WO2014038442A1 - Hybrid vehicle control apparatus - Google Patents

Hybrid vehicle control apparatus Download PDF

Info

Publication number
WO2014038442A1
WO2014038442A1 PCT/JP2013/072967 JP2013072967W WO2014038442A1 WO 2014038442 A1 WO2014038442 A1 WO 2014038442A1 JP 2013072967 W JP2013072967 W JP 2013072967W WO 2014038442 A1 WO2014038442 A1 WO 2014038442A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
remaining capacity
capacitor
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2013/072967
Other languages
French (fr)
Japanese (ja)
Inventor
正典 松下
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2014038442A1 publication Critical patent/WO2014038442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/12Driver interactions by confirmation, e.g. of the input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/21External power supplies
    • B60Y2400/214External power supplies by power from domestic supply, e.g. plug in supplies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • a hybrid vehicle is conventionally known that includes an internal combustion engine, an electric motor, and a capacitor that can be charged by electric power generated by the electric motor (generator) with the power of the internal combustion engine.
  • Such a hybrid vehicle can travel in various travel modes, for example, can travel in an EV mode in which the internal combustion engine is stopped and travel is performed only by the output of a motor driven by the electric power of a storage battery.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to ensure SOC of a capacitor according to a user's instruction without causing deterioration in fuel consumption, and enable traveling in accordance with the user's intention And providing a control device for the hybrid vehicle.
  • the invention according to claim 2 is the control device for a hybrid vehicle according to claim 1, further comprising a control map defining a control pattern of the drive of the internal combustion engine and the charge and discharge of the capacitor according to the remaining capacity of the capacitor.
  • a storage unit (for example, a memory in an embodiment to be described later) is further provided, and the control unit corresponds to a value obtained by offsetting the remaining capacity of the capacitor in the direction of decreasing a predetermined amount when performing the remaining capacity maintenance mode The driving of the internal combustion engine and the charge and discharge of the storage battery are controlled based on a control map.
  • the SOC can be increased by controlling the driving of the internal combustion engine and the charge and discharge of the capacitor so that the SOC of the capacitor becomes a predetermined value, and the traveling according to the user's intention is It becomes possible.
  • the SOC maintenance mode can be switched to maintain the SOC of the storage battery. Running is possible.
  • FIG. 2 is a view schematically showing the main part of a drive system in the vehicle shown in FIG. 1; It is a figure showing the driving state in each traveling mode of the vehicle shown in Drawing 1, and (a) is EV mode, (b) and (c) are two modes of series mode, (d) is at the time of engine direct connection mode. It is a figure which shows a driving state. It is a time chart which shows an example of the relation between the vehicle speed with the run of vehicles, and SOC of a capacitor in conventional control.
  • the traveling mode of the series HEV there is a traveling mode in which the vehicle travels by the driving force of a motor driven by power supply from a storage battery. At this time, the internal combustion engine is not driven. In addition, there is a traveling mode in which driving is performed by the driving force of a motor driven by supply of power from both the storage battery and the generator, supply of power from only the generator, or the like. At this time, the internal combustion engine is driven for power generation in the generator.
  • the parallel type HEV travels by the driving force of either or both of the electric motor and the internal combustion engine.
  • a traveling mode of the parallel HEV in particular, there is a mode in which traveling is performed by the driving force of only the internal combustion engine.
  • FIG. 1 is a block diagram showing an internal configuration of a series / parallel type HEV.
  • a series / parallel type HEV (hereinafter simply referred to as “vehicle”) 1 includes a capacitor (BATT) 101, a converter (CONV) 103, a first inverter (first INV) 105, and an electric motor (MOT) 107, internal combustion engine (ENG) 109, generator (GEN) 111, second inverter (second INV) 113, engine direct coupling clutch (hereinafter simply referred to as “clutch”) 115, gearbox (Hereinafter simply referred to as "gear”) 119, a vehicle speed sensor 121, a rotation speed sensor 123, and a management ECU (MG ECU) 125.
  • the dotted arrows in FIG. 1 indicate value data, and the solid lines indicate control signals including instruction content.
  • the capacitor 101 has a plurality of storage cells connected in series, and supplies a high voltage of, for example, 100 to 200 V.
  • the storage cell is, for example, a lithium ion battery or a nickel hydrogen battery.
  • Converter 103 steps up or down the direct current output voltage of storage battery 101 as it is.
  • the first inverter 105 converts a DC voltage into an AC voltage and supplies a three-phase current to the motor 107. Further, the first inverter 105 converts an alternating voltage input at the time of the regenerating operation of the motor 107 into a direct voltage and charges the storage battery 101. Furthermore, the capacitor 101 can be charged by the power of an external power supply (not shown) via the charger 126.
  • the motor 107 generates power for the vehicle 1 to travel.
  • the torque generated by the motor 107 is transmitted to the drive shaft 127 via the gear 119.
  • the rotor of the motor 107 is directly connected to the gear 119. Further, the motor 107 operates as a generator at the time of regenerative braking, and the electric power generated by the motor 107 is charged to the capacitor 101.
  • the internal combustion engine 109 is used only to drive the generator 111 when the clutch 115 is released and the vehicle 1 travels in series. However, when the clutch 115 is engaged, the output of the internal combustion engine 109 is transmitted to the drive shaft 127 via the generator 111, the clutch 115, and the gear 119 as mechanical energy for the vehicle 1 to travel.
  • the generator 111 is driven by the motive power of the internal combustion engine 109 to generate electric power.
  • the electric power generated by the generator 111 is charged to the storage battery 101 or supplied to the motor 107 via the second inverter 113 and the first inverter 105.
  • the second inverter 113 converts the AC voltage generated by the generator 111 into a DC voltage.
  • the power converted by the second inverter 113 is charged in the storage battery 101 or supplied to the motor 107 via the first inverter 105.
  • the clutch 115 connects and disconnects the transmission path of the driving force from the internal combustion engine 109 to the driving wheel 129 based on an instruction from the management ECU 125.
  • the gear 119 is, for example, one fixed gear equivalent to five gears. Therefore, gear 119 converts the driving force from motor 107 into the number of revolutions and torque at a specific gear ratio, and transmits it to drive shaft 127.
  • the vehicle speed sensor 121 detects the traveling speed of the vehicle 1 (vehicle speed VP). A signal indicating the vehicle speed VP detected by the vehicle speed sensor 121 is sent to the management ECU 125.
  • the rotational speed sensor 123 detects the rotational speed Ne of the internal combustion engine 109. A signal indicating the rotational speed Ne detected by the rotational speed sensor 123 is sent to the management ECU 125. Further, a signal indicating the input content to the HV switch (HV-SW) 124 disposed at an arbitrary position in the vehicle so as to be operable by the user is sent to the management ECU 125 via a meter or the like (not shown).
  • HV-SW HV switch
  • the management ECU 125 calculates the number of revolutions of the motor 107 based on the vehicle speed VP, connects and disconnects the clutch 115, detects the SOC of the storage battery 101, detects the accelerator pedal opening (AP opening), switches the traveling mode, and the motor 107. And controls the internal combustion engine 109 and the generator 111. Details of the management ECU 125 will be described later.
  • FIG. 2 schematically shows the main part of the drive system in vehicle 1 shown in FIG. 3 (a), (b), (c) and (d) are diagrams showing driving states according to the respective travel modes of the vehicle 1.
  • the vehicle 1 can travel by the driving force of the electric motor 107 driven by the power supply from the capacitor 101 with the clutch 115 released and the internal combustion engine 109 stopped. mode).
  • the vehicle 1 can also travel by the driving force of the electric motor 107 driven by the power supply generated by the generator by the power of the internal combustion engine 109 while releasing the clutch 115 (series mode).
  • the generator 111 In this traveling mode, as shown in FIG. 3B, the generator 111 generates only the electric power which can output the required output based on the accelerator pedal opening degree, the vehicle speed and the like by the power of the internal combustion engine 109. There is a mode. At this time, charging and discharging in the capacitor 101 are not performed in principle.
  • the power of the internal combustion engine 109 allows the generator 111 to charge the capacitor 101 by adding the required output based on the accelerator pedal position, vehicle speed, etc. to the electric power that the motor 107 can output. Power generation mode.
  • the required output is large, it is also possible to supply the electric power from the storage battery 101 to the electric motor 107 as assist electric power.
  • the vehicle 1 can travel also by the driving force of the internal combustion engine 109 by engaging the clutch 115 (engine direct connection mode).
  • engine direct connection mode when the required output is large, in addition to the driving force of the internal combustion engine 109, the driving force of the electric motor 107 driven by the power supply from the capacitor 101 can be used.
  • traveling modes are switched by the management ECU 125 in accordance with the SOC of the storage battery 101, the required output of the vehicle 1, and the like.
  • the SOC of the capacitor 101 is equal to or more than a predetermined value, the vehicle 1 travels in the EV mode.
  • FIG. 4 shows, for example, a change in SOC of the capacitor 101 when traveling from the user's home to the work site.
  • the storage battery 101 is almost fully charged.
  • the vehicle 1 that has started traveling at time point 0 travels in the suburbs with home and starts traveling on the expressway at time point t1. Thereafter, the vehicle 1 travels down the expressway at time t3 and travels to the work area in the city.
  • the vehicle 1 travels in the EV mode.
  • the SOC of the capacitor 101 is decreased at time t2 after the start of traveling on the expressway.
  • traveling in the EV mode can not be continued, so the vehicle 1 starts the internal combustion engine 109 and travels in the series mode or the engine direct connection mode.
  • the EV mode is originally suitable for traveling at a relatively low vehicle speed such as traveling in a city area. Furthermore, in urban areas, there is also a high demand for running with high quietness in the EV mode.
  • the timing of using the power of the storage battery 101 can be selected according to the user's intention. Specifically, when the user operates the HV switch 124 in a state where the SOC of the capacitor 101 is high to a certain extent, the “SOC maintenance (HV) mode” is implemented so as not to further reduce the SOC of the capacitor 101. As a result, since capacitor 101 can maintain a high SOC to a certain extent, it is possible to travel in the EV mode in a place or the like suitable for traveling in the EV mode according to the user's intention.
  • HV SOC maintenance
  • FIG. 5 shows the change of the SOC of the capacitor 101 in the case of traveling on the same course as that of FIG. 4 by the control of the present embodiment.
  • the vehicle 1 travels in the EV mode from time 0 in order to travel so as to use up the electric power of the storage battery 101 as in the conventional case.
  • a state in which the HV switch 124 is not operated is also referred to as a "normal mode”.
  • the user performs a short push on the HV switch 124 to implement the "SOC maintenance mode".
  • control is performed such that the value near the SOC at the time when the HV switch 124 is operated is maintained.
  • the details of the SOC maintenance mode will be described with reference to FIG.
  • the SOC maintenance mode execution flag is turned on at time t1 ', and the SOC maintenance mode is performed. Be done.
  • the target value of SOC is set by the management ECU 125.
  • the target value of the SOC of the capacitor 101 is determined in accordance with the SOC of the capacitor 101 at the time when the HV switch 124 is operated.
  • the target value may be set to the SOC of the capacitor 101 when the HV switch 124 is operated, but as in the example shown in FIG. 6, the SOC at the time when the HV switch 124 is operated is almost fully charged If it is a state, it may be set to a slightly lower value.
  • the management ECU 125 controls the drive of the internal combustion engine 109 and the charge / discharge of the motor 107 such that the SOC of the storage battery 101 substantially maintains this target value.
  • the management ECU 125 performs control with a predetermined hysteresis width above and below the target value of the SOC, and when the SOC falls below the HV hysteresis Lo, the internal combustion engine 109 is driven to generate electric power. If the value exceeds His Hi, the internal combustion engine 109 is stopped. By appropriately controlling the drive of the internal combustion engine 109 and the charge / discharge of the capacitor 101 in this manner, the SOC of the capacitor 101 is approximately maintained between the HV hysteresis Lo and the HV hysteresis Hi, and thus to the target value. . As the HV switch 124 is short-pressed again at time t3, the SOC maintenance mode implementation flag is turned OFF, and the mode returns to the normal mode.
  • the SOC maintenance mode between time points t1 (t1 ') to t3, the SOC of the capacitor 101 can be maintained approximately at the target value between time points t1 and t3. Further, since the internal combustion engine 109 can be driven between time points t1 and t3, traveling with a high required output such as traveling on a freeway can be performed by efficiently driving the internal combustion engine 109. Then, at the point in time when the user descends the expressway at time t3, the "SOC maintenance mode" is canceled by the user pressing the HV switch 124 for a short time. Thereafter, since the vehicle 1 travels in the EV mode as the “normal mode”, the vehicle 1 can travel efficiently and quietly in the city.
  • FIG. 7 (a) is a diagram showing a change in SOC accompanying vehicle travel when the SOC maintenance mode is not implemented, and (b) is a change in SOC accompanying vehicle travel when the SOC maintenance mode is implemented.
  • the vehicle 1 has a control map in which a control pattern for driving the internal combustion engine 109 and charging / discharging of the capacitor 101 is defined according to the level of SOC of the capacitor 101 in a memory or the like (not shown). As shown in FIGS.
  • the control map of the capacitor 101 has a SOC shortage near SOC 0, a discharge limited region where the SOC is low and discharge is limited, and a central value for a predetermined switching SOC.
  • the SOC standard region which is the maintenance target
  • the SOC surplus region in which the SOC is high, are divided and defined.
  • the SOC of the capacitor 101 is in the SOC surplus area at time point 0, and the management ECU 125 causes the vehicle 1 to travel in the EV mode.
  • the management ECU 125 controls the internal calculation based on the control map of the SOC standard area.
  • the SOC of the capacitor 101 is maintained within the SOC standard region.
  • the HV switch 124 is short-pressed at time t1, and the SOC maintenance mode implementation flag is ON.
  • the actual SOC (actual SOC) at this time t1 is in the SOC surplus area, but at this time, the management ECU 125 performs internal calculation based on the control map of the SOC standard area, instead of the control map of the SOC surplus area.
  • the internal calculation SOC is offset downward from the SOC of the capacitor 101 at time t1 when the HV switch 124 is short-pressed to a predetermined switching SOC in the SOC standard range, and the internal combustion engine 109 is driven. And control of charge and discharge of the capacitor 101.
  • the management ECU 125 controls the internal calculation SOC to maintain within the SOC standard region centered on the predetermined switching SOC.
  • the actual SOC is also predetermined based on the SOC at time t1. It will be maintained within the range.
  • the HV switch 124 when the HV switch 124 is pressed for a short time in a state where the SOC of the storage battery 101 is high to some extent, the SOC at that time can be maintained by implementing the SOC maintenance mode. it can.
  • the storage battery can be obtained by performing the “SOC recovery mode” by the operation of the HV switch 124 by the user. It is possible to recover the SOC of 101.
  • FIG. 8 shows a change in SOC of the capacitor 101 when traveling on the same course as that of FIG. 4 by another control of the present embodiment.
  • the vehicle 1 travels in the suburbs where there is a home in the EV mode, and starts traveling on the expressway at time t4.
  • the SOC of the capacitor 101 decreases at time t5 after the start of traveling on the expressway.
  • traveling in the EV mode can not be continued, so the vehicle 1 starts the internal combustion engine 109 and travels in the series mode or the engine direct connection mode.
  • the SOC recovery mode is implemented to charge the SOC of the capacitor 101.
  • the SOC recovery mode drive of the internal combustion engine 109 and charge / discharge of the capacitor 101 are controlled such that the SOC of the capacitor 101 is increased.
  • the user operates the HV switch 124 again to release the SOC recovery mode.
  • the SOC of the capacitor 101 has increased to a certain extent, so the vehicle 1 can travel in the EV mode, and can travel efficiently and quietly in the city.
  • the SOC recovery mode in the vehicle 1 traveling in the normal mode, when the HV switch 124 is pressed for a long time at time t6, the SOC recovery mode implementation flag is turned on at time t6 ', and the SOC recovery mode is implemented.
  • the target value of the SOC of the storage battery 101 is set by the management ECU 125.
  • the target value in the SOC recovery mode is predetermined, and is set to a value close to the fully charged state.
  • the management ECU 125 travels in the series mode while controlling the drive of the internal combustion engine 109 and the charge and discharge of the storage battery 101.
  • the SOC reaches the target value HV hysteresis Lo at time t7.
  • the management ECU 125 automatically switches from the SOC recovery mode to the SOC maintenance mode.
  • the control in the SOC maintenance mode is the same as that described above, and by appropriately controlling the drive of the internal combustion engine 109 and the charge and discharge of the capacitor 101, the SOC of the capacitor 101 is between the HV hysteresis Lo and the HV hysteresis Hi, In the end, we will generally maintain the target value.
  • the management ECU 125 turns off the SOC maintenance mode implementation flag and cancels the SOC maintenance mode, and shifts to the normal mode. Since the SOC of the storage battery 101 is maintained high enough at time t8, the vehicle 1 can travel in the EV mode.
  • the HV switch 124 is pressed for a long time to implement the SOC recovery mode.
  • the internal combustion engine 109 always maintains the drive state and generates electric power by the generator 111.
  • the electric power generated by the generator 111 is supplied to the motor 107 to drive the vehicle 1 and to charge the storage battery 101.
  • the management ECU 125 charges the capacitor 101 with the maximum charging power.
  • the power of the storage battery 101 is added to the power generated by the generator 111 by the driving force of the internal combustion engine 109. Contribute to the maximum power for assistance.
  • the value of the maximum charge power and the value of the assist upper limit power described above change depending on the level of the SOC of the capacitor 101, the SOC maintenance mode, the SOC recovery mode, and the implementation state of the normal mode.
  • the output at which the efficiency of the internal combustion engine 109 is most improved is used as a threshold, and the demand is higher than this.
  • the output (running load) is low, control is made to charge the capacitor 101 within the range of the series maximum charging power by the power generated by the generator 111 by the power of the internal combustion engine 109.
  • the management ECU 125 when the required output is higher than the above-mentioned threshold value, in addition to the electric power generated by the generator 111 by the driving force of the internal combustion engine 109, the electric power of the capacitor 101 is controlled to be contributed within the assist upper limit electric power.
  • the management ECU 125 when the SOC of the storage battery 101 is lower than a predetermined range, it is necessary to give priority to charging of the storage battery 101, so the management ECU 125 offsets the threshold value upward. Therefore, the management ECU 125 performs control to contribute power from the capacitor 101 only when the traveling load (required output) of the vehicle 1 becomes higher.
  • the management ECU 125 offsets the threshold value downward. Thereby, the required output of the vehicle 1 can be satisfied, and the SOC of the storage battery 101 can be controlled to an appropriate range.
  • the management ECU 125 can charge the capacitor 101 within the range of the series maximum charging power except when the traveling load of the vehicle 1 becomes higher.
  • the above threshold is always offset upward.
  • the SOC can be raised by giving priority to charging of the capacitor 101, and when the traveling load is high, the required output of the vehicle 1 can be satisfied.
  • the SOC of the capacitor 101 can be increased without deteriorating the fuel efficiency or damaging the vibration noise (NV) performance.
  • the vehicle 1 travels not in the engine direct connection mode but in the series mode since the generator 111 generates electric power and charges the capacitor 101 by the driving force of the internal combustion engine 109.
  • Controlled by The engine direct connection assist upper limit electric power is limited to 0, and by switching the engine direct connection assist traveling region at the normal time to the series mode, charging of the capacitor 101 can be appropriately performed by the driving force of the internal combustion engine 109.
  • the management ECU 125 turns off the SOC recovery mode implementation flag and turns on the SOC maintenance mode implementation flag to maintain the SOC from SOC recovery mode Switch to mode.
  • the configuration etc. where the management ECU 125 holds the control map and offsets the internal calculation SOC downward to control it are the same as the configuration described above.
  • the operation of the HV switch 124 includes a short press in which the pressing time is less than about 1 second and a long press in which the pressing time exceeds about 1 second.
  • the management ECU 125 switches between the normal mode, the SOC maintenance mode, and the SOC recovery mode according to the distinction between the short press and the long press of the HV switch 124 and the SOC of the capacitor 101 at the time of operation of the HV switch 124.
  • FIG. 13 is a diagram for explaining the number of SOC segments of storage battery 101. As the number of SOC segments increases from 0 to 8, the SOC of storage battery 101 is increased. As can be seen from FIG.
  • the management ECU 125 switches from the SOC maintenance mode to the normal mode.
  • the management ECU 125 also switches from the SOC maintenance mode to the normal mode even when the number of SOC segments decreases to 2 or less in the SOC maintenance mode.
  • the HV switch 124 is pressed for a long time in the SOC maintenance mode, if the number of SOC segments is 7 or less, the management ECU 125 switches from the SOC maintenance mode to the SOC recovery mode.
  • the HV switch 124 is pressed for a long time in the SOC maintenance mode, if the number of SOC segments is very high such as 8 and the capacitor 101 is in a fully charged state, the management ECU 125 continues the SOC maintenance mode.
  • the management ECU 125 switches from the SOC recovery mode to the normal mode. Further, in the SOC recovery mode, when the number of SOC segments is very high at 8, and the storage battery 101 is fully charged, the management ECU 125 switches from the SOC recovery mode to the SOC maintenance mode. In this manner, in the present embodiment, the management ECU 125 switches the mode according to the distinction between the short press and the long press of the HV switch 124 and the SOC of the capacitor 101 at the time of operation of the HV switch 124. It is possible to appropriately control the SOC of the capacitor 101 according to the intention.
  • the control of the drive of the internal combustion engine 109 and the charge / discharge of the capacitor 101 is controlled with the SOC of the capacitor 101 at the time of instruction from the user as a target value.
  • the SOC maintenance mode can be implemented by switching the control map defining the control pattern of the drive of the internal combustion engine 109 and the charge / discharge control of the capacitor 101 according to the SOC of the capacitor 101, the programming can be simplified. The required memory area can be reduced.
  • the SOC of the capacitor 101 can be increased by implementing the SOC recovery mode for controlling the driving of the internal combustion engine 109 and the charge and discharge of the capacitor 101 so that the SOC of the capacitor becomes a predetermined value, and the user's intention It is possible to drive along
  • the SOC maintenance mode can be switched to maintain the SOC of the capacitor 101, which allows the user to travel in line with the user's intention.
  • control device according to the present invention has been described as being applied to the series-parallel type HEV, the present invention is also applicable to the series type HEV and the parallel type HEV.
  • Hybrid vehicle vehicle 101 Capacitor 107 Motor 109 Internal combustion engine 111 Generator 124 HV switch 125 Management ECU 129 drive wheels

Abstract

A hybrid vehicle (1) control apparatus according to the present invention controls the driving of an internal combustion engine (109) and the charging and discharging of an electricity storage unit (101) on the basis of a state of charge target value of the electricity storage unit (101) that is set in accordance with an input to an HV switch (124) and the state of charge of the electricity storage unit (101) upon the input to the HV switch (124). The control apparatus implements a SOC maintaining mode, for example, such that the state of charge of the electricity storage unit (101) is maintained substantially at the state of charge of the electricity storage unit (101) upon the input to the HV switch (124).

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、ハイブリッド車両の制御装置に関する。 The present invention relates to a control device for a hybrid vehicle.
 従来、内燃機関と、電動機と、内燃機関の動力により電動機(発電機)で発電した電力によって充電可能な蓄電器と、を備えたハイブリッド車両が知られている。このようなハイブリッド車両は種々の走行モードで走行可能であり、例えば、内燃機関を停止して蓄電器の電力により駆動される電動機の出力のみによって走行するEVモードにより走行可能である。 BACKGROUND A hybrid vehicle is conventionally known that includes an internal combustion engine, an electric motor, and a capacitor that can be charged by electric power generated by the electric motor (generator) with the power of the internal combustion engine. Such a hybrid vehicle can travel in various travel modes, for example, can travel in an EV mode in which the internal combustion engine is stopped and travel is performed only by the output of a motor driven by the electric power of a storage battery.
 ところで、EVモードで走行するためには、蓄電器の残容量(SOC:State Of Charge)がある程度確保されている必要がある。そのため、ユーザからの充電要求に基づいて内燃機関の出力、ひいては発電量を増加させることにより、蓄電器への充電量を増加させることが提案されている。(例えば、特許文献1参照)。また、ユーザの指示に基づいて、内燃機関を始動させて発電及び充電を行うことが提案されている(例えば、特許文献2参照)。また、ユーザへの通知及び承認に基づいて、目標SOCを通常の値よりも高い値に置き換えて充電を行うことが提案されている(例えば、特許文献3参照)。 By the way, in order to travel in the EV mode, the remaining capacity (SOC: State Of Charge) of the capacitor needs to be secured to some extent. Therefore, it has been proposed to increase the amount of charge to the capacitor by increasing the output of the internal combustion engine and hence the amount of power generation based on the charge request from the user. (See, for example, Patent Document 1). Further, it has been proposed to start the internal combustion engine to perform power generation and charging based on the user's instruction (see, for example, Patent Document 2). In addition, it has been proposed to perform charging by replacing the target SOC with a value higher than a normal value based on notification and approval to the user (see, for example, Patent Document 3).
日本国特開2011-093335号公報JP JP 2011-093335 米国特許第6483198号明細書U.S. Pat. No. 6,483,198 米国特許第7746026号明細書U.S. Pat. No. 7,746,026
 しかしながら、発電量を増加させるために内燃機関の出力を増加させると、燃費の悪化を招くおそれがある。 However, if the output of the internal combustion engine is increased to increase the amount of power generation, fuel efficiency may be deteriorated.
 本発明は、上記した課題に鑑みてなされたものであり、その目的は、燃費の悪化を招くことなく、ユーザの指示に応じて蓄電器のSOCを確保し、ユーザの意図に沿った走行を可能とするハイブリッド車両の制御装置を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to ensure SOC of a capacitor according to a user's instruction without causing deterioration in fuel consumption, and enable traveling in accordance with the user's intention And providing a control device for the hybrid vehicle.
 上記目的を達成するために、請求項1に係る発明は、内燃機関(例えば、後述する実施形態における内燃機関109)と、前記内燃機関の駆動によって発電する発電機(例えば、後述する実施形態における発電機111)と、前記発電機が発電した電力により充電可能な蓄電器(例えば、後述する実施形態における蓄電器101)と、駆動輪に接続され、前記蓄電器及び前記発電機の少なくとも一方からの電力供給によって駆動する電動機(例えば、後述する実施形態における電動機107)と、を備えるハイブリッド車両の制御装置であって、ユーザの指示を入力可能な入力部(例えば、後述する実施形態におけるHVスイッチ124)と、前記入力部への入力と、前記入力部への入力があった時点での前記蓄電器の残容量と、に応じて、前記蓄電器の残容量目標値を設定する設定部(例えば、後述する実施形態におけるマネジメントECU125)と、設定された前記蓄電器の残容量目標値に基づき、前記内燃機関の駆動と前記蓄電器の充放電とを制御する制御部(例えば、後述する実施形態におけるマネジメントECU125)と、を備え、前記設定部は、前記入力部への入力に応じて、前記蓄電器の残容量目標値を前記入力部への入力があった時点での前記蓄電器の残容量に設定可能であり、前記制御部は、前記蓄電器の残容量を前記残容量目標値に略維持する残容量維持モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御することを特徴とする。 In order to achieve the above object, the invention according to claim 1 relates to an internal combustion engine (for example, an internal combustion engine 109 in an embodiment to be described later) and a generator that generates electric power by driving the internal combustion engine (for example in an embodiment to be described later A generator 111), a capacitor chargeable by the electric power generated by the generator (for example, the capacitor 101 in the embodiment to be described later), a drive wheel, and power supply from at least one of the capacitor and the generator And a control unit for a hybrid vehicle including a motor driven by the drive (for example, the motor 107 in the embodiment to be described later), and an input unit (for example, the HV switch 124 in the embodiment to be described later) , According to the input to the input unit and the remaining capacity of the capacitor at the time of the input to the input unit A setting unit (e.g., a management ECU 125 in an embodiment to be described later) which sets a remaining capacity target value of the capacitor, driving of the internal combustion engine and charging / discharging of the capacitor based on the set remaining capacity target value of the capacitor A control unit (for example, a management ECU 125 in an embodiment to be described later) for controlling the setting unit, and the setting unit inputs the remaining capacity target value of the storage capacitor to the input unit according to the input to the input unit. Setting the remaining capacity of the storage battery at the time of occurrence, and the control unit implements a remaining capacity maintenance mode in which the remaining storage capacity of the storage battery is substantially maintained at the remaining capacity target value. And driving and controlling charge and discharge of the capacitor.
 請求項2に係る発明は、請求項1に記載のハイブリッド車両の制御装置において、前記蓄電器の残容量に応じた前記内燃機関の駆動および前記蓄電器の充放電の制御パターンを定めた制御マップを有する記憶部(例えば、後述する実施形態におけるメモリ)をさらに備え、前記制御部は、前記残容量維持モードを実施する場合に、前記蓄電器の残容量を所定量減少方向にオフセットさせた値に対応した制御マップに基づき、前記内燃機関の駆動および前記蓄電器の充放電を制御することを特徴とする。 The invention according to claim 2 is the control device for a hybrid vehicle according to claim 1, further comprising a control map defining a control pattern of the drive of the internal combustion engine and the charge and discharge of the capacitor according to the remaining capacity of the capacitor. A storage unit (for example, a memory in an embodiment to be described later) is further provided, and the control unit corresponds to a value obtained by offsetting the remaining capacity of the capacitor in the direction of decreasing a predetermined amount when performing the remaining capacity maintenance mode The driving of the internal combustion engine and the charge and discharge of the storage battery are controlled based on a control map.
 請求項3に係る発明は、請求項1または2に記載のハイブリッド車両の制御装置において、前記入力部への入力があった時点での前記蓄電器の残容量が第1の値未満である場合、前記入力部への入力に応じて、前記設定部は、残容量目標値を、前記第1の値に設定可能であり、前記制御部は、前記蓄電器の残容量が前記残容量目標値となるように残容量回復モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御することを特徴とする。 The invention according to claim 3 is the control apparatus for a hybrid vehicle according to claim 1 or 2, wherein the remaining capacity of the storage battery at the time of the input to the input unit is less than the first value, The setting unit can set the remaining capacity target value to the first value according to an input to the input unit, and the control unit determines that the remaining capacity of the storage battery is the remaining capacity target value. Thus, the present invention is characterized in that the remaining capacity recovery mode is implemented to control the driving of the internal combustion engine and the charge and discharge of the storage battery.
 請求項4に係る発明は、請求項3に記載のハイブリッド車両の制御装置において、前記残容量回復モード中に前記蓄電器の残容量が前記残容量目標値に到達した場合、前記制御部は、前記蓄電器の残容量を前記残容量目標値に略維持する前記残容量維持モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御することを特徴とする。 The invention according to claim 4 is the control device for a hybrid vehicle according to claim 3, wherein the control unit is configured to, when the remaining capacity of the capacitor reaches the target remaining capacity value during the remaining capacity recovery mode, The present invention is characterized in that the remaining capacity maintenance mode for substantially maintaining the remaining capacity of the storage battery at the remaining capacity target value is implemented to control driving of the internal combustion engine and charge / discharge of the storage battery.
 請求項1の発明によれば、ユーザによる指示があった時点での蓄電器のSOCを目標値として内燃機関の駆動および蓄電器の充放電を制御することにより、燃費の悪化を招くことなく蓄電器のSOCを確保することができるので、ユーザの意図に沿った走行が可能となる。 According to the first aspect of the invention, the SOC of the storage battery is controlled without causing the deterioration of the fuel efficiency by controlling the driving of the internal combustion engine and the charge and discharge of the storage battery with the SOC of the storage battery as a target value at the time of instruction from the user. Can be traveled according to the user's intention.
 請求項2の発明によれば、蓄電器のSOCに応じた内燃機関の駆動および蓄電器の充放電の制御パターンを定めた制御マップを持ち替えることによって残容量維持モードを実施できるので、プログラミングを簡略化することができると共に、必要なメモリ領域を削減することができる。 According to the second aspect of the invention, since the remaining capacity maintenance mode can be implemented by switching the control map defining the control pattern of the drive of the internal combustion engine and the charge / discharge control of the capacitor according to the SOC of the capacitor, the programming is simplified. And the required memory area can be reduced.
 請求項3の発明によれば、蓄電器のSOCが所定の値となるように内燃機関の駆動および蓄電器の充放電を制御することによりSOCを増加させることができ、ユーザの意図に沿った走行が可能となる。 According to the invention of claim 3, the SOC can be increased by controlling the driving of the internal combustion engine and the charge and discharge of the capacitor so that the SOC of the capacitor becomes a predetermined value, and the traveling according to the user's intention is It becomes possible.
 請求項4の発明によれば、残容量回復モード実施中に蓄電器のSOCが目標値に到達した場合にはSOC維持モードに切り替えて蓄電器のSOCを維持することができるので、ユーザの意図に沿った走行が可能となる。 According to the invention of claim 4, when the SOC of the storage battery reaches the target value while the remaining capacity recovery mode is being performed, the SOC maintenance mode can be switched to maintain the SOC of the storage battery. Running is possible.
シリーズ/パラレル方式のHEVの内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of HEV of a series / parallel system. 図1に示した車両における駆動システムの主要部を概略的に示した図である。FIG. 2 is a view schematically showing the main part of a drive system in the vehicle shown in FIG. 1; 図1に示した車両の各走行モードにおける駆動状態を示した図であり、(a)はEVモード、(b)(c)はシリーズモードの2つのモード、(d)はエンジン直結モード時における駆動状態を示す図である。It is a figure showing the driving state in each traveling mode of the vehicle shown in Drawing 1, and (a) is EV mode, (b) and (c) are two modes of series mode, (d) is at the time of engine direct connection mode. It is a figure which shows a driving state. 従来の制御における、車両の走行に伴う車速と蓄電器のSOCとの関係の一例を示すタイムチャートである。It is a time chart which shows an example of the relation between the vehicle speed with the run of vehicles, and SOC of a capacitor in conventional control. 本発明の一実施形態においてSOC維持モードを実施する場合における、車速と蓄電器のSOCとの関係の一例を示すタイムチャートである。When implementing SOC maintenance mode in one Embodiment of this invention, it is a time chart which shows an example of the relationship between the vehicle speed and SOC of a storage battery. SOC維持モードにおける制御の詳細を示すタイムチャートである。It is a time chart which shows the details of control in SOC maintenance mode. (a)はSOC維持モードを実行しない場合における蓄電器の充放電制御の詳細を示すタイムチャートであり、(b)はSOC維持モードを実行する場合における蓄電器の充放電制御の詳細を示すタイムチャートである。(A) is a time chart showing details of charge / discharge control of the storage battery when the SOC maintenance mode is not executed, and (b) is a time chart showing details of charge / discharge control of the storage battery when the SOC maintenance mode is executed is there. 本発明の一実施形態においてSOC回復モードを実施する場合における、車速と蓄電器のSOCとの関係の一例を示すタイムチャートである。When implementing SOC recovery mode in one Embodiment of this invention, it is a time chart which shows an example of the relationship between the vehicle speed and SOC of a storage battery. SOC回復モードにおける制御の詳細を示すタイムチャートである。It is a time chart which shows the details of control in SOC recovery mode. SOC回復モードにおける内燃機関の駆動および蓄電器の充放電制御の詳細を示す図である。FIG. 6 is a diagram showing details of drive of the internal combustion engine and charge / discharge control of a storage battery in the SOC recovery mode. ノーマルモードおよびSOC維持モード時における内燃機関の要求出力と蓄電器の充放電制御との関係を説明するための図である。It is a figure for demonstrating the relationship between the required output of the internal combustion engine at the time of normal mode and SOC maintenance mode, and charging / discharging control of a storage battery. SOC回復モード時における内燃機関の要求出力と蓄電器の充放電制御との関係を説明するための図である。It is a figure for demonstrating the relationship between the required output of the internal combustion engine at the time of SOC recovery mode, and the charging / discharging control of a condenser. 蓄電器のSOCのセグメント数を説明するための図である。It is a figure for demonstrating the segment number of SOC of a storage battery. HVスイッチの操作と蓄電器のSOCのセグメント数とに応じたモード遷移を説明するための図である。It is a figure for demonstrating the mode transition according to operation of HV switch, and the number of segments of SOC of a storage battery.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 HEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)は、電動機及び内燃機関を備え、車両の走行状態に応じて電動機及び/又は内燃機関の駆動力によって走行する。HEVには、大きく分けてシリーズ方式とパラレル方式の2種類がある。シリーズ方式のHEVは、電動機の動力によって走行する。内燃機関は発電のためだけに用いられ、内燃機関の動力によって発電機で発電された電力は蓄電器に充電されるか、電動機に供給される。 A HEV (Hybrid Electrical Vehicle) includes an electric motor and an internal combustion engine, and travels by a driving force of the electric motor and / or the internal combustion engine according to a traveling state of the vehicle. There are two major types of HEVs: series and parallel. The series type HEV travels by the power of the motor. The internal combustion engine is used only for power generation, and the power generated by the generator by the motive power of the internal combustion engine is charged to the storage battery or supplied to the motor.
 シリーズ方式のHEVの走行モードとしては、まず、蓄電器からの電源供給によって駆動する電動機の駆動力によって走行する走行モードがある。このとき内燃機関は駆動されない。また、蓄電器及び発電機の双方からの電力の供給や、発電機のみからの電力の供給等によって駆動する電動機の駆動力によって走行する走行モードがある。このとき、内燃機関は発電機における発電のために駆動される。 As the traveling mode of the series HEV, there is a traveling mode in which the vehicle travels by the driving force of a motor driven by power supply from a storage battery. At this time, the internal combustion engine is not driven. In addition, there is a traveling mode in which driving is performed by the driving force of a motor driven by supply of power from both the storage battery and the generator, supply of power from only the generator, or the like. At this time, the internal combustion engine is driven for power generation in the generator.
 パラレル方式のHEVは、電動機及び内燃機関のいずれか一方又は双方の駆動力によって走行する。パラレル方式のHEVの走行モードとしては、特に、内燃機関のみの駆動力によって走行するモードがある。 The parallel type HEV travels by the driving force of either or both of the electric motor and the internal combustion engine. As a traveling mode of the parallel HEV, in particular, there is a mode in which traveling is performed by the driving force of only the internal combustion engine.
 上記両方式を複合したシリーズ/パラレル方式のHEVも知られている。当該方式では、車両の走行状態に応じてクラッチを開放又は締結する(断接する)ことによって、駆動力の伝達系統をシリーズ方式及びパラレル方式のいずれかの構成に切り替える。特に低中速の加速走行時にはクラッチを開放してシリーズ方式の構成とし、中高速の定常走行(クルーズ走行)時にはクラッチを締結してパラレル方式の構成とする。 There is also known a series / parallel HEV that combines the above two methods. In this method, the transmission system of the driving force is switched to any one of a series method and a parallel method by opening or closing (disconnecting) the clutch according to the traveling state of the vehicle. In particular, during low- and medium-speed acceleration traveling, the clutch is released to configure a series system, and during medium-high speed steady traveling (cruise traveling), the clutch is engaged to configure a parallel system.
 図1は、シリーズ/パラレル方式のHEVの内部構成を示すブロック図である。図1に示すように、シリーズ/パラレル方式のHEV(以下、単に「車両」という)1は、蓄電器(BATT)101と、コンバータ(CONV)103と、第1インバータ(第1INV)105と、電動機(MOT)107と、内燃機関(ENG)109と、発電機(GEN)111と、第2インバータ(第2INV)113と、エンジン直結クラッチ(以下、単に「クラッチ」という。)115と、ギアボックス(以下、単に「ギア」という。)119と、車速センサ121と、回転数センサ123と、マネジメントECU(MG ECU)125と、を備える。なお、図1中の点線の矢印は値データを示し、実線は指示内容を含む制御信号を示す。 FIG. 1 is a block diagram showing an internal configuration of a series / parallel type HEV. As shown in FIG. 1, a series / parallel type HEV (hereinafter simply referred to as "vehicle") 1 includes a capacitor (BATT) 101, a converter (CONV) 103, a first inverter (first INV) 105, and an electric motor (MOT) 107, internal combustion engine (ENG) 109, generator (GEN) 111, second inverter (second INV) 113, engine direct coupling clutch (hereinafter simply referred to as "clutch") 115, gearbox (Hereinafter simply referred to as "gear") 119, a vehicle speed sensor 121, a rotation speed sensor 123, and a management ECU (MG ECU) 125. The dotted arrows in FIG. 1 indicate value data, and the solid lines indicate control signals including instruction content.
 蓄電器101は、直列に接続された複数の蓄電セルを有し、例えば100~200Vの高電圧を供給する。蓄電セルは、例えば、リチウムイオン電池やニッケル水素電池である。コンバータ103は、蓄電器101の直流出力電圧を直流のまま昇圧又は降圧する。第1インバータ105は、直流電圧を交流電圧に変換して3相電流を電動機107に供給する。また、第1インバータ105は、電動機107の回生動作時に入力される交流電圧を直流電圧に変換して蓄電器101に充電する。さらに、蓄電器101は、充電器126を介して、不図示の外部電源の電力によって充電可能である。 The capacitor 101 has a plurality of storage cells connected in series, and supplies a high voltage of, for example, 100 to 200 V. The storage cell is, for example, a lithium ion battery or a nickel hydrogen battery. Converter 103 steps up or down the direct current output voltage of storage battery 101 as it is. The first inverter 105 converts a DC voltage into an AC voltage and supplies a three-phase current to the motor 107. Further, the first inverter 105 converts an alternating voltage input at the time of the regenerating operation of the motor 107 into a direct voltage and charges the storage battery 101. Furthermore, the capacitor 101 can be charged by the power of an external power supply (not shown) via the charger 126.
 電動機107は、車両1が走行するための動力を発生する。電動機107で発生したトルクは、ギア119を介して駆動軸127に伝達される。なお、電動機107の回転子はギア119に直結されている。また、電動機107は、回生ブレーキ時には発電機として動作し、電動機107で発電された電力は蓄電器101に充電される。 The motor 107 generates power for the vehicle 1 to travel. The torque generated by the motor 107 is transmitted to the drive shaft 127 via the gear 119. The rotor of the motor 107 is directly connected to the gear 119. Further, the motor 107 operates as a generator at the time of regenerative braking, and the electric power generated by the motor 107 is charged to the capacitor 101.
 内燃機関109は、クラッチ115が開放されて車両1がシリーズ走行する際には、発電機111を駆動するためだけに用いられる。但し、クラッチ115が締結されると、内燃機関109の出力は、車両1が走行するための機械エネルギーとして、発電機111、クラッチ115及びギア119を介して駆動軸127に伝達される。 The internal combustion engine 109 is used only to drive the generator 111 when the clutch 115 is released and the vehicle 1 travels in series. However, when the clutch 115 is engaged, the output of the internal combustion engine 109 is transmitted to the drive shaft 127 via the generator 111, the clutch 115, and the gear 119 as mechanical energy for the vehicle 1 to travel.
 発電機111は、内燃機関109の動力によって駆動され、電力を発生する。発電機111が発電した電力は、蓄電器101に充電されるか、第2インバータ113及び第1インバータ105を介して電動機107に供給される。第2インバータ113は、発電機111が発生した交流電圧を直流電圧に変換する。第2インバータ113によって変換された電力は、蓄電器101に充電されるか、第1インバータ105を介して電動機107に供給される。 The generator 111 is driven by the motive power of the internal combustion engine 109 to generate electric power. The electric power generated by the generator 111 is charged to the storage battery 101 or supplied to the motor 107 via the second inverter 113 and the first inverter 105. The second inverter 113 converts the AC voltage generated by the generator 111 into a DC voltage. The power converted by the second inverter 113 is charged in the storage battery 101 or supplied to the motor 107 via the first inverter 105.
 クラッチ115は、マネジメントECU125からの指示に基づいて、内燃機関109から駆動輪129までの駆動力の伝達経路を断接する。 The clutch 115 connects and disconnects the transmission path of the driving force from the internal combustion engine 109 to the driving wheel 129 based on an instruction from the management ECU 125.
 ギア119は、例えば5速相当の1段の固定ギアである。したがって、ギア119は、電動機107からの駆動力を、特定の変速比での回転数及びトルクに変換して、駆動軸127に伝達する。車速センサ121は、車両1の走行速度(車速VP)を検出する。車速センサ121によって検出された車速VPを示す信号は、マネジメントECU125に送られる。回転数センサ123は、内燃機関109の回転数Neを検出する。回転数センサ123によって検出された回転数Neを示す信号は、マネジメントECU125に送られる。また、ユーザにより操作可能であるように車内の任意の場所に配置されたHVスイッチ(HV-SW)124への入力内容を示す信号は、不図示のメータ等を介してマネジメントECU125に送られる。 The gear 119 is, for example, one fixed gear equivalent to five gears. Therefore, gear 119 converts the driving force from motor 107 into the number of revolutions and torque at a specific gear ratio, and transmits it to drive shaft 127. The vehicle speed sensor 121 detects the traveling speed of the vehicle 1 (vehicle speed VP). A signal indicating the vehicle speed VP detected by the vehicle speed sensor 121 is sent to the management ECU 125. The rotational speed sensor 123 detects the rotational speed Ne of the internal combustion engine 109. A signal indicating the rotational speed Ne detected by the rotational speed sensor 123 is sent to the management ECU 125. Further, a signal indicating the input content to the HV switch (HV-SW) 124 disposed at an arbitrary position in the vehicle so as to be operable by the user is sent to the management ECU 125 via a meter or the like (not shown).
 マネジメントECU125は、車速VPに基づく電動機107の回転数の算出、クラッチ115の断接、蓄電器101のSOCの検出、アクセルペダル開度(AP開度)の検出、走行モードの切り替え、並びに、電動機107、内燃機関109及び発電機111の制御等を行う。マネジメントECU125の詳細については後述する。 The management ECU 125 calculates the number of revolutions of the motor 107 based on the vehicle speed VP, connects and disconnects the clutch 115, detects the SOC of the storage battery 101, detects the accelerator pedal opening (AP opening), switches the traveling mode, and the motor 107. And controls the internal combustion engine 109 and the generator 111. Details of the management ECU 125 will be described later.
 図2は、図1に示した車両1における駆動システムの主要部を概略的に示した図である。また、図3(a)(b)(c)(d)は、車両1の各走行モードに応じた駆動状態を示す図である。 FIG. 2 schematically shows the main part of the drive system in vehicle 1 shown in FIG. 3 (a), (b), (c) and (d) are diagrams showing driving states according to the respective travel modes of the vehicle 1.
 まず、図3(a)に示すように、車両1は、クラッチ115は開放すると共に内燃機関109は停止し、蓄電器101からの電力供給によって駆動する電動機107の駆動力によって走行可能である(EVモード)。 First, as shown in FIG. 3A, the vehicle 1 can travel by the driving force of the electric motor 107 driven by the power supply from the capacitor 101 with the clutch 115 released and the internal combustion engine 109 stopped. mode).
 また、車両1は、クラッチ115を開放すると共に、内燃機関109の動力により発電機が発電した電力供給によって駆動する電動機107の駆動力によっても走行可能である(シリーズモード)。この走行モードには、図3(b)に示すように、内燃機関109の動力により発電機111が、アクセルペダル開度及び車速等に基づく要求出力を電動機107が出力可能な電力のみを発電するモードがある。このとき、蓄電器101における充放電は原則的には行われない。また、図3(c)に示すように、内燃機関109の動力により発電機111が、アクセルペダル開度及び車速等に基づく要求出力を電動機107が出力可能な電力に加え、蓄電器101を充電可能な電力をも発電するモードがある。また、図示はしないが、要求出力が大きい場合には、さらに、蓄電器101からの電力をアシスト電力として電動機107に供給することも可能である。 The vehicle 1 can also travel by the driving force of the electric motor 107 driven by the power supply generated by the generator by the power of the internal combustion engine 109 while releasing the clutch 115 (series mode). In this traveling mode, as shown in FIG. 3B, the generator 111 generates only the electric power which can output the required output based on the accelerator pedal opening degree, the vehicle speed and the like by the power of the internal combustion engine 109. There is a mode. At this time, charging and discharging in the capacitor 101 are not performed in principle. Further, as shown in FIG. 3C, the power of the internal combustion engine 109 allows the generator 111 to charge the capacitor 101 by adding the required output based on the accelerator pedal position, vehicle speed, etc. to the electric power that the motor 107 can output. Power generation mode. Although not shown, when the required output is large, it is also possible to supply the electric power from the storage battery 101 to the electric motor 107 as assist electric power.
 さらに、図3(d)に示すように、車両1は、クラッチ115を締結することによって、内燃機関109の駆動力によっても走行可能である(エンジン直結モード)。尚、エンジン直結モードにおいても、要求出力が大きい場合には、内燃機関109の駆動力に加え、蓄電器101からの電力供給によって駆動する電動機107の駆動力を用いることができる。 Furthermore, as shown in FIG. 3D, the vehicle 1 can travel also by the driving force of the internal combustion engine 109 by engaging the clutch 115 (engine direct connection mode). Incidentally, also in the engine direct connection mode, when the required output is large, in addition to the driving force of the internal combustion engine 109, the driving force of the electric motor 107 driven by the power supply from the capacitor 101 can be used.
 これらの走行モードは、蓄電器101のSOCや車両1の要求出力等に応じて、マネジメントECU125によって切り替えられる。通常、蓄電器101のSOCが所定値以上ある場合には、車両1はEVモードで走行する。 These traveling modes are switched by the management ECU 125 in accordance with the SOC of the storage battery 101, the required output of the vehicle 1, and the like. Usually, when the SOC of the capacitor 101 is equal to or more than a predetermined value, the vehicle 1 travels in the EV mode.
 図4は、例えばユーザの自宅から勤務地へと走行する場合における、蓄電器101のSOCの変化を示す。この例では、車両1は、ユーザの自宅において外部電源により充電されているため、蓄電器101がほぼ満充電状態となっている。時点0で走行を開始した車両1は、自宅のある郊外を走行し、時点t1において高速道路での走行を開始する。その後、車両1は、時点t3において高速道路を下り、勤務地へと向かって市街地を走行する。 FIG. 4 shows, for example, a change in SOC of the capacitor 101 when traveling from the user's home to the work site. In this example, since the vehicle 1 is charged by the external power supply at the user's home, the storage battery 101 is almost fully charged. The vehicle 1 that has started traveling at time point 0 travels in the suburbs with home and starts traveling on the expressway at time point t1. Thereafter, the vehicle 1 travels down the expressway at time t3 and travels to the work area in the city.
 走行当初、車両1の蓄電器101は十分なSOCを有しているので、車両1はEVモードで走行する。しかしながら、高速道路における高車速走行では要求出力が高いため、高速道路での走行を開始後の時点t2において蓄電器101のSOCが減少してしまっている。このように蓄電器101のSOCが低下した場合にはEVモードでの走行を継続できないため、車両1は、内燃機関109を始動させて、シリーズモードまたはエンジン直結モードで走行することとなる。 At the beginning of traveling, since the capacitor 101 of the vehicle 1 has a sufficient SOC, the vehicle 1 travels in the EV mode. However, since the required output is high at high vehicle speed traveling on an expressway, the SOC of the capacitor 101 is decreased at time t2 after the start of traveling on the expressway. As described above, when the SOC of the storage battery 101 is lowered, traveling in the EV mode can not be continued, so the vehicle 1 starts the internal combustion engine 109 and travels in the series mode or the engine direct connection mode.
 ところで、EVモードは本来、市街地走行のような比較的低車速での走行に適したものである。さらに、市街地においてはEVモードで静音性の高い走行を行うことへの要望も高い。 By the way, the EV mode is originally suitable for traveling at a relatively low vehicle speed such as traveling in a city area. Furthermore, in urban areas, there is also a high demand for running with high quietness in the EV mode.
 そこで、本実施形態では、蓄電器101の電力を使用するタイミングを、ユーザの意図に応じて選択できるようにする。具体的には、蓄電器101のSOCがある程度高い状態においてユーザがHVスイッチ124を操作することにより、蓄電器101のSOCをそれ以上低下させないように「SOC維持(HV)モード」を実施する。これにより、蓄電器101はある程度高いSOCを維持することができるので、ユーザの意図に応じて、EVモードでの走行に適した場所等をEVモードで走行することができる。 Therefore, in the present embodiment, the timing of using the power of the storage battery 101 can be selected according to the user's intention. Specifically, when the user operates the HV switch 124 in a state where the SOC of the capacitor 101 is high to a certain extent, the “SOC maintenance (HV) mode” is implemented so as not to further reduce the SOC of the capacitor 101. As a result, since capacitor 101 can maintain a high SOC to a certain extent, it is possible to travel in the EV mode in a place or the like suitable for traveling in the EV mode according to the user's intention.
 図5は、本実施形態の制御によって図4と同様のコースを走行する場合における、蓄電器101のSOCの変化を示す。本実施形態においても、HVスイッチ124が操作されない場合には、従来と同様に蓄電器101の電力を使い切るように走行するため、車両1は、時点0からEVモードで走行している。以後、このようにHVスイッチ124が操作されていない状態を「ノーマルモード」とも呼ぶ。そして、高速道路での走行が開始される時点t1において、ユーザがHVスイッチ124を短押しすることによって、「SOC維持モード」が実施される。「SOC維持モード」では、HVスイッチ124が操作された時点でのSOC近辺の値が維持されるような制御が行われる。 FIG. 5 shows the change of the SOC of the capacitor 101 in the case of traveling on the same course as that of FIG. 4 by the control of the present embodiment. Also in the present embodiment, when the HV switch 124 is not operated, the vehicle 1 travels in the EV mode from time 0 in order to travel so as to use up the electric power of the storage battery 101 as in the conventional case. Hereinafter, such a state in which the HV switch 124 is not operated is also referred to as a "normal mode". Then, at time t1 when traveling on an expressway is started, the user performs a short push on the HV switch 124 to implement the "SOC maintenance mode". In the "SOC maintenance mode", control is performed such that the value near the SOC at the time when the HV switch 124 is operated is maintained.
 ここで、SOC維持モードの詳細について、図6を参照して説明する。図6に示すように、ノーマルモードで走行していた車両1において、時点t1でHVスイッチ124が短押しされることにより、時点t1’でSOC維持モード実施フラグがONとなり、SOC維持モードが実施される。このとき、マネジメントECU125によって、SOCの目標値が設定される。 Here, the details of the SOC maintenance mode will be described with reference to FIG. As shown in FIG. 6, in the vehicle 1 traveling in the normal mode, when the HV switch 124 is pressed for a short time at time t1, the SOC maintenance mode execution flag is turned on at time t1 ', and the SOC maintenance mode is performed. Be done. At this time, the target value of SOC is set by the management ECU 125.
 蓄電器101のSOCの目標値は、HVスイッチ124が操作された時点での蓄電器101のSOCに応じて決定される。目標値は、HVスイッチ124が操作された時点での蓄電器101のSOCに設定されてもよいが、図6に示す例のように、HVスイッチ124が操作された時点でのSOCがほぼ満充電状態であるような場合には、少し低い値に設定されてもよい。マネジメントECU125は、蓄電器101のSOCがこの目標値を概ね維持するように、内燃機関109の駆動および電動機107の充放電を制御する。具体的には、マネジメントECU125は、SOCの目標値の上下に所定のヒステリシス幅をもたせて制御を行い、SOCがHVヒスLoを下回った場合には内燃機関109を駆動して発電を行い、HVヒスHiを上回った場合には内燃機関109を停止させる。このように内燃機関109の駆動および蓄電器101の充放電を適切に制御することにより、蓄電器101のSOCは、HVヒスLoとHVヒスHiとの間、ひいては目標値に概ね維持されることとなる。時点t3において再びHVスイッチ124が短押しされることによって、SOC維持モード実施フラグはOFFとなり、ノーマルモードへと戻る。 The target value of the SOC of the capacitor 101 is determined in accordance with the SOC of the capacitor 101 at the time when the HV switch 124 is operated. The target value may be set to the SOC of the capacitor 101 when the HV switch 124 is operated, but as in the example shown in FIG. 6, the SOC at the time when the HV switch 124 is operated is almost fully charged If it is a state, it may be set to a slightly lower value. The management ECU 125 controls the drive of the internal combustion engine 109 and the charge / discharge of the motor 107 such that the SOC of the storage battery 101 substantially maintains this target value. Specifically, the management ECU 125 performs control with a predetermined hysteresis width above and below the target value of the SOC, and when the SOC falls below the HV hysteresis Lo, the internal combustion engine 109 is driven to generate electric power. If the value exceeds His Hi, the internal combustion engine 109 is stopped. By appropriately controlling the drive of the internal combustion engine 109 and the charge / discharge of the capacitor 101 in this manner, the SOC of the capacitor 101 is approximately maintained between the HV hysteresis Lo and the HV hysteresis Hi, and thus to the target value. . As the HV switch 124 is short-pressed again at time t3, the SOC maintenance mode implementation flag is turned OFF, and the mode returns to the normal mode.
 このように、時点t1(t1’)~t3の間においてSOC維持モードを実施することによって、時点t1~t3の間では蓄電器101のSOCを目標値に概ね維持することができる。また、時点t1~t3の間では内燃機関109を駆動可能であるため、高速道路での走行のような要求出力が高い走行を、内燃機関109を効率よく駆動して行うことができる。そして、時点t3で高速道路を下りた時点において、ユーザがHVスイッチ124を短押しすることによって、「SOC維持モード」が解除される。その後、車両1は「ノーマルモード」としてEVモードで走行するので、市街地を効率よく静かに走行することができる。 Thus, by performing the SOC maintenance mode between time points t1 (t1 ') to t3, the SOC of the capacitor 101 can be maintained approximately at the target value between time points t1 and t3. Further, since the internal combustion engine 109 can be driven between time points t1 and t3, traveling with a high required output such as traveling on a freeway can be performed by efficiently driving the internal combustion engine 109. Then, at the point in time when the user descends the expressway at time t3, the "SOC maintenance mode" is canceled by the user pressing the HV switch 124 for a short time. Thereafter, since the vehicle 1 travels in the EV mode as the “normal mode”, the vehicle 1 can travel efficiently and quietly in the city.
 ここで、SOC維持モードにおける蓄電器101の充放電制御の詳細について、図7(a)(b)を参照してより詳細に説明する。図7において、(a)はSOC維持モードを実施しない場合の、車両走行に伴うSOCの変化を表す図であり、(b)はSOC維持モードを実施する場合の、車両走行に伴うSOCの変化を表す図である。車両1は、蓄電器101のSOCの高低に応じて内燃機関109の駆動および蓄電器101の充放電の制御パターンを定義した制御マップを不図示のメモリ等に有している。図7(a)(b)に示すように、蓄電器101の制御マップは、SOCが0に近いSOC不足領域と、SOCが低く放電が制限される放電制限領域と、所定の切替SOCを中心値として通常時には維持目標とされるSOC標準領域と、SOCが高いSOC余剰領域と、に分けられて定められている。蓄電器101のSOCが放電制限領域またはSOC不足領域にある場合には、EVモードの実施が禁止され、内燃機関109が必ず駆動される。蓄電器101のSOCがSOC余剰領域にある場合には、基本的に車両1はEVモードで走行する。 Here, the details of charge / discharge control of the capacitor 101 in the SOC maintenance mode will be described in more detail with reference to FIGS. 7 (a) and 7 (b). In FIG. 7, (a) is a diagram showing a change in SOC accompanying vehicle travel when the SOC maintenance mode is not implemented, and (b) is a change in SOC accompanying vehicle travel when the SOC maintenance mode is implemented FIG. The vehicle 1 has a control map in which a control pattern for driving the internal combustion engine 109 and charging / discharging of the capacitor 101 is defined according to the level of SOC of the capacitor 101 in a memory or the like (not shown). As shown in FIGS. 7 (a) and 7 (b), the control map of the capacitor 101 has a SOC shortage near SOC 0, a discharge limited region where the SOC is low and discharge is limited, and a central value for a predetermined switching SOC. As a normal condition, the SOC standard region, which is the maintenance target, and the SOC surplus region, in which the SOC is high, are divided and defined. When the SOC of the storage battery 101 is in the discharge limited area or the SOC shortage area, the execution of the EV mode is prohibited, and the internal combustion engine 109 is always driven. When the SOC of the storage battery 101 is in the SOC surplus region, the vehicle 1 basically travels in the EV mode.
 図7(a)(b)共に、蓄電器101のSOCは時点0においてSOC余剰領域にあり、マネジメントECU125は車両1をEVモードで走行させる。ノーマルモードで制御される図7(a)において、SOCが減少してSOC標準領域に入ると、マネジメントECU125は、SOC標準領域の制御マップに基づいて内部演算を行う。SOC標準領域の制御マップに基づいて内燃機関109の駆動および蓄電器101の充放電を制御することによって、蓄電器101のSOCは、SOC標準領域内で維持される。 In both FIGS. 7A and 7B, the SOC of the capacitor 101 is in the SOC surplus area at time point 0, and the management ECU 125 causes the vehicle 1 to travel in the EV mode. In FIG. 7A controlled in the normal mode, when the SOC decreases and enters the SOC standard area, the management ECU 125 performs internal calculation based on the control map of the SOC standard area. By controlling the drive of the internal combustion engine 109 and the charge / discharge of the capacitor 101 based on the control map of the SOC standard region, the SOC of the capacitor 101 is maintained within the SOC standard region.
 他方、図7(b)においては、時点t1においてHVスイッチ124が短押しされ、SOC維持モード実施フラグがONになっている。この時点t1における実際のSOC(実SOC)はSOC余剰領域にあるが、このとき、マネジメントECU125は、SOC余剰領域の制御マップに替えて、SOC標準領域の制御マップに基づいて内部演算を行う。具体的には、HVスイッチ124が短押しされた時点t1における蓄電器101のSOCから、SOC標準領域にある所定の切替SOCへと内部演算用SOCを下方向にオフセットして、内燃機関109の駆動および蓄電器101の充放電の制御を行う。これにより、マネジメントECU125は、内部演算用SOCが所定の切替SOCを中心としたSOC標準領域内を維持するように制御することとなる結果、実SOCも、時点t1におけるSOCを中心に、所定の範囲内に維持されることとなる。このように制御マップを持ち替えた制御を行うことにより、プログラミングを簡略化することができると共に、必要なメモリ領域を削減することができる。 On the other hand, in FIG. 7B, the HV switch 124 is short-pressed at time t1, and the SOC maintenance mode implementation flag is ON. The actual SOC (actual SOC) at this time t1 is in the SOC surplus area, but at this time, the management ECU 125 performs internal calculation based on the control map of the SOC standard area, instead of the control map of the SOC surplus area. Specifically, the internal calculation SOC is offset downward from the SOC of the capacitor 101 at time t1 when the HV switch 124 is short-pressed to a predetermined switching SOC in the SOC standard range, and the internal combustion engine 109 is driven. And control of charge and discharge of the capacitor 101. As a result, the management ECU 125 controls the internal calculation SOC to maintain within the SOC standard region centered on the predetermined switching SOC. As a result, the actual SOC is also predetermined based on the SOC at time t1. It will be maintained within the range. By performing control in which the control map is switched in this manner, programming can be simplified, and the required memory area can be reduced.
 上記したように、本実施形態においては、蓄電器101のSOCがある程度高い状態でHVスイッチ124が短押しされた場合にはSOC維持モードを実施することにより、その時点でのSOCを維持することができる。これに加え、本実施形態では、蓄電器101のSOCが低下してEVモードで走行できなくなったような場合にも、ユーザによるHVスイッチ124の操作によって「SOC回復モード」を実施することによって、蓄電器101のSOCを回復させることが可能である。 As described above, in the present embodiment, when the HV switch 124 is pressed for a short time in a state where the SOC of the storage battery 101 is high to some extent, the SOC at that time can be maintained by implementing the SOC maintenance mode. it can. In addition to this, in the present embodiment, even when the SOC of the storage battery 101 is lowered and the vehicle can not run in the EV mode, the storage battery can be obtained by performing the “SOC recovery mode” by the operation of the HV switch 124 by the user. It is possible to recover the SOC of 101.
 図8は、本実施形態の別の制御によって図4と同様のコースを走行する場合における、蓄電器101のSOCの変化を示す。走行当初、車両1の蓄電器101は十分なSOCを有しているので、車両1は自宅のある郊外をEVモードで走行し、時点t4において高速道路での走行を開始する。しかしながら、高速道路における高車速走行では要求出力が高いため、高速道路での走行を開始後の時点t5において蓄電器101のSOCが減少してしまっている。このように蓄電器101のSOCが低下した場合にはEVモードでの走行を継続できないため、車両1は、内燃機関109を始動させて、シリーズモードまたはエンジン直結モードで走行することとなる。 FIG. 8 shows a change in SOC of the capacitor 101 when traveling on the same course as that of FIG. 4 by another control of the present embodiment. At the beginning of traveling, since the storage battery 101 of the vehicle 1 has a sufficient SOC, the vehicle 1 travels in the suburbs where there is a home in the EV mode, and starts traveling on the expressway at time t4. However, since the required output is high when traveling at a high speed on an expressway, the SOC of the capacitor 101 decreases at time t5 after the start of traveling on the expressway. As described above, when the SOC of the storage battery 101 is lowered, traveling in the EV mode can not be continued, so the vehicle 1 starts the internal combustion engine 109 and travels in the series mode or the engine direct connection mode.
 そこで、本実施形態では、時点t6においてユーザがHVスイッチ124を操作することにより、SOC回復モードを実施して、蓄電器101のSOCを充電する。SOC回復モードにより、蓄電器101のSOCが高くなるように、内燃機関109の駆動および蓄電器101の充放電が制御される。 Therefore, in the present embodiment, when the user operates the HV switch 124 at time t6, the SOC recovery mode is implemented to charge the SOC of the capacitor 101. In the SOC recovery mode, drive of the internal combustion engine 109 and charge / discharge of the capacitor 101 are controlled such that the SOC of the capacitor 101 is increased.
 その後、時点t7において、ユーザがHVスイッチ124を再び操作することによって、SOC回復モードが解除されている。この時点t7において蓄電器101のSOCはある程度増加しているので、車両1はEVモードで走行することが可能であり、市街地を効率よく静かに走行することができる。 Thereafter, at time t7, the user operates the HV switch 124 again to release the SOC recovery mode. At this time point t7, the SOC of the capacitor 101 has increased to a certain extent, so the vehicle 1 can travel in the EV mode, and can travel efficiently and quietly in the city.
 ここで、SOC回復モードの詳細について、図9を参照して説明する。図9において、ノーマルモードで走行していた車両1において、時点t6でHVスイッチ124が長押しされることにより、時点t6’でSOC回復モード実施フラグがONとなり、SOC回復モードが実施される。このとき、マネジメントECU125によって、蓄電器101のSOCの目標値が設定される。SOC回復モードにおける目標値は予め定められており、満充電状態に近い値に設定される。マネジメントECU125は、内燃機関109の駆動および蓄電器101の充放電を制御しながら、車両1はシリーズモードで走行することとなる。 Here, the details of the SOC recovery mode will be described with reference to FIG. In FIG. 9, in the vehicle 1 traveling in the normal mode, when the HV switch 124 is pressed for a long time at time t6, the SOC recovery mode implementation flag is turned on at time t6 ', and the SOC recovery mode is implemented. At this time, the target value of the SOC of the storage battery 101 is set by the management ECU 125. The target value in the SOC recovery mode is predetermined, and is set to a value close to the fully charged state. The management ECU 125 travels in the series mode while controlling the drive of the internal combustion engine 109 and the charge and discharge of the storage battery 101.
 図9においては、時点t7でSOCが目標値のHVヒスLoに到達している。このように、SOC回復モード実施中に蓄電器101のSOCが目標値のヒステリシス領域に到達した場合には、マネジメントECU125は、SOC回復モードからSOC維持モードへと自動的に切り替える。SOC維持モードにおける制御は上記したものと同様であって、内燃機関109の駆動および蓄電器101の充放電を適切に制御することにより、蓄電器101のSOCをHVヒスLoとHVヒスHiとの間、ひいては目標値に概ね維持する。続いて、時点t8でHVスイッチ124が短押しされると、マネジメントECU125はSOC維持モード実施フラグをOFFにすると共にSOC維持モードを解除し、ノーマルモードへと移行する。蓄電器101のSOCは時点t8において十分高く維持されているので、車両1はEVモードで走行することができる。 In FIG. 9, the SOC reaches the target value HV hysteresis Lo at time t7. As described above, when the SOC of the capacitor 101 reaches the hysteresis region of the target value during execution of the SOC recovery mode, the management ECU 125 automatically switches from the SOC recovery mode to the SOC maintenance mode. The control in the SOC maintenance mode is the same as that described above, and by appropriately controlling the drive of the internal combustion engine 109 and the charge and discharge of the capacitor 101, the SOC of the capacitor 101 is between the HV hysteresis Lo and the HV hysteresis Hi, In the end, we will generally maintain the target value. Subsequently, when the HV switch 124 is pressed for a short time at time t8, the management ECU 125 turns off the SOC maintenance mode implementation flag and cancels the SOC maintenance mode, and shifts to the normal mode. Since the SOC of the storage battery 101 is maintained high enough at time t8, the vehicle 1 can travel in the EV mode.
 また、SOC回復モードにおける蓄電器の充放電制御の詳細について、図10を参照してより詳細に説明する。図10において、時点t6においてHVスイッチ124が長押しされて、SOC回復モードが実施される。SOC回復モード実施中、内燃機関109は常に駆動状態を維持して発電機111で発電する。発電機111により発電された電力は、電動機107に供給されて車両1を駆動すると共に、蓄電器101を充電する。時点t6~t6a間のように、AP開度から判断される走行負荷が低~中程度である場合、マネジメントECU125は最大充電電力により蓄電器101を充電する。これに対し、時点t6a~t6b間のようにAP開度が全開であって走行負荷が高い場合には、内燃機関109の駆動力により発電機111が発電した電力に加え、蓄電器101の電力をアシスト上限電力まで拠出する。 Further, details of charge / discharge control of the storage battery in the SOC recovery mode will be described in more detail with reference to FIG. In FIG. 10, at time t6, the HV switch 124 is pressed for a long time to implement the SOC recovery mode. During the SOC recovery mode, the internal combustion engine 109 always maintains the drive state and generates electric power by the generator 111. The electric power generated by the generator 111 is supplied to the motor 107 to drive the vehicle 1 and to charge the storage battery 101. When the traveling load determined from the AP opening degree is low to medium, as between time t6 and t6a, the management ECU 125 charges the capacitor 101 with the maximum charging power. On the other hand, when the AP opening degree is fully open and the traveling load is high as between times t6a and t6b, the power of the storage battery 101 is added to the power generated by the generator 111 by the driving force of the internal combustion engine 109. Contribute to the maximum power for assistance.
 上述した最大充電電力の値およびアシスト上限電力の値は、蓄電器101のSOCの高低や、SOC維持モード、SOC回復モード、ノーマルモードの実施状況によって変化する。図11に示すように、ノーマルモード実施時またはSOC維持モード実施時において、蓄電器101のSOCが所定の範囲内にある場合、内燃機関109の効率が最も向上する出力を閾値として、これよりも要求出力(走行負荷)が低いときには、内燃機関109の動力により発電機111で発電した電力により、シリーズ最大充電電力の範囲内で蓄電器101を充電するように制御する。また、要求出力が上記閾値よりも高いときには、内燃機関109の駆動力により発電機111が発電した電力に加え、アシスト上限電力の範囲内で蓄電器101の電力を拠出するように制御する。
 ここで、蓄電器101のSOCが所定の範囲よりも低い場合には、蓄電器101の充電を優先させる必要があるので、マネジメントECU125は、上記閾値を上方向にオフセットする。したがって、マネジメントECU125は、車両1の走行負荷(要求出力)がより高くなったときになってはじめて蓄電器101から電力を拠出するように制御する。
 これとは反対に、蓄電器101のSOCが所定の範囲よりも高い場合、マネジメントECU125は、上記閾値を下方向にオフセットする。これにより、車両1の要求出力を満たすことができると共に、蓄電器101のSOCを適切な範囲に制御することができる。
The value of the maximum charge power and the value of the assist upper limit power described above change depending on the level of the SOC of the capacitor 101, the SOC maintenance mode, the SOC recovery mode, and the implementation state of the normal mode. As shown in FIG. 11, in the normal mode or SOC maintenance mode, when the SOC of the capacitor 101 is within a predetermined range, the output at which the efficiency of the internal combustion engine 109 is most improved is used as a threshold, and the demand is higher than this. When the output (running load) is low, control is made to charge the capacitor 101 within the range of the series maximum charging power by the power generated by the generator 111 by the power of the internal combustion engine 109. Further, when the required output is higher than the above-mentioned threshold value, in addition to the electric power generated by the generator 111 by the driving force of the internal combustion engine 109, the electric power of the capacitor 101 is controlled to be contributed within the assist upper limit electric power.
Here, when the SOC of the storage battery 101 is lower than a predetermined range, it is necessary to give priority to charging of the storage battery 101, so the management ECU 125 offsets the threshold value upward. Therefore, the management ECU 125 performs control to contribute power from the capacitor 101 only when the traveling load (required output) of the vehicle 1 becomes higher.
On the contrary, when the SOC of the capacitor 101 is higher than the predetermined range, the management ECU 125 offsets the threshold value downward. Thereby, the required output of the vehicle 1 can be satisfied, and the SOC of the storage battery 101 can be controlled to an appropriate range.
 一方、図12に示すように、SOC回復モード実施時においては、マネジメントECU125は、車両1の走行負荷がより高くなった場合以外はシリーズ最大充電電力の範囲内で蓄電器101を充電できるように、上記閾値を常に上方向にオフセットする。これにより、蓄電器101の充電を優先してSOCを上昇させることができると共に、走行負荷が高い場合には車両1の要求出力を満たすことができる。また、蓄電器101の充電はシリーズ最大充電電力の範囲内で行なうに過ぎないので、燃費を悪化させたり振動騒音(NV)性能を損なったりすることなく、蓄電器101のSOCを上昇させることができる。 On the other hand, as shown in FIG. 12, at the time of the SOC recovery mode, the management ECU 125 can charge the capacitor 101 within the range of the series maximum charging power except when the traveling load of the vehicle 1 becomes higher. The above threshold is always offset upward. As a result, the SOC can be raised by giving priority to charging of the capacitor 101, and when the traveling load is high, the required output of the vehicle 1 can be satisfied. In addition, since charging of the capacitor 101 is performed only within the range of the series maximum charging power, the SOC of the capacitor 101 can be increased without deteriorating the fuel efficiency or damaging the vibration noise (NV) performance.
 尚、SOC回復モード実施時やSOC維持モード実施時には、内燃機関109の駆動力により発電機111により発電して蓄電器101の充電を行うため、車両1はエンジン直結モードではなくシリーズモードで走行するように制御される。エンジン直結アシスト上限電力は0に制限されており、通常時でのエンジン直結アシスト走行領域はシリーズモードに切り替えることにより、内燃機関109の駆動力によって蓄電器101の充電を適切に行うことができる。 In addition, at the time of SOC recovery mode implementation or SOC maintenance mode implementation, the vehicle 1 travels not in the engine direct connection mode but in the series mode since the generator 111 generates electric power and charges the capacitor 101 by the driving force of the internal combustion engine 109. Controlled by The engine direct connection assist upper limit electric power is limited to 0, and by switching the engine direct connection assist traveling region at the normal time to the series mode, charging of the capacitor 101 can be appropriately performed by the driving force of the internal combustion engine 109.
 図10に戻って、時点t7において蓄電器101のSOCが目標値に到達すると、マネジメントECU125は、SOC回復モード実施フラグをOFFにすると共にSOC維持モード実施フラグをONにして、SOC回復モードからSOC維持モードへと切り替える。SOC維持モードを実施するにあたり、マネジメントECU125が制御マップを持ち替えて内部演算用SOCを下方向にオフセットして制御する構成等は、上記した構成と同様である。 Returning to FIG. 10, when the SOC of the capacitor 101 reaches the target value at time t7, the management ECU 125 turns off the SOC recovery mode implementation flag and turns on the SOC maintenance mode implementation flag to maintain the SOC from SOC recovery mode Switch to mode. When the SOC maintenance mode is implemented, the configuration etc. where the management ECU 125 holds the control map and offsets the internal calculation SOC downward to control it are the same as the configuration described above.
 ところで、HVスイッチ124の操作は、上記したように、押圧時間が約1秒未満である短押しと、押圧時間が約1秒を超える長押しと、がある。マネジメントECU125は、HVスイッチ124の短押しと長押しの区別と、HVスイッチ124の操作時点での蓄電器101のSOCと、に応じて、ノーマルモード、SOC維持モード、およびSOC回復モードを切り替える。図13は、蓄電器101のSOCセグメント数を説明するための図であり、SOCセグメント数が0から8へと増えるにつれて蓄電器101のSOCが高くなっている。図13からわかるように、SOCセグメント数0のときは、SOCが低すぎるために内燃機関109の始動が許可されない。また、SOCセグメント数が1のときは、蓄電器101のSOCを減少させないように、内燃機関109が必ず駆動される。また、SOCセグメント数が2のときは、要求出力等に応じてEVモード、シリーズモード、エンジン直結モードのいずれかが実行される。SOCセグメント数が3~7のときは蓄電器101のSOCが確保されているので、EVモードが実行される。SOCセグメント数が8のときは蓄電器101が満充電状態に近いため、回生が制限される。 By the way, as described above, the operation of the HV switch 124 includes a short press in which the pressing time is less than about 1 second and a long press in which the pressing time exceeds about 1 second. The management ECU 125 switches between the normal mode, the SOC maintenance mode, and the SOC recovery mode according to the distinction between the short press and the long press of the HV switch 124 and the SOC of the capacitor 101 at the time of operation of the HV switch 124. FIG. 13 is a diagram for explaining the number of SOC segments of storage battery 101. As the number of SOC segments increases from 0 to 8, the SOC of storage battery 101 is increased. As can be seen from FIG. 13, when the number of SOC segments is 0, the start of the internal combustion engine 109 is not permitted because the SOC is too low. When the number of SOC segments is one, the internal combustion engine 109 is always driven so as not to reduce the SOC of the capacitor 101. When the number of SOC segments is two, one of the EV mode, the series mode, and the engine direct connection mode is executed according to the required output and the like. When the number of SOC segments is 3 to 7, the SOC of the capacitor 101 is secured, so the EV mode is executed. When the number of SOC segments is 8, since the capacitor 101 is close to a fully charged state, regeneration is limited.
 図14は、蓄電器101のSOCセグメント数とHVスイッチ124の操作とに応じたモード遷移を説明するための図である。図14からわかるように、車両システムが起動したとき(IG OFF→ON)には、必ずノーマルモードが起動される。このノーマルモード時にHVスイッチ124が短押しされた場合には、マネジメントECU125はノーマルモードからSOC維持モードへと切り替える。また、このノーマルモード時にHVスイッチ124が長押しされた場合であっても、SOCセグメント数が8と非常に高く、蓄電器101が満充電状態であるような場合には、マネジメントECU125はノーマルモードからSOC維持モードへと切り替える。一方、ノーマルモード時にSOCセグメント数が7以下であるときにHVスイッチ124が長押しされた場合には、マネジメントECU125はノーマルモードからSOC回復モードへと切り替える。 FIG. 14 is a diagram for explaining mode transition in accordance with the number of SOC segments of storage battery 101 and the operation of HV switch 124. As can be seen from FIG. 14, when the vehicle system is activated (IG OFF → ON), the normal mode is always activated. When the HV switch 124 is pressed for a short time in the normal mode, the management ECU 125 switches from the normal mode to the SOC maintenance mode. Further, even if the HV switch 124 is pressed for a long time in this normal mode, if the number of SOC segments is very high such as 8 and the capacitor 101 is fully charged, the management ECU 125 starts from the normal mode. Switch to SOC maintenance mode. On the other hand, when the HV switch 124 is pressed for a long time when the number of SOC segments is 7 or less in the normal mode, the management ECU 125 switches from the normal mode to the SOC recovery mode.
 また、SOC維持モード時にHVスイッチ124が短押しされた場合には、マネジメントECU125はSOC維持モードからノーマルモードへと切り替える。SOC維持モード時にSOCセグメント数が2以下と低くなった場合にも、マネジメントECU125はSOC維持モードからノーマルモードへと切り替える。一方、SOC維持モード時にHVスイッチ124が長押しされた場合に、SOCセグメント数が7以下であれば、マネジメントECU125はSOC維持モードからSOC回復モードへと切り替える。SOC維持モード時にHVスイッチ124が長押しされた場合に、SOCセグメント数が8と非常に高く、蓄電器101が満充電状態であるような場合には、マネジメントECU125はSOC維持モードを継続する。 When the HV switch 124 is pressed for a short time in the SOC maintenance mode, the management ECU 125 switches from the SOC maintenance mode to the normal mode. The management ECU 125 also switches from the SOC maintenance mode to the normal mode even when the number of SOC segments decreases to 2 or less in the SOC maintenance mode. On the other hand, when the HV switch 124 is pressed for a long time in the SOC maintenance mode, if the number of SOC segments is 7 or less, the management ECU 125 switches from the SOC maintenance mode to the SOC recovery mode. When the HV switch 124 is pressed for a long time in the SOC maintenance mode, if the number of SOC segments is very high such as 8 and the capacitor 101 is in a fully charged state, the management ECU 125 continues the SOC maintenance mode.
 SOC回復モード時にHVスイッチ124が短押しされた場合、または、SOC回復モード時にHVスイッチ124が長押しされた場合には、マネジメントECU125はSOC回復モードからノーマルモードへと切り替える。また、SOC回復モード時に、SOCセグメント数が8と非常に高く、蓄電器101が満充電状態となった場合には、マネジメントECU125はSOC回復モードからSOC維持モードへと切り替える。このようにして、本実施形態においては、HVスイッチ124の短押しと長押しの区別や、HVスイッチ124の操作時点での蓄電器101のSOCに応じて、マネジメントECU125がモードを切り替えるので、ユーザの意図に応じて蓄電器101のSOCを適切に制御することが可能である。 When the HV switch 124 is pressed for a short time in the SOC recovery mode, or when the HV switch 124 is pressed for a long time in the SOC recovery mode, the management ECU 125 switches from the SOC recovery mode to the normal mode. Further, in the SOC recovery mode, when the number of SOC segments is very high at 8, and the storage battery 101 is fully charged, the management ECU 125 switches from the SOC recovery mode to the SOC maintenance mode. In this manner, in the present embodiment, the management ECU 125 switches the mode according to the distinction between the short press and the long press of the HV switch 124 and the SOC of the capacitor 101 at the time of operation of the HV switch 124. It is possible to appropriately control the SOC of the capacitor 101 according to the intention.
 以上説明したように、本実施形態に係るハイブリッド車両の制御装置によれば、ユーザによる指示があった時点での蓄電器101のSOCを目標値として内燃機関109の駆動および蓄電器101の充放電を制御することにより、燃費の悪化を招くことなく、蓄電器101のSOCを確保することができ、ユーザの意図に沿った走行が可能となる。また、蓄電器101のSOCに応じた内燃機関109の駆動および蓄電器101の充放電の制御パターンを定めた制御マップを持ち替えることによってSOC維持モードを実施できるので、プログラミングを簡略化することができると共に、必要なメモリ領域を削減することができる。また、蓄電器のSOCが所定の値となるように内燃機関109の駆動および蓄電器101の充放電を制御するSOC回復モードを実施することにより、蓄電器101のSOCを増加させることができ、ユーザの意図に沿った走行が可能となる。また、SOC回復モード実施中に蓄電器101のSOCが目標値に到達した場合にはSOC維持モードに切り替えて蓄電器101のSOCを維持することができるので、ユーザの意図に沿った走行が可能となる。 As described above, according to the control device for a hybrid vehicle according to the present embodiment, the control of the drive of the internal combustion engine 109 and the charge / discharge of the capacitor 101 is controlled with the SOC of the capacitor 101 at the time of instruction from the user as a target value. By doing this, it is possible to secure the SOC of the capacitor 101 without causing deterioration in fuel consumption, and it is possible to travel in accordance with the user's intention. In addition, since the SOC maintenance mode can be implemented by switching the control map defining the control pattern of the drive of the internal combustion engine 109 and the charge / discharge control of the capacitor 101 according to the SOC of the capacitor 101, the programming can be simplified. The required memory area can be reduced. Further, the SOC of the capacitor 101 can be increased by implementing the SOC recovery mode for controlling the driving of the internal combustion engine 109 and the charge and discharge of the capacitor 101 so that the SOC of the capacitor becomes a predetermined value, and the user's intention It is possible to drive along In addition, when the SOC of the capacitor 101 reaches the target value during the SOC recovery mode, the SOC maintenance mode can be switched to maintain the SOC of the capacitor 101, which allows the user to travel in line with the user's intention. .
 尚、本発明は、上記した実施形態に限定されるものではなく、適宜、変形、改良等が可能である。本発明に係る制御装置は、シリーズ・パラレル方式のHEVに適用されるものとして説明したが、シリーズ方式のHEVやパラレル方式のHEVにも、本発明を適用可能である。 The present invention is not limited to the above-described embodiment, and appropriate modifications, improvements, and the like can be made. Although the control device according to the present invention has been described as being applied to the series-parallel type HEV, the present invention is also applicable to the series type HEV and the parallel type HEV.
 本出願は2012年9月10日出願の日本特許出願(特願2012-199004)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application (Japanese Patent Application No. 2012-199004) filed on Sep. 10, 2012, the contents of which are incorporated herein by reference.
1    ハイブリッド車両(車両)
101  蓄電器
107  電動機
109  内燃機関
111  発電機
124  HVスイッチ
125  マネジメントECU
129  駆動輪
1 Hybrid vehicle (vehicle)
101 Capacitor 107 Motor 109 Internal combustion engine 111 Generator 124 HV switch 125 Management ECU
129 drive wheels

Claims (4)

  1.  内燃機関と、
     前記内燃機関の駆動によって発電する発電機と、
     前記発電機が発電した電力により充電可能な蓄電器と、
     駆動輪に接続され、前記蓄電器及び前記発電機の少なくとも一方からの電力供給によって駆動する電動機と、を備えるハイブリッド車両の制御装置であって、
     ユーザの指示を入力可能な入力部と、
     前記入力部への入力と、前記入力部への入力があった時点での前記蓄電器の残容量と、に応じて、前記蓄電器の残容量目標値を設定する設定部と、
     設定された前記蓄電器の残容量目標値に基づき、前記内燃機関の駆動と前記蓄電器の充放電とを制御する制御部と、を備え、
     前記設定部は、前記入力部への入力に応じて、前記蓄電器の残容量目標値を前記入力部への入力があった時点での前記蓄電器の残容量に設定可能であり、
     前記制御部は、前記蓄電器の残容量を前記残容量目標値に略維持する残容量維持モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御する、ハイブリッド車両の制御装置。
    An internal combustion engine,
    A generator that generates electricity by driving the internal combustion engine;
    A capacitor chargeable by the power generated by the generator;
    A control device of a hybrid vehicle comprising: an electric motor connected to a driving wheel and driven by power supply from at least one of the storage battery and the generator.
    An input unit capable of inputting user's instructions;
    A setting unit configured to set a remaining capacity target value of the storage device according to an input to the input unit and a remaining capacity of the storage battery at the time when an input to the input unit is received;
    And a controller configured to control driving of the internal combustion engine and charging / discharging of the capacitor based on the set remaining capacity target value of the capacitor.
    The setting unit can set the remaining capacity target value of the capacitor to the remaining capacity of the capacitor at the time of the input to the input unit according to the input to the input unit,
    The control device for a hybrid vehicle controls the driving of the internal combustion engine and the charge and discharge of the capacitor by implementing a remaining capacity maintenance mode in which the controller substantially maintains the remaining capacity of the capacitor at the target value of remaining capacity. .
  2.  前記蓄電器の残容量に応じた前記内燃機関の駆動および前記蓄電器の充放電の制御パターンを定めた制御マップを有する記憶部をさらに備え、
     前記制御部は、前記残容量維持モードを実施する場合に、前記蓄電器の残容量を所定量減少方向にオフセットさせた値に対応した制御マップに基づき、前記内燃機関の駆動および前記蓄電器の充放電を制御する請求項1記載のハイブリッド車両の制御装置。
    It further comprises a storage unit having a control map defining a control pattern of the drive of the internal combustion engine and the charge / discharge control of the capacitor according to the remaining capacity of the capacitor.
    The control unit drives the internal combustion engine and charges / discharges the capacitor based on a control map corresponding to a value obtained by offsetting the remaining capacity of the capacitor in the direction of decreasing the remaining capacity when implementing the remaining capacity maintenance mode. The control device for a hybrid vehicle according to claim 1, which controls
  3.  前記入力部への入力があった時点での前記蓄電器の残容量が第1の値未満である場合、前記入力部への入力に応じて、前記設定部は、残容量目標値を、前記第1の値に設定可能であり、
     前記制御部は、前記蓄電器の残容量が前記残容量目標値となるように残容量回復モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御する、請求項1または2記載のハイブリッド車両の制御装置。
    When the remaining capacity of the storage battery at the time of input to the input unit is less than a first value, the setting unit determines the remaining capacity target value according to the input to the input unit. It can be set to a value of 1,
    The control unit executes a remaining capacity recovery mode so that the remaining capacity of the storage battery reaches the target remaining capacity value, and controls driving of the internal combustion engine and charging / discharging of the storage battery. Control device for a hybrid vehicle as described.
  4.  前記残容量回復モード中に前記蓄電器の残容量が前記残容量目標値に到達した場合、前記制御部は、前記蓄電器の残容量を前記残容量目標値に略維持する前記残容量維持モードを実施して、前記内燃機関の駆動と前記蓄電器の充放電とを制御する、請求項3記載のハイブリッド車両の制御装置。 If the remaining capacity of the storage battery reaches the remaining capacity target value during the remaining capacity recovery mode, the control unit implements the remaining capacity maintenance mode for substantially maintaining the remaining capacity of the storage battery at the remaining capacity target value. 4. The control device of a hybrid vehicle according to claim 3, further comprising: controlling driving of the internal combustion engine and charging / discharging of the storage battery.
PCT/JP2013/072967 2012-09-10 2013-08-28 Hybrid vehicle control apparatus WO2014038442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-199004 2012-09-10
JP2012199004A JP2016010981A (en) 2012-09-10 2012-09-10 Hybrid-vehicular control apparatus

Publications (1)

Publication Number Publication Date
WO2014038442A1 true WO2014038442A1 (en) 2014-03-13

Family

ID=50237054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072967 WO2014038442A1 (en) 2012-09-10 2013-08-28 Hybrid vehicle control apparatus

Country Status (2)

Country Link
JP (1) JP2016010981A (en)
WO (1) WO2014038442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000640A1 (en) * 2014-09-23 2016-03-30 Hyundai Motor Company System and method for controlling charging of hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201262A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Hybrid vehicle
JP2009143563A (en) * 2009-01-26 2009-07-02 Toyota Motor Corp Hybrid vehicle
JP2011225079A (en) * 2010-04-19 2011-11-10 Toyota Motor Corp Hybrid automobile
JP2011230678A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Control device for vehicle
JP2011240863A (en) * 2010-05-20 2011-12-01 Toyota Motor Corp Electrically driven vehicle and control method for same
WO2012098658A1 (en) * 2011-01-20 2012-07-26 トヨタ自動車株式会社 Hybrid vehicle and method of controlling same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201262A (en) * 2007-02-20 2008-09-04 Toyota Motor Corp Hybrid vehicle
JP2009143563A (en) * 2009-01-26 2009-07-02 Toyota Motor Corp Hybrid vehicle
JP2011225079A (en) * 2010-04-19 2011-11-10 Toyota Motor Corp Hybrid automobile
JP2011230678A (en) * 2010-04-28 2011-11-17 Toyota Motor Corp Control device for vehicle
JP2011240863A (en) * 2010-05-20 2011-12-01 Toyota Motor Corp Electrically driven vehicle and control method for same
WO2012098658A1 (en) * 2011-01-20 2012-07-26 トヨタ自動車株式会社 Hybrid vehicle and method of controlling same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000640A1 (en) * 2014-09-23 2016-03-30 Hyundai Motor Company System and method for controlling charging of hybrid vehicle
US9387755B2 (en) 2014-09-23 2016-07-12 Hyundai Motor Company System and method for controlling charging of hybrid vehicle

Also Published As

Publication number Publication date
JP2016010981A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5899274B2 (en) Hybrid vehicle and control method thereof
JP5196248B2 (en) Control device for hybrid vehicle
JP6620126B2 (en) Hybrid vehicle
WO2011125187A1 (en) Hybrid-vehicle control device and hybrid vehicle provided therewith
WO2014109064A1 (en) Hybrid vehicle and method for controlling same
JP6620134B2 (en) Hybrid vehicle
CN103863317A (en) Method and system for setting motor torque for hybrid vehicle
JP5598555B2 (en) Vehicle and vehicle control method
US8942877B2 (en) Hybrid vehicle and method for controlling the same
CN103380043A (en) Drive control device of hybrid vehicle
JP5729475B2 (en) Vehicle and vehicle control method
WO2014109063A1 (en) Hybrid vehicle and control method therefor
US9849773B2 (en) Generation control apparatus
JP4165481B2 (en) Control device for hybrid electric vehicle
WO2012105021A1 (en) Hybrid vehicle and control method thereof
JP2011225079A (en) Hybrid automobile
KR20140071593A (en) Charge control method for hybrid electric vehicle
WO2014038442A1 (en) Hybrid vehicle control apparatus
JP5724484B2 (en) Electric car
JP2015013517A (en) Vehicle controller
JP2006136131A (en) Controller for vehicle
JP6428658B2 (en) Hybrid vehicle
JP2010136509A (en) Vehicle and its controlling method
JP2021160459A (en) Hybrid vehicle and control method for the same
JP2011225077A (en) Hybrid automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP