WO2017090648A1 - Hybrid vehicle and method for controlling same - Google Patents

Hybrid vehicle and method for controlling same Download PDF

Info

Publication number
WO2017090648A1
WO2017090648A1 PCT/JP2016/084722 JP2016084722W WO2017090648A1 WO 2017090648 A1 WO2017090648 A1 WO 2017090648A1 JP 2016084722 W JP2016084722 W JP 2016084722W WO 2017090648 A1 WO2017090648 A1 WO 2017090648A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
temperature
cooling water
motor generator
hybrid vehicle
Prior art date
Application number
PCT/JP2016/084722
Other languages
French (fr)
Japanese (ja)
Inventor
憲仁 岩田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017090648A1 publication Critical patent/WO2017090648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly to a hybrid vehicle and a control method thereof that can reduce the warm-up time of the engine and reduce the NOx content in exhaust gas.
  • HEV hybrid vehicle
  • a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle
  • the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
  • a water-cooled EGR cooler is installed in the middle of the EGR passage extending from the exhaust side to the intake side in order to prevent the combustion state in the cylinder from deteriorating and increasing impurities in the exhaust gas.
  • the exhaust gas diversion EGR gas
  • the EGR gas is excessively cooled in the EGR cooler, moisture condensed in the EGR gas and unburned fuel in the form of tar flow into the intake air, resulting in poor combustion in the cylinder and reduced engine durability. There is a risk of inviting. Therefore, the EGR system does not operate when the temperature of the cooling water used for cooling the EGR cooler is lower than the operation start temperature.
  • the warm-up time of the engine becomes long at the start of the diesel engine, the non-operation time of the EGR system also becomes long, so that a large amount of NOx may be released into the environment.
  • An object of the present disclosure is to provide a hybrid vehicle that can reduce the warm-up time of the engine and reduce the NOx content in the exhaust gas, and a control method thereof.
  • the hybrid vehicle of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, an engine cooling system in which cooling water of the engine circulates, and the cooling water
  • a hybrid vehicle including an EGR system that operates when the temperature reaches a preset operation start temperature and a control device
  • the control device is configured such that the temperature of the cooling water starts when the engine starts.
  • the motor generator is controlled to start power generation.
  • a hybrid vehicle control method of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and an engine cooling system in which cooling water of the engine circulates. And an EGR system that operates when the temperature of the cooling water reaches a preset operation start temperature, the temperature of the cooling water at the start of the engine When the temperature is lower than the start temperature, cranking of the engine is performed, and at the same time, the motor generator starts power generation.
  • the hybrid vehicle and the control method thereof of the present disclosure since a load due to power generation is applied from the motor generator to the engine, the temperature rise of the cooling water is promoted, so that the engine warm-up time can be shortened and the EGR system is not By shortening the operation time, the content of NOx in the exhaust gas can be reduced.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
  • This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and includes a diesel engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle.
  • the hybrid system 30 is provided.
  • crankshaft 13 In the diesel engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • the transmission 20 uses an AMT or an AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using the shift actuator 21.
  • the transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31 and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.
  • the high voltage battery 32 includes a lithium ion battery and a nickel metal hydride battery.
  • the low voltage battery 34 is a lead battery.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the low voltage battery 34 supplies power to various vehicle electrical components 36.
  • the various parameters in the hybrid system 30 such as current value, voltage value, and SOC are detected by the BMS 39.
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the diesel engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
  • the motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the EGR system 50 includes an EGR passage 51 extending from the exhaust passage 41 to the intake passage 55, and a water-cooled EGR cooler 52 and an EGR valve 53 interposed in the EGR passage 51.
  • a part of the exhaust gas 45 discharged from each cylinder 12 of the engine body 11 becomes EGR gas 54 and is shunted to the EGR passage 51, cooled by the EGR cooler 52 and adjusted in flow rate by the EGR valve 53, It is circulated from the passage 55 to the engine body 11.
  • the EGR system 50 is configured not to operate when the temperature of the cooling water 71 is lower than a preset operation start temperature T in order to prevent moisture and unburned fuel from entering the intake air 60.
  • the cooling water 71 that has removed the heat from the engine body 11 is cooled by air cooling using vehicle speed air or cooling air from a cooling fan (not shown) in a radiator (not shown),
  • the pump 72 is forced to circulate to the engine body 11.
  • a part of the cooling water forcedly circulated to the engine body 11 is used for cooling the EGR cooler 52 of the EGR system 50.
  • the engine cooling system 70 is provided with a cooling water temperature sensor 94 that detects the temperature of the cooling water 71 in the vicinity of the outlet of the engine body 11.
  • diesel engine 10, hybrid system 30, and EGR system 50 are controlled by a control device 80.
  • the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32.
  • the opening degree of the EGR valve 53 is adjusted according to the operating state of the diesel engine 10 and the detected value of the coolant temperature sensor 94.
  • the control device 80 uses the starter motor or the motor generator 31 for the engine main body 11. At the same time as the cranking, the motor generator 31 is controlled to start power generation through the hybrid system 30.
  • the temperature rise of the exhaust gas 45 rises due to the load applied to the diesel engine 10, the temperature rise of a catalyst (not shown) in the exhaust gas treatment system is promoted, and the purification rate of the exhaust gas 45 can be improved. .
  • the temperature of the cooling water 71 in the vicinity of the outlet of the engine body 11 is used as a comparison target of the operation start temperature T of the EGR system 50.
  • the present invention is not limited to this.
  • the temperature of the cooling water 71 flowing into or out of the EGR cooler 52 may be used.
  • the hybrid vehicle according to the present disclosure is useful in that the warm-up time of the engine can be shortened and the NOx content in the exhaust gas can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

A control device (80) of the present invention is configured to perform a control to cause a motor generator (31) to start power generation at the same time as the cranking of a diesel engine (10) if a detection value of a cooling water temperature sensor (94) is less than an operation start temperature (T) in an EGR system (50) when the diesel engine (10) is started.

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本開示はハイブリッド車両及びその制御方法に関し、更に詳しくは、エンジンの暖機時間を短縮できるとともに、排ガス中のNOx含有率を低下することができるハイブリッド車両及びその制御方法に関する。 The present disclosure relates to a hybrid vehicle and a control method thereof, and more particularly to a hybrid vehicle and a control method thereof that can reduce the warm-up time of the engine and reduce the NOx content in exhaust gas.
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という。)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や制動時にはモータージェネレーターによる回生発電が行われる(例えば、特許文献1を参照)。 In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. Yes. In the HEV, when the vehicle is accelerated or started, the driving force is assisted by the motor generator, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
 このHEVのエンジンにディーゼルエンジンを用いる場合には、排ガスに含有される窒素酸化物(NOx)を低減することを目的として、排ガスの一部を吸気に還流させることで、燃焼温度を低く抑えてNOxの生成を抑制する排ガス再循環システム(EGRシステム)がHEVに装備される(例えば、特許文献2を参照)。 When a diesel engine is used for this HEV engine, a part of the exhaust gas is recirculated to the intake air for the purpose of reducing the nitrogen oxide (NOx) contained in the exhaust gas, thereby reducing the combustion temperature. An exhaust gas recirculation system (EGR system) that suppresses the generation of NOx is installed in the HEV (see, for example, Patent Document 2).
 このEGRシステムにおいては、気筒内での燃焼状態が悪化して排ガス中の不純物が増加することを防ぐため、排気側から吸気側へ延びるEGR通路の途中に水冷式のEGRクーラーを設置して、排ガスの分流(EGRガス)を冷却して体積を減少させてから、吸気へ供給することが行われている。その一方で、EGRガスがEGRクーラーにおいて過度に冷却されると、EGRガス中で結露した水分やタール状の未燃燃料が吸気へ流入して、気筒内での燃焼不良やエンジンの耐久性低下などを招くおそれがある。それ故、EGRシステムは、EGRクーラーの冷却に用いられる冷却水の温度が作動開始温度未満であるときは、作動しないようになっている。 In this EGR system, a water-cooled EGR cooler is installed in the middle of the EGR passage extending from the exhaust side to the intake side in order to prevent the combustion state in the cylinder from deteriorating and increasing impurities in the exhaust gas. After the exhaust gas diversion (EGR gas) is cooled to reduce the volume, it is supplied to the intake air. On the other hand, if the EGR gas is excessively cooled in the EGR cooler, moisture condensed in the EGR gas and unburned fuel in the form of tar flow into the intake air, resulting in poor combustion in the cylinder and reduced engine durability. There is a risk of inviting. Therefore, the EGR system does not operate when the temperature of the cooling water used for cooling the EGR cooler is lower than the operation start temperature.
 そのため、ディーゼルエンジンの始動時において、エンジンの暖機時間が長くなると、EGRシステムの非作動時間も長くなるため、多量のNOxが環境中へ放出されるおそれがある。 Therefore, if the warm-up time of the engine becomes long at the start of the diesel engine, the non-operation time of the EGR system also becomes long, so that a large amount of NOx may be released into the environment.
日本国特開2002-238105号公報Japanese Unexamined Patent Publication No. 2002-238105 日本国特開2001-41110号公報Japanese Unexamined Patent Publication No. 2001-41110
 本開示の目的は、エンジンの暖機時間を短縮できるとともに、排ガス中のNOx含有率を減少することができるハイブリッド車両及びその制御方法を提供することにある。 An object of the present disclosure is to provide a hybrid vehicle that can reduce the warm-up time of the engine and reduce the NOx content in the exhaust gas, and a control method thereof.
 上記の目的を達成する本開示のハイブリッド車両は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの冷却水が循環するエンジン冷却システムと、前記冷却水の温度が予め設定された作動開始温度になったときに作動するEGRシステムと、制御装置と、を備えたハイブリッド車両において、前記制御装置は、前記エンジンの始動時に前記冷却水の温度が前記作動開始温度未満である場合には、該エンジンのクランキングを行うと同時に、前記モータージェネレーターに発電を開始させる制御を行うように構成されていることを特徴とするものである。 The hybrid vehicle of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, an engine cooling system in which cooling water of the engine circulates, and the cooling water In a hybrid vehicle including an EGR system that operates when the temperature reaches a preset operation start temperature and a control device, the control device is configured such that the temperature of the cooling water starts when the engine starts. When the temperature is lower than the temperature, the engine is cranked, and at the same time, the motor generator is controlled to start power generation.
 また、上記の目的を達成する本開示のハイブリッド車両の制御方法は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの冷却水が循環するエンジン冷却システムと、前記冷却水の温度が予め設定された作動開始温度になったときに作動するEGRシステムと、を備えたハイブリッド車両の制御方法であって、前記エンジンの始動時に前記冷却水の温度が前記作動開始温度未満である場合には、前記エンジンのクランキングを行うと同時に、前記モータージェネレーターに発電を開始させることを特徴とするものである。 In addition, a hybrid vehicle control method of the present disclosure that achieves the above object includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and an engine cooling system in which cooling water of the engine circulates. And an EGR system that operates when the temperature of the cooling water reaches a preset operation start temperature, the temperature of the cooling water at the start of the engine When the temperature is lower than the start temperature, cranking of the engine is performed, and at the same time, the motor generator starts power generation.
 本開示のハイブリッド車両及びその制御方法によれば、モータージェネレーターからエンジンに発電による負荷が加わるので、冷却水の温度上昇が促進されるため、エンジンの暖機時間を短縮できるとともに、EGRシステムの非作動時間の短縮により排ガス中のNOxの含有率を減少することができる。 According to the hybrid vehicle and the control method thereof of the present disclosure, since a load due to power generation is applied from the motor generator to the engine, the temperature rise of the cooling water is promoted, so that the engine warm-up time can be shortened and the EGR system is not By shortening the operation time, the content of NOx in the exhaust gas can be reduced.
図1は、本開示の実施形態からなるハイブリッド車両の構成図である。FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
 以下に、本開示の実施の形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両を示す。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 illustrates a hybrid vehicle according to an embodiment of the present disclosure.
 このハイブリッド車両(以下「HEV」という。)は、普通乗用車のみならず、バスやトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるディーゼルエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。 This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and includes a diesel engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle. The hybrid system 30 is provided.
 ディーゼルエンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このクランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を通じてトランスミッション20に伝達される。 In the diesel engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The rotational power of the crankshaft 13 is transmitted to the transmission 20 through a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標変速段へ、変速用アクチュエーター21を用いて自動的に変速するAMT又はATが用いられている。なお、トランスミッション20は、AMTのような自動変速式に限るものではなく、ドライバーが手動で変速するマニュアル式であってもよい。 The transmission 20 uses an AMT or an AT that automatically shifts to a target shift speed determined based on the HEV operating state and preset map data using the shift actuator 21. The transmission 20 is not limited to an automatic transmission type such as AMT, and may be a manual type in which a driver manually changes gears.
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、そのモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。 The hybrid system 30 includes a motor generator 31 and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in order.
 高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。 Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery.
 DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。 The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.
 このハイブリッドシステム30における種々のパラメータ、例えば、電流値、電圧値やSOCなどは、BMS39により検出される。 The various parameters in the hybrid system 30 such as current value, voltage value, and SOC are detected by the BMS 39.
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、ディーゼルエンジン10との間で動力を伝達する。なお、2つのプーリー15、16及びベルト状部材17の代わりに、ギヤボックスなどを用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限るものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であっても良い。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the diesel engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the two pulleys 15 and 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20, for example.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。 The motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 EGRシステム50は、排気通路41から吸気通路55へ延びるEGR通路51と、そのEGR通路51に介設された水冷式のEGRクーラー52及びEGRバルブ53とを備えている。 The EGR system 50 includes an EGR passage 51 extending from the exhaust passage 41 to the intake passage 55, and a water-cooled EGR cooler 52 and an EGR valve 53 interposed in the EGR passage 51.
 エンジン本体11の各気筒12から排出された排ガス45の一部は、EGRガス54となってEGR通路51に分流し、EGRクーラー52で冷却されてEGRバルブ53で流量を調整された後に、吸気通路55からエンジン本体11へ循環される。 A part of the exhaust gas 45 discharged from each cylinder 12 of the engine body 11 becomes EGR gas 54 and is shunted to the EGR passage 51, cooled by the EGR cooler 52 and adjusted in flow rate by the EGR valve 53, It is circulated from the passage 55 to the engine body 11.
 このEGRシステム50は、吸気60への水分及び未燃燃料の侵入を防止するために、冷却水71の温度が予め設定された作動開始温度T未満では作動しないようになっている。 The EGR system 50 is configured not to operate when the temperature of the cooling water 71 is lower than a preset operation start temperature T in order to prevent moisture and unburned fuel from entering the intake air 60.
 エンジン冷却システム70においては、エンジン本体11を除熱した冷却水71は、ラジエーター(図示せず)において車速風や冷却ファン(図示せず)の冷却風を利用した空冷により冷却された後に、ウォータポンプ72によりエンジン本体11へ強制循環される。 In the engine cooling system 70, the cooling water 71 that has removed the heat from the engine body 11 is cooled by air cooling using vehicle speed air or cooling air from a cooling fan (not shown) in a radiator (not shown), The pump 72 is forced to circulate to the engine body 11.
 なお、エンジン本体11へ強制循環された冷却水の一部は、EGRシステム50のEGRクーラー52の冷却に用いられる。 A part of the cooling water forcedly circulated to the engine body 11 is used for cooling the EGR cooler 52 of the EGR system 50.
 このエンジン冷却システム70には、エンジン本体11の出口近傍における冷却水71の温度を検出する冷却水温度センサ94が設けられている。 The engine cooling system 70 is provided with a cooling water temperature sensor 94 that detects the temperature of the cooling water 71 in the vicinity of the outlet of the engine body 11.
 これらのディーゼルエンジン10、ハイブリッドシステム30及びEGRシステム50は、制御装置80により制御される。具体的には、HEVの発進時や加速時には、ハイブリッドシステム30は高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、慣性走行時や制動時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。また、EGRシステム50については、ディーゼルエンジン10の運転状態及び冷却水温度センサ94の検出値に応じて、EGRバルブ53の開度を調整する。 These diesel engine 10, hybrid system 30, and EGR system 50 are controlled by a control device 80. Specifically, at the time of HEV start or acceleration, the hybrid system 30 assists at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32, while at the time of inertia traveling or braking. Performs regenerative power generation by the motor generator 31, converts surplus kinetic energy into electric power, and charges the high voltage battery 32. For the EGR system 50, the opening degree of the EGR valve 53 is adjusted according to the operating state of the diesel engine 10 and the detected value of the coolant temperature sensor 94.
 このようなHEVにおいて、制御装置80は、エンジン本体11の始動時に冷却水温度センサ94の検出値が作動開始温度T未満である場合には、スターターモーターあるいはモータージェネレーター31を用いてのエンジン本体11のクランキングを行うと同時に、ハブリッドシステム30を通じてモータージェネレーター31に発電を開始させる制御を行う。 In such HEV, when the detected value of the coolant temperature sensor 94 is lower than the operation start temperature T when the engine main body 11 is started, the control device 80 uses the starter motor or the motor generator 31 for the engine main body 11. At the same time as the cranking, the motor generator 31 is controlled to start power generation through the hybrid system 30.
 このような制御を行うことにより、モータージェネレーター31からディーゼルエンジン10に発電による負荷が加わるので、冷却水71の温度上昇が促進される。そのため、エンジン本体11の暖機時間を短縮できるとともに、冷却水71が作動開始温度Tに到達する時間が短くなって、EGRシステムの非作動時間を短縮されるので、排ガス45中に含有されるNOxを減少することができるのである。 By performing such control, a load due to power generation is applied from the motor generator 31 to the diesel engine 10, so that the temperature rise of the cooling water 71 is promoted. Therefore, the warm-up time of the engine body 11 can be shortened, and the time for the cooling water 71 to reach the operation start temperature T is shortened, so that the non-operation time of the EGR system is shortened. NOx can be reduced.
 また、ディーゼルエンジン10に加わる負荷により、排ガス45の温度が上昇するので、排ガス処理システムにおける触媒(図示せず)の温度上昇が促進されて、排ガス45の浄化率を向上することも可能である。 Further, since the temperature of the exhaust gas 45 rises due to the load applied to the diesel engine 10, the temperature rise of a catalyst (not shown) in the exhaust gas treatment system is promoted, and the purification rate of the exhaust gas 45 can be improved. .
 上記の実施形態においては、EGRシステム50の作動開始温度Tの比較対象として、エンジン本体11の出口近傍における冷却水71の温度を用いている。しかし、これに限るものではなく、例えば、EGRクーラー52に対して流入又は流出する冷却水71の温度を用いるようにしても良い。 In the above embodiment, the temperature of the cooling water 71 in the vicinity of the outlet of the engine body 11 is used as a comparison target of the operation start temperature T of the EGR system 50. However, the present invention is not limited to this. For example, the temperature of the cooling water 71 flowing into or out of the EGR cooler 52 may be used.
 本出願は、2015年11月26日付で出願された日本国特許出願(特願2015-230481)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-230481) filed on November 26, 2015, the contents of which are incorporated herein by reference.
 本開示のハイブリッド車両は、エンジンの暖機時間を短縮できるとともに、排ガス中のNOx含有率を減少することができるという点において有用である。 The hybrid vehicle according to the present disclosure is useful in that the warm-up time of the engine can be shortened and the NOx content in the exhaust gas can be reduced.
10 ディーゼルエンジン
30 ハイブリッドシステム
31 モータージェネレーター
45 排ガス
50 EGRシステム
51 EGR通路
52 EGRクーラー
53 EGRバルブ
70 エンジン冷却システム
71 冷却水
94 冷却水温度センサ
10 diesel engine 30 hybrid system 31 motor generator 45 exhaust gas 50 EGR system 51 EGR passage 52 EGR cooler 53 EGR valve 70 engine cooling system 71 cooling water 94 cooling water temperature sensor

Claims (3)

  1.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
     前記エンジンの冷却水が循環するエンジン冷却システムと、
     前記冷却水の温度が予め設定された作動開始温度になったときに作動するEGRシステムと、
     制御装置と、
     を備えたハイブリッド車両において、
     前記制御装置は、前記エンジンの始動時に前記冷却水の温度が前記作動開始温度未満である場合には、該エンジンのクランキングを行うと同時に、前記モータージェネレーターに発電を開始させる制御を行うように構成されていることを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    An engine cooling system in which cooling water of the engine circulates;
    An EGR system that operates when the temperature of the cooling water reaches a preset operation start temperature;
    A control device;
    In a hybrid vehicle equipped with
    When the temperature of the cooling water is lower than the operation start temperature at the time of starting the engine, the control device performs control to start the power generation by the motor generator at the same time as performing cranking of the engine. A hybrid vehicle characterized by being configured.
  2.  前記冷却水の温度が、前記エンジンの出口における該冷却水の温度である請求項1に記載のハイブリッド車両。 The hybrid vehicle according to claim 1, wherein the temperature of the cooling water is a temperature of the cooling water at an outlet of the engine.
  3.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの冷却水が循環するエンジン冷却システムと、前記冷却水の温度が予め設定された作動開始温度になったときに作動するEGRシステムと、を備えたハイブリッド車両の制御方法であって、
     前記エンジンの始動時に前記冷却水の温度が前記作動開始温度未満である場合には、前記エンジンのクランキングを行うと同時に、前記モータージェネレーターに発電を開始させることを特徴とするハイブリッド車両の制御方法。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power, an engine cooling system through which the engine cooling water circulates, and when the temperature of the cooling water reaches a preset operation start temperature A control method of a hybrid vehicle comprising:
    When the temperature of the cooling water is lower than the operation start temperature at the time of starting the engine, the engine generator is cranked and at the same time, the motor generator starts power generation. .
PCT/JP2016/084722 2015-11-26 2016-11-24 Hybrid vehicle and method for controlling same WO2017090648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230481A JP6565634B2 (en) 2015-11-26 2015-11-26 Hybrid vehicle and control method thereof
JP2015-230481 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090648A1 true WO2017090648A1 (en) 2017-06-01

Family

ID=58764205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084722 WO2017090648A1 (en) 2015-11-26 2016-11-24 Hybrid vehicle and method for controlling same

Country Status (2)

Country Link
JP (1) JP6565634B2 (en)
WO (1) WO2017090648A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171284A (en) * 2019-05-23 2019-08-27 浙江吉利控股集团有限公司 A kind of modularized integrated hybrid power system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320516B (en) * 2021-06-15 2022-10-18 东风越野车有限公司 Diesel hybrid vehicle exhaust temperature control method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299470A (en) * 2004-04-09 2005-10-27 Toyota Motor Corp Warmup control method of low compression ratio engine for diesel hybrid vehicle
JP2010241190A (en) * 2009-04-02 2010-10-28 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2014100944A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Control system for hybrid vehicle and hybrid vehicle
JP2015182573A (en) * 2014-03-24 2015-10-22 いすゞ自動車株式会社 Hybrid vehicle and control method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299470A (en) * 2004-04-09 2005-10-27 Toyota Motor Corp Warmup control method of low compression ratio engine for diesel hybrid vehicle
JP2010241190A (en) * 2009-04-02 2010-10-28 Nissan Motor Co Ltd Controller for hybrid vehicle
JP2014100944A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Control system for hybrid vehicle and hybrid vehicle
JP2015182573A (en) * 2014-03-24 2015-10-22 いすゞ自動車株式会社 Hybrid vehicle and control method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171284A (en) * 2019-05-23 2019-08-27 浙江吉利控股集团有限公司 A kind of modularized integrated hybrid power system
CN110171284B (en) * 2019-05-23 2021-02-19 浙江吉利控股集团有限公司 Modularized integrated hybrid power system

Also Published As

Publication number Publication date
JP6565634B2 (en) 2019-08-28
JP2017094986A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
KR101046550B1 (en) Hybrid system control unit and hybrid system control method
US9573588B2 (en) Control device for hybrid vehicle
US20120029746A1 (en) Vehicle controlling system
US20050132727A1 (en) Strategy for minimizing noise perception in a vehicle
JP4438772B2 (en) Control device for hybrid vehicle
JP5212276B2 (en) Hybrid car
US9956848B2 (en) System and method for heating a vehicle cabin
WO2017090648A1 (en) Hybrid vehicle and method for controlling same
JP6746933B2 (en) Hybrid vehicle
JP2011219005A (en) Hybrid vehicle
JP6409735B2 (en) Control device for hybrid vehicle
JP5278963B2 (en) Vehicle control device
JP6428526B2 (en) Hybrid car
JP2017115761A (en) Engine starting time control system, hybrid vehicle and engine starting time control method
KR20080016232A (en) A hybrid type vehicle and its generating control method
WO2017094841A1 (en) Hybrid vehicle and control method therefor
JP2017136935A (en) Hybrid vehicle and control method thereof
JP6631375B2 (en) Hybrid car
JP2016084062A (en) Hybrid automobile
JP6591872B2 (en) Car
JP5699615B2 (en) Hybrid car
JP6753130B2 (en) Hybrid vehicle
JP5423047B2 (en) Control device for hybrid vehicle
WO2014185250A1 (en) Hybrid vehicle, and control method therefor
JP2017100638A (en) Hybrid vehicle and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868591

Country of ref document: EP

Kind code of ref document: A1