WO2017096508A1 - 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法 - Google Patents

陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法 Download PDF

Info

Publication number
WO2017096508A1
WO2017096508A1 PCT/CN2015/096557 CN2015096557W WO2017096508A1 WO 2017096508 A1 WO2017096508 A1 WO 2017096508A1 CN 2015096557 W CN2015096557 W CN 2015096557W WO 2017096508 A1 WO2017096508 A1 WO 2017096508A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction material
brake pad
ceramic
friction
ceramic friction
Prior art date
Application number
PCT/CN2015/096557
Other languages
English (en)
French (fr)
Inventor
朱俊
吴鹰
Original Assignee
安徽大富重工机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽大富重工机械有限公司 filed Critical 安徽大富重工机械有限公司
Priority to CN201580080225.5A priority Critical patent/CN107614920A/zh
Priority to PCT/CN2015/096557 priority patent/WO2017096508A1/zh
Publication of WO2017096508A1 publication Critical patent/WO2017096508A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing

Definitions

  • the invention relates to the field of friction materials, in particular to a ceramic friction material, an automobile brake pad and a method for preparing an automobile brake pad.
  • the brake pad is an important part of the vehicle brake system. It is the most critical safety part and plays a decisive role in the braking effect. Therefore, the choice of the brake pad material is very important and is related to human life.
  • the friction material of the existing brake pad is a semi-metal or low-metal mixed friction material, and these friction materials contain steel fibers.
  • the steel fiber is prone to rust, and it is bonded to the couple after rusting, which is likely to cause damage to the brake block.
  • the steel brazing has high hardness and high density, and it is easy to generate noise and dust during the braking process. Its high temperature resistance is also poor, sensitive to temperature changes, the frictional performance of the brake pad is unstable, it is easy to cause the friction coefficient to decrease, and it is easy to bring static electricity, so that the friction powder is not taken away by the wind with the movement of the vehicle, but is sticky. Attached to the hub, affecting the aesthetics of the vehicle.
  • the invention provides a preparation method of a ceramic friction material, an automobile brake pad and an automobile brake pad, which solves the problems of easy damage, high noise and unstable friction performance existing in the prior art.
  • one technical solution adopted by the present invention is to provide a ceramic friction material comprising the following components by weight: organic fiber: 10%-15%; filler: 2%-5% Binder: 7%-12%; friction modifier: 19%-28%; friction increasing agent: 3%-5%; wherein the ceramic friction material does not include iron-containing substances.
  • organic fiber is selected from the group consisting of aramid fiber, cellulose fiber, polyacrylonitrile fiber, carbon fiber And at least one of wood fibers.
  • the ceramic friction material further comprises potassium titanate fibers and copper fibers, and the weight percentage of the potassium titanate fibers in the ceramic friction material is 10%-15%, and the copper fibers are in the ceramic friction material. The weight percentage in the range is 10%-15%.
  • the filler is at least one selected from the group consisting of nitrile rubber powder, butylbenzene, silicone rubber, fluororubber, limestone, dolomite and kaolin.
  • the binder is at least one selected from the group consisting of an amine grease, a boron modified resin, and a ring-opening polymerized phenol resin.
  • the friction modifier is at least one selected from the group consisting of vermiculite, graphite, molybdenum disulfide, barium sulfide, talc, cryolite, coke and mica.
  • the friction modifier is graphite and barium sulfide, wherein the weight percentage of graphite in the ceramic friction material is 15%-20%, and the weight percentage of barium sulfide in the ceramic friction material is 4%- 8%.
  • the friction increasing agent is at least one selected from the group consisting of quartz, silicon carbide, and friction powder.
  • the friction increasing agent is a friction powder
  • the weight percentage of the friction powder in the ceramic friction material is 3% to 5%.
  • the ceramic friction material further comprises zirconia, and the weight percentage of the zirconia in the ceramic friction material is 15%-18%.
  • the organic fiber is an aramid fiber
  • the filler is a nitrile rubber powder
  • the binder is a boron-modified resin
  • the particle size of the graphite is 20-60 mesh
  • the particle of the boron-modified resin The diameter of the mesh is 200 mesh
  • the particle size of the copper fiber is 30 mesh
  • the particle size of the zirconia is 325 mesh or less
  • the particle size of the friction powder is 20 to 120 mesh
  • the particle size of the barium sulfide is 325 mesh or less.
  • an automobile brake pad comprising a ceramic friction material comprising the following components by weight: 10% - 15% organic fiber, 2%-5% filler, 7%-12% binder, 19%-28% friction modifier, and 3%-5% friction agent, and the ceramic friction Materials do not include iron-containing materials quality.
  • another technical solution adopted by the present invention is to provide a method for preparing an automobile brake pad, which comprises the steps of: mixing the following components by weight with alkaline water to obtain a mixed material. : 10%-15% organic fiber, 2%-5% filler, 7%-12% binder, 19%-28% friction modifier and 3%-5% friction agent, and The mixture has a tap density of 0.6-0.8 g/ml, wherein the raw materials of the ceramic friction material do not include an iron-containing material; and the mixture is placed on the hot-pressed mold with the rubberized steel back The hot press forming is performed; the hot press formed semi-finished product is subjected to heat curing treatment to obtain an automobile brake pad.
  • the temperature of the hot pressing die is 230 ° C - 260 ° C
  • the pressure is 230-280 kg / cm 2
  • the pressing time is 170 - 220 seconds.
  • the temperature is raised from normal temperature to 145 ° C - 155 ° C in 45 minutes, and the temperature is maintained for 10-20 minutes; then the temperature is raised to 170 ° C - 190 ° C in 20 minutes, and the temperature is maintained for 13-25 minutes; In another 20 minutes, the temperature was raised to 190 ° C - 210 ° C, and the temperature was maintained for 5.5-7 hours; and then the temperature was lowered to 100-120 ° C in 1 hour.
  • the method further comprises: grinding the automobile brake pad to have a flatness of ⁇ 0.10 mm and a parallelism of ⁇ 0.15 mm.
  • the method further comprises: electrostatically spraying the steel back surface of the automobile brake pad.
  • the method further comprises: riveting the automobile brake pad and the wear indicator.
  • the method further comprises: installing a muffler on the automobile brake pad.
  • the raw material of the ceramic friction material further comprises potassium titanate fiber and copper fiber, wherein the weight percentage of the potassium titanate fiber in the ceramic friction material is 10%-15%, and the copper fiber is in the ceramic The weight percentage of the raw material of the friction material is 10% to 15%.
  • the present invention uses organic fibers and iron-free materials as raw materials for ceramic friction materials, and since the raw materials of the ceramic friction materials are all iron-free materials, the present invention
  • the ceramic friction material does not cause the damage of the brake pad due to the bonding of the iron due to the rust of the iron, and since the organic fiber is used in the present invention, the organic fiber has high temperature resistance and friction in low and high temperatures.
  • the ceramic friction material can be reduced Friction damage, noise reduction, large gas porosity, low thermal conductivity and stable friction performance, and the static friction coefficient index of the ceramic friction material of the invention is significantly improved compared with the similar ceramic-based formulation.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for preparing an automobile brake pad according to the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a method for preparing an automobile brake pad according to the present invention
  • FIG. 3 is a process view of a second embodiment of a method for preparing an automobile brake pad according to the present invention.
  • FIG. 4 is a schematic flow chart of a third embodiment of a method for preparing an automobile brake pad according to the present invention.
  • FIG. 5 is a schematic flow chart of a fourth embodiment of a method for preparing an automobile brake pad according to the present invention.
  • Fig. 6 is a graph showing the results of heat conduction test of the brake pad prepared by the fourth embodiment of the method for preparing an automobile brake pad according to the present invention.
  • a ceramic friction material comprising the following weight percentage components: 10%-15% organic fiber, 2%-5% filler, 7%-12% binder, 19%-28% friction modification And 3%-5% friction enhancer.
  • the ceramic friction material does not include the iron-containing substance, and thus the invention can avoid the problem of the bond pair damage caused by the rust of the iron and cause the brake block to be damaged.
  • the present invention uses an organic fiber for retaining the friction material, and at the same time, the organic fiber absorbs a large amount of pressure generated by the friction interface to enhance the effect, the organic fiber is resistant to high temperature, the friction coefficient in the low and high temperature is stable, and the wear is small, and Low hardness and low brake noise.
  • the filler mainly plays a role in improving the physical and mechanical properties of the material and adjusting the friction performance in the friction material.
  • the binder is the core of the ceramic friction material, and its performance plays an important role in the brake pad.
  • the binder should have long life, good stability and heat resistance, and easy processing.
  • the friction modifier group should play a lubricating role, which can improve the working stability, scratch resistance, seizure resistance, anti-adhesion and wear resistance of the friction material, reduce the braking noise, and is particularly beneficial for reducing the dual material.
  • the wear and the friction pair work smoothly, thereby improving the friction and wear properties of the material, or reacting with oxygen to form an interface oxide film, thereby protecting the friction material and improving the friction and wear performance.
  • the content of the friction modifier has a great influence on the friction and wear properties of the material. The more the content, the better the wear resistance of the material, but the excessive friction modifier will cause the friction coefficient of the material to be too small and the mechanical strength to decrease.
  • the requirements for the friction material, and therefore the content of the friction modifier are also important, for example, the friction modifier of the present invention is 19% to 28% by weight in the ceramic friction material.
  • the friction increasing agent acts as friction, anti-wear, heat resistance and corrosion resistance, increases the friction coefficient, compensates for the friction coefficient caused by the lubricant, protects the dual surface, controls the formation of the friction layer, and increases the bite with the friction pair surface.
  • the content of friction increasing agent has a great influence on the friction and wear properties of the material. Excessive content will increase the wear of the dual surface.
  • the amount of abrasive in the friction material should be strictly controlled, so as not to damage the duality as much as possible.
  • the friction properties are suitably improved, and thus the content of the friction enhancer is also important.
  • the weight percent of the friction enhancer of the present invention in the ceramic friction material is from 3% to 5%.
  • the present invention makes a ceramic friction material by using an organic fiber and an iron-free material. Since the ceramic friction material does not contain an iron substance, the ceramic friction material of the present invention does not cause iron rust.
  • the ceramic friction material comprises the following weight percentages Components: 12% organic fiber, 4% filler, 9% binder, 25% friction modifier and 4% friction enhancer.
  • the ceramic friction material comprises the following components by weight: 14% organic fiber, 3% filler, 11% binder, 27% friction modifier, and 4% Adding friction agent.
  • the ceramic friction material comprises the following components by weight: 14% organic fiber, 3% filler, 8% binder, 20% friction modifier, and 4% Adding friction agent.
  • the organic fiber is selected from at least one of aramid fiber, cellulose fiber, polyacrylonitrile fiber, carbon fiber, and wood fiber.
  • the organic fiber is an aramid fiber.
  • the benzene ring of the aramid fiber is bonded to the amide group to form a rod-like rigid macromolecular chain structure, and the molecular arrangement is regular.
  • the degree of crystallinity and orientation are very good, so the strength and modulus are high, and the high temperature resistance is good.
  • the outstanding advantage is that it is a kind of organic fiber with very good thermal stability. It can be used for a long time at 180 ° C.
  • the strength at 200 ° C and 5 hours is only 10%, and the strength at 300 ° C and 50 hours is reduced by 50%.
  • the initial thermal decomposition temperature is as high as 500 ° C and does not melt until heated to decomposition.
  • Aramid fiber has soft texture, low density, large specific surface area and good adsorption. Its low density and large specific surface area make the proportion of the aramid fiber smaller and can constitute a larger volume percentage.
  • the friction material reinforced with aramid fiber has the following advantages: (1) low and high temperature friction coefficient is stable, wear is small; (2) good reinforcement effect, good impact strength; (3) low product density; (4) The product has low hardness, low braking noise and does not damage the brake pair.
  • aramid fibers have good filler retention and excellent processing capabilities, allowing the sample to have sufficient strength during pre-processing.
  • the binder and the filler can not be well dispersed into the agglomerate and uniformly dispersed, so that the surface of the pressed friction plate exhibits light-colored spots of different sizes and influences.
  • the performance uniformity and appearance quality of the product Since the surface of the aramid fiber is negatively charged, the positively charged fine powder filler is added to the compounding formula to help the surface of the aramid fiber to be neutral.
  • the ceramic friction material also includes potassium titanate fiber and copper fiber, and the potassium titanate fiber is in the ceramic friction material.
  • the weight percentage is 10%-15%, and the weight percentage of copper fiber in the ceramic friction material is 10%-15%.
  • potassium titanate fiber belongs to ceramic fiber, has good mechanical properties and physical properties, high strength, high modulus, high electrical insulation, heat and heat insulation performance and excellent infrared wavelength region emission performance.
  • Use in friction materials reduces wear and thermal decay without damaging the dual material.
  • the thermal stability of the brake pad during the heating process can be maintained due to its high heat resistance during the rubbing process.
  • the copper fiber has low hardness and is non-aggressive to the dual, which can improve the wet skid resistance and the friction recovery performance of the friction material.
  • the filler is at least one selected from the group consisting of nitrile rubber powder, butylbenzene, silicone rubber, fluororubber, limestone, dolomite and kaolin.
  • the filler is a nitrile rubber powder.
  • nitrile rubber powder usually adding a small amount of nitrile rubber can significantly improve the friction coefficient and impact resistance of the product, promote the curing of the resin, reduce the elastic modulus, increase the actual contact area between the friction pairs, and improve the braking force and shorten the braking time. Reduce the frictional temperature rise of the coupling.
  • the binder is at least one selected from the group consisting of an amine grease, a boron modified resin, and a ring-opening polymerized phenol resin.
  • the primary role of the resin in the friction material is adhesion. Without the bonding of the resin, it is difficult to form an integral friction product.
  • the resin in addition to the partial load-bearing effect, the resin also transmits the load, and uniformly distributes the concentrated load of the filler and the fiber end to the adjacent filler and fiber through the resin-filler interface to ensure the necessary friction material. Mechanical strength and friction properties.
  • the resin may be modified and then used as a binder, and the modification method includes: amine modification, boric acid modification, aromatic hydrocarbon modification, molybdenum modification, polyacyl Imine modification, phosphorus modification and cyanate modification.
  • the binder of the present invention may be a boron modified resin.
  • the modified resin can reduce the hardness of the product, increase the flexibility, plastic deformation during friction and heat generation, increase the frictional contact surface, thereby increasing the friction coefficient and, to some extent, reducing noise and softening. It also has a tough carbonized film that is not easy to fall off, so that the surface composition and heat generation are uniform, thereby ensuring a stable friction coefficient and a small wear rate.
  • the friction modifier is at least one selected from the group consisting of vermiculite, graphite, molybdenum disulfide, barium sulfide, talc, cryolite, coke, and mica.
  • the friction modifier is graphite and barium sulfide, wherein the weight percentage of graphite in the ceramic friction material is 15%-20%, and the weight percentage of barium sulfide in the ceramic friction material is 4%-8%.
  • the amount of the organic binder can be reduced, and the barium sulfide can reduce the thermal decay of the friction coefficient, reduce the high temperature wear of the product, increase the friction stability, and the hardness of the barium sulfide is low, and the friction plate can also be reduced. Braking noise.
  • the friction increasing agent is selected from at least one of quartz, silicon carbide, and friction powder.
  • the friction increasing agent is a friction powder having a weight percentage of 3% to 5% in the ceramic friction material.
  • the ceramic friction material also includes zirconia, and the weight percentage of zirconia in the ceramic friction material is 15% to 18%.
  • the addition of zirconia can increase the temperature at which the ceramic friction material is used.
  • the ceramic friction material comprises the following weight percent components including: aramid fiber: 13%; potassium titanate fiber: 14%; copper fiber: 12%; nitrile rubber powder: 3%; boron modified resin: 11%; graphite: 19%; strontium sulfide: 7%; friction powder 4% and zirconia 17%.
  • the ceramic friction material comprises the following weight percent components including: aramid fiber: 14%; potassium titanate fiber: 15%; copper fiber: 14%; nitrile rubber powder: 4% Boron modified resin: 9%; graphite: 17%; barium sulfide: 5%; friction powder 5% and zirconia 17%.
  • the particle size of graphite is 20-60 mesh, for example, 25-40 mesh or 45-55 mesh; the boron-modified resin has a particle size of 200 mesh, and the copper fiber has a particle size of 30 mesh.
  • the zirconium oxide has a particle size of 325 mesh or less, for example, 200-300 mesh or 100-190 mesh, and the friction powder has a particle size of 20 to 120 mesh, for example, 30-70 mesh or 80-110 mesh, and barium sulfide.
  • the particle size is below 325 mesh, such as 100-180 mesh or 200-310 mesh.
  • the invention also provides an automobile brake pad comprising a ceramic friction material comprising the following components by weight: 10%-15% organic fiber, 2%-5% filler, 7 %-12% binder, 19%-28% friction modifier and 3%-5% friction enhancer, and the ceramic friction material does not include iron-containing materials.
  • the organic fiber is selected from at least one of aramid fiber, cellulose fiber, polyacrylonitrile fiber, carbon fiber, and wood fiber.
  • the filler is selected from the group consisting of nitrile rubber powder, butylbenzene, silicone rubber, fluororubber, limestone, At least one of dolomite and kaolin.
  • the binder is at least one selected from the group consisting of an amine grease, a boron modified resin, and a ring-opening polymerized phenol resin.
  • the friction modifier is at least one selected from the group consisting of vermiculite, graphite, molybdenum disulfide, barium sulfide, talc, cryolite, coke, and mica.
  • the friction increasing agent is selected from at least one of quartz, silicon carbide, and friction powder.
  • the friction modifier is graphite and barium sulfide, specifically, the weight percentage of graphite in the ceramic friction material is 15% to 20%, and the weight percentage of barium sulfide in the ceramic friction material is 4% to 8%.
  • the friction increasing agent is a friction powder, and the friction powder is 3%-5% by weight in the ceramic friction material.
  • the ceramic friction material further comprises potassium titanate fiber, copper fiber and zirconia, and the weight percentage of the potassium titanate fiber in the ceramic friction material is 10%-15%, and the weight of the copper fiber in the ceramic friction material The percentage is from 10% to 15%, and the weight percentage of zirconia in the ceramic friction material is from 15% to 18%.
  • FIG. 1 is a schematic flow chart of a first embodiment of a method for preparing an automobile brake pad according to the present invention.
  • the method for preparing the automobile brake pad of the present invention specifically includes the following steps:
  • the raw material of the ceramic friction material comprises the following components by weight: 10 %-15% organic fiber, 2%-5% filler, 7%-12% binder, 19%-28% friction modifier and 3%-5% friction agent, and ceramic friction
  • the raw materials of the materials do not include iron-containing substances.
  • the organic fiber is selected from at least one of aramid fiber, cellulose fiber, polyacrylonitrile fiber, carbon fiber, and wood fiber.
  • the filler is at least one selected from the group consisting of nitrile rubber powder, butylbenzene, silicone rubber, fluororubber, limestone, dolomite and kaolin.
  • the binder is at least one selected from the group consisting of an amine grease, a boron modified resin, and a ring-opening polymerized phenol resin.
  • the friction modifier is at least one selected from the group consisting of vermiculite, graphite, molybdenum disulfide, barium sulfide, talc, cryolite, coke, and mica.
  • the friction increasing agent is selected from at least one of quartz, silicon carbide, and friction powder.
  • the friction modifier is graphite and barium sulfide, specifically, the weight percentage of graphite in the raw material of the ceramic friction material is 15%-20%, and the weight percentage of barium sulfide in the raw material of the ceramic friction material is 4%-8 %.
  • the friction increasing agent is a friction powder, and the friction powder is 3%-5% by weight in the raw material of the ceramic friction material.
  • the raw material of the ceramic friction material further comprises potassium titanate fiber, copper fiber and zirconia.
  • the weight percentage of the potassium titanate fiber in the raw material of the ceramic friction material is 10%-15%, and the copper fiber is in the ceramic.
  • the weight percentage of the raw material of the friction material is 10% to 15%, and the weight percentage of zirconia in the raw material of the ceramic friction material is 15% to 18%.
  • the raw material of the ceramic friction material is mixed with alkaline water, and the alkaline water can uniformly disperse the organic fibers without causing the problem of aggregation and agglomeration, thereby enabling the organic fibers to be combined with other materials.
  • the components are thoroughly mixed evenly.
  • the organic fiber added in the present invention has a weight percentage of 10% to 15%, the organic fiber can be uniformly mixed with other components. Therefore, the present invention can use more organic fibers to improve the friction performance and enhance the effect relative to the prior art.
  • step S12 the temperature of the hot press mold is 230 ° C - 260 ° C, the pressure is 230-280 kg / cm 2 , and the pressing time is 170 - 220 seconds.
  • the steel back in the step S12 is a rubberized steel back, the rubber back cover is 100%, and the rubber layer has a thickness of 20-45 ⁇ m.
  • the hot-pressed semi-finished product is subjected to heat curing treatment to obtain an automobile brake pad.
  • step S13 in the heat curing treatment, firstly, the temperature is raised from normal temperature to 145 ° C - 155 ° C in 45 minutes, and the temperature is kept for 10-20 minutes; then, the temperature is raised to 170 ° C - 190 ° C in 20 minutes, and the temperature is maintained for 13-25 minutes; The temperature was raised to 190 ° C - 210 ° C in 20 minutes, and the temperature was maintained for 5.5-7 hours; and then the temperature was lowered to 100 ° C - 120 ° C in 1 hour, thereby producing an automobile brake pad.
  • FIG. 2 is a schematic flow chart of a second embodiment of a method for manufacturing an automobile brake pad according to the present invention.
  • Fig. 3 is a process view showing a second embodiment of a method of manufacturing an automobile brake pad according to the present invention.
  • the raw material of the ceramic friction material comprises the following components by weight: 10 % aramid fiber, 10% potassium titanate fiber, 14% copper fiber, 2% nitrile rubber powder, 7% boron modified resin, 18% graphite, 4% barium sulfide, 3% Friction powder and 18% zirconia, the raw materials of the ceramic friction material do not include iron-containing substances.
  • the particle size of the graphite is 20-60 mesh
  • the particle size of the boron-modified resin is 200 mesh
  • the particle size of the copper fiber is 30 mesh
  • the particle size of the zirconia is 325 mesh.
  • the particle size of the friction powder is 20 to 120 mesh
  • the particle size of the barium sulfide is 325 mesh or less.
  • the mixture material and the rubberized steel are placed in a hot press mold for hot press forming.
  • the temperature of the hot press tool is 230 ° C
  • the pressure is 260 kg/cm 2
  • the pressing time is 204 seconds.
  • the steel back in the step S22 is a steel back after shot blasting and gluing.
  • the shot blasting is to remove the impurities such as surface scale and improve the appearance quality.
  • the coated back surface of the steel back is 100%, and the thickness of the rubber layer is 20- 45 ⁇ m.
  • the hot-pressed semi-finished product is subjected to heat curing treatment to obtain an automobile brake pad.
  • step S23 in the heat curing treatment, firstly, the temperature is raised from normal temperature to 150 ° C in 45 minutes, and the temperature is kept for 15 minutes; then, the temperature is raised to 180 ° C in 20 minutes, the temperature is kept for 20 minutes; and the temperature is raised to 202 ° C in 20 minutes, and the temperature is kept. 6 hours; then cooled to 110 ° C in 1 hour, thus producing automotive brake pads.
  • the automotive brake pad after the heat curing process further includes the steps of grinding plane, electrostatic spraying, riveting, mounting accessories, marking, and packaging.
  • the flatness is ensured to be ⁇ 0.10 mm, and the parallelism is ⁇ 0.15 mm.
  • the thickness of the assembly depends on the needs of different products.
  • the car brake pads after the grinding plane are then electrostatically sprayed.
  • the main purpose is to anti-corrosion treatment of the steel back surface to ensure that the product is resistant to salt spray and brake oil.
  • the electrostatically sprayed automobile brake pad is riveted with the wear indicator.
  • the purpose of this step is to alarm the product life limit.
  • the car brake pad mounting accessories, such as the muffler, are then riveted to the wear indicator to reduce brake noise.
  • the step of marking is to print the product batch number and play the role of product traceability. Finally, the product is packaged to protect the product.
  • FIG. 4 is a schematic flow chart of a third embodiment of a method for manufacturing an automobile brake pad according to the present invention.
  • the raw material of the ceramic friction material comprises the following weight percentage Components: 12% aramid fiber, 13% potassium titanate fiber, 15% copper fiber, 4% nitrile rubber powder 10% boron modified resin, 20% graphite, 6% barium sulfide, 4% of the friction powder and 16% of zirconia, the raw materials of the ceramic friction material do not include iron-containing substances.
  • the particle size of the graphite is 25-40 mesh
  • the particle size of the boron modified resin is 200 mesh
  • the particle size of the copper fiber is 30 mesh
  • the particle size of the zirconia is 200- 300 mesh
  • the particle size of the friction powder is 30-70 mesh
  • the particle size of barium sulfide is 200-310 mesh.
  • the mixture material and the rubberized steel are placed in a hot press mold for hot press forming.
  • the temperature of the hot press tool is 260 ° C
  • the pressure is 230 kg/cm 2
  • the pressing time is 170 seconds.
  • the steel back in the step S22 is a steel back after shot blasting and gluing.
  • the shot blasting is to remove the impurities such as surface scale and improve the appearance quality.
  • the coated back surface of the steel back is 100%, and the thickness of the rubber layer is 20- 45 ⁇ m.
  • the hot-pressed semi-finished product is subjected to heat curing treatment to obtain an automobile brake pad.
  • step S33 during the heat curing treatment, firstly, the temperature is raised from normal temperature to 155 ° C in 45 minutes, and the temperature is kept for 10 minutes; then, the temperature is raised to 190 ° C in 20 minutes, and the temperature is maintained for 13 minutes; and the temperature is raised to 210 ° C in 20 minutes. 5.5 hours; then cooled to 120 ° C in 1 hour, thus producing automotive brake pads.
  • the automotive brake pad after the heat curing process further includes the steps of grinding plane, electrostatic spraying, riveting, mounting accessories, marking and packaging,
  • the flatness is ensured to be ⁇ 0.10 mm, and the parallelism is ⁇ 0.15 mm.
  • the thickness of the assembly depends on the needs of different products.
  • the brake pads of the car after the grinding plane are electrostatically sprayed.
  • the main purpose is to anti-corrosion treatment of the steel back surface to ensure that the product is resistant to salt spray and brake oil.
  • the electrostatically sprayed automobile brake pad is riveted with the wear indicator.
  • the purpose of this step is to alarm the product life limit.
  • install accessories such as the installation of silencer, to reduce the brake noise.
  • the step of marking is to print the product batch number and play the role of product traceability. Finally, the product is packaged to protect the product.
  • FIG. 5 is a schematic flow chart of a fourth embodiment of a method for manufacturing an automobile brake pad according to the present invention.
  • the raw material of the ceramic friction material comprises the following components by weight: 15 % aramid fiber, 15% potassium titanate fiber, 10% copper fiber, 5% nitrile rubber powder, 12% boron modified resin, 15% graphite, 8% barium sulfide, 5% Friction powder and 15% zirconia, the raw materials of the ceramic friction material do not include iron-containing substances.
  • the particle size of the graphite is 45-55 mesh
  • the particle size of the boron-modified resin is 200 mesh
  • the particle size of the copper fiber is 30 mesh
  • the particle size of the zirconia is 100- 190 mesh
  • the particle size of the friction powder is 80-110 mesh
  • the particle size of barium sulfide is 100-180 mesh.
  • the mixture material and the rubberized steel back are placed in a hot pressing mold for hot press forming, the temperature of the hot pressing tool is 250 ° C, the pressure is 280 kg/cm 2 , and the pressing time is 220 seconds.
  • the steel back in the step S22 is a steel back after shot blasting and gluing.
  • the shot blasting is to remove the impurities such as surface scale and improve the appearance quality.
  • the coated back surface of the steel back is 100%, and the thickness of the rubber layer is 20- 45 ⁇ m.
  • the hot-pressed semi-finished product is subjected to heat curing treatment to obtain an automobile brake pad.
  • step S43 during the heat curing treatment, firstly, the temperature is raised from normal temperature to 145 ° C in 45 minutes, and the temperature is kept for 20 minutes; then, the temperature is raised to 170 ° C in 20 minutes, and the temperature is raised for 25 minutes; and the temperature is raised to 190 ° C in 20 minutes, and the temperature is kept. 7 hours; then cooled to 100 ° C in 1 hour, thus producing automotive brake pads.
  • the flatness is ensured to be ⁇ 0.10 mm, and the parallelism is ⁇ 0.15 mm.
  • the thickness of the assembly depends on the needs of different products.
  • Electrostatic spraying is performed on the steel back surface of the automobile brake pad.
  • Electrostatic spraying is mainly to anti-corrosion treatment of the steel back surface to ensure that the product is resistant to salt spray and brake oil.
  • the steps of marking and packaging are also included, wherein the step of printing is to print the product batch number, play the role of product traceability, and finally package the product to protect the product.
  • the data of the static friction coefficient of the automobile brake pad of the present invention is much higher than the values of the static friction coefficient of the prior art automobile brake pad regardless of the high temperature, normal temperature, and low temperature.
  • FIG. 6 is a diagram showing the results of heat conduction test of the brake pad prepared by the fourth embodiment of the method for preparing an automobile brake pad according to the present invention.
  • the brake pad of the present invention was placed on a hot plate at a temperature of 400 ° C, and the temperature of the brake pad was measured. It can be seen from Fig. 6 that on the hot plate at 400 ° C, the brake pad is thermally conducted at 158 ° C for 600 seconds, and the thermal displacement is small, so that the thermal conductivity of the brake pad is low.
  • the ceramic friction material of the invention and the prepared automobile brake pad can reduce friction damage, reduce noise, have large gas pores, low thermal conductivity and stable friction performance, and compared with similar ceramic-based formulations.
  • the static friction coefficient index of the ceramic friction material of the invention is obviously improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

一种陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法,该陶瓷摩擦材料包括以下重量百分比的组分:有机纤维:10%-15%;填料:2%-5%;粘结剂:7%-12%;摩擦改性剂:19%-28%;增摩剂:3%-5%;陶瓷摩擦材料不包括含铁的物质。该方法包括将上述重量百分比的组分与碱性水进行混合,并使振实密度为0.6-0.8g/ml,再与钢背进行热压成型,再进行热固化处理。该陶瓷摩擦材料能减少摩擦损伤、降低噪音且摩擦性能稳定,静摩擦系数指标提高明显。

Description

陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法 【技术领域】
本发明涉及摩擦材料领域,特别是涉及一种陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法。
【背景技术】
制动片是交通工具制动***的一个重要的组成部分,是最关键的安全零件,对刹车效果的好坏起决定性作用,因此制动片材料的选择非常重要,关乎人的生命。
现有制动片的摩擦材料采用的是半金属或低金属混合摩擦材料,这些摩擦材料中均包含钢纤维。
其中,钢纤维容易生锈,生锈之后粘结对偶,容易造成制动块损伤。同时,钢钎维硬度高、密度大,制动过程中易产生噪音且粉尘较多。其耐高温特性也较差,对温度变化敏感,制动片的摩擦性能不稳定,容易导致摩擦系数降低,并且容易带静电,使摩擦掉的粉末不随车辆的运动被风带走,而是粘附在轮毂上,影响车辆的美观。
【发明内容】
本发明提出了一种陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法,解决了现有技术存在的易损伤、噪音高、摩擦性能不稳定的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种陶瓷摩擦材料,该陶瓷摩擦材料包括以下重量百分比的组分:有机纤维:10%-15%;填料:2%-5%;粘结剂:7%-12%;摩擦改性剂:19%-28%;增摩剂:3%-5%;其中,所述陶瓷摩擦材料不包括含铁的物质。
其中,所述有机纤维选自芳纶纤维、纤维素纤维、聚丙烯腈纤维、炭纤维 及木质纤维中的至少一种。
其中,所述陶瓷摩擦材料还包括钛酸钾纤维和铜纤维,所述钛酸钾纤维在所述陶瓷摩擦材料中的重量百分比为10%-15%,所述铜纤维在所述陶瓷摩擦材料中的重量百分比为10%-15%。
其中,所述填料选自丁腈橡胶粉、丁苯、硅橡胶、氟橡胶、石灰石、白云石及高岭土中的至少一种。
其中,所述粘结剂选自胺基脂、硼改性树脂及开环聚合酚醛树脂中的至少一种。
其中,所述摩擦改性剂选自蛭石、石墨、二硫化钼、硫化锑、滑石、冰晶石、焦炭及云母中的至少一种。
其中,所述摩擦改性剂为石墨和硫化锑,其中,石墨在所述陶瓷摩擦材料中的重量百分比为15%-20%,硫化锑在所述陶瓷摩擦材料中的重量百分比为4%-8%。
其中,所述增摩剂选自石英、碳化硅、摩擦粉中的至少一种。
其中,所述增摩剂为摩擦粉,该摩擦粉在所述陶瓷摩擦材料中的重量百分比为3%-5%。
其中,所述陶瓷摩擦材料还包括氧化锆,所述氧化锆在所述陶瓷摩擦材料中的重量百分比为15%-18%。
其中,所述有机纤维为芳纶纤维,所述填料为丁腈橡胶粉,所述粘结剂为硼改性树脂;其中,石墨的粒径大小为20-60目,硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为325目以下,摩擦粉的粒径大小为20~120目,硫化锑的粒径大小为325目以下。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种汽车制动片,该汽车制动片包括陶瓷摩擦材料,所述陶瓷摩擦材料包括以下重量百分比的组分:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并且,所述陶瓷摩擦材料均不包括含铁的物 质。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种汽车制动片的制备方法,该制备方法包括以下步骤:将以下重量百分比的组分与碱性水进行混合获得混合物料:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并使所述混合物料的振实密度为0.6-0.8g/ml,其中,所述陶瓷摩擦材料的原料均不包括含铁的物质;将所述混合物料与经过涂胶的钢背置于热压模具中进行热压成型;将热压成型的半成品进行热固化处理以获得汽车制动片。
其中,所述热压成型过程中,热压模具的温度为230℃-260℃,压力大小为230-280kg/cm2,压制时间为170-220秒。
其中,所述热固化处理的步骤中,在45分钟内从常温升温到145℃-155℃,保温10-20分钟;接着在20分钟内升温到170℃-190℃,保温13-25分钟;又在20分钟内升温到190℃-210℃,保温5.5-7小时;再在1小时内降温至100-120℃。
其中,所述热固化处理的步骤之后,还包括:对所述汽车制动片进行磨平面,以使平面度≤0.10mm,平行度≤0.15mm。
其中,对所述汽车制动片进行磨平面的步骤之后还包括:将所述汽车制动片的钢背表面进行静电喷涂。
其中,将所述汽车制动片的钢背表面进行静电喷涂的步骤之后还包括:将所述汽车制动片与磨损指示器进行铆接。
其中,将所述汽车制动片与磨损指示器进行铆接的步骤之后还包括:在所述汽车制动片上安***片。
其中,所述陶瓷摩擦材料的原料还包括钛酸钾纤维和铜纤维,所述钛酸钾纤维在所述陶瓷摩擦材料中的重量百分比为10%-15%,所述铜纤维在所述陶瓷摩擦材料的原料中的重量百分比为10%-15%。
区别于现有技术,本发明通过使用有机纤维以及不含铁的物质作为陶瓷摩擦材料的原料,由于该陶瓷摩擦材料的原料均为不含铁的物质,因而本发明的 陶瓷摩擦材料不会发生由于铁生锈而引起的粘结对偶而使制动块损伤的问题,并且,由于本发明使用的是有机纤维,由于有机纤维具有耐高温、在低、高温中的摩擦系数稳定,磨损小、硬度低、制动噪音低、不损伤对偶的特点,再配合本发明中适当重量百分比的填料、粘结剂、摩擦改性剂和增摩剂,使得陶瓷摩擦材料能减少摩擦损伤,降低噪音,其气孔隙大,导热率低且摩擦性能稳定,且与同类陶瓷基配方相比,本发明的陶瓷摩擦材料的静摩擦系数指标提高明显。
【附图说明】
图1是本发明一种汽车制动片的制备方法第一实施例的流程示意图;
图2是本发明一种汽车制动片的制备方法第二实施例的流程示意图;
图3是本发明一种汽车制动片的制备方法第二实施例的工序图;
图4是本发明一种汽车制动片的制备方法第三实施例的流程示意图;
图5是本发明一种汽车制动片的制备方法第四实施例的流程示意图;
图6是本发明一种汽车制动片的制备方法第四实施例制备所得的制动片的热传导试验结果图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
一种陶瓷摩擦材料,包括以下重量百分比的组分:10%-15%的有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂。其中,陶瓷摩擦材料不包括含铁的物质,因而本发明能避免铁的生锈引起的粘结对偶,造成制动块损伤的问题。
其中,本发明使用有机纤维用以保持摩擦材料,同时,用有机纤维吸收大量由摩擦界面产生的压力,起增强作用,有机纤维耐高温,在低、高温中的摩擦系数稳定,磨损小,并且硬度低,制动噪音低。
填料在摩擦材料中主要起到改善材料的物理与机械性能、调节摩擦性能及 降低成本的作用。
粘结剂是陶瓷摩擦材料组成的核心,它的性能对制动片起着举足轻重的作用,粘结剂应该具有长寿命、良好的稳定性和耐热性、易加工等特性。
摩擦改性剂组要起到润滑作用,它能提高摩擦材料的工作稳定性、抗擦伤性、抗咬合性、抗粘着性和耐磨性,减小制动噪音,特别有利于降低对偶材料的磨损,并使摩擦副工作平稳,从而改善材料的摩擦和磨损性能,或是和氧发生反应生成界面氧化膜,起到保护摩擦材料,改善摩擦磨损性能的作用。摩擦改性剂的含量对材料的摩擦磨损性能影响较大,含量越多,材料的耐磨性越好,但过量的摩擦改性剂会导致材料的摩擦系数过小,机械强度降低,达不到摩擦材料的要求,因此摩擦改性剂的含量也很重要,例如本发明的摩擦改性剂在陶瓷摩擦材料中的重量百分比为19%-28%。
增摩剂起到摩擦、抗磨、耐热、耐蚀等作用,提高摩擦系数,弥补润滑剂造成的摩擦系数过低,保护对偶面,控制摩擦层的形成,增加与摩擦副表面的咬合。增摩剂的含量对材料的摩擦磨损性能有很大的影响,含量过多会加剧对偶面的磨损,需严格控制磨料在摩擦材料中的用量,在尽可能不损伤对偶的条件下,使其适当改善摩擦性能,因而该增摩剂的含量也很重要,例如本发明的增摩剂在陶瓷摩擦材料中的重量百分比为3%-5%。
区别于现有技术,本发明通过使用有机纤维以及不含铁的物质制作陶瓷摩擦材料,由于该陶瓷摩擦材料不含铁的物质,因而本发明的陶瓷摩擦材料不会发生由于铁生锈而引起的粘结对偶而使制动块损伤的问题,并且,由于本发明使用的是有机纤维,由于有机纤维具有耐高温、在低、高温中的摩擦系数稳定,磨损小、硬度低、制动噪音低、不损伤对偶的特点,再配合本发明中适当重量百分比的填料、粘结剂、摩擦改性剂和增摩剂,使得陶瓷摩擦材料能减少摩擦损伤,降低噪音,其气孔隙大,导热率低且摩擦性能稳定,且与同类陶瓷基配方相比,本发明的陶瓷摩擦材料的静摩擦系数指标提高明显。
举例而言,在本发明的一个实施例中,陶瓷摩擦材料包括以下重量百分比 的组分:12%的有机纤维、4%的填料、9%的粘结剂、25%的摩擦改性剂以及4%的增摩剂。
在本发明的另一个实施例中,陶瓷摩擦材料包括以下重量百分比的组分:14%的有机纤维、3%的填料、11%的粘结剂、27%的摩擦改性剂以及4%的增摩剂。
在本发明的又一个实施例中,陶瓷摩擦材料包括以下重量百分比的组分:14%的有机纤维、3%的填料、8%的粘结剂、20%的摩擦改性剂以及4%的增摩剂。
具体地,有机纤维选自芳纶纤维、纤维素纤维、聚丙烯腈纤维、炭纤维及木质纤维中的至少一种。例如,有机纤维为芳纶纤维。
芳纶纤维的苯环对位联结有酰胺基团,形成棒状刚直性大分子链结构,分子排列规整。结晶度和取向度很好,故而强度和模量很高,并有很好的耐高温性。其突出优点在于它是一种热稳定性非常好的有机纤维,在180℃下可长期使用,在200℃、5小时下的强度下降仅10%,300℃、50小时的强度下降50%。初始热分解温度高达500℃,而且加热至分解也不熔融。
芳纶纤维质地柔软,密度低,比表面积大、吸附性良好。其低密度和比表面积大,使得芳纶纤维较小的用量比例便能够构成较大的体积百分比。用芳纶纤维增强的摩擦材料具有以下优点:(1)低、高温的摩擦系数稳定、磨损小;(2)增强效果好,有较好的抗冲击强度;(3)产品密度低;(4)制品硬度低,制动噪音低,不损伤制动对偶。
此外,芳纶纤维具有良好的填料保持能力,以及优异的助加工能力,可以使样品在预加工时有足够的强度。
为了避免芳纶纤维在搅拌时产生静电现象和结团,使粘结剂和填料不能很好地渗散到团块中均匀分散导致压制成的摩擦片表面呈现大小不等的浅色斑点而影响产品的性能均匀性和外观质量,由于芳纶纤维表面带负电,因而在混料配方中加入带正电性的细粉状填料,有助于芳纶纤维表面呈中性。
陶瓷摩擦材料还包括钛酸钾纤维和铜纤维,钛酸钾纤维在陶瓷摩擦材料中 的重量百分比为10%-15%,铜纤维在陶瓷摩擦材料中的重量百分比为10%-15%。
其中,钛酸钾纤维属于陶瓷类纤维,具有良好的力学性能和物理性能,强度高,模量高,还具有很高的电绝缘性、耐热隔热性能和优异的红外波长区域发射性能。在摩擦材料中使用能降低磨损和热衰退性,不损伤对偶材料。在摩擦过程中由于其高耐热性能够保持制动片在升温过程中的热稳定性。铜纤维硬度低,对对偶无攻击性,可改进摩擦材料的耐湿滑性能和恢复摩擦性能。
填料选自丁腈橡胶粉、丁苯、硅橡胶、氟橡胶、石灰石、白云石及高岭土中的至少一种。例如,填料为丁腈橡胶粉。通常加入少量的丁腈橡胶能明显提高制品的摩擦系数和抗冲击能力,促进树脂的固化,降低弹性模量,增大摩擦副之间的实际接触面积,达到提高制动力、缩短制动时间及降低偶件摩擦温升的目的。
粘结剂选自胺基脂、硼改性树脂及开环聚合酚醛树脂中的至少一种。树脂在摩擦材料中的首要作用是粘结作用,没有树脂的粘结作用,就难以制成一个整体的摩擦制品。此外,在复合摩擦材料中树脂除起到部分承载作用外,还起到传递载荷、通过树脂-填料界面把填料、纤维末端的集中载荷均匀分布到邻近的填料和纤维上,保证摩擦材料必要的力学强度和摩擦性能。
为了增强树脂的耐热极限温度以及降低硬度,可以将树脂进行改性后再作为粘结剂,改性的方法包括:胺类改性、硼酸改性、芳烃改性、钼改性、聚酰亚胺改性,磷改性及氰酸酯改性。
例如,本发明的粘结剂可以为硼改性树脂。改性后的树脂可以使制品的硬度降低,柔顺性增加,在摩擦发热时可产生塑性变形,增加了摩擦的接触面,从而提高了摩擦系数,并在某种程度上可降低噪音和形成柔软又有韧性的碳化膜,不易脱落,使表面组成和发热均一,从而保证稳定的摩擦系数和较小的磨损率。
摩擦改性剂选自蛭石、石墨、二硫化钼、硫化锑、滑石、冰晶石、焦炭及云母中的至少一种。
举例而言,摩擦改性剂为石墨和硫化锑,其中,石墨在陶瓷摩擦材料中的重量百分比为15%-20%,硫化锑在陶瓷摩擦材料中的重量百分比为4%-8%。加入硫化锑之后,可减少有机粘结剂的用量,且硫化锑能减少摩擦系数的热衰退、降低制品的高温磨损,增加摩擦稳定性,并且,硫化锑的硬度较低,还可以减少摩擦片的制动噪音。
增摩剂选自石英、碳化硅、摩擦粉中的至少一种。例如,增摩剂为摩擦粉,该摩擦粉在陶瓷摩擦材料中的重量百分比为3%-5%。
陶瓷摩擦材料还包括氧化锆,氧化锆在陶瓷摩擦材料中的重量百分比为15%-18%。氧化锆的添加能够提高陶瓷摩擦材料的使用温度。
举例而言,本发明的一个实施例中,陶瓷摩擦材料包括以下重量百分比的组分包括,芳纶纤维:13%;钛酸钾纤维:14%;铜纤维:12%;丁腈橡胶粉:3%;硼改性树脂:11%;石墨:19%;硫化锑:7%;摩擦粉4%以及氧化锆17%。
在本发明的另一个实施例中,陶瓷摩擦材料包括以下重量百分比的组分包括,芳纶纤维:14%;钛酸钾纤维:15%;铜纤维:14%;丁腈橡胶粉:4%;硼改性树脂:9%;石墨:17%;硫化锑:5%;摩擦粉5%以及氧化锆17%。
在上述组分中,石墨的粒径大小为20-60目,例如,25-40目或者45-55目;硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为325目以下,例如200-300目或者100-190目,摩擦粉的粒径大小为20~120目,例如,30-70目或者80-110目,硫化锑的粒径大小为325目以下,例如100-180目或者200-310目。
本发明还提供了一种汽车制动片,该汽车制动片包括陶瓷摩擦材料,陶瓷摩擦材料包括以下重量百分比的组分:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并且,所述陶瓷摩擦材料不包括含铁的物质。
其中,有机纤维选自芳纶纤维、纤维素纤维、聚丙烯腈纤维、炭纤维及木质纤维中的至少一种。填料选自丁腈橡胶粉、丁苯、硅橡胶、氟橡胶、石灰石、 白云石及高岭土中的至少一种。粘结剂选自胺基脂、硼改性树脂及开环聚合酚醛树脂中的至少一种。摩擦改性剂选自蛭石、石墨、二硫化钼、硫化锑、滑石、冰晶石、焦炭及云母中的至少一种。增摩剂选自石英、碳化硅、摩擦粉中的至少一种。例如,摩擦改性剂为石墨和硫化锑,具体地,石墨在陶瓷摩擦材料中的重量百分比为15%-20%,硫化锑在陶瓷摩擦材料中的重量百分比为4%-8%。增摩剂为摩擦粉,该摩擦粉在陶瓷摩擦材料中的重量百分比为3%-5%。
在一个实施例中,陶瓷摩擦材料还包括钛酸钾纤维、铜纤维和氧化锆,钛酸钾纤维在陶瓷摩擦材料中的重量百分比为10%-15%,铜纤维在陶瓷摩擦材料中的重量百分比为10%-15%,氧化锆在陶瓷摩擦材料中的重量百分比为15%-18%。
本发明还提供了一种汽车制动片的制备方法,请参阅图1,图1是本发明一种汽车制动片的制备方法第一实施例的流程示意图。
本发明的汽车制动片的制备方法具体包括以下步骤:
S11、将陶瓷摩擦材料的原料与碱性水进行混合获得混合物料,并使混合物料的振实密度为0.6-0.8g/ml;其中,陶瓷摩擦材料的原料包括以下重量百分比的组分:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并且,陶瓷摩擦材料的原料均不包括含铁的物质。
其中,有机纤维选自芳纶纤维、纤维素纤维、聚丙烯腈纤维、炭纤维及木质纤维中的至少一种。填料选自丁腈橡胶粉、丁苯、硅橡胶、氟橡胶、石灰石、白云石及高岭土中的至少一种。粘结剂选自胺基脂、硼改性树脂及开环聚合酚醛树脂中的至少一种。摩擦改性剂选自蛭石、石墨、二硫化钼、硫化锑、滑石、冰晶石、焦炭及云母中的至少一种。增摩剂选自石英、碳化硅、摩擦粉中的至少一种。例如,摩擦改性剂为石墨和硫化锑,具体地,石墨在陶瓷摩擦材料的原料中的重量百分比为15%-20%,硫化锑在陶瓷摩擦材料的原料中的重量百分比为4%-8%。增摩剂为摩擦粉,该摩擦粉在陶瓷摩擦材料的原料中的重量百分比为3%-5%。
在另一个实施例中,陶瓷摩擦材料的原料还包括钛酸钾纤维、铜纤维和氧化锆,钛酸钾纤维在陶瓷摩擦材料的原料中的重量百分比为10%-15%,铜纤维在陶瓷摩擦材料的原料中的重量百分比为10%-15%,氧化锆在陶瓷摩擦材料的原料中的重量百分比为15%-18%。
值得一提的是,本发明中,陶瓷摩擦材料的原料与碱性水进行混合,该碱性水能使有机纤维均匀地分散而不会产生聚集结团的问题,从而使得有机纤维能与其它组分充分地均匀混合。因而,即使本发明中加入的有机纤维重量百分比为10%-15%,该有机纤维也能与其它组分均匀混合。因此,本发明能相对于现有技术使用更多的有机纤维来改善摩擦性能以及起增强作用。
S12、将混合物料与经过涂胶的钢背置于热压模具中进行热压成型。
具体地,步骤S12中,热压模具的温度为230℃-260℃,压力大小为230-280kg/cm2,压制时间为170-220秒。
本步骤S12中的钢背为经过涂胶后的钢背,该钢背的涂胶覆盖面为100%,胶层厚度为20-45μm。
S13、将热压成型的半成品进行热固化处理以获得汽车制动片。
步骤S13中,热固化处理时,首先在45分钟内从常温升温到145℃-155℃,保温10-20分钟;接着在20分钟内升温到170℃-190℃,保温13-25分钟;又在20分钟内升温到190℃-210℃,保温5.5-7小时;再在1小时内降温至100℃-120℃,从而制得汽车制动片。
请参阅图2和图3,图2是本发明一种汽车制动片的制备方法第二实施例的流程示意图。图3是本发明一种汽车制动片的制备方法第二实施例的工序图。
S21、将陶瓷摩擦材料的原料与碱性水进行混合获得混合物料,并使混合物料的振实密度为0.6-0.8g/ml;其中,陶瓷摩擦材料的原料包括以下重量百分比的组分:10%的芳纶纤维、10%的钛酸钾纤维、14%的铜纤维、2%的丁腈橡胶粉、7%的硼改性树脂、18%的石墨、4%的硫化锑、3%的摩擦粉以及18%的氧化锆,该陶瓷摩擦材料的原料均不包括含铁的物质。
并且,在上述组分中,石墨的粒径大小为20-60目,硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为325目以下,摩擦粉的粒径大小为20~120目,硫化锑的粒径大小为325目以下。
S22、将混合物料与经过涂胶的钢背置于热压模具中进行热压成型,热压磨具的温度为230℃,压力大小为260kg/cm2,压制时间为204秒。
本步骤S22中的钢背为经过抛丸及涂胶后的钢背,抛丸是为了去除表面氧化皮等杂质提高外观质量,该钢背的涂胶覆盖面为100%,胶层厚度为20-45μm。
S23、将热压成型的半成品进行热固化处理以获得汽车制动片。
步骤S23中,热固化处理时,首先在45分钟内从常温升温到150℃,保温15分钟;接着在20分钟内升温到180℃,保温20分钟;又在20分钟内升温到202℃,保温6小时;再在1小时内降温至110℃,从而制得汽车制动片。
在本实施例中,经过热固化处理之后的汽车制动片还包括磨平面、静电喷涂、铆接、安装附件、印标和包装的步骤。
具体地,磨平面的步骤中,在保证总成厚度的同时,确保平面度≤0.10mm,平行度≤0.15mm。其中,总成厚度根据不同产品需求而定。然后对磨平面之后的汽车制动片进行静电喷涂。主要是对钢背表面进行防腐处理,以确保产品耐盐雾、刹车油。然后将静电喷涂后的汽车制动片与磨损指示器进行铆接,本步骤的目的是对产品寿命极限起报警作用。然后将铆接了磨损指示器的汽车制动片安装附件,例如安***片,起减少制动噪音的作用。印标的步骤为印制产品批次号、起到产品可追溯性的作用,最后对产品进行包装,对产品起防护作用。
请参阅图4,图4是本发明一种汽车制动片的制备方法第三实施例的流程示意图。
S31、将陶瓷摩擦材料的原料与碱性水进行混合获得混合物料,并使混合物料的振实密度为0.6-0.8g/ml;其中,陶瓷摩擦材料的原料包括以下重量百分比的 组分:12%的芳纶纤维、13%的钛酸钾纤维、15%的铜纤维、4%的丁腈橡胶粉10%的硼改性树脂、20%的石墨、6%的硫化锑、4%的摩擦粉以及16%的氧化锆,该陶瓷摩擦材料的原料均不包括含铁的物质。
并且,在上述组分中,石墨的粒径大小为25-40目,硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为200-300目,摩擦粉的粒径大小为30-70目,硫化锑的粒径大小为200-310目。
S32、将混合物料与经过涂胶的钢背置于热压模具中进行热压成型,热压磨具的温度为260℃,压力大小为230kg/cm2,压制时间为170秒。
本步骤S22中的钢背为经过抛丸及涂胶后的钢背,抛丸是为了去除表面氧化皮等杂质提高外观质量,该钢背的涂胶覆盖面为100%,胶层厚度为20-45μm。
S33、将热压成型的半成品进行热固化处理以获得汽车制动片。
步骤S33中,热固化处理时,首先在45分钟内从常温升温到155℃,保温10分钟;接着在20分钟内升温到190℃,保温13分钟;又在20分钟内升温到210℃,保温5.5小时;再在1小时内降温至120℃,从而制得汽车制动片。
在本实施例中,经过热固化处理之后的汽车制动片还包括磨平面、静电喷涂、铆接、安装附件、印标和包装的步骤,
具体地,磨平面的步骤中,在保证总成厚度的同时,确保平面度≤0.10mm,平行度≤0.15mm。其中,总成厚度根据不同产品需求而定。磨平面之后的汽车制动片进行静电喷涂。主要是对钢背表面进行防腐处理,以确保产品耐盐雾、刹车油。然后将静电喷涂后的汽车制动片与磨损指示器进行铆接,本步骤的目的是对产品寿命极限其报警作用。再安装附件,例如安***片,起减少制动噪音的作用。印标的步骤为印制产品批次号、起到产品可追溯性的作用,最后对产品进行包装,对产品起防护作用。
请参阅图5,图5是本发明一种汽车制动片的制备方法第四实施例的流程示意图。
S41、将陶瓷摩擦材料的原料与碱性水进行混合获得混合物料,并使混合物料的振实密度为0.6-0.8g/ml;其中,陶瓷摩擦材料的原料包括以下重量百分比的组分:15%的芳纶纤维、15%的钛酸钾纤维、10%的铜纤维、5%的丁腈橡胶粉、12%的硼改性树脂、15%的石墨、8%的硫化锑、5%的摩擦粉以及15%的氧化锆,该陶瓷摩擦材料的原料均不包括含铁的物质。
并且,在上述组分中,石墨的粒径大小为45-55目,硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为100-190目,摩擦粉的粒径大小为80-110目,硫化锑的粒径大小为100-180目。
S42、将混合物料与经过涂胶的钢背置于热压模具中进行热压成型,热压磨具的温度为250℃,压力大小为280kg/cm2,压制时间为220秒。
本步骤S22中的钢背为经过抛丸及涂胶后的钢背,抛丸是为了去除表面氧化皮等杂质提高外观质量,该钢背的涂胶覆盖面为100%,胶层厚度为20-45μm。
S43、将热压成型的半成品进行热固化处理以获得汽车制动片。
步骤S43中,热固化处理时,首先在45分钟内从常温升温到145℃,保温20分钟;接着在20分钟内升温到170℃,保温25分钟;又在20分钟内升温到190℃,保温7小时;再在1小时内降温至100℃,从而制得汽车制动片。
S44、对汽车制动片进行磨平面。
具体地,磨平面的过程中,在保证总成厚度的同时,确保平面度≤0.10mm,平行度≤0.15mm。其中,总成厚度根据不同产品需求而定。
S45、将汽车制动片的钢背表面进行静电喷涂。
静电喷涂主要是对钢背表面进行防腐处理,以确保产品耐盐雾、刹车油。
S46、将汽车制动片与磨损指示剂进行铆接。本步骤的目的是对产品寿命极限其报警作用。
S47、在汽车制动片上安***片。
安***片以起减少制动噪音的作用。
安装了消音片之后,还包括印标和包装的步骤,其中,印标的步骤为印制产品批次号、起到产品可追溯性的作用,最后对产品进行包装,对产品起防护作用。
表1.现有技术的汽车制动片的试验数据。
Figure PCTCN2015096557-appb-000001
表2.本发明第四实施例的方法制备的汽车制动片的试验数据。
Figure PCTCN2015096557-appb-000002
Figure PCTCN2015096557-appb-000003
由表1和表2的数据可以看出,本发明的汽车制动片的静摩擦系数的数据不论高温、常温、低温都比现有技术的汽车制动片的静摩擦系数的值高很多。
请参阅图6,图6是本发明一种汽车制动片的制备方法第四实施例制备所得的制动片的热传导试验结果图。本试验中,将本发明的制动片放置在温度为400℃的加热板上,再测量制动片的温度。由图6可以看出,在400℃的加热板上,在600秒的时间内,制动片热传导158℃,热位移小,可见该制动片的导热率低。
综上所述,本发明的陶瓷摩擦材料及其制备所得的汽车制动片能减少摩擦损伤,降低噪音,其气孔隙大,导热率低且摩擦性能稳定,且与同类陶瓷基配方相比,本发明的陶瓷摩擦材料的静摩擦系数指标提高明显。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种陶瓷摩擦材料,其特征在于,包括以下重量百分比的组分:
    Figure PCTCN2015096557-appb-100001
    其中,所述陶瓷摩擦材料不包括含铁的物质。
  2. 根据权利要求1所述的陶瓷摩擦材料,其特征在于,所述有机纤维选自芳纶纤维、纤维素纤维、聚丙烯腈纤维、炭纤维及木质纤维中的至少一种。
  3. 根据权利要求2所述的陶瓷摩擦材料,其特征在于,所述陶瓷摩擦材料还包括钛酸钾纤维和铜纤维,所述钛酸钾纤维在所述陶瓷摩擦材料中的重量百分比为10%-15%,所述铜纤维在所述陶瓷摩擦材料中的重量百分比为10%-15%。
  4. 根据权利要求3所述的陶瓷摩擦材料,其特征在于,所述填料选自丁腈橡胶粉、丁苯、硅橡胶、氟橡胶、石灰石、白云石及高岭土中的至少一种。
  5. 根据权利要求4所述的陶瓷摩擦材料,其特征在于,所述粘结剂选自胺基脂、硼改性树脂及开环聚合酚醛树脂中的至少一种。
  6. 根据权利要求5所述的陶瓷摩擦材料,其特征在于,所述摩擦改性剂选自蛭石、石墨、二硫化钼、硫化锑、滑石、冰晶石、焦炭及云母中的至少一种。
  7. 根据权利要求6所述的陶瓷摩擦材料,其特征在于,所述摩擦改性剂为石墨和硫化锑,其中,石墨在所述陶瓷摩擦材料中的重量百分比为15%-20%,硫化锑在所述陶瓷摩擦材料中的重量百分比为4%-8%。
  8. 根据权利要求7所述的陶瓷摩擦材料,其特征在于,所述增摩剂选自石英、碳化硅、摩擦粉中的至少一种。
  9. 根据权利要求8所述的陶瓷摩擦材料,其特征在于,所述增摩剂为摩擦 粉,该摩擦粉在所述陶瓷摩擦材料中的重量百分比为3%-5%。
  10. 根据权利要求9所述的陶瓷摩擦材料,其特征在于,所述陶瓷摩擦材料还包括氧化锆,所述氧化锆在所述陶瓷摩擦材料中的重量百分比为15%-18%。
  11. 根据权利要求10所述的陶瓷摩擦材料,其特征在于,所述有机纤维为芳纶纤维,所述填料为丁腈橡胶粉,所述粘结剂为硼改性树脂;
    其中,石墨的粒径大小为20-60目,硼改性树脂的粒径大小为200目,铜纤维的粒径大小为30目,氧化锆的粒径大小为325目以下,摩擦粉的粒径大小为20~120目,硫化锑的粒径大小为325目以下。
  12. 一种汽车制动片,其特征在于,所述汽车制动片包括陶瓷摩擦材料,所述陶瓷摩擦材料包括以下重量百分比的组分:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并且,所述陶瓷摩擦材料不包括含铁的物质。
  13. 一种汽车制动片的制备方法,其特征在于,包括以下步骤:
    将陶瓷摩擦材料的原料与碱性水进行混合获得混合物料,并使所述混合物料的振实密度为0.6-0.8g/ml;其中,所述陶瓷摩擦材料的原料包括以下重量百分比的组分:10%-15%有机纤维、2%-5%的填料、7%-12%的粘结剂、19%-28%的摩擦改性剂以及3%-5%的增摩剂,并且,所述陶瓷摩擦材料的原料均不包括含铁的物质;
    将所述混合物料与经过涂胶的钢背置于热压模具中进行热压成型;
    将热压成型的半成品进行热固化处理以获得汽车制动片。
  14. 根据权利要求13所述的汽车制动片的制备方法,其特征在于,所述热压成型过程中,热压模具的温度为230℃-260℃,压力大小为230-280kg/cm2,压制时间为170-220秒。
  15. 根据权利要求14所述的汽车制动片的制备方法,其特征在于,所述热固化处理的步骤中,在45分钟内从常温升温到145℃-155℃,保温10-20分钟;接着在20分钟内升温到170℃-190℃,保温13-25分钟;又在20分钟内升温到 190℃-210℃,保温5.5-7小时;再在1小时内降温至100-120℃。
  16. 根据权利要求15所述的汽车制动片的制备方法,其特征在于,所述热固化处理的步骤之后,还包括:
    对所述汽车制动片进行磨平面,以使平面度≤0.10mm,平行度≤0.15mm。
  17. 根据权利要求16所述的汽车制动片的制备方法,其特征在于,对所述汽车制动片进行磨平面的步骤之后还包括:
    将所述汽车制动片的钢背表面进行静电喷涂。
  18. 根据权利要求17所述的汽车制动片的制备方法,其特征在于,将所述汽车制动片的钢背表面进行静电喷涂的步骤之后还包括:
    将所述汽车制动片与磨损指示器进行铆接。
  19. 根据权利要求18所述的汽车制动片的制备方法,其特征在于,将所述汽车制动片与磨损指示器进行铆接的步骤之后还包括:
    在所述汽车制动片上安***片。
  20. 根据权利要求19所述的汽车制动片的制备方法,其特征在于,所述陶瓷摩擦材料的原料还包括10%-15%的钛酸钾纤维和10%-15%的铜纤维。
PCT/CN2015/096557 2015-12-07 2015-12-07 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法 WO2017096508A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580080225.5A CN107614920A (zh) 2015-12-07 2015-12-07 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法
PCT/CN2015/096557 WO2017096508A1 (zh) 2015-12-07 2015-12-07 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/096557 WO2017096508A1 (zh) 2015-12-07 2015-12-07 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法

Publications (1)

Publication Number Publication Date
WO2017096508A1 true WO2017096508A1 (zh) 2017-06-15

Family

ID=59012519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096557 WO2017096508A1 (zh) 2015-12-07 2015-12-07 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法

Country Status (2)

Country Link
CN (1) CN107614920A (zh)
WO (1) WO2017096508A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107573062A (zh) * 2017-08-28 2018-01-12 天宜上佳(天津)新材料有限公司 具有隔热性能的陶瓷材料及用其制备的陶瓷‑铝合金制动盘和制备方法
CN110998127A (zh) * 2017-08-03 2020-04-10 福乐尼·乐姆宝公开有限公司 用于制作制动***部件的预成型件
CN112240364A (zh) * 2020-10-13 2021-01-19 沈阳梵一高铁摩擦材料技术研究院有限公司 一种增强韧性和抗拉强度的摩擦材料调节剂
CN112555309A (zh) * 2020-12-02 2021-03-26 中国建材检验认证集团咸阳有限公司 一种机动车制动片用摩擦材料及其制备方法和应用
CN112855812A (zh) * 2021-01-05 2021-05-28 浙江万赛汽车零部件股份有限公司 一种适用高速200公里高减速度0.8g的乘用车用摩擦材料及其制备方法
CN113502030A (zh) * 2021-03-24 2021-10-15 浙江杭摩欧亿汽车零部件有限公司 一种汽车盘中鼓驻车制动蹄的摩擦材料及其制备方法
CN114151481A (zh) * 2021-12-02 2022-03-08 安徽飞鹰汽车零部件股份有限公司 一种工程机械用大平板异形摩擦片、制备方法及模具
CN117380953A (zh) * 2023-12-06 2024-01-12 成都超德创科技有限公司 电磁制动器用环保型摩擦材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248578B (zh) * 2020-09-22 2022-08-19 东风商用车有限公司 一种用于钢板弹簧的减磨垫片及其安装和制备方法
CN115076259A (zh) * 2022-07-07 2022-09-20 成都超德创科技有限公司 一种转子结构的电磁制动器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193685A (ja) * 2005-01-17 2006-07-27 Advics:Kk 摩擦材およびその製造方法
JP2007277418A (ja) * 2006-04-07 2007-10-25 Advics:Kk 摩擦材
CN101792654A (zh) * 2009-07-27 2010-08-04 湖北赤壁赛飞摩擦材料有限公司 一种陶瓷基/nao复合摩擦材料及制备方法
CN102758870A (zh) * 2012-07-20 2012-10-31 十堰市九霄摩擦材料有限公司 一种汽车用制动器摩擦衬片及其制备方法
CN102927180A (zh) * 2012-03-28 2013-02-13 安徽省中力车辆制动***制造有限公司 一种少金属刹车片以及其生产工艺
CN103881657A (zh) * 2014-03-24 2014-06-25 烟台胜瑞制动***有限公司 一种无铜无金属的环保型陶瓷基摩擦材料及其制备方法
CN104736658A (zh) * 2012-08-23 2015-06-24 福吉米株式会社 研磨用组合物、研磨用组合物的制造方法,以及研磨用组合物原液的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101956776A (zh) * 2010-10-19 2011-01-26 上海应用技术学院 一种含纳米材料的高强度汽车制动摩擦片及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193685A (ja) * 2005-01-17 2006-07-27 Advics:Kk 摩擦材およびその製造方法
JP2007277418A (ja) * 2006-04-07 2007-10-25 Advics:Kk 摩擦材
CN101792654A (zh) * 2009-07-27 2010-08-04 湖北赤壁赛飞摩擦材料有限公司 一种陶瓷基/nao复合摩擦材料及制备方法
CN102927180A (zh) * 2012-03-28 2013-02-13 安徽省中力车辆制动***制造有限公司 一种少金属刹车片以及其生产工艺
CN102758870A (zh) * 2012-07-20 2012-10-31 十堰市九霄摩擦材料有限公司 一种汽车用制动器摩擦衬片及其制备方法
CN104736658A (zh) * 2012-08-23 2015-06-24 福吉米株式会社 研磨用组合物、研磨用组合物的制造方法,以及研磨用组合物原液的制造方法
CN103881657A (zh) * 2014-03-24 2014-06-25 烟台胜瑞制动***有限公司 一种无铜无金属的环保型陶瓷基摩擦材料及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110998127A (zh) * 2017-08-03 2020-04-10 福乐尼·乐姆宝公开有限公司 用于制作制动***部件的预成型件
CN107573062B (zh) * 2017-08-28 2023-08-01 天宜上佳(天津)新材料有限公司 具有隔热性能的陶瓷材料及用其制备的陶瓷-铝合金制动盘和制备方法
CN107573062A (zh) * 2017-08-28 2018-01-12 天宜上佳(天津)新材料有限公司 具有隔热性能的陶瓷材料及用其制备的陶瓷‑铝合金制动盘和制备方法
CN112240364A (zh) * 2020-10-13 2021-01-19 沈阳梵一高铁摩擦材料技术研究院有限公司 一种增强韧性和抗拉强度的摩擦材料调节剂
CN112555309A (zh) * 2020-12-02 2021-03-26 中国建材检验认证集团咸阳有限公司 一种机动车制动片用摩擦材料及其制备方法和应用
CN112555309B (zh) * 2020-12-02 2022-07-12 中国建材检验认证集团咸阳有限公司 一种机动车制动片用摩擦材料及其制备方法和应用
CN112855812A (zh) * 2021-01-05 2021-05-28 浙江万赛汽车零部件股份有限公司 一种适用高速200公里高减速度0.8g的乘用车用摩擦材料及其制备方法
CN112855812B (zh) * 2021-01-05 2022-06-21 浙江万赛汽车零部件股份有限公司 一种乘用车用摩擦材料及其制备方法
CN113502030A (zh) * 2021-03-24 2021-10-15 浙江杭摩欧亿汽车零部件有限公司 一种汽车盘中鼓驻车制动蹄的摩擦材料及其制备方法
CN114151481A (zh) * 2021-12-02 2022-03-08 安徽飞鹰汽车零部件股份有限公司 一种工程机械用大平板异形摩擦片、制备方法及模具
CN114151481B (zh) * 2021-12-02 2023-06-09 安徽飞鹰汽车零部件股份有限公司 一种工程机械用大平板异形摩擦片、制备方法及模具
CN117380953A (zh) * 2023-12-06 2024-01-12 成都超德创科技有限公司 电磁制动器用环保型摩擦材料及其制备方法
CN117380953B (zh) * 2023-12-06 2024-02-23 成都超德创科技有限公司 电磁制动器用环保型摩擦材料及其制备方法

Also Published As

Publication number Publication date
CN107614920A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2017096508A1 (zh) 陶瓷摩擦材料、汽车制动片及汽车制动片的制备方法
US8980974B2 (en) Low copper-containing friction material composition used as brake pad
TWI475103B (zh) 散熱結構
US9382429B2 (en) Preparation method of carbon modified filler
WO2011158917A1 (ja) 摩擦材
JP2011241381A (ja) ディスクブレーキパッド
CN101113204A (zh) 用于汽车制动摩擦衬片的陶瓷基摩擦材料配方
CN101831273A (zh) 陶瓷基摩擦材料及其制备方法
JP6066739B2 (ja) 摩擦材及びその製造方法
CN101759958A (zh) 一种陶瓷增强型摩擦材料及其制备方法
JP5540396B2 (ja) 摩擦材
CN104946200A (zh) 一种电动车/摩托车刹车片用无石棉摩擦材料及其制备方法
CN107676413A (zh) 一种刹车片摩擦材料组合物及其制备方法和刹车片
CN108506387A (zh) 一种摩擦块及其制备方法、刹车片
CN104154152A (zh) 低铜有机陶瓷刹车片
JP6630136B2 (ja) 摩擦材
CN110594323A (zh) 一种复合双层刹车片及其制备方法
CN105202075A (zh) 一种汽车制动衬片
JP2003082331A (ja) 非石綿系摩擦材
CN112852034B (zh) 一种摩擦材料、合成闸瓦及制备方法
WO2022137159A1 (en) Friction material and brake pad comprising such friction material
JP6497088B2 (ja) 裏板の製造方法、裏板およびブレーキパッド
WO2015115306A1 (ja) 成形品の製造方法、成形品、裏板およびブレーキパッド
JP6867783B2 (ja) 摩擦材組成物及び摩擦材
CN103045162A (zh) 用于刹车片的新型摩擦材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909983

Country of ref document: EP

Kind code of ref document: A1