WO2017090347A1 - ターボファンおよびそのターボファンの製造方法 - Google Patents

ターボファンおよびそのターボファンの製造方法 Download PDF

Info

Publication number
WO2017090347A1
WO2017090347A1 PCT/JP2016/081098 JP2016081098W WO2017090347A1 WO 2017090347 A1 WO2017090347 A1 WO 2017090347A1 JP 2016081098 W JP2016081098 W JP 2016081098W WO 2017090347 A1 WO2017090347 A1 WO 2017090347A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
blades
boss
ring
pressure surface
Prior art date
Application number
PCT/JP2016/081098
Other languages
English (en)
French (fr)
Inventor
文也 石井
修三 小田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/777,041 priority Critical patent/US11286945B2/en
Priority to JP2017552314A priority patent/JP6531835B2/ja
Priority to CN201680067945.2A priority patent/CN108291557B/zh
Priority to DE112016005354.1T priority patent/DE112016005354T5/de
Publication of WO2017090347A1 publication Critical patent/WO2017090347A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/064Details of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression

Definitions

  • the present disclosure relates to a turbo fan applied to a blower and a method for manufacturing the turbo fan.
  • Patent Document 1 discloses a turbo fan included in the prior art.
  • the turbofan disclosed in Patent Document 1 is a fan for an air conditioner. More specifically, the turbofan disclosed in Patent Document 1 is a closed turbofan in which blades are surrounded by a shroud ring and a main plate among various turbofans.
  • the turbofan disclosed in Patent Document 1 includes a fan body and a blade among three parts including a shroud ring (that is, a side plate) that is a basic configuration of a closed turbofan, a plurality of blades, a fan body including a fan boss portion, and a main plate. And are integrally molded.
  • the shroud ring is molded as a separate part from the fan body.
  • the turbofan of Patent Document 1 is configured by joining the shroud ring to the fan body. Furthermore, in the turbofan of Patent Document 1, the weldability when the shroud ring is joined to the fan body is improved.
  • the simple mold structure in which the mold removal direction is just the axial direction of the turbofan is not limited to the turbofan disclosed in Patent Document 1, and all the above three parts constituting the closed turbofan are integrated. It cannot be molded into.
  • the turbo fan is stored and used between two case members. Moreover, as one of the phenomena which arise with a turbofan, it is mentioned that air flows back between the case member by the side of a shroud ring of the two case members, and a shroud ring. Since the air pressure at the blade leading edge of the turbofan is large on the negative pressure side, the air blown out from the fan outlet flows backward.
  • the rotational runout of the shroud ring with respect to the fan rotation shaft is increased to some extent, so that the clearance is increased in order to prevent interference between the shroud ring and the case member.
  • the inventor has found that there is a need. That is, in order to prevent interference between the shroud ring and the case member, the flow rate of the air that flows backward through the clearance between them cannot be sufficiently suppressed, and as a result, the performance of the turbo fan is deteriorated. The inventor found.
  • the present disclosure provides a turbo fan and a method of manufacturing the turbo fan that can easily suppress the rotational vibration of the shroud ring with respect to the fan shaft as compared with the turbo fan disclosed in Patent Document 1. Objective.
  • the turbo fan of the present disclosure includes: A turbo fan that is applied to a blower and blows by rotating around a fan axis, A plurality of blades arranged around the fan shaft center, an air intake hole is formed, and an air suction hole is formed on the one side in the axial direction of the fan shaft center and connected to each of the blades.
  • Fan body having a fan shroud ring and a fan boss portion that is supported so as to be rotatable around a fan shaft center with respect to a non-rotating member of the blower and is connected to the side opposite to the shroud ring side with respect to each of the plurality of blades Members,
  • the other side plate that is joined to each of the other blade end portions on the other side opposite to the one side in the axial direction with a plurality of blades fitted in the radially outer side of the fan boss portion
  • the outer diameter of the fan boss is smaller than the inner diameter of the shroud ring,
  • the plurality of blades, the shroud ring, and the fan boss are integrally formed.
  • the plurality of blades, the shroud ring, and the fan boss are integrally formed, and the outer diameter of the fan boss is smaller than the inner diameter of the shroud ring.
  • the plurality of blades, the shroud ring, and the fan boss portion can be easily integrally formed with the axial direction of the fan shaft center as the mold drawing direction (that is, the mold opening / closing direction).
  • the other end side plate is joined to each of the other wing end portions of the plurality of blades in a state of being fitted to the radially outer side of the fan boss portion, the other end side is formed after the fan body member is molded. It is possible to complete the turbofan by assembling the side plate to the fan body member.
  • a method for manufacturing a turbofan of the present disclosure includes: A method of manufacturing a turbofan that is applied to a blower and blows by rotating around a fan axis, A plurality of blades arranged around the fan shaft center and an air intake hole for air intake are formed and connected to each of the blades on one side in the axial direction of the fan shaft center with respect to the plurality of blades.
  • the shroud ring and the fan boss part which is supported so as to be rotatable about the fan shaft center with respect to the non-rotating member of the blower and connected to the side opposite to the shroud ring side for each of the plurality of blades, are integrally formed.
  • the other plate on the other end side of the ring shape is fitted to the outside in the radial direction of the fan boss portion, and the other blade has on the other side opposite to the one side in the axial direction. Joining the other end side plate to each of the side wing tip portions.
  • the annular other end side plate is fitted to the radially outer side of the fan boss portion, and the plurality of blades are The other end side plate is joined to each of the other wing end portions. Therefore, similarly to the turbo fan according to the first aspect, the rotational vibration of the shroud ring relative to the fan shaft when the turbo fan rotates can be easily suppressed as compared with the turbo fan disclosed in Patent Document 1.
  • FIG. 2 is an axial cross-sectional view of a blower cut along a plane including a fan axis, that is, a II-II cross-sectional view of FIG. It is the figure which extracted the turbo fan, the rotating shaft, and the rotating shaft housing in the III arrow directional view in FIG. In 1st Embodiment, it is the figure which looked at 1 blade
  • FIG. 5 is a cross-sectional view of the V portion of the blade shown in FIG. 4 cut along a cross section perpendicular to the fan axis and viewed in the same direction as FIG. 4.
  • FIG. 1 is a perspective view showing the appearance of the blower 10 in the first embodiment.
  • 2 is a cross-sectional view in the axial direction of the blower 10 cut along a plane including the fan axis CL, that is, a cross-sectional view taken along the line II-II in FIG.
  • An arrow DRa in FIG. 2 indicates the axial direction DRa of the fan axis CL, that is, the fan axis direction DRa.
  • an arrow DRr in FIG. 2 indicates the radial direction DRr of the fan shaft center CL, that is, the fan radial direction DRr.
  • the blower 10 is a centrifugal blower, and more specifically, a turbo blower.
  • the blower 10 includes a casing 12, a rotary shaft 14, a rotary shaft housing 15, an electric motor 16, an electronic board 17, a turbo fan 18, a bearing 28, a bearing housing 29, and the like, which are casings of the blower 10.
  • the casing 12 protects the electric motor 16, the electronic board 17, and the turbo fan 18 from dust and dirt outside the blower 10.
  • the casing 12 houses an electric motor 16, an electronic board 17, and a turbo fan 18.
  • the casing 12 includes a first case member 22 and a second case member 24.
  • the first case member 22 is made of resin, for example, and has a larger diameter than the turbofan 18 and has a substantially disk shape.
  • the first case member 22 includes a first cover part 221, a first peripheral edge part 222, and a plurality of support columns 223.
  • the first cover portion 221 is disposed on one side in the fan axial direction DRa with respect to the turbo fan 18 and covers one side of the turbo fan 18.
  • covering the turbo fan 18 means covering at least a part of the turbo fan 18.
  • An air suction port 221a that penetrates the first cover portion 221 in the fan axial direction DRa is formed on the inner peripheral side of the first cover portion 221, and the air is supplied to the turbofan 18 through the air suction port 221a. Sucked into.
  • the first cover part 221 has a bell mouth part 221b that constitutes the periphery of the air inlet 221a. The bell mouth portion 221b smoothly guides air flowing from the outside of the blower 10 into the air suction port 221a into the air suction port 221a.
  • the first peripheral edge 222 constitutes the peripheral edge of the first case member 22 around the fan axis CL.
  • Each of the plurality of struts 223 protrudes from the first cover portion 221 to the inside of the casing 12 in the fan axial direction DRa.
  • pillar 223 has comprised the thick cylindrical shape which has a central axis parallel to the fan axial center CL.
  • a screw hole through which a screw 26 that couples the first case member 22 and the second case member 24 is inserted is formed inside the column 223.
  • Each strut 223 of the first case member 22 is disposed outside the turbo fan 18 in the fan radial direction DRr.
  • the first case member 22 and the second case member 24 are coupled to each other by a screw 26 inserted into the column 223 in a state where the tip of the column 223 is abutted against the second case member 24.
  • the second case member 24 has a substantially disk shape having substantially the same diameter as the first case member 22.
  • the second case member 24 is made of, for example, a metal such as iron or stainless steel or a resin, and also functions as a motor housing that covers the electric motor 16 and the electronic substrate 17.
  • the second case member 24 includes a second cover part 241 and a second peripheral edge part 242.
  • the second cover portion 241 is disposed on the other side in the fan axial direction DRa with respect to the turbo fan 18 and the electric motor 16 and covers the other side of the turbo fan 18 and the electric motor 16.
  • the second peripheral edge 242 constitutes the peripheral edge of the second case member 24 around the fan axis CL.
  • the 1st peripheral part 222 and the 2nd peripheral part 242 comprise the air blowing part which blows off air in the casing 12.
  • FIG. And the 1st peripheral part 222 and the 2nd peripheral part 242 are the air blower outlet 12a which blows off the air which blown off from the turbo fan 18 between the 1st peripheral part 222 and the 2nd peripheral part 242 in the fan axial direction DRa. Is forming.
  • the air outlet 12 a is formed on the fan side surface of the blower 10, opens over the entire circumference of the casing 12 around the fan axis CL, and blows air from the turbo fan 18.
  • the air blower outlet 12a is opening over the perimeter of the casing 12 over the perimeter. This means that it is open.
  • the rotary shaft 14 and the rotary shaft housing 15 are each made of a metal such as iron, stainless steel, or brass. As shown in FIG. 2, the rotary shaft 14 is a cylindrical bar, and is press-fitted into the rotary shaft housing 15 and the inner ring of the bearing 28. Therefore, the rotary shaft housing 15 is fixed to the rotary shaft 14 and the inner ring of the bearing 28. Further, the outer ring of the bearing 28 is fixed by being press-fitted into the bearing housing 29.
  • the bearing housing 29 is made of, for example, a metal such as aluminum alloy, brass, iron, or stainless steel, and is fixed to the second cover portion 241.
  • the rotating shaft 14 and the rotating shaft housing 15 are supported by the second cover portion 241 via the bearing 28. That is, the rotating shaft 14 and the rotating shaft housing 15 are rotatable about the fan axis CL with respect to the second cover portion 241.
  • the rotary shaft housing 15 is fitted in the inner peripheral hole 56 a of the fan boss portion 56 of the turbo fan 18 in the casing 12.
  • the rotary shaft 14 and the rotary shaft housing 15 are insert-molded into the fan main body member 50 of the turbofan 18 in a state where they are fixed to each other in advance.
  • the rotating shaft 14 and the rotating shaft housing 15 are connected to the fan boss portion 56 of the turbo fan 18 so as not to be relatively rotatable. That is, the rotating shaft 14 and the rotating shaft housing 15 rotate integrally with the turbo fan 18 around the fan axis CL.
  • the electric motor 16 is an outer rotor type brushless DC motor.
  • the electric motor 16 is disposed between the fan boss portion 56 of the turbo fan 18 and the second cover portion 241 in the fan axial direction DRa together with the electronic substrate 17.
  • the electric motor 16 includes a motor rotor 161, a rotor magnet 162, and a motor stator 163.
  • the motor rotor 161 is made of a metal such as a steel plate, and the motor rotor 161 is formed by press forming the steel plate, for example.
  • the rotor magnet 162 is a permanent magnet, and is composed of, for example, a rubber magnet containing ferrite or neodymium.
  • the rotor magnet 162 is integrally fixed to the motor rotor 161.
  • the motor rotor 161 is fixed to the fan boss portion 56 of the turbo fan 18. That is, the motor rotor 161 and the rotor magnet 162 rotate integrally with the turbo fan 18 around the fan axis CL.
  • the motor stator 163 includes a stator coil 163 a and a stator core 163 b that are electrically connected to the electronic substrate 17.
  • the motor stator 163 is disposed radially inward with a minute gap with respect to the rotor magnet 162.
  • the motor stator 163 is fixed to the second cover portion 241 of the second case member 24 via the bearing housing 29.
  • the stator coil 163a of the motor stator 163 when the stator coil 163a of the motor stator 163 is energized from an external power source, the stator coil 163a causes a magnetic flux change in the stator core 163b.
  • the magnetic flux change in the stator core 163b generates a force that attracts the rotor magnet 162. Since the motor rotor 161 is fixed with respect to the rotating shaft 14 rotatably supported by the bearing 28, the motor rotor 161 rotates around the fan axis CL under the force of attracting the rotor magnet 162.
  • the turbo fan 18 to which the motor rotor 161 is fixed rotates around the fan axis CL.
  • the turbo fan 18 is an impeller applied to the blower 10 as shown in FIGS.
  • the turbo fan 18 blows air by rotating around the fan axis CL in a predetermined fan rotation direction DRf. That is, the turbo fan 18 rotates around the fan axis CL and sucks air from one side of the fan axis direction DRa through the air inlet 221a as indicated by an arrow FLa. Then, the turbo fan 18 blows out the sucked air to the outer peripheral side of the turbo fan 18 as indicated by an arrow FLb.
  • the turbo fan 18 of the present embodiment includes a fan main body member 50 and the other end side plate 60.
  • the fan main body member 50 includes a plurality of blades 52, a shroud ring 54, and a fan boss portion 56.
  • the fan body member 50 is made of, for example, resin and is formed by one injection molding. Accordingly, the plurality of blades 52, the shroud ring 54, and the fan boss portion 56 are integrally formed, and all are formed of the same resin as the fan main body member 50. Furthermore, since the fan main body member 50 is an integrally molded product, there is no joining portion for joining the plurality of blades 52 and the shroud ring 54 by welding or the like. Further, there is no joining portion for joining the plurality of blades 52 and the fan boss portion 56 by welding or the like.
  • the plurality of blades 52 are arranged around the fan axis CL. Specifically, the plurality of blades 52, that is, the fan blades 52, are arranged side by side in the circumferential direction of the fan axis CL with a space in which air flows between each other.
  • Each of the blades 52 includes a first blade end 521 provided on the one side in the fan axial direction DRa of the blade 52 and the other of the blades 52 opposite to the one side in the fan axial direction DRa. And the other wing tip 522 provided on the side.
  • each of the plurality of blades 52 has a pressure surface 524 and a suction surface 525 constituting a blade shape.
  • the plurality of blades 52 form an inter-blade channel 52 a through which air flows between the blades 52 adjacent to each other among the plurality of blades 52.
  • the inter-blade channel 52 a is formed between the positive pressure surface 524 of one of the two adjacent blades 52 and the negative pressure surface 525 of the other of the plurality of blades 52.
  • a broken line Ld ⁇ b> 2 represents the outer shape of the fan boss portion 56.
  • each of the plurality of blades 52 has a pressure surface convex portion 524a and a suction surface convex portion 525a.
  • the positive pressure surface convex portion 524a is a minute protrusion provided on the positive pressure surface 524 in a convex shape.
  • the negative pressure surface convex portion 525a is a minute protrusion provided on the negative pressure surface 525 in a convex shape.
  • the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a play a role of reducing separation of the air flow caused by the discontinuous change in the channel cross-sectional area A1f described later with reference to FIG. Accordingly, the convex shape such as the convex height of the positive pressure surface convex portion 524a is experimentally determined so that separation of the air flow can be suppressed on the positive pressure surface 524. The same applies to the negative pressure surface convex portion 525a, and the convex shape of the negative pressure surface convex portion 525a is experimentally determined so that separation of the air flow on the negative pressure surface 525 can be suppressed.
  • both the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a constitute a pair of molding dies 91 and 92 used for the injection molding. It is configured on a parting line Lpt between the side mold 91 and the other mold 92.
  • the pair of molding dies 91 and 92 are shown in FIG.
  • the positive pressure surface convex portion 524 a is formed to extend linearly from the ring inner peripheral end 541 to the boss outer peripheral end 563.
  • the negative pressure surface convex portion 525a is also formed to extend linearly from the ring inner peripheral end 541 to the boss outer peripheral end 563.
  • the shroud ring 54 has a shape that expands in a disk shape in the fan radial direction DRr.
  • An air intake hole 54a is formed on the inner peripheral side of the shroud ring 54, and air from the air intake port 221a of the casing 12 is sucked in as indicated by an arrow FLa. Therefore, the shroud ring 54 has an annular shape.
  • the shroud ring 54 has a ring inner peripheral end 541 and a ring outer peripheral end 542.
  • the ring inner peripheral end 541 is an end provided inside the shroud ring 54 in the fan radial direction DRr, and forms an intake hole 54a.
  • the ring outer peripheral end portion 542 is an end portion provided on the outer side in the fan radial direction DRr in the shroud ring 54.
  • the shroud ring 54 is provided on one side in the fan axial direction DRa, that is, on the air inlet 221a side with respect to the plurality of blades 52. At the same time, the shroud ring 54 is connected to each of the plurality of blades 52. In other words, the shroud ring 54 is connected to each of the blades 52 at the one-side blade tip 521.
  • the fan boss portion 56 is fixed to the rotary shaft 14 that can rotate around the fan axis CL via the rotary shaft housing 15.
  • the casing 12 is supported so as to be rotatable around the fan axis CL.
  • the fan boss portion 56 is connected to the side opposite to the shroud ring 54 side with respect to each of the plurality of blades 52. More specifically, the entire blade connecting portion 561 connected to the blade 52 in the fan boss portion 56 is provided on the inner side with respect to the entire shroud ring 54 in the fan radial direction DRr. That is, the fan boss portion 56 is connected to each of the blades 52 at a portion closer to the inside in the fan radial direction DRr of the other side blade end portion 522.
  • the plurality of blades 52 have a function as a connecting rib for connecting the fan boss portion 56 and the shroud ring 54 so as to bridge each other, the plurality of blades 52, the fan boss portion 56, and the shroud ring are combined. 54 integral molding is possible.
  • the fan boss portion 56 has a boss guide surface 562a for guiding the air flow in the turbo fan 18.
  • the boss guide surface 562a is a curved surface extending in the fan radial direction DRr, and guides the air flow sucked into the air inlet 221a and directed toward the fan axial direction DRa so as to be directed outward of the fan radial direction DRr.
  • the fan boss portion 56 has a boss guide portion 562 having the boss guide surface 562a.
  • the boss guide portion 562 forms a boss guide surface 562a on one side of the boss guide portion 562 in the fan axial direction DRa.
  • an inner peripheral hole 56a penetrating the fan boss portion 56 in the fan axial direction DRa is formed on the inner peripheral side of the fan boss portion 56.
  • the fan boss portion 56 has a boss outer peripheral end portion 563 and a ring-shaped annular extending portion 564.
  • the boss outer peripheral end portion 563 is an end portion provided outside the fan boss portion 56 in the fan radial direction DRr.
  • the boss outer peripheral end portion 563 is an end portion that forms the periphery of the boss guide portion 562.
  • the annular extending portion 564 is a cylindrical rib, and extends from the boss outer peripheral end portion 563 to the other side in the fan axial direction DRa (that is, the side opposite to the air suction port 221a side).
  • a motor rotor 161 is fitted and stored on the inner peripheral side of the annular extending portion 564. That is, the annular extending portion 564 functions as a rotor storage portion that stores the motor rotor 161.
  • the fan boss portion 56 is fixed to the motor rotor 161 by fixing the annular extending portion 564 to the motor rotor 161.
  • the other end side plate 60 has a shape that expands in a disk shape in the fan radial direction DRr.
  • a side plate fitting hole 60 a that penetrates the other end side plate 60 in the thickness direction is formed on the inner peripheral side of the other end side plate 60. Therefore, the other end side plate 60 has an annular shape.
  • the other end side plate 60 is, for example, a resin molded product that is molded separately from the fan main body member 50.
  • the other end side plate 60 is joined to each of the other wing end portions 522 of the plurality of blades 52 in a state of being fitted to the outside of the fan boss portion 56 in the fan radial direction DRr.
  • the other end side plate 60 and the blade 52 are joined by vibration welding or heat welding, for example. Therefore, in view of the joining property by welding of the other end side plate 60 and the blades 52, the other end side plate 60 and the fan main body member 50 are preferably made of a thermoplastic resin, more specifically, the same kind of material. It is preferable.
  • the closed fan is a turbo fan in which both sides in the fan axial direction DRa of the inter-blade flow path 52a formed between the plurality of blades 52 are covered with the shroud ring 54 and the other end side plate 60. That is, the shroud ring 54 has a ring guide surface 543 that faces the inter-blade channel 52a and guides the air flow in the inter-blade channel 52a.
  • the other end side plate 60 has a side plate guide surface 603 that faces the inter-blade channel 52a and guides the air flow in the inter-blade channel 52a.
  • the side plate guide surface 603 is opposed to the ring guide surface 543 with the inter-blade channel 52a interposed therebetween, and is disposed outside the boss guide surface 562a in the fan radial direction DRr.
  • the side plate guide surface 603 plays a role of smoothly guiding the air flow along the boss guide surface 562a to the air outlet 18a. Therefore, each of the boss guide surface 562a and the side plate guide surface 603 constitutes a part and another part of a virtual one curved surface that is curved three-dimensionally. In other words, the boss guide surface 562a and the side plate guide surface 603 constitute one curved surface that is not bent at the boundary between the boss guide surface 562a and the side plate guide surface 603.
  • the other end side plate 60 has a side plate inner peripheral end 601 and a side plate outer peripheral end 602.
  • the side plate inner peripheral end 601 is an end provided on the inner side in the fan radial direction DRr of the other end side plate 60, and forms a side plate fitting hole 60a.
  • the side plate outer peripheral end 602 is an end provided on the outer side in the fan radial direction DRr of the other end side plate 60.
  • the side plate outer peripheral end portion 602 and the ring outer peripheral end portion 542 are arranged away from each other in the fan axial direction DRa.
  • the side plate outer peripheral end portion 602 and the ring outer peripheral end portion 542 form an air outlet 18a through which the air passing through the inter-blade channel 52a is blown between the side plate outer peripheral end portion 602 and the ring outer peripheral end portion 542. Yes.
  • the plurality of blades 52 each have a blade leading edge 523.
  • the blade leading edge 523 is the airflow direction of the air flowing through the intake hole 54a and flowing between the blades 52a between the blades 52a, that is, the airflow direction of the air flowing along the arrows FLa and FLb. It is an edge configured on the upstream side.
  • the blade leading edge 523 projects inward with respect to the ring inner peripheral end 541 in the fan radial direction DRr. More specifically, the blade leading edge 523 protrudes inward in the fan radial direction DRr with respect to the boss outer peripheral end 563.
  • the blade leading edge 523 includes two leading edges 523a and 523b, that is, a first leading edge 523a and a second leading edge 523b.
  • the first front edge 523a and the second front edge 523b are formed so as to extend linearly, and the first front edge 523a and the second front edge 523b are connected in series.
  • the first front edge 523a is connected to the ring inner peripheral end 541 of the shroud ring 54. That is, the first front edge 523a has a ring-side connection end 523c that connects to the shroud ring.
  • the second front edge 523 b is connected to the boss guide surface 562 a of the fan boss portion 56. That is, the second front edge 523 b has a boss side connection end 523 d that is connected to the fan boss portion 56.
  • the turbo fan 18 configured in this manner rotates in the fan rotation direction DRf integrally with the motor rotor 161 as shown in FIGS. Along with this, the blades 52 of the turbo fan 18 impart momentum to the air, and the turbo fan 18 blows air outward in the radial direction from the air outlet 18a that opens to the outer periphery of the turbo fan 18. At this time, the air sucked from the intake hole 54 a and sent out by the blades 52, that is, the air blown out from the air outlet 18 a is discharged to the outside of the blower 10 through the air outlet 12 a formed by the casing 12.
  • the outer diameter D ⁇ b> 2 of the fan boss portion 56 is smaller than the inner diameter D ⁇ b> 1 of the shroud ring 54.
  • the entire boss outer peripheral end 563 is disposed inside the ring inner peripheral end 541 in the fan radial direction DRr.
  • the inner diameter D1 of the shroud ring 54 is the minimum inner diameter of the shroud ring 54, that is, the outer diameter of the intake hole 54a, and the outer diameter D2 of the fan boss portion 56 is the maximum outer diameter of the fan boss portion 56.
  • the outer diameter of the annular extending portion 564 and the outer diameter of the boss outer peripheral end portion 563 are the same, and coincide with the outer diameter D2 of the fan boss portion 56.
  • the outer diameter of the annular extending portion 564 is preferably the same as or smaller than the outer diameter of the boss outer peripheral end portion 563.
  • the height H2 from the predetermined reference position Pst to the ring-side connection end 523c is one of the outlets 18a located on one side of the fan axial direction DRa from the reference position Pst. It is larger than the height H1 up to the end 18b.
  • the height H2 to the ring side connection end 523c is smaller than the height H3 from the reference position Pst to the end 541a on one side of the ring inner peripheral end 541 in the fan axial direction DRa. Yes.
  • the relationship “H1 ⁇ H2 ⁇ H3” is established.
  • the ring side connection end 523c is located on one side in the fan axial direction DRa with respect to the one end 18b of the air outlet 18a.
  • the ring side connection end 523c is located on the other side in the fan axial direction DRa than the one end 541a of the ring inner peripheral end 541 in the fan axial direction DRa.
  • the said reference position Pst is made into the other end 18c located in the other side of the fan axial direction DRa among the blower outlets 18a in FIG. 6, any place may be sufficient as it.
  • the virtual tangent line Ltg is relative to the fan axis center CL with respect to the virtual tangent line Ltg in the fan axis direction DRa.
  • the one side is inclined so as to face the outside in the fan radial direction DRr.
  • the blade leading edge 523 is configured in this way.
  • the angle AGb formed by the blade leading edge 523 with respect to the fan axis CL at the boss-side connecting end 523d, that is, the counter-axis angle AGb in FIG. 6 is “0 ° ⁇ AGb ⁇ 90 ° in relation to the fan axis CL.
  • the angle AGg formed by the blade leading edge 523 with respect to the boss guide surface 562a at the boss side connection end 523d that is, the outer side with respect to the blade leading edge 523 in the fan radial direction DRr.
  • the guide surface angle AGg of FIG. 6 formed in FIG. 6 is preferably approximately 70 ° or more. This is because the air flowing along the boss guide surface 562a is smoothly introduced into the inter-blade channel 52a. In this embodiment, as shown in FIG. 6, the guide surface angle AGg is 90 °.
  • step S01 as a fan main body member forming step, the fan main body member 50 is formed. That is, the plurality of blades 52, the shroud ring 54, and the fan boss portion 56, which are components of the fan main body member 50, are integrally formed.
  • the pair of molding dies 91 and 92 includes a first side mold 91 and a second side mold 92.
  • the other side mold 92 is a mold provided on the other side with respect to the one side mold 91 in the fan axial direction DRa.
  • the parting line marks PLm of the molding dies 91 and 92 are linearly formed on the pressure surface 524 and the suction surface 525 of the blade 52. That is, the positive pressure surface 524 occupies the outside of the parting line mark PLm in the fan radial direction DRr, and the positive pressure surface outer region 524b occupies the outside of the parting line mark PLm in the fan radial direction DRr of the negative pressure surface 525. All of the negative pressure surface outside regions 525 b are formed by the other side mold 92.
  • the positive pressure surface 524 occupies the inner side of the parting line trace PLm in the fan radial direction DRr, and the positive pressure surface inner area 524c occupies the inner side of the parting line trace PLm in the fan radial direction DRr of the negative pressure surface 525.
  • the negative pressure surface inner region 525 c is formed by the one-side mold 91.
  • the pressure surface outer region 524b is a region provided outside the boss outer peripheral end 563 in the fan radial direction DRr in the pressure surface 524.
  • the positive pressure surface inner region 524c is a region provided on the inner side in the fan radial direction DRr than the positive pressure surface outer region 524b in the positive pressure surface 524.
  • the suction side outer region 525b is a region provided outside the boss outer peripheral end 563 in the fan radial direction DRr in the suction surface 525.
  • the negative pressure surface inner region 525c is a region provided on the inner side in the fan radial direction DRr of the negative pressure surface 525 than the negative pressure surface outer region 525b.
  • the parting line trace PLm is formed on the positive pressure surface 524 and the negative pressure surface 525 so as to extend linearly from the ring inner peripheral end portion 541 to the boss outer peripheral end portion 563 shown in FIG. Further, both the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a shown in FIG. 5 extend along the parting line mark PLm in FIG. That is, the positive pressure surface convex portion 524a is formed by both the one side mold 91 and the other side mold 92, and the negative pressure surface convex portion 525a is also formed by both the one side mold 91 and the other side mold 92. .
  • step S01 follows step S02.
  • step S02 as the other end side plate forming step, the other end side plate 60 is formed by, for example, injection molding. Note that either step S01 or step S02 may be executed first.
  • step S02 the process proceeds to step S03.
  • step S ⁇ b> 03 as the joining process, the other end side plate 60 shown in FIG. 2 is fitted to the radially outer side of the fan boss portion 56.
  • the other end side plate 60 is joined to each of the other wing end portions 522 of the wings 52.
  • the blade 52 and the other end side plate 60 are joined by, for example, vibration welding or heat welding.
  • the plurality of blades 52, the shroud ring 54, and the fan boss portion 56 are integrally configured, and the outer diameter of the fan boss portion 56 is configured. D2 is smaller than the inner diameter D1 of the shroud ring 54. Therefore, the plurality of blades 52, the shroud ring 54, and the fan boss portion 56 can be easily integrally formed with the fan axis direction DRa as the opening and closing direction of the molding dies 91 and 92 as shown in FIG.
  • the other end side plate 60 is joined to each of the other wing end portions 522 of the plurality of blades 52 in a state of being fitted on the radially outer side of the fan boss portion 56. Therefore, the turbo fan 18 can be completed by assembling the other end side plate 60 to the fan main body member 50 after the fan main body member 50 is formed. As described above, as an effect of the integral molding of the shroud ring 54 and the fan boss portion 56, the rotational runout of the shroud ring 54 with respect to the fan axis CL when the turbofan 18 rotates is compared with, for example, the turbofan disclosed in Patent Document 1. And can be easily suppressed.
  • FIG. 9 and FIG. 9 and 10 show a turbo fan 18z as a comparative example to be compared with the present embodiment and a blower 10z having the turbo fan 18z.
  • the turbo fan 18z of this comparative example is configured by joining a plurality of blades 52, a shroud ring 54, and a main plate 56z after being separately molded.
  • the main plate 56z corresponds to a unit in which the fan boss portion 56 and the other end side plate 60 of the present embodiment are integrated.
  • the flow rate of the backflow air indicated by the arrow FL1 increases, the amount of air blown from the turbo fan 18z decreases.
  • the turbo fan 18z rotates, air flows from the air inlet 221a of the casing 12 to the blades 52 of the turbo fan 18z as indicated by the arrow FL2.
  • the air flow indicated by the arrow FL2 may be separated from the shroud ring 54 as indicated by the arrow FL3 in the vicinity of the blade leading edge 523. This separation of the air flow causes, for example, noise.
  • the backflow air causes the performance of the turbo fan 18z to be impaired, the flow rate of the backflow air needs to be reduced as much as possible.
  • the main plate 56z and the shroud ring 54 that are fitted to the rotary shaft 14 are separately formed, so that the backlash (for example, misalignment) of the shroud ring 54 with respect to the main plate 56z is reduced. It is difficult to reduce. Therefore, in the turbofan 18z, the rotational runout of the shroud ring 54 with respect to the rotary shaft 14 increases due to the joint play.
  • the joining backlash of the shroud ring 54 in the fan radial direction DRr is displayed by superimposing the solid line and the broken line, but naturally the joining backlash of the shroud ring 54 also occurs in the fan axial direction DRa. .
  • the shroud ring 54 is formed in any one of the fan radial direction DRr and the fan axial direction DRa by integrally forming the plurality of blades 52, the shroud ring 54, and the fan boss portion 56 shown in FIG. It is possible to easily suppress rotational runout. And it is also possible to easily suppress variations in the rotational shake. Therefore, for example, the clearance between the shroud ring 54 and the first case member 22 can be reduced as compared with the comparative example. By reducing the clearance, the flow rate of the backflow air flowing through the clearance can be reduced, so that the fan performance indicated by the noise and airflow characteristics of the turbofan 18 can be improved.
  • each of the plurality of blades 52 can function as a connecting portion that connects the shroud ring 54 and the fan boss portion 56.
  • the backflow air flow that flows back through the gap (that is, clearance) between the first case member 22 and the shroud ring 54 is generated as the turbofan 18 rotates. Then, the backflow air flow merges with the intake air flow that flows from the intake hole 54a to the inter-blade channel 52a as indicated by the arrow FL2 in FIG. In this embodiment, the intake air flow can be accelerated by the blades 52 on the upstream side of the merging position of the air flows.
  • the backflow air flow that merges with the intake air flow can be turned along the ring guide surface 543 of the shroud ring 54. That is, it is possible to suppress the separation of the air flow from the ring guide surface 543 due to the backflow air flow, and to improve the fan performance indicated by, for example, noise and air flow characteristics of the turbo fan 18.
  • the ring side connection end 523c of the blade leading edge 523 is more than the one end 18b located on one side in the fan axial direction DRa of the air outlet 18a. It is further located on one side in the fan axial direction DRa. Therefore, it is possible to further suppress the separation of the air flow from the ring guide surface 543 and improve the fan performance as compared with a configuration that does not have such a positional relationship.
  • the ring-side connection end 523c of the blade leading edge 523 is more fan-shaped than the end 541a on one side of the ring inner peripheral end 541 in the fan axial direction DRa. It is located on the other side in the axial direction DRa. Therefore, as shown in FIG. 2, it is possible to arrange the bell mouth portion 221b using the step from the end 541a of the ring inner peripheral end portion 541 to the blade leading edge 523 in the fan axial direction DRa. Therefore, it is possible to improve the fan performance of the turbo fan 18 by increasing the air entrainment amount of the bell mouth part 221b and to suppress the physique expansion of the blower 10 caused by the bell mouth part 221b.
  • the blade leading edge 523 is configured such that one side of the virtual tangent Ltg contacting the blade leading edge 523 at the boss side connecting end 523d faces the outside in the fan radial direction DRr.
  • the virtual tangent Ltg is configured to be inclined with respect to the fan axis CL. Therefore, in the molding in which the molding dies 91 and 92 are opened and closed in the mold opening / closing direction along the fan axial direction DRa as shown in FIG. It is possible to mold it.
  • the plurality of blades 52 are respectively provided with a pressure surface convex portion 524 a and a suction surface 525 provided in a convex shape on the pressure surface 524. And a suction surface convex portion 525a provided in a convex shape.
  • the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a are formed to extend linearly from the ring inner peripheral end portion 541 to the boss outer peripheral end portion 563.
  • the blade leading edge 523 projects inward from the ring inner peripheral end portion 541 in the fan radial direction DRr. Therefore, as shown in FIG. 12, the flow passage cross-sectional area A1f of the inter-blade flow passage 52a changes discontinuously at the radial position of the ring inner peripheral end 541 or in the vicinity thereof. That is, in FIG. 12, the change gradient of the flow passage cross-sectional area A1f of the inter-blade flow passage 52a with respect to the radial distance R1 from the fan shaft center CL changes stepwise at the connection point between the relation line x1 and the relation line x2. .
  • the cross-sectional area A1f of the inter-blade channel 52a is equal to the diameter Da of the inscribed circle of the inter-blade channel 52a shown in FIG. 13 and the diameter Db of the inscribed circle of the inter-blade channel 52a shown in FIG.
  • the diameter Da is a diameter of an inscribed circle in contact with the pressure surface 524 and the suction surface 525 of the blade 52 facing the blade flow path 52a in a cross section orthogonal to the fan axis CL as shown in FIG. Further, as shown in FIG.
  • the diameter Db is a diameter of an inscribed circle in contact with the ring guide surface 543 facing the inter-blade channel 52a and the boss guide surface 562a or the side plate guide surface 603 in the cross section including the fan axis CL. It is. Further, the diameters Da and Db used for the calculation of the channel cross-sectional area A1f are the center position of the inscribed circle of FIG. 13 having the diameter Da and the center position of the inscribed circle of FIG. 14 having the diameter Db. It is obtained after matching with each other in the fan radial direction DRr.
  • the above-described discontinuous change in the channel cross-sectional area A1f may cause air flow separation from the pressure surface 524 or the suction surface 525 of the blade 52, which may cause fan noise.
  • the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a shown in FIGS. 5 and 6 are provided at positions where the flow passage cross-sectional area A1f of the inter-blade flow passage 52a changes discontinuously. Then, by deliberately disturbing the air flow with the positive pressure surface convex portion 524a and the negative pressure surface convex portion 525a, it is possible to obtain an effect of suppressing separation of the air flow from the positive pressure surface 524 and the negative pressure surface 525. As a result, for example, there is an effect such as noise reduction of a turbo fan.
  • the annular extending portion 564 of the fan boss portion 56 is fixed to the motor rotor 161 of the electric motor 16. Accordingly, the fan boss portion 56 can be fixed to the motor rotor 161 without being affected by the shape of the other end side plate 60 and the like.
  • the ring-shaped other end side plate 60 is formed.
  • the fan boss 56 is fitted to the outside in the radial direction.
  • the other end side plate 60 is joined to each of the other side blade end portions 522 of the plurality of blades 52. Therefore, it is possible to easily suppress the rotational vibration of the shroud ring 54 with respect to the fan shaft center CL when the turbo fan 18 rotates as compared with the turbo fan disclosed in Patent Document 1.
  • the pressure surface 524 of the blade 52 is provided on the inner side in the fan radial direction DRr than the pressure surface outer region 524b and the pressure surface outer region 524b. And a positive pressure surface inner region 524c.
  • the suction surface 525 of the blade 52 includes a suction surface outer region 525b and a suction surface inner region 525c provided on the inner side in the fan radial direction DRr than the suction surface outer region 525b.
  • the positive pressure surface outer region 524b and the negative pressure surface outer region 525b are both formed by the other mold 92 included in the pair of molding dies 91 and 92 that open and close in the fan axial direction DRa.
  • Both the positive pressure surface inner region 524c and the negative pressure surface inner region 525c are formed by the one-side mold 91 included in the pair of molding dies 91 and 92. Therefore, the shroud ring 54, the plurality of blades 52, and the fan boss portion 56 can be integrally formed in such a manner that the shroud ring 54 is connected to the fan boss portion 56 via each of the plurality of blades 52. is there.
  • the outer diameter D2 of the fan boss portion 56 is smaller than the inner diameter D1 of the shroud ring 54, as shown in FIG. Therefore, the fan body member 50 does not have an undercut shape on molding, and a complicated mold configuration is not required in the pair of molding dies 91 and 92 shown in FIG. Therefore, for example, it is easy to reduce the manufacturing cost.
  • the blade leading edge 523 is configured such that the virtual tangent Ltg in FIG. 6 that contacts the blade leading edge 523 is inclined with respect to the fan axis CL, but the virtual tangent Ltg is It may be configured to be parallel to the fan axis CL.
  • the mold for forming the fan main body member 50 only needs to come out in the fan axial direction DRa. Therefore, the virtual tangent Ltg is on the fan axis CL, and one side of the virtual tangent Ltg in the fan axial direction DRa is on the fan side. It does not have to be inclined so as to face the inside of the radial direction DRr.
  • the blade leading edge 523 shown in FIG. 6 is composed of two straight first leading edges 523a and 523b, and the blade leading edge 523 is formed in a polygonal line shape.
  • the shape of the blade leading edge 523 is not limited thereto.
  • the first leading edge 523a and the second leading edge 523b may be connected via an arcuate leading edge 523e, and the blade leading edge 523 may be formed in a single curved shape.
  • the ring-side connection end 523c of the blade leading edge 523 is the same as that in FIG. 6, and the first leading edge 523a is displaced to the other side in the fan axial direction DRa as it is inward in the fan radial direction DRr. You may lean on.
  • the height from a predetermined reference position Pst to the intersection Pm of the first front edge 523a and the second front edge 523b is equal to or less than the height H1 from the reference position Pst to one end 18b of the outlet 18a. It has become.
  • an arcuate front edge 523e is provided at the intersection Pm, and the first front edge 523a and the second front edge 523b are connected via the arcuate front edge 523e. It can be done.
  • the blade leading edge 523 may be configured by connecting three or more linear or curved edges.
  • the relationship “H1 ⁇ H2 ⁇ H3” is established.
  • the electric motor 16 is an outer rotor type brushless DC motor, but the motor type is not limited.
  • the electric motor 16 may be an inner rotor type motor or a brush motor.
  • the pressure surface convex portion 524a and the suction surface convex portion 525a of the blade 52 have a cross-sectional shape having an arcuate surface as shown in FIG. 5 in a cross section orthogonal to the extending direction thereof.
  • the cross-sectional shape of the pressure surface convex portion 524a and the suction surface convex portion 525a may be different from each other. For example, a slight step may be formed between the pressure surface outer region 524b and the pressure surface inner region 524c on the pressure surface 524 of the blade 52, and the exit angle of the step may be the pressure surface convex portion 524a. The same applies to the suction surface convex portion 525a.
  • the annular extending portion 564 extends from the boss outer peripheral end portion 563 to the other side in the fan axial direction DRa, but this is an example. .
  • the annular extending part 564 is a cylindrical rib, the shape is not limited.
  • the fan boss portion 56 may not have the annular extending portion 564.
  • the present disclosure is not limited to the above-described embodiment.
  • the present disclosure includes various modifications and modifications within the equivalent range.
  • elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
  • numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to a specific number except for cases.
  • when referring to the material, shape, positional relationship, etc. of the component, etc. unless otherwise specified and in principle limited to a specific material, shape, positional relationship, etc.
  • the material, shape, positional relationship and the like are not limited.
  • the plurality of blades, the shroud ring, and the fan boss portion are integrally formed, and the outer diameter of the fan boss portion is larger than the inner diameter of the shroud ring. Is also small.
  • each of the plurality of blades can function as a connecting portion that connects the shroud ring and the fan boss portion.
  • the backflow airflow that flows back along the shroud ring outside the turbofan is upstream of the merging position where it joins the intake airflow that flows into the space between the blades through the air intake holes. It can be accelerated. Therefore, the backflow air flow that merges with the intake air flow can be turned along the guide surface on the blade side of the shroud ring. That is, it is possible to suppress separation of the air flow from the guide surface of the shroud ring due to the backflow air flow, and to improve the fan performance indicated by, for example, noise and air flow characteristics of the turbo fan.
  • the ring-side connection end of the blade leading edge is further located on one side in the axial direction than the one end located on one side in the axial direction of the air outlet. Therefore, it is possible to further suppress the separation of the air flow and improve the fan performance as compared with a configuration that does not have such a positional relationship.
  • the ring-side connection end of the blade leading edge is located on the other side in the axial direction with respect to one end of the inner peripheral end of the ring in the axial direction. Therefore, when the bell mouth portion is provided around the air intake port of the case accommodating the turbofan, the bell mouth portion is used by utilizing the step from the end of the ring inner peripheral end in the axial direction to the blade leading edge. It is possible to arrange. Therefore, it is possible to improve the fan performance of the turbofan by increasing the air entrainment amount of the bell mouth part, and it is possible to suppress the expansion of the size of the blower due to the bell mouth part.
  • the blade leading edge is arranged such that a virtual tangent in contact with the blade leading edge at the boss side connection end is parallel to the fan axis or one side of the virtual tangent is radially outside.
  • the virtual tangent is inclined with respect to the fan axis. Therefore, in the molding by the mold in the opening and closing direction along the axial direction of the fan shaft center, the blade does not have an undercut shape, and the fan main body member can be easily molded.
  • each of the plurality of blades has a pressure surface convex portion provided with a convex shape on the pressure surface and a suction surface convex portion provided with a convex shape on the suction surface.
  • the positive pressure surface convex portion and the negative pressure surface convex portion are formed so as to extend linearly from the ring inner peripheral end portion to the boss outer peripheral end portion. Therefore, the positive pressure surface convex portion and the negative pressure surface convex portion are provided at positions where the flow path cross-sectional area of the flow path between the blades formed between the blades changes discontinuously.
  • the annular extending portion of the fan boss portion is fixed to a rotor that is included in the electric motor and disposed inside the annular extending portion. Therefore, the fan boss portion can be fixed to the rotor of the electric motor without being affected by the shape of the other end side plate.
  • the annular other end side plate is fitted to the radially outer side of the fan boss portion, The other end side plate is joined to each of the other wing end portions of the plurality of wings.
  • the pressure surface outside region of the pressure surface of the blade and the suction surface outside region of the suction surface of the blade are both a pair of molds that open and close in the axial direction. Is formed by the other side mold included in.
  • the pressure surface inside region provided radially inward of the pressure surface outside region of the pressure surface and the pressure surface inside region provided radially inward of the suction surface outside region of the suction surface Are formed by one-side molds included in the pair of molds. Therefore, the shroud ring, the plurality of blades, and the fan boss portion can be integrally formed in such a manner that the shroud ring is connected to the fan boss portion via each of the plurality of blades.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

ターボファンのファン本体部材(50)は、ファン軸心まわりに配置された複数枚の翼(52)を有する。また、ファン本体部材は、吸気孔(54a)が形成されたシュラウドリング(54)を有し、そのシュラウドリングは、複数枚の翼に対しファン軸心の軸方向における一方側に設けられ複数枚の翼のそれぞれに連結されている。更に、ファン本体部材は、送風機の非回転部材に対してファン軸心まわりに回転可能に支持され複数枚の翼のそれぞれに対しシュラウドリング側とは反対側に連結されたファンボス部(56)を有する。ターボファンの他端側側板(60)は、ファンボス部の径方向外側に嵌合した状態で、複数枚の翼が有する他方側翼端部(522)のそれぞれに接合されている。また、ファンボス部の外径(D2)はシュラウドリングの内径(D1)よりも小さい。また、複数枚の翼、シュラウドリング、およびファンボス部は一体に構成されている。

Description

ターボファンおよびそのターボファンの製造方法 関連出願への相互参照
 本出願は、2015年11月23日に出願された日本特許出願番号2015-228267号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、送風機に適用されるターボファンおよびそのターボファンの製造方法に関するものである。
 例えば特許文献1には、従来技術に含まれるターボファンが開示されている。この特許文献1に開示されたターボファンは、空気調和機用のファンである。詳しく言えば、その特許文献1のターボファンは、種々のターボファンの中でも、翼がシュラウドリングと主板とで囲まれたクローズドターボファンとなっている。
 特許文献1のターボファンでは、クローズドターボファンの基本構成であるシュラウドリング(すなわち、側板)と複数枚の翼とファンボス部および主板を含むファン本体とから成る3部品のうち、ファン本体と翼とが一体成形されている。また、シュラウドリングはファン本体とは別部品として成形されている。特許文献1のターボファンは、そのシュラウドリングがファン本体へ接合されることによって構成されている。更に、特許文献1のターボファンでは、そのシュラウドリングをファン本体へ接合する際の溶着性が改善されている。
特許第4317676号公報
 クローズドターボファンにおいて、金型の抜き方向をターボファンの軸方向にしただけの簡潔な金型構造では、特許文献1のターボファンに限らず、クローズドターボファンを構成する上記3部品の全部を一体に成形することはできない。
 そのため、一般的な従来のクローズドターボファンでは、その3部品であるシュラウドリングと複数枚の翼とファン本体とが別々に成形される。そして、その成形後に、それらが相互に接合されることでクローズドターボファンが完成する。これが従来からの一般的な製造方法である。
 ここで、ターボファンは、2つのケース部材の間に格納されて使用される。また、ターボファンで生じる現象の1つとして、その2つのケース部材のうちのシュラウドリング側のケース部材とシュラウドリングとの間を空気が通って逆流することが挙げられる。ターボファンの翼前縁における空気圧力が負圧側に大きいため、ファン出口部から吹き出た空気が逆流するのである。
 これに対し、ターボファンの性能向上のためには、その逆流する空気の流量を抑えることが必要である。そして、その逆流する空気の流量は、シュラウドリング側のケース部材とシュラウドリングとの間のクリアランスを小さくするほど抑えられる。しかし、従来技術として上述したターボファン、すなわち、ファン本体とシュラウドリングとが別々に成形されるターボファンにおいては、シュラウドリングとファン本体との接合ガタ(例えば、芯ずれ)などに起因して、ファン回転軸に対するシュラウドリングの回転振れが大きくなる。なぜなら、ファン回転軸はファン本体に対して連結され、ファン本体および翼を介して間接的にシュラウドリングを支持しているからである。
 そして、特許文献1のターボファンでもファン本体とシュラウドリングとが別々に成形されるので、上記シュラウドリングの回転振れは解決されていない。
 このようなことから、上記従来技術としてのターボファンでは、ファン回転軸に対するシュラウドリングの回転振れが或る程度大きくなるので、シュラウドリングとケース部材との干渉を防止する目的で上記クリアランスを大きくとる必要があるということを、発明者は見出した。すなわち、シュラウドリングとケース部材との干渉防止のために、それらの間のクリアランスを逆流する空気の流量を十分に抑えることができず、その結果としてターボファンの性能を悪化させているということを、発明者は見出した。
 本開示は上記点に鑑みて、ファン軸心に対するシュラウドリングの回転振れを特許文献1のターボファンに比して容易に抑えることが可能なターボファンおよびそのターボファンの製造方法を提供することを目的とする。
 上記目的を達成するため、本開示の一の観点によれば、本開示のターボファンは、
 送風機に適用されファン軸心まわりに回転することで送風するターボファンであって、
 ファン軸心まわりに配置された複数枚の翼、空気が吸い込まれる吸気孔が形成され複数枚の翼に対しファン軸心の軸方向における一方側に設けられその複数枚の翼のそれぞれに連結されたシュラウドリング、および、送風機の非回転部材に対してファン軸心まわりに回転可能に支持され複数枚の翼のそれぞれに対しシュラウドリング側とは反対側に連結されたファンボス部を有するファン本体部材と、
 ファンボス部の径方向外側に嵌合した状態で、複数枚の翼が軸方向での上記一方側とは反対側の他方側に有する他方側翼端部のそれぞれに接合されている他端側側板とを備え、
 ファンボス部の外径はシュラウドリングの内径よりも小さく、
 複数枚の翼、シュラウドリング、およびファンボス部は一体に構成されている。
 上述のように、複数枚の翼、シュラウドリング、およびファンボス部は一体に構成され、ファンボス部の外径はシュラウドリングの内径よりも小さい。これにより、ファン軸心の軸方向を金型の抜き方向(すなわち、金型の開閉方向)として、複数枚の翼とシュラウドリングとファンボス部とを容易に一体成形することができる。そして、他端側側板は、ファンボス部の径方向外側に嵌合した状態で、複数枚の翼が有する他方側翼端部のそれぞれに接合されているので、ファン本体部材の成形後に他端側側板をファン本体部材へ組み付けてターボファンを完成させることが可能である。従って、シュラウドリングとファンボス部との一体成形の効果として、ターボファンが回転した際のファン軸心に対するシュラウドリングの回転振れを、特許文献1のターボファンに比して容易に抑えることが可能である。
 また、本開示の他の観点によれば、本開示のターボファンの製造方法は、
 送風機に適用されファン軸心まわりに回転することで送風するターボファンの製造方法であって、
 ファン軸心まわりに配置される複数枚の翼と、空気が吸い込まれる吸気孔が形成され複数枚の翼に対しファン軸心の軸方向における一方側に設けられその複数枚の翼のそれぞれに連結されるシュラウドリングと、送風機の非回転部材に対してファン軸心まわりに回転可能に支持され複数枚の翼のそれぞれに対しシュラウドリング側とは反対側に連結されるファンボス部とを一体成形することと、
 一体成形することの後に、環形状の他端側側板をファンボス部の径方向外側に嵌合すると共に、複数枚の翼が軸方向での上記一方側とは反対側の他方側に有する他方側翼端部のそれぞれに他端側側板を接合することとを含む。
 上述のように、複数枚の翼とシュラウドリングとファンボス部とを一体成形した後において、環形状の他端側側板をファンボス部の径方向外側に嵌合すると共に、複数枚の翼が有する他方側翼端部のそれぞれにその他端側側板を接合する。従って、上記一の観点によるターボファンと同様に、ターボファンが回転した際のファン軸心に対するシュラウドリングの回転振れを、特許文献1のターボファンに比して容易に抑えることが可能である。
第1実施形態において送風機の外観を表した斜視図である。 ファン軸心を含む平面で切断した送風機の軸方向断面図、すなわち、図1のII-II断面図である。 図2におけるIII矢視図において、ターボファンと回転軸と回転軸ハウジングとを抜粋した図である。 第1実施形態において、ターボファンから抜粋された1枚の翼をファン軸心方向から見た図である。 図4に示された翼のうちのV部分を、ファン軸心に直交する断面で切断すると共に図4と同じ向きで見た断面図である。 第1実施形態のターボファンの詳細形状を説明するための図であって、図2の左側半分を図示した断面図において、ターボファンと回転軸と回転軸ハウジングとを抜粋した図である。 第1実施形態においてターボファンの製造工程を示したフローチャートである。 第1実施形態において、ファン本体部材を成形する成形用金型の概略構成を示した模式図である。 第1実施形態と対比される比較例を示した図であって、第1実施形態の図2に相当する断面図である。 第1実施形態と対比される比較例を示した図であって、図9においてシュラウドリングの接合ガタを表示した断面図である。 第1実施形態のターボファンにおいて逆流空気流れが吸入空気流れへ合流する状態を示した図である。 第1実施形態のターボファンにおいて、ファン軸心からの径方向距離と翼間流路の流路断面積との関係を示したグラフである。 第1実施形態において、ターボファンから抜粋された1つの翼間流路をファン軸心方向から見た図である。 第1実施形態において、図2のうち翼間流路を拡大して表示した断面図である。 第1実施形態を基にした第1の変形例において翼前縁の形状を示した断面図であって、第1実施形態の図6に相当する図である。 第1実施形態を基にした第2の変形例において翼前縁の形状を示した断面図であって、第1実施形態の図6に相当する図である。 第1実施形態を基にした第3の変形例において翼前縁の形状を示した断面図であって、第1実施形態の図6に相当する図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。なお、後述する他の実施形態を含む以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1は、第1実施形態において送風機10の外観を表した斜視図である。また、図2は、ファン軸心CLを含む平面で切断した送風機10の軸方向断面図、すなわち、図1のII-II断面図である。図2の矢印DRaは、ファン軸心CLの軸方向DRaすなわちファン軸心方向DRaを示している。また、図2の矢印DRrは、ファン軸心CLの径方向DRrすなわちファン径方向DRrを示している。
 図1および図2に示すように、送風機10は遠心式送風機であり、詳細に言えばターボ型送風機である。送風機10は、その送風機10の筐体であるケーシング12、回転軸14、回転軸ハウジング15、電動モータ16、電子基板17、ターボファン18、ベアリング28、およびベアリングハウジング29等を備えている。
 ケーシング12は、電動モータ16、電子基板17、およびターボファン18を、送風機10外部の塵および汚れから保護する。そのために、ケーシング12は、電動モータ16、電子基板17、およびターボファン18を収容している。また、ケーシング12は、第1ケース部材22と第2ケース部材24とから構成されている。
 その第1ケース部材22は例えば樹脂で構成されており、ターボファン18よりも大径であって略円盤形状を成している。第1ケース部材22は、第1カバー部221と第1周縁部222と複数本の支柱223とから構成されている。
 第1カバー部221は、ターボファン18に対しファン軸心方向DRaにおける一方側に配置され、そのターボファン18の一方側を覆っている。ここで、ターボファン18を覆うこととは、ターボファン18の少なくとも一部分を覆うことである。
 第1カバー部221の内周側には、第1カバー部221をファン軸心方向DRaに貫通した空気吸入口221aが形成されており、空気は、この空気吸入口221aを介してターボファン18へ吸い込まれる。また、第1カバー部221は、その空気吸入口221aの周縁を構成するベルマウス部221bを有している。このベルマウス部221bは、送風機10の外部から空気吸入口221aへ流入する空気を円滑に空気吸入口221a内へと導く。
 図1および図2に示すように、第1周縁部222は、ファン軸心CLまわりにおいて第1ケース部材22の周縁を構成している。複数本の支柱223はそれぞれ、ファン軸心方向DRaにおいて第1カバー部221からケーシング12の内側へ突き出ている。また、支柱223は、ファン軸心CLと平行な中心軸を有する厚肉の円筒形状を成している。支柱223の内側には、第1ケース部材22と第2ケース部材24とを結合するビス26が挿通されるビス孔が形成されている。
 第1ケース部材22の各支柱223は、ファン径方向DRrにおいてターボファン18よりも外側に配置されている。そして、第1ケース部材22および第2ケース部材24は、支柱223の先端が第2ケース部材24に突き当てられた状態で、支柱223内に挿通されたビス26によって結合されている。
 第2ケース部材24は、第1ケース部材22と略同じ直径の略円盤形状を成している。第2ケース部材24は、例えば鉄やステンレス等の金属または樹脂で構成されており、電動モータ16および電子基板17を覆うモータハウジングとしても機能する。第2ケース部材24は、第2カバー部241と第2周縁部242とから構成されている。
 第2カバー部241は、ターボファン18および電動モータ16に対しファン軸心方向DRaにおける他方側に配置され、そのターボファン18および電動モータ16の他方側を覆っている。第2周縁部242は、ファン軸心CLまわりにおいて第2ケース部材24の周縁を構成している。
 第1周縁部222および第2周縁部242は、ケーシング12において空気を吹き出す空気吹出部を構成している。そして、第1周縁部222および第2周縁部242は、ファン軸心方向DRaにおける第1周縁部222と第2周縁部242との間に、ターボファン18から吹き出た空気を吹き出す空気吹出口12aを形成している。
 その空気吹出口12aは、詳細に言えば、送風機10のファン側面に形成されており、ファン軸心CLを中心としたケーシング12の全周にわたって開口しターボファン18からの空気を吹き出す。なお、支柱223が設けられている箇所では、ケーシング12からの空気の吹出しは支柱223に妨げられるので、空気吹出口12aがケーシング12の全周にわたって開口していることとは、おおよそ全周にわたって開口していることを含む意味である。
 回転軸14および回転軸ハウジング15は各々、例えば鉄、ステンレス、または黄銅等の金属で構成されている。回転軸14は、図2に示すように円柱形状の棒材であり、回転軸ハウジング15とベアリング28の内輪とへそれぞれ圧入等されている。そのため、回転軸ハウジング15は回転軸14とベアリング28の内輪とに対して固定されている。また、ベアリング28の外輪はベアリングハウジング29に対し圧入等されることで固定されている。そのベアリングハウジング29は、例えばアルミニウム合金、黄銅、鉄、またはステンレス等の金属で構成され、第2カバー部241に固定されている。
 従って、回転軸14および回転軸ハウジング15は、第2カバー部241に対してベアリング28を介して支持されている。すなわち、回転軸14および回転軸ハウジング15は、第2カバー部241に対し、ファン軸心CLを中心として回転自在になっている。
 それと共に、回転軸ハウジング15は、ケーシング12内において、ターボファン18が有するファンボス部56の内周孔56aに嵌め入れられている。例えば回転軸14および回転軸ハウジング15は予め相互に固定された状態で、ターボファン18のファン本体部材50にインサート成型される。これにより、回転軸14および回転軸ハウジング15は、ターボファン18のファンボス部56に相対回転不能に連結される。すなわち、回転軸14および回転軸ハウジング15は、ファン軸心CLを中心としてターボファン18と一体的に回転する。
 電動モータ16はアウターロータ型ブラシレスDCモータである。電動モータ16は電子基板17と共に、ファン軸心方向DRaにおいてターボファン18のファンボス部56と第2カバー部241との間に配置されている。そして、電動モータ16は、モータロータ161とロータマグネット162とモータステータ163とを備えている。モータロータ161は鋼板等の金属で構成され、例えばその鋼板がプレス成形されることによりモータロータ161が形成されている。
 ロータマグネット162は永久磁石であって、例えばフェライトやネオジウム等を含むゴムマグネットで構成されている。そのロータマグネット162はモータロータ161に一体固定されている。また、モータロータ161は、ターボファン18のファンボス部56に固定されている。すなわち、モータロータ161およびロータマグネット162は、ファン軸心CLを中心としてターボファン18と一体的に回転する。
 モータステータ163は、電子基板17に電気的に接続されたステータコイル163aおよびステータコア163bを含んで構成されている。モータステータ163は、ロータマグネット162に対し微小な隙間を空けて径方向内側に配置されている。そして、モータステータ163は、ベアリングハウジング29を介して第2ケース部材24の第2カバー部241に固定されている。
 このように構成された電動モータ16では、モータステータ163のステータコイル163aへ外部電源から通電されると、そのステータコイル163aによってステータコア163bに磁束変化が生じる。そして、そのステータコア163bでの磁束変化は、ロータマグネット162を引き寄せる力を発生する。モータロータ161は、ベアリング28により回転可能に支持されている回転軸14に対して固定されているので、上記ロータマグネット162を引き寄せる力を受けてファン軸心CLまわりに回転運動をする。要するに、電動モータ16は、通電されることにより、モータロータ161が固定されたターボファン18をファン軸心CLまわりに回転させる。
 ターボファン18は、図2および図3に示すように、送風機10に適用されるインペラである。ターボファン18は、所定のファン回転方向DRfへファン軸心CLまわりに回転することで送風する。すなわち、ターボファン18は、ファン軸心CLまわりに回転することにより、矢印FLaのようにファン軸心方向DRaの一方側から空気吸入口221aを介して空気を吸い込む。そして、ターボファン18は、ターボファン18の外周側へ矢印FLbのように、その吸い込んだ空気を吹き出す。
 具体的に、本実施形態のターボファン18は、ファン本体部材50と他端側側板60とを有している。そして、そのファン本体部材50は、複数枚の翼52とシュラウドリング54とファンボス部56とから構成されている。このファン本体部材50は例えば樹脂製であり、1回の射出成形によって形成されている。従って、複数枚の翼52、シュラウドリング54、およびファンボス部56は一体に構成され、何れもファン本体部材50と同じ樹脂で構成されている。更に言えば、ファン本体部材50は一体成形品であるので、複数枚の翼52とシュラウドリング54との間に両者を溶着等によって接合するための接合部位は存在しない。そして、複数枚の翼52とファンボス部56との間にも両者を溶着等によって接合するための接合部位は存在しない。
 複数枚の翼52は、ファン軸心CLまわりに配置されている。詳細には、複数枚の翼52すなわちファンブレード52は、互いの間に空気が流れる間隔を空けつつ、ファン軸心CLの周方向へ並んで配置されている。
 また、翼52はそれぞれ、翼52のうちファン軸心方向DRaで上記一方側に設けられた一方側翼端部521と、翼52のうちファン軸心方向DRaでその一方側とは反対側の他方側に設けられた他方側翼端部522とを有している。
 また、複数枚の翼52はそれぞれ、図4に示すように、翼形状を構成する正圧面524および負圧面525を有している。そして、複数枚の翼52は、図3に示すように、その複数枚の翼52のうち互いに隣り合う翼52同士の間にそれぞれ、空気が流れる翼間流路52aを形成している。言い換えれば、複数枚の翼52のうち隣り合う2枚の翼52の一方が有する正圧面524と他方が有する負圧面525との間には、翼間流路52aが形成されている。なお、図4において破線Ld2はファンボス部56の外形を表している。
 また、複数枚の翼52はそれぞれ、図5に示すように、正圧面凸部524aと負圧面凸部525aとを有している。その正圧面凸部524aは、正圧面524に凸形状を成して設けられた微小突起である。負圧面凸部525aは、負圧面525に凸形状を成して設けられた微小突起である。
 この正圧面凸部524aおよび負圧面凸部525aは、後述の図12で説明する流路断面積A1fの不連続変化に起因した空気流れの剥離を低減する役割を果たす。そこで、正圧面凸部524aの例えば凸高さ等である凸形状は、正圧面524上において空気流れの剥離を抑制できるように実験的に決定される。負圧面凸部525aについてもこれと同様であり、負圧面凸部525aの凸形状は、負圧面525上において空気流れの剥離を抑制できるように実験的に決定される。
 また、ファン本体部材50は射出成形によって一体成形されるので、正圧面凸部524aおよび負圧面凸部525aは何れも、その射出成形に用いられる一対の成形用金型91、92を構成する一方側金型91と他方側金型92との間のパーティングラインLpt上に構成される。上記一対の成形用金型91、92は図8に示されている。
 正圧面凸部524aは、図6に示すように、リング内周端部541からボス外周端部563にまで線状に延びるように形成されている。負圧面凸部525aについても、これと同様である。すなわち、負圧面凸部525aも、リング内周端部541からボス外周端部563にまで線状に延びるように形成されている。
 シュラウドリング54は、図2および図3に示すように、ファン径方向DRrへ円盤状に拡がる形状を成している。そして、そのシュラウドリング54の内周側には、ケーシング12の空気吸入口221aからの空気が矢印FLaのように吸い込まれる吸気孔54aが形成されている。従って、シュラウドリング54は環形状を成している。
 また、シュラウドリング54は、リング内周端部541とリング外周端部542とを有している。そのリング内周端部541は、シュラウドリング54のうちファン径方向DRrにおける内側に設けられた端部であり、吸気孔54aを形成している。また、リング外周端部542は、シュラウドリング54のうちファン径方向DRrにおける外側に設けられた端部である。
 また、シュラウドリング54は、複数枚の翼52に対しファン軸心方向DRaにおける一方側すなわち空気吸入口221a側に設けられている。それと共に、シュラウドリング54は、その複数枚の翼52のそれぞれに連結されている。言い換えれば、シュラウドリング54は、その翼52のそれぞれに対し一方側翼端部521にて連結されている。
 図2および図3に示すように、ファンボス部56は、ファン軸心CLまわりに回転可能な回転軸14に回転軸ハウジング15を介して固定されているので、送風機10の非回転部材としてのケーシング12に対してファン軸心CLまわりに回転可能に支持されている。
 また、ファンボス部56は、複数枚の翼52のそれぞれに対しシュラウドリング54側とは反対側に連結されている。詳しく言うと、ファンボス部56のうち翼52に対して連結する翼連結部位561の全体は、ファン径方向DRrにおいてシュラウドリング54全体に対し内側に設けられている。すなわち、ファンボス部56は、他方側翼端部522のうちファン径方向DRrで内側寄りの部分にて、翼52のそれぞれに対して連結されている。従って、複数枚の翼52が、ファンボス部56とシュラウドリング54とを橋渡しするように結合させる結合リブとしての機能を兼ね備えているので、複数枚の翼52、ファンボス部56、およびシュラウドリング54の一体成形が可能となっている。
 また、ファンボス部56は、ターボファン18内の気流を案内するボス案内面562aを有している。そのボス案内面562aは、ファン径方向DRrへ拡がる湾曲面であり、空気吸入口221aへ吸い込まれファン軸心方向DRaを向いた空気流れをファン径方向DRrの外側へ向くように案内する。
 すなわち、ファンボス部56は、このボス案内面562aを有するボス案内部562を有している。そして、そのボス案内部562は、ファン軸心方向DRaにおいてボス案内部562の一方側にボス案内面562aを形成している。
 また、ファンボス部56を回転軸14に固定するために、ファンボス部56の内周側には、ファンボス部56をファン軸心方向DRaへ貫通した内周孔56aが形成されている。
 また、ファンボス部56は、ボス外周端部563と環形状の環状延設部564とを有している。そのボス外周端部563は、ファンボス部56のうちファン径方向DRrにおける外側に設けられた端部である。詳細に言えば、ボス外周端部563は、ボス案内部562の周縁を形成する端部である。
 環状延設部564は円筒状のリブであり、ボス外周端部563からファン軸心方向DRaの他方側(すなわち、空気吸入口221a側とは反対側)へ延設されている。この環状延設部564の内周側には、モータロータ161が嵌め込まれて格納されている。すなわち、環状延設部564は、モータロータ161を格納するロータ格納部として機能する。そして、環状延設部564がモータロータ161に固定されることにより、ファンボス部56は、そのモータロータ161に固定されている。
 他端側側板60は、ファン径方向DRrへ円盤状に拡がる形状を成している。そして、その他端側側板60の内周側には、他端側側板60をその厚み方向へ貫通した側板嵌合孔60aが形成されている。従って、他端側側板60は環形状を成している。他端側側板60は例えば、ファン本体部材50とは別個に成形される樹脂成形品である。
 また、他端側側板60は、ファン径方向DRrにおけるファンボス部56の外側に嵌合した状態で、複数枚の翼52が有する他方側翼端部522のそれぞれに接合されている。その他端側側板60と翼52との接合は、例えば振動溶着または熱溶着によって行われる。従って、他端側側板60と翼52との溶着による接合性に鑑みて、他端側側板60およびファン本体部材50の材質は熱可塑性樹脂であることが好ましく、更に言えば、同種材であることが好ましい。
 このように他端側側板60が翼52に接合されることによって、ターボファン18はクローズドファンとして完成する。そのクローズドファンとは、複数枚の翼52の相互間に形成された翼間流路52aのファン軸心方向DRaにおける両側がシュラウドリング54および他端側側板60で覆われたターボファンである。すなわち、シュラウドリング54は、その翼間流路52aに面し翼間流路52a内の空気流れを案内するリング案内面543を有している。また、他端側側板60は、翼間流路52aに面し翼間流路52a内の空気流れを案内する側板案内面603を有している。
 この側板案内面603は、リング案内面543に対し翼間流路52aを挟んで対向すると共に、ボス案内面562aに対しファン径方向DRrにおいて外側に配置されている。また、側板案内面603は、ボス案内面562aに沿った空気流れを円滑に吹出口18aまで導く役割を果たす。そのために、ボス案内面562aおよび側板案内面603は各々、三次元的に湾曲した仮想の一湾曲面のうちの一部と他部とを構成する。言い換えれば、ボス案内面562aおよび側板案内面603は、そのボス案内面562aと側板案内面603との境目で屈曲していない1つの湾曲面を構成する。
 また、他端側側板60は、側板内周端部601と側板外周端部602とを有している。その側板内周端部601は、他端側側板60のうちファン径方向DRrにおける内側に設けられた端部であり、側板嵌合孔60aを形成している。また、側板外周端部602は、他端側側板60のうちファン径方向DRrにおける外側に設けられた端部である。
 その側板外周端部602およびリング外周端部542は、ファン軸心方向DRaにおいて互いに離れて配置されている。そして、側板外周端部602およびリング外周端部542は、翼間流路52aを通過した空気が吹き出る吹出口18aを、その側板外周端部602とリング外周端部542との間に形成している。
 また、図2および図6に示すように、複数枚の翼52はそれぞれ翼前縁523を有している。その翼前縁523とは、翼52のうち、吸気孔54aを通過して翼52相互間の翼間流路52aに流れる空気の気流方向すなわち矢印FLa、FLbに沿って流れる空気の気流方向における上流側に構成された端縁である。この翼前縁523は、ファン径方向DRrにおいてリング内周端部541に対し内側へ張り出している。更に言えば、翼前縁523は、ボス外周端部563に対してもファン径方向DRrにおいて内側へ張り出している。
 具体的に、翼前縁523は、2本の前縁523a、523bすなわち第1前縁523aおよび第2前縁523bから構成されている。その第1前縁523aおよび第2前縁523bはそれぞれ直線的に延びるように形成され、第1前縁523aおよび第2前縁523bは直列に連結されている。
 そして、第1前縁523aはシュラウドリング54のリング内周端部541に接続されている。すなわち、第1前縁523aは、シュラウドリングへ接続するリング側接続端523cを有している。その一方で、第2前縁523bは、ファンボス部56のボス案内面562aに接続されている。すなわち、第2前縁523bは、ファンボス部56へ接続するボス側接続端523dを有している。
 このように構成されたターボファン18は、図2および図3に示すようにモータロータ161と一体にファン回転方向DRfへ回転運動する。それに伴い、ターボファン18の翼52が空気に運動量を与え、ターボファン18は、そのターボファン18の外周に開口した吹出口18aから径方向外側へ空気を吹き出す。このとき、吸気孔54aから吸い込まれ翼52によって送り出された空気すなわち吹出口18aから吹き出された空気は、ケーシング12が形成する空気吹出口12aを経由して送風機10の外部へ放出される。
 ここで、図6を用いてターボファン18の詳細な形状について説明する。図6に示すように、ファン本体部材50において、ファンボス部56の外径D2はシュラウドリング54の内径D1よりも小さくなっている。言い換えれば、ボス外周端部563の全体が、ファン径方向DRrにおいてリング内周端部541よりも内側に配置されている。なお、シュラウドリング54の内径D1とはシュラウドリング54の最小内径すなわち吸気孔54aの外径であり、ファンボス部56の外径D2とはファンボス部56の最大外径である。そして、本実施形態では、環状延設部564の外径およびボス外周端部563の外径は互いに同一あり、ファンボス部56の外径D2に一致する。ファン本体部材50を成形する上で、環状延設部564の外径は、ボス外周端部563の外径と同じまたはそれ以下になっていることが好ましい。
 また、ファン軸心方向DRaにおいて、所定の基準位置Pstからリング側接続端523cまでの高さH2は、その基準位置Pstから、吹出口18aのうちファン軸心方向DRaの一方側に位置する一方端18bまでの高さH1よりも大きくなっている。それと共に、そのリング側接続端523cまでの高さH2は、上記基準位置Pstから、ファン軸心方向DRaにおけるリング内周端部541の一方側の端541aまでの高さH3よりも小さくなっている。要するに、「H1<H2<H3」という関係が成立している。
 言い換えれば、リング側接続端523cは、吹出口18aの一方端18bよりも、ファン軸心方向DRaにおいて一方側に位置している。そして、そのリング側接続端523cは、ファン軸心方向DRaにおけるリング内周端部541の一方側の端541aよりも、ファン軸心方向DRaにおいて他方側に位置している。なお、上記基準位置Pstは、図6では、吹出口18aのうちファン軸心方向DRaの他方側に位置する他方端18cとされているが、何れの場所でも構わない。
 また、翼前縁523のボス側接続端523dにおいて翼前縁523に接する仮想接線Ltgを想定した場合、その仮想接線Ltgは、ファン軸心CLに対し、ファン軸心方向DRaにおける仮想接線Ltgの一方側がファン径方向DRrの外側を向くようにして傾いている。翼前縁523は、このように構成されている。要するに、翼前縁523がボス側接続端523dにおいてファン軸心CLに対し成す角度AGbすなわち図6の対軸心角度AGbは、ファン軸心CLとの関係においては「0°<AGb<90°」となっている。
 また、翼前縁523とボス案内面562aとの関係においては、翼前縁523がボス側接続端523dにおいてボス案内面562aに対し成す角度AGg、すなわちファン径方向DRrにおいて翼前縁523に対する外側に形成される図6の対案内面角度AGgは、おおよそ70°以上であることが好ましい。ボス案内面562aに沿って流れる空気を翼間流路52aへ円滑に導入するためである。なお、本実施形態では図6に示すように、その対案内面角度AGgは90°である。
 次に、図7のフローチャートに沿って、ターボファン18の製造方法を説明する。図7に示すように、先ず、ファン本体部材成形工程としてのステップS01において、ファン本体部材50の成形が行われる。すなわち、ファン本体部材50の構成要素である複数枚の翼52とシュラウドリング54とファンボス部56とが一体成形される。
 具体的には図8に示すように、複数枚の翼52、シュラウドリング54、およびファンボス部56が、ファン軸心方向DRaに開閉する一対の成形用金型91、92を用いた射出成形によって一体に成形される。その一対の成形用金型91、92は、一方側金型91と他方側金型92とを含んで構成されている。そして、その他方側金型92は、ファン軸心方向DRaにおいて一方側金型91に対し他方側に設けられる金型である。
 このファン本体部材50の成形では、翼52の正圧面524上および負圧面525上に成形用金型91、92のパーティングライン跡PLmが線状に形成される。すなわち、正圧面524のうちファン径方向DRrでパーティングライン跡PLmよりも外側を占める正圧面外側領域524b、および、負圧面525のうちファン径方向DRrでパーティングライン跡PLmよりも外側を占める負圧面外側領域525bは何れも、他方側金型92により形成される。そして、正圧面524のうちファン径方向DRrでパーティングライン跡PLmよりも内側を占める正圧面内側領域524c、および、負圧面525のうちファン径方向DRrでパーティングライン跡PLmよりも内側を占める負圧面内側領域525cは何れも、一方側金型91により形成される。
 この正圧面外側領域524bは、言い換えれば、正圧面524のうちボス外周端部563よりもファン径方向DRrで外側に設けられる領域である。また、正圧面内側領域524cは、正圧面524のうち正圧面外側領域524bよりもファン径方向DRrで内側に設けられる領域である。これと同様に、負圧面外側領域525bは、言い換えれば、負圧面525のうちボス外周端部563よりもファン径方向DRrで外側に設けられる領域である。また、負圧面内側領域525cは、負圧面525のうち負圧面外側領域525bよりもファン径方向DRrで内側に設けられる領域である。
 なお、正圧面524上および負圧面525上においてパーティングライン跡PLmは、図2に示すリング内周端部541からボス外周端部563にまで線状に延びるように形成される。そして、図5に示す正圧面凸部524aおよび負圧面凸部525aは何れも、図8のパーティングライン跡PLmに沿って延設される。すなわち、正圧面凸部524aは一方側金型91と他方側金型92との両方によって形成され、負圧面凸部525aも一方側金型91と他方側金型92との両方によって形成される。
 図7のフローチャートにおいてステップS01の次はステップS02へ進む。他端側側板成形工程としてのステップS02において、他端側側板60の成形が、例えば射出成形によって行われる。なお、ステップS01とステップS02とのうち何れが先に実行されても構わない。
 ステップS02の次はステップS03へ進む。接合工程としてのステップS03において、図2に示す他端側側板60がファンボス部56の径方向外側に嵌合される。それと共に、他端側側板60が、翼52の他方側翼端部522のそれぞれに接合される。その翼52と他端側側板60との接合は、例えば振動溶着または熱溶着によって行われる。このステップS03が完了することで、ターボファン18は完成する。
 上述したように、本実施形態によれば、図2および図6に示すように、複数枚の翼52、シュラウドリング54、およびファンボス部56は一体に構成され、ファンボス部56の外径D2はシュラウドリング54の内径D1よりも小さい。従って、図8のようにファン軸心方向DRaを成形用金型91、92の開閉方向として、複数枚の翼52とシュラウドリング54とファンボス部56とを容易に一体成形することができる。
 そして、他端側側板60は、ファンボス部56の径方向外側に嵌合した状態で、複数枚の翼52が有する他方側翼端部522のそれぞれに接合されている。そのため、ファン本体部材50の成形後に他端側側板60をファン本体部材50へ組み付けてターボファン18を完成させることが可能である。このように、シュラウドリング54とファンボス部56との一体成形の効果として、ターボファン18が回転した際のファン軸心CLに対するシュラウドリング54の回転振れを、例えば特許文献1のターボファンに比して容易に抑えることが可能である。
 このシュラウドリング54の回転振れが抑制された結果としてターボファン18の性能向上を図ることが可能である。そのことについて、図9および図10を用いて説明する。この図9および図10は、本実施形態と対比される比較例としてのターボファン18zとそれを有する送風機10zとを表している。この比較例のターボファン18zは、複数枚の翼52とシュラウドリング54と主板56zとが別々に成形された後に接合されることで構成される。その主板56zは、本実施形態のファンボス部56と他端側側板60とを一体にしたものに相当する。
 図9に示すように、一般的なターボファンで生じる現象の1つとして、ケーシング12のうちのシュラウドリング54側の第1ケース部材22とシュラウドリング54との間を空気が矢印FL1のように通って逆流するという現象がある。その逆流の原因としては、比較例で説明すれば、吹出口18a辺りの空気圧力に対し、ターボファン18zの翼前縁523における空気圧力が負圧側に大きいことが挙げられる。
 例えば、この矢印FL1で示す逆流空気の流量が大きくなるほど、ターボファン18zの吹出風量が減少する。また、ターボファン18zの回転に伴い、矢印FL2のようにケーシング12の空気吸入口221aからターボファン18zの翼52の相互間へ空気が流れる。これに関し、矢印FL1の逆流空気流れは、矢印FL2の空気流れへ合流する際に翼前縁523付近で、その矢印FL2の空気流れをシュラウドリング54から矢印FL3のように剥離させるおそれがある。この空気流れの剥離は、例えば騒音などの原因になる。このように逆流空気はターボファン18zの性能を損なう原因になるので、その逆流空気の流量はできるだけ低減される必要がある。
 しかし、比較例のターボファン18zにおいては、回転軸14へ嵌合される主板56zとシュラウドリング54とが別々に成形されるので、主板56zに対するシュラウドリング54の接合ガタ(例えば、芯ずれ)を低減することが困難である。従って、そのターボファン18zでは、その接合ガタに起因して、回転軸14に対するシュラウドリング54の回転振れが大きくなる。図10では、実線と破線とを重ね合わせることで、ファン径方向DRrへのシュラウドリング54の接合ガタが表示されているが、当然、シュラウドリング54の接合ガタはファン軸心方向DRaへも生じる。
 このように比較例のターボファン18zでは、シュラウドリング54の回転振れを許容するために、図9に示すシュラウドリング54と第1ケース部材22との間のクリアランスを或る程度大きく確保する必要がある。その結果として、そのクリアランスを流れる逆流空気の流量を低減することが困難であった。
 これに対し本実施形態では、図2に示す複数枚の翼52とシュラウドリング54とファンボス部56との一体成形により、ファン径方向DRrおよびファン軸心方向DRaの何れにおいてもシュラウドリング54の回転振れを容易に抑制することが可能である。そして、その回転振れのバラツキも容易に抑制することが可能である。従って、例えば上記比較例と比較して、シュラウドリング54と第1ケース部材22との間のクリアランスを小さくすることが可能である。そして、そのクリアランスを小さくすることにより、そのクリアランスを流れる上記逆流空気の流量を低減することができるので、ターボファン18の騒音および風量特性等で示されるファン性能を向上させることが可能である。
 また、本実施形態によれば、図2および図6に示すように、翼前縁523は、ファン径方向DRrにおいてリング内周端部541に対し内側へ張り出している。従って、複数枚の翼52をそれぞれ、シュラウドリング54とファンボス部56とを連結する連結部として機能させることが可能である。
 ここで、第1ケース部材22とシュラウドリング54との間の隙間(すなわち、クリアランス)を通って逆流する逆流空気流れが、ターボファン18の回転に伴って、上述したように発生する。そして、その逆流空気流れは、吸気孔54aから翼間流路52aへ図11の矢印FL2のように流入する吸入空気流れへ合流する。本実施形態では、それらの空気流れの合流位置よりも上流側で、その吸入空気流れを翼52で加速することができる。
 そのため、図11の矢印FLtで示すように吸入空気流れへ合流する逆流空気流れを、シュラウドリング54のリング案内面543へ沿うように転向させることができる。すなわち、その逆流空気流れに起因してリング案内面543から空気流れが剥離することを抑制し、ターボファン18の例えば騒音および風量特性等で示されるファン性能を向上させることが可能である。
 また、本実施形態によれば、図6に示すように、翼前縁523のリング側接続端523cは、吹出口18aのうちファン軸心方向DRaの一方側に位置する一方端18bよりも、ファン軸心方向DRaにおいて更に一方側に位置する。従って、そのような位置関係でない構成と比較して、リング案内面543からの空気流れの剥離を更に抑制し、ファン性能を向上させることが可能である。
 また、本実施形態によれば、図6に示すように、翼前縁523のリング側接続端523cは、ファン軸心方向DRaにおけるリング内周端部541の一方側の端541aよりも、ファン軸心方向DRaにおいて他方側に位置する。従って、図2に示すように、ファン軸心方向DRaにおけるリング内周端部541の上記端541aから翼前縁523までの段差を利用してベルマウス部221bを配置することが可能である。そのため、ベルマウス部221bの空気巻込み量増大によりターボファン18のファン性能を向上させることが可能であると共に、ベルマウス部221bに起因した送風機10の体格拡大を抑制することが可能である。
 また、本実施形態によれば、図6に示すように、翼前縁523は、ボス側接続端523dにおいて翼前縁523に接する仮想接線Ltgの一方側がファン径方向DRrの外側を向いてその仮想接線Ltgがファン軸心CLに対して傾くように構成されている。従って、図8に示すように成形用金型91、92がファン軸心方向DRaに沿った金型開閉方向で開閉する成形において、翼52がアンダーカット形状にならず、ファン本体部材50を容易に成形することが可能である。
 また、本実施形態によれば、図5および図6に示すように、複数枚の翼52はそれぞれ、正圧面524に凸形状を成して設けられた正圧面凸部524aと、負圧面525に凸形状を成して設けられた負圧面凸部525aとを有している。そして、その正圧面凸部524aおよび負圧面凸部525aは、リング内周端部541からボス外周端部563にまで線状に延びるように形成されている。
 ここで、本実施形態のターボファン18では、上述したように翼前縁523がファン径方向DRrにおいてリング内周端部541に対し内側へ張り出している。そのため、図12に示すように、そのリング内周端部541の径方向位置またはその近傍で、翼間流路52aの流路断面積A1fが不連続に変化する。すなわち、図12において、ファン軸心CLからの径方向距離R1に対する翼間流路52aの流路断面積A1fの変化勾配が、関係線x1と関係線x2との接続点で段階的に変化する。
 なお、上記翼間流路52aの流路断面積A1fは、図13に示す翼間流路52aの内接円の直径Daと、図14に示す翼間流路52aの内接円の直径Dbとの積として算出される。その直径Daは、図13に示すようにファン軸心CLに直交する断面において翼間流路52aに面する翼52の正圧面524と負圧面525とに接する内接円の直径である。また、直径Dbは、図14に示すようにファン軸心CLを含む断面において翼間流路52aに面するリング案内面543とボス案内面562aまたは側板案内面603とに接する内接円の直径である。また、流路断面積A1fの算出に用いられる直径Da、Dbは、その直径Daを有する図13の内接円の中心位置と、その直径Dbを有する図14の内接円の中心位置とをファン径方向DRrにおいて互いに一致させた上で求められる。
 上述した流路断面積A1fの不連続な変化は、翼52の正圧面524または負圧面525からの空気流れ剥離を生じさせ、ファン騒音の発生原因となり得る。これに対し、図5および図6に示す正圧面凸部524aおよび負圧面凸部525aは、その翼間流路52aの流路断面積A1fが不連続に変化する位置に設けられることになる。そして、正圧面凸部524aおよび負圧面凸部525aで敢えて空気流れを乱すことで、正圧面524および負圧面525からの空気流れの剥離を抑制させる効果を得ることが可能である。その結果として、例えばターボファンの騒音低減などの効果がある。
 また、本実施形態によれば、図2に示すように、ファンボス部56が有する環状延設部564は、電動モータ16のモータロータ161に固定される。従って、他端側側板60の形状等に影響されずに、ファンボス部56をモータロータ161に固定することが可能である。
 また、本実施形態によれば、図2および図7に示すように、複数枚の翼52とシュラウドリング54とファンボス部56とを一体成形した後において、環形状の他端側側板60をファンボス部56の径方向外側に嵌合する。それと共に、複数枚の翼52が有する他方側翼端部522のそれぞれに他端側側板60を接合する。従って、ターボファン18が回転した際のファン軸心CLに対するシュラウドリング54の回転振れを、特許文献1のターボファンに比して容易に抑えることが可能である。
 また、本実施形態によれば、図4および図8に示すように、翼52の正圧面524は、正圧面外側領域524bと、その正圧面外側領域524bよりもファン径方向DRrで内側に設けられる正圧面内側領域524cとから構成されている。これと同様に、翼52の負圧面525は、負圧面外側領域525bと、その負圧面外側領域525bよりもファン径方向DRrで内側に設けられる負圧面内側領域525cとから構成されている。そして、その正圧面外側領域524bおよび負圧面外側領域525bは何れも、ファン軸心方向DRaに開閉する一対の成形用金型91、92に含まれる他方側金型92により形成される。そして、正圧面内側領域524cおよび負圧面内側領域525cは何れも、その一対の成形用金型91、92に含まれる一方側金型91により形成される。従って、シュラウドリング54が複数枚の翼52のそれぞれを介してファンボス部56と連結する態様で、そのシュラウドリング54、複数枚の翼52、およびファンボス部56を一体成形することが可能である。
 また、本実施形態によれば、図6に示すように、ファンボス部56の外径D2はシュラウドリング54の内径D1よりも小さい。従って、ファン本体部材50に成形上のアンダーカット形状を生じさせず、図8に示す一対の成形用金型91、92において複雑な金型構成が必要とされない。そのため、例えば製造面でのコストダウンが容易となる。
 (他の実施形態)
 (1)上述の実施形態において、翼前縁523は、その翼前縁523に接する図6の仮想接線Ltgがファン軸心CLに対して傾くように構成されているが、その仮想接線Ltgがファン軸心CLに対して平行になるように構成されていても差し支えない。すなわち、ファン本体部材50を成形するための金型がファン軸心方向DRaへ抜ければ良いので、上記仮想接線Ltgがファン軸心CLに対し、ファン軸心方向DRaにおける仮想接線Ltgの一方側がファン径方向DRrの内側を向くようにして傾いていなければ良い。
 (2)上述の実施形態において、図6に示す翼前縁523は直線的な2本の第1前縁523aおよび第2前縁523bから構成され、翼前縁523は折れ線状に形成されているが、翼前縁523の形状はそれに限定されるものではない。例えば図15のように、第1前縁523aと第2前縁523bとが円弧状の前縁523eを介して連結され、翼前縁523が1本の曲線状に形成されていてもよい。
 また、図16のように、翼前縁523のリング側接続端523cは図6と同じであり、第1前縁523aがファン径方向DRrの内側ほどファン軸心方向DRaの他方側へずれるように傾いていてもよい。図16では、例えば所定の基準位置Pstから第1前縁523aと第2前縁523bとの交点Pmまでの高さは、その基準位置Pstから吹出口18aの一方端18bまでの高さH1以下になっている。なお、この図16の例でも図15のように、交点Pmに円弧状の前縁523eが設けられ、第1前縁523aと第2前縁523bとが円弧状の前縁523eを介して連結されていても差し支えない。
 また、図17のように、翼前縁523は、3本以上の直線状または曲線状の縁部が連なることで構成されていてもよい。なお、図15~17の何れの例でも、「H1<H2<H3」という関係は成立している。
 (3)上述の実施形態において、電動モータ16はアウターロータ型ブラシレスDCモータであるが、そのモータ形式に限定はない。例えば、電動モータ16はインナーロータ型モータであってもよいし、ブラシ付きモータであってもよい。
 (4)上述の実施形態において、翼52の正圧面凸部524aおよび負圧面凸部525aは、それらの延設方向に直交する断面において、図5に示すように円弧状の表面を有する断面形状を呈するが、その正圧面凸部524aおよび負圧面凸部525aの断面形状に限定はない。更に言えば、それらの断面形状が互いに異なっていても差し支えない。例えば、翼52の正圧面524において正圧面外側領域524bと正圧面内側領域524cとの間に僅かな段差を生じさせ、その段差の出角が正圧面凸部524aとされていてもよい。このことは負圧面凸部525aについても同様である。
 (5)上述の実施形態において、図2に示すように、環状延設部564は、ボス外周端部563からファン軸心方向DRaの他方側へ延設されているが、これは一例である。例えば、ファン径方向DRrでボス外周端部563よりも内側の部位からファン軸心方向DRaの他方側へ延設されていても差し支えない。また、環状延設部564は円筒状のリブであるが、その形状に限定はない。更に言えば、ファンボス部56はその環状延設部564を有していなくてもよい。
 なお、本開示は上記した実施形態に限定されるものではない。本開示は、様々な変形例や均等範囲内の変形をも包含する。また、上記実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記実施形態の一部または全部で示された第1の観点によれば、複数枚の翼、シュラウドリング、およびファンボス部は一体に構成され、ファンボス部の外径はシュラウドリングの内径よりも小さい。
 また、第2の観点によれば、翼前縁は、径方向においてリング内周端部に対し内側へ張り出している。従って、複数枚の翼をそれぞれ、シュラウドリングとファンボス部とを連結する連結部として機能させることが可能である。
 また、ターボファンの外部をシュラウドリングに沿って逆流する逆流空気流れが、吸気孔から翼の相互間へ流入する吸入空気流れへ合流する合流位置よりも上流側で、その吸入空気流れを翼で加速することができる。そのため、その吸入空気流れへ合流する逆流空気流れをシュラウドリングの翼側の案内面へ沿うように転向させることができる。すなわち、その逆流空気流れに起因してシュラウドリングの案内面上から空気流れが剥離することを抑制し、ターボファンの例えば騒音および風量特性等で示されるファン性能を向上させることが可能である。
 また、第3の観点によれば、翼前縁のリング側接続端は、吹出口のうち軸方向の一方側に位置する一方端よりも、その軸方向において更に一方側に位置する。従って、そのような位置関係でない構成と比較して、上記空気流れの剥離を更に抑制し、ファン性能を向上させることが可能である。
 また、第4の観点によれば、翼前縁のリング側接続端は、軸方向におけるリング内周端部の一方側の端よりも、その軸方向において他方側に位置する。従って、ターボファンを収容するケースの空気吸入口まわりにベルマウス部を設ける際に、そのベルマウス部を、軸方向におけるリング内周端部の上記端から翼前縁までの段差を利用して配置することが可能である。そのため、ベルマウス部の空気巻込み量増大によりターボファンのファン性能を向上させることが可能であると共に、ベルマウス部に起因した送風機の体格拡大を抑制することが可能である。
 また、第5の観点によれば、翼前縁は、ボス側接続端において翼前縁に接する仮想接線がファン軸心に対して平行になるように又はその仮想接線の一方側が径方向の外側を向いてその仮想接線がファン軸心に対して傾くように構成されている。従って、ファン軸心の軸方向に沿った開閉方向の金型による成形において翼がアンダーカット形状にならず、ファン本体部材を容易に成形することが可能である。
 また、第6の観点によれば、複数枚の翼はそれぞれ、正圧面に凸形状を成して設けられた正圧面凸部と、負圧面に凸形状を成して設けられた負圧面凸部とを有している。そして、その正圧面凸部および負圧面凸部は、リング内周端部からボス外周端部にまで線状に延びるように形成されている。従って、正圧面凸部および負圧面凸部は、翼の相互間に形成される翼間流路の流路断面積が不連続に変化する位置に設けられることになる。そして、正圧面凸部および負圧面凸部で敢えて空気流れを乱すことで、正圧面および負圧面からの空気流れの剥離を抑制させる効果を得ることが可能である。その結果として、例えばターボファンの騒音低減などの効果がある。
 また、第7の観点によれば、ファンボス部が有する環状延設部は、電動モータに含まれ環状延設部の内側に配置されるロータに固定される。従って、他端側側板の形状等に影響されずに、ファンボス部を電動モータのロータに固定することが可能である。
 また、第8の観点によれば、複数枚の翼とシュラウドリングとファンボス部とを一体成形した後において、環形状の他端側側板をファンボス部の径方向外側に嵌合すると共に、複数枚の翼が有する他方側翼端部のそれぞれにその他端側側板を接合する。
 また、第9の観点によれば、翼が有する正圧面のうちの正圧面外側領域、および、翼が有する負圧面のうちの負圧面外側領域は何れも、軸方向に開閉する一対の金型に含まれる他方側金型により形成される。そして、その正圧面のうち正圧面外側領域よりも径方向で内側に設けられる正圧面内側領域、および、負圧面のうち負圧面外側領域よりも径方向で内側に設けられる負圧面内側領域は何れも、上記一対の金型に含まれる一方側金型により形成される。従って、シュラウドリングが複数枚の翼のそれぞれを介してファンボス部と連結する態様で、そのシュラウドリング、複数枚の翼、およびファンボス部を一体成形することが可能である。

Claims (9)

  1.  送風機(10)に適用されファン軸心(CL)まわりに回転することで送風するターボファンであって、
     前記ファン軸心まわりに配置された複数枚の翼(52)、空気が吸い込まれる吸気孔(54a)が形成され前記複数枚の翼に対し前記ファン軸心の軸方向(DRa)における一方側に設けられ該複数枚の翼のそれぞれに連結されたシュラウドリング(54)、および、前記送風機の非回転部材(12)に対して前記ファン軸心まわりに回転可能に支持され前記複数枚の翼のそれぞれに対し前記シュラウドリング側とは反対側に連結されたファンボス部(56)を有するファン本体部材(50)と、
     前記ファンボス部の径方向外側に嵌合した状態で、前記複数枚の翼が前記軸方向での前記一方側とは反対側の他方側に有する他方側翼端部(522)のそれぞれに接合されている他端側側板(60)とを備え、
     前記ファンボス部の外径(D2)は前記シュラウドリングの内径(D1)よりも小さく、
     前記複数枚の翼、前記シュラウドリング、および前記ファンボス部は一体に構成されているターボファン。
  2.  前記シュラウドリングは、前記ファン軸心の径方向(DRr)における内側に、前記吸気孔を形成するリング内周端部(541)を有し、
     前記複数枚の翼はそれぞれ、前記吸気孔を通過して前記複数枚の翼の相互間に流れる空気の気流方向における上流側に、翼前縁(523)を有し、
     前記翼前縁は、前記径方向において前記リング内周端部に対し内側へ張り出している請求項1に記載のターボファン。
  3.  前記シュラウドリングは、前記径方向における外側にリング外周端部(542)を有し、
     前記他端側側板は、前記径方向における外側に側板外周端部(602)を有し、
     前記リング外周端部および前記側板外周端部は前記軸方向において互いに離れて配置され、空気が吹き出る吹出口(18a)を前記リング外周端部と前記側板外周端部との間に形成し、
     前記翼前縁は、前記シュラウドリングへ接続するリング側接続端(523c)を有し、
     該リング側接続端は、前記吹出口のうち前記軸方向の前記一方側に位置する一方端(18b)よりも、前記軸方向において更に前記一方側に位置する請求項2に記載のターボファン。
  4.  前記翼前縁のリング側接続端は、前記軸方向における前記リング内周端部の前記一方側の端(541a)よりも、前記軸方向において前記他方側に位置する請求項3に記載のターボファン。
  5.  前記翼前縁は、
     前記ファンボス部へ接続するボス側接続端(523d)を有し、
     該ボス側接続端において前記翼前縁に接する仮想接線(Ltg)が前記ファン軸心に対して平行になるように又は前記仮想接線の前記一方側が前記径方向の外側を向いて該仮想接線が前記ファン軸心に対して傾くように構成されている請求項3または4に記載のターボファン。
  6.  前記ファンボス部は、前記径方向における外側にボス外周端部(563)を有し、
     前記複数枚の翼はそれぞれ、正圧面(524)と、負圧面(525)と、前記正圧面に凸形状を成して設けられた正圧面凸部(524a)と、前記負圧面に凸形状を成して設けられた負圧面凸部(525a)とを有し、
     前記正圧面凸部および前記負圧面凸部は、前記リング内周端部から前記ボス外周端部にまで線状に延びるように形成されている請求項2ないし5のいずれか1つに記載のターボファン。
  7.  前記ファンボス部は、該ファンボス部のうち前記径方向における外側に設けられたボス外周端部(563)と、該ボス外周端部から前記軸方向の前記他方側へ延設された環形状の環状延設部(564)とを有し、
     該環状延設部は、前記ファンボス部を回転させる電動モータ(16)に含まれ前記環状延設部の内側に配置されるロータ(161)に固定される請求項1ないし5のいずれか1つに記載のターボファン。
  8.  送風機(10)に適用されファン軸心(CL)まわりに回転することで送風するターボファンの製造方法であって、
     前記ファン軸心まわりに配置される複数枚の翼(52)と、空気が吸い込まれる吸気孔(54a)が形成され前記複数枚の翼に対し前記ファン軸心の軸方向(DRa)における一方側に設けられ該複数枚の翼のそれぞれに連結されるシュラウドリング(54)と、前記送風機の非回転部材(12)に対して前記ファン軸心まわりに回転可能に支持され前記複数枚の翼のそれぞれに対し前記シュラウドリング側とは反対側に連結されるファンボス部(56)とを一体成形することと、
     前記一体成形することの後に、環形状の他端側側板(60)を前記ファンボス部の径方向外側に嵌合すると共に、前記複数枚の翼が前記軸方向での前記一方側とは反対側の他方側に有する他方側翼端部(522)のそれぞれに前記他端側側板を接合することとを含むターボファンの製造方法。
  9.  前記一体成形することでは、前記軸方向に開閉する一対の金型(91、92)を用いた射出成形によって前記複数枚の翼と前記シュラウドリングと前記ファンボス部とを一体に成形し、
     前記一対の金型は、一方側金型(91)と該一方側金型に対して前記他方側に設けられる他方側金型(92)とを含んで構成され、
     前記複数枚の翼がそれぞれ有する正圧面(524)のうち前記ファンボス部のボス外周端部(563)よりも前記ファン軸心の径方向(DRr)で外側に設けられる正圧面外側領域(524b)、および、前記複数枚の翼がそれぞれ有する負圧面(525)のうち前記ボス外周端部よりも前記径方向で外側に設けられる負圧面外側領域(525b)は何れも、前記他方側金型により形成され、
     前記正圧面のうち前記正圧面外側領域よりも前記径方向で内側に設けられる正圧面内側領域(524c)、および、前記負圧面のうち前記負圧面外側領域よりも前記径方向で内側に設けられる負圧面内側領域(525c)は何れも、前記一方側金型により形成される請求項8に記載のターボファンの製造方法。
PCT/JP2016/081098 2015-11-23 2016-10-20 ターボファンおよびそのターボファンの製造方法 WO2017090347A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/777,041 US11286945B2 (en) 2015-11-23 2016-10-20 Turbofan and method of manufacturing turbofan
JP2017552314A JP6531835B2 (ja) 2015-11-23 2016-10-20 ターボファンおよびそのターボファンの製造方法
CN201680067945.2A CN108291557B (zh) 2015-11-23 2016-10-20 叶轮
DE112016005354.1T DE112016005354T5 (de) 2015-11-23 2016-10-20 Turboventilator und Verfahren zur Herstellung eines Turboventilators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228267 2015-11-23
JP2015-228267 2015-11-23

Publications (1)

Publication Number Publication Date
WO2017090347A1 true WO2017090347A1 (ja) 2017-06-01

Family

ID=58763349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081098 WO2017090347A1 (ja) 2015-11-23 2016-10-20 ターボファンおよびそのターボファンの製造方法

Country Status (5)

Country Link
US (1) US11286945B2 (ja)
JP (1) JP6531835B2 (ja)
CN (1) CN108291557B (ja)
DE (1) DE112016005354T5 (ja)
WO (1) WO2017090347A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085459B2 (en) 2017-01-23 2021-08-10 Denso Corporation Centrifugal blower
US11118598B2 (en) * 2018-09-27 2021-09-14 Intel Corporation Volumetric resistance blowers
US11255334B2 (en) 2017-02-20 2022-02-22 Denso Corporation Centrifugal blower
WO2023058506A1 (ja) * 2021-10-04 2023-04-13 株式会社デンソー 遠心式送風機
WO2023204044A1 (ja) * 2022-04-21 2023-10-26 株式会社デンソー 送風機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161424B2 (ja) * 2019-02-26 2022-10-26 三菱重工コンプレッサ株式会社 インペラ及び回転機械

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249569B2 (ja) * 1973-05-22 1977-12-17
JPS5310692A (en) * 1976-07-16 1978-01-31 Teikoku Chem Ind Corp Ltd Chelate-forming polyamide resin
JPS6121593Y2 (ja) * 1980-11-21 1986-06-27
JPH0574719B2 (ja) * 1984-06-08 1993-10-19 Hitachi Ltd
JPH0615875B2 (ja) * 1985-02-27 1994-03-02 株式会社日立製作所 遠心送風機の羽根車
US20040247441A1 (en) * 2003-06-03 2004-12-09 Samsung Electronics Co., Ltd. Turbofan and mold manufacturing the same
JP2008128232A (ja) * 2006-11-20 2008-06-05 Samsung Electronics Co Ltd ターボファン及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB750305A (en) * 1953-02-05 1956-06-13 Rolls Royce Improvements in axial-flow compressor, turbine and like blades
JPS54117508U (ja) * 1978-01-31 1979-08-17
US4263842A (en) * 1978-08-02 1981-04-28 Moore Robert D Adjustable louver assembly
DE3520218A1 (de) * 1984-06-08 1985-12-12 Hitachi, Ltd., Tokio/Tokyo Laufrad fuer ein radialgeblaese
US5152711A (en) * 1990-05-23 1992-10-06 Louis Gross Magnetic toy having sculpturable particles
US5395071A (en) * 1993-09-09 1995-03-07 Felix; Frederick L. Airfoil with bicambered surface
JP3570951B2 (ja) * 2000-02-14 2004-09-29 株式会社クボタ 施肥装置用の遠心ファン
JP4442029B2 (ja) * 2000-12-15 2010-03-31 パナソニック株式会社 送風装置
JP4317676B2 (ja) 2002-03-26 2009-08-19 東芝キヤリア株式会社 空気調和機用ターボファン
TW566837U (en) * 2003-04-23 2003-12-11 Delta Electronics Inc Fan motor structure
KR101264776B1 (ko) * 2005-09-14 2013-05-15 삼성전자주식회사 터보팬 및 그 제조방법
JP4935051B2 (ja) * 2005-11-01 2012-05-23 日本電産株式会社 遠心ファン
DE102009002416A1 (de) * 2009-04-16 2010-10-21 Robert Bosch Gmbh Gebläsemodul
JP5501015B2 (ja) * 2010-02-08 2014-05-21 山洋電気株式会社 電動ファン
JP5832804B2 (ja) * 2011-07-25 2015-12-16 ミネベア株式会社 遠心式ファン
JP5665802B2 (ja) * 2012-07-05 2015-02-04 ミネベア株式会社 遠心式ファン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249569B2 (ja) * 1973-05-22 1977-12-17
JPS5310692A (en) * 1976-07-16 1978-01-31 Teikoku Chem Ind Corp Ltd Chelate-forming polyamide resin
JPS6121593Y2 (ja) * 1980-11-21 1986-06-27
JPH0574719B2 (ja) * 1984-06-08 1993-10-19 Hitachi Ltd
JPH0615875B2 (ja) * 1985-02-27 1994-03-02 株式会社日立製作所 遠心送風機の羽根車
US20040247441A1 (en) * 2003-06-03 2004-12-09 Samsung Electronics Co., Ltd. Turbofan and mold manufacturing the same
JP2008128232A (ja) * 2006-11-20 2008-06-05 Samsung Electronics Co Ltd ターボファン及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085459B2 (en) 2017-01-23 2021-08-10 Denso Corporation Centrifugal blower
US11255334B2 (en) 2017-02-20 2022-02-22 Denso Corporation Centrifugal blower
US11118598B2 (en) * 2018-09-27 2021-09-14 Intel Corporation Volumetric resistance blowers
US11732727B2 (en) 2018-09-27 2023-08-22 Intel Corporation Volumetric resistance blowers
WO2023058506A1 (ja) * 2021-10-04 2023-04-13 株式会社デンソー 遠心式送風機
WO2023204044A1 (ja) * 2022-04-21 2023-10-26 株式会社デンソー 送風機

Also Published As

Publication number Publication date
CN108291557B (zh) 2021-02-12
US11286945B2 (en) 2022-03-29
JPWO2017090347A1 (ja) 2018-03-01
CN108291557A (zh) 2018-07-17
DE112016005354T5 (de) 2018-08-02
JP6531835B2 (ja) 2019-06-19
US20180328376A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP6493620B2 (ja) 遠心送風機
WO2017090347A1 (ja) ターボファンおよびそのターボファンの製造方法
JP6421881B2 (ja) ターボファン
US11608834B2 (en) Centrifugal blower
JP6652077B2 (ja) 遠心送風機
JP6747421B2 (ja) 遠心送風機
US11332052B2 (en) Centrifugal blower device
WO2018180060A1 (ja) 遠心送風機
JP6593538B2 (ja) 遠心送風機
US11448077B2 (en) Method for manufacturing turbo fan
JP2018168852A (ja) 遠心送風機
WO2018151013A1 (ja) 遠心送風機
JP2023036516A (ja) 遠心ファン
CN117597521A (zh) 离心风扇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868296

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552314

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15777041

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016005354

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868296

Country of ref document: EP

Kind code of ref document: A1