WO2017094172A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2017094172A1
WO2017094172A1 PCT/JP2015/084075 JP2015084075W WO2017094172A1 WO 2017094172 A1 WO2017094172 A1 WO 2017094172A1 JP 2015084075 W JP2015084075 W JP 2015084075W WO 2017094172 A1 WO2017094172 A1 WO 2017094172A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow rate
heat exchanger
compressor
rate adjustment
Prior art date
Application number
PCT/JP2015/084075
Other languages
English (en)
French (fr)
Inventor
孝史 福井
雅史 冨田
和樹 岡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/084075 priority Critical patent/WO2017094172A1/ja
Priority to JP2017553578A priority patent/JP6537629B2/ja
Publication of WO2017094172A1 publication Critical patent/WO2017094172A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to an air conditioner capable of performing normal air-conditioning operation while avoiding an excessive increase in the discharge refrigerant temperature.
  • an air conditioner disclosed in Patent Documents 1 to 3 below is a refrigerant circuit in which a compressor, a four-way valve, a condenser, a first expansion valve, a second expansion valve, and an evaporator are sequentially connected by a refrigerant pipe.
  • a receiver is installed on the refrigerant pipe between the first expansion valve and the second expansion valve. Inside the receiver, a part of a suction pipe connecting the four-way valve and the suction side of the compressor is disposed, and an internal heat exchanger for exchanging heat between the refrigerant flowing through the suction pipe and the refrigerant in the receiver is set up.
  • the discharge temperature of the compressor is controlled by opening and closing the first expansion valve and the second expansion valve installed between the receiver and the evaporator. It is not the structure which adjusts the heat exchange amount of a medium pressure refrigerant
  • the present invention has been made to solve the above-described problems, and avoids an excessive discharge refrigerant temperature state caused by an excessively high degree of intake refrigerant heating of the compressor, and performs normal air conditioning operation.
  • An object of the present invention is to provide an air conditioner that can be performed.
  • an air conditioner includes a compressor, a condenser, a pressure reducing device, and an evaporator, which are sequentially connected to each other by piping, and an air conditioner provided with a refrigerant circuit for circulating the refrigerant.
  • An internal heat exchanger that is installed in a suction pipe connected to the suction side of the compressor and exchanges heat between the refrigerant flowing through the suction pipe and the refrigerant between the condenser and the pressure reducing device.
  • a bypass pipe connected to the suction pipe arranged on the inlet side of the internal heat exchanger and the other connected to the suction pipe arranged on the outlet side of the internal heat exchanger;
  • the first flow rate adjustment valve installed in the compressor, the discharge refrigerant temperature detection means for detecting the discharge refrigerant temperature of the compressor, and the first flow rate adjustment based on the discharge refrigerant temperature detected by the discharge refrigerant temperature detection means
  • Control valve opening A control unit that includes a.
  • the air conditioner according to the present invention controls the first flow rate adjustment valve of the bypass pipe based on the discharge refrigerant temperature of the compressor detected by the discharge refrigerant temperature detection means, thereby controlling the internal heat exchanger. Since the amount of exchange heat can be adjusted, even when R32 is used as the refrigerant circulating in the refrigerant circuit, it is possible to reliably avoid an excessive discharge refrigerant temperature state, and normal air-conditioning operation can be realized.
  • FIG. 5 is a Ph diagram illustrating a state transition of a refrigerant in the air-conditioning apparatus according to Embodiment 1 of the present invention. It is a flowchart which shows the flow of control operation
  • FIG. 1 is a refrigerant circuit configuration diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a control block diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner connects a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a first pressure reducing device 5 a, a second pressure reducing device 5 b, and an indoor heat exchanger 7 in order by refrigerant piping. It is used for indoor air conditioning by performing a vapor compression refrigeration cycle operation.
  • This air conditioner includes an outdoor unit A that is installed outdoors and an indoor unit B that is installed on the indoor ceiling by being embedded or suspended, or by being wall-mounted on an indoor wall surface.
  • the outdoor unit A and the indoor unit B are connected in parallel via the liquid connection pipe 6 and the gas connection pipe 9.
  • the air conditioning apparatus of Embodiment 1 shown in FIG. 1 although it is the structure which used the indoor unit B as one unit, it is not limited to this, The structure which used multiple units may be sufficient. Further, when both the outdoor unit A and the indoor unit B are configured by a plurality of units, the respective capacities may differ from large to small, or all may have the same capacity.
  • refrigerant used in the air conditioner examples include HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf / ze, HCFC refrigerants such as R22 and R134a, or carbon dioxide (CO 2 ) and hydrocarbons.
  • HFC refrigerants such as R410A, R407C, R404A, and R32
  • HFO refrigerants such as R1234yf / ze
  • HCFC refrigerants such as R22 and R134a
  • CO 2 carbon dioxide
  • the outdoor unit A constitutes an outdoor refrigerant circuit that is a part of the refrigerant circuit, and includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a first pressure reducing device 5a, a receiver 11, and a second pressure reducing device. 5b and the outdoor air blower 4.
  • the switching of the four-way valve 2 and the operation of the outdoor heat exchanger 3 are controlled by a control unit 30 installed in the air conditioner.
  • the compressor 1 compresses the sucked refrigerant and discharges it in a high-temperature and high-pressure state.
  • the refrigerant discharge side is connected to the four-way valve 2 and the refrigerant suction side is connected to the receiver 11.
  • the compressor 1 has a configuration in which the operating capacity (frequency) can be varied.
  • a positive displacement compressor driven by a motor (not shown) controlled by an inverter is used.
  • the number of the compressors 1 is one.
  • the present invention is not limited to this, and two or more compressors are connected in parallel or in series according to the number of indoor units B connected. It may be a configuration.
  • the four-way valve 2 has a function of switching the refrigerant flow path.
  • the four-way valve 2 connects the discharge side of the compressor 1 and the gas side of the outdoor heat exchanger 3 as shown by a broken line in FIG.
  • the refrigerant flow path is switched so as to connect the side.
  • the four-way valve 2 connects the discharge side of the compressor 1 and the gas connection pipe 9 side as well as the gas of the suction side of the compressor 1 and the outdoor heat exchanger 3 during heating operation.
  • the refrigerant flow path is switched so as to connect the side.
  • Embodiment 1 shows the case where the refrigerant circuit which can switch between cooling operation and heating operation by installing the four-way valve 2 is shown, only the cooling operation or only the heating operation without installing the four-way valve 2 is shown. It is good also as composition which performs.
  • the outdoor heat exchanger 3 functions as a condenser during the cooling operation, and exchanges heat between the refrigerant discharged from the compressor 1 and the air.
  • the outdoor heat exchanger 3 functions as an evaporator during heating operation, and performs heat exchange between the refrigerant flowing out of the first decompression device 5a and the air.
  • One of the outdoor heat exchangers 3 is connected to the four-way valve 2 and the other is connected to the first pressure reducing device 5a.
  • the outdoor heat exchanger 3 is, for example, a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins.
  • the outdoor blower 4 has a function of sucking outdoor air into the outdoor unit A and discharging the air heat-exchanged with the refrigerant by the outdoor heat exchanger 3 to the outside.
  • the outdoor air blower 4 is a fan capable of changing the flow rate of air supplied to the outdoor heat exchanger 3, and is composed of, for example, a propeller fan driven by a DC motor (not shown). .
  • the first decompression device 5a and the second decompression device 5b are arranged on the liquid side of the outdoor unit A and have a function of adjusting the flow rate of the refrigerant flowing in the refrigerant circuit.
  • One of the first decompression devices 5 a is connected to the outdoor heat exchanger 3 and the other is connected to the receiver 11.
  • One of the second decompression devices 5 b is connected to the indoor heat exchanger 7 via the liquid connection pipe 6, and the other is connected to the receiver 11.
  • the receiver 11 is a refrigerant container that stores liquid refrigerant, and stores liquid refrigerant that has become surplus during operation and also has a gas-liquid separation function.
  • the receiver 11 is installed on a refrigerant pipe between the first decompression device 5a and the second decompression device 5b.
  • a part of a suction pipe 15 that connects the four-way valve 2 and the suction side of the compressor 1 is disposed inside the receiver 11, and the refrigerant flowing through the suction pipe 15, the first decompression device 5 a, and the second decompression
  • An internal heat exchanger 14 for exchanging heat with the refrigerant between the devices 5b is installed.
  • the suction pipe 15 is provided with a bypass pipe 12 having a function of partially bypassing the refrigerant circulating through the suction pipe 15.
  • One of the bypass pipes 12 is connected to the suction pipe 15 on the side connecting the four-way valve 2 and the internal heat exchanger 14, and the other is connected to the suction pipe 15 on the side connecting the internal heat exchanger 14 and the compressor 1. It is connected.
  • the bypass pipe 12 is provided with a first flow rate adjustment valve 13 a that adjusts the flow rate of the refrigerant flowing through the bypass pipe 12.
  • the opening degree of the first flow rate adjustment valve 13 a is controlled by the control unit 30.
  • an electronic expansion valve is suitable as the first flow rate adjustment valve 13a, other types of flow rate adjustment valves may be used as long as the same opening degree adjustment is possible.
  • the compressor 1 is provided with a discharge temperature sensor 201 and a shell temperature sensor 208 as discharge refrigerant temperature detection means for detecting the discharge refrigerant temperature Td.
  • the outdoor heat exchanger 3 is provided with a gas side temperature sensor 202 for detecting the refrigerant temperature in the gas-liquid two-phase state.
  • the refrigerant temperature in the gas-liquid two-phase state is a refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation and a refrigerant temperature corresponding to the evaporation temperature Te during the heating operation.
  • a liquid side temperature sensor 204 that detects the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is installed on the liquid side of the outdoor heat exchanger 3.
  • an outdoor temperature sensor 203 that detects the temperature of the outdoor air flowing into the outdoor unit A, that is, the outdoor air temperature Ta, is installed on the outdoor air inlet side of the outdoor unit A.
  • the discharge temperature sensor 201, the gas side temperature sensor 202, the outdoor temperature sensor 203, the liquid side temperature sensor 204, and the shell temperature sensor 208 are all configured by a thermistor as an example.
  • the indoor unit B constitutes an indoor refrigerant circuit that is a part of the refrigerant circuit, and includes an indoor heat exchanger 7 and an indoor air blower 8. Operation
  • movement of the indoor air blower 8 is controlled by the control part 30 installed in the air conditioning apparatus.
  • the indoor heat exchanger 7 functions as an evaporator during the cooling operation, and performs heat exchange between the refrigerant flowing out of the second decompression device 5b and the air. Moreover, the indoor heat exchanger 7 functions as a condenser during heating operation, and performs heat exchange between the refrigerant discharged from the compressor 1 and the air.
  • One of the indoor heat exchangers 7 is connected to the four-way valve 2 via a gas connection pipe 9, and the other is connected to the second decompression device 5 b via a liquid connection pipe 6.
  • the indoor heat exchanger 7 is, for example, a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins.
  • the indoor air blower 8 has a function of sucking indoor air into the indoor unit B and supplying the air heat-exchanged with the refrigerant by the indoor heat exchanger 7 into the room.
  • the indoor blower 8 is a fan capable of changing the flow rate of air supplied to the indoor heat exchanger 7, and is, for example, a centrifugal fan or a multiblade driven by a DC motor (not shown). Consists of fans and the like.
  • a liquid side temperature sensor 205 that detects the temperature of the refrigerant in the liquid state or the gas-liquid two-phase state is installed on the liquid side of the indoor heat exchanger 7.
  • the refrigerant temperature in the liquid state or the gas-liquid two-phase state is a refrigerant temperature corresponding to the supercooled liquid temperature Tco during the heating operation and a refrigerant temperature corresponding to the evaporation temperature Te during the cooling operation.
  • an indoor temperature sensor 206 for detecting the temperature of the indoor air flowing into the indoor unit B is installed on the indoor air inlet side of the indoor unit B.
  • a gas-side temperature sensor 207 that detects the temperature of the gas-liquid two-phase refrigerant is installed in the indoor heat exchanger 7.
  • the refrigerant temperature in the gas-liquid two-phase state is a refrigerant temperature corresponding to the condensation temperature Tc during the heating operation, and a refrigerant temperature corresponding to the evaporation temperature Te during the cooling operation.
  • the liquid side temperature sensor 205, the gas side temperature sensor 207, and the room temperature sensor 206 are all composed of a thermistor as an example.
  • the control unit 30 performs measurement control of the air conditioner, and includes the compressor 1, the four-way valve 2, the indoor blower 8, the outdoor blower 4, the first decompressor 5a, the second decompressor 5b, and the first flow rate.
  • the operation of the regulating valve 13a is controlled.
  • the control unit 30 has sensors connected to the input side and actuators connected to the output side.
  • the control unit 30 is built in, for example, the outdoor unit A, and includes a measurement unit 30a, a calculation unit 30b, a drive unit 30c, and a determination unit 30e configured by, for example, a microcomputer, and a storage unit 30d configured by, for example, a semiconductor memory. And.
  • the measurement unit 30a receives the operation state quantity detected by the pressure sensor and the temperature sensors 201 to 208, and measures the pressure and temperature.
  • the operation state quantity measured by the measurement unit 30a is input to the calculation unit 30b.
  • the calculation unit 30b calculates, for example, a refrigerant physical property value (saturation pressure, saturation temperature, enthalpy, etc.) based on the operation state quantity measured by the measurement unit 30a using a formula given in advance. Moreover, the calculating part 30b performs a calculation process based on the driving
  • a refrigerant physical property value saturated pressure, saturation temperature, enthalpy, etc.
  • the drive part 30c is based on the calculation result of the calculating part 30b, the compressor 1, the four-way valve 2, the outdoor air blower 4, the 1st pressure reduction device 5a, the 2nd pressure reduction device 5b, the indoor air blower 8, and the 1st flow regulating valve 13a. Etc. are driven or stopped.
  • the storage unit 30d stores a result obtained by the calculation unit 30b, a predetermined constant, a function expression for calculating a physical property value (saturation pressure, saturation temperature, dryness, etc.), a function table (table), and the like. . These stored contents in the storage unit 30d can be referred to and rewritten as necessary.
  • the storage unit 30d further stores a control program, and the control unit 30 controls the air conditioner according to the program in the storage unit 30d.
  • the determination unit 30e performs processing such as large / small comparison and determination based on the result obtained by the calculation unit 30b.
  • the outdoor control unit A is provided in the outdoor unit A
  • the sub-control unit having a part of the control unit function is provided in the indoor unit B.
  • the main control unit and the sub-control unit It can also be implemented with a configuration in which cooperative processing is performed by performing data communication, a configuration in which a control unit having all functions is installed in the indoor unit B, or a configuration in which a control unit is separately provided outside these units.
  • FIG. 3 is a Ph diagram showing the refrigerant state transition of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the four-way valve 2 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the outdoor heat exchanger 3, and the suction side of the compressor 1 is connected to the indoor heat exchanger 7. It is in a state.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the outdoor heat exchanger 3 that is a condenser via the four-way valve 2, and is condensed and liquefied by the blowing action of the outdoor blower 4.
  • the condensed and liquefied high-temperature and low-pressure refrigerant is decompressed by the first decompression device 5 a to become a medium-pressure two-phase refrigerant, further decompressed by the second decompression device 5 b via the receiver 11, and evaporated via the liquid connection pipe 6. It is sent to the indoor heat exchanger 7 which is a vessel.
  • the decompressed two-phase refrigerant evaporates in the indoor heat exchanger 7 by the blowing action of the indoor blower 8 and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is compressed again after exchanging heat with the medium-pressure two-phase refrigerant between the first decompression device 5a and the second decompression device 5b via the four-way valve 2 in the internal heat exchanger 14. Inhaled into machine 1.
  • the high-temperature medium-pressure two-phase refrigerant decompressed by the first decompression device 5a is converted into the four-way valve 2 and the compressor. 1 is cooled to the saturated liquid refrigerant by the low-temperature low-pressure refrigerant circulating between the suction sides (change from point D to point E).
  • the low-pressure gas refrigerant discharged from the indoor heat exchanger 7 is superheated and flows into the compressor 1 as a low-pressure superheated gas refrigerant (change from point G to point A).
  • the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased. Therefore, the refrigerant circulation amount necessary for obtaining the predetermined capacity is reduced and the pressure loss is reduced, so that the COP of the refrigeration cycle can be improved.
  • the low-pressure refrigerant flowing into the compressor 1 is in an overheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 can be avoided.
  • the refrigerant supercooling degree at the outlet of the outdoor heat exchanger 3 is a value obtained by subtracting the detection value (corresponding to the refrigerant condensation temperature Tc) from the detection value by the gas side temperature sensor 202 from the detection value by the liquid side temperature sensor 204.
  • the opening of the second decompression device 5b is adjusted by the control unit 30 so that the discharge refrigerant temperature Td of the compressor 1 becomes a target value, and the flow rate of the refrigerant circulating in the indoor heat exchanger 7 is controlled. Yes. That is, the indoor heat exchanger 7 is supplied with a refrigerant having a flow rate corresponding to the operation load required in the air-conditioned space in which the indoor unit B is installed. Note that the discharge refrigerant temperature Td of the compressor 1 is detected by the discharge temperature sensor 201 or the shell temperature sensor 208.
  • the four-way valve 2 is shown by a solid line in FIG. 1, that is, the discharge side of the compressor 1 is connected to the indoor heat exchanger 7 and the suction side of the compressor 1 is connected to the outdoor heat exchanger 3. It has become.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 reaches the indoor heat exchanger 7 as a condenser via the four-way valve 2 and the gas connection pipe 9, and the refrigerant is condensed and liquefied by the blowing action of the indoor blower 8. High pressure and low temperature.
  • the condensed and liquefied high-temperature and low-pressure refrigerant is decompressed by the second decompression device 5b via the liquid connection pipe 6 and becomes a medium-pressure two-phase refrigerant, further decompressed by the first decompression device 5a via the receiver 11, It is sent to the outdoor heat exchanger 3 which is an evaporator.
  • the decompressed two-phase refrigerant evaporates in the outdoor heat exchanger 3 by the blowing action of the outdoor blower 4 and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant exchanges heat with the medium-pressure two-phase refrigerant between the first decompression device 5a and the second decompression device 5b through the four-way valve 2 and then the compressor again. Inhaled into 1.
  • the high-temperature medium-pressure two-phase refrigerant decompressed by the second decompression device 5b circulates between the four-way valve 2 and the compressor 1 suction side.
  • the refrigerant is cooled down to the saturated liquid refrigerant by the low-temperature, low-pressure refrigerant (change from point D to point E).
  • the low-pressure gas refrigerant discharged from the outdoor heat exchanger 3 is superheated and flows into the compressor 1 as a low-pressure superheated gas refrigerant (change from point G to point A).
  • the enthalpy of the refrigerant flowing into the indoor heat exchanger 7 is reduced, and the enthalpy difference at the entrance and exit of the indoor heat exchanger 7 is increased. Therefore, the refrigerant circulation amount necessary for obtaining the predetermined capacity is reduced and the pressure loss is reduced, so that the COP of the refrigeration cycle can be improved.
  • the low-pressure refrigerant flowing into the compressor 1 is in an overheated gas state, a liquid back state due to an excessive inflow of liquid refrigerant into the compressor 1 can be avoided.
  • the refrigerant supercooling degree at the outlet of the indoor heat exchanger 7 is a value obtained by subtracting a detection value (corresponding to the refrigerant condensation temperature Tc) from the detection value of the liquid side temperature sensor 205 from the detection value of the gas side temperature sensor 207.
  • the opening of the first decompression device 5a is adjusted by the control unit 30 so that the discharge refrigerant temperature Td of the compressor 1 becomes a target value, and the flow rate of the refrigerant circulating in the outdoor heat exchanger 3 is controlled. Yes. Therefore, the discharge gas refrigerant discharged from the compressor 1 is in a target temperature state.
  • required in the air-conditioning space in which the indoor unit B was installed flows into the indoor heat exchanger 7.
  • the detection value of the temperature sensor installed in each heat exchanger is used as the refrigerant condensation temperature Tc.
  • a pressure sensor is installed on the discharge side of the compressor 1 to detect the refrigerant discharge pressure. The detected value of the discharge pressure may be converted into the saturation temperature and used as the refrigerant condensing temperature Tc.
  • FIG. 4 is a flowchart showing a flow of control operation of the flow rate adjustment valve of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • Step S11 After starting the control flow, the control unit 30 detects the discharge refrigerant temperature Td of the compressor 1 with the measurement unit 30a. As the discharge refrigerant temperature Td, a detection value of the discharge temperature sensor 201 or the shell temperature sensor 208 is used.
  • Step S12 The control unit 30 compares the detected discharge refrigerant temperature Td detected by the determination unit 30e with the discharge refrigerant temperature excessive temperature determination value Tdo stored in the storage unit 30d in advance, and the discharge refrigerant temperature of the compressor 1 It is determined whether Td is in an excessive state. Specifically, it is determined whether or not the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo.
  • the discharge refrigerant temperature excessive state determination value Tdo is determined by the product specifications of the compressor 1, and is set to 120 degrees, for example, which is the operation guarantee range upper limit value of the discharge refrigerant temperature Td of the compressor 1. If it is determined that the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 proceeds to step S13, and if not, the control unit 30 proceeds to step S14.
  • Step S13 When it is determined in step S12 that the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 fully opens the first flow rate adjustment valve 13a in the drive unit 30c, and the process proceeds to step S15. .
  • Step S14 When it is determined in step S12 that the discharged refrigerant temperature Td is not higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 fully closes the first flow rate adjustment valve 13a in the drive unit 30c and performs the control flow. finish.
  • Step S15 After fully opening the first flow rate adjustment valve 13a in step S13, the control unit 30 obtains the intake refrigerant superheat degree SHs as the intake refrigerant state of the compressor 1 based on the refrigerant evaporation temperature Te in the calculation unit 30b.
  • the intake refrigerant superheat degree SHs is calculated by subtracting the refrigerant evaporation temperature Te from the intake refrigerant temperature Ts.
  • the evaporating temperature Te of the refrigerant is detected by a gas side temperature sensor 207 installed in the indoor heat exchanger 7 during the cooling operation, and a detection value of the gas side temperature sensor 202 installed in the outdoor heat exchanger 3 during the heating operation. It is.
  • the suction refrigerant temperature Ts is a suction refrigerant pressure Ps (equivalent to the compressor suction pressure) obtained by converting the refrigerant evaporation temperature Te into a saturation pressure, and a high pressure Pd (equivalent to a compressor discharge pressure) obtained by converting the refrigerant condensation temperature Tc into a saturation pressure. )
  • the discharge refrigerant temperature Td the compression process of the compressor 1 can be calculated from the following equation 1 assuming that the polytropic index n is a polytropic change.
  • Ts and Td are temperature [K]
  • Ps and Pd are pressure [MPa]
  • n is a polytropic index [-].
  • the high-pressure pressure Pd and the suction refrigerant pressure Ps of the refrigerant are calculated by the refrigerant condensing temperature Tc and the evaporation temperature Te, but pressure sensors are installed on the suction side and the discharge side of the compressor 1. And may be detected directly. Further, a temperature sensor may be installed on the suction side of the compressor 1 to directly detect the suction refrigerant temperature Ts.
  • Step S16 Based on the intake refrigerant superheat degree SHs detected in step S15, the control unit 30 determines whether the intake refrigerant of the compressor 1 is in the liquid back state by the determination unit 30e. If it is an overheated gas state (intake refrigerant superheat degree SHs> 0), it is determined that it is not in the liquid back state, and the control flow is ended as it is. If it is not an overheated gas state (intake refrigerant superheat degree SHs> 0), it is determined that the liquid is in a back-up state, and the process proceeds to step S17.
  • Step S17 If it determines with it being a liquid back state in step S16, the control part 30 will adjust the opening degree of the 1st flow regulating valve 13a in the direction which closes with the drive part 30c, and will return to step S15 again after opening degree adjustment.
  • the opening adjustment of the first flow rate adjustment valve 13a is adjusted by a method of decreasing the opening degree by a certain amount (for example, 20 pulses) according to the specification of the valve and the opening characteristic. .
  • the method of adjusting the opening degree of the first flow rate adjustment valve 13a based on the suction refrigerant superheat degree SHs of the compressor 1 has been described, but based on the suction refrigerant dryness instead of the suction refrigerant superheat degree SHs.
  • a method of adjusting the opening of the first flow rate adjusting valve 13a may be used.
  • the intake refrigerant dryness can be stored in advance as physical property information of the refrigerant, and can be obtained using the intake refrigerant temperature Ts and the intake refrigerant pressure Ps.
  • the air conditioner according to the first embodiment controls the first flow rate adjustment valve 13a of the bypass pipe 12 based on the discharge refrigerant temperature Td of the compressor 1 detected by the discharge refrigerant temperature detection unit, so that the internal heat exchanger 14 Since the amount of exchange heat can be adjusted, even when R32 is used as the refrigerant circulating in the refrigerant circuit, an excessive discharge refrigerant temperature state can be avoided, and normal air conditioning operation can be realized.
  • the air conditioner according to the first embodiment controls the opening degree of the first flow rate adjustment valve 13a based on the suction refrigerant state on the suction side of the compressor 1, so that the liquid refrigerant is present on the suction side of the compressor 1.
  • An excessively flowing liquid back state can be avoided, and a compressor failure due to seizure of the sliding portion of the compressor 1 can be avoided, and high reliability can be realized.
  • FIG. 5 is a refrigerant circuit configuration diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the bypass pipe 12 is provided with a first flow rate adjusting valve 13a for adjusting the flow rate of the bypass pipe 12, and the four-way valve 2 and the internal heat.
  • a second flow rate adjustment valve 13 b that adjusts the flow rate flowing through the suction pipe 15 is provided between the connection point of the suction pipe 15 and the bypass pipe 12 and the internal heat exchanger 14. is set up.
  • the first flow rate adjustment valve 13 a and the second flow rate adjustment valve 13 b are controlled to be opened and closed by the control unit 30.
  • FIG. 6 is a flowchart showing the flow of the control operation of the flow rate adjustment valve of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • Step S21 After starting the control flow, the control unit 30 detects the discharge refrigerant temperature Td of the compressor 1 with the measurement unit 30a. As the discharge refrigerant temperature Td, a detection value of the discharge temperature sensor 201 or the shell temperature sensor 208 is used.
  • Step S22 The control unit 30 compares the detected discharge refrigerant temperature Td detected by the determination unit 30e with the discharge refrigerant temperature excessive temperature determination value Tdo stored in the storage unit 30d in advance, and the discharge refrigerant temperature of the compressor 1 It is determined whether Td is in an excessive state. Specifically, it is determined whether or not the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo.
  • the discharge refrigerant temperature excessive state determination value Tdo is determined by the product specifications of the compressor 1, and is set to 120 degrees, for example, which is the operation guarantee range upper limit value of the discharge refrigerant temperature Td of the compressor 1. If it is determined that the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 proceeds to step S23, and if not, the control unit 30 proceeds to step S24.
  • Step S23 When it is determined in step S22 that the discharged refrigerant temperature Td is higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 fully opens the first flow rate adjustment valve 13a in the drive unit 30c and adjusts the second flow rate. The valve 13b is fully closed, and the process proceeds to step S25.
  • Step S24 When it is determined in step S22 that the discharged refrigerant temperature Td is not higher than the discharged refrigerant temperature excessive state determination value Tdo, the control unit 30 fully closes the first flow rate adjustment valve 13a in the drive unit 30c and sets the second flow rate. The control valve 13b is fully opened to end the control flow.
  • Step S25 In step S23, the control unit 30 fully opens the first flow rate adjustment valve 13a and fully closes the second flow rate adjustment valve 13b, and then in the calculation unit 30b, based on the refrigerant evaporation temperature Te, the intake refrigerant state of the compressor 1 As a result, the suction refrigerant superheat degree SHs is obtained.
  • the intake refrigerant superheat degree SHs is calculated by subtracting the refrigerant evaporation temperature Te from the intake refrigerant temperature Ts.
  • Step S26 Based on the intake refrigerant superheat degree SHs detected in step S25, the control unit 30 determines whether the intake refrigerant of the compressor 1 is in the liquid back state by the determination unit 30e. If it is an overheated gas state (intake refrigerant superheat degree SHs> 0), it is determined that it is not in the liquid back state, and the control flow is ended as it is. If it is not an overheated gas state (intake refrigerant superheat degree SHs> 0), it is determined that the liquid is in a back-up state, and the process proceeds to step S27.
  • Step S27 When determining that the liquid is in the liquid back state in step S26, the control unit 30 adjusts the opening of the first flow rate adjustment valve 13a in the closing direction by the drive unit 30c and opens the opening of the second flow rate adjustment valve 13b. After adjusting in the direction, the process returns to step S25 again.
  • the opening adjustment of the first flow rate adjusting valve 13a and the second flow rate adjusting valve 13b is, for example, when an electronic expansion valve is used, according to the valve specifications and the opening characteristics, a constant opening (for example, 20 pulses). Make adjustments by decreasing the size gradually.
  • the opening of the first flow rate adjustment valve 13a and the second flow rate adjustment valve 13b may be adjusted based on the dryness of the suction refrigerant.
  • the dryness of the refrigerant X 1 is a saturated gas state, and X> 1 is a superheated gas state, so the opening degree of the first flow rate adjustment valve 13a and the second flow rate adjustment valve 13b is adjusted so that X ⁇ 1. Good.
  • the intake refrigerant dryness can be stored in advance as physical property information of the refrigerant, and can be obtained using the intake refrigerant temperature Ts and the intake refrigerant pressure Ps.
  • the air conditioner according to the second embodiment includes a first flow rate adjustment valve 13a of the bypass pipe 12 and a second flow rate adjustment valve 13b of the suction pipe 15 based on the discharge refrigerant temperature Td of the compressor 1 detected by the discharge refrigerant temperature detection means. Since the amount of heat exchanged in the internal heat exchanger 14 can be adjusted by controlling the refrigerant, it is possible to avoid an excessive discharge refrigerant temperature state even when R32 is used as the refrigerant circulating in the refrigerant circuit. And normal air-conditioning operation can be realized.
  • the air conditioner according to the second embodiment controls the opening of the first flow rate adjustment valve 13a and the second flow rate adjustment valve 13b based on the suction refrigerant state on the suction side of the compressor 1, thereby A liquid back state in which the liquid refrigerant excessively flows into the suction side of the compressor can be avoided, and a compressor failure due to seizure of the sliding portion of the compressor 1 can be avoided, and high reliability can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

吐出冷媒温度の過昇状態を回避して、正常な空調運転を行うことができる空気調和装置を提供する。圧縮機の吸入側に接続する吸入配管に設置され、吸入配管を流れる冷媒と、凝縮器と減圧装置との間の冷媒とで熱交換させる内部熱交換器と、一方が内部熱交換器の入口側に配置された吸入配管に接続され、他方が内部熱交換器の出口側に配置された吸入配管に接続されたバイパス配管と、バイパス配管に設置された第1流量調整弁と、圧縮機の吐出冷媒温度を検出する吐出冷媒温度検出手段と、吐出冷媒温度検出手段により検出された吐出冷媒温度に基づいて、第1流量調整弁の開度を制御する制御部と、を備えている。

Description

空気調和装置
 本発明は、吐出冷媒温度の過昇状態を回避して、正常な空調運転を行うことができる空気調和装置に関するものである。
 従来、空気調和装置には、高い制御性と高効率運転を実現するレシーバ回路が採用されている。例えば下記特許文献1~3に開示された空気調和装置は、圧縮機、四方弁、凝縮器、第1膨張弁、第2膨張弁及び蒸発器とを順次、冷媒配管で接続した冷媒回路において、第1膨張弁と第2膨張弁との間の冷媒配管上に、レシーバが設置されている。
 前記レシーバの内部には、四方弁と圧縮機の吸入側とを接続する吸入配管の一部が配置されると共に、吸入配管を流れる冷媒とレシーバ内の冷媒とを熱交換させる内部熱交換器が設置されている。前記レシーバを設置することで、圧縮機の吸入側に液冷媒が流れ込んでしまう液バックを抑制すると共に、冷凍サイクルの効率を向上させている。
特開2001-174091号公報 特開2015-078800号公報 特開2014-202385号公報
 上記特許文献1~3では、レシーバと蒸発器との間に設置された第1膨張弁及び第2膨張弁を開閉制御することにより、圧縮機の吐出温度を制御する構成であるが、レシーバ内に設置された内部熱交換器で中圧冷媒又は低圧冷媒の熱交換量を調整する構成ではない。そのため、例えば冷媒回路を循環する冷媒にR32が使用された場合、内部熱交換器において、運転状況に合った適切な熱交換量の制御ができず、圧縮機の吸入側の冷媒加熱度が過大になることに起因する吐出冷媒温度の過昇により、保護装置作動する異常停止が発生する問題があった。
 本発明は、前述のような課題を解決するためになされたもので、圧縮機の吸入冷媒加熱度が過大になることに起因する吐出冷媒温度過昇状態を回避して、正常な空調運転を行うことができる、空気調和装置を提供することを目的としている。
 上記の課題を解決する手段として、本発明に係る空気調和装置は、圧縮機、凝縮器、減圧装置、及び蒸発器と、を順次配管で接続し、冷媒を循環させる冷媒回路を備えた空気調和装置であって、前記圧縮機の吸入側に接続する吸入配管に設置され、前記吸入配管を流れる冷媒と、前記凝縮器と前記減圧装置との間の冷媒とで熱交換させる内部熱交換器と、一方が前記内部熱交換器の入口側に配置された前記吸入配管に接続され、他方が前記内部熱交換器の出口側に配置された前記吸入配管に接続されたバイパス配管と、前記バイパス配管に設置された第1流量調整弁と、前記圧縮機の吐出冷媒温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段により検出された吐出冷媒温度に基づいて、前記第1流量調整弁の開度を制御する制御部と、を備えている。
 本発明に係る空気調和装置は、前記吐出冷媒温度検出手段により検出した前記圧縮機の吐出冷媒温度に基づいて前記バイパス配管の前記第1流量調整弁を制御することにより、前記内部熱交換器の交換熱量を調整することができるので、冷媒回路を循環する冷媒にR32を使用した場合であっても、確実に吐出冷媒温度過昇状態を回避させることができ、正常な空調運転を実現できる。
この発明の実施形態1に係る空気調和装置の冷媒回路構成図である。 この発明の実施形態1に係る空気調和装置の制御ブロック図である。 この発明の実施形態1に係る空気調和装置の冷媒の状態遷移を示すP-h線図である。 この発明の実施形態1に係る空気調和装置の流量調整弁の制御動作の流れを示すフローチャートである。 この発明の実施形態2に係る空気調和装置の冷媒回路構成図である。 この発明の実施形態2に係る空気調和装置の流量調整弁の制御動作の流れを示すフローチャートである。
 実施形態1.
《機器構成》
 次に、本発明に係る空気調和装置の実施形態を図面に基づいて説明する。
 図1は、この発明の実施形態1に係る空気調和装置の冷媒回路構成図である。図2は、この発明の実施形態1に係る空気調和装置の制御ブロック図である。
 空気調和装置は、図1に示すように、圧縮機1、四方弁2、室外熱交換器3、第1減圧装置5a、第2減圧装置5b、室内熱交換器7を順に、冷媒配管で接続した冷媒回路を備えており、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷暖房に使用される。この空気調和装置は、屋外に設置される室外ユニットAと、屋内の天井に埋め込みや吊り下げ等により、または屋内の壁面に壁掛け等により設置される室内ユニットBとで構成されている。室外ユニットAと室内ユニットBは、液接続配管6及びガス接続配管9を介して並列に接続されている。
 なお、図1に示す実施形態1の空気調和装置では、室内ユニットBを1台とした構成であるが、これに限定されるものではなく、複数台とした構成であってもよい。また、室外ユニットAと室内ユニットBのいずれも複数のユニットで構成した場合、それぞれの容量が大から小まで異なっても、全てが同一容量であっても良い。
 空気調和装置に用いられる冷媒としては、例えば、R410A、R407C、R404A、R32などのHFC冷媒、R1234yf/zeなどのHFO冷媒、R22、R134aなどのHCFC冷媒、もしくは二酸化炭素(CO)や炭化水素、ヘリウム、プロパン等のような自然冷媒などがあるが、実施形態1においては、R32冷媒を使用した場合を前提に説明する。
<室外ユニットA>
 室外ユニットAは、冷媒回路の一部である室外側冷媒回路を構成するものであり、圧縮機1、四方弁2、室外熱交換器3、第1減圧装置5a、レシーバ11、第2減圧装置5b、及び室外送風装置4を有している。四方弁2の切り換えや室外熱交換器3の動作は、空気調和装置に設置された制御部30によって制御される。
 圧縮機1は、吸入した冷媒を圧縮し、高温高圧の状態にして吐出するものであり、冷媒吐出側が四方弁2に接続され、冷媒吸入側がレシーバ11に接続されている。圧縮機1は、一例として、運転容量(周波数)を可変させることが可能とした構成であり、例えばインバータにより制御されるモータ(図示することは省略)によって駆動される容積式圧縮機を使用する。
 なお、圧縮機1は、図1に示す実施形態では1台であるが、これに限定されず、室内ユニットBの接続台数等に応じて、2台以上の圧縮機を並列又は直列に接続した構成であってもよい。
 四方弁2は、冷媒の流路を切り換える機能を有するものである。四方弁2は、冷房運転時には、図1の破線で示すように、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側とガス接続配管9側とを接続するように冷媒流路を切り換える。四方弁2は、暖房運転時には、図1の実線で示すように、圧縮機1の吐出側とガス接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように冷媒流路を切り換える。
 なお、実施形態1では、四方弁2を設置して冷房運転と暖房運転とを切り換え可能な冷媒回路を構成する場合を示すが、四方弁2を設置せずに、冷房運転のみ又は暖房運転のみを行う構成としてもよい。
 室外熱交換器3は、冷房運転時には凝縮器として機能し、圧縮機1から吐出された冷媒と空気との間で熱交換を行わせるものである。また、室外熱交換器3は、暖房運転時には蒸発器として機能し、第1減圧装置5aから流出した冷媒と空気との間で熱交換を行わせるものである。室外熱交換器3は、一方が四方弁2に接続され、他方が第1減圧装置5aに接続されている。
 なお、室外熱交換器3は、一例として、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器である。
 室外送風装置4は、室外ユニットA内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換した空気を室外に排出する機能を有するものである。
 なお、室外送風装置4は、室外熱交換器3に供給する空気の流量を可変することが可能なファンであり、例えば、DCモータ(図示せず)によって駆動されるプロペラファンから構成されている。
 第1減圧装置5a及び第2減圧装置5bは、室外ユニットAの液側に配置され、冷媒回路内を流れる冷媒の流量調整等を行う機能を有する。第1減圧装置5aは、一方が室外熱交換器3に接続され、他方がレシーバ11に接続されている。第2減圧装置5bは、一方が液接続配管6を介して室内熱交換器7に接続され、他方がレシーバ11に接続されている。
 レシーバ11は液冷媒を貯溜する冷媒容器であり、運転中に余剰となった液冷媒を貯溜するとともに気液分離機能を合わせて有している。レシーバ11は、前記第1減圧装置5aと前記第2減圧装置5bとの間の冷媒配管上に設置されている。
 レシーバ11の内部には、四方弁2と圧縮機1の吸入側とを接続する吸入配管15の一部が配置されており、吸入配管15を流れる冷媒と、第1減圧装置5aと第2減圧装置5bの間の冷媒とを熱交換させる内部熱交換器14が設置されている。
 吸入配管15には、吸入配管15を循環する冷媒を一部バイパスする機能を有するバイパス配管12が設けられている。
 バイパス配管12は、一方が四方弁2と内部熱交換器14とを接続する側の吸入配管15に接続され、他方が内部熱交換器14と圧縮機1とを接続する側の吸入配管15に接続されている。バイパス配管12には、バイパス配管12を流れる冷媒の流量を調整する第1流量調整弁13aが設置されている。第1流量調整弁13aの開度は、制御部30によって制御されている。なお、第1流量調整弁13aとして電子膨張弁が好適であるが、同様の開度調整が可能なものであれば他の方式の流量調整弁を用いてもよい。
 また、室外ユニットAには、各種温度センサが設置されている。
 先ず、圧縮機1に、吐出冷媒温度Tdを検出する吐出冷媒温度検出手段として吐出温度センサ201とシェル温度センサ208が設置されている。
 次に、室外熱交換器3に、気液二相状態の冷媒温度を検出するガス側温度センサ202が設置されている。気液二相状態の冷媒温度とは、冷房運転時では凝縮温度Tcに対応する冷媒温度、暖房運転時では蒸発温度Teに対応する冷媒温度である。
 次に、室外熱交換器3の液側に、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ204が設置されている。
 最後に、室外ユニットAの室外空気の吸入口側に、室外ユニットA内に流入する室外空気の温度すなわち外気温度Taを検出する室外温度センサ203が設置されている。
 なお、吐出温度センサ201、ガス側温度センサ202、室外温度センサ203、液側温度センサ204及びシェル温度センサ208は、一例としていずれもサーミスタで構成される。
<室内ユニットB>
 室内ユニットBは、冷媒回路の一部である室内側冷媒回路を構成するものであり、室内熱交換器7と室内送風装置8とを備えている。室内送風装置8の動作は、空気調和装置に設置された制御部30によって制御される。
 室内熱交換器7は、冷房運転時には蒸発器として機能し、第2減圧装置5bから流出した冷媒と空気との間で熱交換を行わせるものである。また、室内熱交換器7は、暖房運転時には凝縮器として機能し、圧縮機1から吐出された冷媒と空気との間で熱交換を行わせるものである。室内熱交換器7は、一方がガス接続配管9を介して四方弁2に接続され、他方が液接続配管6を介して第2減圧装置5bに接続されている。
 なお、室内熱交換器7は、一例として、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器である。
 室内送風装置8は、室内ユニットB内に室内空気を吸入し、室内熱交換器7により冷媒との間で熱交換した空気を室内に供給する機能を有する。
 なお、室内送風装置8は、室内熱交換器7に供給する空気の流量を可変することが可能なファンであり、例えば、DCモータ(図示することは省略)によって駆動される遠心ファンや多翼ファン等で構成されている。
 また、室内ユニットBには、各種温度センサが設置されている。
 先ず、室内熱交換器7の液側に、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ205が設置されている。液状態または気液二相状態の冷媒温度とは、暖房運転時では過冷却液温度Tcoに対応する冷媒温度、冷房運転時では蒸発温度Teに対応する冷媒温度である。
 次に、室内ユニットBの室内空気の吸入口側に、室内ユニットB内に流入する室内空気の温度を検出する室内温度センサ206が設置されている。
 最後に、室内熱交換器7に、気液二相状態の冷媒の温度を検出するガス側温度センサ207が設置されている。ここで気液二相状態の冷媒温度とは、暖房運転時では凝縮温度Tcに対応する冷媒温度、冷房運転時では蒸発温度Teに対応する冷媒温度である。
 なお、液側温度センサ205、ガス側温度センサ207、及び室内温度センサ206は一例としていずれもサーミスタで構成される。
<制御部>
 次に、実施形態1の制御部30を図2に基づいて説明する。
 制御部30は、空気調和装置の計測制御を行うものであり、圧縮機1、四方弁2、室内送風装置8、室外送風装置4、第1減圧装置5a、第2減圧装置5b、第1流量調整弁13aの動作を制御する。制御部30は、入力側にセンサ類が接続され、出力側にアクチュエータ類が接続されている。
 制御部30は、例えば室外ユニットAに内蔵されており、例えばマイコンにより構成された測定部30a、演算部30b、駆動部30c、及び判定部30eと、例えば半導体メモリ等によって構成された記憶部30dと、を備えている。
 測定部30aには、圧力センサ及び温度センサ201~208より検出された運転状態量が入力されて、圧力や温度の測定を行う。測定部30aで計測された運転状態量は演算部30bに入力される。
 演算部30bは、測定部30aで測定された運転状態量に基づき、予め与えられた式等を用いて例えば冷媒物性値(飽和圧力、飽和温度、エンタルピなど)を演算する。また、演算部30bは測定部30aで測定された運転状態量に基づき、演算処理を行う。
 駆動部30cは、演算部30bの演算結果に基づき、圧縮機1、四方弁2、室外送風装置4、第1減圧装置5a、第2減圧装置5b、室内送風装置8、第1流量調整弁13a等を駆動させたり、停止させたりする。
 記憶部30dは、演算部30bによって得られた結果や予め定められた定数、冷媒の物性値(飽和圧力、飽和温度、乾き度等)を計算する関数式や関数表(テーブル)などを記憶する。記憶部30d内のこれらの記憶内容は、必要に応じて参照、書き換えることが可能である。記憶部30dには、更に制御プログラムが記憶されており、記憶部30d内のプログラムに従って制御部30が空気調和装置を制御する。
 判定部30eは、演算部30bによって得られた結果に基づいて大小の比較、判定等の処理を行う。
 なお、実施形態1では制御部30を空気調和装置に内蔵する構成としたが、本発明はこれに限るものではない。詳細に図示することは省略したが、室外ユニットAにメイン制御部を、室内ユニットBに制御部の機能の一部を持つサブ制御部を設けて、メイン制御部とサブ制御部との間でデータ通信を行うことにより連携処理を行う構成や、室内ユニットBに全ての機能を持つ制御部を設置する構成、あるいはこれらの外部に制御部を別置する構成等で実施することもできる。
《空気調和装置の基本運転動作》
 次に、上記構成からなる空気調和装置の冷房運転時及び暖房運転時の動作を、図1及び図3に基づいて説明する。図3は、この発明の実施形態1に係る空気調和装置の冷媒の状態遷移を示すP-h線図である。
 先ず、冷房運転時における空気調和装置の動作について説明する。冷房運転時では、四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3に接続され、圧縮機1の吸入側が室内熱交換器7に接続された状態となっている。
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2を経由して凝縮器である室外熱交換器3へ至り、室外送風装置4の送風作用により凝縮液化し、高圧低温の液冷媒となる。凝縮液化した高温低圧の冷媒は、第1減圧装置5aで減圧されて中圧二相冷媒となり、レシーバ11を経由し、第2減圧装置5bでさらに減圧され、液接続配管6を経由して蒸発器である室内熱交換器7へ送られる。減圧された二相冷媒は、室内熱交換器7にて室内送風装置8の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は、四方弁2を経由して、内部熱交換器14にて第1減圧装置5a、第2減圧装置5bとの間の中圧二相冷媒と熱交換した後に、再び圧縮機1へ吸入される。
 上記冷房運転時における空気調和装置の動作において、内部熱交換器14では、図3に示すように、第1減圧装置5aで減圧された高温の中圧二相冷媒が、四方弁2と圧縮機1の吸入側の間を循環する低温の低圧冷媒により飽和液冷媒まで冷却される(点D→点Eの変化)。これと同時に、室内熱交換器7から吐出された低圧のガス冷媒は、過熱されて低圧の過熱ガス冷媒となって圧縮機1へ流入する(点G→点Aの変化)。この内部熱交換器14における熱交換作用により、室内熱交換器7に流入する冷媒のエンタルピが小さくなり、室内熱交換器7の出入口のエンタルピ差が大きくなる。よって、所定能力を得るために必要な冷媒循環量が小さくなり、圧力損失が低減するので、冷凍サイクルのCOPを向上させることができる。また、それと同時に、圧縮機1へ流入する低圧冷媒は過熱ガス状態となるため、圧縮機1への液冷媒過剰流入による液バック状態を回避することができる。
 ここで、第1減圧装置5aは、室外熱交換器3の出口における冷媒過冷却度が目標値になるように、制御部30によって開度が調整されて室外熱交換器3に流れる冷媒の流量が制御されている。そのため、室外熱交換器3において凝縮された液冷媒は、目標の過冷却度を有する状態となる。なお、室外熱交換器3の出口における冷媒過冷却度は、液側温度センサ204による検出値からガス側温度センサ202による検出値(冷媒の凝縮温度Tcに相当)を引いた値である。
 また、第2減圧装置5bは、圧縮機1の吐出冷媒温度Tdが目標値になるように、制御部30によって開度が調整され、室内熱交換器7を循環する冷媒の流量が制御されている。つまり、室内熱交換器7には室内ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。なお、圧縮機1の吐出冷媒温度Tdは、吐出温度センサ201もしくはシェル温度センサ208で検出される。
 次に、暖房運転時の動作について図1及び図3を用いて説明する。
 暖房運転時は四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7に接続され、圧縮機1の吸入側が室外熱交換器3に接続された状態となっている。
 圧縮機1から吐出した高温高圧のガス冷媒は、四方弁2及びガス接続配管9を経由して凝縮器である室内熱交換器7へ至り、室内送風装置8の送風作用により冷媒は凝縮液化し、高圧低温となる。凝縮液化した高温低圧の冷媒は、液接続配管6を経由して、第2減圧装置5bで減圧されて中圧二相冷媒となり、レシーバ11を経由し、第1減圧装置5aでさらに減圧され、蒸発器である室外熱交換器3へ送られる。減圧された二相冷媒は、室外熱交換器3にて室外送風装置4の送風作用により蒸発し、低圧のガス冷媒となる。そして、低圧ガス冷媒は四方弁2を経由して、内部熱交換器14にて第1減圧装置5a、第2減圧装置5bとの間の中圧二相冷媒と熱交換した後に、再び圧縮機1へ吸入される。
 上記暖房運転時における空気調和装置の動作において、内部熱交換器14では、第2減圧装置5bで減圧された高温の中圧二相冷媒が、四方弁2と圧縮機1吸入側の間を循環する低温の低圧冷媒により飽和液冷媒まで冷却される(点D→点Eの変化)。これと同時に、室外熱交換器3から吐出された低圧のガス冷媒は、過熱されて低圧の過熱ガス冷媒となって圧縮機1へ流入する(点G→点Aの変化)。この内部熱交換器14における熱交換作用により、室内熱交換器7に流入する冷媒のエンタルピが小さくなり、室内熱交換器7の出入口のエンタルピ差が大きくなる。よって、所定能力を得るために必要な冷媒循環量が小さくなり、圧力損失が低減するので、冷凍サイクルのCOPを向上させることができる。また、それと同時に、圧縮機1へ流入する低圧冷媒は過熱ガス状態となるため、圧縮機1への液冷媒過剰流入による液バック状態を回避することができる。
 ここで、第2減圧装置5bは、室内熱交換器7の出口における冷媒過冷却度が目標値になるように、制御部30によって開度が調整されて室内熱交換器7を流れる冷媒の流量が制御されている。そのため、室内熱交換器7において凝縮された液冷媒は、目標の過冷却度を有する状態となる。なお、室内熱交換器7の出口における冷媒過冷却度は、液側温度センサ205の検出値からガス側温度センサ207による検出値(冷媒の凝縮温度Tcに相当)を引いた値である。
 また、第1減圧装置5aは、圧縮機1の吐出冷媒温度Tdが目標値になるように、制御部30によって開度が調整され、室外熱交換器3を循環する冷媒の流量が制御されている。そのため、圧縮機1より吐出された吐出ガス冷媒は目標の温度状態となる。このように、室内熱交換器7には室内ユニットBが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。なお、圧縮機1の吐出冷媒温度Tdは、吐出温度センサ201もしくはシェル温度センサ208で検出される。
 なお、実施形態1は冷媒の凝縮温度Tcとして各熱交換器に設置された温度センサの検出値を用いたが、圧縮機1の吐出側に圧力センサを設置して冷媒の吐出圧力を検出し、その吐出圧力の検出値を飽和温度換算して冷媒の凝縮温度Tcとして用いてもよい。
《第1流量調整弁の制御方法》
 実施形態1の空気調和装置における第1流量調整弁13aの動作を、図4に基づいて説明する。図4は、この発明の実施形態1に係る空気調和装置の流量調整弁の制御動作の流れを示すフローチャートである。
(ステップS11)
 制御部30は、制御フロー開始後、測定部30aで、圧縮機1の吐出冷媒温度Tdを検出する。吐出冷媒温度Tdは、吐出温度センサ201もしくはシェル温度センサ208の検出値を用いる。
(ステップS12)
 制御部30は、判定部30eで、検出した吐出冷媒温度Tdと、記憶部30dにあらかじめ記憶しておいた吐出冷媒温度過昇状態判定値Tdoとを比較して、圧縮機1の吐出冷媒温度Tdが過昇状態かどうかを判定する。具体的には、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いか否かを判定する。なお、吐出冷媒温度過昇状態判定値Tdoは、圧縮機1の製品仕様により決定されるものであり、例えば圧縮機1の吐出冷媒温度Tdの動作保証範囲上限値である120度として設定する。
 制御部30は、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いと判定した場合ステップS13に移行し、そうでないと判定した場合はステップS14に移行する。
(ステップS13)
 制御部30は、ステップS12において、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いと判定した場合、駆動部30cで第1流量調整弁13aを全開し、ステップS15に移行する。
(ステップS14)
 制御部30は、ステップS12において、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高くないと判定した場合、駆動部30cで第1流量調整弁13aを全閉し、制御フローを終了する。
(ステップS15)
 制御部30は、ステップS13において第1流量調整弁13aを全開した後、演算部30bで、冷媒の蒸発温度Teに基づき、圧縮機1の吸入冷媒状態として吸入冷媒過熱度SHsを求める。吸入冷媒過熱度SHsは、吸入冷媒温度Tsから冷媒の蒸発温度Teを引いて算出される。
 ここで、冷媒の蒸発温度Teは、冷房運転時では室内熱交換器7に設置されたガス側温度センサ207、暖房運転時では室外熱交換器3に設置されたガス側温度センサ202の検出値である。
 吸入冷媒温度Tsは、冷媒の蒸発温度Teを飽和圧力換算した吸入冷媒圧力Ps(圧縮機の吸入圧力相当)と、冷媒の凝縮温度Tcを飽和圧力換算した高圧圧力Pd(圧縮機の吐出圧力相当)と、吐出冷媒温度Tdとを用いて、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定して、下記数1より算出することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[―]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、より精度よく吸入冷媒温度Tsを推測することができる。
 なお、冷媒の高圧圧力Pdや吸入冷媒圧力Psを算出するのに、ここでは冷媒の凝縮温度Tcや蒸発温度Teにより換算しているが、圧縮機1の吸入側、吐出側に圧力センサを設置して直接検出してもよい。また、圧縮機1の吸入側に温度センサを設置し、吸入冷媒温度Tsを直接検出してもよい。
(ステップS16)
 制御部30は、ステップS15において検出した吸入冷媒過熱度SHsを基づいて、判定部30eで、圧縮機1の吸入冷媒が液バック状態かどうかを判定する。過熱ガス状態(吸入冷媒過熱度SHs>0)であれば、液バック状態でないと判定して、そのまま制御フローを終了する。過熱ガス状態(吸入冷媒過熱度SHs>0)でなければ、液バック状態であると判定してステップS17に移行する。
(ステップS17)
 制御部30は、ステップS16において、液バック状態であると判定すると、駆動部30cで第1流量調整弁13aの開度を閉じる方向へ調整し、開度調整後、再びステップS15へ戻る。
 ここで、第1流量調整弁13aの開度調整は、例えば電子膨張弁を用いた場合、弁の仕様や開度特性に合わせて、一定開度(例えば20パルス)ずつ小さくする方法で調整する。
 なお、実施形態1では、圧縮機1の吸入冷媒過熱度SHsに基づいて第1流量調整弁13aの開度調整する方法を説明したが、吸入冷媒過熱度SHsの代わりに吸入冷媒乾き度に基づいて第1流量調整弁13aの開度調整する方法であってもよい。この場合、冷媒乾き度X=1で飽和ガス状態、X>1で過熱ガス状態となるため、X≧1となるように第1流量調整弁13aの開度を調整するとよい。吸入冷媒乾き度は冷媒の物性情報としてあらかじめ記憶しておき、吸入冷媒温度Tsや吸入冷媒圧力Psを用いて求めることができる。
《作用効果》
 実施形態1の空気調和装置は、吐出冷媒温度検出手段により検出した圧縮機1の吐出冷媒温度Tdに基づいてバイパス配管12の第1流量調整弁13aを制御することにより、内部熱交換器14の交換熱量を調整することができるので、冷媒回路を循環する冷媒にR32を使用場合であっても、吐出冷媒温度過昇状態を回避させることができ、正常な空調運転を実現できる。
 また、実施形態1に係る空気調和装置は、圧縮機1の吸入側の吸入冷媒状態に基づいて第1流量調整弁13aの開度を制御することにより、圧縮機1の吸入側に液冷媒が過度に流入する液バック状態を回避して、圧縮機1の摺動部の焼きつき等による圧縮機故障を回避することができ、高い信頼性を実現できる。
 実施形態2.
《機器構成》
 図5は、この発明の実施形態2に係る空気調和装置の冷媒回路構成図である。なお、実施形態2では実施形態1との相違点を中心に説明し、同様の箇所については同一の符号を付して、その説明を省略する。
 実施形態2の空気調和装置では、図5に示すように、バイパス配管12に、同バイパス配管12を流れる流量を調整する第1流量調整弁13aが設置されていると共に、四方弁2と内部熱交換器14とを接続する吸入配管15のうち、吸入配管15とバイパス配管12の接続地点と、内部熱交換器14と間に、吸入配管15を流れる流量を調整する第2流量調整弁13bが設置されている。第1流量調整弁13a及び第2流量調整弁13bは、制御部30によって、開閉制御される。
《第1流量調整弁及び第2流量調整弁の制御方法》
 次に、実施形態2の空気調和装置における第1流量調整弁13aと第2流量調整弁13bの動作を、図6に基づいて説明する。図6は、この発明の実施形態2に係る空気調和装置の流量調整弁の制御動作の流れを示すフローチャートである。
(ステップS21)
 制御部30は、制御フロー開始後、測定部30aで、圧縮機1の吐出冷媒温度Tdを検出する。吐出冷媒温度Tdは、吐出温度センサ201もしくはシェル温度センサ208の検出値を用いる。
(ステップS22)
 制御部30は、判定部30eで、検出した吐出冷媒温度Tdと、記憶部30dにあらかじめ記憶しておいた吐出冷媒温度過昇状態判定値Tdoとを比較して、圧縮機1の吐出冷媒温度Tdが過昇状態かどうかを判定する。具体的には、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いか否かを判定する。なお、吐出冷媒温度過昇状態判定値Tdoは、圧縮機1の製品仕様により決定されるものであり、例えば圧縮機1の吐出冷媒温度Tdの動作保証範囲上限値である120度として設定する。
 制御部30は、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いと判定した場合ステップS23に移行し、そうでないと判定した場合はステップS24に移行する。
(ステップS23)
 制御部30は、ステップS22において、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高いと判定した場合、駆動部30cで第1流量調整弁13aを全開し、且つ第2流量調整弁13bを全閉して、ステップS25に移行する。
(ステップS24)
 制御部30は、ステップS22において、吐出冷媒温度Tdが吐出冷媒温度過昇状態判定値Tdoよりも高くないと判定した場合、駆動部30cで第1流量調整弁13aを全閉し、第2流量調整弁13bを全開して制御フローを終了する。
(ステップS25)
 制御部30は、ステップS23において第1流量調整弁13aを全開し、第2流量調整弁13bを全閉した後、演算部30bで、冷媒の蒸発温度Teに基づき、圧縮機1の吸入冷媒状態として吸入冷媒過熱度SHsを求める。吸入冷媒過熱度SHsは、吸入冷媒温度Tsから冷媒の蒸発温度Teを引いて算出される。
(ステップS26)
 制御部30は、ステップS25において検出した吸入冷媒過熱度SHsを基づいて、判定部30eで、圧縮機1の吸入冷媒が液バック状態かどうかを判定する。過熱ガス状態(吸入冷媒過熱度SHs>0)であれば、液バック状態でないと判定して、そのまま制御フローを終了する。過熱ガス状態(吸入冷媒過熱度SHs>0)でなければ、液バック状態であると判定してステップS27に移行する。
(ステップS27)
 制御部30は、ステップS26において、液バック状態であると判断すると、駆動部30cで第1流量調整弁13aの開度を閉じる方向へ調整し、且つ第2流量調整弁13bの開度を開く方向へ調整して、再びステップS25へ戻る。
 ここで、第1流量調整弁13a及び第2流量調整弁13bの開度調整は、例えば電子膨張弁を用いた場合、弁の仕様や開度特性に合わせて、一定開度(例えば20パルス)ずつ小さくする方法で調整する。
 なお、実施形態2では、圧縮機1の吸入冷媒過熱度SHsに基づいて第1流量調整弁13a及び第2流量調整弁13bの開度調整する方法を説明したが、吸入冷媒過熱度SHsの代わりに吸入冷媒乾き度に基づいて第1流量調整弁13a及び第2流量調整弁13bの開度調整する方法であってもよい。この場合、冷媒乾き度X=1で飽和ガス状態、X>1で過熱ガス状態となるため、X≧1となるように第1流量調整弁13a及び第2流量調整弁13bの開度を調整するとよい。吸入冷媒乾き度は冷媒の物性情報としてあらかじめ記憶しておき、吸入冷媒温度Tsや吸入冷媒圧力Psを用いて求めることができる。
《作用効果》
 実施形態2の空気調和装置は、吐出冷媒温度検出手段により検出した圧縮機1の吐出冷媒温度Tdに基づいてバイパス配管12の第1流量調整弁13aと、吸入配管15の第2流量調整弁13bを制御することにより、内部熱交換器14の交換熱量を調整することができるので、冷媒回路を循環する冷媒にR32を使用した場合であっても、吐出冷媒温度過昇状態を回避させることができ、正常な空調運転を実現できる。
 また、実施形態2に係る空気調和装置は、圧縮機1の吸入側の吸入冷媒状態に基づいて第1流量調整弁13aと第2流量調整弁13bの開度を制御することにより、圧縮機1の吸入側に液冷媒が過度に流入する液バック状態を回避して、圧縮機1の摺動部の焼きつき等による圧縮機故障を回避することができ、高い信頼性を実現できる。
《空気調和装置の変形例》
 以上に本発明を実施形態に基づいて説明したが、本発明は上述した実施形態の構成に限定されるものではない。例えば、冷媒の流路構成(配管接続)、圧縮機、熱交換器、減圧装置等の冷媒回路要素の構成、等の内容は、各実施形態で説明した内容に限定されるものではなく、本発明の技術の範囲内で適宜変更が可能である。要するに、いわゆる当業者が必要に応じてなす種々なる変更、応用、利用の範囲をも本発明の要旨(技術的範囲)に含むことを念のため申し添える。
 1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風装置、5a 第1減圧装置、5b 第2減圧装置、6 液接続配管、7 室内熱交換器、8 室内送風装置、9 ガス接続配管、11 レシーバ、12 バイパス配管、13a 第1流量調整弁、13b 第2流量調整弁、14 内部熱交換器、15 吸入配管、30 制御部、30a 測定部、30b 演算部、30c 駆動部、30d 記憶部、30e 判定部、201 吐出温度センサ、202 ガス側温度センサ、203 室外温度センサ、204 液側温度センサ、205 液側温度センサ、206 室内温度センサ、207 ガス側温度センサ、208 シェル温度センサ、A 室外ユニット、B 室内ユニット。

Claims (8)

  1.  圧縮機、凝縮器、減圧装置、及び蒸発器と、を順次配管で接続し、冷媒を循環させる冷媒回路を備えた空気調和装置であって、
     前記圧縮機の吸入側に接続する吸入配管に設置され、前記吸入配管を流れる冷媒と、前記凝縮器と前記減圧装置との間の冷媒とで熱交換させる内部熱交換器と、
     一方が前記内部熱交換器の入口側に配置された前記吸入配管に接続され、他方が前記内部熱交換器の出口側に配置された前記吸入配管に接続されたバイパス配管と、
     前記バイパス配管に設置された第1流量調整弁と、
     前記圧縮機の吐出冷媒温度を検出する吐出冷媒温度検出手段と、
     前記吐出冷媒温度検出手段により検出された吐出冷媒温度に基づいて、前記第1流量調整弁の開度を制御する制御部と、を備えている、空気調和装置。
  2.  前記減圧装置は、第1減圧装置と第2減圧装置を有し、
     前記第1減圧装置と前記第2減圧装置との間の冷媒配管上にレシーバが設置され、
     前記内部熱交換器は、前記レシーバの内部において、前記吸入配管を流れる冷媒と、前記第1減圧装置と前記第2減圧装置との間の冷媒とを熱交換する、請求項1に記載の空気調和装置。
  3.  前記制御部は、前記吐出冷媒温度検出手段により検出した吐出冷媒温度が過昇状態か否かを判定し、
     前記吐出冷媒温度が過昇状態であると判定した場合には、前記第1流量調整弁の開度を全開する制御を行い、
     前記吐出冷媒温度が過昇状態ではないと判定した場合には、前記第1流量調整弁の開度を全閉する制御を行う、請求項1又は2に記載の空気調和装置。
  4.  前記圧縮機の吸入冷媒加熱度又は吸入冷媒乾き度を検出する吸入冷媒状態検出手段を備え、
     前記制御部は、前記吸入冷媒状態検出手段により検出した吸入冷媒加熱度又は吸入冷媒乾き度に基づいて、液バック状態か否かを判定し、液バック状態と判定した場合には、前記第1流量調整弁の開度が閉じる方向に制御を行う、請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記内部熱交換器の入口側に配置された前記吸入配管のうち、前記吸入配管と前記バイパス配管の接続地点と、前記内部熱交換器との間に設置された第2流量調整弁を備え、
     前記制御部は、前記吐出冷媒温度検出手段により検出された吐出冷媒温度に基づいて、前記第1流量調整弁及び前記第2流量調整弁の開度を制御する、請求項1又は2に記載の空気調和装置。
  6.  前記制御部は、前記吐出冷媒温度検出手段により検出した吐出冷媒温度が過昇状態か否かを判定し、
     前記吐出冷媒温度が過昇状態であると判定した場合には、前記第1流量調整弁の開度を全開し、かつ前記第2流量調整弁の開度を全閉する制御を行い、
     前記吐出冷媒温度が過昇状態ではないと判定した場合には、前記第1流量調整弁の開度を全閉し、かつ前記第2流量調整弁の開度を全開する制御を行う、請求項5に記載の空気調和装置。
  7.  前記圧縮機の吸入冷媒加熱度又は吸入冷媒乾き度を検出する吸入冷媒状態検出手段を備え、
     前記制御部は、前記吸入冷媒状態検出手段により検出した吸入冷媒加熱度又は吸入冷媒乾き度に基づいて、液バック状態か否かを判定し、液バック状態と判定した場合には、前記第1流量調整弁の開度が閉じる方向に制御を行い、かつ前記第2流量調整弁の開度が開く方向に制御を行う、請求項5又は6に記載の空気調和装置。
  8.  前記冷媒回路を循環する冷媒はR32である、請求項1~7のいずれか一項に記載の空気調和装置。
PCT/JP2015/084075 2015-12-03 2015-12-03 空気調和装置 WO2017094172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/084075 WO2017094172A1 (ja) 2015-12-03 2015-12-03 空気調和装置
JP2017553578A JP6537629B2 (ja) 2015-12-03 2015-12-03 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084075 WO2017094172A1 (ja) 2015-12-03 2015-12-03 空気調和装置

Publications (1)

Publication Number Publication Date
WO2017094172A1 true WO2017094172A1 (ja) 2017-06-08

Family

ID=58796615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084075 WO2017094172A1 (ja) 2015-12-03 2015-12-03 空気調和装置

Country Status (2)

Country Link
JP (1) JP6537629B2 (ja)
WO (1) WO2017094172A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019082372A1 (ja) * 2017-10-27 2020-11-19 三菱電機株式会社 冷凍サイクル装置
CN113513859A (zh) * 2020-04-09 2021-10-19 恒泽节能有限公司 高出水温度的总能量热泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP2004175232A (ja) * 2002-11-27 2004-06-24 Japan Climate Systems Corp 車両用空調装置
JP2010101621A (ja) * 2010-02-12 2010-05-06 Panasonic Corp 冷凍サイクル装置およびその制御方法
JP2011043273A (ja) * 2009-08-20 2011-03-03 Panasonic Corp ヒートポンプ式加熱液体システム
JP2015078800A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 空気調和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233378A (ja) * 1994-11-29 1996-09-13 Sanyo Electric Co Ltd 空気調和機
JPH1030852A (ja) * 1996-07-15 1998-02-03 Toshiba Ave Corp 空気調和機
JP4767133B2 (ja) * 2006-08-31 2011-09-07 三菱電機株式会社 冷凍サイクル装置
JP2011058774A (ja) * 2009-09-14 2011-03-24 Panasonic Corp ヒートポンプ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235239A (ja) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd 超臨界蒸気圧縮サイクル装置
JP2004175232A (ja) * 2002-11-27 2004-06-24 Japan Climate Systems Corp 車両用空調装置
JP2011043273A (ja) * 2009-08-20 2011-03-03 Panasonic Corp ヒートポンプ式加熱液体システム
JP2010101621A (ja) * 2010-02-12 2010-05-06 Panasonic Corp 冷凍サイクル装置およびその制御方法
JP2015078800A (ja) * 2013-10-17 2015-04-23 三菱電機株式会社 空気調和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019082372A1 (ja) * 2017-10-27 2020-11-19 三菱電機株式会社 冷凍サイクル装置
US11486617B2 (en) 2017-10-27 2022-11-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN113513859A (zh) * 2020-04-09 2021-10-19 恒泽节能有限公司 高出水温度的总能量热泵

Also Published As

Publication number Publication date
JP6537629B2 (ja) 2019-07-03
JPWO2017094172A1 (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
JP6366742B2 (ja) 空気調和装置
JP4670329B2 (ja) 冷凍空調装置、冷凍空調装置の運転制御方法、冷凍空調装置の冷媒量制御方法
JP4864110B2 (ja) 冷凍空調装置
EP3026371B1 (en) Refrigeration cycle apparatus
JP7186845B2 (ja) 空気調和装置
EP3205954B1 (en) Refrigeration cycle device
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
EP3312528B1 (en) Air conditioner
EP2375188A1 (en) Air conditioner
CN111094877B (zh) 制冷循环装置以及制冷装置
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP5979112B2 (ja) 冷凍装置
CN109312961B (zh) 制冷装置的热源机组
WO2017179210A1 (ja) 冷凍装置
JP6758506B2 (ja) 空気調和装置
CN112840164B (zh) 空调装置和管理装置
JP6537629B2 (ja) 空気調和装置
KR20190041091A (ko) 공기조화기
KR20210026645A (ko) 공기 조화기 및 그 제어 방법
JP2002147819A (ja) 冷凍装置
JP6410935B2 (ja) 空気調和機
JP6112189B1 (ja) 空気調和装置
WO2018163346A1 (ja) 空気調和装置
CN116075675A (zh) 空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909802

Country of ref document: EP

Kind code of ref document: A1