WO2017086446A1 - Hybrid vehicle and control method for same - Google Patents

Hybrid vehicle and control method for same Download PDF

Info

Publication number
WO2017086446A1
WO2017086446A1 PCT/JP2016/084287 JP2016084287W WO2017086446A1 WO 2017086446 A1 WO2017086446 A1 WO 2017086446A1 JP 2016084287 W JP2016084287 W JP 2016084287W WO 2017086446 A1 WO2017086446 A1 WO 2017086446A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor generator
rotation speed
transmission
hybrid vehicle
gear stage
Prior art date
Application number
PCT/JP2016/084287
Other languages
French (fr)
Japanese (ja)
Inventor
憲仁 岩田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017086446A1 publication Critical patent/WO2017086446A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This disclosure relates to a hybrid vehicle and a control method thereof.
  • HEV hybrid vehicle
  • driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
  • HEVs having a hybrid system of a type in which a motor generator is connected to an output shaft that transmits engine power have been developed (see, for example, Patent Document 2).
  • a motor generator rotation speed that is, a suitable rotation speed
  • increases the regenerative power generation efficiency of the motor generator when the motor generator performs regenerative power generation during inertial running, there is a motor generator rotation speed (that is, a suitable rotation speed) that increases the regenerative power generation efficiency of the motor generator.
  • the aspect of the present disclosure has been made in view of the above, and an object thereof is to provide a hybrid vehicle and a control method thereof that can increase the energy recovery amount of the motor generator during inertial traveling.
  • a hybrid vehicle having a motor generator connected to an output shaft for transmitting engine power; A transmission for transmitting the power of the engine; The gear stage of the transmission is set based on the rotation speed of the motor generator so that the rotation speed of the motor generator becomes a predetermined rotation speed that is set in advance when the motor generator generates regenerative power during inertial running. And a control device.
  • the hybrid vehicle may further include a shift actuator that changes a gear stage of the transmission,
  • the control device may set the gear stage by controlling a shift actuator.
  • control device may detect the rotation speed of the motor generator.
  • the control device stores the information on the predetermined rotation speed set in advance and the information on the gear stage of the transmission that can obtain the predetermined rotation speed set in advance.
  • the control device may set the gear stage of the transmission based on the information on the predetermined rotational speed and the information on the gear stage stored in the storage device.
  • the regenerative power generation efficiency is highest when the motor generator rotates at the predetermined rotational speed.
  • a hybrid vehicle control method includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and a transmission to which the engine power is transmitted.
  • the rotational speed of the motor generator is set so that the rotational speed of the motor generator becomes a predetermined rotational speed when the motor generator performs regenerative power generation during inertial traveling.
  • the gear stage of the transmission is set based on the above.
  • the rotation speed of the motor generator can be set to a predetermined rotation speed set in advance.
  • the regenerative power generation efficiency can be improved by setting the number of rotations of the motor generator to a suitable value with high regenerative power generation efficiency during inertial running, so that the amount of energy recovered by the motor generator can be increased.
  • the energy recovery amount of the motor generator during inertial traveling can be increased.
  • FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure.
  • This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and a hybrid having an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle.
  • a system 30 is provided.
  • the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11.
  • the engine 10 is a diesel engine or a gasoline engine.
  • the rotational power of the crankshaft 13 is transmitted to the transmission 20 via a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
  • the transmission 20 uses an AMT or AT that automatically shifts gears to the target gear determined based on the HEV driving state and preset map data using the shift actuator 21.
  • Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
  • the hybrid system 30 includes a motor generator 31, and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in this order.
  • the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery.
  • the low voltage battery 34 is a lead battery.
  • the DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34.
  • the low voltage battery 34 supplies power to various vehicle electrical components 36.
  • BMS 39 battery management system
  • the motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the first pulley 15, the second pulley 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be, for example, a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20.
  • the motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
  • the hybrid system 30 described above is controlled by the control device 80. Specifically, the hybrid system 30 is controlled by the control device 80 to assist at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32 when the HEV starts or accelerates. On the other hand, at the time of braking or when the HEV travels while the fuel injection of the engine 10 is stopped, regenerative power generation is performed by the motor generator 31, and surplus kinetic energy is converted into electric power to generate a high voltage battery 32. To charge.
  • control device 80 controls the disengagement and connection of the clutch 14, and also controls the gear stage of the transmission 20 by controlling the speed change actuator 21.
  • the control device 80 detects the rotational speed of the motor generator 31.
  • the control device 80 includes a CPU having a function as a control unit for executing various control processes, and a ROM, a RAM, and the like having a function as a storage unit for storing various data and programs used for the operation of the CPU.
  • a microcomputer is provided.
  • control device 80 rotates the motor generator 31 so that the rotational speed of the motor generator 31 becomes a predetermined rotational speed that is set in advance when the motor generator 31 performs regenerative power generation during inertial traveling.
  • the gear stage of the transmission 20 is controlled based on the number. This control process will be described below with reference to a flowchart.
  • FIG. 2 is a flowchart showing an example of control processing by the control device 80.
  • the control unit of the control device 80 repeatedly executes the flowchart of FIG. 2 at a predetermined cycle.
  • step S10 the control unit determines whether or not the motor generator 31 has performed regenerative power generation during inertial traveling. When it determines with No by step S10, a control part complete
  • step S10 the control unit detects the rotation speed of the motor generator 31 (MG), and rotates the motor generator 31 so that the detected rotation speed becomes a predetermined rotation speed set in advance.
  • the gear stage of the transmission 20 is set based on the number (step S20). Details of the control processing in step S20 are as follows.
  • the regenerative power generation efficiency refers to the power generation efficiency at the time of regenerative power generation of the motor generator 31, which corresponds to the conversion efficiency in the case of converting kinetic energy into electric energy.
  • the higher the regenerative power generation efficiency the higher the amount of energy recovered by the motor generator 31. As a result, the fuel efficiency of the HEV becomes better.
  • information on the optimum rotational speed of the motor generator 31 is stored in advance (that is, preset) in the storage unit (for example, ROM) of the control device 80 according to the present embodiment.
  • information on the gear stage of the transmission 20 (in other words, the gear stage suitable for the optimum rotation speed) that can obtain the optimum rotation speed is also stored in the storage unit in advance. It is preferable that the optimum rotational speed of the motor generator 31 stored in advance in the storage unit and the gear stage of the transmission 20 that can obtain the optimum rotational speed are associated with each other.
  • step S ⁇ b> 20 the control unit controls the transmission 20 so that the gear stage of the transmission 20 becomes the gear stage stored in the storage unit, so that the gear stage of the transmission 20 is optimally rotated by the motor generator 31. Set the gear that matches the number. By executing step S20 in this way, the rotational speed of the motor generator 31 can be set to an optimal rotational speed. After step S20, the control unit ends the flowchart.
  • the rotation speed of the motor generator 31 can be set to a predetermined rotation speed when the motor generator 31 performs regenerative power generation during inertia traveling, and therefore the rotation speed of the motor generator 31 during inertia traveling.
  • the present invention is useful in that the energy recovery amount of the motor generator during inertial traveling can be increased.

Abstract

A hybrid vehicle that comprises: a hybrid system 30 that has a motor generator 31 that is connected to an output shaft 13 that transmits the motive power of an engine 10; a transmission 20 to which the motive power of the engine is transmitted; and a control device 80. The hybrid vehicle is characterized in that, when the motor generator is regenerating power during inertial travel, the control device sets the gear step of the transmission on the basis of the rotational speed of the motor generator such that the rotational speed of the motor generator becomes a preset prescribed rotational speed.

Description

ハイブリッド車両及びその制御方法Hybrid vehicle and control method thereof
 本開示はハイブリッド車両及びその制御方法に関する。 This disclosure relates to a hybrid vehicle and a control method thereof.
 近年、燃費向上及び環境対策などの観点から、車両の運転状態に応じて複合的に制御されるエンジン及びモータージェネレーターを有するハイブリッドシステムを備えたハイブリッド車両(以下「HEV」という)が注目されている。このHEVにおいては、車両の加速時や発進時には、モータージェネレーターによる駆動力のアシストが行われる一方で、慣性走行時や制動時においてはモータージェネレーターによる回生発電が行われる(例えば特許文献1参照)。 In recent years, a hybrid vehicle (hereinafter referred to as “HEV”) including a hybrid system having an engine and a motor generator that are controlled in combination according to the driving state of the vehicle has attracted attention from the viewpoint of improving fuel efficiency and environmental measures. . In this HEV, driving force is assisted by a motor generator when the vehicle is accelerated or started, while regenerative power generation is performed by the motor generator during inertia traveling or braking (see, for example, Patent Document 1).
 ところで、近年、エンジンの動力を伝達する出力軸にモータージェネレーターが接続されたタイプのハイブリッドシステムを有するHEVが開発されてきている(例えば特許文献2参照)。このタイプのHEVにおいて、慣性走行時にモータージェネレーターが回生発電する場合、モータージェネレーターの回生発電効率が高くなるようなモータージェネレーターの回転数(すなわち好適な回転数)が存在する。 Incidentally, in recent years, HEVs having a hybrid system of a type in which a motor generator is connected to an output shaft that transmits engine power have been developed (see, for example, Patent Document 2). In this type of HEV, when the motor generator performs regenerative power generation during inertial running, there is a motor generator rotation speed (that is, a suitable rotation speed) that increases the regenerative power generation efficiency of the motor generator.
 しかしながら、このタイプのHEVの場合、従来は、慣性走行時においてトランスミッションのギア段は、HEVの速度に応じて設定されていた。すなわち、慣性走行時において、モータージェネレーターの回転数が好適な値となるようにトランスミッションのギア段は設定されていなかった。そのため、慣性走行時におけるモータージェネレーターの回生発電効率は十分に高いとはいえず、したがって、モータージェネレーターによるエネルギー回収量は十分に多いとはいえなかった。 However, in the case of this type of HEV, conventionally, the gear stage of the transmission was set according to the speed of the HEV during inertial running. In other words, the gear stage of the transmission has not been set so that the rotational speed of the motor generator becomes a suitable value during inertial running. Therefore, it cannot be said that the regenerative power generation efficiency of the motor generator during inertia traveling is sufficiently high, and therefore the amount of energy recovered by the motor generator is not sufficiently large.
日本国特開2002-238105号公報Japanese Unexamined Patent Publication No. 2002-238105 日本国特開2006-151307号公報Japanese Unexamined Patent Publication No. 2006-151307
 本開示の様態は上記のことを鑑みてなされたものであり、その目的は、慣性走行時におけるモータージェネレーターのエネルギー回収量を増大させることができるハイブリッド車両及びその制御方法を提供することにある。 The aspect of the present disclosure has been made in view of the above, and an object thereof is to provide a hybrid vehicle and a control method thereof that can increase the energy recovery amount of the motor generator during inertial traveling.
 上記の目的を達成するための本開示の様態のハイブリッド車両は、
 エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
前記エンジンの動力が伝達されるトランスミッションと、
 慣性走行時において前記モータージェネレーターが回生発電する場合に、前記モータージェネレーターの回転数が予め設定された所定回転数となるように、前記モータージェネレーターの回転数に基づいて前記トランスミッションのギア段を設定する制御装置と
を備えることを特徴とする。
In order to achieve the above object, a hybrid vehicle according to an aspect of the present disclosure is provided.
A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
A transmission for transmitting the power of the engine;
The gear stage of the transmission is set based on the rotation speed of the motor generator so that the rotation speed of the motor generator becomes a predetermined rotation speed that is set in advance when the motor generator generates regenerative power during inertial running. And a control device.
 また、上記のハイブリッド車両において、前記トランスミッションのギア段を変える変速用アクチュエーターを更に備え、
前記制御装置は、変速用アクチュエーターを制御することで前記ギア段を設定してもよい。
The hybrid vehicle may further include a shift actuator that changes a gear stage of the transmission,
The control device may set the gear stage by controlling a shift actuator.
 また、上記のハイブリッド車両において、前記制御装置は、前記モータージェネレーターの回転数を検出してもよい。 Further, in the above hybrid vehicle, the control device may detect the rotation speed of the motor generator.
 また、上記のハイブリッド車両において、前記制御装置は前記予め設定された所定回転数の情報と、前記予め設定された所定回転数が得られるような前記トランスミッションの前記ギア段の情報とを記憶した記憶部を有し、
 前記制御装置は、前記記憶装置に記憶された前記所定回転数の情報と前記ギア段の情報とに基づいて前記トランスミッションのギア段を設定してもよい。
In the hybrid vehicle described above, the control device stores the information on the predetermined rotation speed set in advance and the information on the gear stage of the transmission that can obtain the predetermined rotation speed set in advance. Part
The control device may set the gear stage of the transmission based on the information on the predetermined rotational speed and the information on the gear stage stored in the storage device.
 また、上記のハイブリッド車両において、前記所定回転数で前記モータージェネレーターが回転した時に回生発電効率が最も高くなることが好ましい。 In the above hybrid vehicle, it is preferable that the regenerative power generation efficiency is highest when the motor generator rotates at the predetermined rotational speed.
 上記の目的を達成するための本開示の様態のハイブリッド車両の制御方法は、エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力が伝達されるトランスミッションと、を備えたハイブリッド車両の制御方法において、慣性走行時において前記モータージェネレーターが回生発電する場合に、前記モータージェネレーターの回転数が予め設定された所定回転数となるように、前記モータージェネレーターの回転数に基づいて前記トランスミッションのギア段を設定することを特徴とする。 In order to achieve the above object, a hybrid vehicle control method according to an aspect of the present disclosure includes a hybrid system having a motor generator connected to an output shaft that transmits engine power, and a transmission to which the engine power is transmitted. In the method for controlling a hybrid vehicle, the rotational speed of the motor generator is set so that the rotational speed of the motor generator becomes a predetermined rotational speed when the motor generator performs regenerative power generation during inertial traveling. The gear stage of the transmission is set based on the above.
 本開示の様態によれば、慣性走行時においてモータージェネレーターが回生発電する場合に、モータージェネレーターの回転数を予め設定された所定回転数にすることができる。これにより、慣性走行時においてモータージェネレーターの回転数を回生発電効率が高い好適な値にして回生発電効率を向上させることができるので、モータージェネレーターによるエネルギー回収量を増大させることができる。 According to the aspect of the present disclosure, when the motor generator performs regenerative power generation during inertia traveling, the rotation speed of the motor generator can be set to a predetermined rotation speed set in advance. As a result, the regenerative power generation efficiency can be improved by setting the number of rotations of the motor generator to a suitable value with high regenerative power generation efficiency during inertial running, so that the amount of energy recovered by the motor generator can be increased.
 本開示の様態によれば、慣性走行時におけるモータージェネレーターのエネルギー回収量を増大させることができる。 According to the aspect of the present disclosure, the energy recovery amount of the motor generator during inertial traveling can be increased.
本開示の実施形態からなるハイブリッド車両の構成図である。It is a lineblock diagram of a hybrid vehicle which consists of an embodiment of this indication. 制御装置による制御処理の一例を示すフローチャートである。It is a flowchart which shows an example of the control processing by a control apparatus.
 以下に、本開示の実施の形態について、図面を参照して説明する。図1は、本開示の実施形態からなるハイブリッド車両の構成図である。このハイブリッド車両(以下「HEV」という)は、普通乗用車のみならず、バスやトラックなどを含む車両であり、車両の運転状態に応じて複合的に制御されるエンジン10及びモータージェネレーター31を有するハイブリッドシステム30を備えている。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a configuration diagram of a hybrid vehicle according to an embodiment of the present disclosure. This hybrid vehicle (hereinafter referred to as “HEV”) is a vehicle including not only a normal passenger car but also a bus, a truck, etc., and a hybrid having an engine 10 and a motor generator 31 that are controlled in combination according to the driving state of the vehicle. A system 30 is provided.
 エンジン10においては、エンジン本体11に形成された複数(この例では4個)の気筒12内における燃料の燃焼により発生した熱エネルギーにより、クランクシャフト13が回転駆動される。このエンジン10には、ディーゼルエンジンやガソリンエンジンが用いられる。クランクシャフト13の回転動力は、クランクシャフト13の一端部に接続するクラッチ14(例えば、湿式多板クラッチなど)を介してトランスミッション20に伝達される。 In the engine 10, the crankshaft 13 is rotationally driven by thermal energy generated by the combustion of fuel in a plurality (four in this example) of cylinders 12 formed in the engine body 11. The engine 10 is a diesel engine or a gasoline engine. The rotational power of the crankshaft 13 is transmitted to the transmission 20 via a clutch 14 (for example, a wet multi-plate clutch) connected to one end of the crankshaft 13.
 トランスミッション20には、HEVの運転状態と予め設定されたマップデータとに基づいて決定された目標ギア段へ、変速用アクチュエーター21を用いて自動的に変速するAMT又はATが用いられている。 The transmission 20 uses an AMT or AT that automatically shifts gears to the target gear determined based on the HEV driving state and preset map data using the shift actuator 21.
 トランスミッション20で変速された回転動力は、プロペラシャフト22を通じてデファレンシャル23に伝達され、一対の駆動輪24にそれぞれ駆動力として分配される。 Rotational power changed by the transmission 20 is transmitted to the differential 23 through the propeller shaft 22 and distributed to the pair of driving wheels 24 as driving force.
 ハイブリッドシステム30は、モータージェネレーター31と、このモータージェネレーター31に順に電気的に接続するインバーター35、高電圧バッテリー32、DC/DCコンバーター33及び低電圧バッテリー34とを有している。 The hybrid system 30 includes a motor generator 31, and an inverter 35, a high voltage battery 32, a DC / DC converter 33, and a low voltage battery 34 that are electrically connected to the motor generator 31 in this order.
 高電圧バッテリー32としては、リチウムイオンバッテリーやニッケル水素バッテリーなどが好ましく例示される。また、低電圧バッテリー34には鉛バッテリーが用いられる。DC/DCコンバーター33は、高電圧バッテリー32と低電圧バッテリー34との間における充放電の方向及び出力電圧を制御する機能を有している。また、低電圧バッテリー34は、各種の車両電装品36に電力を供給する。 Preferred examples of the high voltage battery 32 include a lithium ion battery and a nickel metal hydride battery. The low voltage battery 34 is a lead battery. The DC / DC converter 33 has a function of controlling the charge / discharge direction and the output voltage between the high voltage battery 32 and the low voltage battery 34. The low voltage battery 34 supplies power to various vehicle electrical components 36.
 このハイブリッドシステム30における種々のパラメータ、例えば、電流値、電圧値やSOCなどは、BMS39(バッテリーマネージメントシステム)により検出される。 Various parameters in the hybrid system 30, such as current value, voltage value, and SOC, are detected by the BMS 39 (battery management system).
 モータージェネレーター31は、回転軸37に取り付けられた第1プーリー15とエンジン本体11の出力軸であるクランクシャフト13の他端部に取り付けられた第2プーリー16との間に掛け回された無端状のベルト状部材17を介して、エンジン10との間で動力を伝達する。なお、第1プーリー15、第2プーリー16及びベルト状部材17の代わりに、ギアボックス等を用いて動力を伝達することもできる。また、モータージェネレーター31に接続するエンジン本体11の出力軸は、クランクシャフト13に限定されるものではなく、例えばエンジン本体11とトランスミッション20との間の伝達軸やプロペラシャフト22であってもよい。 The motor generator 31 is an endless shape wound around a first pulley 15 attached to the rotating shaft 37 and a second pulley 16 attached to the other end of the crankshaft 13 which is an output shaft of the engine body 11. Power is transmitted to and from the engine 10 via the belt-shaped member 17. Note that power can be transmitted using a gear box or the like instead of the first pulley 15, the second pulley 16 and the belt-like member 17. Further, the output shaft of the engine main body 11 connected to the motor generator 31 is not limited to the crankshaft 13, and may be, for example, a transmission shaft or the propeller shaft 22 between the engine main body 11 and the transmission 20.
 このモータージェネレーター31は、エンジン本体11を始動するスターターモーター(図示せず)の代わりに、クランキングを行う機能も有している。 The motor generator 31 has a function of performing cranking instead of a starter motor (not shown) that starts the engine body 11.
 上述したハイブリッドシステム30は制御装置80によって制御される。具体的にはハイブリッドシステム30は、制御装置80に制御されることで、HEVの発進時や加速時には、高電圧バッテリー32から電力を供給されたモータージェネレーター31により駆動力の少なくとも一部をアシストする一方で、制動時や、エンジン10の燃料噴射が停止した状態でHEVが走行する慣性走行時においては、モータージェネレーター31による回生発電を行い、余剰の運動エネルギーを電力に変換して高電圧バッテリー32を充電する。 The hybrid system 30 described above is controlled by the control device 80. Specifically, the hybrid system 30 is controlled by the control device 80 to assist at least a part of the driving force by the motor generator 31 supplied with power from the high voltage battery 32 when the HEV starts or accelerates. On the other hand, at the time of braking or when the HEV travels while the fuel injection of the engine 10 is stopped, regenerative power generation is performed by the motor generator 31, and surplus kinetic energy is converted into electric power to generate a high voltage battery 32. To charge.
 また制御装置80は、ハイブリッドシステム30の他に、クラッチ14の切断及び接続を制御するとともに、変速用アクチュエーター21を制御することでトランスミッション20のギア段も制御する。制御装置80は、モータージェネレーター31の回転数を検出する。この制御装置80は、各種の制御処理を実行する制御部としての機能を有するCPUと、CPUの動作に用いられる各種データやプログラム等を記憶する記憶部としての機能を有するROM、RAM等とを有するマイクロコンピュータを備えている。 Further, in addition to the hybrid system 30, the control device 80 controls the disengagement and connection of the clutch 14, and also controls the gear stage of the transmission 20 by controlling the speed change actuator 21. The control device 80 detects the rotational speed of the motor generator 31. The control device 80 includes a CPU having a function as a control unit for executing various control processes, and a ROM, a RAM, and the like having a function as a storage unit for storing various data and programs used for the operation of the CPU. A microcomputer is provided.
 また本実施形態に係る制御装置80は、慣性走行時において、モータージェネレーター31が回生発電する場合に、モータージェネレーター31の回転数が予め設定された所定回転数となるように、モータージェネレーター31の回転数に基づいてトランスミッション20のギア段を制御する。この制御処理についてフローチャートを用いて説明すると次のようになる。 In addition, the control device 80 according to the present embodiment rotates the motor generator 31 so that the rotational speed of the motor generator 31 becomes a predetermined rotational speed that is set in advance when the motor generator 31 performs regenerative power generation during inertial traveling. The gear stage of the transmission 20 is controlled based on the number. This control process will be described below with reference to a flowchart.
 図2は制御装置80による制御処理の一例を示すフローチャートである。制御装置80の制御部は図2のフローチャートを所定周期で繰り返し実行する。ステップS10において制御部は、慣性走行時においてモータージェネレーター31が回生発電を実行したか否かを判定する。ステップS10でNoと判定された場合、制御部はフローチャートの実行を終了する。 FIG. 2 is a flowchart showing an example of control processing by the control device 80. The control unit of the control device 80 repeatedly executes the flowchart of FIG. 2 at a predetermined cycle. In step S10, the control unit determines whether or not the motor generator 31 has performed regenerative power generation during inertial traveling. When it determines with No by step S10, a control part complete | finishes execution of a flowchart.
 ステップS10でYesと判定された場合、制御部は、モータージェネレーター31(MG)の回転数を検出し、検出された回転数が予め設定された所定回転数となるように、モータージェネレーター31の回転数に基づいてトランスミッション20のギア段を設定する(ステップS20)。このステップS20の制御処理の詳細は次のとおりである。 When it is determined Yes in step S10, the control unit detects the rotation speed of the motor generator 31 (MG), and rotates the motor generator 31 so that the detected rotation speed becomes a predetermined rotation speed set in advance. The gear stage of the transmission 20 is set based on the number (step S20). Details of the control processing in step S20 are as follows.
 まず、慣性走行時においてモータージェネレーター31が回生発電した場合に、回生発電効率が所定の基準値よりも高くなるようなモータージェネレーター31の回転軸37の回転数が存在する。なお、本実施形態において、回生発電効率とはモータージェネレーター31の回生発電時の発電効率をいい、これは、運動エネルギーを電気エネルギーに変換する場合の変換効率に相当する。この回生発電効率が高いほど、モータージェネレーター31によるエネルギー回収量は高くなり、その結果、HEVの燃費は良好になる。 First, there is a rotation speed of the rotating shaft 37 of the motor generator 31 such that the regenerative power generation efficiency becomes higher than a predetermined reference value when the motor generator 31 generates regenerative power during inertia traveling. In the present embodiment, the regenerative power generation efficiency refers to the power generation efficiency at the time of regenerative power generation of the motor generator 31, which corresponds to the conversion efficiency in the case of converting kinetic energy into electric energy. The higher the regenerative power generation efficiency, the higher the amount of energy recovered by the motor generator 31. As a result, the fuel efficiency of the HEV becomes better.
 そこで、本実施形態では、上述したステップS20の所定回転数として、慣性走行時に回生発電が行われた場合に回生発電効率が基準値よりも高い値となるモータージェネレーター31の回転軸37の回転数(好適な回転数)を用い、より具体的には、この好適な回転数のうち、回生発電効率が最も高い値となる回転数(すなわち最適な回転数)を用いる。 Therefore, in the present embodiment, the rotational speed of the rotating shaft 37 of the motor generator 31 in which the regenerative power generation efficiency is higher than the reference value when regenerative power generation is performed during inertia traveling as the predetermined rotational speed in step S20 described above. (Preferable number of rotations) is used, and more specifically, the number of rotations (that is, the optimum number of rotations) having the highest regenerative power generation efficiency is used among the preferable number of rotations.
 具体的には、本実施形態に係る制御装置80の記憶部(例えばROM)には、このモータージェネレーター31の最適な回転数の情報が予め記憶されている(すなわち予め設定されている)。また、記憶部には、この最適な回転数が得られるようなトランスミッション20のギア段(換言すると、最適な回転数に合ったギア段)の情報も予め記憶されている。なお、記憶部に予め記憶されているモータージェネレーター31の最適な回転数と、この最適な回転数が得られるようなトランスミッション20のギア段は互いに関連付けられていることが好ましい。ステップS20において、制御部は、トランスミッション20のギア段が、この記憶部に記憶されているギア段となるようにトランスミッション20を制御することで、トランスミッション20のギア段をモータージェネレーター31の最適な回転数に合ったギア段に設定する。このようにしてステップS20が実行されることで、モータージェネレーター31の回転数を最適な回転数にすることができる。ステップS20の後に制御部はフローチャートの実行を終了する。 Specifically, information on the optimum rotational speed of the motor generator 31 is stored in advance (that is, preset) in the storage unit (for example, ROM) of the control device 80 according to the present embodiment. In addition, information on the gear stage of the transmission 20 (in other words, the gear stage suitable for the optimum rotation speed) that can obtain the optimum rotation speed is also stored in the storage unit in advance. It is preferable that the optimum rotational speed of the motor generator 31 stored in advance in the storage unit and the gear stage of the transmission 20 that can obtain the optimum rotational speed are associated with each other. In step S <b> 20, the control unit controls the transmission 20 so that the gear stage of the transmission 20 becomes the gear stage stored in the storage unit, so that the gear stage of the transmission 20 is optimally rotated by the motor generator 31. Set the gear that matches the number. By executing step S20 in this way, the rotational speed of the motor generator 31 can be set to an optimal rotational speed. After step S20, the control unit ends the flowchart.
 以上説明した本実施形態によれば、慣性走行時においてモータージェネレーター31が回生発電する場合にモータージェネレーター31の回転数を所定回転数にすることができるので、慣性走行時においてモータージェネレーター31の回転数を、回生発電効率の高い好適な回転数や回生発電効率の最も高い最適な回転数にすることができる。これにより、慣性走行時におけるモータージェネレーター31の回生発電効率を向上させることができるので、慣性走行時におけるモータージェネレーター31によるエネルギー回収量を増大させることができる。したがって、HEVの燃費を向上させることができる。 According to the present embodiment described above, the rotation speed of the motor generator 31 can be set to a predetermined rotation speed when the motor generator 31 performs regenerative power generation during inertia traveling, and therefore the rotation speed of the motor generator 31 during inertia traveling. Can be set to a suitable rotational speed with high regenerative power generation efficiency and an optimal rotational speed with the highest regenerative power generation efficiency. Thereby, since the regenerative power generation efficiency of the motor generator 31 during inertial traveling can be improved, the amount of energy recovered by the motor generator 31 during inertial traveling can be increased. Therefore, HEV fuel efficiency can be improved.
 以上本発明の好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. Is possible.
 本出願は、2015年11月20日付で出願された日本国特許出願(特願2015-227561)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-227561) filed on November 20, 2015, the contents of which are incorporated herein by reference.
 本発明によれば、慣性走行時におけるモータージェネレーターのエネルギー回収量を増大させることができるという点で有用である。 The present invention is useful in that the energy recovery amount of the motor generator during inertial traveling can be increased.
10 エンジン
13 クランクシャフト(出力軸)
14 クラッチ
20 トランスミッション
30 ハイブリッドシステム
31 モータージェネレーター
80 制御装置
10 Engine 13 Crankshaft (output shaft)
14 Clutch 20 Transmission 30 Hybrid system 31 Motor generator 80 Control device

Claims (6)

  1.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、
    前記エンジンの動力が伝達されるトランスミッションと、
     慣性走行時において前記モータージェネレーターが回生発電する場合に、前記モータージェネレーターの回転数が予め設定された所定回転数となるように、前記モータージェネレーターの回転数に基づいて前記トランスミッションのギア段を設定する制御装置と
    を備えることを特徴とするハイブリッド車両。
    A hybrid system having a motor generator connected to an output shaft for transmitting engine power;
    A transmission for transmitting the power of the engine;
    The gear stage of the transmission is set based on the rotation speed of the motor generator so that the rotation speed of the motor generator becomes a preset rotation speed when the motor generator generates regenerative power during inertial running. A hybrid vehicle comprising a control device.
  2. 前記トランスミッションのギア段を変える変速用アクチュエーターを更に備え、
    前記制御装置は、変速用アクチュエーターを制御することで前記ギア段を設定することを特徴とする請求項1に記載のハイブリッド車両。
    A shift actuator for changing the gear position of the transmission;
    The hybrid vehicle according to claim 1, wherein the control device sets the gear stage by controlling a shift actuator.
  3.  前記制御装置は、前記モータージェネレーターの回転数を検出することを特徴とする請求項1または2に記載のハイブリッド車両。 The hybrid vehicle according to claim 1 or 2, wherein the control device detects a rotation speed of the motor generator.
  4.  前記制御装置は前記予め設定された所定回転数の情報と、前記予め設定された所定回転数が得られるような前記トランスミッションの前記ギア段の情報とを記憶した記憶部を有し、
     前記制御装置は、前記記憶装置に記憶された前記所定回転数の情報と前記ギア段の情報とに基づいて前記トランスミッションのギア段を設定することを特徴とする請求項1乃至3に記載のハイブリッド車両。
    The control device includes a storage unit that stores information on the predetermined rotation speed set in advance and information on the gear stage of the transmission that can obtain the predetermined rotation speed set in advance.
    4. The hybrid according to claim 1, wherein the control device sets a gear stage of the transmission based on information on the predetermined rotation speed and information on the gear stage stored in the storage device. 5. vehicle.
  5.  前記所定回転数で前記モータージェネレーターが回転した時に回生発電効率が最も高くなることを特徴とする請求項1乃至4に記載のハイブリッド車両。 The hybrid vehicle according to any one of claims 1 to 4, wherein regenerative power generation efficiency is highest when the motor generator rotates at the predetermined rotation speed.
  6.  エンジンの動力を伝達する出力軸に接続されたモータージェネレーターを有するハイブリッドシステムと、前記エンジンの動力が伝達されるトランスミッションと、を備えたハイブリッド車両の制御方法において、
     慣性走行時において前記モータージェネレーターが回生発電する場合に、前記モータージェネレーターの回転数が予め設定された所定回転数となるように、前記モータージェネレーターの回転数に基づいて前記トランスミッションのギア段を設定することを特徴とするハイブリッド車両の制御方法。
    In a hybrid vehicle control method comprising: a hybrid system having a motor generator connected to an output shaft that transmits engine power; and a transmission to which the engine power is transmitted.
    The gear stage of the transmission is set based on the rotation speed of the motor generator so that the rotation speed of the motor generator becomes a predetermined rotation speed that is set in advance when the motor generator generates regenerative power during inertial running. A control method of a hybrid vehicle characterized by the above.
PCT/JP2016/084287 2015-11-20 2016-11-18 Hybrid vehicle and control method for same WO2017086446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227561A JP2017094829A (en) 2015-11-20 2015-11-20 Hybrid vehicle and control method therefor
JP2015-227561 2015-11-20

Publications (1)

Publication Number Publication Date
WO2017086446A1 true WO2017086446A1 (en) 2017-05-26

Family

ID=58719166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084287 WO2017086446A1 (en) 2015-11-20 2016-11-18 Hybrid vehicle and control method for same

Country Status (2)

Country Link
JP (1) JP2017094829A (en)
WO (1) WO2017086446A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310755A (en) * 1996-05-22 1997-12-02 Honda Motor Co Ltd Control device for hybrid vehicle
JP2001146121A (en) * 1999-11-19 2001-05-29 Toyota Motor Corp Control device for hybrid vehicle with transmission
JP2006118590A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Hybrid vehicle
JP2010143491A (en) * 2008-12-19 2010-07-01 Toyota Motor Corp Controller for vehicular power transmission device
JP2014213654A (en) * 2013-04-23 2014-11-17 トヨタ自動車株式会社 Control unit of hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310755A (en) * 1996-05-22 1997-12-02 Honda Motor Co Ltd Control device for hybrid vehicle
JP2001146121A (en) * 1999-11-19 2001-05-29 Toyota Motor Corp Control device for hybrid vehicle with transmission
JP2006118590A (en) * 2004-10-21 2006-05-11 Nissan Motor Co Ltd Hybrid vehicle
JP2010143491A (en) * 2008-12-19 2010-07-01 Toyota Motor Corp Controller for vehicular power transmission device
JP2014213654A (en) * 2013-04-23 2014-11-17 トヨタ自動車株式会社 Control unit of hybrid vehicle

Also Published As

Publication number Publication date
JP2017094829A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017090630A1 (en) Hybrid vehicle and control method therefor
US20130304295A1 (en) Drive control apparatus and drive control method for hybrid vehicles and hybrid vehicle
JP2012183907A (en) Hybrid vehicle control device
JP6648550B2 (en) Hybrid vehicle and control method thereof
JP5895353B2 (en) Hybrid car
JP5234155B2 (en) In-vehicle power transmission system
JP6686384B2 (en) Hybrid vehicle regenerative electric energy control system, hybrid vehicle, and regenerative electric energy control method for hybrid vehicle
JP6746933B2 (en) Hybrid vehicle
WO2017086446A1 (en) Hybrid vehicle and control method for same
JP6946618B2 (en) Hybrid vehicle and hybrid vehicle control method
WO2017086468A1 (en) Hybrid vehicle and method for controlling same
JP2017115761A (en) Engine starting time control system, hybrid vehicle and engine starting time control method
WO2017086432A1 (en) Four-wheel-drive hybrid vehicle and control method for same
WO2017094841A1 (en) Hybrid vehicle and control method therefor
JP6617539B2 (en) Hybrid vehicle and control method thereof
JP2017100574A (en) Hybrid vehicle and control method therefor
JP2017100638A (en) Hybrid vehicle and control method therefor
JP2017116019A (en) Restart control system of engine, hybrid vehicle, and restart control method of engine
JP2017218069A (en) Hybrid vehicle and control method therefor
JP2017217943A (en) Hybrid vehicle
WO2014038442A1 (en) Hybrid vehicle control apparatus
JP2017121896A (en) Hybrid vehicle and control method for hybrid vehicle
JP2017128209A (en) Hybrid vehicle
JP6753130B2 (en) Hybrid vehicle
JP2017124669A (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866446

Country of ref document: EP

Kind code of ref document: A1