe 7 is provided with a desulfurization circulation pump 6 for extracting the desulfurization liquid, and the desulfurization liquid circulation pipe 7 is further provided with a desulfurization liquid addition. Mouth 11;
  • the denitration tower 4 is provided with a denitration liquid circulation pipe 13 and a flue gas outlet 5 for circulating the denitration liquid in the denitration tower 4, and the inlet of the denitration liquid circulation pipe 13 is located at the bottom of the denitration tower 4, and the denitration liquid is recycled.
  • the outlet of the tube 13 is located at the upper part of the denitration tube, and the denitration liquid circulation pipe 13 is provided with a denitration circulating pump 12 for extracting the denitration liquid, and the denitration liquid circulation pipe 13 is provided with a denitration liquid addition port 16, the smoke
  • the gas outlet 5 is provided at the top of the denitration column 4;
  • the tower connecting pipe 3 is disposed between the desulfurization tower 2 and the denitration tower 4, the inlet of the tower connecting pipe 3 is located at the top of the desulfurization tower 2, and the outlet of the tower connecting pipe 3 is located at the lower part of the denitration tower 4, above the liquid surface of the denitration liquid;
  • the desulfurization liquid circulation pipe 7 is also connected to the desulfurization liquid discharge pipe 8 for extracting the desulfurization waste liquid from the bottom of the desulfurization tower 2 and feeding it to the denitration tower 4, and the inlet of the desulfurization liquid discharge pipe 8 is located at the lower part of the denitration tower 4,
  • the desulfurization liquid discharge pipe 8 is provided with a desulfurization waste liquid control valve 10 for discharging the desulfurization liquid after the reaction to the denitration pipe, and the desulfurization liquid discharge pipe 8 is connected to the desulfurization tower 2 waste liquid discharge pipe for discharging the desulfurization waste liquid.
  • the desulfurization tower 2 waste liquid discharge pipe is provided with a desulfurization tower waste liquid discharge pipe valve 11;
  • the denitration liquid circulation pipe 13 is connected with a denitration liquid discharge pipe 14 for discharging the denitration liquid from the denitration tower to the desulfurization tower 2, and the denitration liquid discharge pipe 14 is provided with a denitration liquid discharge pipe control valve 15.
  • the desulfurization tower 2 may be a spray tower or a venturi absorption tower.
  • the denitration column 4 can be a packed tower or a spray tower.
  • the flue gas inlet 1 is located at the lower middle portion of the desulfurization tower 2 above the liquid level of the desulfurization liquid.
  • the invention also provides a flue gas denitration and desulfurization method, the method comprising the following steps,
  • the desulfurization liquid circulation pipe 7 flows upward and is dripped from the outlet of the desulfurization liquid circulation pipe 7 to desulfurize; preferably, the desulfurization liquid further includes Ca(OH) 2 ; when the content of the Na 2 SO 3 in the desulfurization liquid after the reaction is too high
  • the desulfurization liquid after the reaction is discharged from the desulfurization tower waste liquid discharge pipe 9, in order to maintain the concentration of the salt in the desulfurization tower, a part of the desulfurization liquid or the desulfurization liquid after the reaction is discharged as waste water, and a part is discharged into the back.
  • the desulfurization liquid after the reaction contains Na 2 SO 3 to supplement the denitration liquid, and the flow rate of the diversion to the denitration tower is determined according to the concentration of Na 2 SO 3 and the NO 2 concentration of the gas entering the denitration tower. Generally speaking, it is 10-50% of the desulfurization tower circulating liquid. It is also necessary to remove a certain amount of denitration liquid after the reaction.
  • the denitration liquid after the reaction contains a relatively high concentration of NaOH, and can be discharged into the desulfurization through the denitration liquid discharge pipe 14. In the tower, it is used to replenish the effluent
  • the method of controlling the pH is used to control the addition amount of the desulfurization liquid, and the pH of the desulfurization liquid after the sulfur absorption in the tower is controlled to be 6-9.
  • the desulfurization reaction equation is as follows:
  • the flue gas after desulfurization enters the denitration tower 4 through the tower connecting pipe 3, and the denitration liquid containing NaOH and Na 2 SO 3 is added to the denitration tower 4 from the denitration liquid addition port 16 , and the NaOH in the denitration tower 2 denitrate liquid
  • the content is 0.1-1 WT%, and the Na 2 SO 3 is 0.01-0.5 mol/L.
  • the denitration circulating pump 12 extracts the denitration liquid from the bottom of the denitration tube, and the denitration liquid flows upward along the denitration liquid circulation pipe 13 and exits from the denitration liquid circulation pipe 13 Drowning, denitrification;
  • the exhaust gas containing SO 2 and NO 2 first enters the desulfurization tower 2, and the SO 2 first reacts with the NaOH in the desulfurization tower to form Na 2 SO 3 , and part of the Na 2 SO 3 can be further used to react with the SO 2 to form NaHSO 3 .
  • Both will react with oxygen in the flue gas to form Na 2 SO 4 , which is a mixture of the three, wherein Na 2 SO 3 can account for 20-40% of the total salt, due to the residence of the flue gas of the desulfurization tower
  • the time is short, the general denitration effect in the desulfurization tower is limited, and the remaining SO 2 and most of the NO 2 enter the subsequent denitration tower with the flue gas, and the denitration of the higher concentration denitration liquid added in the denitration tower, the NO 2 is effective. Remove the ground.
  • the liquid After the reaction of the denitration column, the liquid contains a relatively high concentration of alkali solution, which is refluxed to the desulfurization tower for use as a supplement to the desulfurization tower alkali liquid NAOH; when the content of Na 2 SO 3 in the denitration liquid is less than 0.01 mol/L
  • the denitration liquid can also adopt other alkaline substances.
  • the desulfurized liquid after the reaction enters the desulfurization liquid discharge pipe 8 along the desulfurization liquid circulation pipe 7, and enters the denitration tower from the desulfurization liquid discharge pipe 8, when the content of Na 2 SO 3 is higher than 0.5.
  • the desulfurization waste liquid control valve 10 When mol/L, the desulfurization waste liquid control valve 10 is closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种烟气脱硝脱硫洗涤***,能同时脱硫和脱硝,洗涤***包括有脱硫塔(2)、脱硝塔(4)、塔连接管(3)、脱硫液排管(8)、脱硝液排管(14)和脱硫塔废液排放管(9),脱硫和脱硝***之间的脱硫液和脱硝液可以相互共用。

Description

一种烟气脱硝脱硫洗涤***及脱硝脱硫方法 技术领域
本发明属于化工领域,具体来说是一种烟气脱硝脱硫洗涤***。
背景技术
SO2和NOx是两种主要的气体性大气污染物,它们主要由燃烧或其它化工过程产生并随烟气排放到大气中。
烟气的脱硫目前主要有湿法和干法两类,干法使用石灰浆液喷入脱硫塔,在高温烟气的作用下,浆液中的水很快蒸发,浆液中的石灰以固体颗粒的形态析出,并将烟气中的SO2吸附在其表面得以去除;吸附了SO2的固体石灰颗粒则和烟气中的尘埃一起,通过后面的袋式除尘器除去;湿法脱硫则使用较稀的石灰液在喷淋塔内洗脱SO2,石灰的添加根据pH的控制要求来添加,pH一般控制在6左右的酸性范围。SO2首先被吸收到水相,在水中形成亚硫酸并和CaCO3(或Ca(OH)2)反应生成,亚硫酸钙和亚硫酸氢钙和硫酸钙,除了石灰或石灰石,用作烟气脱硫的碱性材料还有NaOH、氨水、MgO等。
烟气的脱硝分为还原法和氧化法两类,还原法使用氨或尿素作为还原剂,使用V5O2作为催化剂在300-400℃的温度条件下,或不使用催化剂在1000℃的温度条件下将烟气中的NOx选择性地还原成氮气。选择性催化还原法由于需要使用含过渡金属元素的催化剂,催化剂会受到烟气中尘埃的磨损而需要经常更换,同时有氨泄漏及温度条件苛刻等问题,其使用受到一定的限制,选择性非催化还原法则脱硝效果无法满足严格的NOx排放标准,因而其使用也受到限制。而氧化法则使用臭氧和H2O2等氧化剂将NOx中的NO(占烟气中NOx的90%以上)氧化成更容易洗脱的NO2或N2O5(NO2占90%以上),并和烟气中的SO2一起在湿式洗涤塔中去除。氧化法脱硝由于工艺简单,无需使用催化剂,适用 温度范围广,因此在使用成本和适用性上有一定优势。
由于NO2和SO2的洗涤在适用的吸收剂以及吸收条件上的差别,NO2在常规的SO2吸收塔中洗涤效果较差,不能满足生产上脱硝的要求,SO2由于易溶于水,所以它在液体中的吸收比较快,很快生成H2SO3,而H2SO3和许多包括钠碱和石灰在内的碱液都能发生反应,因此,包括NaOH和石灰在内的许多碱液都能作为SO2的吸收剂。而NO2在液体中的吸收要复杂的多,一方面靠NO2的水解来吸收,生成产物HNO2和HNO3,另一方面Na2SO3和EDTA等作为吸收剂,也在气液表面上参与与NO2反应,影响NO2的吸收,同时这些碱性物质也和生成的硝酸和亚硝酸发生中和反应。NaOH的存在对NO2的吸收速率没有影响,但SO2和NaOH的反应产物Na2SO3对NO2起到了吸收作用,而使用Na2SO3做吸收剂时,SO2的存在对NO2的吸收起到抑制作用。这表明,使用碱性物质如NaOH做脱硫吸收剂时,其产物亚硫酸根离子能进行NO2吸收,从而有可能在脱硫塔中同时进行脱硫脱硝。但是,由于烟气中的SO2和NO2浓度是变化的,其构成比例也有较大的变幅,同时这两者的吸收速率也很不一样,脱硫往往仅需要2秒左右的吸收时间,而脱硝需要比脱硫长的多的时间,因此实现同时吸收基本不可能。
发明内容
为解决上述提到的问题,本发明提供一个能同时脱硫和脱硝的***,节约了成本,也实现了对环境的保护,为实现该目的,本发明采用的技术方案如下:
一种烟气脱硝脱硫洗涤***,所述的洗涤***包括有脱硫塔、脱硝塔、塔连接管、脱硫液排管、脱硝液排管和脱硫塔废液排放管,
所述的脱硫塔上设有烟气入口和用于使脱硫液于脱硫塔内循环使用的脱硫液循环管,所述的脱硫液循环管入口位于脱硫塔底部,脱硫液循环管出口设于 脱硫塔上部,所述的脱硫液循环管上设有用于抽取脱硫液的脱硫循环泵,所述的脱硫液循环管上设有脱硫液添加口;
所述的脱硝塔上设有用于使脱硝液于脱硝塔内循环使用的脱硝液循环管和烟气出口,所述的脱硝液循环管入口位于脱硝塔底部,脱硝液循环管出口位于脱硝管上部,所述的脱硝液循环管上设有用于抽取脱硝液的脱硝循环泵,所述的脱硝液循环管上设有脱硝液添加口,所述的烟气出口设于脱硝塔的顶部;
所述的脱硫塔和脱硝塔之间设有塔连接管,塔连接管入口位于脱硫塔顶部,塔连接管出口位于脱硝塔底部;
所述的脱硫液循环管还连接用于从脱硫塔底部抽取脱硫废液并将其送入脱硝塔的脱硫液排管,脱硫液排管入口位于脱硝塔底部,所述的脱硫液排管设有用于反应后的脱硫液排放至脱硝管的脱硫废液控制阀门,所述的脱硫液排管连接用于排放脱硫废液的脱硫塔废液排放管,所述的脱硫塔废液排放管上设有脱硫塔废液排放管阀门;
所述的脱硝液循环管连接有用于从脱硝塔排放脱硝液至脱硫塔的脱硝液排管,所述的脱硝液排管上设有脱硝液排管控制阀门15。
进一步的,所述的脱硫塔为喷淋塔或文丘里吸收塔。
进一步的,所所述的脱硝塔为填充塔或喷淋塔。
进一步的,所所述的烟气入口位于脱硫塔的中下部。
一种烟气脱硝脱硫方法,所述的方法包括如下步骤,
1)烟气自烟气入口进入脱硫塔内脱硫,包含有NaOH的脱硫液自脱硫液添加口加入脱硫塔中,脱硫循环泵从脱硫塔底抽脱硫液,脱硫液顺脱硫液循环管向上流动并从脱硫液循环管出口淋下,脱硫;优选的,所述的脱硫液还包括Ca(OH)2
在脱硫塔里,但他们的添加是按照pH的变化来加的,采用的是控制pH的方法来控制脱硫液的添加量,塔内吸硫后的脱硫液pH的控制范围为6-9,脱硫反应方程式如下:
SO2+H2O→H2SO3;
H2SO3+2NaOH→Na2SO3+2H2O;
Na2SO3+H2SO3→2NaHSO3;
NaHSO3+NaOH→Na2SO3+H2O;
Na2SO3+1/2O2→Na2SO4。
2)脱硫后的烟气通过塔连接管进入脱硝塔脱硝,包含有NaOH和Na2SO3的脱硝液自脱硝液添加口加入脱硝塔内,脱硫塔内脱硝液中NaOH的含量为0.1-1WT%,Na2SO3为0.01-0.5mol/L,脱硝循环泵从脱硝管底部抽取脱硝液,脱硝液顺着脱硝液循环管向上流动并从脱硝液循环管出口淋下,脱硝;
含有SO2和NO2的废气首先进入脱硫塔,SO2先和脱硫塔中的NaOH反应生成Na2SO3,部分Na2SO3可以进一步用来和SO2反应生成NaHSO3,而这两者都会和烟气中的氧反应生成Na2SO4,此废液中是三者的混合液,其中Na2SO3可以占到总盐的20-40%,由于脱硫塔的烟气的停留时间短,脱硫塔内一般脱硝效果有限,剩余的SO2和绝大部分的NO2随着烟气进入后面的脱硝塔,在脱硝塔受添加的较高浓度的脱硝液脱硝,NO2得以有效地脱除。脱硝塔的反应后液体中含有较高浓度的碱液,将其回流到脱硫塔,用作对脱硫塔碱液NAOH的补充。
3)脱硫脱硝后的气体自烟气出口排出。
进一步的,在步骤2)中,当脱硝液中的Na2SO3的含量低于0.01mol/L时,脱硝液也可以采用其它碱性物质,反应后的脱硫液沿脱硫液循环管进入脱硫液排管,由脱硫液排管进入脱硝塔中,当Na2SO3的含量高于0.5mol/L时,关闭脱硫废液控制阀门。
进一步的,在步骤1)中,当反应后的脱硫液内Na2SO3含量过高时,反应后的脱硫液自脱硫塔废液排放管排出,为了维持脱硫塔内的盐的浓度,一部分的脱硫液或者说反应后的脱硫液作为废水排走,还有一部分排入后面的脱硝塔,反应后的脱硫液中含有Na2SO3,用来补充脱硝液,排到脱硝塔中的分流的流量根据Na2SO3的浓度以及进入脱硝塔内的气体的NO2浓度来决定,一般来说为脱硫塔循环液的10-50%。
进一步的,在步骤1)中,脱硝液自脱硝液循环管从脱硝塔进入脱硝液排管,由脱硝排管进入脱硫塔内给脱硫塔内供NaOH,为了控制脱硝液中的总盐浓度,也必须排走一定量的反应后的脱硝液,反应后的脱硝液含有较高浓度的NaOH,可以经脱硝液排管排入脱硫塔中,用于补充脱离液。
本发明的有益效果在于,提供一种同时能脱硝脱硫的***,而且,两个***之间的脱硫液和脱硝液可以相互共用,大大的节省了成本,提高了效率。
附图说明
图1为本发明的流程示意图。
1.烟气入口;2.脱硫塔;3.塔连接管;4.脱硝塔;5.烟气出口;6.脱硫循环泵;7.脱硫液循环管;8.脱硫液排管;9.脱硫塔废液排放管;10.脱硫废液控制阀门;11.脱硫液添加口;12.脱硝循环泵;13.脱硝液循环管;14.脱硝液排管;15.脱硝液排管控制阀门;16.脱硝液添加口;11。脱硫塔废液排放管阀门。
具体实施方式
实施例1
请参照图1,一种烟气脱硝脱硫洗涤***,所述的洗涤***包括有脱硫塔2、脱硝塔4、塔连接管3、脱硫液排管8、脱硝液排管14和脱硫塔废液排放管9,所述的脱硫塔2上设有烟气入口1和用于使脱硫液于脱硫塔2内循环使用的脱硫液循环管7,所述的脱硫液循环管7入口位于脱硫塔下部,脱硫液循环管7出口设于脱硫塔2上部,所述的脱硫液循环管7上设有用于抽取脱硫液的脱硫循环泵6,所述的脱硫液循环管7上还设有脱硫液添加口11;
所述的脱硝塔4上设有用于使脱硝液于脱硝塔4内循环使用的脱硝液循环管13和烟气出口5,所述的脱硝液循环管13入口位于脱硝塔4底部,脱硝液循环管13出口位于脱硝管上部,所述的脱硝液循环管13上设有用于抽取脱硝液的脱硝循环泵12,所述的脱硝液循环管13上设有脱硝液添加口16,所述的烟气出口5设于脱硝塔4的顶部;
所述的脱硫塔2和脱硝塔4之间设有塔连接管3,塔连接管3入口位于脱硫塔2顶部,塔连接管3出口位于脱硝塔4中下部,脱硝液的液面之上;
所述的脱硫液循环管7还连接用于从脱硫塔2底部抽取脱硫废液并将其送入脱硝塔4的脱硫液排管8,脱硫液排管8入口位于脱硝塔4中下部,所述的脱硫液排管8设有用于反应后的脱硫液排放至脱硝管的脱硫废液控制阀门10,所述的脱硫液排管8连接用于排放脱硫废液的脱硫塔2废液排放管,所述的脱硫塔2废液排放管上设有脱硫塔废液排放管阀门11;
所述的脱硝液循环管13连接有用于从脱硝塔排放脱硝液至脱硫塔2的脱硝液排管14,所述的脱硝液排管14上设有脱硝液排管控制阀门15。
所述的脱硫塔2可以为喷淋塔或文丘里吸收塔。
所述的脱硝塔4可以为填充塔或喷淋塔。
所述的烟气入口1位于脱硫塔2的中下部,脱硫液的液面之上。
实施例2
本发明还提供一种烟气脱硝脱硫方法,所述的方法包括如下步骤,
1)烟气自烟气入口1进入脱硫塔2内脱硫,包含有NaOH的脱硫液自脱硫液添加口11加入脱硫塔2中,脱硫循环泵6从脱硫塔2底抽脱硫液,脱硫液顺脱硫液循环管7向上流动并从脱硫液循环管7出口淋下,脱硫;优选的,所述的脱硫液还包括Ca(OH)2;当反应后的脱硫液内Na2SO3含量过高时,反应后的脱硫液自脱硫塔废液排放管9排出,为了维持脱硫塔内的盐的浓度,一部分的脱硫液或者说反应后的脱硫液作为废水排走,还有一部分排入后面的脱硝塔,反应后的脱硫液中含有Na2SO3,用来补充脱硝液,排到脱硝塔中的分流的流量根据Na2SO3的浓度以及进入脱硝塔内的气体的NO2浓度来决定,一般来说为脱硫塔循环液的10-50%,也必须排走一定量的反应后的脱硝液,反应后的脱硝液含有较高浓度的NaOH,可以经脱硝液排管14排入脱硫塔中,用于补充脱离液。
在脱硫塔2里,但他们的添加是按照pH的变化来加的,采用的是控制pH的方法来控制脱硫液的添加量,塔内吸硫后的脱硫液pH的控制范围为6-9,脱硫反应方程式如下:
SO2+H2O→H2SO3;
H2SO3+2NaOH→Na2SO3+2H2O;
Na2SO3+H2SO3→2NaHSO3;
NaHSO3+NaOH→Na2SO3+H2O;
Na2SO3+1/2O2→Na2SO4。
2)脱硫后的烟气通过塔连接管3进入脱硝塔4脱硝,包含有NaOH和Na2SO3的脱硝液自脱硝液添加口16加入脱硝塔4内,脱硫塔2内脱硝液中NaOH的含量为0.1-1WT%,Na2SO3为0.01-0.5mol/L,脱硝循环泵12从脱硝管底部抽取脱硝液,脱硝液顺着脱硝液循环管13向上流动并从脱硝液循环管13出口淋下,脱硝;
含有SO2和NO2的废气首先进入脱硫塔2,SO2先和脱硫塔中的NaOH反应生成Na2SO3,部分Na2SO3可以进一步用来和SO2反应生成NaHSO3,而这两者都会和烟气中的氧反应生成Na2SO4,此废液中是三者的混合液,其中Na2SO3可以占到总盐的20-40%,由于脱硫塔的烟气的停留时间短,脱硫塔内一般脱硝效果有限,剩余的SO2和绝大部分的NO2随着烟气进入后面的脱硝塔,在脱硝塔受添加的较高浓度的脱硝液脱硝,NO2得以有效地脱除。脱硝塔的反应后液体中含有较高浓度的碱液,将其回流到脱硫塔,用作对脱硫塔碱液NAOH的补充;当脱硝液中的Na2SO3的含量低于0.01mol/L时,脱硝液也可以采用其它碱性物质,反应后的脱硫液沿脱硫液循环管7进入脱硫液排管8,由脱硫液排管8进入脱硝塔中,当Na2SO3的含量高于0.5mol/L时,关闭脱硫废液控制阀门10。
3)脱硫脱硝后的气体自烟气出口5排出。

Claims (9)

  1. 一种烟气脱硝脱硫洗涤***,其特征在于,所述的洗涤***包括有脱硫塔、脱硝塔、塔连接管、脱硫液排管、脱硝液排管和脱硫塔废液排放管,
    所述的脱硫塔上设有烟气入口和用于使脱硫液于脱硫塔内循环使用的脱硫液循环管,所述的脱硫液循环管入口位于脱硫塔下部,脱硫液循环管出口设于脱硫塔上部,所述的脱硫液循环管上设有用于抽取脱硫液的脱硫循环泵,所述的脱硫液循环管上还设有脱硫液添加口;
    所述的脱硝塔上设有用于使脱硝液于脱硝塔内循环使用的脱硝液循环管和烟气出口,所述的脱硝液循环管入口位于脱硝塔底部,脱硝液循环管出口位于脱硝管上部,所述的脱硝液循环管上设有用于抽取脱硝液的脱硝循环泵,所述的脱硝液循环管上设有脱硝液添加口,所述的烟气出口设于脱硝塔的顶部;
    所述的脱硫塔和脱硝塔之间设有塔连接管,塔连接管入口位于脱硫塔顶部,塔连接管出口位于脱硝塔中下部;
    所述的脱硫液循环管还连接用于从脱硫塔底部抽取脱硫废液并将其送入脱硝塔的脱硫液排管,脱硫液排管入口位于脱硝塔中下部,所述的脱硫液排管设有用于反应后的脱硫液排放至脱硝管的脱硫废液控制阀门,所述的脱硫液排管连接用于排放脱硫废液的脱硫塔废液排放管,所述的脱硫塔废液排放管上设有脱硫塔废液排放管阀门;
    所述的脱硝液循环管连接有用于从脱硝塔排放脱硝液至脱硫塔的脱硝液排管,所述的脱硝液排管上设有脱硝液排管控制阀门。
  2. 如权利要求1所述的洗涤***,其特征在于,所述的脱硫塔为喷淋塔或文丘里吸收塔。
  3. 如权利要求1所述的洗涤***,其特征在于,所述的脱硝塔为填充塔或喷淋 塔。
  4. 如权利要求1所述的洗涤***,其特征在于,所述的烟气入口位于脱硫塔的中下部。
  5. 一种烟气脱硝脱硫方法,其特征在于,所述的方法包括如下步骤,
    1)烟气自烟气入口进入脱硫塔内脱硫,包含有NaOH的脱硫液自脱硫液添加口加入脱硫塔中,脱硫循环泵从脱硫塔底抽脱硫液,脱硫液顺脱硫液循环管向上流动并从脱硫液循环管出口淋下,脱硫;
    2)脱硫后的烟气通过塔连接管进入脱硝塔脱硝,包含有NaOH和Na2SO3的脱硝液自脱硝液添加口加入脱硝塔内,脱硫塔内脱硝液中NaOH的含量为0.1-1WT%,Na2SO3为0.01-0.5mol/L,脱硝循环泵从脱硝管底部抽取脱硝液,脱硝液顺着脱硝液循环管向上流动并从脱硝液循环管出口淋下,脱硝;
    3)脱硫脱硝后的气体自烟气出口排出。
  6. 如权利要求5所述的脱硝脱硫方法,其特征在于,所述的脱硫液还包括Ca(OH)2
  7. 如权利要求5所述的脱硝脱硫方法,其特征在于,在步骤2)中,当脱硝液中的Na2SO3的含量低于0.01mol/L时,反应后的脱硫液沿脱硫液循环管进入脱硫液排管,由脱硫液排管进入脱硝塔中,当Na2SO3的含量高于0.5mol/L时,关闭脱硫废液控制阀门。
  8. 如权利要求5所述的脱硝脱硫方法,其特征在于,在步骤1)中,当反应后的脱硫液内Na2SO3含量过高时,反应后的脱硫液自脱硫塔废液排放管排出。
  9. 如权利要求4所述的脱硝脱硫方法,其特征在于,在步骤1)中,脱硝液自脱硝液循环管从脱硝塔进入脱硝液排管,由脱硝排管进入脱硫塔内给脱硫塔 内供NaOH。
PCT/CN2016/070847 2015-12-09 2016-01-14 一种烟气脱硝脱硫洗涤***及脱硝脱硫方法 WO2017096692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510900407.4 2015-12-09
CN201510900407.4A CN105311946A (zh) 2015-12-09 2015-12-09 一种烟气脱硝脱硫洗涤***及脱硝脱硫方法

Publications (1)

Publication Number Publication Date
WO2017096692A1 true WO2017096692A1 (zh) 2017-06-15

Family

ID=55240863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070847 WO2017096692A1 (zh) 2015-12-09 2016-01-14 一种烟气脱硝脱硫洗涤***及脱硝脱硫方法

Country Status (2)

Country Link
CN (1) CN105311946A (zh)
WO (1) WO2017096692A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754585A (zh) * 2017-10-13 2018-03-06 华电电力科学研究院 一种用于电厂的废气脱硫脱硝净化过滤装置及过滤方法
CN108043204A (zh) * 2017-12-20 2018-05-18 上海电力学院 一种高钙粉煤烟气脱硫***及其应用
CN108211743A (zh) * 2018-03-09 2018-06-29 无锡雪浪环境科技股份有限公司 一种烟气脱酸脱硝一体化装置及其使用方法
CN109966882A (zh) * 2019-04-26 2019-07-05 山东中玻节能环保发展有限公司 一种湍流混合式烧结机烟气干法脱硫装置
CN112569716A (zh) * 2020-11-06 2021-03-30 中船澄西船舶修造有限公司 一种40000吨自卸船用脱硫装置
CN112827352A (zh) * 2021-03-30 2021-05-25 广东烁鼎环境科技有限公司 用于垃圾焚烧飞灰熔融烟气的脱硫脱硝水洗塔及使用方法
CN113117474A (zh) * 2019-12-31 2021-07-16 中晶环境科技股份有限公司 干法烟气脱硫脱硝的一体化方法
CN113648804A (zh) * 2020-05-12 2021-11-16 山东清沂山石化科技有限公司 一种新型炉内脱硫、抑氮的技术方法
CN115634522A (zh) * 2022-10-20 2023-01-24 云南曲靖钢铁集团呈钢钢铁有限公司 一种带式烧结机烟气的环保节能型深度净化***及方法
CN115646186A (zh) * 2021-12-31 2023-01-31 山东庚辰环保新材料有限公司 循环脱硫装置、工艺及应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108211706A (zh) * 2018-02-12 2018-06-29 山东大学 一种用于钢铁行业的脱硫脱硝及废水零排放***及方法
CN108554145A (zh) * 2018-06-28 2018-09-21 广东佳德环保科技有限公司 一种烟气脱硫脱硝除尘脱白装置
CN109589765A (zh) * 2018-12-13 2019-04-09 湖北蔚天环保科技有限公司 一种结合石灰-石膏法脱硫工艺的超低温脱硝装置
CN109589766A (zh) * 2018-12-17 2019-04-09 湖北蔚天环保科技有限公司 一种结合双碱法脱硫工艺的超低温脱硝装置
CN109718653B (zh) * 2019-02-14 2020-07-07 中国石油大学(北京) 一种烟气脱硫脱硝装置及方法
CN109833763B (zh) * 2019-03-26 2021-06-25 盐城国环睿保科技有限公司 一种火电厂烟气脱硫脱硝装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203166A (zh) * 2012-01-12 2013-07-17 北京化工大学 一种高效去除烟气中NOx污染的工艺
CN104437084A (zh) * 2014-12-10 2015-03-25 上海亨远船舶设备有限公司 一种船舶内燃机尾气脱硫脱硝方法
CN104607029A (zh) * 2015-01-23 2015-05-13 大连理工大学 一种化学吸收结合厌氧好氧转化同步烟气脱硫脱硝工艺
CN105056746A (zh) * 2015-08-18 2015-11-18 江苏一同环保工程技术有限公司 锅炉烟气一体化分布式脱硫脱硝工艺的实现方法
CN105056723A (zh) * 2015-07-29 2015-11-18 浙江富春江环保热电股份有限公司 双塔型等离子体耦合钠基吸收烟气深度净化装置及方法
CN205361029U (zh) * 2015-12-09 2016-07-06 深圳广昌达环境科学有限公司 一种烟气脱硝脱硫洗涤***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524984A1 (de) * 1975-06-05 1976-12-16 Hoechst Ag Verfahren zur reinigung von nitrosehaltigen abgasen
US7628967B2 (en) * 2002-10-01 2009-12-08 Airborne Industrial Minerals, Inc. Removal of Hg, NOx, and SOx with using oxidants and staged gas/liquid contact
CN104801160A (zh) * 2015-04-02 2015-07-29 北京燕京啤酒股份有限公司 一种结合湿法脱硫技术降低中小型工业燃煤锅炉烟气中氮氧化物的方法
CN204799086U (zh) * 2015-07-14 2015-11-25 杨佳朋 一种玻璃窑炉烟气脱硫脱硝处理***
CN204799101U (zh) * 2015-07-14 2015-11-25 杨佳朋 一种锅炉烟气脱硫脱硝处理***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203166A (zh) * 2012-01-12 2013-07-17 北京化工大学 一种高效去除烟气中NOx污染的工艺
CN104437084A (zh) * 2014-12-10 2015-03-25 上海亨远船舶设备有限公司 一种船舶内燃机尾气脱硫脱硝方法
CN104607029A (zh) * 2015-01-23 2015-05-13 大连理工大学 一种化学吸收结合厌氧好氧转化同步烟气脱硫脱硝工艺
CN105056723A (zh) * 2015-07-29 2015-11-18 浙江富春江环保热电股份有限公司 双塔型等离子体耦合钠基吸收烟气深度净化装置及方法
CN105056746A (zh) * 2015-08-18 2015-11-18 江苏一同环保工程技术有限公司 锅炉烟气一体化分布式脱硫脱硝工艺的实现方法
CN205361029U (zh) * 2015-12-09 2016-07-06 深圳广昌达环境科学有限公司 一种烟气脱硝脱硫洗涤***

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107754585A (zh) * 2017-10-13 2018-03-06 华电电力科学研究院 一种用于电厂的废气脱硫脱硝净化过滤装置及过滤方法
CN108043204A (zh) * 2017-12-20 2018-05-18 上海电力学院 一种高钙粉煤烟气脱硫***及其应用
CN108043204B (zh) * 2017-12-20 2024-01-26 上海电力学院 一种高钙粉煤烟气脱硫***及其应用
CN108211743A (zh) * 2018-03-09 2018-06-29 无锡雪浪环境科技股份有限公司 一种烟气脱酸脱硝一体化装置及其使用方法
CN109966882A (zh) * 2019-04-26 2019-07-05 山东中玻节能环保发展有限公司 一种湍流混合式烧结机烟气干法脱硫装置
CN113117474A (zh) * 2019-12-31 2021-07-16 中晶环境科技股份有限公司 干法烟气脱硫脱硝的一体化方法
CN113648804A (zh) * 2020-05-12 2021-11-16 山东清沂山石化科技有限公司 一种新型炉内脱硫、抑氮的技术方法
CN112569716A (zh) * 2020-11-06 2021-03-30 中船澄西船舶修造有限公司 一种40000吨自卸船用脱硫装置
CN112827352A (zh) * 2021-03-30 2021-05-25 广东烁鼎环境科技有限公司 用于垃圾焚烧飞灰熔融烟气的脱硫脱硝水洗塔及使用方法
CN115646186A (zh) * 2021-12-31 2023-01-31 山东庚辰环保新材料有限公司 循环脱硫装置、工艺及应用
CN115646186B (zh) * 2021-12-31 2024-03-08 山东庚辰环保新材料有限公司 循环脱硫装置、工艺及应用
CN115634522A (zh) * 2022-10-20 2023-01-24 云南曲靖钢铁集团呈钢钢铁有限公司 一种带式烧结机烟气的环保节能型深度净化***及方法

Also Published As

Publication number Publication date
CN105311946A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2017096692A1 (zh) 一种烟气脱硝脱硫洗涤***及脱硝脱硫方法
CN100418611C (zh) 从气流中去除污染物的改进方法
Zheng et al. Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system
CN101502744B (zh) 一种利用赤泥作为吸收剂脱除烟气中的酸性气体的方法
US11090608B2 (en) System and method for desulfurization and denitrification of alumina calcination flue gas, and use
US6221325B1 (en) Process for controlling ammonia slip in the reduction of sulfur dioxide emission
CN102188897B (zh) 湿法烟气联合脱硫脱氮方法
CN108176208B (zh) 一种配合前置氧化技术的高效的湿法脱硝剂
CN106731783B (zh) 一体化烟气脱硫脱硝剂及其使用方法
CN204891568U (zh) 锅炉烟气一体化分布式脱硫脱硝装置
Tang et al. Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4
KR20190130558A (ko) 개선된 연도 가스 탈황 성능을 위한 산화 제어
CN108671716A (zh) 两级臭氧氧化协同吸收实现烟气二氧化硫和氮氧化物超低排放的方法和装置
CN105056746A (zh) 锅炉烟气一体化分布式脱硫脱硝工艺的实现方法
CN101310834B (zh) 气液接触分级氧化法脱硫、脱硝、脱汞工艺
CN110479057A (zh) 一种化学氧化吸收处理烟气污染物的方法
CN103721556A (zh) 一种脱硫脱硝脱汞添加剂及其制造方法
CN103801177B (zh) 一种钙镁法同时脱硫脱硝脱汞的烟气处理方法
CN105727723A (zh) 用于湿式氨法脱硫的三循环脱硫方法及烟气脱硫塔或***
CN105032145A (zh) 锅炉烟气一体化分布式脱硫脱硝装置
CN104607007A (zh) 一种烟气除尘脱硫反应器及烟气脱硫方法
CN205760545U (zh) 用于湿式氨法脱硫的三循环烟气脱硫塔或***
CN206762618U (zh) 一种干湿一体化脱硫脱硝装置
CN205361029U (zh) 一种烟气脱硝脱硫洗涤***
CN107398165A (zh) 一种锅炉烟气的脱硫脱硝工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871903

Country of ref document: EP

Kind code of ref document: A1