WO2017077739A1 - 発光体、発光装置、照明装置、および発光体の製造方法 - Google Patents

発光体、発光装置、照明装置、および発光体の製造方法 Download PDF

Info

Publication number
WO2017077739A1
WO2017077739A1 PCT/JP2016/070737 JP2016070737W WO2017077739A1 WO 2017077739 A1 WO2017077739 A1 WO 2017077739A1 JP 2016070737 W JP2016070737 W JP 2016070737W WO 2017077739 A1 WO2017077739 A1 WO 2017077739A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
light emitting
yag
substrate
Prior art date
Application number
PCT/JP2016/070737
Other languages
English (en)
French (fr)
Inventor
要介 前村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2017548651A priority Critical patent/JP6644081B2/ja
Priority to US15/766,914 priority patent/US20180301869A1/en
Publication of WO2017077739A1 publication Critical patent/WO2017077739A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • C09K11/777Oxyhalogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • H01S5/0609Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch acting on an absorbing region, e.g. wavelength convertors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • JP 2009-135136 A Japanese Patent Publication “JP 2009-135136 A” (published on June 18, 2009)
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitter that can efficiently suppress occurrence of luminance unevenness or color unevenness in emitted light. There is.
  • a second object of the present invention is to provide a light emitter capable of efficiently dissipating heat generated from a phosphor.
  • a light emitter includes: A first phosphor layer including a first phosphor that emits first fluorescence in response to excitation light; A second phosphor layer including a second phosphor that emits second fluorescence upon receiving the excitation light, and is laminated on the substrate, The particle size of the first phosphor is smaller than the particle size of the second phosphor, The first phosphor layer is disposed on the side far from the substrate, and the excitation light is incident from the first phosphor layer.
  • the present invention it is possible to efficiently suppress occurrence of luminance unevenness or color unevenness in emitted light. Further, according to one embodiment of the present invention, heat generated from the phosphor can be efficiently dissipated.
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4 as follows.
  • an LED can be used as the excitation light source of the present application.
  • the incident ends 13 a of the plurality of optical fibers 13 it is only necessary to provide the incident ends 13 a of the plurality of optical fibers 13 so as to face the laser elements 11.
  • a bundle fiber may be used.
  • the number of optical fibers 13 may be one.
  • excitation light E1 emitted from the plurality of laser elements 11 may be coupled to one optical fiber 13 using a member such as a lens or a mirror.
  • members other than the optical fiber 13 as a light guide member which optically couple
  • the housing 16 mainly supports the light emitting unit 10, the second lens 14, and the mirror 15.
  • a material of the housing 16 for example, aluminum can be used. In this case, the heat generated in the light emitting unit 10 can be efficiently dissipated to the outside of the housing 16.
  • the casing 16 may be formed by coating silver (Ag) or aluminum (Al) on a member made of an arbitrary member such as copper (Cu), stainless steel, or magnesium (Mg).
  • a convex lens is used as the light projecting lens 17.
  • the light projection lens 17 may be either a spherical lens or an aspheric lens.
  • the material of the light projection lens 17 may be appropriately selected from acrylic resin, polycarbonate, silicone resin, borosilicate glass, BK7, or quartz.
  • the light projecting lens 17 may be single as shown in FIG. 2 or plural.
  • FIG. 1 is a diagram illustrating a schematic configuration of a reflective light emitting unit 10.
  • the light emitting unit 10 includes a substrate 1 and a phosphor film including a first phosphor layer La1 and a second phosphor layer La2.
  • an oxynitride phosphor for example, a sialon phosphor
  • the oxynitride phosphor has high heat resistance against high-power (and / or light density) laser light emitted from the laser element 11, and is optimal for a laser illumination light source.
  • a YAG (yttrium-aluminum-garnet) phosphor can be used as the first phosphor and the second phosphor.
  • a nitride phosphor or the like can be used as the first phosphor and the second phosphor.
  • the first YAG phosphors 3, the second YAG phosphors 2, and the second YAG phosphor 2 and the substrate 1 are preferably fixed by a binder (binder).
  • the first YAG phosphor 3 and the second YAG phosphor 2 are preferably coated with the binder.
  • the adhesion between the first YAG phosphors 3, the second YAG phosphors 2, and the second YAG phosphor 2 and the substrate 1 is increased.
  • the binder is preferably made of an inorganic transparent material having high heat resistance, and examples thereof include SiO 2 (silicon dioxide) or TiO 2 (titanium dioxide).
  • the first phosphor layer La1 and the second phosphor layer La2 can be manufactured so as not to contain organic substances therein. It is possible to prevent the deterioration of the characteristics of the light emitting unit 10 due to the above.
  • the first YAG phosphor 3, the second YAG phosphor 2, and the second YAG phosphor 2 and the substrate 1 are not in direct contact with each other by coating with a binder.
  • the present invention is not limited to this configuration.
  • the second YAG phosphor 2 may be in direct contact with the substrate 1, or the first YAG phosphor 3 and the second YAG phosphor 2 may be in direct contact.
  • the particle size of the present application refers to the median diameter (d50).
  • the median diameter is the particle diameter when the phosphor group is divided into two on the basis of the particle diameter (particle diameter), and the group having a large particle diameter is equivalent to the group having a small particle diameter. That is.
  • the particle size of the first YAG phosphor 3 and the second YAG phosphor 2 can be determined by observing a cross section perpendicular to the substrate 1 with an electron microscope or the like, for example.
  • the particle size of the first YAG phosphor 3 disposed on the side far from the substrate 1 can be determined by observing with an electron microscope or the like from a direction perpendicular to the substrate 1.
  • the substrate 1 is supported by the first phosphor layer La1 and the second phosphor layer La2.
  • the substrate 1 is preferably made of, for example, metal or ceramic.
  • the heat generated by the first phosphor layer La1 and the second phosphor layer La2 can be efficiently dissipated.
  • substrate 1 is comprised with aluminum, silver, etc. with a high reflectance of light among metals.
  • the excitation light E1 that has not been absorbed by the first phosphor layer La1 and the second phosphor layer La2 is returned to the first phosphor layer La1 and the second phosphor layer La2 side again.
  • the light can be emitted efficiently. Therefore, the utilization efficiency of the excitation light E1 of the light emission part 10 can be improved.
  • the heat generated in the first phosphor layer La1 and the second phosphor layer La2 can be dissipated to the substrate 1 more efficiently.
  • the heat generated in the first phosphor layer La1 can be dissipated to the substrate 1 more efficiently.
  • the size of the substrate 1 when viewed from the side on which the excitation light E1 is incident is the same as the size of the first phosphor layer La1 and the second phosphor layer La2, or the first phosphor layer La1 and the second phosphor layer La2. It is larger than the size of the phosphor layer La2.
  • the first YAG phosphor 3 and the second YAG phosphor 2 are put into a solvent (for example, ethanol) and stirred to produce a slurry.
  • a dispersant and a binder may be mixed.
  • the substrate 1 is put into a slurry in which the first YAG phosphor 2 and the second YAG phosphor 3 are dispersed, whereby the first YAG phosphor 2 and the second YAG phosphor 3 are deposited on the substrate 1.
  • the first YAG phosphors 2 and the second YAG phosphors 3 are combined as described above. Coat with the material.
  • the sedimentation rate depends on the density and particle size of the phosphor included in the light emitting part.
  • the density of the phosphor in the light emitting portion is substantially uniform, so that the larger the particle size, the more is deposited on the substrate side.
  • the second YAG phosphor 2 having a relatively large particle size is dispersed in the slurry. Thereafter, the second YAG phosphor 2 is deposited on the substrate 1 by putting the substrate 1 into the slurry in which the second YAG phosphor 2 is dispersed. Thereafter, the substrate 1 on which the second YAG phosphor 2 is deposited is taken out of the slurry and dried.
  • the first YAG phosphor 3 having a relatively small particle size is dispersed in the slurry. Thereafter, the first YAG phosphor 3 is deposited on the second YAG phosphor 2 by putting the substrate 1 on which the second YAG phosphor 2 is deposited into the slurry in which the first YAG phosphor 3 is dispersed. Thereafter, the substrate 1 on which the first YAG phosphor 3 and the second YAG phosphor 2 are deposited is taken out of the slurry and dried.
  • the first YAG phosphor 3, the second YAG phosphor 2, and the dispersing agent are put into a solvent to prepare a slurry.
  • a binder may be mixed.
  • the adhesion between the first phosphor layer La1 and the second phosphor layer La2 is increased.
  • two electrodes are arranged up and down in the slurry, and the substrate 1 is arranged as a lower electrode.
  • a voltage is applied so that the first YAG phosphor 3 and the second YAG phosphor 2 are deposited on the substrate 1.
  • a metal is preferable.
  • the second phosphor layer La2 including the second YAG phosphor 2 on the substrate 1 side is far from the substrate 1 (that is, excitation light).
  • the first phosphor layer La1 including the first YAG phosphor 3 is formed on the E1 incident side.
  • the first YAG phosphor 3 and the second YAG phosphor 2 having different particle size distributions are mixed in the slurry from the beginning.
  • the present invention is not limited to this, and the first YAG phosphor similar to the precipitation method is used. 3 and the second YAG phosphor 2 may be made of different slurries and deposited separately.
  • a manufacturing method of the light emission part 10 it is not restricted to the said sedimentation method and electrophoresis method, You may implement
  • a screen mask on which a mesh made of synthetic fibers or metal fibers is formed is placed on the substrate 1, and ink containing the second YAG phosphor 2 is ejected from the mesh by a squeegee.
  • a second phosphor layer La2 is formed on the first layer.
  • a screen mask is arranged on the second phosphor layer La2, and ink containing the first YAG phosphor 3 is ejected from the mesh, whereby the first phosphor layer La1 is formed on the second phosphor layer La2.
  • a metal mask without a mesh can be used as a screen mask.
  • the ink is composed of phosphor particles including the first YAG phosphor 3 and the second YAG phosphor 2, an organic solvent serving as a dispersion medium, a resin for increasing the viscosity, and a dispersion material. Organic components other than the phosphor particles are removed by baking at a high temperature after printing. After firing, the first phosphor layer La1 and the second phosphor layer La2 are coated with a binder, thereby improving the adhesion between the first phosphor layer La1 and the second phosphor layer La2.
  • the ink may be printed with a binder in advance.
  • the second phosphor layer La2 is formed on the substrate 1 by discharging an organic solvent in which the second YAG phosphor 2 is dispersed from the dispenser.
  • the first phosphor layer La1 is formed on the second phosphor layer La2 by discharging the solvent in which the first YAG phosphor 3 is dispersed from the dispenser.
  • the organic component is removed by baking at a high temperature. After firing, the first phosphor layer La1 and the second phosphor layer La2 are coated with a binder, thereby improving the adhesion between the first phosphor layer La1 and the second phosphor layer La2.
  • the light emitting unit 10 when the light emitting unit 10 is manufactured by using a sedimentation method or an electrophoresis method, it is desirable because the first phosphor layer La1 and the second phosphor layer La2 can be deposited simultaneously.
  • the first phosphor layer La1 including the first YAG phosphor 3 having a particle size smaller than the particle size of the second YAG phosphor 2 is disposed on the side far from the substrate 1. Then, the excitation light E1 is incident on the first phosphor layer La1. Therefore, as described above, in the illumination light E ⁇ b> 2 emitted from the light emitting unit 10, occurrence of luminance unevenness or color unevenness can be efficiently suppressed.
  • FIG. 3A is a diagram illustrating a schematic configuration of a light emitting unit 10a as a comparative example of the present embodiment in which only the second phosphor layer La2 is disposed on the substrate 1.
  • FIG. That is, in the light emitting unit 10a, only the second YAG phosphor 2 having a relatively large particle size is laminated on the substrate 1.
  • FIG. 3B is a diagram illustrating a schematic configuration of a light emitting unit 10b as a comparative example of the present embodiment in which only the first phosphor layer La1 is disposed on the substrate 1. That is, only the first YAG phosphor 3 having a relatively small particle size is laminated.
  • C of FIG. 3 is a figure which shows schematic structure of the light emission part 10 of this embodiment.
  • the absorptance of the excitation light E1 incident on the second YAG phosphor 2 is as follows. It is higher than the light emitting part 10b. Therefore, the luminous efficiency for the excitation light E1 is higher than that of the light emitting unit 10b.
  • the excitation light E1 is incident on the light emitting unit 10 and when the illumination light E2 is emitted from the light emission unit 10, the excitation light E1 and the illumination light E2 are hardly scattered.
  • the first YAG phosphor 3 having a relatively small particle size is used in the light emitting unit 10b, the first YAG phosphor is used when the excitation light E1 is incident and when the illumination light E2 is emitted, compared to the light emitting unit 10a. 3, the excitation light E1 and the illumination light E2 can be efficiently scattered. Therefore, occurrence of color unevenness in the illumination light E2 can be suppressed. Moreover, in order to obtain a desired color as the illumination light E2, it is not necessary to reduce the density of the first YAG phosphor 3 included in the first phosphor layer La1.
  • the first phosphor layer La1 including the first YAG phosphor 3 having a relatively small particle diameter is disposed on the side far from the substrate 1. Has been placed. Then, the excitation light E1 is incident on the first phosphor layer La1.
  • the surface of the substrate 1 is exposed because the first YAG phosphor 3 having a relatively small particle size is laminated. The place disappears. Therefore, the excitation light E1 reflected by the substrate 1 can be prevented from being directly emitted to the outside, and safety can be improved.
  • the excitation light E1 is incident on the first YAG phosphor 3 having a relatively small particle diameter, and the illumination light E2 is emitted from the first YAG phosphor 3. Therefore, the occurrence of color unevenness can be efficiently suppressed without providing a scattering material.
  • no scattering material is provided, it is possible to suppress the above-described decrease in luminous flux and generation of reflected excitation light.
  • the first YAG phosphor 3 and the second YAG phosphor 2 can efficiently absorb the excitation light E1.
  • the first YAG phosphor 3 and the second YAG phosphor 2 are laminated on the substrate (not a configuration in which the first YAG phosphor 3 and the second YAG phosphor 2 are dispersed), the heat generated in the first YAG phosphor 3 and the second YAG phosphor 2 is efficiently used. Can dissipate well. Therefore, it is possible to suppress the deterioration of the light emitting unit 10 and the decrease in light emission efficiency as described above.
  • FIG. 4 is a diagram for explaining the difference in the projection pattern of the illumination light E2 due to the difference in the particle size of the phosphors laminated on the substrate 1.
  • FIG. 4A is a diagram showing an experimental result in the light emitting unit 10 of the present example
  • FIG. 4B is a diagram showing an experimental result in the light emitting unit 10a of the comparative example.
  • a laser element 11 that emits excitation light E1 having a peak wavelength of 445 nm is used as an excitation light source.
  • the first YAG phosphor 3 one having a particle size (d50) of 9 ⁇ m was used.
  • the second YAG phosphor 2 one having a particle size (d50) of 13 ⁇ m was used.
  • the illumination light E2 emitted from the light emitting unit 10 and the light emitting unit 10a was projected from the light projecting lens 17 onto a white wall surface.
  • the light projection pattern formed by the illumination light E2 projected on the wall surface was imaged.
  • FIG. 4A The result of imaging the projection pattern formed by the illumination light E2 emitted from the light emitting unit 10 is shown in FIG. 4A, and the projection pattern formed by the illumination light E2 emitted from the light emitting unit 10a is imaged. The result is shown in FIG.
  • the red light-emitting phosphor 4 having a relatively large particle size included in the second phosphor layer La2 disposed on the substrate 1 side has, for example, red fluorescence (second fluorescence) having a peak wavelength of about 630 nm.
  • red fluorescence second fluorescence
  • a CaAlSiN 3 : Eu phosphor (CASN phosphor) or a (Sr, Ca) AlSiN 3 : Eu phosphor (SCASN phosphor) can be used as the red light emitting phosphor 4.
  • the light emitting unit 20 is white light that is a mixture of blue light as the excitation light E1, green fluorescent light emitted from the green light emitting phosphor 5, and red fluorescent light emitted from the red light emitting phosphor 4.
  • the illumination light E2 is emitted.
  • the peak wavelength of the red light emitting phosphor 4 included in the second phosphor layer La2 disposed on the substrate 1 side is the first phosphor layer disposed on the incident side of the excitation light E1. It is longer than the peak wavelength of the green light-emitting phosphor 5 contained in La1.
  • the fluorescence from the second phosphor layer La2 is incident on the first phosphor layer La1, but it is assumed that a phosphor having a longer peak wavelength than the phosphor contained in the second phosphor layer La2 is the first phosphor layer La1. In this case, there is a possibility that the fluorescence from the second phosphor layer La2 re-excites the phosphor contained in the first phosphor layer La1.
  • the green phosphor 5 having a short wavelength in the first phosphor layer La1 and the red phosphor 4 having a long wavelength in the second phosphor layer La2 the fluorescence from the second phosphor layer La2 can be reduced. It is possible to prevent the phosphor layer 1 from being reabsorbed by the phosphor layer La1.
  • the first phosphor layer La1 includes the red light emitting phosphor 4 having a relatively small particle diameter, and the second phosphor layer La2 emits green light having a relatively large particle diameter.
  • a phosphor 5 may be included.
  • the first phosphor and the second phosphor having different peak wavelengths are not limited to the red light-emitting phosphor 4 and the green light-emitting phosphor 5, but other light depending on the oscillation wavelength region of the excitation light E1.
  • the phosphor to emit can be selected as appropriate.
  • the green light emitting phosphor 5 having a relatively small particle diameter is arranged on the incident side of the excitation light E1 (the emission side of the illumination light E2), so that color unevenness and luminance unevenness are the same as in the first embodiment. Can be efficiently suppressed.
  • the green light-emitting phosphor 5 and the red light-emitting phosphor 4 are different types of phosphors, variations in the color of the illumination light E2 can be increased. For example, a reddish component can be added to the white light as the illumination light E2. In this case, the color rendering properties of the illumination light E2 can be improved.
  • the light emitting unit 20 has the same color illumination as when the excitation light E1 is included in the illumination light E2. It becomes possible to emit the light E2.
  • a blue light emitting phosphor, a green light emitting phosphor, and a red light emitting phosphor are included in either the first phosphor or the second phosphor, and these phosphors are irradiated with excitation light E1 of 405 nm so that only fluorescence is emitted. Can generate white light (illumination light E2).
  • FIG. 6 is a diagram showing a schematic configuration of the light emitting unit 30 (light emitting body) of the present embodiment.
  • the green light emitting phosphor 7 is used as the first phosphor contained in the first phosphor layer La1
  • the red light emitting phosphor 6 is used as the second phosphor contained in the second phosphor layer La2. Is used.
  • This is different from the light emitting unit 10 of the first embodiment. That is, the light emitting unit 30 of the present embodiment has a structure in which two types of first phosphors having different emission wavelengths (that is, different types) are stacked.
  • the small green light emitting phosphor 7 emits green fluorescence (first fluorescence) having a peak wavelength (emission peak wavelength) of about 530 nm, for example.
  • a ⁇ -SiAlON phosphor can be used as in the second embodiment.
  • the green light emitting phosphor 7 has a smaller temperature quenching than the red light emitting phosphor 6.
  • the red phosphor 6 having a relatively large particle size included in the second phosphor layer La2 disposed on the substrate 1 side of the first phosphor layer La1 is, for example, a red having a peak wavelength of about 630 nm.
  • the second fluorescence is emitted.
  • a CASN phosphor or a SCASN phosphor can be used as the red light emitting phosphor 6, as in the second embodiment. Further, the red light emitting phosphor 6 has a larger temperature quenching than the green light emitting phosphor 7.
  • temperature quenching means that the luminous efficiency of the phosphor decreases as the temperature increases.
  • Large (or small) temperature quenching means that the degree of decrease in the luminous efficiency of the phosphor with respect to the rate of temperature increase is large (or small).
  • a silicate phosphor has a large decrease in luminous efficiency with respect to a temperature increase rate
  • a SiAlON phosphor or a YAG phosphor has a small decrease in luminous efficiency with respect to a temperature increase rate.
  • the heat generated in the red light-emitting phosphor 6 and the green light-emitting phosphor 7 is dissipated through the substrate 1. Therefore, in the light emitting unit 30, the temperature is lower as it is closer to the substrate 1, and the temperature is higher as it is separated from the substrate 1. Therefore, in the present embodiment, the red light-emitting phosphor 6 having a large temperature quenching is deposited on the substrate 1 side on which the temperature does not easily rise, and the green light-emitting phosphor 7 having a small temperature quenching is stacked thereon.
  • the light emitting unit 30 has the green light emitting phosphor 7 having a relatively small particle diameter disposed on the incident side of the excitation light E1 (the emission side of the illumination light E2), color unevenness and The occurrence of uneven brightness can be efficiently suppressed.
  • the reflective light emitting units 40 and 50 are configured so that the first phosphor layer La1 and the second phosphor layer La2 are all or part of the sealing material 8. It is the structure covered with.
  • the light emitting unit 40 includes a first YAG phosphor 3 as a first phosphor and a second YAG phosphor 2 as a second phosphor as a sealing material 8.
  • the structure is completely covered with.
  • the light emitting unit 50 uses the first YAG phosphor 3 and the second YAG phosphor 2 as the sealing material 8 so that a part of the surface of the first YAG phosphor 3 is exposed. It is the structure covered with.
  • the upper surface of the first phosphor layer La1 (the surface on which the excitation light E1 is incident) is exposed without being sealed with the sealing material 8, and the binding material is exposed on the surface.
  • Concavities and convexities are formed by the first YAG phosphor 3 covered with the.
  • main structures other than the sealing material 8 of the light emission parts 40 and 50 are the same structures as the light emission part 10 of Embodiment 1 shown in FIG. Moreover, you may use the sealing material 8 with respect to the light emission part 20 of Embodiment 2, and the light emission part 30 of Embodiment 3.
  • FIG. 1 main structures other than the sealing material 8 of the light emission parts 40 and 50 are the same structures as the light emission part 10 of Embodiment 1 shown in FIG.
  • the first YAG phosphor 3 having a relatively small particle size is arranged on the incident side of the excitation light E1 (the emission side of the illumination light E2). The occurrence of uneven brightness can be efficiently suppressed.
  • the light emitting unit 50 since the upper surface of the first phosphor layer La1 is exposed and the surface is uneven, the refractive index with air on the surface The excitation light E1 can be easily diffused and reflected by the unevenness of the surface. Therefore, the excitation light E1 and the illumination light E2 are more efficiently generated as compared with the light emitting part 40 shown in FIG. 7A in which the upper surface of the first phosphor layer La1 is completely sealed with the sealing material 8. Can be scattered. As a result, since the excitation light E1 and the fluorescence are easily mixed, the occurrence of color unevenness in the illumination light E2 can be suppressed. Note that the light emitting units 10 to 30 of Embodiments 1 to 3 have the same effect.
  • FIG. 8 is a diagram illustrating a schematic configuration of the illumination device 200 according to the present embodiment.
  • the illumination device 200 includes a laser element 11, a first lens 12, an optical fiber 13, a light emitting unit 60, a fixing jig 62, a ferrule 103, a ferrule fixing unit 104, and a light projection.
  • the lens 105 (light projection part), the lens fixing
  • the light emitting unit 60 and the laser element 11 form a basic configuration of the light emitting device.
  • the light emitting unit 60, the laser element 11, and the light projecting lens 105 form a basic configuration of the illumination device.
  • the illumination device 200 is configured to project illumination light E2 including at least fluorescence emitted from the light emitting unit 60 in a specific direction by the light projection lens 105, which is excited by the excitation light E1 emitted from the laser element 11.
  • the illumination light E2 is described as including the excitation light E1 and fluorescence, but a configuration in which only the fluorescence is projected as the illumination light E2 may be employed.
  • the illumination device 200 includes a plurality of laser elements 11, but the number can be changed as appropriate according to the required output.
  • the first lens 12 is disposed so as to face each laser element 11.
  • the optical fiber 13 includes a number of incident ends 13 a on which the excitation light E ⁇ b> 1 is incident and a single emission end 13 b that emits the excitation light E ⁇ b> 1 toward the light emitting unit 60 corresponding to the number of the laser elements 11.
  • the optical fiber 13 may be a bundle fiber in which a number of optical fibers corresponding to the number of laser elements 11 are bundled.
  • the fixing jig 62 is a member to which the light emitting unit 60 is fixed.
  • the fixing jig 62 has a cylindrical shape.
  • the light emitting unit 60 is thermally bonded to one end of a cylindrical fixing jig 62 using silicone grease or the like.
  • the material constituting the fixing jig 62 include metals such as aluminum, copper, iron, and silver.
  • the black alumite process may be given to the surface.
  • aluminum that has been subjected to black alumite treatment is used as the material of the fixing jig 62.
  • the ferrule 103 holds the optical fiber 13. Specifically, the ferrule 103 holds the optical fiber 13 so as to surround the vicinity of the emission end 13b.
  • the ferrule fixing part 104 is a member for fixing the ferrule 103 to the lighting device 200.
  • the ferrule fixing part 104 is provided at the end of the fixing jig 62, which is a cylindrical member, on the side opposite to the end where the light emitting part 60 is fixed.
  • the lens fixing unit 106 is a member that fixes the relative position between the light emitting unit 60 and the projection lens 105.
  • the lens fixing unit 106 is a cylindrical member that surrounds the periphery of the fixing jig 62 and the light projecting lens 105.
  • a material of the lens fixing portion 106 a material having high heat dissipation is preferable.
  • anodized aluminum or the like can be suitably used as the material for the lens fixing portion 106.
  • the heat radiation fins 107 are members that improve the heat radiation efficiency of the fixing jig 62.
  • the radiating fins 107 are provided on the side of the fixing jig 62 where the ferrule fixing portion 104 is provided.
  • the shape, size, number, etc. of the radiation fins 107 are determined by the output of the laser element 11 and the specifications of the light emitting unit 60. Thereby, the heat dissipation performance of the fixing jig 62 can be improved. Therefore, it is possible to suppress a decrease in light emission efficiency of the light emitting unit 60 accompanying a temperature increase.
  • FIG. 9 is a diagram illustrating a schematic configuration of the transmissive light emitting unit 60.
  • the light emitting unit 60 includes a light-transmitting substrate 61 (substrate) and a phosphor film including the first phosphor layer La1 and the second phosphor layer La2.
  • the first phosphor layer La ⁇ b> 1 and the second phosphor layer La ⁇ b> 2 are stacked on the light-transmitting substrate 61 in order from the incident side of the excitation light E ⁇ b> 1. That is, in the light emitting unit 60, the first phosphor layer La1 is disposed on the light transmissive substrate 61 side, and the surface of the first phosphor layer La1 facing the light transmissive substrate 61 through the light transmissive substrate 61. That is, the excitation light E1 is incident on (that is, the surface of the first phosphor layer La1 opposite to the surface facing the second phosphor layer La2).
  • the first fluorescent light is emitted from the surface opposite to the surface facing the first phosphor layer La1 of the second phosphor layer La2 disposed on the side far from the substrate 1 (the upper surface of the second phosphor layer La2).
  • illumination light E2 containing 2nd fluorescence is radiate
  • the first phosphor is the first YAG phosphor 3
  • the second phosphor is the second YAG phosphor 2. Therefore, white light (so-called pseudo white light) as illumination light E2 is obtained by irradiating the light emitting unit 60 with 450 nm (blue) excitation light E1 (or excitation light E1 near blue).
  • the first YAG phosphors 3, the second YAG phosphors 2, and the second YAG phosphor 2 and the light-transmitting substrate 61 are fixed by a binder (binder). preferable.
  • the particle diameter of the first YAG phosphor 3 disposed on the incident side of the excitation light E ⁇ b> 1 is equal to the second YAG phosphor disposed on the side far from the light transmissive substrate 61. Smaller than 2 particle size. That is, unlike the first embodiment, the first YAG phosphor 3 having a relatively small particle size is disposed on the light transmissive substrate 61 side.
  • the first phosphor layer La1 including the first YAG phosphor 3 having a relatively small particle size is irradiated. Is done.
  • the first YAG phosphor 3 absorbs the excitation light E1, and emits yellow fluorescence as the first fluorescence.
  • the second YAG phosphor 2 absorbs the excitation light E1 that has not been absorbed by the first YAG phosphor 3, and the second YAG phosphor 2 absorbs the second YAG phosphor 2. It emits yellow fluorescence as fluorescence. Then, (1) the excitation light E1 that has not been absorbed by the first YAG phosphor 3 and the second YAG phosphor 2, and (2) the yellow fluorescence as the first and second fluorescence are mixed to produce pseudo white light. Illumination light E2 is emitted from the second phosphor layer La2.
  • a multilayer film may be formed.
  • sapphire having high thermal conductivity is suitable for releasing heat generated in the phosphor film. It is desirable that the light transmissive substrate 61 is in contact with the heat sink.
  • Fluorescence generated in the phosphor film is emitted from the second phosphor layer La2 in all directions. However, if the dielectric multilayer film is formed, the fluorescence emitted in the direction of the ferrule 103 is reflected in the direction of the projection lens 105. Thereby, since the extraction efficiency of the light from the light emission part 60 improves, the illuminating device 200 with higher brightness
  • the light emitting unit 60 is manufactured by, for example, a sedimentation method.
  • the second YAG phosphor 2 having a relatively large particle size is dispersed in the slurry.
  • the light transmitting substrate 61 on which the first YAG phosphor 3 is deposited is put into the slurry in which the second YAG phosphor 2 is dispersed, so that the second YAG phosphor 2 is deposited on the first YAG phosphor 3. .
  • the light transmissive substrate 61 on which the first YAG phosphor 3 and the second YAG phosphor 2 are deposited is taken out from the slurry and dried.
  • the first YAG phosphor 3 and the second YAG phosphor 2 are coated with a binder.
  • the first YAG phosphor 3 and the second YAG phosphor 2 may be coated together or may be coated as follows. That is, after forming the first phosphor layer La1 (first phosphor layer), the first YAG phosphor 3 is coated with a binder. Thereafter, after forming the second phosphor layer La2 (second phosphor layer), the second YAG phosphor 2 is coated with a binder.
  • the manufacturing method of the light emitting unit 60 is not limited to the sedimentation method, but may be realized by a screen printing method, a coating method using a dispenser, an electrophoresis method, or the like.
  • the manufacturing method of the light emitting unit 60 using these methods is substantially the same as the content described in the first embodiment except for the following points. That is, in the present embodiment, after the first phosphor layer La1 including the first YAG phosphor 3 is formed on the light-transmitting substrate 61, the second phosphor layer La2 including the second YAG phosphor 2 is replaced with the first phosphor. Formed on the layer La1.
  • the excitation light E1 is applied to the first YAG phosphor 3 having a relatively small particle size, which is included in the first phosphor layer La1. Therefore, since the excitation light E1 can be efficiently scattered, the excitation light E1 and yellow fluorescence can be easily mixed. Therefore, it is possible to efficiently suppress the occurrence of color unevenness in the illumination light E2 emitted from the light emitting unit 60.
  • the first phosphor and the second phosphor constituting the light emitting unit 60 are of the same type and only the fluorescence excited by the excitation light E1 is emitted from the light emitting unit 60, the light emitting unit 60 is used. It is possible to efficiently suppress the occurrence of luminance unevenness in the illumination light E2 made of only fluorescence emitted from the.
  • the gap between the second YAG phosphors 2 becomes large as described in the first embodiment, so that light transmission is performed.
  • the surface of the conductive substrate 61 may be exposed, and the surface may be seen from the emission side of the illumination light E2.
  • the excitation light E1 emitted from the exposed portion may be emitted directly to the outside of the light emitting unit without being irradiated on the second YAG phosphor 2.
  • the first YAG phosphor 3 having a relatively small particle size is laminated on the light transmissive substrate 61 together with the second YAG phosphor 2.
  • the first phosphor layer La1 including the first YAG phosphor 3 having a relatively small particle diameter is provided on the incident side of the excitation light E1, but the first phosphor is disposed on the light transmissive substrate 61.
  • Layer La1 is arranged. Therefore, the heat generated in the first phosphor layer La1 can be efficiently dissipated to the light transmissive substrate 61 side. Therefore, even in the configuration in which the excitation light E1 is incident on the first phosphor layer La1, the heat generated from the light emitting unit 60 can be efficiently dissipated.
  • the peak wavelength of the red light-emitting phosphor included in the first phosphor layer La1 disposed on the substrate 1 side (that is, the incident side of the excitation light E1) is disposed on the first phosphor layer La1. It is longer than the peak wavelength of the green light emitting phosphor contained in the second phosphor layer La2. In this case, it is possible to prevent the fluorescence from the first phosphor layer La1 from re-exciting the phosphor of the second phosphor layer La2 and reducing the light emission efficiency.
  • the light emitting unit 60 can emit the illumination light E2 having the same color as when the excitation light E1 is included in the illumination light E2. .
  • the first phosphor layer La1 includes a green phosphor having a relatively small particle size
  • the second phosphor layer La2 has a red phosphor having a relatively large particle size. May include body.
  • the first phosphor and the second phosphor having different peak wavelengths are not limited to the red light-emitting phosphor and the green light-emitting phosphor, and the other phosphors emit other light according to the oscillation wavelength region of the excitation light E1.
  • the body can be selected as appropriate.
  • the first phosphor having a relatively small particle size and relatively large temperature quenching is relatively located on the incident side of the excitation light E1 (that is, the light transmissive substrate 61 side).
  • a second phosphor having a large particle size and relatively small temperature quenching may be disposed on the exit side of the illumination light E2. That is, the temperature quenching of the first phosphor disposed on the light transmissive substrate 61 side is larger than the temperature quenching of the second phosphor.
  • a red light-emitting phosphor can be used as the first phosphor
  • a green light-emitting phosphor can be used as the second phosphor.
  • the first phosphor having a relatively large temperature quenching is arranged on the light transmissive substrate 61 side, the light emission of the light emitting unit 60 during excitation by the excitation light E1 (particularly during strong excitation), as in the third embodiment. A decrease in efficiency can be suppressed.
  • the first phosphor and the second phosphor having different peak wavelengths are not limited to the red light-emitting phosphor and the green light-emitting phosphor. That is, a phosphor having a relatively high temperature quenching may be selected as the first phosphor, and a phosphor having a relatively small temperature quenching may be selected as the second phosphor. In addition, as the first phosphor and the second phosphor, phosphors that emit other light can be appropriately selected according to the oscillation wavelength region of the excitation light E1.
  • the transmissive light emitting unit 60 may be sealed with the sealing material 8. In this case, the thermal conductivity of the entire light emitting unit 60 can be increased.
  • the light emitter includes: A first phosphor layer (La1) including a first phosphor (first YAG phosphor 3, green light emitting phosphors 5, 7) that emits first fluorescence in response to excitation light (E1); A second phosphor layer (La2) including a second phosphor (second YAG phosphor 2, red light emitting phosphor 4, 6) that emits second fluorescence in response to the excitation light is formed on the substrate (1).
  • a second phosphor layer (La2) including a second phosphor (second YAG phosphor 2, red light emitting phosphor 4, 6) that emits second fluorescence in response to the excitation light is formed on the substrate (1).
  • Laminated The particle size of the first phosphor is smaller than the particle size of the second phosphor,
  • the first phosphor layer is disposed on the side far from the substrate, and excitation light is incident on the first phosphor layer.
  • the first fluorescence and the second fluorescence are emitted from the light emitter
  • the first fluorescence and the second fluorescence are included in the first phosphor layer and have a relatively small particle diameter. Since one phosphor is irradiated, the first fluorescence and the second fluorescence can be efficiently scattered. Therefore, it is possible to efficiently suppress the occurrence of luminance unevenness or color unevenness in the light emitted from the light emitter.
  • the light emitter (light emitting unit 60) includes: A first phosphor layer (La1) including a first phosphor (first YAG phosphor 3, red light emitting phosphor) that emits first fluorescence in response to excitation light (E1); A second phosphor layer (La2) including a second phosphor (second YAG phosphor 2, green light emitting phosphor) that emits second fluorescence in response to the excitation light is on the substrate (light transmissive substrate 61). Laminated to The particle size of the first phosphor is smaller than the particle size of the second phosphor, The first phosphor layer is disposed on the substrate, and the excitation light is incident on the first phosphor layer.
  • a first phosphor layer including a first phosphor (first YAG phosphor 3, red light emitting phosphor) that emits first fluorescence in response to excitation light (E1)
  • a phosphor having a relatively small particle size is likely to generate heat because of its low internal quantum efficiency compared to a phosphor having a relatively large particle size. For this reason, when a phosphor having a relatively small particle diameter is disposed on the incident side of the excitation light, the entire light emitter easily generates heat.
  • the first phosphor layer is disposed on the substrate, and excitation light is incident on the first phosphor layer. Therefore, even if the first phosphor layer including the first phosphor having a relatively small particle size is provided on the incident side of the excitation light, the first phosphor layer is disposed on the substrate. Heat generated in one phosphor layer can be efficiently dissipated. Therefore, even in a configuration in which excitation light is incident from the first phosphor layer, heat generated from the light emitter can be efficiently dissipated.
  • the light emitter according to the third aspect of the present invention is the first or second aspect.
  • the first phosphor and the second phosphor are preferably different from each other.
  • the light emitter according to aspect 4 of the present invention is the aspect 1,
  • the emission peak wavelength of the second phosphor is preferably longer than the emission peak wavelength of the first phosphor.
  • the light emitter according to the fifth aspect of the present invention is the second aspect.
  • the emission peak wavelength of the first phosphor is preferably longer than the emission peak wavelength of the second phosphor.
  • the light emitter according to the sixth aspect of the present invention is the first aspect.
  • the second phosphor layer is disposed closer to the substrate than the first phosphor layer;
  • the temperature quenching of the second phosphor is preferably larger than the temperature quenching of the first phosphor.
  • the temperature on the incident side of the excitation light on the light emitter is higher than that on the substrate side.
  • the second phosphor whose temperature quenching is larger than that of the first phosphor is arranged on the substrate side, the temperature quenching of the second phosphor is less likely to occur than the first phosphor. it can. Therefore, it can suppress that the luminous efficiency of a light-emitting body falls.
  • the light emitter according to aspect 7 of the present invention is the aspect 2,
  • the temperature quenching of the first phosphor is preferably larger than the temperature quenching of the second phosphor.
  • the temperature quenching of the first phosphor can be made difficult to occur. Therefore, it can suppress that the luminous efficiency of a light-emitting body falls.
  • a light-emitting device according to aspect 8 of the present invention is provided.
  • An excitation light source (laser element 11) that emits the excitation light;
  • a light emitter according to any one of aspects 1 to 7.
  • the light emitting device that can efficiently suppress occurrence of luminance unevenness or color unevenness in emitted light.
  • fever emitted from fluorescent substance efficiently like the aspect 2 is realizable.
  • the light-emitting device according to aspect 9 of the present invention is the light-emitting device according to aspect 8,
  • the excitation light source is preferably a laser element (11).
  • the luminous efficiency of the luminous body can be improved.
  • the lighting device (100, 200) according to the aspect 10 of the present invention includes: The light emitting device according to aspect 8 or 9, A light projecting unit (light projecting lenses 17 and 105) that projects the first fluorescence and the second fluorescence emitted from the light emitting device.
  • a light projecting unit light projecting lenses 17 and 105 that projects the first fluorescence and the second fluorescence emitted from the light emitting device.
  • the illuminating device that can efficiently suppress occurrence of luminance unevenness or color unevenness in emitted light.
  • fever emitted from fluorescent substance efficiently can be implement
  • the manufacturing method according to aspect 11 of the present invention includes: A method for producing a light emitter according to any one of aspects 1 to 7, wherein the light emitter is produced.
  • the first phosphor and the second phosphor are laminated on the substrate by electrophoresis or sedimentation.
  • the light emitter of the above aspect 1 or 2 can be manufactured.
  • the density (concentration) of the first phosphor inside the first phosphor layer and the second phosphor inside the second phosphor layer can be increased. Therefore, the gap between the first phosphors and the second phosphor can be reduced, so that the thickness of each layer can be reduced. Therefore, the thickness of the light emitter in the direction in which the layers are stacked on the substrate can be reduced.
  • a light-emitting device is provided over a highly reflective substrate including a semiconductor light-emitting element that emits light and a phosphor that converts light from the semiconductor light-emitting element into different colors.
  • a light emitting device that emits light by mixing light from the semiconductor light emitting element and fluorescence from the fluorescent member, the particle size distribution of the phosphor on the substrate side and the phosphor on the opposite side are different. The particle size of the phosphor on the substrate side is larger.
  • the particle size of the phosphor on the opposite side is 10 ⁇ m or less.
  • the phosphor on the substrate side has a longer emission wavelength than the phosphor on the opposite side.
  • the phosphor on the substrate side has a larger temperature quenching than the phosphor on the opposite side.
  • the phosphor (phosphor particles) is deposited on the substrate.
  • the semiconductor light-emitting element is a semiconductor laser.
  • a phosphor having a large particle diameter is deposited on the substrate side by an electrophoresis method or a sedimentation method, and a phosphor having a small particle diameter is deposited thereon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Filters (AREA)

Abstract

 輝度ムラまたは色ムラが発生することを効率良く抑制する。発光部(10)は、第1YAG蛍光体(3)を含む第1蛍光体層(La1)と、第2YAG蛍光体(2)を含む第2蛍光体層(La2)と、が基板(1)上に積層されている。第1YAG蛍光体の粒径は、第2YAG蛍光体の粒径よりも小さい。また、基板から遠い側に第1蛍光体層が配置されており、第1蛍光体層から励起光(E1)が入射される。

Description

発光体、発光装置、照明装置、および発光体の製造方法
 本発明は、励起光を受けて蛍光を発する発光体等に関する。
 近年、励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から生じた励起光を、蛍光体を含む発光部に照射することによって発生する蛍光を照明光として用いる発光装置の研究が盛んになってきている。このような発光装置の一例として、特許文献1に記載の発光装置が挙げられる。
 特許文献1には、発光素子上に、蛍光体を含む樹脂層が設けられた半導体発光装置が開示されている。この半導体発光装置では、発光素子から出射された光、および、当該蛍光体によって波長変換された光は、樹脂層を透過して外部に放出される。また、特許文献1には、相対的に粒径の大きい蛍光体を発光素子上に配置し、樹脂層の内部に相対的に粒径の小さい蛍光体を分散させた構成、及び樹脂層の内部に散乱材を含有させた構成が開示されている。
日本国公開特許公報「特開2009-135136号公報(2009年6月18日公開)」
 しかしながら、特許文献1に記載の発明では、樹脂層に蛍光体を分散させる場合、発光素子から離れた樹脂層で発熱が生じ、効率良く放熱ができない。また、樹脂層に散乱材を含有させると、多重散乱による光束の低下、または蛍光体に吸収されないで反射される励起光の増加が起こる。
 本発明は、上記の課題に鑑みてなされたものであって、その目的は、出射される光において、輝度ムラまたは色ムラが発生することを効率良く抑制することが可能な発光体を提供することにある。また、本発明の第2の目的は、蛍光体から発せられる熱を効率良く放散することが可能な発光体を提供することにある。
 上記の課題を解決するために、本発明の一態様に係る発光体は、
 励起光を受けて第1の蛍光を発する第1蛍光体を含む第1蛍光体層と、
 上記励起光を受けて第2の蛍光を発する第2蛍光体を含む第2蛍光体層と、が基板上に積層され、
 上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
 上記基板から遠い側に上記第1蛍光体層が配置されており、当該第1蛍光体層から上記励起光が入射される。
 さらに、上記の課題を解決するために、本発明の一態様に係る発光体は、
 励起光を受けて第1の蛍光を発する第1蛍光体を含む第1蛍光体層と、
 上記励起光を受けて第2の蛍光を発する第2蛍光体を含む第2蛍光体層と、が基板上に積層され、
 上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
 上記基板に上記第1蛍光体層が配置されており、当該第1蛍光体層から上記励起光が入射される。
 本発明の一態様によれば、出射される光において、輝度ムラまたは色ムラが発生することを効率良く抑制することができる。また、本発明の一態様によれば、蛍光体から発せられる熱を効率良く放散することができる。
実施形態1の発光部の概略的な構成を示す図である。 実施形態1の照明装置の概略的な構成を示す図である。 (a)および(b)は、実施形態1の比較例としての発光部の概略的な構成を示す図であり、(c)は、実施形態1の発光部の概略的な構成を示す図である。 基板に積層される蛍光体の粒径の大きさの違いによる、照明光の投光パターンの違いを説明するための図であり、(a)は、実施例の発光部における実験結果を示す図であり、(b)は、比較例の発光部における実験結果を示す図である。 実施形態2の発光部の概略的な構成を示す図である。 実施形態3の発光部の概略的な構成を示す図である。 (a)および(b)は、実施形態4の発光部の概略的な構成を示す図である。 実施形態5の照明装置の概略的な構成を示す図である。 実施形態5の発光部の概略的な構成を示す図である。
 〔実施形態1〕
 以下、本発明の実施の形態において、図1~図4に基づいて説明すれば、以下のとおりである。
 <照明装置100の概略構成>
 図2は、本実施形態の照明装置100の概略的な構成を示す図である。図2に示すように、照明装置100は、発光部10(発光体)、レーザ素子11、第1レンズ12、光ファイバ13、第2レンズ14、ミラー15、筐体16、および投光レンズ17(投光部)を備えている。発光部10およびレーザ素子11にて発光装置の基本構成が形成される。また、発光部10、レーザ素子11および投光レンズ17にて照明装置の基本構成が形成される。
 照明装置100は、レーザ素子11から出射された励起光E1によって励起されることにより発光部10から発せられた蛍光を少なくとも含む照明光E2を、投光レンズ17によって特定の方向に投光するように構成されている。本実施形態では、照明光E2が励起光E1と蛍光とを含むものとして説明するが、蛍光のみを照明光E2として投光する構成であってもよい。
 また、本願の照明装置は、車両用前照灯(例えば自動車の前照灯)やダウンライト等の照明装置に適用可能である。ダウンライトは、家屋、乗物などの構造物の天井に設置される照明装置である。その他にも、本願の照明装置は、車両以外の移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、サーチライト、プロジェクタ、ダウンライト以外の室内照明器具(スタンドランプなど)として実現されてもよい。
 レーザ素子11は、発光部10に含まれる第1蛍光体および第2蛍光体を励起する励起光E1(レーザ光)を出射する励起光源である。レーザ素子11は、440nm以上450nm以下(または490nm以下)の発振波長域にピーク波長を有する青色光の励起光である。本実施形態では、例えば450nmのピーク波長を有する励起光E1を出射する。
 なお、上記発振波長域は、発光部10に含める第1蛍光体および第2蛍光体の種類(すなわち、第1蛍光体および第2蛍光体の励起波長)等に応じて適宜選択すれば良く、例えば可視光の波長範囲を選択できる。また、本実施形態では、レーザ素子11を1個備えた構成を開示しているが、その個数は、その出力等に応じて決定すればよい。また、レーザ素子11の出力は、照明装置100の仕様に応じて適宜選択されてもよい。なお、複数のレーザ素子11を用いた場合、励起強度を高めることができる。
 また、本願の励起光源として、例えばLEDを用いることも可能である。
 また、図示しないが、レーザ素子11は電極端子を備え、当該電極端子には配線が接続されている。そして、レーザ素子11は、配線および電極端子を介して、駆動用の電源回路に接続されている。さらに、図示しないが、レーザ素子11の動作時に生じる熱を放散するために、ヒートシンクまたは冷却治具等の放熱機構が、レーザ素子11に設けられていてもよい。なお、放熱機構としては、熱伝導率の高いアルミニウム等の金属材料を用いることができる。
 第1レンズ12は、レーザ素子11から出射される励起光E1を集光する。そして、第1レンズ12によって集光された励起光E1は、光ファイバ13の入射端13aに入射される。すなわち、第1レンズ12は、励起光E1を光ファイバ13へと導光する導光部材として機能する。さらに換言すれば、レーザ素子11は、第1レンズ12を介して、光ファイバ13と光学的に結合されている。
 光ファイバ13は、レーザ素子11から出射された励起光E1を、第2レンズ14を介してミラー15へと導く導光部材である。この光ファイバ13は、レーザ素子11から出射された励起光E1を受け取る入射端13aと、入射端13aから入射した励起光E1を出射する出射端13bとを有する。第1レンズ12によって集光された励起光E1は、光ファイバ13の出射端13bから、第2レンズ14を透過して、ミラー15へと出射される。
 なお、レーザ素子11が複数存在する場合には、複数の光ファイバ13の入射端13aが各レーザ素子11に対向するように設けられればよく、例えばバンドルファイバであってもよい。さらに、複数存在する場合であっても、光ファイバ13は1本であってよい。この場合、レンズやミラー等の部材を用いて、複数のレーザ素子11から出射された励起光E1を1本の光ファイバ13にカップリングさせても良い。また、レーザ素子11と発光部10とを光学的に結合する導光部材として光ファイバ13以外の部材を用いてもよく、導光部材の種類は限定されない。
 第2レンズ14は、光ファイバ13の出射端13bから出射された励起光E1を、略平行光となるように制御して、ミラー15へと導光する導光部材である。すなわち、光ファイバ13は、第2レンズ14を介して、ミラー15と光学的に結合されている。
 ミラー15は、第2レンズ14を透過した励起光E1を反射し、発光部10に入射させる。ミラー15は、反射した励起光E1が、発光部10に入射するように配置される。
 発光部10は、ミラー15で反射された励起光E1を受けて蛍光を発するものである。具体的には、発光部10に含まれる第1蛍光体および第2蛍光体が励起光E1によって励起されることにより、発光部10から蛍光が発せられる。発光部10の詳細な構成については後述する。
 なお、レーザ素子11から出射された励起光E1は、第1レンズ12、光ファイバ13および第2レンズ14を介することなく、発光部10に直接入射されてもよい。
 筐体16は、主として、発光部10、第2レンズ14およびミラー15を支持するものである。筐体16の材料としては、例えばアルミニウムを用いることができる。この場合、発光部10で発生した熱を筐体16の外部へと効率良く放散することができる。なお、銅(Cu)、ステンレス、またはマグネシウム(Mg)等の任意の部材から成る部材に、銀(Ag)またはアルミニウム(Al)をコーティングさせることによって、筐体16を形成してもよい。
 投光レンズ17は、発光部10から発せられた蛍光を少なくとも含む照明光E2を外部へ投光する投光部材(投光光学系)である。投光レンズ17は、発光部10と対向するように配置されており、発光部10から出射された照明光E2を屈折させることで、所定の角度範囲に投光する。本実施形態では、上記蛍光と、発光部10によって散乱した励起光E1とを含む照明光E2が、投光レンズ17によって投光される。
 本実施形態では、投光レンズ17として凸レンズが用いられている。投光レンズ17は、球面レンズまたは非球面レンズのどちらでもよい。投光レンズ17の材質は、アクリル樹脂、ポリカーボネイト、シリコーン樹脂、ホウケイ酸ガラス、BK7、または石英などから適宜選択すればよい。投光レンズ17は、図2に記載されているように単独であってもよいし、複数であってもよい。
 なお、投光レンズ17に代えて、ミラーと凸レンズとを併用したプロジェクタ型、または、リフレクタ(凹面鏡)を用いた構成等の他の構成によって、投光光学系を構成することも可能である。このリフレクタは、例えば、放物線の対称軸を回転軸として、当該放物線を回転させることによって形成される反射曲面を、上記の回転軸に平行な平面で切断することによって得られる部分曲面の少なくとも一部をその反射曲面に含んでいるパラボラミラー(パラボラリフレクタ)である。投光光学系としてリフレクタを用いる場合、リフレクタのほぼ焦点位置に発光部10が配置される。
 <発光部10の具体的構成>
 次に、図1に基づいて、発光部10の具体的構成について説明する。図1は、反射型の発光部10の概略的な構成を示す図である。図1に示すように、発光部10は、基板1と、第1蛍光体層La1および第2蛍光体層La2を含む蛍光体膜とにより構成されている。
 第1蛍光体層La1は、励起光E1を受けて第1の蛍光を発する粒子状の第1蛍光体を含む層である。また、第2蛍光体層La2は、励起光E1を受けて第2の蛍光を発する粒子状の第2蛍光体を含む層である。そして、第1蛍光体層La1および第2蛍光体層La2は、基板1上に積層されている。すなわち、発光部10は、2重構造となっている。
 本実施形態では、図1に示すように、励起光E1の入射側から順に、第1蛍光体層La1および第2蛍光体層La2が基板1上に積層されている。すなわち、基板1から遠い側に第1蛍光体層La1が配置されており、第1蛍光体層La1の、第2蛍光体層La2に対向する表面とは反対側の表面(第1蛍光体層La1の上面)に励起光E1が入射される。そして、第1蛍光体層La1の上面から第1の蛍光および第2の蛍光を含む照明光E2が出射される。すなわち、発光部10では、励起光E1が主に入射する面と、蛍光が外部に主に出射される面とが同一の面となっている。本願では、このような発光部を、「反射型」の発光部と称する。
 第1蛍光体および第2蛍光体としては、例えば、酸窒化物系蛍光体(例えば、サイアロン蛍光体)を用いることができる。酸窒化物系蛍光体は、レーザ素子11から発せられた高い出力(および/または光密度)のレーザ光に対しての熱耐性が高く、レーザ照明光源に最適である。また、第1蛍光体および第2蛍光体としては、YAG(イットリウム-アルミニウム-ガーネット)系の蛍光体を用いることができる。その他、窒化物蛍光体等を、第1蛍光体および第2蛍光体として用いることができる。
 本実施形態では、第1蛍光体および第2蛍光体はともに、黄色に発光する黄色発光蛍光体であり、YAG系の蛍光体(例えば、YAG:Ce蛍光体)である。YAG:Ce蛍光体は、ピーク波長が約550nmである黄色の蛍光を発する。本実施形態では、第1蛍光体を第1YAG蛍光体3と称する。また、第2蛍光体を第2YAG蛍光体2と称する。その他、黄色発光蛍光体である第1蛍光体および第2蛍光体として、Ca-α-SiAlON:Eu蛍光体を用いることができる。
 本実施形態では、第1YAG蛍光体3および第2YAG蛍光体2を発光部10に含め、450nm(青色)の励起光E1(または、440nm以上490nm以下の波長範囲にピーク波長を有する、いわゆる青色近傍の励起光E1)を照射することで、照明光E2としての白色光(いわゆる、擬似白色光)が得られる。例えば、ヘッドランプの照明光は、所定の範囲の色度を有する白色にしなければならないことが、法律により規定されている。照明装置100は、白色光を照明光E2として投光することができるので、照明装置100をヘッドランプ(車両用前照灯)として適用することができる。
 なお、第1蛍光体および第2蛍光体は同一種類でなくてもよく、2種類以上の蛍光体であってもよい。例えば、実施形態2で後述するように、緑色発光蛍光体および赤色発光蛍光体を発光部10に含め、青色または青色近傍の励起光E1を照射することで上記白色光を得てもよい。また、青色、緑色および赤色の蛍光体を発光部10に含め、405nmの励起光E1(すなわち、青紫色の励起光)を照射することにより、照明光E2として白色光を発生させてもよい。この場合、レーザ素子11は、青紫色の励起光を出射する。また、この場合には、405nmの励起光E1をカットするフィルターを設けることで、発光部10から出射される照明光E2は、発光部10が励起した蛍光のみを含むようにしてもよい。
 また、照明光E2として白色光が発光部10から出射される必要は必ずしもない。すなわち、レーザ素子11の発振波長域、第1蛍光体および第2蛍光体の種類は、発光装置として要求される色の照明光E2を出射可能なように適宜選択される。
 また、第1YAG蛍光体3どうし、第2YAG蛍光体2どうし、および第2YAG蛍光体2と基板1とは、結着材(バインダー)によって固着されていることが好ましい。すなわち、第1YAG蛍光体3および第2YAG蛍光体2は、上記結着材によってコーティングされていることが好ましい。これにより、第1YAG蛍光体3どうし、第2YAG蛍光体2どうし、および第2YAG蛍光体2と基板1との密着性が高まる。
 結着材としては、耐熱性の高い無機系の透明な材料から構成されていることが好ましく、例えばSiO(二酸化ケイ素)またはTiO(二酸化チタン)が挙げられる。結着材に無機系の材料を用いた場合、第1蛍光体層La1および第2蛍光体層La2を、その内部に有機物が含まれないように製作することができるので、励起光E1の照射による発光部10の特性劣化を防ぐことができる。
 なお、本実施形態では、結着材によるコーティングにより、第1YAG蛍光体3どうし、第2YAG蛍光体2どうし、および第2YAG蛍光体2と基板1とは、直接接触しない構成となっている。しかしこの構成に限らず、例えば、基板1に第2YAG蛍光体2が直接接触していてもよいし、第1YAG蛍光体3と第2YAG蛍光体2とが直接接触していてもよい。
 さらに、本実施形態では、結着材によるコーティング後において、第1YAG蛍光体3どうし、第2YAG蛍光体2どうし、および第2YAG蛍光体2と基板1との間に隙間が形成されている。この構成の場合、蛍光体と上記隙間の空気との屈折率差により、励起光E1および蛍光が散乱しやすい。しかしこの点を考慮しなければ、結着材によって当該隙間が完全に埋められていてもよい。
 また、本実施形態では、図1に示すように、励起光E1の入射側に配置された第1YAG蛍光体3の粒径は、基板1側に配置された第2YAG蛍光体2の粒径よりも小さい。相対的に粒径が小さい第1YAG蛍光体3の粒径は、例えば1μm以上10μm以下であることが好ましい。第1YAG蛍光体3の粒径が1μm未満である場合には発光効率が低下する傾向にある。また、第1YAG蛍光体3の粒径が10μm以下である場合には特に、入射した励起光E1および出射する照明光E2を効率良く散乱させることができる。
 ここで、本願の粒径とはメディアン径(d50)を指す。メディアン径とは、粒径(粒子径)を基準に蛍光体のグループを2つに分けたとき、大きい粒径を有するグループと小さい粒子径を有するグループとが等量になるときの粒径のことである。第1YAG蛍光体3および第2YAG蛍光体2の粒径の大きさは、例えば、基板1に垂直な断面を電子顕微鏡等で観察することにより判別できる。特に、基板1から遠い側に配置された第1YAG蛍光体3の粒径の大きさは、基板1に垂直な方向から電子顕微鏡等で観察することにより判別できる。
 基板1は、第1蛍光体層La1および第2蛍光体層La2が支持するものである。基板1は、例えば金属またはセラミックで構成されることが好ましい。この場合、第1蛍光体層La1および第2蛍光体層La2が発した熱を効率良く放散させることができる。また、基板1は、金属の中でも、光の反射率の高いアルミニウムまたは銀等で構成されることが好ましい。この場合には、放熱効果に加え、第1蛍光体層La1および第2蛍光体層La2に吸収されなかった励起光E1を、再び第1蛍光体層La1および第2蛍光体層La2側へと効率良く出射することができる。そのため、発光部10の、励起光E1の利用効率を高めることができる。
 なお、基板1に第2YAG蛍光体3が直接接触している場合には、第1蛍光体層La1および第2蛍光体層La2で発生した熱をより効率良く基板1へと放散させることができる。第1YAG蛍光体2と第2YAG蛍光体3とが直接接触している場合には、第1蛍光体層La1で発生した熱をさらに効率良く基板1へと放散させることができる。
 また、基板1の、励起光E1が入射する側から見た場合におけるサイズは、第1蛍光体層La1および第2蛍光体層La2のサイズと同じか、または第1蛍光体層La1および第2蛍光体層La2のサイズより大きい。
 本実施形態の発光部10では、励起光E1としての青色光が、相対的に粒径の小さい第1YAG蛍光体3を含む第1蛍光体層La1に照射される。第1蛍光体層La1では、第1YAG蛍光体3が励起光E1を吸収し、第1の蛍光としての黄色の蛍光を発する。その後、相対的に粒径の大きい第2YAG蛍光体2を含む第2蛍光体層La2は、第2YAG蛍光体2が第1YAG蛍光体3に吸収されなかった励起光E1、および基板1で反射した励起光E1を吸収し、第2の蛍光としての黄色の蛍光を発する。そして、(1)第1YAG蛍光体3および第2YAG蛍光体2に吸収されなかった励起光E1と、(2)第1および第2の蛍光としての黄色の蛍光とが混色され、擬似白色光としての照明光E2が第1蛍光体層La1から出射される。
 そして、励起光E1が発光部10に入射するとき、および照明光E2が発光部10から出射するときに、励起光E1および照明光E2は、第1蛍光体層La1に含まれる、相対的に粒径の小さい第1YAG蛍光体3に照射される。また、第1YAG蛍光体3の粒径は第2YAG蛍光体2の粒径よりも小さいので、第1蛍光体層La1における第1YAG蛍光体3間の隙間は、第2蛍光体層La2における第2YAG蛍光体2間の隙間よりも小さい。そのため、上記励起光E1および照明光E2を効率的に散乱させることができる。それゆえ、発光部10から出射される照明光E2において、色ムラが発生することを効率良く抑制することができる。
 また、発光部10を構成する第1蛍光体および第2蛍光体が同一種類であり、励起光E1で励起された蛍光のみが発光部10から出射される構成である場合には、発光部10から出射される、蛍光のみからなる照明光E2において、輝度ムラが発生することを効率良く抑制することができる。
 <発光部10の製造方法>
 次に、発光部10の製造方法について説明する。発光部10は、例えば沈降法によって製造される。
 沈降法では、第1YAG蛍光体3および第2YAG蛍光体2を溶媒(たとえば、エタノール)中に投入し、攪拌を行い、スラリーを作製する。このとき、分散剤及び結着剤を混入させてもよい。その後、第1YAG蛍光体2および第2YAG蛍光体3を分散させたスラリー中に基板1を投入することにより、第1YAG蛍光体2および第2YAG蛍光体3が基板1に堆積する。分散剤を混入することで、第1YAG蛍光体2および第2YAG蛍光体3の沈降速度を低下させることができ、第1蛍光体層La1および第2蛍光体層La2の厚さの調整が容易になる。また、結着剤を混入することで、第1蛍光体層La1および第2蛍光体層La2の密着性が高まる。その後、第1YAG蛍光体2および第2YAG蛍光体3が堆積した基板1をスラリー中から取り出し、乾燥させる。次に、第1YAG蛍光体2どうし、第2YAG蛍光体3どうし、および第2YAG蛍光体2と基板1との密着性を高めるために、第1YAG蛍光体2および第2YAG蛍光体3を上述の結着材によってコーティングする。
 ここで一般に、沈降速度は、発光部に含められた蛍光体の密度と粒径とに依存する。同一種類の蛍光体の場合、発光部における蛍光体の密度は略均一となるため、粒径が大きいものほど基板側に堆積することになる。
 本実施形態では、第1YAG蛍光体2および第2YAG蛍光体3という同一種類の蛍光体を用いている。そのため、相対的に粒径の大きな第2YAG蛍光体2が基板1に積層した後、相対的に粒径の小さな第1YAG蛍光体3が、第2YAG蛍光体2の上に積層する。これにより、図1に示すように、基板1側に第2YAG蛍光体2を含む第2蛍光体層La2が、基板1から遠い側(すなわち、励起光E1の入射側)に第1YAG蛍光体3を含む第1蛍光体層La1が形成される。
 なお、上記の沈降法では、粒径分布の異なる第1YAG蛍光体3および第2YAG蛍光体2を初めからスラリー中に混ぜているが、これに限られない。
 例えば、まず相対的に粒径の大きな第2YAG蛍光体2をスラリー中に分散させる。その後、第2YAG蛍光体2を分散させたスラリー中に基板1を投入することにより、第2YAG蛍光体2が基板1に堆積する。その後、第2YAG蛍光体2が堆積した基板1をスラリー中から取り出し、乾燥させる。
 次に、相対的に粒径の小さな第1YAG蛍光体3をスラリー中に分散させる。その後、第1YAG蛍光体3を分散させたスラリー中に、第2YAG蛍光体2が堆積した基板1を投入することにより、第2YAG蛍光体2の上に第1YAG蛍光体3を堆積させる。その後、第1YAG蛍光体3および第2YAG蛍光体2が堆積した基板1をスラリー中から取り出し乾燥させる。
 そして、上記と同様、第1YAG蛍光体3および第2YAG蛍光体2を結着材によってコーティングする。なお、結着材を用いたコーティングは、次のように行ってもよい。例えば、第2YAG蛍光体2を堆積させ、第2蛍光体層La2(1層目の蛍光体層)を形成した後、第2YAG蛍光体2を結着材によってコーティングする。その後、第2蛍光体層La2の上に第1YAG蛍光体3を堆積させ、第1蛍光体層La1(2層目の蛍光体層)を形成した後、第1YAG蛍光体3を結着材によってコーティングする。
 電気泳動法では、第1YAG蛍光体3、第2YAG蛍光体2および分散剤を溶媒中に投入し、スラリーを作製する。このとき、結着剤を混入させてもよい。結着剤を混入することで第1蛍光体層La1および第2蛍光体層La2の密着性が高まる。そしてまず、スラリーに2つの電極を上下に配置し、下の電極として基板1を配置する。次に、第1YAG蛍光体3および第2YAG蛍光体2が基板1に堆積するように電圧を印加する。このとき、基板1は導電性を持つ必要があるので金属が好ましい。第1YAG蛍光体3および第2YAG蛍光体2は電界による移動と同時に沈降するので、基板1側に第2YAG蛍光体2を含む第2蛍光体層La2が、基板1から遠い側(すなわち、励起光E1の入射側)に第1YAG蛍光体3を含む第1蛍光体層La1が形成される。
 なお、上記の電気泳動法では、粒径分布の異なる第1YAG蛍光体3および第2YAG蛍光体2を初めからスラリー中に混ぜているが、これに限らず、沈降法と同様に第1YAG蛍光体3と第2YAG蛍光体2とを別のスラリーで作製し、別々に堆積させてもよい。また、発光部10の製造方法としては、上記沈降法及び電気泳動法に限らず、スクリーン印刷法、ディスペンサーによる塗布法等で実現されてもよい。
 スクリーン印刷法では、まず、合成繊維または金属繊維からなるメッシュが形成されたスクリーンマスクを基板1上に配置し、スキージにより当該メッシュから第2YAG蛍光体2を含んだインクを吐出することで、基板1上に第2蛍光体層La2を形成する。次に、スクリーンマスクを第2蛍光体層La2上に配置し、当該メッシュから第1YAG蛍光体3を含んだインクを吐出することで、第2蛍光体層La2上に第1蛍光体層La1を形成する。また、メッシュのないメタルマスクをスクリーンマスクとして用いることもできる。この場合、メッシュの跡が第1蛍光体層La1および第2蛍光体層La2に残らないのでより好ましい。インクは、第1YAG蛍光体3および第2YAG蛍光体2を含む蛍光体粒子、分散媒となる有機溶剤、粘度を上げるための樹脂、並びに分散材から構成される。上記蛍光体粒子以外の有機成分は印刷した後に、高温で焼成することで除去される。焼成した後に、第1蛍光体層La1および第2蛍光体層La2を結着材でコーティングすることで、第1蛍光体層La1および第2蛍光体層La2の密着性が高まる。インクにあらかじめ結着材を入れて印刷してもよい。
 ディスペンサーによる塗布法では、まず、ディスペンサーから第2YAG蛍光体2を分散させた有機溶剤を吐出することで、基板1上に第2蛍光体層La2を形成する。次に、ディスペンサーから第1YAG蛍光体3を分散させた溶剤を吐出することで、第2蛍光体層La2上に第1蛍光体層La1を形成する。その後、高温で焼成することにより、有機成分を除去する。焼成した後に、第1蛍光体層La1および第2蛍光体層La2を結着材でコーティングすることで、第1蛍光体層La1および第2蛍光体層La2の密着性が高まる。
 特に、沈降法または電気泳動法を用いて発光部10を製造する場合、第1蛍光体層La1と第2蛍光体層La2とを同時に堆積させることができるので望ましい。
 <発光部10の効果>
 本実施形態の発光部10では、第2YAG蛍光体2の粒径よりも小さい粒径を有する第1YAG蛍光体3を含む第1蛍光体層La1が、基板1から遠い側に配置されている。そして、第1蛍光体層La1に励起光E1が入射される。それゆえ、上述のとおり、発光部10から出射される照明光E2において、輝度ムラまたは色ムラが発生することを効率良く抑制することができる。
 また、本実施形態の発光部10によれば、従来の発光装置において生じる問題を解決することができる。この点について、図3の(a)~(c)に基づいて説明する。図3の(a)は、基板1に第2蛍光体層La2のみが配置された、本実施形態の比較例としての発光部10aの概略的な構成を示す図である。すなわち、発光部10aでは、基板1に、相対的に粒径の大きい第2YAG蛍光体2のみが積層されている。図3の(b)は、基板1に第1蛍光体層La1のみが配置された、本実施形態の比較例としての発光部10bの概略的な構成を示す図である。すなわち、相対的に粒径の小さい第1YAG蛍光体3のみが積層されている。図3の(c)は、本実施形態の発光部10の概略構成を示す図である。
 図3の(a)に示すように、発光部10aでは、相対的に粒径の大きな第2YAG蛍光体2のみを用いているため、第2YAG蛍光体2に入射した励起光E1の吸収率は、発光部10bに比べて高い。そのため、励起光E1に対する発光効率は、発光部10bに比べて高い。しかしながら、発光部10に励起光E1が入射されるとき、および発光部10から照明光E2が出射されるときに、励起光E1および照明光E2の散乱が起こりにくい。
 また、一般に、励起光の吸収率が高い場合、照明光として所望の色を得るためには、発光部に含まれる蛍光の密度を低くする必要がある。発光部10aでは、励起光E1の吸収率が高いため、第2蛍光体層La2に含まれる第2YAG蛍光体2の密度を低くする必要がある。そのため、第2蛍光体層La2どうしの隙間が大きくなってしまい、励起光E1と黄色の蛍光とが混ざりにくくなり、照明光E2において色ムラが目立ってしまう。
 さらに、隙間が大きくなることにより、基板1の表面が剥き出しとなり、励起光E1の入射側(すなわち、照明光E2の出射側)から当該表面が見えてしまう可能性がある。この場合、直接基板1に照射され、かつ反射した励起光E1が第2YAG蛍光体2に照射されず、そのまま照明光E2に含まれて出射されやすくなる。
 一方、図3の(b)に示すように、発光部10bでは、相対的に粒径の小さな第1YAG蛍光体3を用いているため、励起光E1の吸収率(すなわち、発光効率)は発光部10aに比べて低くなる。そのため、吸収率の低下を補うために、第1YAG蛍光体3の量を増やす必要がある。その結果、図3の(b)に示すように、第1蛍光体層La1の膜厚が厚くなってしまう。また、膜厚が厚くなることにより、放熱性が低下する。
 一方で、発光部10bでは、相対的に粒径が小さい第1YAG蛍光体3を用いているので、発光部10aに比べ、励起光E1の入射時および照明光E2の出射時に、第1YAG蛍光体3の表面において、励起光E1および照明光E2を効率良く散乱することができる。それゆえ、照明光E2において色ムラが発生することを抑制することができる。また、照明光E2として所望の色を得るために、第1蛍光体層La1に含まれる第1YAG蛍光体3の密度を低くする必要がない。
 図3の(c)に示す本実施形態の発光部10では、上述のように、相対的に粒径が小さい第1YAG蛍光体3を含む第1蛍光体層La1が、基板1から遠い側に配置されている。そして、第1蛍光体層La1に励起光E1が入射される。
 励起光E1が最初に照射される側に、相対的に粒径が小さい第1YAG蛍光体3が配置されているので、発光部10bと同様、励起光E1を効率良く散乱させることができる。また、発光部10bと同様、照明光E2の出射時に、励起光E1を効率良く散乱させることができる。さらに、励起光E1を効率良く散乱させることができるので、励起光E1と黄色の蛍光とが混ざりやすくなる。それゆえ、照明光E2において、色ムラの発生を効率良く抑制することができる。
 また、相対的に粒径が小さい第1YAG蛍光体3を用いた場合には、上述のように励起光E1に対する発光効率は低下するが、発光部10では、相対的に粒径が大きい第2YAG蛍光体2を含む第2蛍光体層La2が基板1側に配置されている。それゆえ、相対的に粒径が小さい第1YAG蛍光体3を用いた場合であっても、上記発光効率の低下を防ぐことができる。また、第2蛍光体層La2を配置することにより、発光部10の膜厚を薄くすることができる。それゆえ、発光部10の最上面(照明光E2の出射面であり、第1蛍光体層La1の上面)までの距離が短くなるため、放熱性を向上させることができる。
 また、相対的に粒径が大きい第2YAG蛍光体2を用いた場合であっても、相対的に粒径が小さい第1YAG蛍光体3を積層させているため、基板1の表面が剥き出しとなる箇所がなくなる。そのため、基板1にて反射した励起光E1が直接外部に出射されることを抑制することができ、安全性を向上させることができる。
 (特許文献1との相違)
 また、特許文献1の半導体発光装置は、所謂透過型の発光部(樹脂層)を有する構成である(「透過型」の発光部については、実施形態5にて説明)。この発光部を所謂反射型の発光部に用いた場合、励起光が蛍光体に入射される前に、樹脂層内に含まれる散乱材(光散乱層)を通過することになる。そのため、多重散乱による照明光の光束の低下、蛍光体に吸収されずに反射される励起光の増加が生じる可能性がある。また、相対的に粒径の小さい蛍光体を樹脂層の内部に分散させた構成の場合、当該蛍光体が発光素子(すなわち、素子基板)から離れているので、樹脂層の温度が上がり、樹脂層の劣化や発光効率の低下が生じる可能性がある。
 一方、本実施形態の発光部10では、相対的に粒径の小さい第1YAG蛍光体3に励起光E1を入射させ、かつ、当該第1YAG蛍光体3から照明光E2を出射させる。そのため、散乱材を設けることなく、色ムラの発生を効率良く抑制することができる。また、散乱材を設けないため、上記のような光束の低下、および反射される励起光の発生を抑制することができる。また、散乱材を設けないため、第1YAG蛍光体3および第2YAG蛍光体2は、効率良く励起光E1を吸収することができる。
 さらに、基板に第1YAG蛍光体3および第2YAG蛍光体2を積層させている(樹脂層に分散させた構成ではない)ので、第1YAG蛍光体3および第2YAG蛍光体2で発生した熱を効率良く放散することができる。そのため、上記のような発光部10の劣化や発光効率の低下の発生を抑制することができる。
 <実施例>
 図4は、基板1に積層される蛍光体の粒径の大きさの違いによる、照明光E2の投光パターンの違いを説明するための図である。図4の(a)は、本実施例の発光部10における実験結果を示す図であり、図4の(b)は、比較例の発光部10aにおける実験結果を示す図である。
 図4では、励起光源として、ピーク波長445nmを有する励起光E1を出射するレーザ素子11を用いた。また、第1YAG蛍光体3としては、粒径(d50)が9μmのものを用いた。また、第2YAG蛍光体2としては、粒径(d50)が13μmのものを用いた。そして、発光部10および発光部10aから出射された照明光E2を、投光レンズ17から白色の壁面に投光した。その壁面に投光された照明光E2が形成した投光パターンを撮像した。発光部10から出射された照明光E2が形成した投光パターンを撮像した結果が図4の(a)に示され、発光部10aから出射された照明光E2が形成した投光パターンを撮像した結果が図4の(b)に示される。
 図4の(a)および(b)を比べると、(b)では発光部10bの蛍光体層のニアフィールドパターンがほぼそのまま現れていて、蛍光体粒子が黄色、蛍光体粒子間の隙間が青く、黄色と青色とが分離して見える。これに対し、(a)では蛍光体粒子の隙間はほぼ見られず、黄色と青色とが混色され、白く見えていて、実務上問題にならない程度にまで色ムラが低減されている。すなわち、本実施例の発光部10から得られた投光パターン(図4の(a))の方が、比較例の発光部10aから得られた投光パターン(図4の(b))よりも色ムラが低減されていることが分かる。
 〔実施形態2〕
 本発明の他の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図5は、本実施形態の発光部20(発光体)の概略的な構成を示す図である。反射型の発光部20では、第1蛍光体層La1に含まれる第1蛍光体として緑色発光蛍光体5が用いられ、第2蛍光体層La2に含まれる第2蛍光体として赤色発光蛍光体4が用いられている。この点で、実施形態1の発光部10とは異なる。すなわち、本実施形態の発光部20は、互いに異なる発光波長を有する二種類の(すなわち、互いに種類の異なる)第1蛍光体および第2蛍光体を積層した構造となっている。
 図5に示すように、励起光E1の入射側(すなわち、照明光E2の出射側で、かつ基板1から遠い側)に配置された第1蛍光体層La1に含まれる、相対的に粒径の小さい緑色発光蛍光体5は、例えばピーク波長(発光ピーク波長)が約530nmである緑色の蛍光(第1の蛍光)を発する。緑色発光蛍光体5としては、例えばβ-SiAlON蛍光体を用いることができる。
 また、基板1側に配置された第2蛍光体層La2に含まれる、相対的に粒径の大きい赤色発光蛍光体4は、例えばピーク波長が約630nmである赤色の蛍光(第2の蛍光)を発する。赤色発光蛍光体4としては、例えばCaAlSiN:Eu蛍光体(CASN蛍光体)や(Sr,Ca)AlSiN:Eu蛍光体(SCASN蛍光体)を用いることができる。
 本実施形態では、発光部20は、励起光E1としての青色光と、緑色発光蛍光体5から発せられる緑色の蛍光と、赤色発光蛍光体4から発せられる赤色の蛍光とを混合した白色光としての照明光E2を出射する。
 また、本実施形態では、基板1側に配置された第2蛍光体層La2に含まれる赤色発光蛍光体4のピーク波長の方が、励起光E1の入射側に配置された第1蛍光体層La1に含まれる緑色発光蛍光体5のピーク波長よりも長い。第2蛍光体層La2からの蛍光は、第1蛍光体層La1に入射するが、仮に、第2蛍光体層La2に含まれる蛍光体よりもピーク波長の長い蛍光体が第1蛍光体層La1に含まれる場合、第2蛍光体層La2からの蛍光が第1蛍光体層La1に含まれる蛍光体を再励起する現象が起こる可能性がある。そのため、第1蛍光体層La1に波長の短い緑色発光蛍光体5、第2蛍光体層La2に波長の長い赤色発光蛍光体4を配置することにより、第2蛍光体層La2からの蛍光が第1蛍光体層La1に再吸収されることを防止することができる。
 なお、この点を考慮しなければ、第1蛍光体層La1に、相対的に粒径の小さい赤色発光蛍光体4を含め、第2蛍光体層La2に、相対的に粒径の大きい緑色発光蛍光体5を含めてもよい。また、互いに異なるピーク波長を有する第1蛍光体および第2蛍光体としては、赤色発光蛍光体4および緑色発光蛍光体5に限らず、励起光E1の発振波長域に応じて、その他の光を発する蛍光体を適宜選択可能である。
 <発光部20の効果>
 発光部20は、相対的に粒径の小さい緑色発光蛍光体5を励起光E1の入射側(照明光E2の出射側)に配置しているので、実施形態1と同様、色ムラおよび輝度ムラの発生を効率良く抑制することができる。
 また、緑色発光蛍光体5と赤色発光蛍光体4とは互いに種類の異なる蛍光体のため、照明光E2の色のバリエーションを増やすことができる。例えば、照明光E2としての白色光に赤味成分を追加することができる。この場合、照明光E2の演色性を向上させることができる。
 また、上記蛍光体の種類が互いに異なるため、照明光E2に励起光E1を含めない場合であっても、発光部20は、照明光E2に励起光E1を含めた場合と同様の色の照明光E2を出射することが可能となる。例えば、青色発光蛍光体、緑色発光蛍光体および赤色発光蛍光体を第1蛍光体および第2蛍光体のいずれかに含め、これらの蛍光体に405nmの励起光E1を照射することにより、蛍光のみで白色光(照明光E2)を発生させることができる。
 〔実施形態3〕
 本発明の他の実施形態について、図6に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図6は、本実施形態の発光部30(発光体)の概略的な構成を示す図である。反射型の発光部30では、第1蛍光体層La1に含まれる第1蛍光体として緑色発光蛍光体7が用いられ、第2蛍光体層La2に含まれる第2蛍光体として赤色発光蛍光体6が用いられている。この点で、実施形態1の発光部10とは異なる。すなわち、本実施形態の発光部30は、互いに異なる発光波長を有する二種類の(すなわち、互いに種類の異なる)第1蛍光体および第2蛍光体を積層した構造となっている。
 図6に示すように、励起光E1の入射側(すなわち、照明光E2の出射側で、かつ基板1から遠い側)に配置された第1蛍光体層La1に含まれる、相対的に粒径の小さい緑色発光蛍光体7は、例えばピーク波長(発光ピーク波長)が約530nmである緑色の蛍光(第1の蛍光)を発する。緑色発光蛍光体7としては、実施形態2と同様、例えばβ-SiAlON蛍光体を用いることができる。また、この緑色発光蛍光体7は、赤色発光蛍光体6に比べて温度消光が小さい。
 また、第1蛍光体層La1よりも基板1側に配置された第2蛍光体層La2に含まれる、相対的に粒径の大きい赤色発光蛍光体6は、例えばピーク波長が約630nmである赤色の蛍光(第2の蛍光)を発する。赤色発光蛍光体6としては、実施形態2と同様、例えばCASN蛍光体またはSCASN蛍光体を用いることができる。また、この赤色発光蛍光体6は、緑色発光蛍光体7に比べて温度消光が大きい。
 すなわち、発光部30では、相対的に粒径が小さく、かつ相対的に温度消光が小さい緑色発光蛍光体7が励起光E1の入射側に、相対的に粒径が大きく、かつ相対的に温度消光が大きい赤色発光蛍光体6が基板1側に配置されている。
 ここで、温度消光とは、温度が上昇すると蛍光体の発光効率が低下することを意味する。温度消光が大きい(または小さい)とは、温度の上昇率に対する蛍光体の発光効率の低下の度合いが大きい(または小さい)ことを意味する。
 発光部30は、励起光E1としての青色光と、緑色発光蛍光体7から発せられる緑色の蛍光と、赤色発光蛍光体6から発せられる赤色の蛍光とを混合した白色光としての照明光E2を出射する。
 なお、互いに異なるピーク波長を有する第1蛍光体および第2蛍光体としては、赤色発光蛍光体6および緑色発光蛍光体7に限られない。すなわち、第1蛍光体として相対的に温度消光が小さい蛍光体が選択され、第2蛍光体として相対的に温度消光が大きい蛍光体が選択されていればよい。また、第1蛍光体および第2蛍光体は、励起光E1の発振波長域に応じて、その他の光を発する蛍光体を適宜選択可能である。
 <発光部30の効果>
 互いに異なる種類の第1蛍光体および第2蛍光体を積層させる構成は実施形態2と同じであるが、本実施形態では、蛍光体は、その種類によって温度消光の大きさが異なることに着目している。
 例えば、シリケート系の蛍光体は、温度の上昇率に対する発光効率の低下が大きいのに対し、SiAlON蛍光体またはYAG蛍光体は、温度の上昇率に対する発光効率の低下が小さいことが知られている。
 ここで、赤色発光蛍光体6および緑色発光蛍光体7において発生した熱は、基板1を通して放熱される。そのため、発光部30において、基板1に近いほどその温度は低く、基板1から離間するほどその温度は高くなる。そこで、本実施形態では、温度の上がりにくい基板1側に、温度消光の大きな赤色発光蛍光体6を堆積し、その上に温度消光の小さな緑色発光蛍光体7を積層している。換言すれば、相対的に温度消光が大きいCASN蛍光体またはSCASN蛍光体からなる赤色発光蛍光体6を、相対的に温度消光が小さいβ-SiAlON蛍光体からなる緑色発光蛍光体7よりも基板1に近い位置に配置している。これにより、温度上昇に伴う発光効率の低下の度合いが大きい赤色発光蛍光体6の温度上昇を優先的に抑制することができる。それゆえ、励起光E1による励起時(特に、強励起時)における発光部30の発光効率の低下を抑えることができる。
 さらに、発光部30は、相対的に粒径の小さい緑色発光蛍光体7を励起光E1の入射側(照明光E2の出射側)に配置しているので、実施形態1と同様、色ムラおよび輝度ムラの発生を効率良く抑制することができる。
 〔実施形態4〕
 本発明の他の実施形態について、図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7の(a)は、本実施形態の発光部40(発光体)の概略的な構成を示す図であり、図7の(b)は、本実施形態の発光部50(発光体)の概略的な構成を示す図である。
 図7の(a)および(b)に示すように、反射型の発光部40および50は、第1蛍光体層La1および第2蛍光体層La2の全部またはその一部を、封止材8で覆った構成となっている。
 具体的には、図7の(a)に示すように、発光部40は、第1蛍光体としての第1YAG蛍光体3、および第2蛍光体としての第2YAG蛍光体2を封止材8で完全に覆った構成となっている。一方、図7の(b)に示すように、発光部50は、第1YAG蛍光体3の表面の一部が露出するように、第1YAG蛍光体3および第2YAG蛍光体2を封止材8で覆った構成となっている。より具体的には、発光部50では、第1蛍光体層La1の上面(励起光E1が入射される表面)が封止材8にて封止されず露出し、当該表面に、結着材に覆われた第1YAG蛍光体3による凹凸が形成されている状態となっている。
 換言すれば、封止材8は、第1蛍光体層La1および第2蛍光体層La2の全部またはその一部を封止することで、第1蛍光体としての第1YAG蛍光体3どうし、第2蛍光体としての第2YAG蛍光体2どうし、並びに、第1YAG蛍光体3および第2YAG蛍光体2の間の隙間を埋めている。封止材8としては、耐熱性および熱伝導性の高い無機化合物が好ましく、例えばSiO等のシリカまたはTiOが挙げられる。なお、封止材8として樹脂等を採用してもよい。
 なお、発光部40および50の封止材8以外の主な構成は、図2に示す、実施形態1の発光部10と同じ構成である。また、実施形態2の発光部20、実施形態3の発光部30に対して封止材8を用いてもよい。
 <発光部40および50の効果>
 発光部40および50は、相対的に粒径の小さい第1YAG蛍光体3を励起光E1の入射側(照明光E2の出射側)に配置しているので、実施形態1と同様、色ムラおよび輝度ムラの発生を効率良く抑制することができる。
 また、発光部40および50では、第1蛍光体層La1および第2蛍光体層La2の全部またはその一部を、上記隙間を埋めるように封止材8で封止しているため、発光部40および50全体として熱伝導率を高めることができる。それゆえ、より効率良く発光部40および50で発生した熱を放散させることができる。
 また、図7の(b)に示すように、発光部50では、第1蛍光体層La1の上面が露出し、当該表面に凹凸が形成されているので、当該表面において、空気との屈折率の差を大きくすることができ、なおかつ当該表面の凹凸により励起光E1を拡散反射しやすくすることができる。それゆえ、図7の(a)に示す、第1蛍光体層La1の上面が完全に封止材8で封止された発光部40に比べて、励起光E1および照明光E2をより効率良く散乱させることができる。結果、励起光E1と蛍光とが混合しやすくなるため、照明光E2において色ムラが発生することを抑制することができる。なお、実施形態1~3の発光部10~30においても同様の効果を奏する。
 〔実施形態5〕
 本発明の他の実施形態について、図8および図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。本実施形態では、実施形態1~4とは異なり、透過型の発光部60(発光体)を備える照明装置200について説明する。
 <照明装置200の概略構成>
 図8は、本実施形態に係る照明装置200の概略的な構成を示す図である。図8に示すように、照明装置200は、レーザ素子11と、第1レンズ12と、光ファイバ13と、発光部60と、固定冶具62と、フェルール103と、フェルール固定部104と、投光レンズ105(投光部)と、レンズ固定部106と、放熱フィン107とを備える。発光部60およびレーザ素子11にて発光装置の基本構成が形成される。また、発光部60、レーザ素子11および投光レンズ105にて照明装置の基本構成が形成される。
 照明装置200は、レーザ素子11から出射された励起光E1によって励起され、発光部60から発せられた蛍光を少なくとも含む照明光E2を、投光レンズ105によって特定の方向に投光するように構成されている。本実施形態では、照明光E2が励起光E1と蛍光とを含むものとして説明するが、蛍光のみを照明光E2として投光する構成であってもよい。
 また、本実施形態では、照明装置200は、レーザ素子11を複数備えているが、その個数は必要な出力に応じて適宜変更可能である。また、第1レンズ12は、各レーザ素子11に対向するように配置されている。また、光ファイバ13は、レーザ素子11の数に対応する数の、励起光E1が入射する入射端13aと、発光部60に向けて励起光E1を出射する単一の出射端13bとを備える。また、光ファイバ13は、レーザ素子11の数に対応する本数の光ファイバが束ねられた、バンドルファイバであってもよい。
 固定冶具62は、発光部60が固定される部材である。固定冶具62は、筒状の形状を有している。発光部60は、筒状の固定冶具62の一端に、シリコーングリスなどを用いて熱的に接着されている。
 固定冶具62を構成する材料の具体的な例としては、アルミニウム、銅、鉄、または銀といった金属が挙げられる。また、アルミニウムについては、表面に黒アルマイト処理が施されていてもよい。本実施形態においては、固定冶具62の材料として、黒アルマイト処理が施されたアルミニウムを用いている。
 フェルール103は、光ファイバ13を保持するものである。具体的には、フェルール103は、光ファイバ13の周囲を、出射端13bの近傍において囲むように保持している。
 フェルール固定部104は、フェルール103を照明装置200に固定するための部材である。フェルール固定部104は、筒状の部材である固定冶具62の、発光部60が固定されている一端とは逆側の端部に設けられている。フェルール103がフェルール固定部104に固定されることで、フェルール103に保持されている光ファイバ13の出射端13bが、発光部60と対向する位置に固定される。
 投光レンズ105は、投光レンズ17と同様、発光部60から発せられた蛍光を少なくとも含む照明光E2を外部へ投光する投光部材(投光光学系)である。
 レンズ固定部106は、発光部60と投光レンズ105との相対位置を固定する部材である。レンズ固定部106は、固定冶具62および投光レンズ105の周囲を囲む、円筒形の部材である。レンズ固定部106の材質としては、放熱性の高いものが好ましい。例えば、レンズ固定部106の材料として、アルマイト処理されたアルミニウムなどを好適に用いることができる。
 放熱フィン107は、固定冶具62の放熱効率を向上させる部材である。放熱フィン107は、固定冶具62の、フェルール固定部104が設けられている側に設けられている。放熱フィン107の形状、大きさ、数などは、レーザ素子11の出力、および発光部60の仕様などにより定まる。これにより、固定冶具62の放熱性能を向上させることができる。したがって、発光部60の、温度上昇に伴う発光効率の低下を抑制することができる。
 <発光部60の具体的構成>
 次に、図9に基づいて、発光部60の具体的構成について説明する。図9は、透過型の発光部60の概略的な構成を示す図である。図9に示すように、発光部60は、光透過性基板61(基板)と、第1蛍光体層La1および第2蛍光体層La2を含む蛍光体膜とにより構成されている。
 第1蛍光体層La1は、励起光E1を受けて第1の蛍光を発する粒子状の第1蛍光体を含む層である。また、第2蛍光体層La2は、励起光E1を受けて第2の蛍光を発する粒子状の第2蛍光体を含む層である。そして、第1蛍光体層La1および第2蛍光体層La2は、基板1上に積層されている。すなわち、発光部60は、2重構造となっている。
 発光部60は、図9に示すように、励起光E1の入射側から順に、第1蛍光体層La1および第2蛍光体層La2が光透過性基板61上に積層されている。すなわち、発光部60では、光透過性基板61側に第1蛍光体層La1が配置され、光透過性基板61を介して、第1蛍光体層La1の、光透過性基板61と対向する表面(すなわち、第1蛍光体層La1の、第2蛍光体層La2と対向する表面とは反対側の表面)に励起光E1が入射される。そして、基板1から遠い側に配置された第2蛍光体層La2の、第1蛍光体層La1と対向する表面とは反対側の表面(第2蛍光体層La2の上面)から第1の蛍光および第2の蛍光を含む照明光E2が出射される。すなわち、発光部60では、励起光E1が主に入射する面と、蛍光が外部に主に出射される面とが対向している。本願では、このような発光部を、「透過型」の発光部と称する。
 本実施形態では、第1蛍光体は第1YAG蛍光体3であり、第2蛍光体は第2YAG蛍光体2である。そのため、450nm(青色)の励起光E1(または青色近傍の励起光E1)を発光部60に照射することで、照明光E2としての白色光(いわゆる、擬似白色光)が得られる。
 なお、実施形態1で述べたように、第1蛍光体および第2蛍光体は互いに異なる種類であってもよいし、照明光E2として蛍光のみが出射されてもよいし、白色光以外の光が照明光E2として出射されてもよい。すなわち、レーザ素子11の発振波長域、第1蛍光体および第2蛍光体の種類は、発光装置として要求される色の照明光E2を出射可能なように適宜選択される。
 また、実施形態1と同様、第1YAG蛍光体3どうし、第2YAG蛍光体2どうし、および第2YAG蛍光体2と光透過性基板61とは、結着材(バインダー)によって固着されていることが好ましい。
 また、本実施形態では、図9に示すように、励起光E1の入射側に配置された第1YAG蛍光体3の粒径は、光透過性基板61から遠い側に配置された第2YAG蛍光体2の粒径よりも小さい。すなわち、実施形態1とは異なり、光透過性基板61側に、相対的に粒径の小さい第1YAG蛍光体3が配置されている。
 光透過性基板61は、第1蛍光体層La1および第2蛍光体層La2を支持するものである。第1蛍光体層La1および第2蛍光体層La2は、光透過性基板61の、励起光E1が入射する面とは反対側の面に形成される。光透過性基板61の材質としては、ガラスまたはサファイアなどを用いることができる。光透過性基板61の、励起光E1が入射する側から見た場合におけるサイズは、第1蛍光体層La1および第2蛍光体層La2のサイズと同じか、または第1蛍光体層La1および第2蛍光体層La2のサイズより大きい。
 本実施形態の発光部60では、励起光E1としての青色光が、光透過性基板61を透過した後、相対的に粒径の小さい第1YAG蛍光体3を含む第1蛍光体層La1に照射される。第1蛍光体層La1では、第1YAG蛍光体3が励起光E1を吸収し、第1の蛍光としての黄色の蛍光を発する。その後、相対的に粒径の大きい第2YAG蛍光体2を含む第2蛍光体層La2では、第1YAG蛍光体3に吸収されなかった励起光E1を第2YAG蛍光体2が吸収し、第2の蛍光としての黄色の蛍光を発する。そして、(1)第1YAG蛍光体3および第2YAG蛍光体2に吸収されなかった励起光E1と、(2)第1および第2の蛍光としての黄色の蛍光とが混色され、擬似白色光としての照明光E2が第2蛍光体層La2から出射される。
 また、発光部60において、第1蛍光体層La1および第2蛍光体層La2からなる蛍光体膜と光透過性基板61との間に、励起光E1を透過し、かつ蛍光を反射する誘電体多層膜が形成されていてもよい。光透過性基板61としては、上記蛍光体膜で発生した熱を逃がすために、熱伝導性の高い、サファイアが適している。また、光透過性基板61は、ヒートシンクに接触させるのが望ましい。
 上記蛍光体膜で発生した蛍光は、第2蛍光体層La2から全方位に向けて出射される。しかし、上記誘電体多層膜が形成されていれば、フェルール103の方向に出射される蛍光が投光レンズ105の方向に反射される。これにより、発光部60からの光の取り出し効率が向上するため、より高輝度の照明装置200を実現することができる。
 また、発光部60において、光透過性基板61のフェルール103側の面に、AR(Anti-Reflection)コートが施されていてもよい。この場合、光透過性基板61の表面における励起光E1の反射率が低下するため、上記蛍光体膜に入射する励起光E1の比率が増加する。これにより、発光部60からの光の取り出し効率が向上するため、より高輝度の照明装置200を実現することができる。
 <発光部60の製造方法>
 次に、発光部60の製造方法について説明する。発光部60は、例えば沈降法によって製造される。
 沈降法では、例えば、まず相対的に粒径の小さな第1YAG蛍光体3をスラリー中に分散させる。その後、第1YAG蛍光体3を分散させたスラリー中に光透過性基板61を投入することにより、第1YAG蛍光体3が光透過性基板61に堆積する。その後、第1YAG蛍光体3が堆積した光透過性基板61をスラリー中から取り出し、乾燥させる。
 次に、相対的に粒径の大きな第2YAG蛍光体2をスラリー中に分散させる。その後、第2YAG蛍光体2を分散させたスラリー中に、第1YAG蛍光体3が堆積した光透過性基板61を投入することにより、第1YAG蛍光体3の上に第2YAG蛍光体2を堆積させる。その後、第1YAG蛍光体3および第2YAG蛍光体2が堆積した光透過性基板61をスラリー中から取り出し乾燥させる。
 そして、第1YAG蛍光体3および第2YAG蛍光体2を結着材によってコーティングする。上記乾燥後に第1YAG蛍光体3および第2YAG蛍光体2をまとめてコーティングしてもよいし、次のようにコーティングしてもよい。すなわち、第1蛍光体層La1(1層目の蛍光体層)を形成した後、第1YAG蛍光体3を結着材によってコーティングする。その後、第2蛍光体層La2(2層目の蛍光体層)を形成した後、第2YAG蛍光体2を結着材によってコーティングする。
 また、発光部60の製造方法としては、上記沈降法に限らず、スクリーン印刷法、ディスペンサーによる塗布法、電気泳動法等で実現されてもよい。これらの方法を用いた発光部60の製造方法は、以下の点以外は、実施形態1で説明した内容と実質的に同じである。すなわち、本実施形態では、第1YAG蛍光体3を含む第1蛍光体層La1を光透過性基板61に形成した後に、第2YAG蛍光体2を含む第2蛍光体層La2を、第1蛍光体層La1の上に形成する。
 <発光部60の効果>
 本実施形態の発光部60では、励起光E1は、第1蛍光体層La1に含まれる、相対的に粒径の小さい第1YAG蛍光体3に照射される。そのため、励起光E1を効率的に散乱させることができるので、励起光E1と黄色の蛍光とが混合しやすくなる。それゆえ、発光部60から出射される照明光E2において、色ムラが発生することを効率良く抑制することができる。また、発光部60を構成する第1蛍光体および第2蛍光体が同一種類であり、励起光E1で励起された蛍光のみが発光部60から出射される構成である場合には、発光部60から出射される、蛍光のみからなる照明光E2において、輝度ムラが発生することを効率良く抑制することができる。
 また、実施形態1と同様、発光部60では、相対的に粒径が大きい第2YAG蛍光体2を含む第2蛍光体層La2を備えている。それゆえ、相対的に粒径が小さい第1YAG蛍光体3を用いた場合に生じ得る発光効率の低下を防ぐことができる。また、第2蛍光体層La2を配置することにより、第1蛍光体層La1のみを光透過性基板61に積層させた場合に比べ、発光部60の膜厚を薄くすることができる。それゆえ、発光部60の最上面(照明光E2の出射面であり、第2蛍光体層La2の上面)までの距離が短くなるため、放熱性を向上させることができる。
 また、相対的に粒径が大きい第2YAG蛍光体2のみを発光部に用いた場合、実施形態1で述べたように、第2YAG蛍光体2間の隙間が大きくなってしまうために、光透過性基板61の表面が剥き出しとなり、照明光E2の出射側から当該表面が見えてしまう可能性がある。この場合、当該剥き出しとなった箇所から出射された励起光E1は、第2YAG蛍光体2に照射されずに、発光部の外部へと直接出射されてしまう可能性がある。本実施形態では、第2YAG蛍光体2とともに、相対的に粒径が小さい第1YAG蛍光体3を光透過性基板61に積層させている。そのため、上記剥き出しとなった箇所から出射された励起光E1は、上記隙間を透過する前に第1YAG蛍光体3に照射される。それゆえ、そのため、励起光E1が直接外部に出射されることを抑制することができ、安全性を向上させることができる。
 また、一般に、相対的に粒径の小さい蛍光体は、相対的に粒径の大きい蛍光体に比べ、内部量子効率が低いため発熱しやすい。そのため、励起光の入射側に相対的に粒径の小さい蛍光体を配置した場合には、発光部全体として発熱しやすい構成となる。
 本実施形態では、励起光E1の入射側に、相対的に粒径の小さい第1YAG蛍光体3を含む第1蛍光体層La1が設けられているが、光透過性基板61に第1蛍光体層La1が配置されている。それゆえ、第1蛍光体層La1で発生した熱を、光透過性基板61側に効率よく放散させることができる。それゆえ、第1蛍光体層La1に励起光E1が入射される構成においても、発光部60から発せられた熱を効率よく放散することができる。
 <変形例1>
 透過型の発光部60において、第1蛍光体および第2蛍光体の種類が互いに異なっていてもよい。すなわち、第1蛍光体および第2蛍光体のピーク波長(発光ピーク波長)が互いに異なっていてもよい。例えば、相対的に粒径の小さい第1蛍光体として、赤色(第1の蛍光)を発光する赤色発光蛍光体、相対的に粒径の大きい第2蛍光体として、緑色(第2の蛍光)を発光する緑色発光蛍光体を用いることができる。
 この場合、基板1側(すなわち、励起光E1の入射側)に配置された第1蛍光体層La1に含まれる赤色発光蛍光体のピーク波長の方が、第1蛍光体層La1の上に配置された、第2蛍光体層La2に含まれる緑色発光蛍光体のピーク波長よりも長い。この場合、第1蛍光体層La1からの蛍光が第2蛍光体層La2の蛍光体を再励起し、発光効率が低下することを防止することができる。
 また、実施形態2で述べたように、第1蛍光体と第2蛍光体の種類が互いに異なるので、照明光E2の色のバリエーションを増やすことができる。また、照明光E2に励起光E1を含めない場合であっても、発光部60は、照明光E2に励起光E1を含めた場合と同様の色の照明光E2を出射することが可能となる。
 なお、この点を考慮しなければ、第1蛍光体層La1に、相対的に粒径の小さい緑色発光蛍光体を含め、第2蛍光体層La2に、相対的に粒径の大きい赤色発光蛍光体を含めてもよい。また、互いに異なるピーク波長を有する第1蛍光体および第2蛍光体としては、赤色発光蛍光体および緑色発光蛍光体に限らず、励起光E1の発振波長域に応じて、その他の光を発する蛍光体を適宜選択可能である。
 <変形例2>
 透過型の発光部60において、相対的に粒径が小さく、かつ相対的に温度消光が大きい第1蛍光体が励起光E1の入射側(すなわち、光透過性基板61側)に、相対的に粒径が大きく、かつ相対的に温度消光が小さい第2蛍光体が照明光E2の出射側に配置されてもよい。すなわち、光透過性基板61側に配置された第1蛍光体の温度消光が、第2蛍光体の温度消光よりも大きい。この場合、変形例1と同様、第1蛍光体として赤色発光蛍光体を、第2蛍光体として緑色発光蛍光体を用いることができる。
 相対的に温度消光が大きい第1蛍光体を光透過性基板61側に配置しているので、実施形態3と同様、励起光E1による励起時(特に、強励起時)における発光部60の発光効率の低下を抑えることができる。
 なお、互いに異なるピーク波長を有する第1蛍光体および第2蛍光体としては、赤色発光蛍光体および緑色発光蛍光体に限られない。すなわち、第1蛍光体として相対的に温度消光が大きい蛍光体が選択され、第2蛍光体として相対的に温度消光が小さい蛍光体が選択されていればよい。また、第1蛍光体および第2蛍光体は、励起光E1の発振波長域に応じて、その他の光を発する蛍光体を適宜選択可能である。
 <変形例3>
 実施形態4と同様、透過型の発光部60を封止材8で封止してもよい。この場合、発光部60全体として熱伝導率を高めることができる。
 〔まとめ〕
 本発明の態様1に係る発光体(発光部10、20、30、40、50)は、
 励起光(E1)を受けて第1の蛍光を発する第1蛍光体(第1YAG蛍光体3、緑色発光蛍光体5、7)を含む第1蛍光体層(La1)と、
 上記励起光を受けて第2の蛍光を発する第2蛍光体(第2YAG蛍光体2、赤色発光蛍光体4、6)を含む第2蛍光体層(La2)と、が基板(1)上に積層され、
 上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
 上記基板から遠い側に上記第1蛍光体層が配置されており、当該第1蛍光体層に上記励起光が入射される。
 上記の構成によれば基板から遠い側に第1蛍光体層が配置されており、当該第1蛍光体層に励起光が入射される。この場合、第1の蛍光および第2の蛍光が発光体から出射されるときに、第1の蛍光および第2の蛍光は、第1蛍光体層に含まれる、相対的に粒径の小さい第1蛍光体に照射されるので、当該第1の蛍光および第2の蛍光を効率的に散乱させることができる。それゆえ、発光体から出射される光において、輝度ムラまたは色ムラが発生することを効率良く抑制することができる。
 さらに、本発明の態様2に係る発光体(発光部60)は、
 励起光(E1)を受けて第1の蛍光を発する第1蛍光体(第1YAG蛍光体3、赤色発光蛍光体)を含む第1蛍光体層(La1)と、
 上記励起光を受けて第2の蛍光を発する第2蛍光体(第2YAG蛍光体2、緑色発光蛍光体)を含む第2蛍光体層(La2)と、が基板(光透過性基板61)上に積層され、
 上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
 上記基板に上記第1蛍光体層が配置されており、当該第1蛍光体層に上記励起光が入射される。
 一般に、相対的に粒径の小さい蛍光体は、相対的に粒径の大きい蛍光体に比べ、内部量子効率が低いため発熱しやすい。そのため、励起光の入射側に相対的に粒径の小さい蛍光体を配置した場合には、発光体全体として発熱しやすい構成となる。
 上記の構成によれば、基板に第1蛍光体層が配置されており、当該第1蛍光体層に励起光が入射される。したがって、励起光の入射側に、相対的に粒径の小さい第1蛍光体を含む第1蛍光体層が設けられているとしても、基板に第1蛍光体層が配置されているので、第1蛍光体層で発生した熱を効率よく放散させることができる。それゆえ、第1蛍光体層から励起光が入射される構成においても、発光体から発せられた熱を効率よく放散することができる。
 さらに、本発明の態様3に係る発光体は、態様1または2において、
 上記第1蛍光体と上記第2蛍光体とは、互いに種類が異なることが好ましい。
 上記構成によれば、発光体が出射する光の色のバリエーションを増やすことができる。また、発光体が出射する光に励起光を含めない場合であっても、発光体は、当該光に励起光を含めた場合と同様の色の光を出射することが可能となる。
 さらに、本発明の態様4に係る発光体は、態様1において、
 上記第2蛍光体の発光ピーク波長は、上記第1蛍光体の発光ピーク波長よりも長いことが好ましい。
 上記構成によれば、第2蛍光体からの蛍光が第1蛍光体を再励起してしまうことを防止することができる。
 さらに、本発明の態様5に係る発光体は、態様2において、
 上記第1蛍光体の発光ピーク波長は、上記第2蛍光体の発光ピーク波長よりも長いことが好ましい。
 上記構成によれば、第1蛍光体からの蛍光が第2蛍光体を再励起してしまうことを防止することができる。
 さらに、本発明の態様6に係る発光体は、態様1において、
 上記第2蛍光体層が、上記第1蛍光体層よりも上記基板側に配置されており、
 上記第2蛍光体の温度消光は、上記第1蛍光体の温度消光よりも大きいことが好ましい。
 一般に、発光体に励起光が入射された場合、発光体において、励起光の入射側の方が基板側よりも温度が高くなる。
 上記構成によれば、温度消光が第1蛍光体よりも大きい第2蛍光体が、基板側に配置されているため、第1蛍光体よりも第2蛍光体の温度消光を生じにくくすることができる。そのため、発光体の発光効率が低下することを抑制することができる。
 さらに、本発明の態様7に係る発光体は、態様2において、
 上記第1蛍光体の温度消光は、上記第2蛍光体の温度消光よりも大きいことが好ましい。
 上記構成によれば、温度消光が第2蛍光体よりも大きい第1蛍光体が、基板側に配置されているため、第1蛍光体の温度消光を生じにくくすることができる。そのため、発光体の発光効率が低下することを抑制することができる。
 さらに、本発明の態様8に係る発光装置は、
 上記励起光を出射する励起光源(レーザ素子11)と、
 態様1から7のいずれかに記載の発光体と、を備える。
 上記構成によれば、態様1と同様、出射される光において、輝度ムラまたは色ムラが発生することを効率良く抑制することが可能な発光装置を実現することができる。または、態様2と同様、蛍光体から発せられる熱を効率良く放散することが可能な発光装置を実現することができる。
 さらに、本発明の態様9に係る発光装置は、態様8において、
 上記励起光源は、レーザ素子(11)であることが好ましい。
 上記構成によれば、発光体の発光効率を向上させることができる。
 さらに、本発明の態様10に係る照明装置(100、200)は、
 態様8または9に記載の発光装置と、
 上記発光装置から出射された上記第1の蛍光および上記第2の蛍光を投光する投光部(投光レンズ17、105)と、を備える。
 上記構成によれば、態様1と同様、出射される光において、輝度ムラまたは色ムラが発生することを効率良く抑制することが可能な照明装置を実現することができる。または、態様2と同様、蛍光体から発せられる熱を効率良く放散することが可能な照明装置を実現することができる。
 さらに、本発明の態様11に係る製造方法は、
 態様1から7のいずれかに記載の発光体を製造する当該発光体の製造方法であって、
 電気泳動法または沈降法により、上記基板に上記第1蛍光体および上記第2蛍光体を積層させる。
 上記構成によれば、上記態様1または2の発光体を製造することができる。また、第1蛍光体層の内部の第1蛍光体、および、第2蛍光体層の内部の第2蛍光体の密度(濃度)を高くすることができる。それゆえ、第1蛍光体間および第2蛍光体間の隙間を小さくすることができるので、各層の層厚を薄くすることができる。それゆえ、発光体の、基板に各層が積層される方向の厚さを薄くすることができる。
 〔本発明の一態様に係る別の表現〕
 なお、本発明の一態様は、以下のようにも表現できる。
 すなわち、本発明の一態様に係る発光装置は、光を出射する半導体発光素子と、上記半導体発光素子からの光を異なる色に変換する蛍光体を含む、反射率の高い基板上に設置された蛍光部材とを備え、上記半導体発光素子からの光と上記蛍光部材からの蛍光とを混色して光を出す発光装置において、基板側の蛍光体とその反対側の蛍光体の粒径分布が異なり、上記基板側の蛍光体の方が粒径が大きい。
 また、本発明の一態様に係る発光装置は、上記反対側の蛍光体の粒径が10μm以下である。
 また、本発明の一態様に係る発光装置は、上記基板側の蛍光体と上記反対側の蛍光体との種類が異なる。
 また、本発明の一態様に係る発光装置は、上記基板側の蛍光体が上記反対側の蛍光体よりも発光波長が長い。
 また、本発明の一態様に係る発光装置は、上記基板側の蛍光体が上記反対側の蛍光体よりも温度消光が大きい。
 また、本発明の一態様に係る発光装置は、上記基板に上記蛍光体(蛍光体粒子)が堆積している。
 また、本発明の一態様に係る発光装置は、上記半導体発光素子が半導体レーザである。
 また、本発明の一態様に係る発光装置の製造方法は、電気泳動法又は沈降法により基板側に粒径大の蛍光体、その上に粒径小の蛍光体を堆積させる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1   基板
 2   第2YAG蛍光体(第2蛍光体)
 3   第1YAG蛍光体(第1蛍光体)
 4   赤色発光蛍光体(第2蛍光体)
 5   緑色発光蛍光体(第1蛍光体)
 6   赤色発光蛍光体(第2蛍光体)
 7   緑色発光蛍光体(第1蛍光体)
 17  投光レンズ(投光部)
 61  光透過性基板(基板)
 10、20、30、40、50、60 発光部(発光体)
 100、200 照明装置
 105 投光レンズ(投光部)
 E1  励起光
 La1 第1蛍光体層
 La2 第2蛍光体層

Claims (11)

  1.  励起光を受けて第1の蛍光を発する第1蛍光体を含む第1蛍光体層と、
     上記励起光を受けて第2の蛍光を発する第2蛍光体を含む第2蛍光体層と、が基板上に積層され、
     上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
     上記基板から遠い側に上記第1蛍光体層が配置されており、当該第1蛍光体層に上記励起光が入射されることを特徴とする発光体。
  2.  励起光を受けて第1の蛍光を発する第1蛍光体を含む第1蛍光体層と、
     上記励起光を受けて第2の蛍光を発する第2蛍光体を含む第2蛍光体層と、が基板上に積層され、
     上記第1蛍光体の粒径は、上記第2蛍光体の粒径よりも小さく、
     上記基板に上記第1蛍光体層が配置されており、当該第1蛍光体層に上記励起光が入射されることを特徴とする発光体。
  3.  上記第1蛍光体と上記第2蛍光体とは、互いに種類が異なることを特徴とする請求項1または2に記載の発光体。
  4.  上記第2蛍光体の発光ピーク波長は、上記第1蛍光体の発光ピーク波長よりも長いことを特徴とする請求項1に記載の発光体。
  5.  上記第1蛍光体の発光ピーク波長は、上記第2蛍光体の発光ピーク波長よりも長いことを特徴とする請求項2に記載の発光体。
  6.  上記第2蛍光体層が、上記第1蛍光体層よりも上記基板側に配置されており、
     上記第2蛍光体の温度消光は、上記第1蛍光体の温度消光よりも大きいことを特徴とする請求項1に記載の発光体。
  7.  上記第1蛍光体の温度消光は、上記第2蛍光体の温度消光よりも大きいことを特徴とする請求項2に記載の発光体。
  8.  上記励起光を出射する励起光源と、
     請求項1から7のいずれか1項に記載の発光体と、を備えることを特徴とする発光装置。
  9.  上記励起光源は、レーザ素子であることを特徴とする請求項8に記載の発光装置。
  10.  請求項8または9に記載の発光装置と、
     上記発光装置から出射された上記第1の蛍光および上記第2の蛍光を投光する投光部と、を備えることを特徴とする照明装置。
  11.  請求項1から7のいずれか1項に記載の発光体を製造する当該発光体の製造方法であって、
     電気泳動法または沈降法により、上記基板に上記第1蛍光体および上記第2蛍光体を積層させることを特徴とする発光体の製造方法。
PCT/JP2016/070737 2015-11-04 2016-07-13 発光体、発光装置、照明装置、および発光体の製造方法 WO2017077739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017548651A JP6644081B2 (ja) 2015-11-04 2016-07-13 発光装置、照明装置、および発光装置が備える発光体の製造方法
US15/766,914 US20180301869A1 (en) 2015-11-04 2016-07-13 Light-emitting body, light-emitting device, illuminator, and method for producing light-emitting body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217025 2015-11-04
JP2015-217025 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017077739A1 true WO2017077739A1 (ja) 2017-05-11

Family

ID=58661791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070737 WO2017077739A1 (ja) 2015-11-04 2016-07-13 発光体、発光装置、照明装置、および発光体の製造方法

Country Status (3)

Country Link
US (1) US20180301869A1 (ja)
JP (1) JP6644081B2 (ja)
WO (1) WO2017077739A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782516A (zh) * 2017-11-15 2019-05-21 中强光电股份有限公司 投影机及波长转换元件
JP2019194673A (ja) * 2018-04-26 2019-11-07 パナソニックIpマネジメント株式会社 波長変換素子、蛍光体ホイール、光源装置、及び投写型映像表示装置
WO2020162357A1 (ja) * 2019-02-06 2020-08-13 シャープ株式会社 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
WO2020170970A1 (ja) * 2019-02-21 2020-08-27 デンカ株式会社 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
JP2020172616A (ja) * 2019-04-11 2020-10-22 日亜化学工業株式会社 希土類アルミン酸塩焼結体の製造方法
CN112166354A (zh) * 2018-05-31 2021-01-01 夏普株式会社 波长转换元件以及光源装置
JP2021103247A (ja) * 2019-12-25 2021-07-15 日本特殊陶業株式会社 波長変換部材および発光装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658669A (zh) * 2018-06-29 2020-01-07 深圳市绎立锐光科技开发有限公司 光源装置
US20240084999A1 (en) * 2021-01-26 2024-03-14 Signify Holding B.V. Pixelated laser phosphor comprising ceramic phosphor tiles surrounded by phosphor particles in a medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526007A (ja) * 2010-03-19 2013-06-20 日東電工株式会社 発光装置用ガーネット系蛍光体セラミックシート
JP2013239586A (ja) * 2012-05-15 2013-11-28 Stanley Electric Co Ltd 半導体発光装置及びそれを用いた灯具
WO2014056903A1 (de) * 2012-10-10 2014-04-17 Osram Opto Semiconductors Gmbh Keramisches konversionselement, optoelektronisches halbleiterelement und verfahren zur herstellung eines keramischen konversionselements
WO2014103671A1 (ja) * 2012-12-28 2014-07-03 シャープ株式会社 発光装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212034A (ja) * 1982-06-02 1983-12-09 Hitachi Ltd けい光膜およびその形成方法
JPS59139000A (ja) * 1983-01-31 1984-08-09 富士写真フイルム株式会社 放射線像変換方法
MY131962A (en) * 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
JP3482407B2 (ja) * 2001-12-28 2003-12-22 修 筒井 蓄光機能を有する表示部材
US6982046B2 (en) * 2003-10-01 2006-01-03 General Electric Company Light sources with nanometer-sized VUV radiation-absorbing phosphors
TW200531315A (en) * 2004-01-26 2005-09-16 Kyocera Corp Wavelength converter, light-emitting device, method of producing wavelength converter and method of producing light-emitting device
JP2007049114A (ja) * 2005-05-30 2007-02-22 Sharp Corp 発光装置とその製造方法
JP2006338910A (ja) * 2005-05-31 2006-12-14 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス表示装置
JP2009019163A (ja) * 2007-07-13 2009-01-29 Sharp Corp 発光装置用蛍光体粒子集合体、発光装置、および液晶表示用バックライト装置
JP5212777B2 (ja) * 2007-11-28 2013-06-19 スタンレー電気株式会社 半導体発光装置及び照明装置
JP2010128306A (ja) * 2008-11-28 2010-06-10 Dainippon Printing Co Ltd カラーフィルタおよび有機エレクトロルミネッセンス表示装置
EP2424954B1 (en) * 2009-05-01 2013-02-13 OSRAM SYLVANIA Inc. Phosphor blend and fluorescent lamp containing same
WO2011145418A1 (ja) * 2010-05-19 2011-11-24 シャープ株式会社 蛍光体表示装置および蛍光体層
JP5519440B2 (ja) * 2010-08-03 2014-06-11 日東電工株式会社 発光装置
JP5786868B2 (ja) * 2010-12-28 2015-09-30 日亜化学工業株式会社 半導体発光装置
JP2015191208A (ja) * 2014-03-28 2015-11-02 株式会社日本触媒 カラーフィルター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526007A (ja) * 2010-03-19 2013-06-20 日東電工株式会社 発光装置用ガーネット系蛍光体セラミックシート
JP2013239586A (ja) * 2012-05-15 2013-11-28 Stanley Electric Co Ltd 半導体発光装置及びそれを用いた灯具
WO2014056903A1 (de) * 2012-10-10 2014-04-17 Osram Opto Semiconductors Gmbh Keramisches konversionselement, optoelektronisches halbleiterelement und verfahren zur herstellung eines keramischen konversionselements
WO2014103671A1 (ja) * 2012-12-28 2014-07-03 シャープ株式会社 発光装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782516A (zh) * 2017-11-15 2019-05-21 中强光电股份有限公司 投影机及波长转换元件
JP2019194673A (ja) * 2018-04-26 2019-11-07 パナソニックIpマネジメント株式会社 波長変換素子、蛍光体ホイール、光源装置、及び投写型映像表示装置
JP7304507B2 (ja) 2018-04-26 2023-07-07 パナソニックIpマネジメント株式会社 波長変換素子、蛍光体ホイール、光源装置、及び投写型映像表示装置
JPWO2019230934A1 (ja) * 2018-05-31 2021-06-17 シャープ株式会社 波長変換素子および光源装置
JP6997869B2 (ja) 2018-05-31 2022-01-18 シャープ株式会社 波長変換素子および光源装置
CN112166354A (zh) * 2018-05-31 2021-01-01 夏普株式会社 波长转换元件以及光源装置
CN113396201A (zh) * 2019-02-06 2021-09-14 夏普株式会社 波长变换元件、光源装置、车辆用前照灯具、透射型照明装置、显示装置以及照明装置
JPWO2020162357A1 (ja) * 2019-02-06 2021-12-09 シャープ株式会社 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
WO2020162357A1 (ja) * 2019-02-06 2020-08-13 シャープ株式会社 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
JPWO2020170970A1 (ja) * 2019-02-21 2021-12-16 デンカ株式会社 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
WO2020170970A1 (ja) * 2019-02-21 2020-08-27 デンカ株式会社 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
TWI825278B (zh) * 2019-02-21 2023-12-11 日商電化股份有限公司 螢光體基板、發光基板、照明裝置、螢光體基板的製造方法及發光基板的製造方法
JP7449271B2 (ja) 2019-02-21 2024-03-13 デンカ株式会社 蛍光体基板、発光基板、照明装置、蛍光体基板の製造方法及び発光基板の製造方法
JP2020172616A (ja) * 2019-04-11 2020-10-22 日亜化学工業株式会社 希土類アルミン酸塩焼結体の製造方法
JP6989789B2 (ja) 2019-04-11 2022-01-12 日亜化学工業株式会社 希土類アルミン酸塩焼結体の製造方法
JP2021103247A (ja) * 2019-12-25 2021-07-15 日本特殊陶業株式会社 波長変換部材および発光装置

Also Published As

Publication number Publication date
US20180301869A1 (en) 2018-10-18
JP6644081B2 (ja) 2020-02-12
JPWO2017077739A1 (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017077739A1 (ja) 発光体、発光装置、照明装置、および発光体の製造方法
US10190733B2 (en) Light source device and illumination apparatus
JP5269115B2 (ja) 発光素子、発光装置、車両用前照灯、照明装置及び発光素子の製造方法
TWI753889B (zh) 波長轉換構件、其製造方法及發光裝置
KR102114607B1 (ko) 레이저 광원장치
JP5788194B2 (ja) 発光装置、照明装置、及び車両用前照灯
JP5707618B2 (ja) 発光装置
WO2014203484A1 (ja) 波長変換部材、光源、及び自動車用ヘッドランプ
WO2012124587A1 (ja) 波長変換部材およびその製造方法、ならびに、発光装置、照明装置および前照灯
KR20140053837A (ko) 원거리 광발광 반사 변환기를 구비하는 led 백색광원
JP2019525389A (ja) 光変換パッケージ
JP6192903B2 (ja) 光源装置、照明装置および車両用前照灯
JP2021530727A (ja) 蛍光体照明システムのための反射色補正
JP2014082057A (ja) 発光装置、車両用前照灯及び照明装置
WO2017043121A1 (ja) 発光装置および照明装置
WO2021181779A1 (ja) 光学素子および発光システム
JP2021144062A (ja) 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置
JP5842041B2 (ja) 発光装置
JP6266796B2 (ja) 発光装置、照明装置、スポットライト、車両用前照灯、および内視鏡
JP6596348B2 (ja) 発光部および照明装置
JP6087853B2 (ja) 発光装置の製造方法
JP6085204B2 (ja) 発光装置
CN109798489B (zh) 一种照明装置和汽车照明灯具
CN110645541B (zh) 光源装置及车灯
CN116293593A (zh) 一种荧光转换白激光光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548651

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861808

Country of ref document: EP

Kind code of ref document: A1