WO2017094719A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2017094719A1
WO2017094719A1 PCT/JP2016/085398 JP2016085398W WO2017094719A1 WO 2017094719 A1 WO2017094719 A1 WO 2017094719A1 JP 2016085398 W JP2016085398 W JP 2016085398W WO 2017094719 A1 WO2017094719 A1 WO 2017094719A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
secondary battery
negative electrode
copolymer
Prior art date
Application number
PCT/JP2016/085398
Other languages
English (en)
French (fr)
Inventor
卓 玉井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201680069753.5A priority Critical patent/CN108292754B/zh
Priority to JP2017553870A priority patent/JP7197104B2/ja
Priority to US15/778,667 priority patent/US10707519B2/en
Publication of WO2017094719A1 publication Critical patent/WO2017094719A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, a vehicle equipped with the lithium ion secondary battery, and a method for manufacturing the lithium ion secondary battery.
  • Lithium ion secondary batteries are being put to practical use in notebook computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability.
  • batteries with cycle characteristics, storage characteristics, etc. have been developed by expanding the market for motor-driven vehicles such as electric vehicles and hybrid vehicles, and accelerating the development of household and industrial power storage systems.
  • Development of a high performance lithium ion secondary battery having excellent characteristics and further improved capacity and energy density is required.
  • Metal active materials such as silicon and tin and their alloys and metal oxides are attracting attention as negative electrode active materials that provide high-capacity lithium ion secondary batteries. While these metal-based negative electrode active materials give a high capacity, there is a problem that cycle characteristics deteriorate because the expansion and contraction of the active materials when lithium ions are occluded and released are large. For this reason, it is preferable to select a binder for a negative electrode including a metal-based active material that has a large expansion / contraction during charging / discharging and that has a strong binding force that can withstand volume change of the active material. is there.
  • Patent Document 1 describes that polyacrylic acid is good as a binder used for a negative electrode containing an active material having a large volume change during charge / discharge, such as silicon and tin. This is because polyacrylic acid has many carboxyl groups as functional groups and thus has a strong binding force and is also chemically stable. Further, in Patent Document 1, the use of an ethylene-acrylic acid copolymer as a binder for polyacrylic acid improves the flexibility of polyacrylic acid and binds active material particles to each other by expansion and contraction. It is described that the destruction of the structure can be suppressed. By suppressing the breakage of the binding structure between the active material particles, the charge / discharge cycle characteristics of the lithium ion secondary battery are improved.
  • An object of the present invention is to use lithium as a negative electrode active material, in which insufficient cycle characteristics, which are the above-described problems, are improved by using a polyacrylic acid binder having higher binding performance. The object is to provide an ion secondary battery.
  • the lithium ion secondary battery of the present invention is a lithium ion secondary battery having a negative electrode containing at least a material containing silicon as a constituent element and a copolymer, wherein the copolymer is an ethylenically unsaturated carboxylic acid.
  • a copolymer unit comprising a monomer unit based on an alkali metal salt and a monomer unit based on an aromatic vinyl, wherein the alkali metal forming the alkali metal salt is contained in the copolymer polymer in an amount of 1000 mass ppm or more.
  • the lithium ion secondary battery of the present invention includes a binder containing a copolymer polymer and a negative electrode active material containing a material containing silicon as a constituent element in the negative electrode.
  • Copolymers contain monomer units based on ethylenically unsaturated carboxylic acids, at least some of which are alkali metal salts.
  • carboxylic acid used hereinafter for the copolymerized polymer encompasses not only the carboxylic acid but also the meaning of the carboxylic acid alkali metal salt, unless otherwise specified.
  • the copolymer includes a monomer unit based on an ethylenically unsaturated carboxylic acid and a monomer unit based on an aromatic vinyl.
  • Examples of the ethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and alkali metal salts thereof, and one or more of them can be used.
  • aromatic vinyl examples include styrene, ⁇ -methylstyrene, vinyltoluene and divinylbenzene, and one or more kinds can be used.
  • the monomer unit based on aromatic vinyl in the copolymer By including the monomer unit based on aromatic vinyl in the copolymer, the peel strength between the electrode mixture layer and the current collector can be improved.
  • the ratio of the total number of monomer units based on aromatic vinyl to the total number of monomer units based on ethylenically unsaturated carboxylic acid is not particularly limited, but is preferably 0.1% or more.
  • the copolymer may have other monomer units in addition to the monomer unit based on the ethylenically unsaturated carboxylic acid and the monomer unit based on the aromatic vinyl.
  • Other monomer units include monomer units based on compounds such as ethylenically unsaturated carboxylic acid derivatives such as ethylenically unsaturated carboxylic acid esters, acrylonitrile and conjugated dienes.
  • At least a part of the carboxylic acid of the monomer unit based on the ethylenically unsaturated carboxylic acid is an alkali metal salt.
  • the alkali metal include Li, Na, and K.
  • the alkali metal forming this alkali metal salt is preferably present in the copolymer polymer in an amount of 1000 ppm by mass or more, more preferably 10,000 ppm by mass or more, and most preferably 50,000 ppm by mass or more of the copolymer.
  • the alkali metal is preferably present in the copolymer polymer in an amount equal to or less than the amount of the carboxylic acid contained in the copolymer polymer.
  • the alkali metal is preferably present in the copolymer polymer in an amount of 35% by weight or less, more preferably 25% by weight or less of the copolymer polymer.
  • the presence of the carboxylic acid alkali metal salt in the copolymer can improve the binding property between the active materials and improve the peel strength between the electrode mixture layer and the current collector when the electrodes are produced.
  • a material containing silicon as a constituent element is used as the negative electrode active material.
  • a material containing silicon as a constituent element has a hydroxyl group at a terminal or the like.
  • the copolymer can be used in combination with other binders.
  • binders polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide and the like can be used.
  • SBR styrene butadiene rubber
  • a thickener such as carboxymethylcellulose (CMC) can also be used in combination.
  • a material containing silicon as a constituent element (hereinafter also referred to as a silicon material) is used at least in part.
  • the silicon material include metal silicon, an alloy containing silicon, and a silicon oxide represented by a composition formula SiO x (0 ⁇ x ⁇ 2). These silicon materials can be used in powder form.
  • the particle size of the silicon material When the particle size of the silicon material is reduced, the volume change per particle during expansion and contraction is reduced, so that the stress generated at that time is also reduced. As a result, cracks in the silicon material particles themselves and electrode destruction near the silicon material particles can be reduced. Moreover, since the surface area is increased and the diffusion distance of Li from the particle surface to the deep portion is shortened due to the small particle size, the resistance is reduced. From the above, it is better that the silicon material particles are small. On the other hand, when the particle size of the silicon material is reduced, the peel strength is lowered. Therefore, it is necessary to add a larger amount to the conventional binder. For this reason, the resistance by a binder increases and it will become disadvantageous for the energy density improvement which is the objective of putting a silicon material.
  • the cycle characteristics of the battery can be further improved by reducing the particle size of the silicon material without increasing the amount of binder added.
  • the 50% particle diameter (median diameter) D 50 of the silicon material powder is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and most preferably 1.0 ⁇ m or less.
  • the 50% particle diameter (median diameter) D 50 of the silicon material particles is preferably 1 nm or more.
  • the 50% particle size is the median value of the volume-based particle size distribution.
  • the volume-based particle size distribution can be measured by a laser diffraction particle size distribution measuring apparatus.
  • the particle surface of a silicon material is coated with carbon or the like and used as an active material.
  • the carboxylic acid alkali metal salt contained in the copolymer polymer interacts with the hydroxyl group present in the silicon material to increase the binding property between the binder and the active material. is there.
  • Silicon material can also be used in combination with other active materials.
  • the silicon material is preferably used together with carbon.
  • carbon include graphite, amorphous carbon, graphene, diamond-like carbon, carbon nanotubes, and composites thereof.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a negative electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • Examples of other negative electrode active materials that can be used in combination with silicon materials include metals other than silicon and metal oxides.
  • the metal include Li, Al, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or alloys of two or more thereof. These metals or alloys may contain one or more non-metallic elements.
  • the metal oxide include aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite thereof.
  • one or more elements selected from nitrogen, boron, and sulfur may be added to the metal oxide, for example, 0.1 to 5% by mass.
  • the ratio of the total amount of the negative electrode active material to be used and the copolymer is preferably 0.1 parts by mass or more with respect to 100 parts by mass of the negative electrode active material from the viewpoint of sufficient binding force. More preferably 5 parts by mass or more. From the viewpoint of increasing the energy density, the copolymer polymer is preferably 50 parts by mass or less and more preferably 30 parts by mass or less with respect to 100 parts by mass of the negative electrode active material.
  • the negative electrode active material is a material that can occlude and release lithium. In this specification, a material that does not occlude and release lithium, such as a binder, is not included in the negative electrode active material.
  • the conductive material may be added to the negative electrode for the purpose of reducing impedance.
  • additional conductive material include scaly and fibrous carbonaceous fine particles such as carbon black, acetylene black, ketjen black, and vapor grown carbon fiber.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • Examples of the shape include foil, flat plate, and mesh.
  • the negative electrode can be produced according to a normal method.
  • a negative electrode active material, a copolymer, and a conductive material as an optional component are mixed in a solvent to prepare a slurry, which is applied to a negative electrode current collector and dried to produce a negative electrode.
  • the coating can be performed by a doctor blade method, a die coater method, a CVD method, a sputtering method, or the like.
  • the positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, and can be selected from several viewpoints. From the viewpoint of increasing the energy density, it is preferable to include a high-capacity compound.
  • the high-capacity compound include lithium nickel oxide (LiNiO 2 ) or a lithium nickel composite oxide obtained by substituting a part of Ni of lithium nickelate with another metal element.
  • the layered structure is represented by the following formula (A) Lithium nickel composite oxide is preferred.
  • the Ni content is high, that is, in the formula (A), x is preferably less than 0.5, and more preferably 0.4 or less.
  • x is preferably less than 0.5, and more preferably 0.4 or less.
  • LiNi 0.8 Co 0.05 Mn 0.15 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2, LiNi 0.8 Co 0.1 Al can be preferably used 0.1 O 2 or the like.
  • the Ni content does not exceed 0.5, that is, in the formula (A), x is 0.5 or more. It is also preferred that the number of specific transition metals does not exceed half.
  • LiNi 0.4 Co 0.3 Mn 0.3 O 2 (abbreviated as NCM433), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 (abbreviated as NCM523), LiNi 0.5 Co 0.3 Mn 0.2 O 2 (abbreviated as NCM532), etc. (however, the content of each transition metal in these compounds varies by about 10%) Can also be included).
  • two or more compounds represented by the formula (A) may be used as a mixture.
  • NCM532 or NCM523 and NCM433 range from 9: 1 to 1: 9 (typically 2 It is also preferable to use a mixture in 1).
  • a material having a high Ni content (x is 0.4 or less) and a material having a Ni content not exceeding 0.5 (x is 0.5 or more, for example, NCM433) are mixed. As a result, a battery having a high capacity and high thermal stability can be formed.
  • the positive electrode active material for example, LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3 , Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2) Lithium manganate having a layered structure or spinel structure such as LiCoO 2 or a part of these transition metals replaced with another metal; Li in these lithium transition metal oxides more than the stoichiometric composition And those having an olivine structure such as LiFePO 4 .
  • any of the positive electrode active materials described above can be used alone or in combination of two or more.
  • the positive electrode binder polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamideimide, etc. are used. be able to. In addition to the above, styrene butadiene rubber (SBR) and the like can be mentioned. When an aqueous binder such as an SBR emulsion is used, a thickener such as carboxymethyl cellulose (CMC) can also be used.
  • the above binder for positive electrode can also be used by mixing.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material from the viewpoints of “sufficient binding force” and “higher energy” which are in a trade-off relationship. .
  • a conductive material may be added to the coating layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive material include scaly and fibrous carbonaceous fine particles, such as graphite, carbon black, acetylene black, and vapor grown carbon fiber.
  • the positive electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • a current collector using aluminum, an aluminum alloy, or an iron / nickel / chromium / molybdenum-based stainless steel is preferable.
  • the positive electrode can be produced by forming a positive electrode mixture layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector.
  • Examples of the method for forming the positive electrode mixture layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
  • a thin film of aluminum, nickel, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a positive electrode current collector.
  • Electrode Although it does not specifically limit as electrolyte solution of the lithium ion secondary battery which concerns on this embodiment, The nonaqueous electrolyte solution containing the nonaqueous solvent and supporting salt which are stable in the operating potential of a battery is preferable.
  • non-aqueous solvents examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and other cyclic carbonates; dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Chain carbonates such as dipropyl carbonate (DPC); propylene carbonate derivatives, aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate; ethers such as diethyl ether and ethyl propyl ether; trimethyl phosphate; Aprotic organic solvents such as phosphate esters such as triethyl phosphate, tripropyl phosphate, trioctyl phosphate and triphenyl phosphate, and fluorine compounds in which at least some of the hydrogen atoms of these compounds are substituted with fluorine atoms.
  • aprotic organic solvents and the like.
  • cyclic such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate (DPC), etc.
  • chain carbonates are included.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the supporting salts include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used singly or in combination of two or more. LiPF 6 is preferable from the viewpoint of cost reduction.
  • the electrolytic solution can further contain an additive.
  • an additive A halogenated cyclic carbonate, an unsaturated cyclic carbonate, cyclic
  • the separator may be any one as long as it suppresses conduction between the positive electrode and the negative electrode, does not inhibit the permeation of the charged body, and has durability against the electrolytic solution.
  • Specific materials include polyolefins such as polypropylene and polyethylene, cellulose, polyethylene terephthalate, polyimide, polyvinylidene fluoride, polymetaphenylene isophthalamide, polyparaphenylene terephthalamide, and copolyparaphenylene-3,4'-oxydiphenylene terephthalate.
  • Aromatic polyamides such as amide (aramid) and the like. These can be used as porous films, woven fabrics, non-woven fabrics and the like.
  • An insulating layer may be formed on at least one surface of the positive electrode, the negative electrode, and the separator.
  • Examples of the method for forming the insulating layer include a doctor blade method, a dip coating method, a die coater method, a CVD method, and a sputtering method.
  • An insulating layer can be formed simultaneously with the formation of the positive electrode, the negative electrode, and the separator.
  • Examples of the material forming the insulating layer include a mixture of aluminum oxide, barium titanate, and the like with SBR or PVDF.
  • the lithium ion secondary battery of this embodiment has a structure as shown in FIGS. 1 and 2, for example.
  • the lithium ion secondary battery includes a battery element 20, a film outer package 10 that houses the battery element 20 together with an electrolyte, and a positive electrode tab 51 and a negative electrode tab 52 (hereinafter, these are also simply referred to as “electrode tabs”). ing.
  • the battery element 20 is formed by alternately stacking a plurality of positive electrodes 30 and a plurality of negative electrodes 40 with a separator 25 interposed therebetween.
  • the electrode material 32 is applied to both surfaces of the metal foil 31.
  • the electrode material 42 is applied to both surfaces of the metal foil 41. Note that the present invention is not necessarily limited to a stacked battery, and can also be applied to a wound battery.
  • the lithium ion secondary battery of this embodiment may have a configuration in which the electrode tab is drawn out to one side of the outer package as shown in FIGS. 1 and 2, but the lithium ion secondary battery has electrode tabs on both sides of the outer package. It may be drawn to Although detailed illustration is omitted, each of the positive and negative metal foils has an extension on a part of the outer periphery. The extensions of the negative electrode metal foil are collected together and connected to the negative electrode tab 52, and the extensions of the positive electrode metal foil are collected together and connected to the positive electrode tab 51 (see FIG. 2). The portions gathered together in the stacking direction between the extension portions in this way are also called “current collecting portions”.
  • the film outer package 10 is composed of two films 10-1 and 10-2 in this example.
  • the films 10-1 and 10-2 are heat sealed to each other at the periphery of the battery element 20 and sealed.
  • the positive electrode tab 51 and the negative electrode tab 52 are drawn in the same direction from one short side of the film outer package 10 sealed in this way.
  • FIGS. 1 and 2 show examples in which the cup portion is formed on one film 10-1 and the cup portion is not formed on the other film 10-2.
  • a configuration in which a cup portion is formed on both films (not shown) or a configuration in which neither cup portion is formed (not shown) may be employed.
  • the lithium ion secondary battery according to the present embodiment can be produced according to a normal method. Taking a laminated laminate type lithium ion secondary battery as an example, an example of a method for producing a lithium ion secondary battery will be described. First, in a dry air or an inert atmosphere, an electrode element is formed by arranging a positive electrode and a negative electrode to face each other with a separator interposed therebetween. Next, this electrode element is accommodated in an exterior body (container), and an electrolytic solution is injected to impregnate the electrode with the electrolytic solution. Then, the opening part of an exterior body is sealed and a lithium ion secondary battery is completed.
  • a plurality of lithium ion secondary batteries according to this embodiment can be combined to form an assembled battery.
  • the assembled battery may have a configuration in which two or more lithium ion secondary batteries according to the present embodiment are used and connected in series, in parallel, or both. Capacitance and voltage can be freely adjusted by connecting in series and / or in parallel. About the number of the lithium ion secondary batteries with which an assembled battery is provided, it can set suitably according to battery capacity or an output.
  • the lithium ion secondary battery or its assembled battery according to this embodiment can be used in a vehicle.
  • Vehicles according to this embodiment include hybrid vehicles, fuel cell vehicles, and electric vehicles (all include four-wheel vehicles (passenger cars, trucks, buses and other commercial vehicles, light vehicles, etc.), motorcycles (motorcycles), and tricycles. ).
  • vehicle according to the present embodiment is not limited to an automobile, and may be used as various power sources for other vehicles, for example, moving bodies such as trains.
  • Si graphite and uncoated metal silicon
  • the produced negative electrode was cut into a 1 cm wide strip and fixed to a fixing base with double-sided adhesive tape.
  • the current collector at the end of the fixed electrode was slightly peeled off from the electrode mixture layer using tweezers, and the peeled current collector portion was attached to a tensile tester. Thereafter, the tensile tester was operated and pulled at a constant speed at an angle of 90 ° with respect to the fixed base, and the electrode peel strength was measured from the stress applied at that time.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material.
  • This positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride as a positive electrode binder were weighed at a mass ratio of 90: 5: 5. These were mixed with N-methylpyrrolidone to prepare a positive electrode slurry. The positive electrode slurry was applied to an aluminum foil having a thickness of 20 ⁇ m, dried, and further pressed to produce a positive electrode.
  • Electrode laminate Three layers of the produced positive electrode and four layers of the negative electrode were alternately stacked while sandwiching an aramid porous film as a separator. The ends of the positive electrode current collector not covered with the positive electrode active material and the negative electrode current collector not covered with the negative electrode active material were welded. Furthermore, the positive electrode terminal made from aluminum and the negative electrode terminal made from nickel were each welded to the welding location, and the electrode laminated body which has a planar laminated structure was obtained.
  • An electrolyte solution of 0 mol / L was prepared.
  • the electrode laminate was accommodated in an aluminum laminate film as an exterior body, and an electrolyte solution was injected into the exterior body. Thereafter, vacuum impregnation (pressure: 10 kPa (abs)) was performed in the chamber, and the outer layer body was sealed to obtain a battery.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the 50% particle diameter of uncoated Si was 0.05 ⁇ m, and the negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 3 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the 50% particle diameter of uncoated Si was 0.1 ⁇ m, and the negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 4 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the 50% particle size of uncoated Si was 0.5 ⁇ m, and the negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 5 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the 50% particle size of uncoated Si was 2.0 ⁇ m, and the negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 6 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the 50% particle diameter of uncoated Si was set to 3.0 ⁇ m, and negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 7 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that the 50% particle size of uncoated Si was 5.0 ⁇ m, and the negative electrode peel strength evaluation and battery evaluation were performed in the same manner.
  • Example 8 Carbon coated Si was used instead of uncoated Si.
  • the 50% particle size of the carbon-coated Si was 1.0 ⁇ m. Otherwise, a lithium ion secondary battery was produced in the same manner as in Example 1, and the peel strength evaluation and battery evaluation of the negative electrode were conducted in the same manner.
  • Example 1 As the negative electrode binder, a copolymer of aromatic vinyl and ethylenically unsaturated carboxylic acid not containing Na was used. Otherwise, a lithium ion secondary battery was produced in the same manner as in Example 1, and the peel strength evaluation and battery evaluation of the negative electrode were conducted in the same manner.
  • the lithium ion secondary battery according to the present invention can be used in, for example, all industrial fields that require a power source and industrial fields related to transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for mobile vehicles such as electric vehicles, hybrid cars, electric motorcycles, electric assist bicycles, electric vehicles, trains, satellites, submarines, etc .
  • It can be used for backup power sources such as UPS; power storage facilities for storing power generated by solar power generation, wind power generation, etc.

Abstract

サイクル特性が改善された、ケイ素材料を負極活物質として使用したリチウムイオン二次電池を提供する。本発明のリチウムイオン二次電池は、ケイ素を構成元素として含む材料と、共重合ポリマーとを少なくとも含む負極を有するリチウムイオン二次電池であって、前記共重合ポリマーが、エチレン性不飽和カルボン酸アルカリ金属塩に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットとを含み、前記アルカリ金属塩を形成しているアルカリ金属が、1000質量ppm以上の量で前記共重合ポリマーに含まれることを特徴とする。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池を搭載した車両およびリチウムイオン二次電池の製造方法に関する。
 リチウムイオン二次電池は、エネルギー密度が高い、自己放電が小さい、長期信頼性に優れている等の利点により、ノート型パソコンや携帯電話などにおいて実用化が進められている。さらに近年では、電子機器の高機能化に加え、電気自動車やハイブリッド車等のモータ駆動の車両の市場の拡大、家庭用及び産業用蓄電システムの開発の加速により、サイクル特性や保存特性等の電池特性に優れ、かつ、容量やエネルギー密度をさらに向上させた、高性能のリチウムイオン二次電池の開発が求められている。
 高容量のリチウムイオン二次電池を与える負極活物質として、ケイ素やスズ等およびその合金や金属酸化物等の金属系の活物質が注目を集めている。これらの金属系の負極活物質は、高容量を与える一方で、リチウムイオンが吸蔵放出される際の活物質の膨張収縮が大きいために、サイクル特性が低下するという課題がある。このため、このような充放電時の膨張収縮の大きい金属系の活物質を含む負極用の結着剤には、活物質の体積変化に耐え得る結着力の強いものを選択することが好適である。
 特許文献1には、ケイ素やスズ等の充放電時の体積変化の大きな活物質を含む負極に使用する結着剤としてポリアクリル酸が良好であることが記載されている。これは、ポリアクリル酸は、官能基として多くのカルボキシル基を有するために結着力が強く、さらに化学的にも安定なためである。さらに、特許文献1には、ポリアクリル酸の結着剤として、エチレン-アクリル酸共重合体を使用することで、ポリアクリル酸の柔軟性を改善し、膨張収縮による活物質粒子同士の結着構造の破壊を抑制できることが記載されている。この活物質粒子同士の結着構造の破壊の抑制によって、リチウムイオン二次電池の充放電サイクル特性の改善をしている。
WO2006/075446
 しかしながら、上述のエチレン-アクリル酸共重合体を結着剤として用いた場合であっても、ケイ素を含む負極では、充放電を繰り返すことで容量維持率は低下しており、更なる改善の必要性が依然としてある。また、電池のエネルギー密度の向上のためにも、より少量添加で十分な強度を発現する結着剤が求められている。本発明の目的は、より高い結着性能を有するポリアクリル酸結着剤を使用することによって、上述した課題である不十分なサイクル特性が改善された、ケイ素材料を負極活物質に使用するリチウムイオン二次電池を提供することにある。
 本発明のリチウムイオン二次電池は、ケイ素を構成元素として含む材料と、共重合ポリマーとを少なくとも含む負極を有するリチウムイオン二次電池であって、前記共重合ポリマーが、エチレン性不飽和カルボン酸アルカリ金属塩に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットとを含み、前記アルカリ金属塩を形成しているアルカリ金属が、1000質量ppm以上の量で前記共重合ポリマーに含まれることを特徴とする。
 本発明によれば、ケイ素を構成元素として含む材料を負極活物質として使用したリチウムイオン二次電池のサイクル特性を改善することができる。
フィルム外装電池の基本的構造を示す分解斜視図である。 図1の電池の断面を模式的に示す断面図である。
 本発明のリチウムイオン二次電池について、その構成ごとに詳細を以下で説明する。
 [負極]
 本発明のリチウムイオン二次電池は、共重合ポリマーを含む結着剤と、構成元素としてケイ素を含む材料を含む負極活物質とを負極に含む。共重合ポリマーは、エチレン性不飽和カルボン酸に基づくモノマーユニットを含むが、その少なくとも一部のカルボン酸はアルカリ金属塩である。このため、以降で共重合ポリマーに関して使用される用語「カルボン酸」は、特段の記載がない限りカルボン酸だけでなくカルボン酸アルカリ金属塩の意味も包含する。
 共重合ポリマーは、エチレン性不飽和カルボン酸に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットとを含む。
 エチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、およびそれらのアルカリ金属塩などが挙げられ、1種または2種以上を用いることができる。
 芳香族ビニルとしては、スチレン、α-メチルスチレン、ビニルトルエンおよびジビニルベンゼン等が挙げられ、1種または2種以上を用いることができる。芳香族ビニルに基づくモノマーユニットが共重合ポリマー中に含まれることで、電極合剤層と集電体との剥離強度を改善できる。
 共重合ポリマーにおいて、エチレン性不飽和カルボン酸に基づくモノマーユニットの総数に対する芳香族ビニルに基づくモノマーユニットの総数の比率は、特に限定されないが、好ましくは0.1%以上である。
 共重合ポリマーは、エチレン性不飽和カルボン酸に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットに加えて、その他のモノマーユニットを有してもよい。その他のモノマーユニットとしては、エチレン性不飽和カルボン酸エステルなどのエチレン性不飽和カルボン酸誘導体、アクリロニトリルおよび共役ジエンなどの化合物に基づくモノマーユニットが挙げられる。
 エチレン性不飽和カルボン酸に基づくモノマーユニットの少なくとも一部のカルボン酸はアルカリ金属塩である。アルカリ金属としては、Li、Na、Kなどが挙げられる。このアルカリ金属塩を形成しているアルカリ金属は、好ましくは共重合ポリマーの1000質量ppm以上、より好ましくは10000質量ppm以上、最も好ましくは50000質量ppm以上の量で共重合ポリマー中に存在する。アルカリ金属は、好ましくは、共重合ポリマーに含まれるカルボン酸の物質量以下の量で共重合ポリマー中に存在する。アルカリ金属は、好ましくは共重合ポリマーの35質量%以下、より好ましくは25質量%以下の量で共重合ポリマー中に存在する。共重合ポリマーにカルボン酸アルカリ金属塩が存在することにより、電極を作製したときに、活物質同士の結着性を向上させるとともに、電極合剤層と集電体との剥離強度を改善できる。本発明のリチウムイオン二次電池では、ケイ素を構成元素として含む材料を負極活物質として使用する。ケイ素を構成元素として含む材料には通常、末端などにヒドロキシル基が存在する。このヒドロキシル基とカルボン酸アルカリ金属塩は、相互作用して結合を形成するために、結着剤としての機能が高まると推測される。このため、膨張収縮による活物質粒子同士の結着構造の破壊を抑制し、電池のサイクル特性を改善できる。
 共重合ポリマーは、その他の結着剤と組み合わせて使用することもできる。例えば、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。前記のもの以外にも、スチレンブタジエンゴム(SBR)等が挙げられる。また、カルボキシメチルセルロース(CMC)等の増粘剤を組み合わせて使用することもできる。
 負極活物質には、構成元素としてケイ素を含む材料(以下、ケイ素材料とも呼ぶ)を少なくとも一部に使用する。ケイ素材料としては、金属ケイ素、ケイ素を含む合金、組成式SiO(0<x≦2)として表されるケイ素酸化物などが挙げられる。これらのケイ素材料は粉末で使用することができる。
 ケイ素材料の粒径を小さくした場合、膨張収縮時の1粒子当たりの体積変化が小さくなるので、その際に起こる応力も小さくなる。その結果、ケイ素材料粒子自体の割れや、ケイ素材料粒子付近の電極破壊を低減できる。また、粒径が小さいことで、表面積が増加し、且つ、粒子表面から深部へのLiの拡散距離が短くなるため、抵抗が小さくなる。以上のことから、ケイ素材料粒子は小さい方が良い。一方で、ケイ素材料の粒径を小さくした場合、剥離強度が低くなるので、従来の結着剤ではより多くの量を添加する必要がある。このため、結着剤による抵抗が増加し、ケイ素材料を入れる目的であるエネルギー密度向上には不利になってしまう。しかしながら、本発明において使用するポリアクリル酸結着剤は、少量添加で高い強度を得ることができるので、添加量を一定にして粒径を小さくしても剥離強度を維持できる。即ち本発明では、結着剤の添加量の増加を伴わずに、ケイ素材料の粒径を小さくすることによって電池のサイクル特性をさらに改善できる。このため、ケイ素材料粉末の50%粒子径(メジアン径)D50は、好ましくは2.0μm以下、より好ましくは1.5μm以下、最も好ましくは1.0μm以下である。また、ケイ素材料の粒子の50%粒子径(メジアン径)D50は、好ましくは、1nm以上である。50%粒子径は、体積基準の粒子径分布の中央値である。体積基準の粒子径分布は、レーザ回折式粒度分布測定装置により測定できる。
 ケイ素材料の粒子表面を炭素などで被覆して活物質に用いる場合がある。しかしながら本発明では、好ましくは表面の少なくとも一部、より好ましくは表面の全面にケイ素材料が露出しているものを使用する。即ち、ケイ素材料は、被覆処理をせずに使用することが好ましい。電極合剤層を形成したときに、共重合ポリマーに含まれるカルボン酸アルカリ金属塩と、ケイ素材料に存在するヒドロキシル基を相互作用させて、結着剤と活物質の結着性を高めるためである。
 ケイ素材料を、その他の活物質と組み合わせて使用することもできる。特に、ケイ素材料は、炭素とともに使用することが好ましい。炭素とともに使用することでケイ素による膨張収縮の影響を緩和して、電池のサイクル特性を改善することができる。炭素としては、例えば、黒鉛、非晶質炭素、グラフェン、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの複合物等が挙げられる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる負極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。
 ケイ素材料と組み合わせて使用することができるその他の負極活物質として、ケイ素以外の金属、金属酸化物も挙げられる。金属としては、例えば、Li、Al、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上の合金等が挙げられる。また、これらの金属又は合金は1種以上の非金属元素を含んでもよい。金属酸化物としては、例えば、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの複合物等が挙げられる。また、金属酸化物に、窒素、ホウ素および硫黄の中から選ばれる1種または2種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物の電気伝導性を向上させることができる。
 使用する負極活物質の総量と共重合ポリマーの比率は、十分な結着力の観点から、負極活物質100質量部に対して、共重合ポリマーを0.1質量部以上とすることが好ましく、0.5質量部以上とすることがより好ましい。高エネルギー密度化の観点から、負極活物質100質量部に対して、共重合ポリマーを50質量部以下とすることが好ましく、30質量部以下とすることがより好ましい。負極活物質は、リチウムを吸蔵放出し得る物質である。本明細書において、例えば結着剤など、リチウムを吸蔵放出しない物質は、負極活物質には含まれない。
 負極には、インピーダンスを低下させる目的で、導電材を追加して含んでもよい。追加の導電材としては、鱗片状、線維状の炭素質微粒子等、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、気相法炭素繊維等が挙げられる。
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
 負極は、通常の方法に従って作製することができる。一態様においては、負極活物質と、共重合ポリマーと、任意成分として導電材とを溶剤に混合してスラリーを調製し、これを負極集電体に塗布し、乾燥することで負極を作製できる。塗布は、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等によって実施できる。
 [正極]
 正極活物質としては、リチウムを吸蔵放出し得る材料であれば特に限定されず、いくつかの観点から選ぶことができる。高エネルギー密度化の観点からは、高容量の化合物を含むことが好ましい。高容量の化合物としては、ニッケル酸リチウム(LiNiO)またはニッケル酸リチウムのNiの一部を他の金属元素で置換したリチウムニッケル複合酸化物が挙げられ、下式(A)で表される層状リチウムニッケル複合酸化物が好ましい。
 LiNi(1-x)   (A)
(但し、0≦x<1、0<y≦1.2、MはCo、Al、Mn、Fe、Ti及びBからなる群より選ばれる少なくとも1種の元素である。)
 高容量の観点では、Niの含有量が高いこと、即ち式(A)において、xが0.5未満が好ましく、さらに0.4以下が好ましい。このような化合物としては、例えば、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、LiαNiβCoγAlδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、β≧0.6好ましくはβ≧0.7、γ≦0.2)などが挙げられ、特に、LiNiβCoγMnδ(0.75≦β≦0.85、0.05≦γ≦0.15、0.10≦δ≦0.20)が挙げられる。より具体的には、例えば、LiNi0.8Co0.05Mn0.15、LiNi0.8Co0.1Mn0.1、LiNi0.8Co0.15Al0.05、LiNi0.8Co0.1Al0.1等を好ましく用いることができる。
 また、熱安定性の観点では、Niの含有量が0.5を超えないこと、即ち、式(A)において、xが0.5以上であることも好ましい。また特定の遷移金属が半数を超えないことも好ましい。このような化合物としては、LiαNiβCoγMnδ(0<α≦1.2好ましくは1≦α≦1.2、β+γ+δ=1、0.2≦β≦0.5、0.1≦γ≦0.4、0.1≦δ≦0.4)が挙げられる。より具体的には、LiNi0.4Co0.3Mn0.3(NCM433と略記)、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3(NCM523と略記)、LiNi0.5Co0.3Mn0.2(NCM532と略記)など(但し、これらの化合物においてそれぞれの遷移金属の含有量が10%程度変動したものも含む)を挙げることができる。
 また、式(A)で表される化合物を2種以上混合して使用してもよく、例えば、NCM532またはNCM523とNCM433とを9:1~1:9の範囲(典型的な例として、2:1)で混合して使用することも好ましい。さらに、式(A)においてNiの含有量が高い材料(xが0.4以下)と、Niの含有量が0.5を超えない材料(xが0.5以上、例えばNCM433)とを混合することで、高容量で熱安定性の高い電池を構成することもできる。
 上記以外にも正極活物質として、例えば、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoOまたはこれらの遷移金属の一部を他の金属で置き換えたもの;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;及びLiFePOなどのオリビン構造を有するもの等が挙げられる。さらに、これらの金属酸化物をAl、Fe、P、Ti、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La等により一部置換した材料も使用することができる。上記に記載した正極活物質はいずれも、1種を単独で、または2種以上を組合せて用いることができる。
 正極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。前記のもの以外にも、スチレンブタジエンゴム(SBR)等が挙げられる。SBR系エマルジョンのような水系の結着剤を用いる場合、カルボキシメチルセルロース(CMC)等の増粘剤を用いることもできる。上記の正極用結着剤は、混合して用いることもできる。使用する正極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。
 正極活物質を含む塗工層には、インピーダンスを低下させる目的で、導電材を添加してもよい。導電材としては、鱗片状、線維状の炭素質微粒子等、例えば、グラファイト、カーボンブラック、アセチレンブラック、気相法炭素繊維等が挙げられる。
 正極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。特に、アルミニウム、アルミニウム合金、鉄・ニッケル・クロム・モリブデン系のステンレスを用いた集電体が好ましい。
 正極は、正極集電体上に、正極活物質と正極用結着剤を含む正極合剤層を形成することで作製することができる。正極合剤層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。予め正極合剤層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケルまたはそれらの合金の薄膜を形成して、正極集電体としてもよい。
 [電解液]
 本実施形態に係るリチウムイオン二次電池の電解液としては特に限定されないが、電池の動作電位において安定な非水溶媒と支持塩を含む非水電解液が好ましい。
 非水溶媒の例としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;ジエチルエーテル、エチルプロピルエーテル等のエーテル類、リン酸トリメチル、リン酸トリエチル、リン酸トリプロピル、リン酸トリオクチル、リン酸トリフェニル等のリン酸エステル類等の非プロトン性有機溶媒、及び、これらの化合物の水素原子の少なくとも一部をフッ素原子で置換したフッ素化非プロトン性有機溶媒等が挙げられる。
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の環状または鎖状カーボネート類を含むことが好ましい。
 非水溶媒は、1種を単独で、または2種以上を組み合わせて使用することができる。
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、LiC(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、1種を単独で、または2種以上を組み合わせて使用することができる。低コスト化の観点からはLiPFが好ましい。
 電解液は、さらに添加剤を含むことができる。添加剤としては特に限定されるものではないが、ハロゲン化環状カーボネート、不飽和環状カーボネート、及び、環状または鎖状ジスルホン酸エステル等が挙げられる。これらの化合物を添加することにより、サイクル特性等の電池特性を改善することができる。これは、これらの添加剤がリチウムイオン二次電池の充放電時に分解して電極活物質の表面に皮膜を形成し、電解液や支持塩の分解を抑制するためと推定される。
 [セパレータ]
 セパレータは、正極および負極の導通を抑制し、荷電体の透過を阻害せず、電解液に対して耐久性を有するものであれば、いずれであってもよい。具体的な材質としては、ポリプロピレンおよびポリエチレン等のポリオレフィン、セルロース、ポリエチレンテレフタレート、ポリイミド、ポリフッ化ビニリデンならびにポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドおよびコポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド等の芳香族ポリアミド(アラミド)等が挙げられる。これらは、多孔質フィルム、織物、不織布等として用いることができる。
 [絶縁層]
 正極、負極、およびセパレータの少なくとも1つの表面に絶縁層を形成しても良い。絶縁層の形成方法としては、ドクターブレード法、ディップコーティング法、ダイコーター法、CVD法、スパッタリング法等が挙げられる。正極、負極、セパレータの形成と同時に絶縁層を形成することもできる。絶縁層を形成する物質としては、酸化アルミニウムやチタン酸バリウムなどとSBRやPVDFとの混合物などが挙げられる。
 [リチウムイオン二次電池の構造]
 本実施形態のリチウムイオン二次電池は、例えば、図1および図2のような構造を有する。このリチウムイオン二次電池は、電池要素20と、それを電解質と一緒に収容するフィルム外装体10と、正極タブ51および負極タブ52(以下、これらを単に「電極タブ」ともいう)とを備えている。
 電池要素20は、図2に示すように、複数の正極30と複数の負極40とがセパレータ25を間に挟んで交互に積層されたものである。正極30は、金属箔31の両面に電極材料32が塗布されており、負極40も、同様に、金属箔41の両面に電極材料42が塗布されている。なお、本発明は、必ずしも積層型の電池に限らず捲回型などの電池にも適用しうる。
 本実施形態のリチウムイオン二次電池は図1および図2のように電極タブが外装体の片側に引き出された構成であってもよいが、リチウムイオン二次電池は電極タブが外装体の両側に引き出されたものであってもいい。詳細な図示は省略するが、正極および負極の金属箔は、それぞれ、外周の一部に延長部を有している。負極金属箔の延長部は一つに集められて負極タブ52と接続され、正極金属箔の延長部は一つに集められて正極タブ51と接続される(図2参照)。このように延長部どうし積層方向に1つに集めた部分は「集電部」などとも呼ばれる。
 フィルム外装体10は、この例では、2枚のフィルム10-1、10-2で構成されている。フィルム10-1、10-2どうしは電池要素20の周辺部で互いに熱融着されて密閉される。図1では、このように密閉されたフィルム外装体10の1つの短辺から、正極タブ51および負極タブ52が同じ方向に引き出されている。
 当然ながら、異なる2辺から電極タブがそれぞれ引き出されていてもよい。また、フィルムの構成に関し、図1、図2では、一方のフィルム10-1にカップ部が形成されるとともに他方のフィルム10-2にはカップ部が形成されていない例が示されているが、この他にも、両方のフィルムにカップ部を形成する構成(不図示)や、両方ともカップ部を形成しない構成(不図示)なども採用しうる。
 [リチウムイオン二次電池の製造方法]
 本実施形態によるリチウムイオン二次電池は、通常の方法に従って作製することができる。積層ラミネート型のリチウムイオン二次電池を例に、リチウムイオン二次電池の製造方法の一例を説明する。まず、乾燥空気または不活性雰囲気において、正極および負極を、セパレータを介して対向配置して、電極素子を形成する。次に、この電極素子を外装体(容器)に収容し、電解液を注入して電極に電解液を含浸させる。その後、外装体の開口部を封止してリチウムイオン二次電池を完成する。
 [組電池]
 本実施形態に係るリチウムイオン二次電池を複数組み合わせて組電池とすることができる。組電池は、例えば、本実施形態に係るリチウムイオン二次電池を2つ以上用い、直列、並列又はその両方で接続した構成とすることができる。直列および/または並列接続することで容量および電圧を自由に調節することが可能になる。組電池が備えるリチウムイオン二次電池の個数については、電池容量や出力に応じて適宜設定することができる。
 [車両]
 本実施形態に係るリチウムイオン二次電池またはその組電池は、車両に用いることができる。本実施形態に係る車両としては、ハイブリッド車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バス等の商用車、軽自動車等)のほか、二輪車(バイク)や三輪車を含む)が挙げられる。なお、本実施形態に係る車両は自動車に限定されるわけではなく、他の車両、例えば電車等の移動体の各種電源として用いることもできる。
 [実施例1]
 <負極>
 負極活物質として、黒鉛と、50%粒子径1.0μmの未被覆の金属ケイ素(Si)を使用し、負極結着剤に、カルボン酸塩として1000質量ppm以上のNaを含む、芳香族ビニルおよびエチレン性不飽和カルボン酸の共重合ポリマーを使用した。質量比が黒鉛/Si/結着剤=90/7/3となるよう、それぞれ計量して、水と混合した。得られたスラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに真空下で100℃の熱処理を行うことで負極を作製した。
 <電極剥離強度評価>
 作製した負極を1cm幅の短冊状に切断し、固定台に両面の粘着テープで固定した。固定した電極の端の集電体を、ピンセットを用いて電極合剤層からわずかに剥がし、剥がした集電体部分を引張試験機に取り付けた。その後、引張試験機を作動し、固定台に対して90°の角度に一定速度で引っ張り、その際にかかる応力から電極剥離強度を測定した。
 <正極>
 正極活物質として、LiNi0.8Co0.15Al0.05を用いた。この正極活物質と、導電材としてのカーボンブラックと、正極結着剤としてのポリフッ化ビニリデンとを、90:5:5の質量比で計量した。そして、これらをN-メチルピロリドンと混合して、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミ箔に塗布した後に乾燥し、さらにプレスすることで、正極を作製した。
 <電極積層体>
 作製した正極の3層と負極の4層を、セパレータとしてのアラミド多孔質フィルムを挟みつつ交互に重ねた。正極活物質に覆われていない正極集電体および負極活物質に覆われていない負極集電体の端部をそれぞれ溶接した。さらに、その溶接箇所に、アルミニウム製の正極端子およびニッケル製の負極端子をそれぞれ溶接して、平面的な積層構造を有する電極積層体を得た。
 <電解液>
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)をEC/DEC=30/70(体積比)の配合比で混合して得た溶媒に、LiPFを支持塩として添加し、支持塩濃度が1.0mol/Lの電解液を作製した。
 <注液>
 電極積層体を外装体としてのアルミニウムラミネートフィルム内に収容し、外装体内部に電解液を注入した。その後、チャンバー内にて真空含浸(圧力:10kPa(abs))を行い、外層体を封止することで電池を得た。
 <電池評価>
 得られた電池のサイクル試験を次のようにして行った。CC-CV充電(上限電圧4.2V、電流1C、CV時間1.5時間)と、CC放電(下限電圧3.0V、電流1C)を、いずれも45℃で50サイクル実施した。50サイクル後の容量維持率として、1サイクル目の放電容量に対する50サイクル目の放電容量の割合を表1に示した。
 [実施例2]
 未被覆のSiの50%粒子径を0.05μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例3]
 未被覆のSiの50%粒子径を0.1μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例4]
 未被覆のSiの50%粒子径を0.5μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例5]
 未被覆のSiの50%粒子径を2.0μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例6]
 未被覆のSiの50%粒子径を3.0μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例7]
 未被覆のSiの50%粒子径を5.0μmとした以外は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [実施例8]
 未被覆のSiではなく、炭素被覆したSiを使用した。炭素被覆したSiの50%粒子径は、1.0μmであった。その他は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [比較例1]
 負極結着剤として、Naを含まない芳香族ビニルおよびエチレン性不飽和カルボン酸の共重合ポリマーを使用した。その他は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 [比較例2]
 負極結着剤に、カルボン酸塩として1000質量ppm以上のNaを含むエチレン性不飽和カルボン酸の単独重合ポリマーを使用した。その他は、実施例1と同様にリチウムイオン二次電池を作製し、同様に負極の剥離強度評価および電池評価を実施した。
 実施例1~8および比較例1、2における負極材料と、電極剥離強度および電池評価の結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2015年11月30日に出願された日本出願特願2015-233583を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明によるリチウムイオン二次電池は、例えば、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野において利用することができる。具体的には、携帯電話、ノートパソコン等のモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車等を含む電動車両、電車、衛星、潜水艦等の移動・輸送用媒体の電源;UPS等のバックアップ電源;太陽光発電、風力発電等で発電した電力を貯める蓄電設備;等に、利用することができる。
10 フィルム外装体
20 電池要素
25 セパレータ
30 正極
40 負極

Claims (8)

  1.  ケイ素を構成元素として含む材料と、共重合ポリマーとを少なくとも含む負極を有するリチウムイオン二次電池であって、
     前記共重合ポリマーが、エチレン性不飽和カルボン酸アルカリ金属塩に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットとを含み、前記アルカリ金属塩を形成しているアルカリ金属が、1000質量ppm以上の量で前記共重合ポリマーに含まれる、リチウムイオン二次電池。
  2.  ケイ素を構成元素として含む材料が、金属ケイ素、ケイ素を含む合金、および酸化ケイ素から成る群より選択される、請求項1に記載のリチウムイオン二次電池。
  3.  ケイ素を構成元素として含む材料の粒子表面の少なくとも一部に、ケイ素を構成元素として含む材料が露出している、請求項1または2に記載のリチウムイオン二次電池。
  4.  ケイ素を構成元素として含む材料の50%粒子径が2.0μm以下である、請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
  5.  アルカリ金属がNaである、請求項1~4のいずれか1項に記載のリチウムイオン二次電池。
  6.  負極がさらに炭素を含む、請求項1~5のいずれか1項に記載のリチウムイオン二次電池。
  7.  請求項1~6のいずれか1項に記載のリチウムイオン二次電池を搭載した車両。
  8.  負極と、正極とを、セパレータを介して積層して電極素子を製造する工程と、
     前記電極素子と電解液とを外装体に封入する工程と、
    を含むリチウムイオン二次電池の製造方法であって、
     前記負極が、ケイ素を構成元素として含む材料と、共重合ポリマーとを含み、前記共重合ポリマーが、エチレン性不飽和カルボン酸アルカリ金属塩に基づくモノマーユニットと、芳香族ビニルに基づくモノマーユニットとを含み、前記アルカリ金属塩を形成しているアルカリ金属が、1000質量ppm以上の量で前記共重合ポリマーに含まれる、リチウムイオン二次電池の製造方法。
PCT/JP2016/085398 2015-11-30 2016-11-29 リチウムイオン二次電池 WO2017094719A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680069753.5A CN108292754B (zh) 2015-11-30 2016-11-29 锂离子二次电池
JP2017553870A JP7197104B2 (ja) 2015-11-30 2016-11-29 リチウムイオン二次電池
US15/778,667 US10707519B2 (en) 2015-11-30 2016-11-29 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233583 2015-11-30
JP2015233583 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094719A1 true WO2017094719A1 (ja) 2017-06-08

Family

ID=58796953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085398 WO2017094719A1 (ja) 2015-11-30 2016-11-29 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US10707519B2 (ja)
JP (1) JP7197104B2 (ja)
CN (1) CN108292754B (ja)
WO (1) WO2017094719A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824199B2 (en) * 2020-07-17 2023-11-21 International Business Machines Corporation Metal halide cathode with enriched conductive additive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203499A (ja) * 1995-01-25 1996-08-09 Namitsukusu Kk 導電性組成物およびそれを用いた電極
JPH1167215A (ja) * 1997-08-22 1999-03-09 Ricoh Co Ltd 非水電解質二次電池
JPH11238505A (ja) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその負極と負極の製造法
JP2007273355A (ja) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池用負極及びその製造方法
WO2013161786A1 (ja) * 2012-04-23 2013-10-31 日本ゼオン株式会社 リチウムイオン二次電池
WO2015122498A1 (ja) * 2014-02-13 2015-08-20 東ソー株式会社 親水性重合体、その製造方法、バインダー、及び電極
JP2015191876A (ja) * 2014-03-31 2015-11-02 日本エイアンドエル株式会社 電池電極用バインダーおよび電池電極用組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103475B (zh) 2005-01-14 2011-08-10 松下电器产业株式会社 用于锂离子二次电池的负极、其制备方法、锂离子二次电池及其制备方法
JP5219340B2 (ja) 2006-03-08 2013-06-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
KR101408038B1 (ko) 2007-08-23 2014-06-19 삼성에스디아이 주식회사 표면처리된 음극 및 이를 채용한 리튬 전지
US8367251B2 (en) 2007-08-30 2013-02-05 Sony Corporation Anode with lithium containing ionic polymer coat, method of manufacturing same, secondary battery, and method of manufacturing same
JP5187551B2 (ja) * 2007-08-30 2013-04-24 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5259373B2 (ja) 2008-12-19 2013-08-07 日本エイアンドエル株式会社 非水電解液二次電池電極用バインダー
JP2011086503A (ja) 2009-10-15 2011-04-28 Sony Corp リチウムイオン二次電池およびリチウムイオン二次電池用負極
GB2487569B (en) * 2011-01-27 2014-02-19 Nexeon Ltd A binder for a secondary battery cell
JP2013008586A (ja) 2011-06-24 2013-01-10 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CN102522524A (zh) * 2011-12-23 2012-06-27 宁德新能源科技有限公司 锂离子电池阳极极片及其制备方法
WO2014003077A1 (ja) 2012-06-28 2014-01-03 日本電気株式会社 非水電解液二次電池
WO2014024823A1 (ja) 2012-08-08 2014-02-13 昭和電工株式会社 スラリー及びリチウムイオン電池用負極
JP5796587B2 (ja) 2013-02-22 2015-10-21 株式会社豊田自動織機 負極活物質、非水電解質二次電池用負極ならびに非水電解質二次電池
JP6664040B2 (ja) 2013-08-05 2020-03-13 昭和電工株式会社 リチウムイオン電池用負極材及びその用途
JP6359836B2 (ja) 2014-02-07 2018-07-18 信越化学工業株式会社 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池
KR20150120795A (ko) 2014-04-18 2015-10-28 삼성에스디아이 주식회사 음극 조성물 및 이를 포함하는 음극과 리튬 전지
JP2016152077A (ja) 2015-02-16 2016-08-22 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203499A (ja) * 1995-01-25 1996-08-09 Namitsukusu Kk 導電性組成物およびそれを用いた電極
JPH1167215A (ja) * 1997-08-22 1999-03-09 Ricoh Co Ltd 非水電解質二次電池
JPH11238505A (ja) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその負極と負極の製造法
JP2007273355A (ja) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd リチウム二次電池用負極及びその製造方法
WO2013161786A1 (ja) * 2012-04-23 2013-10-31 日本ゼオン株式会社 リチウムイオン二次電池
WO2015122498A1 (ja) * 2014-02-13 2015-08-20 東ソー株式会社 親水性重合体、その製造方法、バインダー、及び電極
JP2015191876A (ja) * 2014-03-31 2015-11-02 日本エイアンドエル株式会社 電池電極用バインダーおよび電池電極用組成物

Also Published As

Publication number Publication date
US10707519B2 (en) 2020-07-07
JPWO2017094719A1 (ja) 2018-09-13
US20180351203A1 (en) 2018-12-06
CN108292754A (zh) 2018-07-17
CN108292754B (zh) 2021-05-25
JP7197104B2 (ja) 2022-12-27

Similar Documents

Publication Publication Date Title
CN108292779B (zh) 锂离子二次电池
CN108713266B (zh) 锂离子二次电池
US11495800B2 (en) Electrode for power storage device and method for producing same
WO2018051667A1 (ja) リチウムイオン二次電池
WO2016194733A1 (ja) リチウムイオン二次電池
WO2017204213A1 (ja) リチウムイオン二次電池
WO2017150311A1 (ja) 負極活物質およびそれを用いたリチウムイオン二次電池
MX2013013478A (es) Material activo de electrodos negativos para dispositivo electrico.
WO2018212027A1 (ja) リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
WO2012049889A1 (ja) 二次電池およびそれに用いる二次電池用電解液
US9356312B2 (en) Method for preparing secondary battery and the secondary battery prepared by using the same
JP6981468B2 (ja) リチウムイオン二次電池
JP7197104B2 (ja) リチウムイオン二次電池
JP6984661B2 (ja) リチウムイオン二次電池
WO2019182013A1 (ja) リチウムイオン二次電池
CN111095617A (zh) 锂离子二次电池用负极和包含所述负极的锂离子二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870656

Country of ref document: EP

Kind code of ref document: A1