WO2017074002A1 - Flexible thermoelectric device and production method therefor - Google Patents

Flexible thermoelectric device and production method therefor Download PDF

Info

Publication number
WO2017074002A1
WO2017074002A1 PCT/KR2016/012054 KR2016012054W WO2017074002A1 WO 2017074002 A1 WO2017074002 A1 WO 2017074002A1 KR 2016012054 W KR2016012054 W KR 2016012054W WO 2017074002 A1 WO2017074002 A1 WO 2017074002A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thermoelectric
glass frit
flexible
weight
Prior art date
Application number
PCT/KR2016/012054
Other languages
French (fr)
Korean (ko)
Inventor
조병진
김선진
신지선
황혜림
Original Assignee
한국과학기술원
주식회사 테그웨이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160092668A external-priority patent/KR101829709B1/en
Application filed by 한국과학기술원, 주식회사 테그웨이 filed Critical 한국과학기술원
Publication of WO2017074002A1 publication Critical patent/WO2017074002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials

Definitions

  • the present invention relates to a flexible thermoelectric element, and in particular, a large-scale high integration of thermoelectric legs (TE legs) having a diameter (or width) of micrometer level is possible, and has excellent flexibility and high
  • the present invention relates to a flexible thermoelectric device having physical strength and having improved thermo-electric conversion efficiency.
  • thermoelectric effect is the direct conversion of thermal and electrical energy to each other by interaction, the seebeck effect found by thomas johann seebeck and the peltier effect found by jean charles peltier.
  • the device expressing such a thermoelectric effect is called a thermoelectric device.
  • the thermoelectric device includes a thermoelectric power generating device using a Seebeck effect that converts thermal energy into electrical energy, and a cooling device using a Peltier effect that converts electrical energy into thermal energy. It is the material and technology that best meets your needs. It is widely used in industrial fields such as automobiles, aerospace, aerospace, semiconductors, biotechnology, computers, power generation, and home appliances. Efforts to improve thermal efficiency are being conducted by research institutes and universities.
  • thermoelectric device forms a second electrode on a ceramic lower substrate such as alumina (Al 2 O 3 ), and forms a thermoelectric material made of N-type and P-type semiconductors on an electrode surface.
  • a ceramic lower substrate such as alumina (Al 2 O 3 )
  • thermoelectric material made of N-type and P-type semiconductors on an electrode surface.
  • the N-type thermoelectric material and the P-type thermoelectric material are manufactured to have a structure in which they are connected in series through the first electrode.
  • these thermoelectric devices are cascade type or segment type, and are difficult to change shape, and the application of the thermoelectric device using flexible ceramic substrates such as alumina (Al 2 O 3 ) or alumina nitride (AIN) does not require flexibility. It has a hard disadvantage.
  • thermoelectric material in 1 ⁇ 10 mm length in bulk form. It is manufactured by bonding as much as possible, but the heat loss by the upper and lower substrates is large.
  • thermoelectric devices In order to overcome these technical limitations, the Applicant, through the Republic of Korea Patent No. 10-1493797, the substrate is not located on the top and / or bottom of the thermoelectric element, the non-conductive flexible mesh is supported through the thermoelectric column array In order to secure mechanical stability and flexibility, thermoelectric devices have been proposed.
  • thermoelectric device has excellent power generation characteristics, flexibility and mechanical stability, but has a size smaller than the thickness (and / or width) of the flexible mesh as the non-conductive flexible mesh is supported through the inside of the thermoelectric column.
  • Arrays of thermoelectric columns are not feasible, and thus there is a limit to high integration of thermoelectric columns.
  • repeated stress concentration may occur in the thermoelectric column into which the flexible mesh is inserted, and thus the thermoelectric material may be damaged. It also exists.
  • the flexible mesh penetrating the thermoelectric material may lower the electrical conductivity, there may be a limit in improving the power generation efficiency.
  • an object of the present invention is to enable large-scale high integration of the thermoelectric column having a diameter (or width) of the micrometer level, has excellent flexibility, and at the same time high physical It is intended to provide a flexible thermoelectric device and a method for manufacturing the same, which may have phosphorus strength, can be lighter, and have improved thermo-electric conversion efficiency.
  • thermoelectric column array including one or more N-type thermoelectric material and P-type thermoelectric material, arranged spaced apart from each other; An electrode electrically connecting the thermoelectric materials of the thermoelectric material pillar array; And a filling material filling at least the empty space of the thermoelectric pillar array.
  • the electrode is related to a flexible thermoelectric device including a glass frit.
  • another aspect of the present invention is a) a first structure, a first structure, a first stacked substrate, a first contact thermal conductor layer, a first electrode, and a P-type thermoelectric material formed on a predetermined region on the first electrode sequentially stacked; And forming a second structure in which a second sacrificial substrate, a second contact thermal conductor layer, a second electrode, and an N-type thermoelectric material formed on a predetermined region on the second electrode are sequentially stacked.
  • thermoelectric column array a substrate on which a thermoelectric column array is formed
  • Flexible thermoelectric device by using an electrode containing a glass frit significantly improves the binding force between the electrode and the filling material, it is possible to implement a flexible thermoelectric device that excludes the flexible mesh.
  • thermoelectric device 1 is a view showing a cross section of a conventional commercial thermoelectric device.
  • FIG. 2 is a view showing a cross section of the flexible thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 3 is a schematic flowchart of a method of manufacturing a flexible thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 5 is a graph measuring the internal resistance of the device according to the radius of curvature of the flexible thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device is applied to real life.
  • thermoelectric device 7 is a diagram illustrating another example in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life.
  • thermoelectric material 130, 140 thermoelectric material
  • thermoelectric material 230, 330: P-type thermoelectric material
  • thermoelectric material N-type thermoelectric material
  • Korean Patent No. 10-1493797 uses glass fibers as a flexible mesh, but when such glass fibers are located in the middle of the thermoelectric material, tension is caused by the glass fibers, which causes some flexibility. There was a problem of deterioration.
  • thermoelectric material paste and the N-type thermoelectric material paste are applied, respectively, and then annealed at the same time to respectively form the P-type thermoelectric material and the N.
  • the intermediate conditions not the optimum conditions of the respective thermoelectric materials, may be used. Two thermoelectric materials were inevitably formed, and thus, there was a problem in that the efficiency of the thermoelectric element was somewhat reduced.
  • thermoelectric legs (TE legs) array the Applicant pays attention to the fact that the electrode occupies the largest area among the components constituting the thermoelectric element, and thus the binding force between the electrode and the filling material filling the empty space of the thermoelectric legs (TE legs) array is shown.
  • the adhesive strength between the electrode and the filling material is 0.7 MPa or more, it was found that even if the flexible mesh is excluded, the mechanical and physical stability comparable to that of the conventional flexible mesh is secured. When added, it was found that the adhesive strength between the electrode and the filling material could be improved to 0.7 MPa or more, thus completing the present invention.
  • FIG. 5 is a graph illustrating a change in internal resistance according to a curvature radius of a flexible thermoelectric device according to an exemplary embodiment of the present invention.
  • the flexible thermoelectric device according to an embodiment of the present invention can be seen that has a very high flexibility that does not increase the internal resistance of the device even to a radius of curvature 4 mm, it is possible to operate even at high physical deformation It can be confirmed that the utilization as a flexible thermoelectric element is very high.
  • the present invention proposes a new flexible thermoelectric element that can exclude the flexible mesh in order to meet the technical requirements according to the application field, but the flexible mesh and the configuration proposed in the present invention independently of the mechanical As the stability can be improved, the present invention should not be construed as being limited to excluding the flexible mesh.
  • the configuration and the flexible mesh proposed in the present invention can be adopted at the same time.
  • the electrode containing the glass frit improves the mechanical stability of the device independently of the flexible mesh, so that the flexible thermoelectric device may further include a flexible mesh, if necessary.
  • the present invention includes all the contents of Korean Patent No. 10-1493797 and may refer to Korean Patent No. 10-1493797.
  • the flexible mesh corresponds to the mesh-type substrate of the Republic of Korea Patent No. 10-1493797,
  • a representative example of the flexible mesh may be a mesh-type substrate made of glass fibers.
  • thermoelectric column array including one or more N-type thermoelectric material and P-type thermoelectric material, arranged spaced apart from each other; An electrode electrically connecting the thermoelectric materials of the thermoelectric material pillar array; And a filling material filling at least the empty space of the thermoelectric pillar array.
  • the electrode may include a glass frit.
  • the electrode may include a glass frit, and in detail, may include a first conductive material and a glass frit.
  • the glass frit contained in the electrode significantly improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric element in which the flexible mesh is excluded.
  • the electrode and the thermoelectric column array can be bonded using a conductive adhesive, whereby the electrode and the thermoelectric column array can be strongly bound to each other, with high thermal conductivity and electrical between the electrode and the thermoelectric column array Conduction may be possible.
  • the electrode and the filler can not be strongly bound to each other by using such an adhesive, the improvement of the binding force between the electrode and the filler should be preempted above all in order to exclude the flexible mesh which ensures mechanical stability and serves as a support.
  • the glass frit is added to the electrode to ensure that the adhesive strength between the electrode and the filling material is 0.7 MPa or more, thereby ensuring high binding force.
  • the three components of the thermoelectric column array-electrode-filling material are very strongly mediated through the electrode. By having a bonded structure, mechanical and physical stability can be ensured without compromising the flexibility of the device.
  • the adhesive strength between the electrode and the filling material is preferably 1 to 5 MPa.
  • the electrode containing the glass frit may satisfy the following relational formula (1).
  • G is the total weight (g) of the glass frit in the electrode
  • G S is the weight (g) of the glass frit located in the bonding portion of the electrode.
  • the adhesive portion is an adhesive surface that is in contact with the filling material From the adhesive layer reference electrode to 30% thickness.
  • the glass frit may be more than 45% by weight positioned in the bonding portion of the electrode to be bonded to the filling material to more effectively improve the adhesive force between the electrode and the filling material, more preferably 50% by weight or more of the glass frit is placed on the bonding portion of the electrode It is desirable to.
  • the filling material is a polymer containing a silanol group or an alkoxysilane group
  • the silanol group or alkoxysilane group may be chemically and firmly bonded to the electrode and the filling material by reacting with the metal oxide of the glass frit. It may be to have an adhesive strength of 1 to 5 MPa between and the filling material.
  • the binding force between the electrode and the filler material may be reduced by reducing the chemical bond between the electrode and the filler material.
  • the adhesive strength is less than 1 MPa, Physical stability may be degraded.
  • the relative content of the glass frit relative to the first conductive material may be adjusted in consideration of the improvement of the binding force and the electrical conductivity by the glass frit.
  • the electrode may contain 0.1 to 20 parts by weight of the glass frit based on 100 parts by weight of the first conductive material. It is possible to prevent the lowering of the electrical conductivity while ensuring excellent binding strength in the above range.
  • the content of the glass frit is less than 0.1 part by weight, the effect of improving the binding force between the electrode and the filling material may be insignificant, and when the content of the glass frit is more than 20 parts by weight, the electrical conductivity is reduced by the non-conductive glass frit.
  • the thermoelectric performance of the thermoelectric element may be lowered.
  • the electrode in order to improve the flexibility of the thermoelectric device, it is good to implement the electrode as thin as possible. However, the thinner the electrode, the lower the electrical conductivity caused by the glass frit may appear. Accordingly, the relative content of the glass frit relative to the first conductive material is preferably in the minimum content range in which the binding enhancement effect can be exhibited to the extent that the flexible mesh can be excluded. In this aspect, the electrode may contain 0.5 to 10 parts by weight, specifically 1 to 5 parts by weight, based on 100 parts by weight of the conductive material.
  • the electrode may be formed by application and heat treatment of the electrode paste containing the first conductive material and the glass frit. At this time, by adjusting the type, size, shape, etc. of the first conductive material and the glass frit contained in the electrode paste, it is possible to prevent the reduction in the electrical conductivity of the electrode itself while further improving the binding force between the electrode and the filling material.
  • the shape of the first conductive material is not particularly limited, and in particular, the first conductive material may include isotropic particles, anisotropic particles, or mixed particles of isotropic particles and anisotropic particles.
  • the first conductive material is isotropic particles such as spherical particles, the space filling property is good, and thus, homogeneous and stable electrical properties can be realized.
  • the excellent space-filling characteristics of the isotropic particles are not only good for the thermal conditions outside the thermoelectric element can be quickly transferred to the thermoelectric material through the electrode, but isotropic particles can be easily supplied at low prices and economical.
  • the first conductive material is anisotropic particles such as rod-shaped, fibrous, plate-shaped, or flake-like
  • one particle may contact (or bond) with a larger amount of other particles due to anisotropy.
  • the electrode contains anisotropic particles
  • a decrease in the electrical conductivity of the electrode can be prevented even when the flexible thermoelectric element is physically highly deformed.
  • the anisotropic particles have flexibility by the properties of the material itself or nano dimensions, such as carbon nanotubes, carbon nanowires, and silver nanowires, flexibility of the electrode itself may be improved, thereby resulting in high physical deformation in the flexible thermoelectric device. It can operate stably for a long time even in this repeatedly applied environment.
  • the anisotropic degree of the anisotropic particles e.g., aspect ratio in the case of rod or fiber shape, ratio of width to thickness in the case of plate or flake shape, etc.
  • the relative content of the anisotropic particles and the advantages of the isotropic particles can be effectively expressed to the extent that can be effectively expressed.
  • the anisotropic particles may be mixed in an amount of 1 to 50 parts by weight based on 100 parts by weight of the isotropic particles.
  • the average particle diameter of the particles may be 10 nm to 100 ⁇ m, preferably 100 nm to 50 ⁇ m, more preferably 0.5 to 20 It is preferable that the micrometer has excellent space filling properties so that external heat can be quickly transferred to the thermoelectric material, and a thinner electrode can be implemented to reduce the weight of the device and improve the flexibility of the electrode.
  • the first conductive material is anisotropic particles such as fibrous type
  • the contact area between the particles may be improved, and thus, efficiency may be improved in terms of electrical conductivity and thermal conductivity.
  • the aspect ratio (ratio of the major axis length to the short axis or the ratio of the width to the thickness) of the anisotropic particles may be from 2 to 1000, preferably from 10 to 500.
  • the type of the first conductive material according to an embodiment may be used without particular limitation as long as the material has a high thermal conductivity and electrical conductivity.
  • a carbon material or a carbon nanowire having excellent electrical conductivity may be used. Etc. can be used.
  • a metal material may be used that is excellent in thermal conductivity and electrical conductivity, and has excellent binding strength with a filling material to improve physical strength of the thermoelectric element.
  • the metal material may be a transition metal of Groups 3 to 12, and in one embodiment, nickel (Ni), copper (Cu), platinum (Pt), ruthenium (Ru), rhodium (Rh), gold (Au) ), Tungsten (W), cobalt (Co), palladium (Pd), titanium (Ti), tantalum (Ta), iron (Fe), molybdenum (Mo), hafnium (Hf), lanthanum (La), iridium (Ir) ) And silver (Ag) may be one or two or more, and it may be preferable to use copper (Cu) in view of high electrical conductivity, binding to the filler material, and low cost.
  • Glass frit according to an example is not particularly limited in its formation, and may have the same or different shape and size as the first conductive material. In one embodiment it may be spherical, acicular and / or indeterminate, but is not limited thereto.
  • the size of the glass frit may be adjusted in consideration of the flexibility and thickness of the electrode, and may have a size similar or relatively small to the first conductive material.
  • the glass frit has a relatively small size compared to the first conductive material, and in detail, the glass frit does not lower the electrical conductivity of the electrode by interfering with the contact between the first conductive material and does not reduce the flexibility of the electrode. It is good to have a small size.
  • the glass frit may have a size of 0.1 to 1 times based on the average diameter of the first conductive material, and as an example, the glass frit may be obtained through a sieve of 100 mesh or less, but must It is not limited.
  • the glass frit may be an amorphous material formed from a metal oxide, and may generate a stable glassy phase and maintain sufficient low viscosity.
  • the glass frit may be a lead-containing glass frit containing lead or a lead-free glass frit containing no lead, or a mixture thereof, but an environment-friendly and harmless lead-free glass frit is preferable.
  • the glass frit is preferably a bismuth oxide-boron oxide-zinc oxide-based glass frit containing bismuth oxide, boron oxide and zinc oxide, and the siloxane when the electrode contains bismuth oxide-boron oxide-zinc oxide-based glass frit. The binding with acid-based fillers can be improved significantly.
  • bismuth oxide-boron oxide-zinc oxide-based glass frit 60 to 90% by weight of Bi 2 O 3 , 10 to 20% by weight of ZnO and 5 to 15% by weight of B 2 O 3 in the total weight of the glass frit. It may contain%. In addition to this, it may further include one or two or more metal oxides selected from Al 2 O 3 , SiO 2 , CeO 2 , Li 2 O, Na 2 O and K 2 O, the content of the total weight of the glass frit, It may be added in 1 to 20% by weight.
  • bismuth oxide-boron oxide-zinc oxide-based glass frit examples include Bi 2 O 3 -ZnO-B 2 O 3 glass frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -Al 2 O 3 glass Frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -La 2 O 3 -Al 2 O 3 glass frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -TiO 2 glass frit, or Bi 2 O 3 -SiO 2 -B 2 O 3 -ZnO-SrO glass frit, but is not limited thereto.
  • the binding force between the electrode and the filling material can be significantly improved.
  • the functional group contained in the filler material is chemically bonded by reacting with the glass frit, it is possible to significantly improve the binding force between the electrode and the filler material.
  • the functional group may react with the hydroxyl group present in the glass frit, and specifically, may be an alkoxysilane or silanol group.
  • the electrode containing the glass frit may be a fine irregularity formed on the surface.
  • the fine iron leads to an anchoring effect between the electrode and the filler material, further improving the binding force between the electrode and the filler material, thereby ensuring excellent mechanical and physical strength of the thermoelectric element even when the flexible mesh is excluded. It may be possible to implement a more flexible device. That is, even if the physical deformation of the flexible thermoelectric element is repeatedly performed, the physical stability of the device can be ensured due to a very good binding force between the electrode and the filling material, thereby improving the life and reliability of the device.
  • the fine irregularities may be formed by applying and heat treatment of the electrode paste, or may be formed by performing an unevenness forming process after forming the electrode.
  • the surface roughness Ra may be adjusted according to the shape and size of the conductive material and the glass frit.
  • any method known in the art may be used as long as it is a method for forming fine irregularities on the surface of the electrode.
  • fine irregularities may be formed on the surface of the electrode through wet etching such as chemical etching or dry etching such as plasma treatment.
  • the fine irregularities formed on the surface of the electrode are preferably formed to a depth and a size sufficient to improve the binding force with the filling material, and in one embodiment, the surface of the fine irregularities is 0.4 to 2.0 ⁇ m. It may have a surface roughness (Ra), more preferably may have a surface roughness (Ra) of 0.7 to 1 ⁇ m.
  • the anchoring effect is excellent in the above range can greatly improve the binding force between the electrode and the filler material.
  • the electrode containing the glass frit can further improve the binding force between the electrode and the filling material by containing the glass frit. Accordingly, even if the flexible mesh is excluded, the mechanical and physical stability of the thermoelectric element may be secured, and superior flexibility may be secured by removing tension that may be caused by the flexible mesh. That is, by excluding the flexible mesh, it is possible to secure more flexibility, and have an improved binding force between the electrode and the filling material, thereby enabling highly physical deformation, and even in an environment where such physical deformation is repeatedly applied. Since the thermoelectric element can be stably operated without being damaged, it is possible to improve the reliability of the thermoelectric element.
  • the electrode containing the glass frit can improve the binding force with the filling material by containing the glass frit, and further improve the binding force by the surface roughness of the electrode Can have.
  • the adhesive strength between the electrode and the filling material may be 0.7 MPa or more, specifically 0.7 to 10 MPa, and more preferably, 1 to 5 MPa.
  • the filling material is a material filling the empty space of the column array of the thermoelectric material, it is strongly bound to the electrode so that the flexible thermoelectric element can have sufficient mechanical and physical properties, in particular low thermal conductivity By having it, the thermoelectric conversion efficiency of a thermoelectric element can be improved. Accordingly, the filling material should be a material having flexibility, and in addition, due to the characteristics of the thermoelectric element, an electrode directly contacting the heat source and an electrode formed opposite thereto (for example, if the first electrode is an electrode contacting the heat source, the opposite electrode) It is preferable that the temperature gradient between the silver and the second electrode is large, and the filling material is preferably a material having low thermal conductivity. That is, the filling material is preferably a material having flexibility and low thermal conductivity, and preferably a material capable of binding to the electrode to ensure sufficient mechanical and physical strength.
  • the filling material having flexibility and low thermal conductivity may be formed from a prepolymer.
  • the prepolymer is a polymer having a relatively low degree of polymerization containing a curable functional group (curing group), and may mean a polymer before it is filled and cured in an empty space by a thermoelectric column array. Alternatively, all may be cured to form a filling material. That is, the polymer in the initial state before or filled with the thermoelectric pillar array is called a prepolymer, and the cured material is called a filler.
  • the filler is not particularly limited as long as it has flexibility and low thermal conductivity, but specifically, for example, the filler may have a thermal conductivity of 20% or less than that of the thermoelectric material. Preferably, it is preferable to use the one having a thermal conductivity of 0.1 to 10% of the thermal conductivity of the thermoelectric material to effectively block the heat transfer to secure thermal stability.
  • the flexibility and thermal conductivity of the thermoelectric element may be adjusted according to the degree of curing of the filling material.
  • the filling material is based on the curing (100% degree of curing) of all the curing machines contained in the prepolymer. May have a degree of curing (%) satisfying the following relational formula (2).
  • N 0 is the number of average curing groups contained in one molecule of the prepolymer before the curing process, and N is the number of uncured curing groups in the N 0 after the curing process.
  • N 0 may be 2 to 20.
  • the weight average molecular weight of the prepolymer may be 100 to 500,000 g / mol, more preferably 5,000 to 100,000 g / mol.
  • the degree of curing of such a prepolymer can be controlled through the amount of heat applied in case of thermal curing, the amount of light irradiated in case of photocuring, and the content of a curing agent in case of chemical curing.
  • the prepolymer is preferably a chemically curable prepolymer having a chemically curable functional group in terms of reproducibly controlling the degree of curing of the prepolymer homogeneously in a large area, and the degree of curing of the filling material is a chemically curable prepolymer and a curing agent. It is good to control the relative amount of wah.
  • the prepolymer should have flexibility and low thermal conductivity after the curing process, and it is preferable to select the type in consideration of this.
  • the prepolymer may include a functional group capable of thermosetting, photocuring or chemical curing, but may preferably contain a functional group capable of chemical curing for more uniform curing.
  • the thermosetting prepolymer since the material is a material having low thermal conductivity, the temperature of the part directly contacting the heat source and the part not directly may be different, and thus it may be difficult to homogeneously polymerize with a predetermined degree of polymerization.
  • the prepolymer In the case of a photocurable prepolymer, the prepolymer must be filled at least after the electrode is formed across the thermoelectric material and then fills the void space of the array of thermoelectric pillars, thereby reducing the Uniform irradiation may be disturbed.
  • the curing can be uniformly achieved by simply mixing the curing agent uniformly, and the degree of curing of the filling material can be controlled only by controlling the content of the curing agent, thereby controlling flexibility and thermal conductivity. May be advantageous.
  • the prepolymer may be used without particular limitation as long as it has flexibility after curing and has low thermal conductivity.
  • silicone-based prepolymer, olefin-based elastic prepolymer or urethane-based prepolymer Etc. can be used.
  • the silicone-based prepolymer, the olefin-based elastic prepolymer and the urethane-based prepolymer has a high flexibility and elasticity after curing, the physical properties of the thermoelectric element when applied to the flexible thermoelectric element is small, the physical properties change with temperature, the flexibility is maintained in a wide temperature range This is easy and does not easily damage even frequent physical deformation has the advantage of improving the life characteristics.
  • the silicon-based prepolymer and the olefin-based elastic prepolymer has a low thermal conductivity can effectively prevent the diffusion of heat to improve the thermoelectric efficiency.
  • the binding force with the electrode may be further improved, thereby improving physical stability of the thermoelectric element.
  • the silicone prepolymer is filled and cured in the empty space formed by the thermoelectric pillar array, the alkoxysilane group or silanol group contained in the silicone prepolymer may react with the metal oxide of the glass frit in the electrode described above. As a result, the binding force between the electrode and the filling material may be further improved.
  • the olefin-based elastic prepolymer or urethane-based prepolymer may also contain an alkoxysilane group or silanol group, in this case, it is possible to improve the binding force between the electrode and the filler by the same action as the silicone-based prepolymer.
  • silicone-based prepolymers can be divided into condensation type and addition type.
  • the condensation type silicone prepolymer may be cross-cured by hydrolysis and condensation reaction in the presence of water, and the addition type silicone type prepolymer may be crosslinked due to addition reaction between the unsaturated group and the crosslinking agent of the silicone type prepolymer in the presence of a catalyst. have.
  • the condensation type silicone prepolymer may be a siloxane type prepolymer containing a silanol group as an end group, and may be formed by polymerizing a rubbery polymer by a hydrolytic condensation reaction between the silanol group and the crosslinking agent and a condensation reaction with a catalyst and water. Can be formed.
  • the condensed silicone-based prepolymer is an aliphatic polysiloxane, an aromatic polysiloxane having two or more hydroxyl groups, or a polysiloxane including siloxane repeating units each containing an aliphatic group and an aromatic group in one repeat unit or independently. Can be.
  • the aliphatic polysiloxane is polydimethylsiloxane, polydiethylsiloxane, polymethylethylsiloxane, polydimethylsiloxane-co-diethylsiloxane, polydimethylsiloxane-co containing two or more hydroxy groups.
  • -Polymethyl siloxane polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane) and the like, which may be selected from -ethylmethylsiloxane and the like, and aromatic polysiloxanes contain two or more hydroxy groups. Can be selected.
  • Polysiloxanes comprising a siloxane repeating unit which includes both aliphatic and aromatic groups in one repeating unit or independently of each other include all of the repeating units of aliphatic siloxanes and repeating units of aromatic siloxanes exemplified above,
  • the aromatic substituents exemplified above may mean a form bonded to each silicon element located in one repeating unit, but is not limited thereto.
  • the crosslinking agent may be a siloxane-based curing agent containing a Si-O bond or an organosilazane-based curing agent containing a Si-N bond, and the like, and, as a non-limiting example, (CH 3 ) Si (X) 3 or Si (OR) 4 .
  • X may be a methoxy, acetoxy, oxime, amine group and the like
  • R has a lower alkyl group and may be a methyl, ethyl or propyl group in one non-limiting embodiment.
  • the catalyst is not limited as long as it is commonly used in the art, and an organic tin compound, an organic titanium compound, or an amine compound may be used as a non-limiting example.
  • the addition silicone-based prepolymer may be a siloxane-based prepolymer containing an ethylenically unsaturated group, and more particularly, may be a siloxane-based prepolymer containing a vinyl group.
  • a siloxane chain can be bridge
  • the additional silicone-based prepolymer may be an aliphatic polysiloxane having two or more vinyl groups, an aromatic polysiloxane, or a polysiloxane including siloxane repeating units each containing an aliphatic group and an aromatic group or independently of each other. have.
  • 2 to 20 vinyl groups may be included in one polysiloxane chain, but are not limited thereto.
  • the vinyl groups may increase in proportion to more than 20 vinyl groups, which is preferable for low molecular weight polysiloxanes. The range may include two to four.
  • the aliphatic polysiloxane is polydimethylsiloxane, polydiethylsiloxane, polymethylethylsiloxane, polydimethylsiloxane-co-diethylsiloxane, polydimethylsiloxane-co- containing two or more vinyl groups.
  • aromatic polysiloxane may be selected from polydiphenylsiloxane, polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane), and the like, containing two or more vinyl groups.
  • the aromatic polysiloxane may be selected from polydiphenylsiloxane, polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane), and the like, containing two or more vinyl groups.
  • the aromatic polysiloxane may be selected from polydiphenylsiloxane, polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane), and the like, containing two or more vinyl groups.
  • Polysiloxanes comprising a siloxane repeating unit which includes both aliphatic and aromatic groups in one repeating unit or independently of each other include all of the repeating units of aliphatic siloxanes and repeating units of aromatic siloxanes exemplified above,
  • the aromatic substituents exemplified above may mean a form bonded to each silicon element located in one repeating unit, but is not limited thereto.
  • the crosslinking agent may be used without particular limitation as long as it is a siloxane compound containing a Si—H bond, and in one non-limiting embodiment, may be an aliphatic or aromatic polysiloxane including a-(R a HSiO)-group.
  • R a may be an aliphatic group or an aromatic group, an aliphatic group may be a methyl group, an ethyl group, a propyl group, an aromatic group may be a phenyl group, a naphthyl group, and the substituent may be substituted with another substituent within a range that does not affect the crosslinking reaction.
  • polymethylhydrogensiloxane [(CH 3 ) 3 SiO (CH 3 HSiO) x Si (CH 3 ) 3 ]
  • polydimethylsiloxane [(CH 3 ) 2 HSiO ((CH 3 ) 2 SiO) x Si (CH 3 ) 2 H]
  • polyphenylhydrogensiloxane [(CH 3 ) 3 SiO (PhHSiO) x Si (CH 3 ) 3 ] or polydiphenylsiloxane [(CH 3 ) 2 HSiO ((Ph ) 2 SiO) x Si (CH 3 ) 2 H]
  • it is preferable to adjust the content of Si-H according to the number of vinyl groups contained in the additional silicone-based prepolymer for example x is 1 or more It may be, but may be more
  • the catalyst may be optionally added to promote the reaction, and is not limited as long as it is commonly used in the art, may use a platinum compound and the like as a non-limiting embodiment.
  • it may further include additives such as fillers and / or diluents.
  • the filler may use aerosol silica, quartz powder, calcium carbonate powder or diatomaceous earth powder.
  • fillers may be chemically bound to the siloxane-based prepolymer to improve the fracture toughness of the crosslinked siloxane polymer.
  • the filler may be introduced into the vinyl group or Si-H group through a coupling agent, it can be stably included in the cross-linked siloxane polymer network through the functional group.
  • the olefinic elastic prepolymer may be cross-linked and hardened by an olefinic elastic prepolymer and a crosslinking agent to form a polymer.
  • the olefin-based elastic prepolymer may be, but is not limited to, poly (ethylene-co-alpha-olefin), ethylene propylene diene monomer rubber (EPDM rubber), polyisoprene or polybutadiene, and the like.
  • the crosslinking agent may be a vulcanizing agent, and is not limited as long as it is commonly used in the art, but may be used as a non-limiting example, sulfur or organic peroxide.
  • the urethane-based prepolymer is a urethane-based prepolymer containing a first form and an unsaturated group, which are polymerized by addition condensation reaction of an isocyanate group (-NCO) and a hydroxyl group (-OH) in the presence of a catalyst by an addition reaction with a crosslinking agent. It can be divided into a second form to be a polymer.
  • a polymer may be formed by the reaction of a polyfunctional isocyanate compound containing two or more isocyanate groups and a polyol compound containing two or more hydroxyl groups.
  • the polyfunctional isocyanate compound is a non-limiting embodiment, 4,4'- diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), 1,4-diisocyanatobenzene (PPDI), 2 , 4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 3,3'-bittolylene-4,4'-diisocyanate, 1,3-xylene diisocyanate, p-tetramethylxylene di Isocyanate (p-TMXDI), 1,6-diisocyanato-2,4,4-trimethylhexane, hexamethylene diisocyanate (HMDI) 1,4-cyclohex
  • the polyol-based compound may be divided into polyester polyols and polyether polyols.
  • the polyester polyol may be, but is not limited to, polyethylene adipate, polybutylene adipate, poly (1,6-hexaadipate), polydiethylene adipate, poly (e-caprolactone), and the like.
  • the polyether polyol may be, but is not limited to, polyethylene glycol, polydiethylene glycol, polytetramethylene glycol, polyethylenepropylene glycol, and the like in one specific embodiment.
  • the catalyst is not particularly limited as long as it is commonly used in the art, but may be an amine catalyst, and in one non-limiting embodiment, dimethylcyclohexylamine (DMCHM), tetramethylenediamine (TMHDA), pentamethylene Diethylenediamine (PMEDETA), tetraethylenediamine (TEDA), etc. can be used.
  • DCHM dimethylcyclohexylamine
  • TMHDA tetramethylenediamine
  • PMEDETA pentamethylene Diethylenediamine
  • TMA tetraethylenediamine
  • the polymer may be formed by an addition reaction between the urethane-based prepolymer containing an ethylenically unsaturated group and a crosslinking agent.
  • a urethane-based prepolymer may vary in structure depending on the type of the compound containing the isocyanate group and the polyol-based compound, but may be an ethylenically unsaturated group, more specifically, a urethane-based prepolymer containing a vinyl group.
  • 2 to 20 vinyl groups may be included in one polyurethane chain, but are not limited thereto.
  • the vinyl groups may increase in proportion to 20 or more, and the polyurethane having a low molecular weight In the case of the preferred range may include 2 to 4.
  • the crosslinking agent may be a vulcanizing agent, and is not limited as long as it is commonly used in the art, but may be used as a non-limiting example, sulfur or organic peroxide.
  • the content of the prepolymer, the crosslinking agent and the catalyst may be selected in consideration of the degree of curing of the polymer.
  • the crosslinking agent may be used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the prepolymer, preferably 3 to 50 parts by weight, and more preferably 5 to 20 parts by weight.
  • the catalyst may be used in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the prepolymer, and preferably 0.1 to 1 part by weight. It is possible to effectively form a polymer having excellent flexibility in the above range and low thermal conductivity, thereby realizing a device having excellent stability against frequent physical changes, and effectively preventing thermal diffusion, thereby greatly improving thermoelectric efficiency.
  • the filling material maintains flexibility in a wide temperature range in consideration of the environment in which the thermoelectric element is driven, and accordingly, it is preferable to adjust the glass transition temperature (T g ) of the filling material.
  • T g glass transition temperature
  • the glass transition temperature of the filling material may be -150 ⁇ 0 °C, and more preferably the maximum temperature that the glass transition temperature may have in the aspect of maintaining flexibility and binding with the electrode may be -20 °C or less.
  • the filler material maintains flexibility and mechanical properties even in an environment in which high physical deformation is applied. Accordingly, it is preferable to control the hardness (shore A) and tensile strength of the filler material. .
  • the hardness of the filler material may be 10 to 40, more preferably 20 to 30 is preferable in having a higher flexibility.
  • the tensile strength may be 30 ⁇ 300 kg / cm2, more preferably 40 ⁇ 90 kg / cm2.
  • the filling material may be formed by filling the prepolymer in the empty space formed by the thermoelectric column array, and then hardened.
  • the empty space may cause a capillary phenomenon due to the space having a fine size, and thus the prepolymer may be uniformly filled in the empty space by using a liquid material.
  • the prepolymer may be a liquid material, and in detail, the prepolymer may be a liquid or a solution dissolved in a solvent.
  • Such a liquid prepolymer can be effectively and uniformly filled in the empty space by the capillary effect, and after the hardening process to ensure good binding overall with the electrode and the thermoelectric material can further improve the mechanical and physical properties of the thermoelectric element.
  • the prepolymer itself is a liquid at a process temperature (for example, room temperature)
  • a process temperature for example, room temperature
  • the liquid prepolymer may have a viscosity of 10,000 cP or less, specifically, may have a viscosity of 1,000 to 10,000 cP, and more preferably, may have a viscosity of 2,000 to 5,000 cP. have.
  • the liquid prepolymer may be controlled by a conventional viscosity modifier so as to have a given viscosity.
  • the viscosity of the liquid prepolymer is a viscosity in which the liquid prepolymer can be easily filled in the empty space formed by the thermoelectric column array even when the capillary effect is reduced by the physical size or shape of the thermoelectric element.
  • the liquid prepolymer may have an appropriate contact angle to fill the empty space of the thermoelectric column array by a more effective capillary effect.
  • the liquid prepolymer forming the filling material by curing may be well wetted with the electrode.
  • the contact angle between the electrode and the liquid prepolymer may be more important.
  • the liquid prepolymer should be well wetted by the thermoelectric material and the electrode, especially the electrode. May cause problems with poor filling.
  • the contact angle between the electrode and the liquid prepolymer is the interfacial tension equilibrium due to the three interfacial energies of the electrode-droplet interface, the electrode-phase interface, and the droplet-phase interface when the liquid prepolymer droplet is dropped on top of the electrode in the form of a flat plate (or film). It may be a contact angle defined by. In one embodiment, the contact angle between the liquid prepolymer and the electrode may be less than 90 °, preferably 0 to 60 °.
  • the P-type thermoelectric material and the N-type thermoelectric material of the thermoelectric column array may be formed by a conventional method, in detail, to form a polycrystal using a thermoelectric material paste or It may be formed using a single crystal.
  • the use of a single crystal as a thermoelectric material the flexible thermoelectric device according to an embodiment of the present invention can be used as it is not necessary to have a mesh through the adhesion between the electrode and the filling material is improved.
  • the P-type thermoelectric material or the N-type thermoelectric material When the P-type thermoelectric material or the N-type thermoelectric material is formed into a polycrystal using a thermoelectric material paste, the P-type thermoelectric material or the N-type thermoelectric material may be formed from the P-type thermoelectric material paste or the N-type thermoelectric material paste. This is described in detail in the preparation method of the substance.
  • the N-type thermoelectric material and the P-type thermoelectric material may be used a material having a high thermal conductivity and electrical conductivity, in detail, if the thermoelectric figure of merit (ZT, thermoelectric figure of merit) is 0.1 K -1 or more specifically limited Can be used without.
  • the second conductive material may include a second conductive material.
  • the second conductive material may include an alkali metal of Group 1, an alkaline earth metal of Group 2, a transition metal of Groups 3-12, and a Group 13-16 of the Periodic Table. Any one or two or more selected from the elements of may be used.
  • the alkali metals of Group 1 may be sodium (Na), potassium (K), and the like
  • the alkaline earth metals of Group 2 may be magnesium (Mg), calcium (Ca), strontium (Sr), and the like.
  • elements of Groups 13 to 16 are aluminum (Al), silicon (Si), germanium (Ge), selenium (Se), tin (Sn), antimony (Sb), Lead (Pb
  • the N-type thermoelectric material may include a bismuth-tellurium-based (Bi x Te 1- x ) or a bismuth-telenium-selenium-based (Bi 2 Te x Se 1-x ) compound, and a P-type thermoelectric
  • the material may comprise an antimony-tellurium-based (Sb x Te 1- x ) or bismuth-antimony-tellurium-based (Bi y Sb 2-y Te 3 ) compound.
  • x may be 0 ⁇ x ⁇ 1
  • y may be 0 ⁇ y ⁇ 2.
  • the shape of the second conductive material is not particularly limited, but particles, such as spherical, rod, fibrous, plate and flake type, may be used alone or in combination, and preferably, the use of spherical particles is homogeneous and stable. Electrical characteristics can be realized.
  • the size of the second conductive material may also be controlled to form a thin thermoelectric material.
  • the second conductive material may have an average particle diameter of 10 nm to 100 ⁇ m, preferably 0.1 It may have an average particle diameter of from 50 ⁇ m.
  • the thermoelectric material may be a fine uneven surface is formed on the surface, it is possible to improve the binding force between the filling material and the thermoelectric material by the surface fine irregularities.
  • the surface of the thermoelectric material may have a surface roughness Ra of 0.1 to 10.0 ⁇ m, and more preferably, it may have a surface roughness Ra of 1.0 to 5.0 ⁇ m.
  • the method of forming the fine irregularities on the surface of the thermoelectric material is not particularly limited, and any method known in the art may be used as long as it can satisfy the surface roughness Ra.
  • fine irregularities may be formed by applying and heat-treating the thermoelectric material forming paste, or fine unevenness may be formed on the surface of the thermoelectric material through wet etching such as chemical etching or dry etching such as plasma treatment.
  • the micro-convex formation method of the thermoelectric material may be formed through a method independent of the micro-convex formation method of the electrode surface described above.
  • the flexible thermoelectric device 200 includes one or more N-type thermoelectric materials 240 and P-type thermoelectric materials 230, spaced apart from each other, as shown in FIG. A thermoelectric column array; First and second electrodes 220 and 220 ′ electrically connecting the thermoelectric materials of the thermoelectric pillar array; And a filling material 250 filling at least the empty space of the thermoelectric pillar array.
  • the first electrode and the second electrode may include a glass frit.
  • the flexible thermoelectric device may be connected to the thermoelectric column array in thermally parallel, electrically in series and / or parallel through the electrode and the thermoelectric column array.
  • the flexible thermoelectric element 200 is electrically in parallel, electrically, through the first electrode 220, the second electrode 220 'and the thermoelectric column array as shown in FIG. Can be connected in series.
  • one end of the N-type thermoelectric material 240 may be connected to one end of one surface of the first electrode 220, and one end of the second electrode 220 ′ may be connected to the other end of the N-type thermoelectric material. This can be connected.
  • One end of the P-type thermoelectric material 230 may be continuously connected to the other end of one surface of the second electrode, and the other end of the P-type thermoelectric material 230 may be spaced apart from the first electrode 220. It may be connected to one end of the electrode 220, the flexible thermoelectric element 200 may be configured by using this as a repeating unit.
  • the size and shape of the N-type thermoelectric material and the P-type thermoelectric material may be appropriately designed in consideration of the use of the thermoelectric device, so long as the flexibility of the flexible thermoelectric device is not impaired.
  • the N-type and P-type thermoelectric materials may have the same shape and size to each other. More specifically, the N-type and P-type thermoelectric material may be independently of each other, plate or columnar shape, the cross-section in the thickness or length direction has a curved shape, such as circular, elliptical or triangular, square, pentagonal, etc. It may be an angular shape.
  • the thickness of the N-type or P-type thermoelectric material may have a thickness of several tens of nanometers to several tens of millimeters.
  • the cross-sectional area of the N-type or P-type thermoelectric column may have an area of several hundred square nanometer order to several square centimeter order.
  • an N-type or P-type thermoelectric material may have a thickness of 100 nm to 5 cm, and a cross-sectional area of the thermoelectric material pillar may be 0.1 ⁇ m 2 to 10 cm 2, but the present invention is directed to the physical shape or size of the thermoelectric material. It is not limited by.
  • thermoelectric material may be manufactured in the thickness of the nanometer order.
  • the flexible thermoelectric device according to the example of the present invention may also manufacture the device in the thickness of the nanometer order, and the miniaturization and integration of the thermoelectric device may be possible.
  • the device since the device can be manufactured so that the cross-sectional area of the thermoelectric column is up to ⁇ m 2 or less, a very large number of thermoelectric pillars can be integrated within a given total device area, which is advantageous for raising the total output voltage.
  • the glass frit improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric device having no flexible mesh.
  • the thickness of the thermoelectric material When the thermoelectric column array is supported through the flexible mesh, the thickness of the thermoelectric material must be larger than the thickness of the flexible mesh, and the cross-sectional area of the thermoelectric column must be at least not to escape the thermoelectric material through the eyes of the flexible mesh. The area required to be stably supported by the lattice structure is required.
  • the thermoelectric column array can be miniaturized and nanostructured, and the thermoelectric column can be freely provided within the range that satisfies the properties required for the application and does not impair the flexibility of the filling material itself. Physical design of the array is possible.
  • Method (I) of manufacturing a flexible thermoelectric device a) P-type thermoelectric material formed in a predetermined area on the first sacrificial substrate, the first contact thermal conductor layer, the first electrode, and the first electrode A first structure sequentially stacked; And forming a second structure in which a second sacrificial substrate, a second contact thermal conductor layer, a second electrode, and an N-type thermoelectric material formed on a predetermined region on the second electrode are sequentially stacked.
  • thermoelectric column array a substrate on which a thermoelectric column array is formed
  • a method of forming a first structure includes: a-1) forming a first contact thermal conductor layer on a first sacrificial substrate; a-2) forming a first electrode on the first contact thermal conductor layer; And a-3) forming a P-type thermoelectric material in a predetermined region on the first electrode.
  • the method of forming the second structure may include forming an N-type thermoelectric material in a predetermined region on the second electrode. Except for the steps to proceed the same, repeated description will be omitted.
  • the first sacrificial substrate serves as a support to maintain its shape until the completion of the flexible thermoelectric element, the sacrificial film according to the adhesive force characteristics of the first contact thermal conductor layer It may be to include more. That is, when the first sacrificial substrate does not have good adhesive strength with the first contact thermal conductor layer, no sacrificial film is required, and when the first sacrificial substrate has good adhesion, the first sacrificial substrate may further include a sacrificial film.
  • the sacrificial film may be used without particular limitation as long as it is a metal thin film or polymer layer having poor adhesion to the first sacrificial substrate.
  • the metal thin film may be a nickel thin film
  • the polymer layer may be a polymer adhesive substrate. It may be formed by coating on, specific examples of the polymer adhesive is glue, starch, acetyl cellulose (Acetyl cellulose), poly vinyl acetate (Poly vinyl acetate), epoxy (Epoxy), urethane (Urethane), chloroprene rubber (Chloroprene rubber ), Nitrile rubber, phenol resin, silicate-based, alumina cement, urea resin, melamine resin, acrylic resin, polyester resin, vinyl / phenol resin, epoxy / phenol resin, or the like It may be a mixture or compound consisting of two or more.
  • the method of forming the sacrificial film may be any method known in the art as long as it is a method capable of forming a metal thin film on the substrate.
  • spin coating, screen printing technique, physical deposition, thermal evaporation, chemical vapor deposition, electrodeposition or spraying It may be formed through a spray coating or the like.
  • the first sacrificial substrate is not limited to the type thereof as long as the first contact thermal conductor layer or the sacrificial layer has a weak adhesive strength, and does not limit the material, shape, size, etc. of the substrate.
  • the first sacrificial substrate may use any one selected from silicon, silicon oxide, sapphire, alumina, mica, germanium, silicon carbide, gold, silver, and a polymer.
  • the first contact thermal conductor layer is a step for forming a thermal conductor layer capable of minimizing heat loss of the flexible thermoelectric element.
  • the first contact thermal conductor layer may be formed of a material having high thermal conductivity.
  • aluminum nitride (AlN), Silicon nitride (Si 3 N 4 ) or alumina (Al 2 O 3 ) may be used, but is not limited thereto.
  • the method for forming the first contact thermal conductor may be any method known in the art, as long as it is a method for forming the first contact thermal conductor thin film on a substrate.
  • spin coating, screen printing technique, physical deposition, thermal evaporation, chemical vapor deposition, electrodeposition or spraying It may be formed through a spray coating or the like.
  • Step a-2) is a step for forming the first electrode, and any method may be used as long as it is a method for forming the first electrode according to a planned pattern.
  • screen printing may be performed. It may be performed by various methods such as printing, sputtering, vaporization, evaporation, chemical vapor deposition, pattern transfer, or electroplating.
  • the method may be performed through a screen printing method, and the first electrode paste may be applied to the upper portion of the first contact thermal conductor layer in a predetermined pattern, and then heat-treated to form the first electrode.
  • the first electrode paste may be an electrode paste, and may include a first conductive material, and in detail, may include a first conductive material, a first solvent, and a first binder.
  • the first electrode paste may be adjusted in composition and content of each component in consideration of the planned electrode type, thermal conductivity, electrical conductivity and thickness.
  • the first electrode paste may include a metal material or a first conductive material such as carbon nanotubes and carbon nanowires having excellent electrical conductivity, and the first conductive material may be the same as described in the flexible thermoelectric device. can do.
  • the metal material may be a transition metal of Groups 3 to 12, and in one embodiment, nickel (Ni), copper (Cu), platinum (Pt), ruthenium (Ru), rhodium (Rh), gold (Au) ), Tungsten (W), cobalt (Co), palladium (Pd), titanium (Ti), tantalum (Ta), iron (Fe), molybdenum (Mo), hafnium (Hf), lanthanum (La), iridium (Ir) )
  • silver (Ag) may be one or two or more, and it may be preferable to use copper (Cu) in view of high electrical conductivity, binding to the filler material, and low cost.
  • the first solvent is used to control the fluidity of the first electrode paste, and may be used without particular limitation as long as it can dissolve the first binder.
  • an alcohol solvent, a ketone solvent, or the like may be used.
  • Mixed solvents can be used.
  • the first binder is for adjusting the printing resolution, and in one embodiment, a resin material may be used.
  • the first electrode paste may have a sufficient thermal conductivity and electrical conductivity, and may be preferably formulated in a content range to ensure flexibility of the electrode.
  • the first electrode paste may include 10 to 90% by weight of the first conductive material, 5 to 50% by weight of the first solvent, and 2 to 10% by weight of the first binder.
  • the first electrode paste may further include a glass frit in terms of improving the binding force between the electrode and the filling material.
  • a glass frit in terms of improving the binding force between the electrode and the filling material.
  • 0.1 to 20 parts by weight may be added based on 100 parts by weight of the first conductive material. It is possible to prevent the lowering of the electrical conductivity while ensuring excellent binding strength in the above range.
  • the content of the glass frit is less than 0.1 part by weight, the effect of improving the binding force between the electrode and the filling material may be insignificant, and when the content of the glass frit is more than 20 parts by weight, the electrical conductivity is reduced by the non-conductive glass frit.
  • the thermoelectric performance of the thermoelectric element may be lowered.
  • the electrode in order to improve the flexibility of the thermoelectric device, it is good to implement the electrode as thin as possible. However, the thinner the electrode, the lower the electrical conductivity caused by the glass frit may appear. Accordingly, the relative content of the glass frit relative to the first conductive material is preferably in the minimum content range in which the binding enhancement effect can be exhibited to the extent that the flexible mesh can be excluded. In this aspect, the electrode may contain 0.5 to 10 parts by weight, specifically 1 to 5 parts by weight, based on 100 parts by weight of the conductive material.
  • the second electrode may be manufactured in the same manner as the first electrode, duplicate description thereof will be omitted.
  • the glass frit contained in the electrode significantly improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric element in which the flexible mesh is excluded.
  • the electrode and the thermoelectric column array can be bonded using a conductive adhesive, whereby the electrode and the thermoelectric column array can be strongly bound to each other, with high thermal conductivity and electrical between the electrode and the thermoelectric column array Conduction may be possible.
  • the electrode and the filler can not be strongly bound to each other by using such an adhesive, the improvement of the binding force between the electrode and the filler should be preempted above all in order to exclude the flexible mesh which ensures mechanical stability and serves as a support.
  • the glass frit is added to the electrode to ensure that the adhesive strength between the electrode and the filling material is 0.7 MPa or more, thereby ensuring high binding force.
  • the three components of the thermoelectric column array-electrode-filling material are very strongly mediated through the electrode. By having a bonded structure, mechanical and physical stability can be ensured without compromising the flexibility of the device.
  • the adhesive strength between the electrode and the filling material is preferably 1 to 5 MPa.
  • the first electrode and the second electrode may satisfy the following relations 1-1 or 1-2.
  • Equation 1-1 G 1 is the total weight (g) of the glass frit in the first electrode, G S1 is the weight (g) of the glass frit located in the bonding portion of the first electrode.
  • G 2 is the total weight (g) of the glass frit in the second electrode
  • G S2 is the weight (g) of the glass frit located in the bonding portion of the second electrode.
  • the adhesive part refers to the adhesive surface in contact with the filling material, up to 30% of the thickness of the first electrode or the second electrode based on the adhesive surface.
  • the glass frit may be more than 45% by weight positioned in the bonding portion of the electrode to be bonded to the filling material to more effectively improve the adhesive force between the electrode and the filling material, more preferably 50% by weight or more of the glass frit is placed on the bonding portion of the electrode It is desirable to.
  • the filling material is a polymer containing a silanol group or an alkoxysilane group
  • the silanol group or alkoxysilane group may be chemically and firmly bonded to the electrode and the filling material by reacting with the metal oxide of the glass frit. It may be to have an adhesive strength of 1 to 5 MPa between and the filling material.
  • the binding force between the electrode and the filler material may be reduced by reducing the chemical bond between the electrode and the filler material.
  • the adhesive strength is less than 1 MPa, Physical stability may be degraded.
  • step a-3) is a step for forming a thermoelectric material.
  • the step a-3) is for forming a P-type thermoelectric material on a predetermined region on the patterned first electrode.
  • Step a-3) may be any method as long as it can form a P-type thermoelectric material in a predetermined region on the first electrode.
  • a polycrystalline body is formed using a thermoelectric paste.
  • a single crystal can be used to form the thermoelectric material.
  • the flexible thermoelectric device according to an embodiment of the present invention can be used as it is not necessary to have a mesh through the adhesion between the electrode and the filling material is improved.
  • the P-type thermoelectric material formed on the first electrode and the N-type thermoelectric material formed on the second electrode may be spaced apart from each other, as shown in FIG. 2.
  • the P-type thermoelectric material when the P-type thermoelectric material is formed into a polycrystal using a thermoelectric paste, the P-type thermoelectric material may be formed by screen printing.
  • the thermoelectric material paste may be applied to the upper portion of the first electrode in a predetermined pattern, and then heat-treated to form a thermoelectric material.
  • the P-type thermoelectric material paste may include a second conductive material, and in detail, may include a second conductive material, a second solvent, and a second binder.
  • the P-type thermoelectric material paste may be adjusted in composition and content of each component in consideration of the type of the planned thermoelectric material, thermal conductivity, electrical conductivity and thickness.
  • the second conductive material is the case described above can be used as the same material, the paste for the P-type thermoelectric material, an antimony-telru ryumgye (Sb x Te 1 -x) or bismuth-antimony-telru nyumgye (Bi y Sb 2 - y Te 3 ) is preferably used.
  • x may be 0 ⁇ x ⁇ 1
  • y may be 0 ⁇ y ⁇ 2.
  • the second solvent is for controlling the fluidity of the P-type thermoelectric material paste, and can be used without particular limitation as long as it can dissolve the second binder, in one embodiment, an alcohol solvent, a ketone solvent or these A mixed solvent of can be used.
  • the second binder is for adjusting printing resolution, and in one embodiment, a resin material may be used.
  • the paste for P-type thermoelectric material may include 10 to 90% by weight of the second conductive material, 5 to 50% by weight of the second solvent, and 2 to 10% by weight of the second binder.
  • the P-type thermoelectric material paste may further include a glass frit in terms of improving binding force between the thermoelectric material and the filling material.
  • the glass frit may be added in an amount of 2 to 10% by weight based on the total weight of the paste for thermoelectric material.
  • the P-type thermoelectric material paste may be applied to the upper portion of the first electrode in a predetermined pattern, and then heat-treated to form the P-type thermoelectric material.
  • the heat treatment conditions may be adjusted in various ways.
  • the thermoelectric device according to an embodiment of the present invention may be manufactured by removing the flexible mesh, so that the P-type thermoelectric material paste is applied on the first electrode.
  • the P-type thermoelectric material may be formed by heat treatment under optimal conditions. In the case of using the existing flexible mesh, the P-type thermoelectric material and the N-type thermoelectric material are coated and then heat-treated at the same time, so that the annealing is performed in a medium condition, thereby reducing the efficiency of the thermoelectric device.
  • thermoelectric material paste since only the P-type or N-type thermoelectric material paste is applied to the electrodes and then heat treated, respectively, the optimum annealing conditions for forming the P-type thermoelectric material and the optimum annealing for the N-type thermoelectric material are formed.
  • Each thermoelectric material may be formed under conditions.
  • the P-type thermoelectric material and the N-type thermoelectric material may be formed under optimal annealing conditions, thereby maximizing the efficiency of the thermoelectric device.
  • the optimum annealing conditions for forming the P-type thermoelectric material may vary depending on the type of the second conductive material included in the P-type thermoelectric material, and may be annealed at, for example, 300 to 1000 ° C. .
  • the second conductive material is Bi 0 . 3 Sb 1 . 7 Te 3 , Bi 0 . 8 Sb 1 . 2 Te 3 Or Bi 0 . 5 Sb 1 .
  • bismuth-antimony-tellurium-based (Bi y Sb 2-y Te 3 , 0 ⁇ y ⁇ 2) compounds such as 5 Te 3
  • the substrate on which the P-type thermoelectric paste is coated is placed in an oven at 80 to 140 ° C.
  • the annealing may proceed at a temperature higher than the temperature of the city. At this time, the annealing temperature may be 400 to 600 °C, annealing time may be 30 minutes to 120 minutes, the most optimal annealing conditions may be 80 minutes at 500 °C.
  • the second electrode may be formed in the same manner as the first structure, and then an N-type thermoelectric material may be formed in a predetermined region on the second electrode.
  • an N-type thermoelectric material paste may be used, and the N-type thermoelectric material paste may be the same as the P-type thermoelectric material paste except that the second conductive material is different.
  • bismuth is preferred to use a - (y Se y Bi 2 Te 3) compound telru ryumgye (Bi x Te 1 -x) or bismuth-titanium selenium-based telephone.
  • x may be 0 ⁇ x ⁇ 1
  • y may be 0 ⁇ y ⁇ 2.
  • an N-type thermoelectric material paste may be coated on the second electrode in a predetermined pattern, and then heat-treated to form the N-type thermoelectric material.
  • the optimum annealing conditions for the formation of the N-type thermoelectric material may vary according to the type of the second conductive material contained in the N-type thermoelectric material.
  • the second conductive material may be bismuth-tellurium-based (Bi x Te 1).
  • the substrate coated with the N-type thermoelectric paste is placed in an oven at 80 to 140 °C to dry for 5 to 20 minutes to evaporate the solvent, than the solvent evaporation temperature
  • annealing may be performed at a temperature higher than the temperature at the time of evaporation of the binder in order to increase the thermoelectric properties of the thermoelectric material.
  • the annealing temperature may be 350 to 550 ° C
  • the annealing time may be 30 minutes to 120 minutes
  • the most optimal annealing condition may be 90 minutes at 510 ° C.
  • the second conductive material contains tellurium (Te), tellurium (Te) powder in a heat treatment oven (Oven) or a heat treatment furnace (Fe) to prevent evaporation of the tellurium (Te) during high temperature heat treatment It is preferable to insert together and proceed with heat treatment.
  • step a-3 when a single crystal is formed of a P-type thermoelectric material or an N-type thermoelectric material, a single crystal including a second conductive material is manufactured, and then the shape is planned through a process such as cutting. It can be processed and bonded to the upper portion of the first electrode.
  • the method for the adhesion is not particularly limited as long as it is a method capable of bonding the electrode and the thermoelectric material.
  • the adhesion may be performed using a conductive adhesive.
  • the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
  • silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
  • first structure and the second structure may be connected so that the thermoelectric materials are spaced apart from each other, and as shown in FIG. 2, the structures may be connected such that the P-type thermoelectric material and the N-type thermoelectric material are alternately positioned.
  • the connection may be performed through an adhesion process, and the method for the adhesion is not particularly limited as long as it can bond the electrode and the thermoelectric material.
  • the connection may be performed using a conductive adhesive. .
  • the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
  • silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
  • step c) forming the filling material in the empty space between the thermoelectric column array of the substrate may be performed. That is, through this, it is possible to physically support the thermoelectric material and to ensure mechanical properties of the thermoelectric element.
  • step c) includes filling the c-1) filling material precursor into the empty space formed by the thermoelectric column array, and c-2) processing the filling material precursor to form a filling material. Can be divided into stages. In addition, after the filling material is formed, it is preferable to remove the filling material remaining in unnecessary parts other than the empty space.
  • Step c-1) is not limited as long as the filling material precursor can be filled with a gap between the N-type thermoelectric material and the P-type thermoelectric material, for example, a prepolymer, a curing agent, and the like.
  • the liquid filler containing precursor is filled in the substrate on which the electrode and thermoelectric pillar array is formed by using capillary action, or the electrode and thermoelectric material in the tank filled with the liquid filler precursor including the prepolymer and the curing agent.
  • the substrate on which the pillar array is formed may be filled and filled.
  • step c-2 is a step of forming a filling material by processing a filling material precursor filled in an empty space formed by the thermoelectric column array, and specifically, may form a filling material through curing.
  • the filling material formed through curing may be a high molecular compound.
  • the filler precursor may include a prepolymer, and when the prepolymer itself is a liquid phase, the drying process may be omitted, but when the solution phase is dissolved in a solvent, a drying process may be performed before hardening revolution. . Drying process according to one embodiment may be carried out by drying for a predetermined time at a temperature such that the solvent is enough to fly. In one embodiment, when the prepolymer is polydimethylsiloxane, the drying temperature may be from room temperature to 150 ° C., and the drying time may be 10 minutes to 24 hours.
  • the curing process may vary depending on the type and content of the prepolymer and the curing agent.
  • the curing process may be performed by adjusting the content of the thermosetting agent, the curing temperature, and the curing time. It may be performed differently depending on the type of functional group.
  • the curing process may be performed by adjusting the content, light amount and light intensity of the photocuring agent, but this may also be performed differently according to the type of the photocurable functional group.
  • the removal step can be performed by peeling only the sacrificial substrate from the contact thermal conductor layer, the method of peeling only the sacrificial substrate from the contact thermal conductor layer If it can be used without particular limitation, for example, it can be physically or chemically peeled off in the air or water.
  • the removal step can be performed by peeling only the sacrificial substrate from the contact thermal conductor layer, the method of peeling only the sacrificial substrate from the contact thermal conductor layer If it can be used without particular limitation, for example, it can be physically or chemically peeled off in the air or water.
  • the sacrificial substrate removing step may be performed by first peeling the substrate out of the sacrificial substrate and then removing the sacrificial film.
  • the peeling of the substrate may be used without particular limitation as long as it can peel only the substrate from the sacrificial film.
  • the substrate may be peeled physically or chemically in air or water.
  • the silicon oxide substrate and the nickel thin film may be Peeling occurs at the interface.
  • the sacrificial layer may be removed by etching, and the etching method is not particularly limited, but the sacrificial layer may be removed by a wet etching method and / or a chemical physical polishing method.
  • the sacrificial layer may be removed by a wet etching method.
  • the composition of the etchant may be changed according to the metal thin film type of the sacrificial layer.
  • Method (II) of manufacturing a flexible thermoelectric device includes: A) a 1-1 structure in which a 1-1 sacrificial substrate, a 1-1 contact thermal conductor layer, and a 1-1 electrode are sequentially stacked; Forming a 2-1 structure in which a 2-1 sacrificial substrate, a 2-1 contact thermal conductor layer, and a 2-1 electrode are sequentially stacked; B) forming a P-type thermoelectric material on the 3-1 sacrificial substrate and an N-type thermoelectric material on the 4-1 sacrificial substrate; C) transferring the P-type thermoelectric material and the N-type thermoelectric material into the first-first structure, respectively; D) manufacturing a substrate on which a thermoelectric pillar array is formed by physically connecting the 1-1 structure to which the P-type thermoelectric material and the N-type thermoelectric material are transferred and the 2-1 structure; E) forming a filling material in the void space between the thermoelectric pillar arrays; And F) removing the 1
  • the manufacturing method (II) of the flexible thermoelectric device after transferring the P-type thermoelectric material and the N-type thermoelectric material to the first-first structure, and connecting with the second-first structure, all the processes other than the flexible thermoelectric device are performed. It may be the same as described in the manufacturing method (I) of.
  • a method of forming a contact thermal conductor on a sacrificial substrate, a method of forming an electrode on a contact thermal conductor, and a method of forming a thermoelectric material (the method of forming a lower substrate is the same, and the 3-1 sacrificial substrate and the 4-1
  • the sacrificial substrate may be any one selected from the materials listed in the first sacrificial substrate, and may be the same or different.)
  • the filling material forming method and the sacrificial substrate removing method are the same as those described in the manufacturing method (I) of the flexible thermoelectric device. The same bar, detailed description thereof will be omitted.
  • Step C) may be a step of transferring the P-type thermoelectric material and the N-type thermoelectric material into the 1-1 structures, respectively.
  • the P-type thermoelectric material and the N-type thermoelectric material formed on each of the 3-1 sacrificial substrate or the 4-1 sacrificial substrate can be transferred to the 1-1 structure.
  • the transfer method can be used without particular limitation so long as it is a method commonly used in the art.
  • D) physically connecting the 1-1 structure in which the P-type thermoelectric material and the N-type thermoelectric material are transferred and the 2-1 structure may be performed to manufacture a substrate on which a thermoelectric pillar array is formed.
  • the P-type thermoelectric material and the N-type thermoelectric material may be connected to the 1-1 structure and the 2-1 structure to which the P-type thermoelectric material and the N-type thermoelectric material are transferred, and as shown in FIG. 2, the P-type thermoelectric material Each structure can be connected so that and N-type thermoelectric materials are alternately positioned.
  • the connection may be performed through an adhesion process, and the method for the adhesion is not particularly limited as long as it can bond the electrode and the thermoelectric material.
  • the connection may be performed using a conductive adhesive.
  • the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
  • thermoelectric device illustrates an embodiment in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life.
  • the flexible thermoelectric device can be applied to objects having various shapes.
  • the flexible thermoelectric device according to the present invention may generate power using body heat generated in a human body.
  • thermoelectric power may be applied to an arm of a human body.
  • the flexible thermoelectric device according to an embodiment of the present invention may be applied to a portion in which heat is present or needs cooling, such as an automobile, a ship, a glass window, a smartphone, an airplane, or a power plant.
  • the flexible thermoelectric device according to the present invention since the objects have an arbitrary shape, the flexible thermoelectric device according to the present invention has an advantage of being applicable to objects having various shapes.
  • the direct contact can be made according to the shape of the application site, the heat transfer efficiency is improved, thereby maximizing the performance of the thermoelectric element to the application target.
  • the thickness is thin and can be manufactured using an insulating layer having high thermal conductivity, it is possible to achieve higher thermoelectric efficiency than using an existing alumina (Al 2 O 3 ) substrate.
  • thermoelectric device and a method for manufacturing the same according to the present invention will be described in more detail with reference to the following examples.
  • the following examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto and may be implemented in various forms.
  • all technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • the terminology used in the description herein is for the purpose of effectively describing particular embodiments only and is not intended to be limiting of the invention.
  • the singular forms used in the specification and the appended claims may be intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the unit of the additive which is not specifically described in the specification may be wt%.
  • Two silicon oxide substrates (4-inch wafers) having Si layers formed as sacrificial substrates were prepared, and aluminum nitride films were formed on the respective sacrificial substrates by a spin coating method to a thickness of several hundred micrometers.
  • the electrode paste was applied onto a substrate on which each aluminum nitride film was formed, and then heat-treated to form an electrode.
  • the electrode paste includes 75.0 wt% of copper powder, 2.3 wt% of binder (Nitrocellulose), 20.3 wt% of solvent (VDT07) and glass frit (Bi 2 O 3 , Al 2 O 3 , SiO 3 , ZnO) It was prepared by mixing 2.4% by weight, which was coated on an aluminum nitride film by screen printing and heat-treated at 700 ° C. for 20 minutes to form an electrode.
  • Electrode is referred to as a second electrode).
  • the P-type thermoelectric material was coated with a P-type thermoelectric material paste on a predetermined region of the first electrode by screen printing, followed by heat treatment to form a P-type thermoelectric material.
  • the face for the P-type thermoelectric material is Bi 0 . 3 Sb 1 .
  • the N-type thermoelectric material was coated with an N-type thermoelectric material paste by a screen printing method on a predetermined region of the second electrode, and then heat-treated to form an N-type thermoelectric material.
  • the face for N-type thermoelectric material is 84.5% by weight of Bi x Te 1- x powder, 12.8% by weight of binder + solvent (7SVB-45) and glass frit (Bi 2 O 3 , Al 2 O 3 , SiO 3 , ZnO) 2.7 wt% was prepared by mixing.
  • the solvent was removed at 100 ° C. for 10 minutes, then heat treated at 250 ° C. for 30 minutes to remove the binder, and annealed at 510 ° C. for 90 minutes.
  • thermoelectric material pillar array was formed by bonding a substrate on which a P-type thermoelectric material was formed and a substrate on which an N-type thermoelectric material was formed.
  • thermoelectric column arrays were filled with empty spaces between the thermoelectric column arrays and cured to form a fill material.
  • PDMS polydimethylsiloxane
  • the silicon thin film formed on the substrate is peeled off using a laser peeling process, and the Si / SiO 2 remaining on the outside of the flexible thermoelectric element is removed.
  • the layer was removed with a mixture of HNO 3 , H 2 O, and HF (10% by volume: 75% by volume: 15% by volume) to prepare a flexible thermoelectric device.
  • the electrode was manufactured by adding glass frit, but the copper powder did not melt under the same temperature conditions, and thus the electrode was not formed properly.
  • the copper thin film without the glass frit was etched with H 2 O and HNO 3 (3: 1) for 10 minutes to form fine roughness, and then all processes except for using the electrode were performed in the same manner as in Example 1.
  • the glass frit-free copper thin film was rubbed with sand paper to form fine irregularities, and then all processes except for using the electrode were performed in the same manner as in Example 1.
  • Adhesion strength The force at which the interface was completely peeled was measured while gradually applying a force to both ends around the adhesive interface. (Pull-off test)
  • the flexible thermoelectric device manufactured according to the present invention can be confirmed that the adhesive strength between the electrode and the filling material has an excellent adhesion of 0.7 MPa or more.
  • Example 1 in which glass frit was added at 2.7% by weight of the total weight of the paste, (G S / G) x 100 was 55%, and the surface roughness was 0.79 ⁇ m, the adhesive strength was 1.09 MPa and filled with the electrode. It can be seen that the adhesion between the materials is very excellent. This is because the glass frit added in an appropriate amount is distributed at about 55% by weight of the electrode to induce chemical bonding between the fillers, thereby greatly improving the adhesive strength, and by forming a surface roughness of 0.7 ⁇ m or more on the surface of the electrode. By maximizing the anchoring effect between the electrode and the electrode, a flexible thermoelectric device having an adhesive strength of 1 MPa or more between the electrode and the filling material could be realized.
  • Example 2 (G S / G) ⁇ 100 is 40%, the area where the filler and the glass frit can react chemically, the adhesive strength between the electrode and the filler material is Example 1 It can be seen that it falls to about 70%.
  • Example 3 the surface roughness of 0.47 ⁇ m, as the effect of anchoring the filling material to the electrode slightly decreases, it can be seen that the adhesive strength between the electrode and the filling material drops to about 84% compared to Example 1.
  • Comparative Examples 1 to 3 are prepared by the electrode without the glass frit, in the case of Comparative Example 1, even though the heat treatment was performed under the same temperature conditions as in Example 1, because the glass frit is not added to the electrode paste, Since the copper powder did not melt, the electrode was not manufactured properly, and it was confirmed that the presence or absence of addition of the glass frit was also very important in the process.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a flexible thermoelectric device and a production method therefor, the flexible thermoelectric device comprising: an array of thermoelectric legs arranged to be spaced apart from each other and comprising at least one N-type thermoelectric material and P-type thermoelectric material; electrodes for electrically connecting the thermoelectric materials of the array of the thermoelectric legs; and a filler material for filling at least an empty space in the array of the thermoelectric legs, wherein the electrodes comprise a glass frit.

Description

유연 열전소자 및 이의 제조방법Flexible thermoelectric element and manufacturing method thereof
본 발명은 유연 열전소자에 관한 것으로, 상세하게는, 마이크로미터 수준의 직경(혹은 폭)을 가지는 열전물질 기둥(Thermoelectric legs: TE legs)의 대규모 고집적화가 가능하고, 우수한 유연성을 가짐과 동시에, 높은 물리적인 강도를 가질 수 있으며, 향상된 열-전기 전환효율을 갖는 유연 열전소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible thermoelectric element, and in particular, a large-scale high integration of thermoelectric legs (TE legs) having a diameter (or width) of micrometer level is possible, and has excellent flexibility and high The present invention relates to a flexible thermoelectric device having physical strength and having improved thermo-electric conversion efficiency.
열전효과(thermoelectric effect)는 열에너지와 전기 에너지가 상호작용에 의해 서로 직접 변환하는 효과로, thomas johann seebeck에 의해 발견된 제백효과(seebeck effect)와 jean charles peltier에 의해 발견된 펠티어 효과(peltier effect)를 총칭하는 것으로, 이러한 열전효과를 발현하는 소자를 열전소자(thermoelectric device)라고 한다. The thermoelectric effect is the direct conversion of thermal and electrical energy to each other by interaction, the seebeck effect found by thomas johann seebeck and the peltier effect found by jean charles peltier. In general, the device expressing such a thermoelectric effect is called a thermoelectric device.
상기 열전소자는 열에너지를 전기에너지로 변환하는 제벡 효과를 이용한 열전발전소자(thermoelectric power generating device), 전기에너지를 열에너지로 전환하는 펠티어 효과를 이용한 냉동소자(cooling device) 등이 있으며, 에너지 절감이라는 시대적 요구에 가장 잘 부응하는 소재이자 기술이다. 이는 자동차, 항공·우주, 반도체, 바이오, 광학, 컴퓨터, 발전, 가전제품 등 산업 현장에 광범위하게 활용되고 있으며, 열효율을 증진시키기 위한 노력이 연구소와 대학 등을 중심으로 진행되고 있다.The thermoelectric device includes a thermoelectric power generating device using a Seebeck effect that converts thermal energy into electrical energy, and a cooling device using a Peltier effect that converts electrical energy into thermal energy. It is the material and technology that best meets your needs. It is widely used in industrial fields such as automobiles, aerospace, aerospace, semiconductors, biotechnology, computers, power generation, and home appliances. Efforts to improve thermal efficiency are being conducted by research institutes and universities.
일반적으로 열전소자는 도 1에 도시한 바와 같이, 알루미나(Al2O3) 등의 세라믹 하부기판 위에 제 2 전극을 형성하고, 전극 표면에 N형 및 P형 반도체로 이루어지는 열전물질을 형성하고, N형 열전물질 및 P형 열전물질이 제 1 전극을 통해 직렬로 연결되는 구조로 제작되는 것이 통상적이다. 그러나 이러한 열전소자는 cascade형 또는 segment형으로, 형상 변경이 어려우며, 알루미나(Al2O3) 또는 질화알루미나(AIN) 등의 플렉서블한 특성이 없는 세라믹 기판을 사용함으로써 유연성이 필요한 분야로는 응용이 어려운 단점이 있다.In general, as shown in FIG. 1, a thermoelectric device forms a second electrode on a ceramic lower substrate such as alumina (Al 2 O 3 ), and forms a thermoelectric material made of N-type and P-type semiconductors on an electrode surface. It is common that the N-type thermoelectric material and the P-type thermoelectric material are manufactured to have a structure in which they are connected in series through the first electrode. However, these thermoelectric devices are cascade type or segment type, and are difficult to change shape, and the application of the thermoelectric device using flexible ceramic substrates such as alumina (Al 2 O 3 ) or alumina nitride (AIN) does not require flexibility. It has a hard disadvantage.
또한 기판의 중량이 무거워 신체, 차량, 항공· 우주 분야 등의 경량화가 요구되는 곳에는 적합하지 않으며, 벌크 형태로 P형, N형 열전물질을 1㎜ ~ 수십 ㎜ 길이로 형성하여 전기적으로 직렬이 되도록 접합하여 제작되고 있으나, 상하부 기판에 의한 열손실이 크다. In addition, it is not suitable for heavy weight of body, vehicle, aviation, space, etc. because of the heavy weight of the board, and it is electrically connected in series by forming P-type and N-type thermoelectric materials in 1 ~ 10 ㎜ length in bulk form. It is manufactured by bonding as much as possible, but the heat loss by the upper and lower substrates is large.
이러한 기술적 한계를 타계하기 위해, 본 출원인은 대한민국 등록특허 10-1493797호를 통해, 열전소자의 상부 및/또는 하부에 기판이 위치하지 않으며, 비 전도성의 유연성 메쉬가 열전물질 기둥 어레이를 관통하며 지지하도록 하여, 기계적 안정성과 유연성을 동시에 확보할 수 있는 열전소자를 제안한 바 있다.In order to overcome these technical limitations, the Applicant, through the Republic of Korea Patent No. 10-1493797, the substrate is not located on the top and / or bottom of the thermoelectric element, the non-conductive flexible mesh is supported through the thermoelectric column array In order to secure mechanical stability and flexibility, thermoelectric devices have been proposed.
제안한 열전소자는 우수한 발전 특성과 유연성 및 기계적 안정성을 가지나, 비전도성의 유연성 메쉬가 열전물질 기둥 내부를 관통하며 지지하는 구조임에 따라, 유연성 메쉬의 두께( 및/또는 폭)보다도 작은 크기를 갖는 열전물질 기둥의 어레이는 구현이 가능하지 않아, 열전물질 기둥의 고집적화에 한계가 있다. 또한, 고도의 휘어짐이 반복적으로 발생하는 응용분야에서, 열전물질 기둥 내부가 유연성 메쉬에 의해 관통됨에 따라, 유연성 메쉬가 삽입된 열전물질 기둥에 반복적인 응력 집중이 발생할 수 있어, 열전물질이 파손될 위험 또한 존재한다. 나아가, 열전물질을 관통하는 유연성 메쉬가 전기전도도를 저하시켜, 발전효율 향상에 한계가 있을 수 있다.The proposed thermoelectric device has excellent power generation characteristics, flexibility and mechanical stability, but has a size smaller than the thickness (and / or width) of the flexible mesh as the non-conductive flexible mesh is supported through the inside of the thermoelectric column. Arrays of thermoelectric columns are not feasible, and thus there is a limit to high integration of thermoelectric columns. In addition, in applications where a high degree of warpage occurs repeatedly, as the interior of the thermoelectric column is penetrated by the flexible mesh, repeated stress concentration may occur in the thermoelectric column into which the flexible mesh is inserted, and thus the thermoelectric material may be damaged. It also exists. In addition, the flexible mesh penetrating the thermoelectric material may lower the electrical conductivity, there may be a limit in improving the power generation efficiency.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 마이크로미터 수준의 직경(혹은 폭)을 가지는 열전물질 기둥의 대규모 고집적화가 가능하고, 우수한 유연성을 가짐과 동시에, 높은 물리적인 강도를 가질 수 있으며, 보다 경량화 가능하고, 향상된 열-전기 전환효율을 갖는 유연 열전소자 및 이의 제조방법을 제공하고자 한다.The present invention has been made to solve the above problems, an object of the present invention is to enable large-scale high integration of the thermoelectric column having a diameter (or width) of the micrometer level, has excellent flexibility, and at the same time high physical It is intended to provide a flexible thermoelectric device and a method for manufacturing the same, which may have phosphorus strength, can be lighter, and have improved thermo-electric conversion efficiency.
상기 목적을 달성하기 위한 본 발명의 일 양태는 서로 이격 배열된, 하나 이상의 N형 열전물질 및 P형 열전물질을 포함하는 열전물질 기둥 어레이; 상기 열전물질 기둥 어레이의 열전물질을 전기적으로 연결하는 전극; 및 적어도 상기 열전물질 기둥 어레이의 빈 공간을 충진하는 충진물질;을 포함하며, 상기 전극은 유리 프릿을 포함하는 유연 열전소자에 관한 것이다.One aspect of the present invention for achieving the above object is a thermoelectric column array including one or more N-type thermoelectric material and P-type thermoelectric material, arranged spaced apart from each other; An electrode electrically connecting the thermoelectric materials of the thermoelectric material pillar array; And a filling material filling at least the empty space of the thermoelectric pillar array. The electrode is related to a flexible thermoelectric device including a glass frit.
또한, 본 발명의 다른 일 양태는 a) 제1희생기판, 제1접촉 열전도체층, 제1전극, 및 상기 제1전극 상 소정 영역에 형성된 P형 열전물질이 순차적으로 적층된 제1구조체; 및 제2희생기판, 제2접촉 열전도체층, 제2전극, 및 상기 제2전극 상 소정 영역에 형성된 N형 열전물질이 순차적으로 적층된 제2구조체를 형성하는 단계; b) 상기 제1구조체와 제2구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계; c) 상기 기판의 열전물질 기둥 어레이 사이의 빈 공간에 충진물질을 형성하는 단계; 및 d) 상기 제1희생기판 및 제2희생기판을 제거하는 단계;를 포함하며, 상기 제1전극 및 제2전극은 유리 프릿을 포함하는 유연 열전소자의 제조방법에 관한 것이다.In addition, another aspect of the present invention is a) a first structure, a first structure, a first stacked substrate, a first contact thermal conductor layer, a first electrode, and a P-type thermoelectric material formed on a predetermined region on the first electrode sequentially stacked; And forming a second structure in which a second sacrificial substrate, a second contact thermal conductor layer, a second electrode, and an N-type thermoelectric material formed on a predetermined region on the second electrode are sequentially stacked. b) physically connecting the first structure and the second structure to manufacture a substrate on which a thermoelectric column array is formed; c) forming a fill material in the void space between the thermoelectric column arrays of the substrate; And d) removing the first sacrificial substrate and the second sacrificial substrate, wherein the first electrode and the second electrode are related to a method of manufacturing a flexible thermoelectric device including a glass frit.
본 발명의 일 예에 따른 유연 열전소자는 유리 프릿이 함유된 전극을 사용함으로써, 전극과 충진물질 간의 결착력을 현저하게 향상시켜, 유연성 메쉬가 배제되는 유연 열전소자의 구현을 가능하게 한다.Flexible thermoelectric device according to an embodiment of the present invention by using an electrode containing a glass frit significantly improves the binding force between the electrode and the filling material, it is possible to implement a flexible thermoelectric device that excludes the flexible mesh.
도 1은 기존의 상용 열전소자의 단면을 나타낸 도시도이다. 1 is a view showing a cross section of a conventional commercial thermoelectric device.
도 2는 본 발명의 일 예에 따른 유연 열전소자의 단면을 나타낸 도시도이다.2 is a view showing a cross section of the flexible thermoelectric device according to an embodiment of the present invention.
도 3은 본 발명의 일 예에 따른 유연 열전소자 제작방법의 개략적인 순서도이다.3 is a schematic flowchart of a method of manufacturing a flexible thermoelectric device according to an embodiment of the present invention.
도 4 본 발명의 일 예에 따른 전극의 표면 및 단면의 성분 분석 결과이다.4 is a result of component analysis of the surface and cross section of the electrode according to an embodiment of the present invention.
도 5는 본 발명의 일 예에 따른 유연 열전소자의 곡률반경에 따른 소자의 내부저항을 측정한 그래프이다.5 is a graph measuring the internal resistance of the device according to the radius of curvature of the flexible thermoelectric device according to an embodiment of the present invention.
도 6은 본 발명의 일 예에 따른 유연 열전소자를 실생활에 적용한 일 예의 사진이다.6 is a photograph of an example in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life.
도 7은 본 발명의 일 예에 따른 유연 열전소자를 실생활에 적용한 다른 일 예를 도시한 도시도이다.7 is a diagram illustrating another example in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life.
(부호의 설명)(Explanation of the sign)
100 : 기존 상용 열전소자100: conventional commercial thermoelectric element
110, 110′: 기판 110, 110 ′: substrate
120 : 제 1 전극 120: first electrode
120′: 제 2 전극 120 ': second electrode
130, 140 : 열전물질 130, 140: thermoelectric material
200, 300 : 유연 열전소자200, 300: flexible thermoelectric element
210, 210′, 310, 310′: 접촉 열전도체층 210, 210 ', 310, 310': contact thermal conductor layer
220, 320 : 제 1 전극 220, 320: first electrode
220′, 320′: 제 2 전극 220 ', 320': second electrode
230, 330 : P형 열전물질 230, 330: P-type thermoelectric material
240, 340 : N형 열전물질 240, 340: N-type thermoelectric material
250, 350 : 충진물질 250, 350: filling material
301, 301′: 희생기판 301, 301 ': sacrificial substrate
302, 302′: 희생막 302, 302 ': sacrifice
이하 첨부한 도면들을 참조하여 본 발명의 유연 열전소자에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, the flexible thermoelectric device of the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. Also, like reference numerals denote like elements throughout the specification.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
본 출원인은 유연 열전소자에 대한 연구를 심화한 결과, 대한민국 등록특허 제10-1493797호를 통해 제안한 열전소자에 있어, 열전물질 기둥 어레이를 관통하는 유연성 메쉬에 의해, 기술적, 응용적 한계가 발생할 수 있음을 인지하였다. 상세하게, 대한민국 등록특허 제10-1493797호는 유연성 메쉬로 유리섬유를 사용하고 있으나, 이와 같은 유리섬유가 열전소재의 중간에 위치할 경우, 유리섬유에 의한 텐션(tension)이 발생하여 유연성이 다소 저하되는 문제점이 있었다. 또한, 유리섬유가 열전물질 기둥 어레이를 관통하는 구조로 소자가 형성되어야함에 따라, P형 열전물질용 페이스트와 N형 열전물질용 페이스트를 각각 도포한 후, 동시에 어닐링하여 각각 P형 열전물질과 N형 열전물질을 형성해야 했다. 즉, 물질의 종류가 서로 상이한 P형 열전물질과 N형 열전물질을 동시에 어닐링함에 따라 두 종류의 열전물질이 모두 형성될 수 있는 어닐링 조건을 충족시키기 위해서는 각 열전물질의 최적 조건이 아닌 어중간한 조건에서 두 열전물질이 형성될 수밖에 없었으며, 이로 인해 열전소자의 효율이 다소 저하되는 문제점이 있었다.As a result of deepening the research on the flexible thermoelectric device, in the thermoelectric device proposed through Korean Patent No. 10-1493797, the technical and application limitations may occur due to the flexible mesh penetrating the thermoelectric column array. It was recognized. In detail, Korean Patent No. 10-1493797 uses glass fibers as a flexible mesh, but when such glass fibers are located in the middle of the thermoelectric material, tension is caused by the glass fibers, which causes some flexibility. There was a problem of deterioration. In addition, as the element must be formed in a structure in which the glass fiber penetrates through the thermoelectric column array, the P-type thermoelectric material paste and the N-type thermoelectric material paste are applied, respectively, and then annealed at the same time to respectively form the P-type thermoelectric material and the N. Had to form a thermoelectric material. That is, in order to satisfy the annealing conditions in which both types of thermoelectric materials may be formed by simultaneously annealing P-type thermoelectric materials and N-type thermoelectric materials having different types of materials, the intermediate conditions, not the optimum conditions of the respective thermoelectric materials, may be used. Two thermoelectric materials were inevitably formed, and thus, there was a problem in that the efficiency of the thermoelectric element was somewhat reduced.
이러한 한계를 극복하기 위해, 유연성 메쉬에 기반하지 않고도 열전소자의 기계적 안정성을 담보하기 위해 장기간 연구를 수행하였다. 이 과정에서, 본 출원인은 열전소자를 이루는 구성 요소 중, 전극이 가장 큰 면적을 차지하는 점에 주목하여, 전극과 열전물질 기둥(Thermoelectric legs: TE legs) 어레이의 빈 공간을 채우는 충진 물질 간의 결착력을 향상시키는 경우, 유연성 메쉬에 기반하지 않고도, 유연성 메쉬가 구비된 경우와 버금가는 기계적 안정성을 확보할 수 있으며, 이와 같은 경우 각기 최적 조건에서 P형 열전물질과 N형 열전물질의 형성을 위한 어닐링 공정을 수행할 수 있음을 발견하였다.To overcome these limitations, long-term studies have been conducted to ensure the mechanical stability of thermoelectric elements without being based on a flexible mesh. In this process, the Applicant pays attention to the fact that the electrode occupies the largest area among the components constituting the thermoelectric element, and thus the binding force between the electrode and the filling material filling the empty space of the thermoelectric legs (TE legs) array is shown. In the case of improvement, it is possible to secure mechanical stability comparable to that of the flexible mesh without having to be based on the flexible mesh, and in this case, annealing process for forming P-type thermoelectric material and N-type thermoelectric material under optimum conditions, respectively. It was found that can be performed.
상세하게, 전극과 충진물질 간의 접착 강도가 0.7 ㎫ 이상인 경우, 유연성 메쉬를 배제하여도 기존 유연성 메쉬가 구비된 열전소자에 버금가는 기계적 및 물리적 안정성을 확보할 수 있음을 발견하였으며, 전극에 유리 프릿을 첨가하는 경우, 전극과 충진물질 간의 접착 강도를 0.7 ㎫ 이상으로 향상시킬 수 있음을 발견하여 본 발명을 완성하기에 이르렀다.In detail, when the adhesive strength between the electrode and the filling material is 0.7 MPa or more, it was found that even if the flexible mesh is excluded, the mechanical and physical stability comparable to that of the conventional flexible mesh is secured. When added, it was found that the adhesive strength between the electrode and the filling material could be improved to 0.7 MPa or more, thus completing the present invention.
도 5는 유연성 메쉬가 배제되어 유연성이 더욱 향상된 유연 열전소자의 유연성 특성을 확인하기 위한 것으로, 본 발명의 일 예에 따른 유연 열전소자의 곡률반경에 따른 내부저항 변화를 측정한 그래프이다. 도 5에 나타난 바와 같이, 본 발명의 일 예에 따른 유연 열전소자는 곡률반경 4 ㎜까지도 소자 내부저항이 증가하지 않는 매우 높은 유연성을 가짐을 확인할 수 있으며, 이에 따라 고도의 물리적 변형에도 동작이 가능하여 유연 열전소자로써의 활용도가 매우 높음을 확인 수 있다. FIG. 5 is a graph illustrating a change in internal resistance according to a curvature radius of a flexible thermoelectric device according to an exemplary embodiment of the present invention. As shown in Figure 5, the flexible thermoelectric device according to an embodiment of the present invention can be seen that has a very high flexibility that does not increase the internal resistance of the device even to a radius of curvature 4 mm, it is possible to operate even at high physical deformation It can be confirmed that the utilization as a flexible thermoelectric element is very high.
상술한 바와 같이, 본 발명은 응용 분야에 따른 기술적 요구를 충족하기 위해, 유연성 메쉬를 배제할 수 있는 새로운 유연 열전소자를 제안하나, 유연성 메쉬와 본 발명에서 제안하는 구성이 서로 독립적으로 소자의 기계적 안정성을 향상시킬 수 있음에 따라, 본 발명이 유연성 메쉬를 배제하는 것으로 한정되어 해석되어서는 안 된다.As described above, the present invention proposes a new flexible thermoelectric element that can exclude the flexible mesh in order to meet the technical requirements according to the application field, but the flexible mesh and the configuration proposed in the present invention independently of the mechanical As the stability can be improved, the present invention should not be construed as being limited to excluding the flexible mesh.
즉, 응용 분야에 따라, 유연성과 함께, 고도의 기계적 안정성과 장기간의 수명이 요구되는 경우, 본 발명에서 제안하는 구성과 유연성 메쉬를 동시에 채택할 수 있음은 물론이다.That is, according to the application field, when high mechanical stability and long life are required along with flexibility, the configuration and the flexible mesh proposed in the present invention can be adopted at the same time.
또한, 본 출원인은 유연성 메쉬와는 독립된 구성에 의한 기계적 안정성 담보와 함께, 유연 열전소자의 특성을 더욱 더 향상시키기 위해 연구를 심화한 결과, 서로 독립적으로, 또는 서로 유기적으로 결합하여, 소자의 열적, 전기적, 물리적 특성을 향상시킬 수 있는 핵심 구성들을 도출하여, 이를 제안하고자 한다.In addition, the Applicant has further researched to further improve the characteristics of the flexible thermoelectric element together with the mechanical stability collateral by the configuration independent of the flexible mesh, and as a result, independently of each other or organically bonded to each other, In this paper, we propose core components that can improve electrical and physical properties and propose them.
그러나, 상술한 바와 같이, 유리 프릿을 함유하는 전극은, 유연성 메쉬와 독립적으로 소자의 기계적 안정성을 향상시키는 것임에 따라, 유연 열전소자는 필요시, 유연성 메쉬를 더 포함할 수 있다. 유연성 메쉬 관련, 본 발명은 대한민국 등록특허 10-1493797호의 모든 내용을 포함하며, 대한민국 등록특허 10-1493797호를 참고할 수 있다. 이때, 유연성 메쉬가 대한민국 등록특허 10-1493797호의 메쉬형 기판에 상응함은 물론이며, 유연성 메쉬의 대표적인 일 예가 유리섬유로 이루어진 메쉬형 기판일 수 있음은 물론이다. However, as described above, the electrode containing the glass frit improves the mechanical stability of the device independently of the flexible mesh, so that the flexible thermoelectric device may further include a flexible mesh, if necessary. Regarding the flexible mesh, the present invention includes all the contents of Korean Patent No. 10-1493797 and may refer to Korean Patent No. 10-1493797. At this time, of course, the flexible mesh corresponds to the mesh-type substrate of the Republic of Korea Patent No. 10-1493797, Of course, a representative example of the flexible mesh may be a mesh-type substrate made of glass fibers.
본 발명의 일 예에 따른 유연 열전소자는 서로 이격 배열된, 하나 이상의 N형 열전물질 및 P형 열전물질을 포함하는 열전물질 기둥 어레이; 상기 열전물질 기둥 어레이의 열전물질을 전기적으로 연결하는 전극; 및 적어도 상기 열전물질 기둥 어레이의 빈 공간을 충진하는 충진물질;을 포함하며, 상기 전극은 유리 프릿을 포함할 수 있다.Flexible thermoelectric device according to an embodiment of the present invention comprises a thermoelectric column array including one or more N-type thermoelectric material and P-type thermoelectric material, arranged spaced apart from each other; An electrode electrically connecting the thermoelectric materials of the thermoelectric material pillar array; And a filling material filling at least the empty space of the thermoelectric pillar array. The electrode may include a glass frit.
일 예에 있어서, 상기 전극은 유리 프릿(glass frit)을 포함할 수 있으며, 상세하게, 제1전도성 물질 및 유리 프릿을 포함할 수 있다. 전극에 함유된 유리 프릿은 전극과 충진물질 간의 결착력을 현저하게 향상시켜, 유연성 메쉬가 배제되는 유연 열전소자의 구현을 가능하게 한다.In one example, the electrode may include a glass frit, and in detail, may include a first conductive material and a glass frit. The glass frit contained in the electrode significantly improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric element in which the flexible mesh is excluded.
보다 상세하게, 전극과 열전물질 기둥 어레이는 전도성 접착제를 사용하여 접착될 수 있으며, 이에 의해 전극과 열전물질 기둥 어레이는 서로 강하게 결착될 수 있으며, 이와 함께 전극과 열전물질 기둥 어레이 간 높은 열전도 및 전기전도가 가능할 수 있다. 그러나 전극과 충진물질은 이러한 접착제를 사용하여 서로 강하게 결착시킬 수 없으므로, 기계적 안정성을 담보하며 지지체의 역할을 수행하는 유연성 메쉬를 배제하기 위해서는 전극과 충진물질간의 결착력 향상이 무엇보다 선결되어야 한다.More specifically, the electrode and the thermoelectric column array can be bonded using a conductive adhesive, whereby the electrode and the thermoelectric column array can be strongly bound to each other, with high thermal conductivity and electrical between the electrode and the thermoelectric column array Conduction may be possible. However, since the electrode and the filler can not be strongly bound to each other by using such an adhesive, the improvement of the binding force between the electrode and the filler should be preempted above all in order to exclude the flexible mesh which ensures mechanical stability and serves as a support.
이에 전극에 유리 프릿을 첨가함으로써 전극과 충진물질 간 접착 강도가 0.7 ㎫ 이상이 되도록 하여 높은 결착력을 담보할 수 있으며, 열전물질 기둥 어레이-전극-충진물질의 세 구성요소가 전극을 매개로 매우 강하게 결합된 구조를 가짐에 따라, 소자의 유연성을 훼손시키지 않으며 기계적, 물리적 안정성이 담보될 수 있다.The glass frit is added to the electrode to ensure that the adhesive strength between the electrode and the filling material is 0.7 MPa or more, thereby ensuring high binding force.The three components of the thermoelectric column array-electrode-filling material are very strongly mediated through the electrode. By having a bonded structure, mechanical and physical stability can be ensured without compromising the flexibility of the device.
상세하게, 직경이 10 ㎜인 벤딩 테스트기를 이용하여 10000회 벤딩 테스트한 후에도 우수한 전기전도도 및 열전 성능을 유지하는 측면에서, 전극과 충진물질 간의 접착 강도는 1 내지 5 ㎫인 것이 바람직하다.Specifically, in view of maintaining excellent electrical conductivity and thermoelectric performance even after 10000 bending tests using a bending tester having a diameter of 10 mm, the adhesive strength between the electrode and the filling material is preferably 1 to 5 MPa.
이와 같은 접착 강도를 확보하기 위해서, 본 발명의 바람직한 일 예로, 유리 프릿이 함유된 전극은 하기 관계식 1을 만족하는 것일 수 있다.In order to secure such adhesive strength, as an example of the present invention, the electrode containing the glass frit may satisfy the following relational formula (1).
[관계식 1][Relationship 1]
45 ≤ (GS/G)×10045 ≤ (G S / G) × 100
(상기 관계식 1에 있어서, G는 전극 내 유리 프릿의 총 중량(g)이며, GS는 전극의 접착부에 위치한 유리 프릿의 중량(g)이다. 이때, 접착부란, 상기 충진물질과 맞닿는 접착면에서부터, 접착면 기준 전극의 30% 두께까지를 의미한다.)(Equation 1 above, G is the total weight (g) of the glass frit in the electrode, G S is the weight (g) of the glass frit located in the bonding portion of the electrode.) In this case, the adhesive portion is an adhesive surface that is in contact with the filling material From the adhesive layer reference electrode to 30% thickness.)
이와 같이, 유리 프릿이 충진물질과 접착되는 전극의 접착부에 45 중량% 이상 위치함으로써 전극과 충진물질 간의 접착력을 더욱 효과적으로 향상시킬 수 있으며, 보다 좋게는 50 중량% 이상의 유리 프릿이 전극의 접착부에 위치하는 것이 바람직하다. 일 구체예로, 충진물질이 실란올기 또는 알콕시실란기를 함유한 고분자인 경우, 실란올기 또는 알콕시실란기가 유리 프릿의 금속산화물과 반응함으로써 전극과 충진물질을 화학적으로 단단히 결합시킬 수 있으며, 이에 따라 전극과 충진물질 간 1 내지 5 ㎫의 접착 강도를 가지도록 할 수 있다. 반면, 유리 프릿이 관계식 1을 만족하지 않는 경우, 전극과 충진물질 간의 화학적 결합이 감소함으로써 전극과 충진물질 간의 결착력이 저하될 수 있으며, 구체적으로, 접착 강도가 1 ㎫ 미만이 됨에 따라 열전소자의 물리적 안정성이 저하될 수 있다.As such, the glass frit may be more than 45% by weight positioned in the bonding portion of the electrode to be bonded to the filling material to more effectively improve the adhesive force between the electrode and the filling material, more preferably 50% by weight or more of the glass frit is placed on the bonding portion of the electrode It is desirable to. In one embodiment, when the filling material is a polymer containing a silanol group or an alkoxysilane group, the silanol group or alkoxysilane group may be chemically and firmly bonded to the electrode and the filling material by reacting with the metal oxide of the glass frit. It may be to have an adhesive strength of 1 to 5 MPa between and the filling material. On the other hand, when the glass frit does not satisfy the relation 1, the binding force between the electrode and the filler material may be reduced by reducing the chemical bond between the electrode and the filler material. Specifically, as the adhesive strength is less than 1 MPa, Physical stability may be degraded.
본 발명의 일 예에 있어, 제1전도성 물질 대비 유리 프릿의 상대적 함량은, 유리 프릿에 의한 결착력 향상과 전기전도도 저하를 고려하여 조절될 수 있다. 구체적 일 예로, 전극은 제1전도성 물질 100 중량부를 기준으로 0.1 내지 20 중량부의 유리 프릿을 함유할 수 있다. 상기 범위에서 우수한 결착력을 확보하면서도 전기전도도의 저하를 방지할 수 있다. 상세하게, 유리 프릿의 함량이 0.1 중량부 미만일 경우, 전극과 충진물질 간의 결착력 향상 효과가 미미할 수 있으며, 유리 프릿의 함량이 20 중량부 초과인 경우, 전도성이 없는 유리 프릿에 의해 전기전도도가 저하되어, 열전소자의 열전 성능이 낮아질 수 있다.In one embodiment of the present invention, the relative content of the glass frit relative to the first conductive material may be adjusted in consideration of the improvement of the binding force and the electrical conductivity by the glass frit. As a specific example, the electrode may contain 0.1 to 20 parts by weight of the glass frit based on 100 parts by weight of the first conductive material. It is possible to prevent the lowering of the electrical conductivity while ensuring excellent binding strength in the above range. In detail, when the content of the glass frit is less than 0.1 part by weight, the effect of improving the binding force between the electrode and the filling material may be insignificant, and when the content of the glass frit is more than 20 parts by weight, the electrical conductivity is reduced by the non-conductive glass frit. Thus, the thermoelectric performance of the thermoelectric element may be lowered.
아울러, 열전소자의 유연성 향상을 위해서는, 가능한 전극을 얇게 구현하는 것이 좋다. 그러나, 전극의 두께가 얇아질수록, 유리 프릿에 의한 전기전도도 저하가 나타날 수 있다. 이에 따라, 제1전도성 물질 대비 유리 프릿의 상대적 함량은 유연성 메쉬가 배제될 수 있는 정도의 결착력 향상 효과가 나타날 수 있는 최소 함량 범위인 것이 좋다. 이러한 측면에서, 전극은 전도성 물질 100 중량부를 기준으로 0.5 내지 10 중량부, 구체적으로는 1 내지 5 중량부의 유리 프릿을 함유할 수 있다.In addition, in order to improve the flexibility of the thermoelectric device, it is good to implement the electrode as thin as possible. However, the thinner the electrode, the lower the electrical conductivity caused by the glass frit may appear. Accordingly, the relative content of the glass frit relative to the first conductive material is preferably in the minimum content range in which the binding enhancement effect can be exhibited to the extent that the flexible mesh can be excluded. In this aspect, the electrode may contain 0.5 to 10 parts by weight, specifically 1 to 5 parts by weight, based on 100 parts by weight of the conductive material.
본 발명의 일 예에 있어, 전극은 제1전도성 물질과 유리 프릿을 함유하는 전극용 페이스트의 도포 및 열처리에 의해 형성될 수 있다. 이때, 전극용 페이스트에 함유된 제1전도성 물질과 유리 프릿의 종류, 크기, 형상 등을 조절함으로써, 상술한 전극과 충진물질간의 결착력을 보다 향상시키면서도 전극 자체의 전기전도도 감소를 방지할 수 있다. In one embodiment of the present invention, the electrode may be formed by application and heat treatment of the electrode paste containing the first conductive material and the glass frit. At this time, by adjusting the type, size, shape, etc. of the first conductive material and the glass frit contained in the electrode paste, it is possible to prevent the reduction in the electrical conductivity of the electrode itself while further improving the binding force between the electrode and the filling material.
상세하게, 일 예에 따른 제1전도성 물질은 특별히 그 형상이 한정되지 않으며, 구체 예로, 제1전도성 물질은 등방성 입자, 비등방성 입자 또는 등방성 입자와 비등방성 입자의 혼합 입자를 포함할 수 있다. 제1전도성 물질이 구형 입자와 같이 등방성 입자인 경우 공간 채움 특성이 좋아, 균질하고 안정적인 전기적 특성을 구현할 수 있다. 또한, 등방성 입자에 의한 우수한 공간 채움 특성은 열전 소자 외부의 열적 조건이 전극을 통해 보다 빠르게 열전물질로 전달 가능하여 좋을 뿐만 아니라, 등방성 입자는 저가의 가격으로 용이하게 수급 가능하여 경제적이다. 제1전도성 물질이 막대형, 섬유형, 판형, 플레이크형과 같은 비등방성 입자의 경우, 비등방성에 기인하여 일 입자가 보다 다량의 다른 입자와 접촉(또는 결합)될 수 있다. 이에 따라, 전극이 비등방성 입자를 함유하는 경우 유연 열전 소자가 물리적으로 고도로 변형된 상태에서도 전극의 전기전도도 저하가 방지될 수 있다. 또한, 비등방성 입자가 탄소나노튜브, 탄소나노와이어, 은 나노와이어와 같이 물질 자체의 특성 또는 나노 디멘젼에 의해 유연성을 갖는 경우 전극 자체의 유연성이 향상될 수 있어, 유연 열전소자에 고도의 물리적 변형이 반복적으로 인가되는 환경에서도 장기간 안정적으로 동작할 수 있다. 제1전도성 물질이 등방성 입자와 비등방성 입자를 모두 포함하는 경우, 비등방성 입자의 비등방성 정도(일 예로, 막대나 섬유 형상인 경우 종횡비, 판이나 플레이크 형상인 경우 두께 대비 너비의 비 등)를 고려하여, 비등방성 입자가 갖는 장점과 등방성 입자가 갖는 장점이 효과적으로 발현될 수 있는 범위로 그 상대적 함량이 적절히 조절될 수 있다. 일 예로, 등방성 입자 100 중량부를 기준으로 비등방성 입자는 1 내지 50 중량부로 혼합될 수 있다.In detail, the shape of the first conductive material according to an example is not particularly limited, and in particular, the first conductive material may include isotropic particles, anisotropic particles, or mixed particles of isotropic particles and anisotropic particles. When the first conductive material is isotropic particles such as spherical particles, the space filling property is good, and thus, homogeneous and stable electrical properties can be realized. In addition, the excellent space-filling characteristics of the isotropic particles are not only good for the thermal conditions outside the thermoelectric element can be quickly transferred to the thermoelectric material through the electrode, but isotropic particles can be easily supplied at low prices and economical. When the first conductive material is anisotropic particles such as rod-shaped, fibrous, plate-shaped, or flake-like, one particle may contact (or bond) with a larger amount of other particles due to anisotropy. Accordingly, when the electrode contains anisotropic particles, a decrease in the electrical conductivity of the electrode can be prevented even when the flexible thermoelectric element is physically highly deformed. In addition, when the anisotropic particles have flexibility by the properties of the material itself or nano dimensions, such as carbon nanotubes, carbon nanowires, and silver nanowires, flexibility of the electrode itself may be improved, thereby resulting in high physical deformation in the flexible thermoelectric device. It can operate stably for a long time even in this repeatedly applied environment. When the first conductive material includes both isotropic particles and anisotropic particles, the anisotropic degree of the anisotropic particles (e.g., aspect ratio in the case of rod or fiber shape, ratio of width to thickness in the case of plate or flake shape, etc.) In consideration of this, the relative content of the anisotropic particles and the advantages of the isotropic particles can be effectively expressed to the extent that can be effectively expressed. For example, the anisotropic particles may be mixed in an amount of 1 to 50 parts by weight based on 100 parts by weight of the isotropic particles.
일 구체예로, 제1전도성 물질이 구형을 포함하는 등방성 입자인 경우, 입자의 평균 입경은 10 ㎚ 내지 100 ㎛일 수 있으며, 좋게는 100 ㎚ 내지 50 ㎛일 수 있으며, 더욱 좋게는 0.5 내지 20 ㎛인 것이 공간 채움 특성이 우수하여 외부의 열을 열전물질로 빠르게 전달 가능하며, 보다 얇은 전극의 구현이 가능하여 소자의 경량화 및 전극의 유연성을 보다 향상시킴에 있어 바람직할 수 있다. 제1전도성 물질이 섬유형과 같은 비등방성 입자인 경우, 입자 간의 접촉면적을 향상시킬 수 있으며, 이에 따라 전기전도 및 열전도 측면에서 효율이 향상될 수 있다. 일 구체예로, 비등방성 입자의 종횡비(단축 대비 장축 길이의 비 또는 두께 대비 너비의 비)는 2 내지 1000일 수 있으며, 좋게는 10 내지 500인 것이 바람직할 수 있다. In one embodiment, when the first conductive material is isotropic particles including spherical particles, the average particle diameter of the particles may be 10 nm to 100 μm, preferably 100 nm to 50 μm, more preferably 0.5 to 20 It is preferable that the micrometer has excellent space filling properties so that external heat can be quickly transferred to the thermoelectric material, and a thinner electrode can be implemented to reduce the weight of the device and improve the flexibility of the electrode. When the first conductive material is anisotropic particles such as fibrous type, the contact area between the particles may be improved, and thus, efficiency may be improved in terms of electrical conductivity and thermal conductivity. In one embodiment, the aspect ratio (ratio of the major axis length to the short axis or the ratio of the width to the thickness) of the anisotropic particles may be from 2 to 1000, preferably from 10 to 500.
또한, 일 예에 따른 제1전도성 물질의 종류는 높은 열전도도 및 전기전도도를 가진 물질이라면 특별히 제한하지 않고 사용할 수 있으며, 예를 들어, 금속 물질 또는 우수한 전기전도도를 가지는 탄소나노튜브, 탄소나노와이어 등을 사용할 수 있다. 바람직하게는, 열전도 특성 및 전기전도 특성이 우수하며, 충진물질과의 결착력이 우수하여 열전소자의 물리적 강도를 향상시킬 수 있는 금속물질을 사용할 수 있다. 일 예로, 금속물질은 3 내지 12족의 전이금속일 수 있으며, 일 구체예로, 니켈(Ni), 구리(Cu), 백금(Pt), 루테늄(Ru), 로듐(Rh), 금(Au), 텅스텐(W), 코발트(Co), 팔라듐(Pd), 티타늄(Ti), 탄탈륨(Ta), 철(Fe), 몰리브덴(Mo), 하프늄(Hf), 란타늄(La), 이리듐(Ir) 및 은(Ag)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 높은 전기전도도와 충진물질과의 결착력, 및 저가 비용 측면에서 구리(Cu)를 사용하는 것이 바람직할 수 있다. In addition, the type of the first conductive material according to an embodiment may be used without particular limitation as long as the material has a high thermal conductivity and electrical conductivity. For example, a carbon material or a carbon nanowire having excellent electrical conductivity may be used. Etc. can be used. Preferably, a metal material may be used that is excellent in thermal conductivity and electrical conductivity, and has excellent binding strength with a filling material to improve physical strength of the thermoelectric element. For example, the metal material may be a transition metal of Groups 3 to 12, and in one embodiment, nickel (Ni), copper (Cu), platinum (Pt), ruthenium (Ru), rhodium (Rh), gold (Au) ), Tungsten (W), cobalt (Co), palladium (Pd), titanium (Ti), tantalum (Ta), iron (Fe), molybdenum (Mo), hafnium (Hf), lanthanum (La), iridium (Ir) ) And silver (Ag) may be one or two or more, and it may be preferable to use copper (Cu) in view of high electrical conductivity, binding to the filler material, and low cost.
일 예에 따른 유리 프릿은 특별히 그 형성이 한정되진 않으며, 제1전도성 물질과 동일 또는 상이한 형상과 크기를 가질 수 있다. 일 구체예로 구형, 침상형 및/또는 부정형일 수 있으나, 이에 한정되는 것은 아니다. 제1전도성 물질과 마찬가지로, 유리 프릿의 크기는 전극의 유연성 및 두께를 고려하여 조절될 수 있으며, 제1전도성 물질과 유사 크기 또는 상대적으로 작은 크기를 가질 수 있다. 바람직하게는 유리 프릿은 제1전도성 물질 대비 상대적으로 작은 크기를 가지는 것이 좋으며, 상세하게, 제1전도성 물질 간의 접촉을 방해하여 전극의 전기전도도가 저하되지 않으며, 전극의 유연성이 저하되지 않을 정도의 작은 크기를 가지는 것이 좋다. 일 예로, 유리 프릿은 제1전도성 물질의 평균 직경을 기준으로 0.1 내지 1배의 크기를 가질 수 있으며, 실질적인 일 예로, 100 메쉬(mesh) 이하의 체(sieve)를 통해 얻어진 것일 수 있으나 반드시 이에 한정되진 않는다.Glass frit according to an example is not particularly limited in its formation, and may have the same or different shape and size as the first conductive material. In one embodiment it may be spherical, acicular and / or indeterminate, but is not limited thereto. As with the first conductive material, the size of the glass frit may be adjusted in consideration of the flexibility and thickness of the electrode, and may have a size similar or relatively small to the first conductive material. Preferably, the glass frit has a relatively small size compared to the first conductive material, and in detail, the glass frit does not lower the electrical conductivity of the electrode by interfering with the contact between the first conductive material and does not reduce the flexibility of the electrode. It is good to have a small size. For example, the glass frit may have a size of 0.1 to 1 times based on the average diameter of the first conductive material, and as an example, the glass frit may be obtained through a sieve of 100 mesh or less, but must It is not limited.
본 발명의 일 예에 있어, 상기 유리 프릿은 금속 산화물로부터 형성된 비결정성 물질일 수 있으며, 안정한 유리질상을 생성하고, 충분한 저점도를 유지할 수 있는 것이 좋다. 유리 프릿은 납을 함유하는 납 유리계 프릿 또는 납을 함유하지 않는 무연 유리계 프릿, 또는 이들의 혼합물일 수 있으나, 친환경적이며 인체에 무해한 무연 유리계 프릿이 보다 좋다. 나아가, 유리 프릿은 산화비스무트, 산화붕소 및 산화아연을 함유하는 산화비스무트-산화붕소-산화아연계 유리 프릿이 보다 좋은데, 전극이 산화비스무트-산화붕소-산화아연계 유리 프릿을 함유하는 경우, 실록산계 충진물질과의 결착력이 매우 현저하게 향상될 수 있다. 구체적으로 일 예로, 산화비스무트-산화붕소-산화아연계 유리 프릿의 경우, 유리 프릿 전체 중량 중, Bi2O3 60 내지 90 중량%, ZnO 10 내지 20 중량% 및 B2O3 5 내지 15 중량%를 함유할 수 있다. 이 외에도, Al2O3, SiO2, CeO2, Li2O, Na2O 및 K2O로부터 선택되는 하나 또는 둘 이상의 금속 산화물을 더 포함할 수 있으며, 그 함량은 유리 프릿 전체 중량 중, 1 내지 20 중량%로 첨가될 수 있다. 산화비스무트-산화붕소-산화아연계 유리 프릿의 구체적인 일 예로, Bi2O3-ZnO-B2O3 유리 프릿, Bi2O3-ZnO-SiO2-B2O3-Al2O3 유리 프릿, Bi2O3-ZnO-SiO2-B2O3-La2O3-Al2O3 유리 프릿, Bi2O3-ZnO-SiO2-B2O3-TiO2 유리 프릿, 또는 Bi2O3-SiO2-B2O3-ZnO-SrO 유리 프릿을 들 수 있으나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the glass frit may be an amorphous material formed from a metal oxide, and may generate a stable glassy phase and maintain sufficient low viscosity. The glass frit may be a lead-containing glass frit containing lead or a lead-free glass frit containing no lead, or a mixture thereof, but an environment-friendly and harmless lead-free glass frit is preferable. Further, the glass frit is preferably a bismuth oxide-boron oxide-zinc oxide-based glass frit containing bismuth oxide, boron oxide and zinc oxide, and the siloxane when the electrode contains bismuth oxide-boron oxide-zinc oxide-based glass frit. The binding with acid-based fillers can be improved significantly. Specifically, in the case of bismuth oxide-boron oxide-zinc oxide-based glass frit, 60 to 90% by weight of Bi 2 O 3 , 10 to 20% by weight of ZnO and 5 to 15% by weight of B 2 O 3 in the total weight of the glass frit. It may contain%. In addition to this, it may further include one or two or more metal oxides selected from Al 2 O 3 , SiO 2 , CeO 2 , Li 2 O, Na 2 O and K 2 O, the content of the total weight of the glass frit, It may be added in 1 to 20% by weight. Specific examples of bismuth oxide-boron oxide-zinc oxide-based glass frit include Bi 2 O 3 -ZnO-B 2 O 3 glass frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -Al 2 O 3 glass Frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -La 2 O 3 -Al 2 O 3 glass frit, Bi 2 O 3 -ZnO-SiO 2 -B 2 O 3 -TiO 2 glass frit, or Bi 2 O 3 -SiO 2 -B 2 O 3 -ZnO-SrO glass frit, but is not limited thereto.
이와 같은 유리 프릿을 사용함으로써 전극과 충진물질 간의 결착력을 현저히 향상시킬 수 있다. 상세하게, 앞서 언급한 바와 같이, 충진물질 내에 함유되어 있는 관능기가 유리 프릿과 반응하여 화학적으로 결합됨에 따라 전극과 충진물질 간의 결착력을 현저히 향상시킬 수 있다. 상기 관능기는 유리 프릿에 존재하는 히드록실기와 반응할 수 있는 것으로, 구체적으로 알콕시실란 또는 실란올기일 수 있다.By using such a glass frit, the binding force between the electrode and the filling material can be significantly improved. Specifically, as mentioned above, as the functional group contained in the filler material is chemically bonded by reacting with the glass frit, it is possible to significantly improve the binding force between the electrode and the filler material. The functional group may react with the hydroxyl group present in the glass frit, and specifically, may be an alkoxysilane or silanol group.
본 발명의 일 예에 있어, 상기 유리 프릿을 함유하는 전극은 표면에 미세요철이 형성된 것일 수 있다. 미세요철은 전극과 충진물질 간의 앵커링 효과(anchoring effect)를 야기하여 전극과 충진물질간의 결착력을 더욱 향상시켜 유연성 메쉬를 배제하여도 열전소자의 기계적, 물리적 강도를 우수한 수준으로 확보할 수 있으며, 이에 따라 보다 유연한 소자의 구현이 가능할 수 있다. 즉, 유연 열전소자의 물리적 변형이 반복적으로 수행되어도, 전극과 충진물질 간의 매우 우수한 결착력으로 인하여 소자의 물리적 안정성이 담보될 수 있으며, 이로 인해 소자의 수명 및 신뢰성을 향상시킬 수 있다.In one embodiment of the present invention, the electrode containing the glass frit may be a fine irregularity formed on the surface. The fine iron leads to an anchoring effect between the electrode and the filler material, further improving the binding force between the electrode and the filler material, thereby ensuring excellent mechanical and physical strength of the thermoelectric element even when the flexible mesh is excluded. It may be possible to implement a more flexible device. That is, even if the physical deformation of the flexible thermoelectric element is repeatedly performed, the physical stability of the device can be ensured due to a very good binding force between the electrode and the filling material, thereby improving the life and reliability of the device.
상세하게, 미세요철은 전극용 페이스트의 도포 및 열처리에 의해 형성된 것이거나, 전극 형성 후 요철 형성 공정을 수행하여 형성된 것일 수 있다. 일 예로, 전극용 페이스트의 도포 및 열처리에 의해 전극의 표면에 미세요철이 형성되는 경우, 상기 미세요철은 전도성 물질 및 유리 프릿의 형상, 크기 등에 따라 표면조도(Ra)가 조절될 수 있다. 다른 일 예로, 전극 형성 후 요철 형성 공정을 수행하는 경우, 전극 표면에 미세요철을 형성할 수 있는 방법이라면, 기존 공지된 어떠한 방법을 사용하여도 무방하다. 일 구체예로 화학적 에칭 등의 습식 식각 또는 플라즈마 처리 등의 건식 식각을 통해 전극 표면에 미세요철을 형성할 수 있다. 이와 같이, 전극 표면에 형성되는 미세요철은 충진물질과의 결착력을 향상시킬 수 있을 정도의 깊이 및 크기로 형성되는 것이 바람직하며, 일 구체예로, 미세요철이 형성된 전극 표면은 0.4 내지 2.0 ㎛의 표면조도(Ra)를 가질 수 있으며, 보다 좋게는 0.7 내지 1 ㎛의 표면조도(Ra)를 가질 수 있다. 상기 범위에서 앵커링 효과가 우수하여 전극과 충진물질 간의 결착력을 크게 향상시킬 수 있다.In detail, the fine irregularities may be formed by applying and heat treatment of the electrode paste, or may be formed by performing an unevenness forming process after forming the electrode. For example, when the fine roughness is formed on the surface of the electrode by applying and heat-treating the electrode paste, the surface roughness Ra may be adjusted according to the shape and size of the conductive material and the glass frit. As another example, when the uneven formation process is performed after the formation of the electrode, any method known in the art may be used as long as it is a method for forming fine irregularities on the surface of the electrode. In one embodiment, fine irregularities may be formed on the surface of the electrode through wet etching such as chemical etching or dry etching such as plasma treatment. As such, the fine irregularities formed on the surface of the electrode are preferably formed to a depth and a size sufficient to improve the binding force with the filling material, and in one embodiment, the surface of the fine irregularities is 0.4 to 2.0 μm. It may have a surface roughness (Ra), more preferably may have a surface roughness (Ra) of 0.7 to 1 ㎛. The anchoring effect is excellent in the above range can greatly improve the binding force between the electrode and the filler material.
본 발명의 일 예에 있어, 상기 유리 프릿을 함유하는 전극은, 유리 프릿을 함유함으로써 전극과 충진물질 간의 결착력을 보다 향상시킬 수 있다. 이에 따라 유연성 메쉬를 배제하여도 열전소자의 기계적, 물리적 안정성이 담보될 수 있으며, 유연성 메쉬에 의해 발생할 수 있는 텐션(tension)을 제거함으로써 보다 우수한 유연성을 확보할 수 있다. 즉, 유연성 메쉬를 배제함에 따라 보다 향상된 유연성을 확보할 수 있고, 전극과 충진물질 간의 향상된 결착력을 가짐에 따라 고도의 물리적 변형이 가능할 수 있으며, 이와 같은 물리적 변형이 반복적으로 인가되는 환경에서도 결착력이 유지되어 열전소자가 쉽게 손상되지 않고 안정적으로 동작할 수 있음에 따라 열전소자의 신뢰성을 향상시킬 수 있다.In one embodiment of the present invention, the electrode containing the glass frit can further improve the binding force between the electrode and the filling material by containing the glass frit. Accordingly, even if the flexible mesh is excluded, the mechanical and physical stability of the thermoelectric element may be secured, and superior flexibility may be secured by removing tension that may be caused by the flexible mesh. That is, by excluding the flexible mesh, it is possible to secure more flexibility, and have an improved binding force between the electrode and the filling material, thereby enabling highly physical deformation, and even in an environment where such physical deformation is repeatedly applied. Since the thermoelectric element can be stably operated without being damaged, it is possible to improve the reliability of the thermoelectric element.
본 발명의 일 예에 있어, 상기 유리 프릿을 함유하는 전극은 앞서 상술한 바와 같이, 유리 프릿을 함유함으로써 충진물질과의 결착력을 향상시킬 수 있으며, 나아가, 전극의 표면 조도에 의해 보다 향상된 결착력을 가질 수 있다. 일 예로, 전극과 충진물질간의 접착 강도는 0.7 ㎫ 이상일 수 있으며, 구체적으로 0.7 내지 10 ㎫일 수 있으며, 보다 좋게는 1 내지 5 ㎫의 접착 강도를 가질 수 있다.In one embodiment of the present invention, as described above, the electrode containing the glass frit can improve the binding force with the filling material by containing the glass frit, and further improve the binding force by the surface roughness of the electrode Can have. For example, the adhesive strength between the electrode and the filling material may be 0.7 MPa or more, specifically 0.7 to 10 MPa, and more preferably, 1 to 5 MPa.
본 발명의 일 예에 있어, 충진물질은 상기 열전물질 기둥 어레이의 빈 공간을 충진하는 물질로, 전극과 강하게 결착되어 유연 열전소자가 충분한 기계적, 물리적 물성을 가질 수 있도록 하며, 특히 낮은 열전도도를 가짐으로써 열전소자의 열-전기 전환효율을 향상시킬 수 있다. 이에 따라, 충진물질은 유연성을 가진 물질이어야 하며, 또한, 열전소자의 특성상 열원과 직접적으로 맞닿는 전극과 그에 대향하는 형성된 전극(가령 예를 들어, 제1전극이 열원과 맞닿는 전극이라면, 대향하는 전극은 제2전극) 간의 온도구배가 큰 것이 바람직함으로, 충진물질은 낮은 열전도도를 가진 물질인 것이 좋다. 즉, 충진물질은 유연성 및 낮은 열전도도를 가진 물질인 것이 바람직하며, 전극과 결착되어 충분한 기계적, 물리적 강도를 담보할 수 물질인 것이 바람직하다. In one embodiment of the present invention, the filling material is a material filling the empty space of the column array of the thermoelectric material, it is strongly bound to the electrode so that the flexible thermoelectric element can have sufficient mechanical and physical properties, in particular low thermal conductivity By having it, the thermoelectric conversion efficiency of a thermoelectric element can be improved. Accordingly, the filling material should be a material having flexibility, and in addition, due to the characteristics of the thermoelectric element, an electrode directly contacting the heat source and an electrode formed opposite thereto (for example, if the first electrode is an electrode contacting the heat source, the opposite electrode) It is preferable that the temperature gradient between the silver and the second electrode is large, and the filling material is preferably a material having low thermal conductivity. That is, the filling material is preferably a material having flexibility and low thermal conductivity, and preferably a material capable of binding to the electrode to ensure sufficient mechanical and physical strength.
이와 같이 유연성 및 낮은 열전도도를 가지는 충진물질은 예비중합체(prepolymer)로부터 형성된 것일 수 있다. 예비중합체는 경화 가능 관능기(경화기)를 함유하고 있는 비교적 중합도가 낮은 중합체로써, 열전물질 기둥 어레이에 의한 빈 공간에 충진되어 경화되기 전의 중합체를 의미하는 것일 수 있으며, 이와 같은 예비중합체의 경화기를 일부 또는 전부 경화시켜 충진물질을 형성할 수 있다. 즉, 열전물질 기둥 어레이에 충진되기 전 또는 충진된 초기 상태의 중합체를 예비중합체라 칭하며, 이를 경화시킨 것을 충진물질이라 칭한다.As such, the filling material having flexibility and low thermal conductivity may be formed from a prepolymer. The prepolymer is a polymer having a relatively low degree of polymerization containing a curable functional group (curing group), and may mean a polymer before it is filled and cured in an empty space by a thermoelectric column array. Alternatively, all may be cured to form a filling material. That is, the polymer in the initial state before or filled with the thermoelectric pillar array is called a prepolymer, and the cured material is called a filler.
본 발명의 일 예에 있어, 상기 충진물질은 유연성을 가지면서도, 낮은 열전도도를 가지는 것이라면 특별히 한정하진 않으나, 구체적으로 예를 들면, 충진물질은 열전물질 대비 20% 이하의 열전도도를 가진 것일 수 있으며, 바람직하게는 열전물질 열전도도의 0.1 내지 10%의 열전도도를 가진 것을 사용하는 것이 효과적으로 열전달을 차단하여 열안정성을 확보함에 있어 바람직할 수 있다.In one embodiment of the present invention, the filler is not particularly limited as long as it has flexibility and low thermal conductivity, but specifically, for example, the filler may have a thermal conductivity of 20% or less than that of the thermoelectric material. Preferably, it is preferable to use the one having a thermal conductivity of 0.1 to 10% of the thermal conductivity of the thermoelectric material to effectively block the heat transfer to secure thermal stability.
상세하게, 열전소자의 유연성 및 열전도도는 충진물질의 경화 정도에 따라 조절될 수 있으며, 예를 들어, 예비중합체에 함유된 경화기 전부가 경화된 것(경화 정도 100%)을 기준으로, 충진물질은 하기 관계식 2를 만족하는 경화 정도(%)를 가진 것을 수 있다.In detail, the flexibility and thermal conductivity of the thermoelectric element may be adjusted according to the degree of curing of the filling material. For example, the filling material is based on the curing (100% degree of curing) of all the curing machines contained in the prepolymer. May have a degree of curing (%) satisfying the following relational formula (2).
[관계식 2][Relationship 2]
10 ≤ (N0-N)/N0 ×10010 ≤ (N 0 -N) / N 0 × 100
상기 관계식 2에서 N0는 경화 공정 전, 예비중합체 한 분자 내에 함유된 평균 경화기의 수이며, N은 경화 공정 후, 상기 N0 중에서 미경화된 경화기의 수이다. 비 한정적인 일 예로, N0는 2 내지 20일 수 있다.In Formula 2, N 0 is the number of average curing groups contained in one molecule of the prepolymer before the curing process, and N is the number of uncured curing groups in the N 0 after the curing process. As a non-limiting example, N 0 may be 2 to 20.
상기 관계식 2를 만족하는 범위에서 높은 유연성을 가져 유연 열전소자의 제작이 가능하면서도, 낮은 열전도도를 가져 열전 효율이 높은 열전소자를 수득할 수 있으며, 보다 좋게는 30% 내지 90%의 경화 정도를 가진 것이 유연 열전소자를 구현함에 있어 보다 바람직할 수 있다. 이때, 예비중합체의 중량평균분자량은 100 내지 500,000 g/mol일 수 있으며, 보다 좋게는 5,000 내지 100,000 g/mol인 것이 보다 바람직하다.It is possible to manufacture a flexible thermoelectric device having a high flexibility in the range satisfying the relation 2, while having a low thermal conductivity can obtain a thermoelectric device having a high thermoelectric efficiency, more preferably 30% to 90% of the curing degree It may be more desirable to implement a flexible thermoelectric element. In this case, the weight average molecular weight of the prepolymer may be 100 to 500,000 g / mol, more preferably 5,000 to 100,000 g / mol.
이와 같은 예비중합체의 경화 정도는 열경화의 경우 가해지는 열량, 광경화의 경우 조사되는 광량, 화학적 경화의 경우 경화제의 함량을 통해 조절될 수 있다. 이때, 좋게는 대면적에서 균질하게 예비중합체의 경화 정도를 재현성 있게 제어하는 측면에서 예비중합체는 화학적 경화 가능한 관능기를 갖는 화학적 경화성 예비중합체인 것이 좋고, 충진물질의 경화 정도는 화학적 경화성 예비중합체와 경화제와의 상대적 량을 조절하여 이루어진 것이 좋다. The degree of curing of such a prepolymer can be controlled through the amount of heat applied in case of thermal curing, the amount of light irradiated in case of photocuring, and the content of a curing agent in case of chemical curing. In this case, the prepolymer is preferably a chemically curable prepolymer having a chemically curable functional group in terms of reproducibly controlling the degree of curing of the prepolymer homogeneously in a large area, and the degree of curing of the filling material is a chemically curable prepolymer and a curing agent. It is good to control the relative amount of wah.
상술한 바와 같이, 본 발명의 일 예에 있어서, 상기 예비중합체는 경화 공정 후 유연성 및 낮은 열전도도를 가져야하며, 이를 고려하여 그 종류를 선정하는 것이 바람직하다. 일 예로, 예비중합체는 열경화, 광경화 또는 화학적 경화가 가능한 관능기를 함유한 것일 수 있으나, 보다 균일한 경화를 위해 바람직하게는 화학적 경화가 가능한 관능기를 함유한 것일 수 있다. 상세하게, 열경화성 예비중합체인 경우, 본 물질이 열전도도가 낮은 물질임에 따라 열원과 직접적으로 맞닿는 부분과 그렇지 않은 부분의 온도가 상이할 수 있어 기 설정된 중합도로 균질하게 중합되기 어려울 수 있다. 광경화성 예비중합체인 경우, 적어도 열전물질 양 단에 전극이 형성된 후, 열전물질 기둥 어레이의 빈 공간을 채우는 방식으로 예비중합체가 충진되어야 함에 따라, 충진 물질 이외의 다른 열전 소자 구성요소들에 의해 광의 균일한 조사가 방해받을 수 있다. 반면, 화학적 경화성 예비중합체인 경우, 경화제를 균일하게 혼합하는 것만으로 균일하게 경화가 일어나도록 할 수 있으며, 경화제의 함량을 조절하는 것만으로 충진물질의 경화 정도를 조절할 수 있어 유연성 및 열전도도 조절에 유리할 수 있다. As described above, in one example of the present invention, the prepolymer should have flexibility and low thermal conductivity after the curing process, and it is preferable to select the type in consideration of this. For example, the prepolymer may include a functional group capable of thermosetting, photocuring or chemical curing, but may preferably contain a functional group capable of chemical curing for more uniform curing. In detail, in the case of the thermosetting prepolymer, since the material is a material having low thermal conductivity, the temperature of the part directly contacting the heat source and the part not directly may be different, and thus it may be difficult to homogeneously polymerize with a predetermined degree of polymerization. In the case of a photocurable prepolymer, the prepolymer must be filled at least after the electrode is formed across the thermoelectric material and then fills the void space of the array of thermoelectric pillars, thereby reducing the Uniform irradiation may be disturbed. On the other hand, in the case of chemically curable prepolymers, the curing can be uniformly achieved by simply mixing the curing agent uniformly, and the degree of curing of the filling material can be controlled only by controlling the content of the curing agent, thereby controlling flexibility and thermal conductivity. May be advantageous.
본 발명의 일 예에 있어서, 상기 예비중합체는 경화 후 유연성을 가지며, 낮은 열전도도를 가지는 것이라면 특별히 한정하지 않고 사용할 수 있으나, 구체적으로 예를 들면 실리콘계 예비중합체, 올레핀계 탄성 예비중합체 또는 우레탄계 예비중합체 등을 사용할 수 있다. 상기 실리콘계 예비중합체, 올레핀계 탄성 예비중합체 및 우레탄계 예비중합체는 경화 후 유연성 및 탄력성이 높으며, 온도에 따른 물성 변화가 작고, 넓은 온도 범위에서 유연성이 유지되어 유연 열전소자에 적용시 열전소자의 물리적 변형이 용이하고, 잦은 물리적 변형에도 쉽게 손상되지 않아 수명 특성이 향상되는 장점이 있다. 또한, 실리콘계 예비중합체와 올레핀계 탄성 예비중합체는 낮은 열전도도를 가짐에 따라 열의 확산을 효과적으로 방지하여 열전 효율을 향상시킬 수 있다.In one embodiment of the present invention, the prepolymer may be used without particular limitation as long as it has flexibility after curing and has low thermal conductivity. Specifically, for example, silicone-based prepolymer, olefin-based elastic prepolymer or urethane-based prepolymer Etc. can be used. The silicone-based prepolymer, the olefin-based elastic prepolymer and the urethane-based prepolymer has a high flexibility and elasticity after curing, the physical properties of the thermoelectric element when applied to the flexible thermoelectric element is small, the physical properties change with temperature, the flexibility is maintained in a wide temperature range This is easy and does not easily damage even frequent physical deformation has the advantage of improving the life characteristics. In addition, the silicon-based prepolymer and the olefin-based elastic prepolymer has a low thermal conductivity can effectively prevent the diffusion of heat to improve the thermoelectric efficiency.
특히, 예비중합체가 실리콘계 예비중합체인 경우, 전극과의 결착력이 더욱 향상되어 열전소자의 물리적 안정성이 향상될 수 있다. 상세하게, 열전물질 기둥 어레이에 의해 형성된 빈 공간에 실리콘계 예비중합체를 충진 후 경화할 시, 실리콘계 예비중합체에 함유된 알콕시실란기 또는 실란올기가 앞서 설명한 전극 내 유리 프릿의 금속산화물과 반응할 수 있으며, 이에 따라 전극과 충진물질 간의 결착력이 더욱 향상될 수 있다. 아울러, 올레핀계 탄성 예비중합체 또는 우레탄계 예비중합체 역시 알콕시실란기 또는 실란올기를 함유한 것일 수 있으며, 이와 같은 경우, 실리콘계 예비중합체와 동일한 작용에 의해 전극과 충진물질 간의 결착력을 향상시킬 수 있다.In particular, when the prepolymer is a silicone-based prepolymer, the binding force with the electrode may be further improved, thereby improving physical stability of the thermoelectric element. Specifically, when the silicone prepolymer is filled and cured in the empty space formed by the thermoelectric pillar array, the alkoxysilane group or silanol group contained in the silicone prepolymer may react with the metal oxide of the glass frit in the electrode described above. As a result, the binding force between the electrode and the filling material may be further improved. In addition, the olefin-based elastic prepolymer or urethane-based prepolymer may also contain an alkoxysilane group or silanol group, in this case, it is possible to improve the binding force between the electrode and the filler by the same action as the silicone-based prepolymer.
본 발명의 일 예에 있어, 실리콘계 예비중합체는 축합형과 부가형으로 나뉠 수 있다. 상기 축합형 실리콘계 예비중합체는 수분 존재 하에서 가수분해 및 축합반응에 의해 가교경화가 일어날 수 있으며, 상기 부가형 실리콘계 예비중합체는 촉매 존재 하에서 실리콘계 예비중합체의 불포화기와 가교제 간의 부가반응에 의해 가교 경화가 일어날 수 있다.In one embodiment of the present invention, silicone-based prepolymers can be divided into condensation type and addition type. The condensation type silicone prepolymer may be cross-cured by hydrolysis and condensation reaction in the presence of water, and the addition type silicone type prepolymer may be crosslinked due to addition reaction between the unsaturated group and the crosslinking agent of the silicone type prepolymer in the presence of a catalyst. have.
상세하게, 상기 축합형 실리콘계 예비중합체는 말단기로 실란올기를 함유하는 실록산계 예비중합체일 수 있으며, 실란올기와 가교제 간의 가수분해 축합반응, 및 촉매와 수분에 의한 축합반응에 의해 고무상의 중합체를 형성할 수 있다. 비 한정적인 일 구체예로, 축합형 실리콘계 예비중합체는 하이드록시기가 2개 이상인 지방족 폴리실록산, 방향족폴리실록산 또는 지방족기와 방향족기를 하나의 반복단위 내에 모두 포함하거나 독립적으로 각각 포함하는 실록산 반복단위를 포함하는 폴리실록산일 수 있다. 구체적인 일예로 하이드록시기는 하나의 폴리실록산 사슬내에 2 내지 20개 포함될 수 있으나 이에 제한되지는 아니하며, 폴리실록산의 분자량이 증가할수록 하이드록시기는 비례하여 20개를 초과하여 증가할 수 있으며, 분자량이 낮은 폴리실록산의 경우 바람직한 범위는 2 내지 4개를 포함할 수 있다. 비한정적인 일 구체예로, 지방족 폴리실록산은, 2개 이상의 하이드록시기를 함유하는, 폴리디메틸실록산, 폴리디에틸실록산, 폴리메틸에틸실록산, 폴리디메틸실록산-co-디에틸실록산, 폴리디메틸실록산-co-에틸메틸실록산 등에서 선택될 수 있으며, 방향족 폴리살록산은 2개 이상의 하이드록시기를 함유하는, 폴리디페닐실록산, 폴리메틸페닐실록산, 폴리에틸페닐실록산, 폴리(디메틸실록산-co-디페닐실록산) 등에서 선택될 수 있다. 지방족기와 방향족기를 하나의 반복단위 내에 모두 포함하거나 독립적으로 각각 포함하는 실록산 반복단위를 포함하는 폴리실록산은 상기 예시된 지방족 실록산의 반복단위 및 방향족 실록산의 반복단위를 모두 포함하거나, 상기 예시된 지방족 치환기와 상기 예시된 방향족 치환기를 하나의 반복단위 내에 위치하는 실리콘 원소에 각각 결합된 형태를 의미하는 것일 수 있으나 이에 한정되진 않는다.In detail, the condensation type silicone prepolymer may be a siloxane type prepolymer containing a silanol group as an end group, and may be formed by polymerizing a rubbery polymer by a hydrolytic condensation reaction between the silanol group and the crosslinking agent and a condensation reaction with a catalyst and water. Can be formed. In one non-limiting embodiment, the condensed silicone-based prepolymer is an aliphatic polysiloxane, an aromatic polysiloxane having two or more hydroxyl groups, or a polysiloxane including siloxane repeating units each containing an aliphatic group and an aromatic group in one repeat unit or independently. Can be. As a specific example, 2 to 20 hydroxyl groups may be included in one polysiloxane chain, but are not limited thereto. As the molecular weight of the polysiloxane increases, the number of hydroxyl groups may increase in proportion to 20 or more. In this case, the preferred range may include 2 to 4. In one non-limiting embodiment, the aliphatic polysiloxane is polydimethylsiloxane, polydiethylsiloxane, polymethylethylsiloxane, polydimethylsiloxane-co-diethylsiloxane, polydimethylsiloxane-co containing two or more hydroxy groups. -Polymethyl siloxane, polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane) and the like, which may be selected from -ethylmethylsiloxane and the like, and aromatic polysiloxanes contain two or more hydroxy groups. Can be selected. Polysiloxanes comprising a siloxane repeating unit which includes both aliphatic and aromatic groups in one repeating unit or independently of each other include all of the repeating units of aliphatic siloxanes and repeating units of aromatic siloxanes exemplified above, The aromatic substituents exemplified above may mean a form bonded to each silicon element located in one repeating unit, but is not limited thereto.
이때, 상기 가교제는 Si-O 결합을 함유하는 실록산계 경화제 또는 Si-N 결합을 함유하는 오르가노실라잔계(organosilazane) 경화제 등을 사용할 수 있으며, 비 한정적인 일 구체예로, (CH3)Si(X)3 또는 Si(OR)4일 수 있다. 이때, X는 메톡시, 아세톡시, 옥심, 아민기 등일 수 있으며, R은 저급알킬기를 가지며 비한정적인 일 구체예로 메틸, 에틸 또는 프로필기일 수 있다. 상기 촉매는 당 분야에서 통상적으로 사용되는 것이라면 한정하지 않으며, 비 한정적인 일 구체예로 유기주석화합물, 유기티타늄화합물 또는 아민계 화화합물 등을 사용할 수 있다.In this case, the crosslinking agent may be a siloxane-based curing agent containing a Si-O bond or an organosilazane-based curing agent containing a Si-N bond, and the like, and, as a non-limiting example, (CH 3 ) Si (X) 3 or Si (OR) 4 . In this case, X may be a methoxy, acetoxy, oxime, amine group and the like, R has a lower alkyl group and may be a methyl, ethyl or propyl group in one non-limiting embodiment. The catalyst is not limited as long as it is commonly used in the art, and an organic tin compound, an organic titanium compound, or an amine compound may be used as a non-limiting example.
상기 부가형 실리콘계 예비중합체는 에틸렌성 불포화기를 함유하는 실록산계 예비중합체일 수 있으며, 보다 상세하게, 비닐기를 함유하는 실록산계 예비중합체일 수 있다. 이에 따라, 비닐기를 함유하는 실록산계 예비중합체와 Si-H 결합을 함유하는 실록산계 화합물(가교제)을 부가 반응시킴으로써 실록산 사슬을 가교시켜 중합체를 형성할 수 있다.The addition silicone-based prepolymer may be a siloxane-based prepolymer containing an ethylenically unsaturated group, and more particularly, may be a siloxane-based prepolymer containing a vinyl group. Thereby, a siloxane chain can be bridge | crosslinked by addition reaction of the siloxane type prepolymer containing a vinyl group, and the siloxane type compound (crosslinking agent) containing a Si-H bond, and a polymer can be formed.
비 한정적인 일 구체예로, 부가형 실리콘계 예비중합체는 비닐기가 2개 이상인 지방족 폴리실록산, 방향족폴리실록산 또는 지방족기와 방향족기를 하나의 반복단위 내에 모두 포함하거나 독립적으로 각각 포함하는 실록산 반복단위를 포함하는 폴리실록산일 수 있다. 구체적인 일예로 비닐기는 하나의 폴리실록산 사슬내에 2 내지 20개 포함될 수 있으나 이에 제한되지는 아니하며, 폴리실록산의 분자량이 증가할수록 비닐기는 비례하여 20개를 초과하여 증가할 수 있으며, 분자량이 낮은 폴리실록산의 경우 바람직한 범위는 2 내지 4개를 포함할 수 있다. 비한정적인 일 구체예로, 지방족 폴리실록산은, 2개 이상의 비닐기를 함유하는, 폴리디메틸실록산, 폴리디에틸실록산, 폴리메틸에틸실록산, 폴리디메틸실록산-co-디에틸실록산, 폴리디메틸실록산-co-에틸메틸실록산 등에서 선택될 수 있으며, 방향족 폴리살록산은 2개 이상의 비닐기를 함유하는, 폴리디페닐실록산, 폴리메틸페닐실록산, 폴리에틸페닐실록산, 폴리(디메틸실록산-co-디페닐실록산) 등에서 선택될 수 있다. 지방족기와 방향족기를 하나의 반복단위 내에 모두 포함하거나 독립적으로 각각 포함하는 실록산 반복단위를 포함하는 폴리실록산은 상기 예시된 지방족 실록산의 반복단위 및 방향족 실록산의 반복단위를 모두 포함하거나, 상기 예시된 지방족 치환기와 상기 예시된 방향족 치환기를 하나의 반복단위 내에 위치하는 실리콘 원소에 각각 결합된 형태를 의미하는 것일 수 있으나 이에 한정되진 않는다.In one non-limiting embodiment, the additional silicone-based prepolymer may be an aliphatic polysiloxane having two or more vinyl groups, an aromatic polysiloxane, or a polysiloxane including siloxane repeating units each containing an aliphatic group and an aromatic group or independently of each other. have. As a specific example, 2 to 20 vinyl groups may be included in one polysiloxane chain, but are not limited thereto. As the molecular weight of the polysiloxane increases, the vinyl groups may increase in proportion to more than 20 vinyl groups, which is preferable for low molecular weight polysiloxanes. The range may include two to four. In one non-limiting embodiment, the aliphatic polysiloxane is polydimethylsiloxane, polydiethylsiloxane, polymethylethylsiloxane, polydimethylsiloxane-co-diethylsiloxane, polydimethylsiloxane-co- containing two or more vinyl groups. May be selected from ethylmethylsiloxane and the like, and the aromatic polysiloxane may be selected from polydiphenylsiloxane, polymethylphenylsiloxane, polyethylphenylsiloxane, poly (dimethylsiloxane-co-diphenylsiloxane), and the like, containing two or more vinyl groups. Can be. Polysiloxanes comprising a siloxane repeating unit which includes both aliphatic and aromatic groups in one repeating unit or independently of each other include all of the repeating units of aliphatic siloxanes and repeating units of aromatic siloxanes exemplified above, The aromatic substituents exemplified above may mean a form bonded to each silicon element located in one repeating unit, but is not limited thereto.
상기 가교제는 Si-H 결합을 함유하는 실록산계 화합물이라면 특별히 한정하지 않고 사용할 수 있으며, 비 한정적인 일 구체예로, -(RaHSiO)-기가 포함된 지방족 또는 방향족 폴리실록산일 수 있다. Ra는 지방족기 또는 방향족기일 수 있으며, 지방족기로는 메틸기, 에틸기, 프로필기일 수 있으며, 방향족기로는 페닐기, 나프틸기일 수 있고, 상기 치환기는 가교반응에 영향을 미치지 않는 범위 내에서 다른 치환기로 치환되거나 또는 비치환될 수 있으나 이는 일 구체예일 뿐 탄소수 및 치환기의 종류는 제한되지 않는다. 비 한정적인 일 구체예로, 폴리메틸하이드로젠실록산 [(CH3)3SiO(CH3HSiO)xSi(CH3)3], 폴리디메틸실록산 [(CH3)2HSiO((CH3)2SiO)xSi(CH3)2H], 폴리페닐하이드로젠실록산 [(CH3)3SiO(PhHSiO)xSi(CH3)3] 또는 폴리디페닐실록산 [(CH3)2HSiO((Ph)2SiO)xSi(CH3)2H] 등일 수 있으며, 이때, 부가형 실리콘계 예비중합체에 함유된 비닐기의 숫자에 따라 Si-H의 함량을 조절하는 것이 바람직하며, 일 예로 x는 1 이상일 수 있으며, 보다 좋게는 2 내지 10일 수 있으나 이에 한정되진 않는다.The crosslinking agent may be used without particular limitation as long as it is a siloxane compound containing a Si—H bond, and in one non-limiting embodiment, may be an aliphatic or aromatic polysiloxane including a-(R a HSiO)-group. R a may be an aliphatic group or an aromatic group, an aliphatic group may be a methyl group, an ethyl group, a propyl group, an aromatic group may be a phenyl group, a naphthyl group, and the substituent may be substituted with another substituent within a range that does not affect the crosslinking reaction. It may be substituted or unsubstituted, but this is only one embodiment is not limited to the number of carbon atoms and substituents. In one non-limiting embodiment, polymethylhydrogensiloxane [(CH 3 ) 3 SiO (CH 3 HSiO) x Si (CH 3 ) 3 ], polydimethylsiloxane [(CH 3 ) 2 HSiO ((CH 3 ) 2 SiO) x Si (CH 3 ) 2 H], polyphenylhydrogensiloxane [(CH 3 ) 3 SiO (PhHSiO) x Si (CH 3 ) 3 ] or polydiphenylsiloxane [(CH 3 ) 2 HSiO ((Ph ) 2 SiO) x Si (CH 3 ) 2 H], etc. In this case, it is preferable to adjust the content of Si-H according to the number of vinyl groups contained in the additional silicone-based prepolymer, for example x is 1 or more It may be, but may be more preferably 2 to 10, but is not limited thereto.
이때, 촉매는 반응의 촉진을 위해 선택적으로 부가될 수 있으며 당 분야에서 통상적으로 사용되는 것이라면 한정하지 않으며, 비 한정적인 일 구체예로 백금 화합물 등을 사용할 수 있다. 이 외에 충진제 및/또는 희석제 등의 첨가제를 더 포함할 수 있으며, 비 한정적인 일 구체예로, 충진제는 연무질 실리카, 석영 분말, 탄산칼슘 분말 또는 규조토 분말 등을 사용할 수 있다. 비한정적인 일 구체예로, 가교된 실록산 중합체의 파괴인성(fracture toughness)를 향상시키기 위해 충진제를 화학적으로 실록산계 예비중합체에 결합시킬 수 있다. 이를 위해 상기 충진제에는 커플링제를 통해 비닐기 또는 Si-H 기가 도입될 수 있으며, 상기 관능기를 통해 가교된 실록산 중합체 네트워크에 안정적으로 포함될 수 있다.In this case, the catalyst may be optionally added to promote the reaction, and is not limited as long as it is commonly used in the art, may use a platinum compound and the like as a non-limiting embodiment. In addition to the above, it may further include additives such as fillers and / or diluents. In one non-limiting embodiment, the filler may use aerosol silica, quartz powder, calcium carbonate powder or diatomaceous earth powder. In one non-limiting embodiment, fillers may be chemically bound to the siloxane-based prepolymer to improve the fracture toughness of the crosslinked siloxane polymer. To this end, the filler may be introduced into the vinyl group or Si-H group through a coupling agent, it can be stably included in the cross-linked siloxane polymer network through the functional group.
상기 올레핀계 탄성 예비중합체는 올레핀계 탄성 예비중합체와 가교제에 의해 가교 경화가 일어나 중합체를 형성할 수 있다. 올레핀계 탄성 예비중합체는 비 한정적인 일 구체예로, 폴리(에틸렌-co-알파-올레핀), 에틸렌프로필렌디엔모노머 고무(EPDM rubber), 폴리이소프렌 또는 폴리부타디엔 등일 수 있으나, 이에 한정되진 않는다. 이때 가교제는 가황제일 수 있으며, 당 분야에서 통상적으로 사용되는 것이라면 한정하지 않으나, 비 한정적인 일 구체예로, 황 또는 유기과산화물 등을 사용할 수 있다.The olefinic elastic prepolymer may be cross-linked and hardened by an olefinic elastic prepolymer and a crosslinking agent to form a polymer. The olefin-based elastic prepolymer may be, but is not limited to, poly (ethylene-co-alpha-olefin), ethylene propylene diene monomer rubber (EPDM rubber), polyisoprene or polybutadiene, and the like. In this case, the crosslinking agent may be a vulcanizing agent, and is not limited as long as it is commonly used in the art, but may be used as a non-limiting example, sulfur or organic peroxide.
상기 우레탄계 예비중합체는 촉매 존재 하에서 이소시아네이트기(-NCO)와 하이드록시기(-OH)의 부가 축합반응에 의해 중합체가 되는 제1형태와 불포화기를 함유하는 우레탄계 예비중합체가 가교제와의 부가 반응에 의해 중합체가 되는 제2형태로 나뉠 수 있다.The urethane-based prepolymer is a urethane-based prepolymer containing a first form and an unsaturated group, which are polymerized by addition condensation reaction of an isocyanate group (-NCO) and a hydroxyl group (-OH) in the presence of a catalyst by an addition reaction with a crosslinking agent. It can be divided into a second form to be a polymer.
상세하게, 상기 제1형태는 2개 이상의 이소시아네이트기를 함유하는 다관능 이소시아네이트계 화합물과 2개 이상의 하이드록시기를 함유하는 폴리올계 화합물의 반응에 의해 중합체가 형성될 수 있다. 상기 다관능 이소시아네이트계 화합물은 비 한정적인 일 구체예로, 4,4'-디페닐메탄 디이소시아네이트(MDI), 톨루엔 디이소시아네이트(TDI), 1,4-디이소시아네이토벤젠(PPDI), 2,4'-디페닐메탄 디이소시아네이트, 1,5-나프탈렌 디이소시아네이트, 3,3'-비톨릴렌-4,4'-디이소시아네이트, 1,3-자일렌 디이소시아네이트, p-테트라메틸자일렌 디이소시아네이트(p-TMXDI), 1,6-디이소시아네이토-2,4,4-트리메틸헥산, 헥사메틸렌 디이소시아네이트(HMDI) 1,4-사이클로헥산 디이소시아네이트(CHDI), 이소포론 디이소시아네이트(IPDI) 또는4,4'-디사이클로헥실메탄 디이소시아네이트(H12MDI) 등이 있으나, 이에 한정되지 않는다. 상기 폴리올계 화합물은 폴리에스테르 폴리올과 폴리에테르 폴리올로 나뉠 수 있다. 폴리에스테르 폴리올은 비 한정적인 일 구체예로, 폴리에틸렌아디페이트, 폴리부틸렌아디페이트, 폴리(1,6-헥사아디페이트), 폴리디에틸렌아디페이트 또는 폴리(e-카프로락톤) 등일 수 있으며, 폴리에테르 폴리올은 비 한정적인 일 구체예로, 폴리에틸렌글리콜, 폴리디에틸렌글리콜, 폴리테트라메틸렌글리콜, 폴리에틸렌프로필렌글리콜 등일 수 있으나, 이에 한정되진 않는다. 이때, 촉매는 당 분야에서 통상적으로 사용되는 것이라면 특별히 한정하진 않으나, 아민계 촉매를 사용할 수 있으며, 비 한정적인 일 구체예로, 디메틸사이클로헥실아민(DMCHM), 테트라메틸렌디아민(TMHDA), 펜타메틸렌디에틸렌디아민(PMEDETA) 또는 테트라에틸렌디아민(TEDA) 등을 사용할 수 있다.Specifically, in the first embodiment, a polymer may be formed by the reaction of a polyfunctional isocyanate compound containing two or more isocyanate groups and a polyol compound containing two or more hydroxyl groups. The polyfunctional isocyanate compound is a non-limiting embodiment, 4,4'- diphenylmethane diisocyanate (MDI), toluene diisocyanate (TDI), 1,4-diisocyanatobenzene (PPDI), 2 , 4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 3,3'-bittolylene-4,4'-diisocyanate, 1,3-xylene diisocyanate, p-tetramethylxylene di Isocyanate (p-TMXDI), 1,6-diisocyanato-2,4,4-trimethylhexane, hexamethylene diisocyanate (HMDI) 1,4-cyclohexane diisocyanate (CHDI), isophorone diisocyanate (IPDI) Or 4,4'-dicyclohexylmethane diisocyanate (H12MDI), and the like. The polyol-based compound may be divided into polyester polyols and polyether polyols. The polyester polyol may be, but is not limited to, polyethylene adipate, polybutylene adipate, poly (1,6-hexaadipate), polydiethylene adipate, poly (e-caprolactone), and the like. The polyether polyol may be, but is not limited to, polyethylene glycol, polydiethylene glycol, polytetramethylene glycol, polyethylenepropylene glycol, and the like in one specific embodiment. In this case, the catalyst is not particularly limited as long as it is commonly used in the art, but may be an amine catalyst, and in one non-limiting embodiment, dimethylcyclohexylamine (DMCHM), tetramethylenediamine (TMHDA), pentamethylene Diethylenediamine (PMEDETA), tetraethylenediamine (TEDA), etc. can be used.
상기 제2형태는 에틸렌성 불포화기를 함유하는 우레탄계 예비중합체와 가교제 간의 부가 반응에 의해 중합체가 형성될 수 있다. 이와 같은 우레탄계 예비중합체는 이소시아네이트기를 함유하는 화합물과 폴리올계 화합물의 종류에 따라 그 구조가 다양하게 달라질 수 있으나, 에틸렌성 불포화기, 보다 상세하게, 비닐기를 함유하는 우레탄계 예비중합체일 수 있다. 구체적인 일예로 비닐기는 하나의 폴리우레탄 사슬 내에 2 내지 20개 포함될 수 있으나 이에 제한되지는 아니하며, 폴리우레탄의 분자량이 증가할수록 비닐기는 비례하여 20개를 초과하여 증가할 수 있으며, 분자량이 낮은 폴리우레탄의 경우 바람직한 범위는 2 내지 4개를 포함할 수 있다. 이때 가교제는 가황제일 수 있으며, 당 분야에서 통상적으로 사용되는 것이라면 한정하지 않으나, 비 한정적인 일 구체예로, 황 또는 유기과산화물 등을 사용할 수 있다.In the second form, the polymer may be formed by an addition reaction between the urethane-based prepolymer containing an ethylenically unsaturated group and a crosslinking agent. Such a urethane-based prepolymer may vary in structure depending on the type of the compound containing the isocyanate group and the polyol-based compound, but may be an ethylenically unsaturated group, more specifically, a urethane-based prepolymer containing a vinyl group. As a specific example, 2 to 20 vinyl groups may be included in one polyurethane chain, but are not limited thereto. As the molecular weight of the polyurethane increases, the vinyl groups may increase in proportion to 20 or more, and the polyurethane having a low molecular weight In the case of the preferred range may include 2 to 4. In this case, the crosslinking agent may be a vulcanizing agent, and is not limited as long as it is commonly used in the art, but may be used as a non-limiting example, sulfur or organic peroxide.
아울러, 예비중합체와 가교제 및 촉매의 함량은 중합체의 경화 정도를 고려하여 선정될 수 있다. 구체적으로, 가교제의 함량은 예비중합체 100 중량부를 기준으로 1 내지 100 중량부를 사용할 수 있으며, 좋게는 3 내지 50 중량부, 보다 좋게는 5 내지 20 중량부로 사용하는 것이 바람직할 수 있다. 촉매의 함량은 예비중합체 100 중량부를 기준으로 0.001 내지 5 중량부를 사용할 수 있으며, 좋게는 0.1 내지 1 중량부 로 사용하는 것이 바람직할 수 있다. 상기 범위에서 유연성이 우수하며, 열전도도가 낮은 중합체를 효과적으로 형성할 수 있으며, 이에 따라 잦은 물리적 변경에도 안정성이 우수한 소자를 구현할 수 있으며, 열확산을 효과적으로 방지하여 열전 효율을 크게 향상시킬 수 있다.In addition, the content of the prepolymer, the crosslinking agent and the catalyst may be selected in consideration of the degree of curing of the polymer. Specifically, the crosslinking agent may be used in an amount of 1 to 100 parts by weight based on 100 parts by weight of the prepolymer, preferably 3 to 50 parts by weight, and more preferably 5 to 20 parts by weight. The catalyst may be used in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the prepolymer, and preferably 0.1 to 1 part by weight. It is possible to effectively form a polymer having excellent flexibility in the above range and low thermal conductivity, thereby realizing a device having excellent stability against frequent physical changes, and effectively preventing thermal diffusion, thereby greatly improving thermoelectric efficiency.
본 발명의 일 예에 있어서, 상기 충진물질은 열전소자가 구동되는 환경을 고려하여 넓은 온도 범위에서 유연성이 유지되는 것이 좋으며, 이에 따라 충진물질의 유리전이온도(Tg)를 조절하는 것이 바람직하다. 일 예로, 충진물질의 유리전이온도는 -150 ~ 0℃일 수 있으며, 보다 좋게는 유연성 유지 및 전극과의 결착력 유지 측면에서 유리전이온도가 가질 수 있는 최대 온도는 -20℃ 이하일 수 있다.In one example of the present invention, it is preferable that the filling material maintains flexibility in a wide temperature range in consideration of the environment in which the thermoelectric element is driven, and accordingly, it is preferable to adjust the glass transition temperature (T g ) of the filling material. . For example, the glass transition temperature of the filling material may be -150 ~ 0 ℃, and more preferably the maximum temperature that the glass transition temperature may have in the aspect of maintaining flexibility and binding with the electrode may be -20 ℃ or less.
본 발명의 일 예에 있어서, 상기 충진물질은 고도의 물리적 변형이 인가되는 환경에서도 유연성 및 기계적 물성이 유지되는 것이 좋으며, 이에 따라 충진물질의 경도(shore A)와 인장강도를 조절하는 것이 바람직하다. 일 구체예로, 충진물질의 경도는 10 ~ 40일 수 있으며, 보다 좋게는 20 ~ 30인 것이 보다 높은 유연성을 가짐에 있어서 바람직하다. 또한, 일 구체예로, 인장강도는 30 ~ 300 ㎏/㎠일 수 있으며, 보다 좋게는 40 ~ 90 ㎏/㎠인 것이 바람직하다.In one embodiment of the present invention, it is preferable that the filler material maintains flexibility and mechanical properties even in an environment in which high physical deformation is applied. Accordingly, it is preferable to control the hardness (shore A) and tensile strength of the filler material. . In one embodiment, the hardness of the filler material may be 10 to 40, more preferably 20 to 30 is preferable in having a higher flexibility. In addition, in one embodiment, the tensile strength may be 30 ~ 300 kg / ㎠, more preferably 40 ~ 90 kg / ㎠.
본 발명의 일 예에 있어서, 상기 충진물질은 예비중합체를 열전물질 기둥 어레이에 의해 형성되는 상기 빈 공간에 채운 후, 경화 가공하여 형성된 것일 수 있다. 상기 빈 공간은 미세한 크기의 공간임에 따라 모세관 현상을 유발할 수 있으며, 이에 따라 액상 물질을 사용하여 보다 간단한 방법으로 상기 빈 공간에 균일하게 예비중합체를 채울 수 있다. 즉, 비 한정적인 일 예로, 상기 예비중합체는 액상 물질일 수 있으며, 상세하게 예비중합체 자체가 액상이거나, 용제에 용해된 용액상 일 수 있다. 이와 같은 액상 예비중합체는 캐필러리 효과에 의해 상기 빈 공간에 균일하게 효과적으로 채워질 수 있으며, 경화 가공한 후 전극 및 열전물질과 전체적으로 잘 결착되도록 하여 열전소자의 기계적, 물리적 물성을 보다 향상시킬 수 있다. 또한, 예비중합체 자체가 공정 온도(일 예로, 상온)에서 액상인 경우, 용매를 사용하지 않고도 캐필러리 효과에 의해 열전물질 기둥 어레이의 빈 공간을 채울 수 있는 바, 용매휘발 공정 등이 불필요할 수 있다. 즉, 예비중합체 자체가 액상인 경우, 건조 공정은 불필요할 수 있으며, 경화 공정만으로 충진물질을 형성할 수 있다. 특히 건조 공정을 생략할 수 있음에 따라, 대면적의 유연 열전 소자 제조시 생산성 및 품질을 향상시킬 수 있다. In one example of the present invention, the filling material may be formed by filling the prepolymer in the empty space formed by the thermoelectric column array, and then hardened. The empty space may cause a capillary phenomenon due to the space having a fine size, and thus the prepolymer may be uniformly filled in the empty space by using a liquid material. That is, in one non-limiting example, the prepolymer may be a liquid material, and in detail, the prepolymer may be a liquid or a solution dissolved in a solvent. Such a liquid prepolymer can be effectively and uniformly filled in the empty space by the capillary effect, and after the hardening process to ensure good binding overall with the electrode and the thermoelectric material can further improve the mechanical and physical properties of the thermoelectric element. . In addition, when the prepolymer itself is a liquid at a process temperature (for example, room temperature), it is possible to fill the empty space of the column array by the capillary effect without using a solvent, so that the solvent volatilization process is not necessary. Can be. That is, when the prepolymer itself is a liquid phase, the drying process may be unnecessary, and the filling material may be formed only by the curing process. In particular, since the drying step can be omitted, productivity and quality can be improved when manufacturing a large-area flexible thermoelectric device.
본 발명의 일 예에 있어서, 액상 예비중합체는 10,000 cP 이하의 점도를 가질 수 있으며, 구체적으로는 1,000 내지 10,000 cP의 점도를 가진 것일 수 있으며, 보다 좋게는 2,000 내지 5,000 cP의 점도를 가진 것일 수 있다. 이때, 필요시 액상 예비중합체는 제시된 점도를 가질 수 있도록 통상의 점도 조절제에 의해 점도가 조절될 수도 있다. 액상 예비중합체의 점도는 열전소자의 물리적 크기나 형상에 의해 캐필러리 효과가 감소되는 경우에도 열전물질 기둥 어레이에 의해 형성된 빈 공간에 액상 예비중합체가 용이하게 잘 채워질 수 있는 점도이다. In one example of the present invention, the liquid prepolymer may have a viscosity of 10,000 cP or less, specifically, may have a viscosity of 1,000 to 10,000 cP, and more preferably, may have a viscosity of 2,000 to 5,000 cP. have. At this time, if necessary, the liquid prepolymer may be controlled by a conventional viscosity modifier so as to have a given viscosity. The viscosity of the liquid prepolymer is a viscosity in which the liquid prepolymer can be easily filled in the empty space formed by the thermoelectric column array even when the capillary effect is reduced by the physical size or shape of the thermoelectric element.
또한, 본 발명의 일 예에 있어서, 액상 예비중합체는 보다 효과적인 캐필러리 효과에 의해 열전물질 기둥 어레이의 빈 공간을 채울 수 있도록, 적정 접촉각(contact angle)을 가진 것일 수 있다. 또한, 앞서 상술한 바와 같이, 충진 물질과 전극과의 접착력 향상을 위해서는 경화에 의해 충진 물질을 형성하는 액상 예비중합체가 전극과 잘 웨팅(wetting)되는 것이 좋다. 열전물질과 전극 중 충진 물질과의 접촉 면적이 보다 넓은 구성이 전극임에 따라, 전극과 액상 예비중합체 간의 접촉각이 보다 중요할 수 있다. 액상 예비중합체가 열전물질 기둥 어레이에 의한 빈 공간을 채우기 위해서는 액상 예비중합체가 열전물질과 전극 중, 특히 전극에 잘 젖는 것이 좋으며, 잘 젖지 못 하는 경우, 열전물질 기둥 어레이의 빈 공간으로 액상 예비중합체가 잘 채워지지 않는 문제가 발생할 수 있다. 전극과 액상 예비중합체 간의 접촉각은 편평한 판(또는 필름) 형태의 전극 상부에 액상 예비중합체 액적을 떨어뜨렸을 때 전극-액적 계면, 전극-기상 계면 및 액적-기상 계면의 세 계면에너지에 의한 계면 장력 평형에 의해 규정되는 접촉각일 수 있다. 일 구체예로, 액상 예비중합체와 전극 간의 의한 접촉각은 90° 미만일 수 있으며, 좋게는 0 내지 60°일 수 있다.In addition, in one embodiment of the present invention, the liquid prepolymer may have an appropriate contact angle to fill the empty space of the thermoelectric column array by a more effective capillary effect. In addition, as described above, in order to improve adhesion between the filling material and the electrode, the liquid prepolymer forming the filling material by curing may be well wetted with the electrode. As the electrode has a larger contact area between the thermoelectric material and the filling material in the electrode, the contact angle between the electrode and the liquid prepolymer may be more important. In order for the liquid prepolymer to fill the void space by the thermoelectric column array, the liquid prepolymer should be well wetted by the thermoelectric material and the electrode, especially the electrode. May cause problems with poor filling. The contact angle between the electrode and the liquid prepolymer is the interfacial tension equilibrium due to the three interfacial energies of the electrode-droplet interface, the electrode-phase interface, and the droplet-phase interface when the liquid prepolymer droplet is dropped on top of the electrode in the form of a flat plate (or film). It may be a contact angle defined by. In one embodiment, the contact angle between the liquid prepolymer and the electrode may be less than 90 °, preferably 0 to 60 °.
또한, 본 발명의 일 예에 있어, 열전물질 기둥 어레이의 P형 열전물질 및 N형 열전물질은 통상적인 방법에 의해 형성된 것일 수 있으며, 상세하게, 열전물질용 페이스트를 이용하여 다결정체를 형성하거나, 단결정을 사용하여 형성된 것일 수 있다. 특히, 열전물질로써 단결정의 사용은, 본 발명의 일 예에 따른 유연 열전소자가 전극과 충진물질 간의 접착력 향상을 통해 메쉬를 구비할 필요가 없어짐에 따라 사용 가능한 것이다. In addition, in an example of the present invention, the P-type thermoelectric material and the N-type thermoelectric material of the thermoelectric column array may be formed by a conventional method, in detail, to form a polycrystal using a thermoelectric material paste or It may be formed using a single crystal. In particular, the use of a single crystal as a thermoelectric material, the flexible thermoelectric device according to an embodiment of the present invention can be used as it is not necessary to have a mesh through the adhesion between the electrode and the filling material is improved.
P형 열전물질 또는 N형 열전물질을 열전물질용 페이스트를 이용하여 다결정체로 형성될 경우, P형 열전물질용 페이스트 또는 N형 열전물질용 페이스트로부터 형성될 수 있으며, 형성 방법은 후술하는 유연 열전물질의 제조방법에서 자세히 설명한다.When the P-type thermoelectric material or the N-type thermoelectric material is formed into a polycrystal using a thermoelectric material paste, the P-type thermoelectric material or the N-type thermoelectric material may be formed from the P-type thermoelectric material paste or the N-type thermoelectric material paste. This is described in detail in the preparation method of the substance.
이때, N형 열전물질 및 P형 열전물질은 높은 열전도도 및 전기전도도를 가진 물질을 사용할 수 있으며, 상세하게, 열전성능지수 (ZT, thermoelectric figure of merit)가 0.1 K-1 이상인 물질이라면 특별히 제한하지 않고 사용할 수 있다. 예를 들어, 제2전도성 물질을 포함할 수 있으며, 구체적으로, 제2전도성 물질은, 주기율표상 1족의 알칼리금속, 2족의 알칼리토금속, 3 내지 12족의 전이금속 및 13족 내지 16족의 원소에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다. 일 예로, 1족의 알칼리금속은 나트륨(Na), 칼륨(K) 등일 수 있으며, 2족의 알칼리토금속은 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr) 등일 수 있으며, 3 내지 12족의 전이금속은 티타늄(Ti), 바나듐(V), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 니오븀(Nb), 몰리브덴(Mo), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 하프늄(Hf), 탄탈륨(Ta), 텅스텐(W), 이리듐(Ir), 백금(Pt), 금(Au), 란타늄(La), 세륨(Ce) 등일 수 있으며, 13족 내지 16족의 원소는 알루미늄(Al), 실리콘(Si), 게르마늄(Ge), 셀레늄(Se), 주석(Sn), 안티몬(Sb), 납(Pb), 비스무스(Bi), 텔루륨(Te) 등 일 수 있다. 일 구체예로, N형 열전물질은 비스무스-텔루륨계(BixTe1 -x) 또는 비스무스-텔레늄-셀레늄계(Bi2TexSe1-x) 화합물을 포함할 수 있으며, P형 열전물질은 안티몬-텔루륨계(SbxTe1 -x) 또는 비스무스-안티몬-텔루늄계(BiySb2-yTe3) 화합물을 포함할 수 있다. 이때, x는 0 ≤ x ≤ 1일 수 있으며, y는 0 ≤ y ≤ 2일 수 있다. 또한, 상기 제2전도성 물질의 형상은 특별히 한정되진 않으나, 구형, 막대형, 섬유형, 판형 및 플레이크형 등의 입자가 단독 또는 혼합 사용될 수 있으며, 바람직하게는 구형 입자를 사용하는 것이 균질하고 안정적인 전기적 특성을 구현할 수 있다. 또한, 얇은 두께의 열전물질의 형성을 위하여 제2전도성 물질의 크기 또한 조절되는 것이 바람직하며, 비 한정적인 일 예로, 제2도전성 물질은 평균 입경이 10 ㎚ 내지 100 ㎛일 수 있으며, 좋게는 0.1 내지 50 ㎛의 평균 입경을 가질 수 있다.In this case, the N-type thermoelectric material and the P-type thermoelectric material may be used a material having a high thermal conductivity and electrical conductivity, in detail, if the thermoelectric figure of merit (ZT, thermoelectric figure of merit) is 0.1 K -1 or more specifically limited Can be used without. For example, the second conductive material may include a second conductive material. Specifically, the second conductive material may include an alkali metal of Group 1, an alkaline earth metal of Group 2, a transition metal of Groups 3-12, and a Group 13-16 of the Periodic Table. Any one or two or more selected from the elements of may be used. For example, the alkali metals of Group 1 may be sodium (Na), potassium (K), and the like, and the alkaline earth metals of Group 2 may be magnesium (Mg), calcium (Ca), strontium (Sr), and the like. The transition metals of titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), hafnium (Hf), tantalum (Ta), tungsten (W), iridium (Ir), platinum (Pt), gold (Au), lanthanum (La), cerium (Ce), and the like, and elements of Groups 13 to 16 are aluminum (Al), silicon (Si), germanium (Ge), selenium (Se), tin (Sn), antimony (Sb), Lead (Pb), bismuth (Bi), tellurium (Te), and the like. In one embodiment, the N-type thermoelectric material may include a bismuth-tellurium-based (Bi x Te 1- x ) or a bismuth-telenium-selenium-based (Bi 2 Te x Se 1-x ) compound, and a P-type thermoelectric The material may comprise an antimony-tellurium-based (Sb x Te 1- x ) or bismuth-antimony-tellurium-based (Bi y Sb 2-y Te 3 ) compound. In this case, x may be 0 ≦ x ≦ 1, and y may be 0 ≦ y ≦ 2. In addition, the shape of the second conductive material is not particularly limited, but particles, such as spherical, rod, fibrous, plate and flake type, may be used alone or in combination, and preferably, the use of spherical particles is homogeneous and stable. Electrical characteristics can be realized. In addition, the size of the second conductive material may also be controlled to form a thin thermoelectric material. For example, but not limited thereto, the second conductive material may have an average particle diameter of 10 nm to 100 μm, preferably 0.1 It may have an average particle diameter of from 50 ㎛.
또한, 본 발명의 일 예에 있어, 열전물질은 표면에 미세요철이 형성된 것일 수 있으며, 표면 미세요철에 의해 충진물질과 열전물질 간의 결착력을 향시킬 수 있다. 상세하기 상기 열전물질 표면은 0.1 내지 10.0 ㎛의 표면조도(Ra)를 가질 수 있으며, 보다 좋게는 1.0 내지 5.0 ㎛의 표면조도(Ra)를 가지는 것이 바람직할 수 있다.In addition, in one embodiment of the present invention, the thermoelectric material may be a fine uneven surface is formed on the surface, it is possible to improve the binding force between the filling material and the thermoelectric material by the surface fine irregularities. In detail, the surface of the thermoelectric material may have a surface roughness Ra of 0.1 to 10.0 μm, and more preferably, it may have a surface roughness Ra of 1.0 to 5.0 μm.
상기 열전물질 표면의 미세요철의 형성 방법은 그 방법을 특별히 한정하지 않으며, 상기 표면조도(Ra)를 만족시킬 수 있는 방법이라면 기존 공지된 어떤 방법을 사용하여도 무방하다. 일 구체예로, 열전물질 형성용 페이스트의 도포 및 열처리에 의해 미세요철이 형성된 것이거나, 화학적 에칭 등의 습식 식각 또는 플라즈마 처리 등의 건식 식각을 통해 열전물질 표면에 미세요철이 형성된 것일 수 있다. 단, 열전물질의 미세요철 형성 방법은 앞서 설명한 전극 표면의 미세요철 형성방법과 서로 독립적인 방법을 통해 형성될 수 있다.The method of forming the fine irregularities on the surface of the thermoelectric material is not particularly limited, and any method known in the art may be used as long as it can satisfy the surface roughness Ra. In one embodiment, fine irregularities may be formed by applying and heat-treating the thermoelectric material forming paste, or fine unevenness may be formed on the surface of the thermoelectric material through wet etching such as chemical etching or dry etching such as plasma treatment. However, the micro-convex formation method of the thermoelectric material may be formed through a method independent of the micro-convex formation method of the electrode surface described above.
보다 상세하게, 본 발명의 일 예에 따른 유연 열전소자(200)는 도 2에 도시된 바와 같이, 서로 이격 배열된, 하나 이상의 N형 열전물질(240) 및 P형 열전물질(230)을 포함하는 열전물질 기둥 어레이; 상기 열전물질 기둥 어레이의 열전물질을 전기적으로 연결하는 제1전극(220) 및 제2전극(220′); 및 적어도 상기 열전물질 기둥 어레이의 빈 공간을 충진하는 충진물질(250);을 포함할 수 있으며, 제1전극 및 제2전극은 유리 프릿을 포함할 수 있다.In more detail, the flexible thermoelectric device 200 according to an embodiment of the present invention includes one or more N-type thermoelectric materials 240 and P-type thermoelectric materials 230, spaced apart from each other, as shown in FIG. A thermoelectric column array; First and second electrodes 220 and 220 ′ electrically connecting the thermoelectric materials of the thermoelectric pillar array; And a filling material 250 filling at least the empty space of the thermoelectric pillar array. The first electrode and the second electrode may include a glass frit.
본 발명의 일 예에 있어서, 유연 열전소자는 전극 및 열전물질 기둥 어레이를 통해, 열전물질 기둥 어레이가 열적으로는 병렬로, 전기적으로는 직렬 및/또는 병렬로 연결될 수 있다.In one embodiment of the present invention, the flexible thermoelectric device may be connected to the thermoelectric column array in thermally parallel, electrically in series and / or parallel through the electrode and the thermoelectric column array.
일 구체예로, 유연 열전소자(200)는 도 2에 도시된 바와 같이, 제1전극(220), 제2전극(220′) 및 열전물질 기둥 어레이를 통해 열적으로는 병렬로, 전기적으로는 직렬로 연결될 수 있다. 상세하게, 일 구체예로, 제1전극(220)일 일면일단에 N형 열전물질(240)의 일단이 연결될 수 있으며, 이 N형 열전물질의 타단에 제2전극(220′)의 일면일단이 연결될 수 있다. 연속적으로, 이 제2전극의 일면타단에 P형 열전물질(230)의 일단이 연결될 수 있으며, 이 P형 열전물질(230)의 타단은 상기 제1전극(220)과 이격 배열된 다른 제1전극(220)의 일면일단에 연결될 수 있으며, 이를 반복단위로 하여 유연 열전소자(200)가 구성될 수 있다.In one embodiment, the flexible thermoelectric element 200 is electrically in parallel, electrically, through the first electrode 220, the second electrode 220 'and the thermoelectric column array as shown in FIG. Can be connected in series. Specifically, in one embodiment, one end of the N-type thermoelectric material 240 may be connected to one end of one surface of the first electrode 220, and one end of the second electrode 220 ′ may be connected to the other end of the N-type thermoelectric material. This can be connected. One end of the P-type thermoelectric material 230 may be continuously connected to the other end of one surface of the second electrode, and the other end of the P-type thermoelectric material 230 may be spaced apart from the first electrode 220. It may be connected to one end of the electrode 220, the flexible thermoelectric element 200 may be configured by using this as a repeating unit.
본 발명의 일 예에 있어서, 유연성을 갖는 열전 소자의 유연성을 훼손하지 않는 한, 상기 N형 열전물질 및 P형 열전물질의 크기 및 형상은, 열전소자의 용도를 고려하여 적절히 설계될 수 있다. 구체적인 일 예로, N형 및 P형 열전물질은 서로 동일 내지 상이한 형상과 크기를 가질 수 있다. 보다 구체적으로, N형 및 P형 열전물질은 서로 독립적으로, 판형상 또는 기둥형상일 수 있으며, 두께나 길이 방향으로의 단면이 원형, 타원형 등의 곡선을 가진 형상이거나 삼각형, 사각형, 오각형 등의 각진 형상일 수 있다. 유연 열전소자의 유연성을 훼손하지 않는 측면에서, N형 또는 P형 열전물질의 두께는 수십 나노미터 오더 내지 수십 미리미터 오더의 두께를 가질 수 있다. 또한, N형 또는 P형 열전물질 기둥의 단면적은 수백 제곱나노미터 오더 내지 수 제곱센티미터 오더의 면적을 가질 수 있다. 실질적인 일 예로, N형 또는 P형 열전물질은 두께가 100㎚ 내지 5㎝일 수 있으며, 열전물질 기둥의 단면적이 0.1μ㎡ 내지 10 ㎠일 수 있으나, 본 발명이 열전물질의 물리적 형상이나 크기에 의해 한정되는 것은 아니다. 이와 같이 나노미터 오더의 두께로 열전물질의 제조가 가능한 바, 본 발명의 일 예에 따른 유연 열전소자 역시 나노미터 오더의 두께로 소자를 제작할 수 있으며, 열전소자의 소형화 및 집적화가 가능하다. 또한 열전물질 기둥의 단면적을 μ㎡ 이하까지 되도록 소자를 제작할 수 있으므로, 주어진 전체 소자 면적내에서 아주 많은 개수의 열전물질 기둥을 집적할 수 있어, 전체 출력전압을 상승시키는데 유리하다.In an example of the present invention, the size and shape of the N-type thermoelectric material and the P-type thermoelectric material may be appropriately designed in consideration of the use of the thermoelectric device, so long as the flexibility of the flexible thermoelectric device is not impaired. As a specific example, the N-type and P-type thermoelectric materials may have the same shape and size to each other. More specifically, the N-type and P-type thermoelectric material may be independently of each other, plate or columnar shape, the cross-section in the thickness or length direction has a curved shape, such as circular, elliptical or triangular, square, pentagonal, etc. It may be an angular shape. In terms of not impairing the flexibility of the flexible thermoelectric element, the thickness of the N-type or P-type thermoelectric material may have a thickness of several tens of nanometers to several tens of millimeters. In addition, the cross-sectional area of the N-type or P-type thermoelectric column may have an area of several hundred square nanometer order to several square centimeter order. As a practical example, an N-type or P-type thermoelectric material may have a thickness of 100 nm to 5 cm, and a cross-sectional area of the thermoelectric material pillar may be 0.1 μm 2 to 10 cm 2, but the present invention is directed to the physical shape or size of the thermoelectric material. It is not limited by. As described above, the thermoelectric material may be manufactured in the thickness of the nanometer order. The flexible thermoelectric device according to the example of the present invention may also manufacture the device in the thickness of the nanometer order, and the miniaturization and integration of the thermoelectric device may be possible. In addition, since the device can be manufactured so that the cross-sectional area of the thermoelectric column is up to μm 2 or less, a very large number of thermoelectric pillars can be integrated within a given total device area, which is advantageous for raising the total output voltage.
앞서 상술한 바와 같이, 유리 프릿에 의해, 전극과 충진 물질간의 결착력을 향상시킴으로써, 유연성 메쉬가 구비되지 않는 유연 열전 소자의 구현이 가능하다. 유연성 메쉬에 의해 열전물질 기둥 어레이가 관통되어 지지되는 경우, 열전물질의 두께는 유연성 메쉬의 두께보다 커야하며, 열전물질 기둥의 단면적은 최소한 유연성 메쉬의 눈으로 열전물질이 빠져나가지 않으며, 유연성 메쉬의 격자 구조로 안정적으로 지지될 수 있는 정도의 면적이 요구된다. 그러나, 유연성 메쉬를 배제할 수 있음에 따라, 열전물질 기둥 어레이의 소형화 및 나노구조화가 가능하며, 응용분야에서 요구되는 물성을 만족하며 충진 물질 자체의 유연성이 훼손되지 않는 범위 내에서 자유롭게 열전물질 기둥 어레이의 물리적 설계가 가능하다. As described above, the glass frit improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric device having no flexible mesh. When the thermoelectric column array is supported through the flexible mesh, the thickness of the thermoelectric material must be larger than the thickness of the flexible mesh, and the cross-sectional area of the thermoelectric column must be at least not to escape the thermoelectric material through the eyes of the flexible mesh. The area required to be stably supported by the lattice structure is required. However, as the flexible mesh can be excluded, the thermoelectric column array can be miniaturized and nanostructured, and the thermoelectric column can be freely provided within the range that satisfies the properties required for the application and does not impair the flexibility of the filling material itself. Physical design of the array is possible.
이하, 본 발명에 따른 유연 열전소자의 제조방법에 대하여 설명한다.Hereinafter, a method of manufacturing a flexible thermoelectric device according to the present invention will be described.
본 발명의 일 예에 따른 유연 열전소자의 제조방법(Ⅰ)은, a) 제1희생기판, 제1접촉 열전도체층, 제1전극, 및 상기 제1전극 상 소정 영역에 형성된 P형 열전물질이 순차적으로 적층된 제1구조체; 및 제2희생기판, 제2접촉 열전도체층, 제2전극, 및 상기 제2전극 상 소정 영역에 형성된 N형 열전물질이 순차적으로 적층된 제2구조체를 형성하는 단계; b) 상기 제1구조체와 제2구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계; c) 상기 기판의 열전물질 기둥 어레이 사이의 빈 공간에 충진물질을 형성하는 단계; 및 d) 상기 제1희생기판 및 제2희생기판을 제거하는 단계;를 포함하며, 상기 제1전극 및 제2전극은 유리 프릿을 포함할 수 있다.Method (I) of manufacturing a flexible thermoelectric device according to an embodiment of the present invention, a) P-type thermoelectric material formed in a predetermined area on the first sacrificial substrate, the first contact thermal conductor layer, the first electrode, and the first electrode A first structure sequentially stacked; And forming a second structure in which a second sacrificial substrate, a second contact thermal conductor layer, a second electrode, and an N-type thermoelectric material formed on a predetermined region on the second electrode are sequentially stacked. b) physically connecting the first structure and the second structure to manufacture a substrate on which a thermoelectric column array is formed; c) forming a fill material in the void space between the thermoelectric column arrays of the substrate; And d) removing the first and second sacrificial substrates, wherein the first electrode and the second electrode may include a glass frit.
먼저, a) 단계의 일 예에 따른 제1구조체의 형성 방법은, a-1) 제1희생기판 상 제1접촉 열전도체층을 형성하는 단계; a-2) 상기 제1접촉 열전도체층 상 제1전극을 형성하는 단계; 및 a-3) 상기 제1전극 상 소정 영역에 P형 열전물질을 형성하는 단계;를 포함하여 수행될 수 있으며, 제2구조체의 형성 방법은 제2전극 상 소정 영역에 N형 열전물질을 형성하는 단계를 제외 동일하게 진행되는 바, 반복 설명은 생략한다.First, a method of forming a first structure according to an example of step a) includes: a-1) forming a first contact thermal conductor layer on a first sacrificial substrate; a-2) forming a first electrode on the first contact thermal conductor layer; And a-3) forming a P-type thermoelectric material in a predetermined region on the first electrode. The method of forming the second structure may include forming an N-type thermoelectric material in a predetermined region on the second electrode. Except for the steps to proceed the same, repeated description will be omitted.
일 예에 따른 a-1) 단계에 있어서, 상기 제1희생기판은 유연 열전소자의 완성 전까지 그 형태를 유지시켜주는 지지체 역할을 수행하는 것으로, 제1접촉 열전도체층과의 접착력 특성에 따라 희생막을 더 포함하는 것일 수 있다. 즉, 제1희생기판이 제1접촉 열전도체층과 접착력이 좋지 않을 경우, 희생막이 필요치 않으며, 접착력이 좋을 경우, 제1희생기판은 희생막을 더 포함할 수 있다. 상세하게, 희생막은 제1희생기판과 접착력이 좋지 않은 금속박막, 또는 고분자층이라면 특별히 제한하지 않고 사용할 수 있으며, 일 구체예로 상기 금속박막은 니켈박막일 수 있으며, 고분자층은 고분자 접착제를 기판 상에 도포함으로써 형성된 것일 수 있으며, 구체적인 일 예로 고분자 접착제는 아교, 전분, 아세틸 셀룰로오즈(Acetyl cellulose), 폴리비닐아세테이트 (Poly vinyl acetate), 에폭시 (Epoxy), 우레탄 (Urethane), 클로로프렌 고무 (Chloroprene rubber), 니트릴고무 (Nitrile rubber), 페놀 수지, 규산염계, 알루미나 시멘트 (Alumina cement), 우레아 수지, 멜라민 수지, 아크릴 수지, 폴리에스테르 수지, 비닐/페놀 수지, 에폭시/페놀 수지 등에서 선택되는 어느 하나 또는 둘 이상으로 구성된 혼합물 또는 화합물 일 수 있다. 이때, 희생막의 형성 방법은 기판 상에 금속박막을 형성할 수 있는 방법이라면, 기존 공지된 어떤 방법을 사용하여도 무방하다. 일 구체예로, 스핀코팅(Spin Coating), 스크린프린팅 기술(Screen Printing Technique), 물리적 증착(Sputtering), 열 증착(Thermal Evaporation), 화학기상증착(Chemical Vapor Deposition), 전기도금(Electrodeposition) 또는 스프레이 코팅(Spray coating)등을 통해 형성될 수 있다. In the step a-1) according to an example, the first sacrificial substrate serves as a support to maintain its shape until the completion of the flexible thermoelectric element, the sacrificial film according to the adhesive force characteristics of the first contact thermal conductor layer It may be to include more. That is, when the first sacrificial substrate does not have good adhesive strength with the first contact thermal conductor layer, no sacrificial film is required, and when the first sacrificial substrate has good adhesion, the first sacrificial substrate may further include a sacrificial film. In detail, the sacrificial film may be used without particular limitation as long as it is a metal thin film or polymer layer having poor adhesion to the first sacrificial substrate. In one embodiment, the metal thin film may be a nickel thin film, and the polymer layer may be a polymer adhesive substrate. It may be formed by coating on, specific examples of the polymer adhesive is glue, starch, acetyl cellulose (Acetyl cellulose), poly vinyl acetate (Poly vinyl acetate), epoxy (Epoxy), urethane (Urethane), chloroprene rubber (Chloroprene rubber ), Nitrile rubber, phenol resin, silicate-based, alumina cement, urea resin, melamine resin, acrylic resin, polyester resin, vinyl / phenol resin, epoxy / phenol resin, or the like It may be a mixture or compound consisting of two or more. In this case, the method of forming the sacrificial film may be any method known in the art as long as it is a method capable of forming a metal thin film on the substrate. In one embodiment, spin coating, screen printing technique, physical deposition, thermal evaporation, chemical vapor deposition, electrodeposition or spraying It may be formed through a spray coating or the like.
제1희생기판은 제1접촉 열전도체층 또는 희생막 간의 접착력이 약한 소재라면 그 종류에 한정하지 않으며, 기판의 재질, 형태, 크기 등을 제한하지 않는다. 일 구체예로, 제1희생기판은 실리콘, 산화 실리콘, 사파이어, 알루미나, 운모, 게르마늄, 탄화규소, 금, 은 및 중합체에서 선택되는 어느 하나를 사용할 수 있다.The first sacrificial substrate is not limited to the type thereof as long as the first contact thermal conductor layer or the sacrificial layer has a weak adhesive strength, and does not limit the material, shape, size, etc. of the substrate. In one embodiment, the first sacrificial substrate may use any one selected from silicon, silicon oxide, sapphire, alumina, mica, germanium, silicon carbide, gold, silver, and a polymer.
상기 제1접촉 열전도체층은 유연 열전소자의 열손실을 최소화할 수 있는 열전도체층을 형성하기 위한 단계로, 열전도도가 높은 물질로 형성하는 것이 바람직하며, 일 구체예로, 질화 알루미늄(AlN), 질화 실리콘(Si3N4) 또는 알루미나(Al2O3) 등을 사용할 수 있으나, 이에 한정하진 않는다. 제1접촉 열전도체의 형성 방법은 기판 상에 제1접촉 열전도체 박막을 형성할 수 있는 방법이라면, 기존 공지된 어떤 방법을 사용하여도 무방하다. 일 구체예로, 스핀코팅(Spin Coating), 스크린프린팅 기술(Screen Printing Technique), 물리적 증착(Sputtering), 열 증착(Thermal Evaporation), 화학기상증착(Chemical Vapor Deposition), 전기도금(Electrodeposition) 또는 스프레이 코팅(Spray coating) 등을 통해 형성될 수 있다.The first contact thermal conductor layer is a step for forming a thermal conductor layer capable of minimizing heat loss of the flexible thermoelectric element. The first contact thermal conductor layer may be formed of a material having high thermal conductivity. In one embodiment, aluminum nitride (AlN), Silicon nitride (Si 3 N 4 ) or alumina (Al 2 O 3 ) may be used, but is not limited thereto. The method for forming the first contact thermal conductor may be any method known in the art, as long as it is a method for forming the first contact thermal conductor thin film on a substrate. In one embodiment, spin coating, screen printing technique, physical deposition, thermal evaporation, chemical vapor deposition, electrodeposition or spraying It may be formed through a spray coating or the like.
일 예에 따른 a-2) 단계는 제1전극을 형성하기 위한 단계로, 계획된 패턴대로 제1전극을 형성할 수 있는 방법이라면 어떤 방법을 사용하여도 무방하며, 일 예로, 스크린 프린팅법(Screen printing), 스퍼터링(Sputtering), 기화증착법(Evaporation), 화학기상증착법(Chemical Vapor Deposition), 패턴 전사(Pattern Transfer) 기법 또는 전기도금(Electrodeposition) 등 다양한 방법으로 수행될 수 있다. 바람직하게는 스크린 프린팅법을 통해 수행될 수 있으며, 제1전극용 페이스트를 계획된 패턴대로 제1접촉 열전도체층 상부에 도포한 후, 이를 열처리하여 제1전극을 형성할 수 있다.Step a-2) according to an embodiment is a step for forming the first electrode, and any method may be used as long as it is a method for forming the first electrode according to a planned pattern. For example, screen printing may be performed. It may be performed by various methods such as printing, sputtering, vaporization, evaporation, chemical vapor deposition, pattern transfer, or electroplating. Preferably, the method may be performed through a screen printing method, and the first electrode paste may be applied to the upper portion of the first contact thermal conductor layer in a predetermined pattern, and then heat-treated to form the first electrode.
상기 제1전극용 페이스트는 전극용 페이스트일 수 있고, 제1도전성 물질을 포함하며, 상세하게, 제1도전성 물질, 제1용제 및 제1바인더를 함유할 수 있다. 일 예로, 제1전극용 페이스트는 계획된 전극의 종류, 열전도도, 전기전도도 및 두께 등을 고려하여 각 성분의 조성 및 함량 등이 조절될 수 있다. The first electrode paste may be an electrode paste, and may include a first conductive material, and in detail, may include a first conductive material, a first solvent, and a first binder. For example, the first electrode paste may be adjusted in composition and content of each component in consideration of the planned electrode type, thermal conductivity, electrical conductivity and thickness.
예를 들어, 제1전극용 페이스트는 금속 물질 또는 우수한 전기전도도를 가지는 탄소나노튜브, 탄소나노와이어 등의 제1전도성 물질을 포함할 수 있으며, 제1전도성 물질은 앞서 유연 열전소자에서 설명한 바와 동일할 수 있다. 일 예로, 금속물질은 3 내지 12족의 전이금속일 수 있으며, 일 구체예로, 니켈(Ni), 구리(Cu), 백금(Pt), 루테늄(Ru), 로듐(Rh), 금(Au), 텅스텐(W), 코발트(Co), 팔라듐(Pd), 티타늄(Ti), 탄탈륨(Ta), 철(Fe), 몰리브덴(Mo), 하프늄(Hf), 란타늄(La), 이리듐(Ir) 및 은(Ag)에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 높은 전기전도도와 충진물질과의 결착력, 및 저가 비용 측면에서 구리(Cu)를 사용하는 것이 바람직할 수 있다. 상기 제1용제는 제1전극용 페이스트의 유동성을 조절하기 위한 것으로, 제1바인더를 용해할 수 있는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 일 구체예로, 알코올계 용매, 케톤계 용매 또는 이들의 혼합 용매를 사용할 수 있다. 상기 제1바인더는 프린팅 해상도를 조절하기 위한 것으로, 일 구체예로 수지계 물질을 사용할 수 있다. For example, the first electrode paste may include a metal material or a first conductive material such as carbon nanotubes and carbon nanowires having excellent electrical conductivity, and the first conductive material may be the same as described in the flexible thermoelectric device. can do. For example, the metal material may be a transition metal of Groups 3 to 12, and in one embodiment, nickel (Ni), copper (Cu), platinum (Pt), ruthenium (Ru), rhodium (Rh), gold (Au) ), Tungsten (W), cobalt (Co), palladium (Pd), titanium (Ti), tantalum (Ta), iron (Fe), molybdenum (Mo), hafnium (Hf), lanthanum (La), iridium (Ir) ) And silver (Ag) may be one or two or more, and it may be preferable to use copper (Cu) in view of high electrical conductivity, binding to the filler material, and low cost. The first solvent is used to control the fluidity of the first electrode paste, and may be used without particular limitation as long as it can dissolve the first binder. In one embodiment, an alcohol solvent, a ketone solvent, or the like may be used. Mixed solvents can be used. The first binder is for adjusting the printing resolution, and in one embodiment, a resin material may be used.
또한, 상기 제1전극용 페이스트는 충분한 열전도도 및 전기전도도를 가지며, 전극의 유연성을 확보할 수 있는 함량 범위로 조성되는 것이 바람직할 수 있다. 일 구체예로, 제1전극용 페이스트는 전체 중량 중, 제1도전성 물질 10 내지 90 중량%, 제1용제 5 내지 50 중량% 및 제1바인더 2 내지 10 중량%를 포함할 수 있다.In addition, the first electrode paste may have a sufficient thermal conductivity and electrical conductivity, and may be preferably formulated in a content range to ensure flexibility of the electrode. In one embodiment, the first electrode paste may include 10 to 90% by weight of the first conductive material, 5 to 50% by weight of the first solvent, and 2 to 10% by weight of the first binder.
상기 제1전극용 페이스트는 전극과 충진물질 간의 결착력을 향상시키는 측면에서, 유리 프릿을 더 포함할 수 있다. 이와 같은 경우, 제1전도성 물질 100 중량부를 기준으로 0.1 내지 20 중량부를 첨가할 수 있다. 상기 범위에서 우수한 결착력을 확보하면서도 전기전도도의 저하를 방지할 수 있다. 상세하게, 유리 프릿의 함량이 0.1 중량부 미만일 경우, 전극과 충진물질 간의 결착력 향상 효과가 미미할 수 있으며, 유리 프릿의 함량이 20 중량부 초과인 경우, 전도성이 없는 유리 프릿에 의해 전기전도도가 저하되어, 열전소자의 열전 성능이 낮아질 수 있다. The first electrode paste may further include a glass frit in terms of improving the binding force between the electrode and the filling material. In this case, 0.1 to 20 parts by weight may be added based on 100 parts by weight of the first conductive material. It is possible to prevent the lowering of the electrical conductivity while ensuring excellent binding strength in the above range. In detail, when the content of the glass frit is less than 0.1 part by weight, the effect of improving the binding force between the electrode and the filling material may be insignificant, and when the content of the glass frit is more than 20 parts by weight, the electrical conductivity is reduced by the non-conductive glass frit. Thus, the thermoelectric performance of the thermoelectric element may be lowered.
아울러, 열전소자의 유연성 향상을 위해서는, 가능한 전극을 얇게 구현하는 것이 좋다. 그러나, 전극의 두께가 얇아질수록, 유리 프릿에 의한 전기전도도 저하가 나타날 수 있다. 이에 따라, 제1전도성 물질 대비 유리 프릿의 상대적 함량은 유연성 메쉬가 배제될 수 있는 정도의 결착력 향상 효과가 나타날 수 있는 최소 함량 범위인 것이 좋다. 이러한 측면에서, 전극은 전도성 물질 100 중량부를 기준으로 0.5 내지 10 중량부, 구체적으로는 1 내지 5 중량부의 유리 프릿을 함유할 수 있다.In addition, in order to improve the flexibility of the thermoelectric device, it is good to implement the electrode as thin as possible. However, the thinner the electrode, the lower the electrical conductivity caused by the glass frit may appear. Accordingly, the relative content of the glass frit relative to the first conductive material is preferably in the minimum content range in which the binding enhancement effect can be exhibited to the extent that the flexible mesh can be excluded. In this aspect, the electrode may contain 0.5 to 10 parts by weight, specifically 1 to 5 parts by weight, based on 100 parts by weight of the conductive material.
앞서 설명한 바와 같이, 제2전극은 제1전극과 동일한 방법으로 제조될 수 있는 바, 중복 설명은 생략한다.As described above, since the second electrode may be manufactured in the same manner as the first electrode, duplicate description thereof will be omitted.
본 발명의 일 예에 있어, 전극에 함유된 유리 프릿은 전극과 충진물질 간의 결착력을 현저하게 향상시켜, 유연성 메쉬가 배제되는 유연 열전소자의 구현을 가능하게 한다. 보다 상세하게, 전극과 열전물질 기둥 어레이는 전도성 접착제를 사용하여 접착될 수 있으며, 이에 의해 전극과 열전물질 기둥 어레이는 서로 강하게 결착될 수 있으며, 이와 함께 전극과 열전물질 기둥 어레이 간 높은 열전도 및 전기전도가 가능할 수 있다. 그러나 전극과 충진물질은 이러한 접착제를 사용하여 서로 강하게 결착시킬 수 없으므로, 기계적 안정성을 담보하며 지지체의 역할을 수행하는 유연성 메쉬를 배제하기 위해서는 전극과 충진물질간의 결착력 향상이 무엇보다 선결되어야 한다. In one embodiment of the present invention, the glass frit contained in the electrode significantly improves the binding force between the electrode and the filling material, thereby enabling the implementation of a flexible thermoelectric element in which the flexible mesh is excluded. More specifically, the electrode and the thermoelectric column array can be bonded using a conductive adhesive, whereby the electrode and the thermoelectric column array can be strongly bound to each other, with high thermal conductivity and electrical between the electrode and the thermoelectric column array Conduction may be possible. However, since the electrode and the filler can not be strongly bound to each other by using such an adhesive, the improvement of the binding force between the electrode and the filler should be preempted above all in order to exclude the flexible mesh which ensures mechanical stability and serves as a support.
이에 전극에 유리 프릿을 첨가함으로써 전극과 충진물질 간 접착 강도가 0.7 ㎫ 이상이 되도록 하여 높은 결착력을 담보할 수 있으며, 열전물질 기둥 어레이-전극-충진물질의 세 구성요소가 전극을 매개로 매우 강하게 결합된 구조를 가짐에 따라, 소자의 유연성을 훼손시키지 않으며 기계적, 물리적 안정성이 담보될 수 있다.The glass frit is added to the electrode to ensure that the adhesive strength between the electrode and the filling material is 0.7 MPa or more, thereby ensuring high binding force.The three components of the thermoelectric column array-electrode-filling material are very strongly mediated through the electrode. By having a bonded structure, mechanical and physical stability can be ensured without compromising the flexibility of the device.
상세하게, 직경이 10 ㎜인 벤딩 테스트기를 이용하여 10000회 벤딩 테스트한 후에도 우수한 전기전도도 및 열전 성능을 유지하는 측면에서, 전극과 충진물질 간의 접착 강도는 1 내지 5 ㎫인 것이 바람직하다.Specifically, in view of maintaining excellent electrical conductivity and thermoelectric performance even after 10000 bending tests using a bending tester having a diameter of 10 mm, the adhesive strength between the electrode and the filling material is preferably 1 to 5 MPa.
이와 같은 접착 강도를 확보하기 위해서, 본 발명의 바람직한 일 예로, 제1전극 및 제2전극은 하기 관계식 1-1 또는 1-2를 만족할 수 있다.In order to secure such an adhesive strength, as an example of the present invention, the first electrode and the second electrode may satisfy the following relations 1-1 or 1-2.
[관계식 1-1][Relationship 1-1]
45 ≤ (GS1/G1)×10045 ≤ (G S1 / G 1 ) × 100
[관계식 1-2][Relationship 1-2]
45 ≤ (GS2/G2)×10045 ≤ (G S2 / G 2 ) × 100
(상기 관계식 1-1에 있어서, G1은 제1전극 내 유리 프릿의 총 중량(g)이며, GS1은 제1전극의 접착부에 위치한 유리 프릿의 중량(g)이다.(Equation 1-1, G 1 is the total weight (g) of the glass frit in the first electrode, G S1 is the weight (g) of the glass frit located in the bonding portion of the first electrode.
상기 관계식 1-2에 있어서, G2는 제2전극 내 유리 프릿의 총 중량(g)이며, GS2는 제2전극의 접착부에 위치한 유리 프릿의 중량(g)이다.In the above Equation 1-2, G 2 is the total weight (g) of the glass frit in the second electrode, G S2 is the weight (g) of the glass frit located in the bonding portion of the second electrode.
이때, 접착부란, 상기 충진물질과 맞닿는 접착면에서부터, 접착면 기준 제1전극 또는 제2전극의 30% 두께까지를 의미한다.)In this case, the adhesive part refers to the adhesive surface in contact with the filling material, up to 30% of the thickness of the first electrode or the second electrode based on the adhesive surface.)
이와 같이, 유리 프릿이 충진물질과 접착되는 전극의 접착부에 45 중량% 이상 위치함으로써 전극과 충진물질 간의 접착력을 더욱 효과적으로 향상시킬 수 있으며, 보다 좋게는 50 중량% 이상의 유리 프릿이 전극의 접착부에 위치하는 것이 바람직하다. 일 구체예로, 충진물질이 실란올기 또는 알콕시실란기를 함유한 고분자인 경우, 실란올기 또는 알콕시실란기가 유리 프릿의 금속산화물과 반응함으로써 전극과 충진물질을 화학적으로 단단히 결합시킬 수 있으며, 이에 따라 전극과 충진물질 간 1 내지 5 ㎫의 접착 강도를 가지도록 할 수 있다. 반면, 유리 프릿이 관계식 1을 만족하지 않는 경우, 전극과 충진물질 간의 화학적 결합이 감소함으로써 전극과 충진물질 간의 결착력이 저하될 수 있으며, 구체적으로, 접착 강도가 1 ㎫ 미만이 됨에 따라 열전소자의 물리적 안정성이 저하될 수 있다.As such, the glass frit may be more than 45% by weight positioned in the bonding portion of the electrode to be bonded to the filling material to more effectively improve the adhesive force between the electrode and the filling material, more preferably 50% by weight or more of the glass frit is placed on the bonding portion of the electrode It is desirable to. In one embodiment, when the filling material is a polymer containing a silanol group or an alkoxysilane group, the silanol group or alkoxysilane group may be chemically and firmly bonded to the electrode and the filling material by reacting with the metal oxide of the glass frit. It may be to have an adhesive strength of 1 to 5 MPa between and the filling material. On the other hand, when the glass frit does not satisfy the relation 1, the binding force between the electrode and the filler material may be reduced by reducing the chemical bond between the electrode and the filler material. Specifically, as the adhesive strength is less than 1 MPa, Physical stability may be degraded.
일 예에 따른 a-3) 단계는 열전물질을 형성하기 위한 단계로, 상세하게, 패턴화된 제1전극 상 소정 영역에 P형 열전물질을 형성하기 위한 단계이다. a-3) 단계는 제1전극 상 소정 영역에 기 계획한대로 P형 열전물질을 형성할 수 있는 방법이라면 어떤 방법을 사용하여도 무방하며, 일 예로, 열전물질용 페이스트를 이용하여 다결정체를 형성하거나, 단결정을 사용하여 열전물질을 형성할 수 있다. 특히, 열전물질로써 단결정의 사용은, 본 발명의 일 예에 따른 유연 열전소자가 전극과 충진물질 간의 접착력 향상을 통해 메쉬를 구비할 필요가 없어짐에 따라 사용 가능한 것이다.According to an example, step a-3) is a step for forming a thermoelectric material. In detail, the step a-3) is for forming a P-type thermoelectric material on a predetermined region on the patterned first electrode. Step a-3) may be any method as long as it can form a P-type thermoelectric material in a predetermined region on the first electrode. For example, a polycrystalline body is formed using a thermoelectric paste. Alternatively, a single crystal can be used to form the thermoelectric material. In particular, the use of a single crystal as a thermoelectric material, the flexible thermoelectric device according to an embodiment of the present invention can be used as it is not necessary to have a mesh through the adhesion between the electrode and the filling material is improved.
단, 제1구조체와 제2구조체의 연결 시, 제1전극에 형성되는 P형 열전물질과 제2전극에 형성되는 N형 열전물질이, 도 2에 도시한 바와 같이, 서로 이격 배치될 수 있도록 미리 계획하여 각 전극 상에 열전물질을 형성해야함은 물론이다. However, when the first structure and the second structure are connected, the P-type thermoelectric material formed on the first electrode and the N-type thermoelectric material formed on the second electrode may be spaced apart from each other, as shown in FIG. 2. Of course, it is necessary to plan in advance to form a thermoelectric material on each electrode.
일 예에 따른 a-3) 단계에 있어서, P형 열전물질을 열전물질용 페이스트를 이용하여 다결정체로 형성하는 경우, 스크린 프린팅법을 통해 P형 열전물질을 형성할 수 있으며, 상세하게, P형 열전물질용 페이스트를 계획된 패턴대로 제1전극 상부에 도포한 후, 이를 열처리하여 열전물질을 형성할 수 있다.In the step a-3) according to an example, when the P-type thermoelectric material is formed into a polycrystal using a thermoelectric paste, the P-type thermoelectric material may be formed by screen printing. The thermoelectric material paste may be applied to the upper portion of the first electrode in a predetermined pattern, and then heat-treated to form a thermoelectric material.
상기 P형 열전물질용 페이스트 는 제2도전성 물질을 포함하며, 상세하게, 제2도전성 물질, 제2용제 및 제2바인더를 함유할 수 있다. 일 예로, P형 열전물질용 페이스트는 계획된 열전물질의 종류, 열전도도, 전기전도도 및 두께 등을 고려하여 각 성분의 조성 및 함량 등이 조절될 수 있다. The P-type thermoelectric material paste may include a second conductive material, and in detail, may include a second conductive material, a second solvent, and a second binder. For example, the P-type thermoelectric material paste may be adjusted in composition and content of each component in consideration of the type of the planned thermoelectric material, thermal conductivity, electrical conductivity and thickness.
상기 제2도전성 물질은 앞서 설명한 바와 동일한 물질을 사용할 수 있으며, P형 열전물질용 페이스트인 경우, 안티몬-텔루륨계(SbxTe1 -x) 또는 비스무스-안티몬-텔루늄계(BiySb2 - yTe3) 화합물을 사용하는 것이 바람직하다. 이때, x는 0 ≤ x ≤ 1일 수 있으며, y는 0 ≤ y ≤ 2일 수 있다. 상기 제2용제는 P형 열전물질용 페이스트의 유동성을 조절하기 위한 것으로, 제2바인더를 용해할 수 있는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 일 구체예로, 알코올계 용매, 케톤계 용매 또는 이들의 혼합 용매를 사용할 수 있다. 상기 제2바인더는 프린팅 해상도를 조절하기 위한 것으로, 일 구체예로 수지계 물질을 사용할 수 있다. The second conductive material is the case described above can be used as the same material, the paste for the P-type thermoelectric material, an antimony-telru ryumgye (Sb x Te 1 -x) or bismuth-antimony-telru nyumgye (Bi y Sb 2 - y Te 3 ) is preferably used. In this case, x may be 0 ≦ x ≦ 1, and y may be 0 ≦ y ≦ 2. The second solvent is for controlling the fluidity of the P-type thermoelectric material paste, and can be used without particular limitation as long as it can dissolve the second binder, in one embodiment, an alcohol solvent, a ketone solvent or these A mixed solvent of can be used. The second binder is for adjusting printing resolution, and in one embodiment, a resin material may be used.
상기 P형 열전물질용 페이스트 는 열전물질 기둥 어레이가 0.1 K-1 이상의 열전성능지수(ZT)를 가질 수 있도록 구성 성분의 함량을 조절하는 것이 바람직할 수 있다. 일 구체예로, P형 열전물질용 페이스트는 전체 중량 중, 제2도전성 물질 10 내지 90 중량%, 제2용제 5 내지 50 중량% 및 제2바인더 2 내지 10 중량%를 포함할 수 있다.In the P-type thermoelectric material paste, it may be desirable to adjust the content of the component so that the thermoelectric column array has a thermoelectric performance index (ZT) of 0.1 K −1 or more. In one embodiment, the paste for P-type thermoelectric material may include 10 to 90% by weight of the second conductive material, 5 to 50% by weight of the second solvent, and 2 to 10% by weight of the second binder.
P형 열전물질용 페이스트는 열전물질과 충진물질 간의 결착력을 향상시키는 측면에서, 유리 프릿을 더 포함할 수 있다. 이와 같은 경우, 유리 프릿은 열전물질용 페이스트 전체 중량 중, 2 내지 10 중량%로 첨가될 수 있다.The P-type thermoelectric material paste may further include a glass frit in terms of improving binding force between the thermoelectric material and the filling material. In this case, the glass frit may be added in an amount of 2 to 10% by weight based on the total weight of the paste for thermoelectric material.
일 예에 따른 a-3) 단계에 있어서, P형 열전물질용 페이스트를 계획된 패턴대로 제1전극 상부에 도포한 후, 이를 열처리하여 P형 열전물질을 형성할 수 있다. 상기 열처리 조건은 다양하게 조절될 수 있는데, 특히, 본 발명의 일 예에 따른 열전소자는 유연성 메쉬를 배제하여 소자를 제조할 수 있기 때문에 P형 열전물질용 페이스트를 제1전극 상부에 도포한 후, 이를 최적 조건으로 열처리하여 P형 열전물질을 형성할 수 있다. 기존 유연성 메쉬를 사용하는 경우, P형 열전물질과 N형 열전물질을 각각 도포한 후, 동시에 열처리하여 형성해야함에 따라 어중간한 조건으로 어닐링이 수행되어 열전소자의 효율이 다소 저하되는 문제점이 있었으나, 본 발명의 경우 P형 또는 N형 열전물질용 페이스트만을 전극에 각각 도포한 후, 각각 열처리를 진행할 수 있기 때문에, P형 열전물질 형성을 위한 최적의 어닐링 조건과 N형 열전물질 형성을 위한 최적의 어닐링 조건으로 각 열전물질을 형성할 수 있다는 장점이 있다. 이와 같이, 최적의 어닐링 조건으로 P형 열전물질과 N형 열전물질이 형성될 수 있음에 따라 열전소자의 효율을 극대화시킬 수 있다.In step a-3) according to an embodiment, the P-type thermoelectric material paste may be applied to the upper portion of the first electrode in a predetermined pattern, and then heat-treated to form the P-type thermoelectric material. The heat treatment conditions may be adjusted in various ways. In particular, the thermoelectric device according to an embodiment of the present invention may be manufactured by removing the flexible mesh, so that the P-type thermoelectric material paste is applied on the first electrode. In addition, the P-type thermoelectric material may be formed by heat treatment under optimal conditions. In the case of using the existing flexible mesh, the P-type thermoelectric material and the N-type thermoelectric material are coated and then heat-treated at the same time, so that the annealing is performed in a medium condition, thereby reducing the efficiency of the thermoelectric device. In the case of the invention, since only the P-type or N-type thermoelectric material paste is applied to the electrodes and then heat treated, respectively, the optimum annealing conditions for forming the P-type thermoelectric material and the optimum annealing for the N-type thermoelectric material are formed. Each thermoelectric material may be formed under conditions. As such, the P-type thermoelectric material and the N-type thermoelectric material may be formed under optimal annealing conditions, thereby maximizing the efficiency of the thermoelectric device.
일 예로, P형 열전물질의 형성을 위한 최적 어닐링 조건은 P형 열전물질용 페이스트에 함유된 제2도전성 물질의 종류에 따라 달라질 수 있으며, 예를 들어 300 내지 1000℃의 온도에서 어닐링 할 수 있다. 보다 구체적으로, 제2도전성 물질이 Bi0 . 3Sb1 . 7Te3, Bi0 . 8Sb1 . 2Te3 또는 Bi0 . 5Sb1 . 5Te3와 같이 비스무스-안티몬-텔루늄계(BiySb2-yTe3, 0 ≤ y ≤ 2) 화합물인 경우, P형 열전물질용 페이스트가 도포된 기판을 80 내지 140℃ 정도의 오븐에 넣어 5 내지 20분 정도 건조하여 용제를 증발시키고, 상기 용제 증발 온도보다 높은 온도(180 내지 280℃ 정도)에서 소정 시간 열처리하여 바인더를 증발시킨 후, 마지막으로 열전물질의 열전특성을 높이기 위하여 바인더 증발 시의 온도보다 높은 온도에서 어닐링을 진행할 수 있다. 이때, 어닐링 온도는 400 내지 600℃ 일 수 있으며, 어닐링 시간은 30분 내지 120분일 수 있으며, 가장 최적 어닐링 조건은 500℃에서 80분일 수 있다.For example, the optimum annealing conditions for forming the P-type thermoelectric material may vary depending on the type of the second conductive material included in the P-type thermoelectric material, and may be annealed at, for example, 300 to 1000 ° C. . More specifically, the second conductive material is Bi 0 . 3 Sb 1 . 7 Te 3 , Bi 0 . 8 Sb 1 . 2 Te 3 Or Bi 0 . 5 Sb 1 . In the case of bismuth-antimony-tellurium-based (Bi y Sb 2-y Te 3 , 0 ≤ y ≤ 2) compounds such as 5 Te 3 , the substrate on which the P-type thermoelectric paste is coated is placed in an oven at 80 to 140 ° C. After drying for 5 to 20 minutes to evaporate the solvent, and heat treatment at a temperature higher than the solvent evaporation temperature (about 180 to 280 ℃) for a predetermined time to evaporate the binder, and finally to increase the thermoelectric properties of the thermoelectric material binder evaporation The annealing may proceed at a temperature higher than the temperature of the city. At this time, the annealing temperature may be 400 to 600 ℃, annealing time may be 30 minutes to 120 minutes, the most optimal annealing conditions may be 80 minutes at 500 ℃.
한편, 제2구조체의 경우, 제1구조체와 동일한 방법으로 제2전극까지 형성한 후, 제2전극 상 소정 영역에 N형 열전물질을 형성할 수 있다. 이때, N형 열전물질용 페이스트를 사용할 수 있으며, N형 열전물질용 페이스트는 제2도전성 물질이 상이한 것 외, P형 열전물질용 페이스트와 동일할 수 있다. 상세하게, N형 열전물질용 페이스트인 경우, 비스무스-텔루륨계(BixTe1 -x) 또는 비스무스-텔레늄-셀레늄계(Bi2Te3 - ySey) 화합물을 사용하는 것이 바람직하다. 이때, x는 0 ≤ x ≤ 1일 수 있으며, y는 0 ≤ y ≤ 2일 수 있다.Meanwhile, in the case of the second structure, the second electrode may be formed in the same manner as the first structure, and then an N-type thermoelectric material may be formed in a predetermined region on the second electrode. In this case, an N-type thermoelectric material paste may be used, and the N-type thermoelectric material paste may be the same as the P-type thermoelectric material paste except that the second conductive material is different. Specifically, when the N-type thermoelectric material paste, bismuth is preferred to use a - (y Se y Bi 2 Te 3) compound telru ryumgye (Bi x Te 1 -x) or bismuth-titanium selenium-based telephone. In this case, x may be 0 ≦ x ≦ 1, and y may be 0 ≦ y ≦ 2.
N형 열전물질의 형성 방법에 있어, N형 열전물질용 페이스트를 계획된 패턴대로 제2전극 상부에 도포한 후, 이를 열처리하여 N형 열전물질을 형성할 수 있다. In the method of forming an N-type thermoelectric material, an N-type thermoelectric material paste may be coated on the second electrode in a predetermined pattern, and then heat-treated to form the N-type thermoelectric material.
N형 열전물질의 형성을 위한 최적 어닐링 조건은 N형 열전물질용 페이스트에 함유된 제2도전성 물질의 종류에 따라 달라질 수 있으며, 예를 들어 제2도전성 물질이 비스무스-텔루륨계(BixTe1 -x, 0 ≤ x ≤ 1) 화합물인 경우, N형 열전물질용 페이스트가 도포된 기판을 80 내지 140℃ 정도의 오븐에 넣어 5 내지 20분 정도 건조하여 용제를 증발시키고, 상기 용제 증발 온도보다 높은 온도(180 내지 280℃ 정도)에서 소정 시간 열처리하여 바인더를 증발시킨 후, 마지막으로 열전물질의 열전특성을 높이기 위하여 바인더 증발 시의 온도보다 높은 온도에서 어닐링을 진행할 수 있다. 이때, 어닐링 온도는 350 내지 550℃ 일 수 있으며, 어닐링 시간은 30분 내지 120분일 수 있으며, 가장 최적 어닐링 조건은 510℃에서 90분일 수 있다.The optimum annealing conditions for the formation of the N-type thermoelectric material may vary according to the type of the second conductive material contained in the N-type thermoelectric material. For example, the second conductive material may be bismuth-tellurium-based (Bi x Te 1). -x , 0 ≤ x ≤ 1) compound, the substrate coated with the N-type thermoelectric paste is placed in an oven at 80 to 140 ℃ to dry for 5 to 20 minutes to evaporate the solvent, than the solvent evaporation temperature After evaporating the binder by heat treatment at a high temperature (about 180 to 280 ° C.) for a predetermined time, annealing may be performed at a temperature higher than the temperature at the time of evaporation of the binder in order to increase the thermoelectric properties of the thermoelectric material. In this case, the annealing temperature may be 350 to 550 ° C, the annealing time may be 30 minutes to 120 minutes, and the most optimal annealing condition may be 90 minutes at 510 ° C.
아울러, 제2도전성 물질이 텔루륨(Te)을 함유하는 경우, 고온 열처리 시 텔루륨(Te)이 증발하는 것을 막기 위해 열처리 오븐(Oven) 또는 열처리 로(Furnace) 내에 텔루륨(Te) 분말을 함께 삽입하여 열처리를 진행하는 것이 바람직하다.In addition, when the second conductive material contains tellurium (Te), tellurium (Te) powder in a heat treatment oven (Oven) or a heat treatment furnace (Fe) to prevent evaporation of the tellurium (Te) during high temperature heat treatment It is preferable to insert together and proceed with heat treatment.
a-3) 단계의 다른 일 예로, P형 열전물질 또는 N형 열전물질로 단결정을 사용하여 형성하는 경우, 제2전도성 물질을 포함하는 단결정을 제조한 후, 이를 절삭 등의 공정을 통해 계획된 형상으로 가공하여 제1전극 상부에 접착시킬 수 있다. 상기 접착을 위한 방법으로는 전극과 열전물질을 접착할 수 있는 방법이라면 특별히 한정하진 않으나, 일 예로, 전도성 접착제를 사용하여 접착할 수 있다. 일 예로 전도성 접착제는 은을 함유하는 은 페이스트일 수 있으며, 일 구체예로 은(Ag) 페이스트, 주석-은(Sn-Ag) 페이스트, 주석-은-구리(Sn-Ag-Cu) 페이스트 또는 주석-안티몬(Sn-Sb) 페이스트 등을 사용할 수 있으나, 이에 한정하진 않는다.As another example of step a-3), when a single crystal is formed of a P-type thermoelectric material or an N-type thermoelectric material, a single crystal including a second conductive material is manufactured, and then the shape is planned through a process such as cutting. It can be processed and bonded to the upper portion of the first electrode. The method for the adhesion is not particularly limited as long as it is a method capable of bonding the electrode and the thermoelectric material. For example, the adhesion may be performed using a conductive adhesive. For example, the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
다음으로, b) 상기 제1구조체와 제2구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계를 수행할 수 있다. 앞서 설명한 바와 같이, 열전물질이 서로 이격되도록 제1구조체와 제2구조체를 연결할 수 있으며, 도 2에 도시한 바와 같이 P형 열전물질과 N형 열전물질이 교번 위치하도록 각 구조체를 연결할 수 있다. 일 예로, 상기 연결은 접착 공정을 통해 수행될 수 있으며, 상기 접착을 위한 방법으로는 전극과 열전물질을 접착할 수 있는 방법이라면 특별히 한정하진 않으나, 일 예로, 전도성 접착제를 사용하여 접착할 수 있다. 일 예로 전도성 접착제는 은을 함유하는 은 페이스트일 수 있으며, 일 구체예로 은(Ag) 페이스트, 주석-은(Sn-Ag) 페이스트, 주석-은-구리(Sn-Ag-Cu) 페이스트 또는 주석-안티몬(Sn-Sb) 페이스트 등을 사용할 수 있으나, 이에 한정하진 않는다.Next, b) physically connecting the first structure and the second structure may be performed to manufacture a substrate on which a thermoelectric column array is formed. As described above, the first structure and the second structure may be connected so that the thermoelectric materials are spaced apart from each other, and as shown in FIG. 2, the structures may be connected such that the P-type thermoelectric material and the N-type thermoelectric material are alternately positioned. For example, the connection may be performed through an adhesion process, and the method for the adhesion is not particularly limited as long as it can bond the electrode and the thermoelectric material. For example, the connection may be performed using a conductive adhesive. . For example, the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
다음으로, c) 기판의 열전물질 기둥 어레이 사이의 빈 공간에 충진물질을 형성하는 단계를 수행할 수 있다. 즉, 이를 통해 열전물질을 물리적으로 지지하고, 열전소자의 기계적 물성을 확보되도록 할 수 있다. 상세하게, c) 단계는 c-1) 충진물질 전구물질을 열전물질 기둥 어레이에 의해 형성된 빈 공간에 충진하는 단계, 및 c-2) 상기 충진된 충진물질 전구물질을 가공하여 충진물질을 형성하는 단계로 나눌 수 있다. 또한, 충진물질 형성 후, 빈 공간 이외에 불필요한 부분에 남아있는 충진물질은 제거하는 것이 바람직하다.Next, c) forming the filling material in the empty space between the thermoelectric column array of the substrate may be performed. That is, through this, it is possible to physically support the thermoelectric material and to ensure mechanical properties of the thermoelectric element. Specifically, step c) includes filling the c-1) filling material precursor into the empty space formed by the thermoelectric column array, and c-2) processing the filling material precursor to form a filling material. Can be divided into stages. In addition, after the filling material is formed, it is preferable to remove the filling material remaining in unnecessary parts other than the empty space.
일 예에 따른 c-1) 단계는, 상기 충진물질 전구물질이 상기 N형 열전물질과 P형 열전물질 사이 간극으로 충진될 수 있는 방법이라면 한정하지 않으며, 예를 들어, 예비중합체 및 경화제 등을 함유하는 액상의 충진물질 전구물질을 모세관 현상을 이용하여 전극 및 열전물질 기둥 어레이가 형성된 기판에 충진하거나, 또는 예비중합체 및 경화제 등을 포함하는 액상의 충진물질 전구물질이 채워진 수조에 전극 및 열전물질 기둥 어레이가 형성된 기판을 담가 충진할 수 있다.Step c-1) according to an example is not limited as long as the filling material precursor can be filled with a gap between the N-type thermoelectric material and the P-type thermoelectric material, for example, a prepolymer, a curing agent, and the like. The liquid filler containing precursor is filled in the substrate on which the electrode and thermoelectric pillar array is formed by using capillary action, or the electrode and thermoelectric material in the tank filled with the liquid filler precursor including the prepolymer and the curing agent. The substrate on which the pillar array is formed may be filled and filled.
일 예에 따른 c-2) 단계는, 열전물질 기둥 어레이에 의해 형성된 빈 공간에 충진된 충진물질 전구물질을 가공하여 충진물질을 형성하는 단계로, 상세하게는 경화를 통해 충진물질을 형성할 수 있다. 경화를 통해 형성된 충진물질은 고분자 화합물일 수 있다. 이때, 충진물질 전구물질은 예비중합체를 포함하는 것일 수 있으며, 예비중합체 자체가 액상인 경우, 건조 공정은 생략될 수 있으나, 용제에 용해된 용액상인 경우 경화 공전 전 건조 공정이 더 수행될 수 있다. 일 예에 따른 건조 공정은 용제가 충분히 날아갈 수 있을 정도의 온도에서 소정 시간 건조시킴으로써 수행될 수 있다. 일 구체예로, 예비중합체가 폴리디메틸실록산인 경우, 건조 온도는 상온부터 내지 150℃일 수 있으며, 건조 시간은 10분 내지 24시간일 수 있다.According to an example, step c-2 is a step of forming a filling material by processing a filling material precursor filled in an empty space formed by the thermoelectric column array, and specifically, may form a filling material through curing. have. The filling material formed through curing may be a high molecular compound. In this case, the filler precursor may include a prepolymer, and when the prepolymer itself is a liquid phase, the drying process may be omitted, but when the solution phase is dissolved in a solvent, a drying process may be performed before hardening revolution. . Drying process according to one embodiment may be carried out by drying for a predetermined time at a temperature such that the solvent is enough to fly. In one embodiment, when the prepolymer is polydimethylsiloxane, the drying temperature may be from room temperature to 150 ° C., and the drying time may be 10 minutes to 24 hours.
상기 경화 공정은 상기 예비중합체와 경화제의 종류 및 함량에 따라 달라질 수 있으며, 일 예로, 열경화성 관능기인 경우, 열경화제의 함량, 경화 온도 및 경화 시간을 조절하여 경화 공정을 수행할 수 있으나, 이는 열경화성 관능기의 종류에 따라 달리 수행될 수 있다. 다른 일 예로, 광경화성 관능기인 경우, 광경화제의 함량, 광량 및 광세기를 조절하여 경화 공정을 수행할 수 있으나, 이 역시 광경화성 관능기의 종류에 따라 달리 수행될 수 있다.The curing process may vary depending on the type and content of the prepolymer and the curing agent. For example, in the case of a thermosetting functional group, the curing process may be performed by adjusting the content of the thermosetting agent, the curing temperature, and the curing time. It may be performed differently depending on the type of functional group. As another example, in the case of a photocurable functional group, the curing process may be performed by adjusting the content, light amount and light intensity of the photocuring agent, but this may also be performed differently according to the type of the photocurable functional group.
다음으로, d) 제1희생기판 및 제2희생기판을 제거하는 단계를 수행할 수 있다. 일 예에 따른 d) 단계에 있어서, 희생막이 형성되지 않은 희생기판을 사용한 경우, 접촉 열전도체층으로부터 희생기판만을 박리함으로써 제거 단계를 수행할 수 있으며, 접촉 열전도체층으로부터 희생기판만을 박리할 수 있는 방법이라면 특별히 한정하지 않고 사용할 수 있으며, 일 예로, 공기 중이나 물에서 물리적 또는 화학적으로 박리할 수 있다.Next, d) removing the first sacrificial substrate and the second sacrificial substrate may be performed. In the step d) according to an example, when using a sacrificial substrate is not formed, the removal step can be performed by peeling only the sacrificial substrate from the contact thermal conductor layer, the method of peeling only the sacrificial substrate from the contact thermal conductor layer If it can be used without particular limitation, for example, it can be physically or chemically peeled off in the air or water.
다음으로, e) 제1희생기판 및 제2희생기판을 제거하는 단계를 수행할 수 있다. 일 예에 따른 e) 단계에 있어서, 희생막이 형성되지 않은 희생기판을 사용한 경우, 접촉 열전도체층으로부터 희생기판만을 박리함으로써 제거 단계를 수행할 수 있으며, 접촉 열전도체층으로부터 희생기판만을 박리할 수 있는 방법이라면 특별히 한정하지 않고 사용할 수 있으며, 일 예로, 공기 중이나 물에서 물리적 또는 화학적으로 박리할 수 있다. Next, e) removing the first sacrificial substrate and the second sacrificial substrate may be performed. In the step e) according to an example, when using a sacrificial substrate is not formed, the removal step can be performed by peeling only the sacrificial substrate from the contact thermal conductor layer, the method of peeling only the sacrificial substrate from the contact thermal conductor layer If it can be used without particular limitation, for example, it can be physically or chemically peeled off in the air or water.
다른 일 예에 따른 d) 단계에 있어서, 희생막이 형성된 희생기판의 경우, 희생기판 중 기판을 먼저 박리한 후, 희생막을 제거함으로써 희생기판 제거 단계를 수행할 수 있다. 상기 기판의 박리는 희생막으로부터 기판만을 박리할 수 있는 방법이라면 특별히 한정하지 않고 사용할 수 있으며, 일 예로, 공기 중이나 물에서 물리적 또는 화학적으로 박리할 수 있다. 일 구체예로, 희생막으로 니켈 박막이 형성된 실리콘 산화막 기판을 사용한 경우, 충진물질이 형성되어 있는 프리 열전소자 (pre-thermoelectric device)를 수조에 소정 시간 담가 두면, 실리콘 산화막 기판과 니켈 박막 사이의 계면에서 박리가 일어난다. 상기 희생막의 제거는 식각을 통해 수행될 수 있으며, 식각 방법은 특별히 한정하진 않으나, 습식 식각(wet etching) 방식 및/또는 화학 물리적 연마방식을 통해 희생막을 제거할 수 있다. 바람직하게는 습식식각 방식으로 희생막을 제거할 수 있으며, 이와 같은 경우, 희생막의 금속 박막 종류에 따라 그 식각액의 조성을 달리할 수 있다.In step d) according to another embodiment, in the case of the sacrificial substrate on which the sacrificial film is formed, the sacrificial substrate removing step may be performed by first peeling the substrate out of the sacrificial substrate and then removing the sacrificial film. The peeling of the substrate may be used without particular limitation as long as it can peel only the substrate from the sacrificial film. For example, the substrate may be peeled physically or chemically in air or water. In one embodiment, when using a silicon oxide substrate having a nickel thin film formed as a sacrificial film, when a pre-thermoelectric device in which a filling material is formed is immersed in a water bath for a predetermined time, the silicon oxide substrate and the nickel thin film may be Peeling occurs at the interface. The sacrificial layer may be removed by etching, and the etching method is not particularly limited, but the sacrificial layer may be removed by a wet etching method and / or a chemical physical polishing method. Preferably, the sacrificial layer may be removed by a wet etching method. In this case, the composition of the etchant may be changed according to the metal thin film type of the sacrificial layer.
본 발명의 일 예에 따른 유연 열전소자의 제조방법(Ⅱ)은, A) 제1-1희생기판, 제1-1접촉 열전도체층, 제1-1전극이 순차적으로 적층된 제1-1구조체, 및 제2-1희생기판, 제2-1접촉 열전도체층, 제2-1전극이 순차적으로 적층된 제2-1구조체를 형성하는 단계; B) 제3-1희생기판 상 P형 열전물질, 및 제4-1희생기판 상 N형 열전물질을 형성하는 단계; C) 상기 P형 열전물질 및 N형 열전물질을 상기 제1-1구조체로 각각 전사하는 단계; D) P형 열전물질 및 N형 열전물질이 전사된 제1-1구조체와 상기 제2-1구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계; E) 상기 열전물질 기둥 어레이 사이의 빈 공간에 충진물질을 형성하는 단계; 및 F) 상기 제1-1희생기판 및 제2-1희생기판을 제거하는 단계;를 포함하며, 상기 제1-1전극 및 제2-1전극은 유리 프릿을 포함할 수 있다.Method (II) of manufacturing a flexible thermoelectric device according to an embodiment of the present invention includes: A) a 1-1 structure in which a 1-1 sacrificial substrate, a 1-1 contact thermal conductor layer, and a 1-1 electrode are sequentially stacked; Forming a 2-1 structure in which a 2-1 sacrificial substrate, a 2-1 contact thermal conductor layer, and a 2-1 electrode are sequentially stacked; B) forming a P-type thermoelectric material on the 3-1 sacrificial substrate and an N-type thermoelectric material on the 4-1 sacrificial substrate; C) transferring the P-type thermoelectric material and the N-type thermoelectric material into the first-first structure, respectively; D) manufacturing a substrate on which a thermoelectric pillar array is formed by physically connecting the 1-1 structure to which the P-type thermoelectric material and the N-type thermoelectric material are transferred and the 2-1 structure; E) forming a filling material in the void space between the thermoelectric pillar arrays; And F) removing the 1-1 sacrificial substrate and the 2-1 sacrificial substrate, wherein the 1-1 electrode and the 2-1 electrode may include a glass frit.
이때, 유연 열전소자의 제조방법(Ⅱ)에 있어서, P형 열전물질 및 N형 열전물질을 제1-1구조체에 전사한 후, 제2-1구조체와 연결하는 것 외의 모든 공정을 유연 열전소자의 제조방법(Ⅰ)에서 설명한 바와 동일할 수 있다. 즉, 희생기판 상 접촉 열전도체를 형성하는 방법, 접촉 열전도체 상 전극을 형성하는 방법, 열전물질 형성 방법(하부 기재가 상이할 뿐 방법은 동일하며, 제3-1희생기판 및 제4-1희생기판은 제1희생기판에서 나열한 소재에서 선택되는 어느 하나 일 수 있으며, 동일 또는 상이할 수 있다.), 충진물질 형성 방법 및 희생기판 제거 방법은 유연 열전소자의 제조방법(Ⅰ)에서 설명한 바와 동일한 바, 이에 대한 자세한 설명은 생략한다.At this time, in the manufacturing method (II) of the flexible thermoelectric device, after transferring the P-type thermoelectric material and the N-type thermoelectric material to the first-first structure, and connecting with the second-first structure, all the processes other than the flexible thermoelectric device are performed. It may be the same as described in the manufacturing method (I) of. That is, a method of forming a contact thermal conductor on a sacrificial substrate, a method of forming an electrode on a contact thermal conductor, and a method of forming a thermoelectric material (the method of forming a lower substrate is the same, and the 3-1 sacrificial substrate and the 4-1 The sacrificial substrate may be any one selected from the materials listed in the first sacrificial substrate, and may be the same or different.), The filling material forming method and the sacrificial substrate removing method are the same as those described in the manufacturing method (I) of the flexible thermoelectric device. The same bar, detailed description thereof will be omitted.
일 예에 따른 C)단계는, P형 열전물질 및 N형 열전물질을 제1-1구조체로 각각 전사하는 단계일 수 있다. 상세하게 제3-1희생기판 또는 제4-1희생기판 각각에 형성된 P형 열전물질과 N형 열전물질을 제1-1구조체로 전사할 수 있다. 전사 방법은 당 업계에서 통상적으로 사용되는 방법이라면 특별히 한정하지 않고 사용할 수 있다.Step C) according to an example may be a step of transferring the P-type thermoelectric material and the N-type thermoelectric material into the 1-1 structures, respectively. In detail, the P-type thermoelectric material and the N-type thermoelectric material formed on each of the 3-1 sacrificial substrate or the 4-1 sacrificial substrate can be transferred to the 1-1 structure. The transfer method can be used without particular limitation so long as it is a method commonly used in the art.
다음으로, D) P형 열전물질 및 N형 열전물질이 전사된 제1-1구조체와 상기 제2-1구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계를 수행할 수 있다. 앞서 설명한 바와 같이, 열전물질이 서로 이격되도록 P형 열전물질 및 N형 열전물질이 전사된 제1-1구조체와 제2-1구조체를 연결할 수 있으며, 도 2에 도시한 바와 같이 P형 열전물질과 N형 열전물질이 교번 위치하도록 각 구조체를 연결할 수 있다. 일 예로, 상기 연결은 접착 공정을 통해 수행될 수 있으며, 상기 접착을 위한 방법으로는 전극과 열전물질을 접착할 수 있는 방법이라면 특별히 한정하진 않으나, 일 예로, 전도성 접착제를 사용하여 접착할 수 있다. 일 예로 전도성 접착제는 은을 함유하는 은 페이스트일 수 있으며, 일 구체예로 은(Ag) 페이스트, 주석-은(Sn-Ag) 페이스트, 주석-은-구리(Sn-Ag-Cu) 페이스트 또는 주석-안티몬(Sn-Sb) 페이스트 등을 사용할 수 있으나, 이에 한정하진 않는다.Next, D) physically connecting the 1-1 structure in which the P-type thermoelectric material and the N-type thermoelectric material are transferred and the 2-1 structure may be performed to manufacture a substrate on which a thermoelectric pillar array is formed. . As described above, the P-type thermoelectric material and the N-type thermoelectric material may be connected to the 1-1 structure and the 2-1 structure to which the P-type thermoelectric material and the N-type thermoelectric material are transferred, and as shown in FIG. 2, the P-type thermoelectric material Each structure can be connected so that and N-type thermoelectric materials are alternately positioned. For example, the connection may be performed through an adhesion process, and the method for the adhesion is not particularly limited as long as it can bond the electrode and the thermoelectric material. For example, the connection may be performed using a conductive adhesive. . For example, the conductive adhesive may be a silver paste containing silver, and in one embodiment, silver (Ag) paste, tin-silver (Sn-Ag) paste, tin-silver-copper (Sn-Ag-Cu) paste or tin Antimony (Sn-Sb) paste may be used, but is not limited thereto.
도 6은 본 발명의 일 예에 따른 유연 열전소자를 실생활에 적용한 일 실시예를 나타낸다. 유연 열전소자는 다양한 형상을 가지는 대상들에 적용이 가능하다. 도 6을 참조하여 설명하면, 본 발명에 따른 유연 열전소자는 인체에서 발생하는 체열을 이용하여 발전(Power Generation)이 가능하다. 그 하나의 예로 인체의 팔에 적용하여 열전 발전이 가능할 수 있다.6 illustrates an embodiment in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life. The flexible thermoelectric device can be applied to objects having various shapes. Referring to FIG. 6, the flexible thermoelectric device according to the present invention may generate power using body heat generated in a human body. For example, thermoelectric power may be applied to an arm of a human body.
도 7은 본 발명의 일 예에 따른 유연 열전소자를 실생활에 적용한 다른 일 실시예를 나타낸다. 도 7을 참조하여 설명하면, 본 발명에 따른 유연 열전소자는 자동차, 선박, 유리창, 스마트폰, 비행기 또는 발전소 등 열이 존재하거나 냉각이 필요한 부분에 적용이 가능하다. 일반적으로 사물들은 임의의 형상을 가지기 때문에 본 발명에 따른 유연 열전소자는 다양한 형상을 가지는 대상들에 적용이 가능하다는 장점이 있다. 뿐만 아니라, 적용 부위의 형상에 맞게 직접 접촉이 가능하기 때문에 열전달 효율이 향상되어 적용대상에 열전소자의 성능을 극대화시킬 수 있는 효과가 있다. 또한, 두께는 얇고 높은 열전도도를 가지는 절연층을 활용하여 제작이 가능함으로 기존 알루미나(Al2O3) 기판을 사용하는 것보다 높은 열전효율을 달성할 수 있다.7 shows another embodiment in which the flexible thermoelectric device according to an embodiment of the present invention is applied to real life. Referring to FIG. 7, the flexible thermoelectric device according to the present invention may be applied to a portion in which heat is present or needs cooling, such as an automobile, a ship, a glass window, a smartphone, an airplane, or a power plant. In general, since the objects have an arbitrary shape, the flexible thermoelectric device according to the present invention has an advantage of being applicable to objects having various shapes. In addition, since the direct contact can be made according to the shape of the application site, the heat transfer efficiency is improved, thereby maximizing the performance of the thermoelectric element to the application target. In addition, since the thickness is thin and can be manufactured using an insulating layer having high thermal conductivity, it is possible to achieve higher thermoelectric efficiency than using an existing alumina (Al 2 O 3 ) substrate.
이하 실시예를 통해 본 발명에 따른 유연 열전소자 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. 또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.Hereinafter, a flexible thermoelectric device and a method for manufacturing the same according to the present invention will be described in more detail with reference to the following examples. However, the following examples are only one reference for describing the present invention in detail, and the present invention is not limited thereto and may be implemented in various forms. Also, unless defined otherwise, all technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description herein is for the purpose of effectively describing particular embodiments only and is not intended to be limiting of the invention. Also, the singular forms used in the specification and the appended claims may be intended to include the plural forms as well, unless the context clearly indicates otherwise. In addition, the unit of the additive which is not specifically described in the specification may be wt%.
[실시예 1] Example 1
희생기판으로 Si층이 형성된 산화 실리콘 기판[4인치 웨이퍼]을 2개 준비하고, 각각의 희생기판 상에 접촉 열전도층으로써 질화 알루미늄막을 스핀코팅법으로 수백 마이크로 이내의 두께로 형성하였다.Two silicon oxide substrates (4-inch wafers) having Si layers formed as sacrificial substrates were prepared, and aluminum nitride films were formed on the respective sacrificial substrates by a spin coating method to a thickness of several hundred micrometers.
다음으로, 각각의 질화 알루미늄막이 형성된 기판 상에 전극용 페이스트를 도포한 후, 열처리하여 전극을 형성하였다. 상세하게, 전극용 페이스트는 총 중량 중 구리 분말 75.0 중량%, 바인더(Nitrocellulose) 2.3 중량%, 용제(VDT07) 20.3 중량% 및 유리 프릿(Bi2O3, Al2O3, SiO3,ZnO) 2.4 중량%를 혼합하여 제조하였으며, 이를 질화 알루미늄막 상에 스크린 프린팅법으로 도포한 후 700 ℃로 20분 간 열처리하여 전극을 형성하였다.Next, an electrode paste was applied onto a substrate on which each aluminum nitride film was formed, and then heat-treated to form an electrode. Specifically, the electrode paste includes 75.0 wt% of copper powder, 2.3 wt% of binder (Nitrocellulose), 20.3 wt% of solvent (VDT07) and glass frit (Bi 2 O 3 , Al 2 O 3 , SiO 3 , ZnO) It was prepared by mixing 2.4% by weight, which was coated on an aluminum nitride film by screen printing and heat-treated at 700 ° C. for 20 minutes to form an electrode.
다음으로, 전극이 형성된 두 기판의 각각의 전극 상에 P형 열전물질 또는 N형 열전물질을 형성하였다(이하, 편의를 위해 P형 열전물질이 형성된 전극을 제1전극, N형 열전물질이 형성된 전극을 제2전극이라 함).Next, a P-type thermoelectric material or an N-type thermoelectric material was formed on each electrode of the two substrates on which the electrodes were formed (hereinafter, for convenience, the electrode on which the P-type thermoelectric material was formed was formed with the first electrode and the N-type thermoelectric material formed thereon). Electrode is referred to as a second electrode).
상세하게, P형 열전물질은 제1전극의 소정의 영역 상에 P형 열전물질용 페이스트를 스크린 프린팅법으로 도포한 후, 열처리하여 P형 열전물질을 형성하였다. 이때, P형 열전물질용 페이스는 Bi0 . 3Sb1 . 7Te3 분말 84.5 중량%, 바인더+용제(7SVB-45) 12.8 중량% 및 유리 프릿(Bi2O3, Al2O3, SiO3,ZnO) 2.7 중량%를 혼합하여 제조하였으며, 열처리의 경우, 100℃에서 10분 간 용제를 제거한 후, 250℃에서 30 분간 열처리하여 바인더를 제거하고, 550℃에서 80분 간 어닐링하였다.In detail, the P-type thermoelectric material was coated with a P-type thermoelectric material paste on a predetermined region of the first electrode by screen printing, followed by heat treatment to form a P-type thermoelectric material. At this time, the face for the P-type thermoelectric material is Bi 0 . 3 Sb 1 . It was prepared by mixing 84.5% by weight of 7 Te 3 powder, 12.8% by weight of binder + solvent (7SVB-45) and 2.7% by weight of glass frit (Bi 2 O 3 , Al 2 O 3 , SiO 3 , ZnO). After removing the solvent for 10 minutes at 100 ℃, heat treatment at 250 ℃ 30 minutes to remove the binder, and annealed at 550 ℃ 80 minutes.
N형 열전물질은 제2전극의 소정의 영역 상에 N형 열전물질용 페이스트를 스크린 프린팅법으로 도포한 후, 열처리하여 N형 열전물질을 형성하였다. 이때, N형 열전물질용 페이스는 BixTe1 -x 분말 84.5 중량%, 바인더+용제(7SVB-45) 12.8 중량% 및 유리 프릿(Bi2O3, Al2O3, SiO3,ZnO) 2.7 중량%를 혼합하여 제조하였으며, 열처리의 경우, 100℃에서 10분 간 용제를 제거한 후, 250℃에서 30 분간 열처리하여 바인더를 제거하고, 510℃에서 90분 간 어닐링하였다.The N-type thermoelectric material was coated with an N-type thermoelectric material paste by a screen printing method on a predetermined region of the second electrode, and then heat-treated to form an N-type thermoelectric material. At this time, the face for N-type thermoelectric material is 84.5% by weight of Bi x Te 1- x powder, 12.8% by weight of binder + solvent (7SVB-45) and glass frit (Bi 2 O 3 , Al 2 O 3 , SiO 3 , ZnO) 2.7 wt% was prepared by mixing. In the case of heat treatment, the solvent was removed at 100 ° C. for 10 minutes, then heat treated at 250 ° C. for 30 minutes to remove the binder, and annealed at 510 ° C. for 90 minutes.
다음으로, 은 페이스트를 이용하여 도 2에 도시된 바와 같이, P형 열전물질이 형성된 기판과 N형 열전물질이 형성된 기판을 접착하여 열전물질 기둥 어레이가 형성된 기판을 제조하였다.Next, as shown in FIG. 2 using a silver paste, a substrate on which a thermoelectric material pillar array was formed was bonded by bonding a substrate on which a P-type thermoelectric material was formed and a substrate on which an N-type thermoelectric material was formed.
다음으로, 폴리디메틸실록산(PDMS, Dow Corning 社, Sylgard® 184)를 열전물질 기둥 어레이 사이의 빈 공간을 충진하고, 경화하여 충진물질을 형성하였다.Next, polydimethylsiloxane (PDMS, Dow Corning, Sylgard® 184) was filled with empty spaces between the thermoelectric column arrays and cured to form a fill material.
끝으로, 레이저 박리공정을 이용하여 기판위에 형성된 실리콘 박막을 박리하고, 유연 열전소자 외부에 남아있는 Si/SiO2 층을 HNO3, H2O, HF(10 부피%:75 부피%:15 부피%) 혼합액으로 제거하여 유연 열전소자를 제조하였다.Finally, the silicon thin film formed on the substrate is peeled off using a laser peeling process, and the Si / SiO 2 remaining on the outside of the flexible thermoelectric element is removed. The layer was removed with a mixture of HNO 3 , H 2 O, and HF (10% by volume: 75% by volume: 15% by volume) to prepare a flexible thermoelectric device.
[실시예 2]Example 2
전극의 열처리 온도를 600 ℃, 20 분으로 달리한 것 외의 모든 공정을 실시예 1과 동일하게 진행하였다.All the processes except for changing the heat treatment temperature of the electrode at 600 ° C. for 20 minutes were performed in the same manner as in Example 1.
[실시예 3]Example 3
전극의 열처리 온도를 800 ℃, 20 분으로 달리한 것 외의 모든 공정을 실시예 1과 동일하게 진행하였다.All the processes except the heat treatment temperature of the electrode at 800 ° C. and 20 minutes were carried out in the same manner as in Example 1.
[비교예 1]Comparative Example 1
유리 프릿을 미첨가하여 전극을 제조하였으나, 동일 온도 조건에서 구리 분말이 녹지 않아 전극이 제대로 형성되지 않았다. The electrode was manufactured by adding glass frit, but the copper powder did not melt under the same temperature conditions, and thus the electrode was not formed properly.
[비교예 2]Comparative Example 2
유리 프릿이 미첨가된 구리박막을 H2O, HNO3 (3:1)로 10분 동안 에칭하여 미세요철을 만든 후 전극으로 사용한 것 외의 모든 공정을 실시예 1과 동일하게 진행하였다.The copper thin film without the glass frit was etched with H 2 O and HNO 3 (3: 1) for 10 minutes to form fine roughness, and then all processes except for using the electrode were performed in the same manner as in Example 1.
[비교예 3]Comparative Example 3
유리 프릿이 미첨가된 구리박막을 사포(sand paper)로 문질러서 미세요철을 형성한 후 전극으로 사용한 것 외의 모든 공정을 실시예 1과 동일하게 진행하였다.The glass frit-free copper thin film was rubbed with sand paper to form fine irregularities, and then all processes except for using the electrode were performed in the same manner as in Example 1.
[특성 평가] [Characteristic evaluation]
1) 표면조도 (Ra) : 3D 레이저 현미경 (키엔스코리아)을 이용하여 전극 표면을 3D 형상화하고 그로부터 평균 표면조도를 계산하였다.1) Surface roughness (Ra): The electrode surface was 3D shaped using a 3D laser microscope (Kiens Korea) and the average surface roughness was calculated therefrom.
2) 접착강도 (㎫) : 접착계면을 중심으로 양단에 서서히 힘을 가해 잡아당기면서 계면이 완전히 박리되는 힘을 측정하였다. (Pull-off test)2) Adhesion strength (MPa): The force at which the interface was completely peeled was measured while gradually applying a force to both ends around the adhesive interface. (Pull-off test)
3) (GS/G)×100 (%) : 첨가한 유리 프릿의 총 중량 대비 전극의 접착부에 위치한 유리 프릿의 중량으로부터 산출하였으며, 전극의 접착부에 위치한 유리 프릿의 중량은 전자 현미경 (Scanning Electron Microscopy) 및 EDX (Energy-dispersive X-ray spectroscopy) 를 이용하여 전극의 표면 및 단면의 성분을 분석하여 확인하였다.3) (G S / G) × 100 (%): The weight of the glass frit located at the bonding part of the electrode relative to the total weight of the added glass frit was calculated. Microscopy) and EDX (Energy-dispersive X-ray spectroscopy) were used to analyze the surface and cross-sectional components of the electrode.
표면조도 (㎛)Surface Roughness (㎛) (GS/G)×100 (%)(G S / G) × 100 (%) 접착력 (㎫)Adhesive force (MPa)
실시예 1Example 1 0.790.79 5555 1.091.09
실시예 2Example 2 0.920.92 4040 0.760.76
실시예 3Example 3 0.470.47 6060 0.920.92
비교예 1Comparative Example 1 -- -- --
비교예 2Comparative Example 2 0.540.54 -- 0.490.49
비교예 3Comparative Example 3 0.300.30 -- 0.210.21
상기 표 1에 기재된 바와 같이, 본 발명에 따라 제조된 유연 열전소자는 전극과 충진물질 간의 접착 강도가 0.7 ㎫ 이상의 우수한 접착력을 가짐을 확인할 수 있다.As shown in Table 1, the flexible thermoelectric device manufactured according to the present invention can be confirmed that the adhesive strength between the electrode and the filling material has an excellent adhesion of 0.7 MPa or more.
특히, 유리 프릿이 페이스트 총 중량 중 2.7 중량%로 첨가되고, (GS/G)×100이 55%이며, 표면조도가 0.79 ㎛인 실시예 1의 경우, 접착 강도가 1.09 ㎫로 전극과 충진물질 간의 접착력이 매우 우수함을 확인할 수 있다. 이는 적정 함량으로 첨가된 유리 프릿이 55 중량% 가량 전극의 접착부에 분포되어 충진물질 간의 화학적 결합을 유도함으로써 접착 강도가 크게 향상된 것이며, 이와 더불어 전극의 표면에 0.7 ㎛ 이상의 표면조도를 형성함으로써 충진물질과 전극 간의 앵커링 효과를 극대화함으로써, 전극과 충진물질 간의 접착 강도가 1 ㎫ 이상인 유연 열전소자를 구현할 수 있었다.In particular, in Example 1, in which glass frit was added at 2.7% by weight of the total weight of the paste, (G S / G) x 100 was 55%, and the surface roughness was 0.79 µm, the adhesive strength was 1.09 MPa and filled with the electrode. It can be seen that the adhesion between the materials is very excellent. This is because the glass frit added in an appropriate amount is distributed at about 55% by weight of the electrode to induce chemical bonding between the fillers, thereby greatly improving the adhesive strength, and by forming a surface roughness of 0.7 μm or more on the surface of the electrode. By maximizing the anchoring effect between the electrode and the electrode, a flexible thermoelectric device having an adhesive strength of 1 MPa or more between the electrode and the filling material could be realized.
반면, 실시예 2의 경우, (GS/G)×100이 40%로, 충진물질과 유리 프릿이 화학적으로 반응할 수 있는 면적이 작아짐에 따라, 전극과 충진물질 간의 접착 강도가 실시예 1 대비 약 70% 수준으로 떨어짐을 알 수 있다. 실시예 3의 경우, 표면조도가 0.47 ㎛로, 충진물질이 전극에 앵커링 되는 효과가 다소 떨어짐에 따라, 전극과 충진물질 간의 접착 강도가 실시예 1 대비 약 84% 수준으로 떨어짐을 알 수 있다.On the other hand, in Example 2, (G S / G) × 100 is 40%, the area where the filler and the glass frit can react chemically, the adhesive strength between the electrode and the filler material is Example 1 It can be seen that it falls to about 70%. In Example 3, the surface roughness of 0.47 ㎛, as the effect of anchoring the filling material to the electrode slightly decreases, it can be seen that the adhesive strength between the electrode and the filling material drops to about 84% compared to Example 1.
한편, 비교예 1 내지 3은 유리프릿을 넣지 않고 전극을 제조한 것으로, 비교예 1의 경우, 전극 페이스트에 유리 프릿이 첨가되지 않음에 따라 실시예 1과 동일한 온도 조건으로 열처리를 수행했음에도 불구, 구리 분말이 용융되지 않음으로써 전극이 제대로 제조되지 않아, 공정 상에서도 유리 프릿의 첨가 유무가 매우 중요함을 확인할 수 있었다.On the other hand, Comparative Examples 1 to 3 are prepared by the electrode without the glass frit, in the case of Comparative Example 1, even though the heat treatment was performed under the same temperature conditions as in Example 1, because the glass frit is not added to the electrode paste, Since the copper powder did not melt, the electrode was not manufactured properly, and it was confirmed that the presence or absence of addition of the glass frit was also very important in the process.
비교예 2 및 3의 경우, 구리박막을 서로 다른 수단으로 에칭하여 표면에 미세요철을 형성한 것으로, 실시예 3 대비, 유사한 표면조도를 가짐에도 불구, 유리 프릿이 첨가되지 않음에 따라 현저하게 낮은 접착 강도를 가짐을 확인할 수 있다.In Comparative Examples 2 and 3, the copper thin film was etched by different means to form fine roughness on the surface, which is significantly lower as glass frit is not added, although the surface roughness is similar to that of Example 3. It can be confirmed that the adhesive strength.
이상에서 본 발명의 바람직한 실시예를 설명하였으나, 본 발명은 다양한 변화와 변경 및 균등물을 사용할 수 있으며, 상기 실시예를 적절히 변형하여 동일하게 응용할 수 있음이 명확하다. 따라서 상기 기재 내용은 하기 특허청구범위의 한계에 의해 정해지는 본 발명의 범위를 한정하는 것이 아니다.Although the preferred embodiment of the present invention has been described above, it is clear that the present invention may use various changes, modifications, and equivalents, and that the above embodiments may be appropriately modified in the same manner. Accordingly, the above description does not limit the scope of the invention as defined by the limitations of the following claims.

Claims (10)

  1. 서로 이격 배열된, 하나 이상의 N형 열전물질 및 P형 열전물질을 포함하는 열전물질 기둥 어레이;A thermoelectric column array comprising one or more N-type and P-type thermoelectric materials, spaced apart from each other;
    상기 열전물질 기둥 어레이의 열전물질을 전기적으로 연결하는 전극; 및An electrode electrically connecting the thermoelectric materials of the thermoelectric material pillar array; And
    적어도 상기 열전물질 기둥 어레이의 빈 공간을 충진하는 충진물질;A filling material filling at least an empty space of the thermoelectric pillar array;
    을 포함하며, 상기 전극은 유리 프릿을 포함하는 유연 열전소자.It includes, wherein the electrode is a flexible thermoelectric element comprising a glass frit.
  2. 제 1항에 있어서,The method of claim 1,
    상기 전극은 하기 관계식 1을 만족하는 유연 열전소자.The electrode is a flexible thermoelectric element satisfying the following equation 1.
    [관계식 1][Relationship 1]
    45 ≤ (GS/G)×10045 ≤ (G S / G) × 100
    (상기 관계식 1에 있어서, G는 전극 내 유리 프릿의 총 중량(g)이며, GS는 전극의 접착부에 위치한 유리 프릿의 중량(g)이다. 이때, 접착부란, 상기 충진물질과 맞닿는 접착면에서부터, 접착면 기준 전극의 30% 두께까지를 의미한다.)(Equation 1 above, G is the total weight (g) of the glass frit in the electrode, G S is the weight (g) of the glass frit located in the bonding portion of the electrode.) In this case, the adhesive portion is an adhesive surface that is in contact with the filling material From the adhesive layer reference electrode to 30% thickness.)
  3. 제 1항에 있어서,The method of claim 1,
    상기 전극과 충진물질 간의 접착 강도는 0.7 ㎫ 이상인 유연 열전소자.Adhesive strength between the electrode and the filling material is more than 0.7 MPa flexible thermoelectric element.
  4. 제 1항에 있어서,The method of claim 1,
    상기 전극은 0.4 내지 2.0 ㎛의 표면조도(Ra)를 가지는 유연 열전소자.The electrode is a flexible thermoelectric device having a surface roughness (Ra) of 0.4 to 2.0 ㎛.
  5. 제 1항에 있어서,The method of claim 1,
    상기 유리 프릿은 납 유리계 프릿, 무연 유리계 프릿 또는 이들의 혼합물인 유연 열전소자.The glass frit is lead glass-based frit, lead-free glass-based frit or a mixture thereof.
  6. 제 1항에 있어서,The method of claim 1,
    상기 전극은 제1전도성 물질 100 중량부를 기준으로 0.1 내지 20 중량부의 유리 프릿을 함유하는 유연 열전소자.The electrode is a flexible thermoelectric element containing 0.1 to 20 parts by weight of the glass frit based on 100 parts by weight of the first conductive material.
  7. a) 제1희생기판, 제1접촉 열전도체층, 제1전극, 및 상기 제1전극 상 소정 영역에 형성된 P형 열전물질이 순차적으로 적층된 제1구조체; 및 제2희생기판, 제2접촉 열전도체층, 제2전극, 및 상기 제2전극 상 소정 영역에 형성된 N형 열전물질이 순차적으로 적층된 제2구조체를 형성하는 단계; a) a first structure in which a first sacrificial substrate, a first contact thermal conductor layer, a first electrode, and a P-type thermoelectric material formed on a predetermined region on the first electrode are sequentially stacked; And forming a second structure in which a second sacrificial substrate, a second contact thermal conductor layer, a second electrode, and an N-type thermoelectric material formed on a predetermined region on the second electrode are sequentially stacked.
    b) 상기 제1구조체와 제2구조체를 물리적으로 연결하여 열전물질 기둥 어레이가 형성된 기판을 제조하는 단계;b) physically connecting the first structure and the second structure to manufacture a substrate on which a thermoelectric column array is formed;
    c) 상기 기판의 열전물질 기둥 어레이 사이의 빈 공간에 충진물질을 형성하는 단계; 및c) forming a fill material in the void space between the thermoelectric column arrays of the substrate; And
    d) 상기 제1희생기판 및 제2희생기판을 제거하는 단계;d) removing the first and second sacrificial substrates;
    를 포함하며, 상기 제1전극 및 제2전극은 유리 프릿을 포함하는 유연 열전소자의 제조방법.It includes, The first electrode and the second electrode manufacturing method of a flexible thermoelectric device comprising a glass frit.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 a)단계의 제1전극 및 제2전극은 스크린 프린팅법을 통해 형성되는 유연 열전소자의 제조방법.The first electrode and the second electrode of step a) is a method of manufacturing a flexible thermoelectric element is formed through the screen printing method.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 a)단계의 제1전극 및 제2전극은 제1전도성 물질 100 중량부를 기준으로 0.1 내지 20 중량부의 유리 프릿을 함유하는 유연 열전소자의 제조방법.The first electrode and the second electrode of step a) comprises a 0.1 to 20 parts by weight of the glass frit based on 100 parts by weight of the first conductive material.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 제1전극 및 제2전극은 하기 관계식 2 또는 3을 만족하는 유연 열전소자의 제조방법.The first electrode and the second electrode is a method of manufacturing a flexible thermoelectric element satisfying the following relation 2 or 3.
    [관계식 2][Relationship 2]
    45 ≤ (GS1/G1)×10045 ≤ (G S1 / G 1 ) × 100
    [관계식 3][Relationship 3]
    45 ≤ (GS2/G2)×10045 ≤ (G S2 / G 2 ) × 100
    (상기 관계식 2에 있어서, G1은 제1전극 내 유리 프릿의 총 중량(g)이며, GS1은 제1전극의 접착부에 위치한 유리 프릿의 중량(g)이다.(Equation 2, G 1 is the total weight (g) of the glass frit in the first electrode, G S1 is the weight (g) of the glass frit located in the bonding portion of the first electrode.
    상기 관계식 3에 있어서, G2는 제2전극 내 유리 프릿의 총 중량(g)이며, GS2는 제2전극의 접착부에 위치한 유리 프릿의 중량(g)이다.In Equation 3, G 2 is the total weight g of the glass frit in the second electrode, and G S2 is the weight g of the glass frit located in the bonding portion of the second electrode.
    이때, 접착부란, 상기 충진물질과 맞닿는 접착면에서부터, 접착면 기준 제1전극 또는 제2전극의 30% 두께까지를 의미한다.)In this case, the adhesive part refers to the adhesive surface in contact with the filling material, up to 30% of the thickness of the first electrode or the second electrode based on the adhesive surface.)
PCT/KR2016/012054 2015-10-27 2016-10-26 Flexible thermoelectric device and production method therefor WO2017074002A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150149397 2015-10-27
KR10-2015-0149397 2015-10-27
KR1020160092668A KR101829709B1 (en) 2015-10-27 2016-07-21 A flexible thermoelectric device, and method for manufacturing the same
KR10-2016-0092668 2016-07-21

Publications (1)

Publication Number Publication Date
WO2017074002A1 true WO2017074002A1 (en) 2017-05-04

Family

ID=58631062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012054 WO2017074002A1 (en) 2015-10-27 2016-10-26 Flexible thermoelectric device and production method therefor

Country Status (1)

Country Link
WO (1) WO2017074002A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585638A (en) * 2018-11-30 2019-04-05 武汉理工大学 One kind having room temperature inorganic thermo-electric device flexible and preparation method thereof
US11165008B2 (en) 2019-12-10 2021-11-02 Hyundai Motor Company Thermoelectric module
TWI816864B (en) * 2018-08-28 2023-10-01 日商琳得科股份有限公司 Method for manufacturing a wafer of thermoelectric conversion material and method for manufacturing a thermoelectric conversion module using the wafer obtained by the manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2005268555A (en) * 2004-03-19 2005-09-29 Citizen Watch Co Ltd Thermoelectric element and method of manufacturing the same
KR20100066922A (en) * 2008-12-10 2010-06-18 한양대학교 산학협력단 Photovoltaic cell having semiconductor rod, method for fabricating the cell, and unified module of photovoltaic cell - thermoelectric device
KR20120088457A (en) * 2011-01-31 2012-08-08 엘지이노텍 주식회사 Paste compisition and solar cell
KR101493797B1 (en) * 2013-10-18 2015-02-17 한국과학기술원 Flexible thermoelectric device using mesh substrate and fabricating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318454A (en) * 2002-04-24 2003-11-07 Kyocera Corp Thermoelectric conversion element and thermoelectric module
JP2005268555A (en) * 2004-03-19 2005-09-29 Citizen Watch Co Ltd Thermoelectric element and method of manufacturing the same
KR20100066922A (en) * 2008-12-10 2010-06-18 한양대학교 산학협력단 Photovoltaic cell having semiconductor rod, method for fabricating the cell, and unified module of photovoltaic cell - thermoelectric device
KR20120088457A (en) * 2011-01-31 2012-08-08 엘지이노텍 주식회사 Paste compisition and solar cell
KR101493797B1 (en) * 2013-10-18 2015-02-17 한국과학기술원 Flexible thermoelectric device using mesh substrate and fabricating method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816864B (en) * 2018-08-28 2023-10-01 日商琳得科股份有限公司 Method for manufacturing a wafer of thermoelectric conversion material and method for manufacturing a thermoelectric conversion module using the wafer obtained by the manufacturing method
CN109585638A (en) * 2018-11-30 2019-04-05 武汉理工大学 One kind having room temperature inorganic thermo-electric device flexible and preparation method thereof
US11165008B2 (en) 2019-12-10 2021-11-02 Hyundai Motor Company Thermoelectric module

Similar Documents

Publication Publication Date Title
KR101989908B1 (en) A flexible thermoelectric device, and method for manufacturing the same
WO2017074002A1 (en) Flexible thermoelectric device and production method therefor
KR101291956B1 (en) Semiconductor on glass insulator with deposited barrier layer
CN102725143B (en) The manufacture method of duplexer and duplexer
TWI377646B (en) Substrate structures applied in flexible electrical devices and fabrication method thereof
TWI655089B (en) Method for manufacturing electronic device, method for manufacturing glass laminate
KR101829709B1 (en) A flexible thermoelectric device, and method for manufacturing the same
KR20080072938A (en) Glass-based soi structures
CN1473361A (en) Method for making stacked structure comprising thin film adhering to target substrate
JP2006295037A (en) Silicon on insulator wafer and manufacturing method thereof
CN110709775A (en) Method for producing high refractive index waveguide
KR102475698B1 (en) Manufacturing method of laminated board and electronic device
TWI695820B (en) Method for manufacturing carrier substrate, laminate and electronic device
TWI751253B (en) Laminated body, supporting base material with silicone resin layer, resin substrate with silicone resin layer, and manufacturing method of electronic devices
TW201806761A (en) Glass laminate and manufacturing method therefor
CN103201104A (en) Laminate body, panel for use in display device with support board, panel for use in display device, and display device
JP2012064710A (en) Manufacturing method of semiconductor element
CN105848886A (en) Glass laminate body, and method for manufacturing electronic device
WO2017074003A1 (en) Flexible thermoelectric device and method for preparing same
KR20140139907A (en) Glass laminate, display panel on carrier glass substrate, display device, method of manufacturing glass laminate, and method for manufacturing display panel
US7527704B2 (en) Method for preparing film structure comprising ferroelectric single crystal layer
CN104708885B (en) The manufacturing method of glass laminate and the manufacturing method of electronic device
WO2018101540A1 (en) Method for manufacturing flexible transparent electrode having pattern
KR101850691B1 (en) Fabrication Method of Flexible Thermoelectric Device Using Laser lift-off
CN101479651A (en) Method for forming a semiconductor on insulator structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860185

Country of ref document: EP

Kind code of ref document: A1