WO2017073938A1 - Core structure for power supply device of electric vehicle - Google Patents

Core structure for power supply device of electric vehicle Download PDF

Info

Publication number
WO2017073938A1
WO2017073938A1 PCT/KR2016/011452 KR2016011452W WO2017073938A1 WO 2017073938 A1 WO2017073938 A1 WO 2017073938A1 KR 2016011452 W KR2016011452 W KR 2016011452W WO 2017073938 A1 WO2017073938 A1 WO 2017073938A1
Authority
WO
WIPO (PCT)
Prior art keywords
core structure
pillar
power supply
electric vehicle
substrate portion
Prior art date
Application number
PCT/KR2016/011452
Other languages
French (fr)
Korean (ko)
Inventor
전양배
강성주
임재하
Original Assignee
한국기술교육대학교 산학협력단
전양배
강성주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기술교육대학교 산학협력단, 전양배, 강성주 filed Critical 한국기술교육대학교 산학협력단
Publication of WO2017073938A1 publication Critical patent/WO2017073938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a core structure for a power feeding device of an electric vehicle, and more particularly, to change the structure and arrangement of the power feeding device feeding core of the electric vehicle, the electric power supply of the electric vehicle capable of supplying a higher capacity than the conventional power feeding device It relates to a core structure for an apparatus.
  • an online electric vehicle that can receive electric power from a feeder line embedded in a road in a non-contact manner based on an electromagnetic induction principle to charge a battery while stopping and driving.
  • a feeder In order for an electric vehicle to receive electric power in a non-contact manner, a feeder must be embedded in the road first, and the distribution of the magnetic field lines generated by the feeder varies depending on the core shape of the feeder and the structure of the feeder. Consideration should be given to this. In addition, even if the distance between the current collector and the road surface of the online electric vehicle is irregular or large, a structure that can transfer power well is needed. Electric vehicles must be able to drive freely on the roads.
  • FIG. 1 is a view illustrating a general dual rail power supply device embedded in a road for charging a non-contact magnetic induction type electric vehicle, and a power supply line 2 artificially adjusting a shape of a power supply line 2 and a magnetic field to supply power ( 2) It comprises a ferrite core module (1) which is installed to prevent leakage of magnetic force flux to the lower side and to concentrate the magnetic force flux up the road.
  • a rod-shaped ferrite core module 1 is disposed at regular intervals along a road direction in order to reduce the amount of ferrite required by the feeder.
  • the spacing between the ferrite rods of the ferrite core module 1 is narrow, so that it is difficult to install and to maintain the original feeding efficiency when attempting to install on a sudden curved road.
  • the cost of the feeder line is increased by increasing the thickness of the feeder line to cover the increased amount of current, and related devices such as the feed inverter must also be changed according to the changed feeder line, thereby significantly increasing the overall electric vehicle power supply system construction cost. .
  • the present invention was devised to solve the above problems, and by changing the structure of the power supply core in the power supply core structure of the electric vehicle, power transmission efficiency without changing the power supply capacity of the existing electric power supply and distribution system of the entire electric vehicle It is to provide a core structure for the electric vehicle power feeding device to increase the power and to easily work according to the curvature of the road when installing the power feeding device on the actual road.
  • Core structure for the electric power feeding device of the electric vehicle of the present invention for achieving the above object is a plurality of horizontally embedded in a specific place or along the road progress direction to prevent the magnetic flux leakage to the bottom and both ends of the horizontal substrate It may include a vertical substrate portion and a pillar portion formed in the center of the horizontal substrate portion to prevent magnetic flux leakage to the outer surface as the bent portion in the upper direction.
  • the horizontal substrate portion and the vertical substrate portion may be characterized in that the rectangular board shape.
  • the horizontal substrate portion and the vertical substrate portion may have a bar shape
  • the pillar portion may be formed over a plurality of the horizontal substrate portions and disposed to be spaced apart from each other.
  • a plurality of the horizontal substrate portion and the vertical substrate portion, and one of the pillar portion may form a pair, the jaw may be arranged to be spaced apart.
  • the buried interval between a plurality of the horizontal substrate portion may be characterized in that each can be changed individually.
  • the width of the horizontal substrate portion, the height of the vertical substrate portion and the height of the pillar portion may be characterized in that each can be changed individually.
  • the pillar portion may be characterized in that the pillar shape of the center portion of the cross section is empty.
  • the predetermined length of the upper portion of the pillar may be characterized in that the center portion of the cross section is blocked.
  • the horizontal substrate portion, the vertical substrate portion, and the pillar portion may have characteristics of a ferromagnetic material.
  • the horizontal substrate portion, the vertical substrate portion and the pillar portion may be characterized in that the magnetic ceramic containing iron oxide.
  • the pillar portion may be characterized in that the cross section is polygonal or circular.
  • the present invention provides a solenoid structure in which a structure of a power feeding core is wound around a pillar-shaped core in a power feeding device core structure of an electric vehicle, and a power feeding module having a core board as a board is installed at a predetermined interval on the road. Therefore, when the power feeding device is installed on a real road, it can be easily installed according to the curvature of the road without sacrificing the feeding efficiency, and the strength of the magnetic field generated in the core of the column can be maximized, so that the entire electric power feeding and distribution of the online electric vehicle The system has the effect of increasing the power transmission efficiency.
  • FIG. 1 is a view showing the structure of a conventional electric power feeding device for an electric vehicle.
  • FIG. 2 is a perspective view showing a plank core structure according to an embodiment of the present invention.
  • FIG. 3 is a perspective view, a side view, and a plan view showing a substrate portion and a pillar portion in the power feeding device shown in FIG.
  • FIG. 4 is a perspective view and a front view showing a core structure of a variety of conventional electric vehicles.
  • FIG. 5 is a perspective view illustrating the winding number of winding coils of the board-shaped core structure shown in FIG.
  • FIG. 6 is a perspective view showing a continuous core structure according to an embodiment of the present invention.
  • FIG. 7 is a perspective view and a plan view illustrating a substrate and a pillar in the power feeding device shown in FIG. 6.
  • FIG. 8 is a perspective view showing a hybrid core structure according to an embodiment of the present invention.
  • FIG. 9 is a perspective view, a side view, and a plan view illustrating a substrate and a pillar in the power feeding device shown in FIG. 8.
  • FIG. 10 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the board core structure shown in FIG. 2.
  • FIG. 11 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a board-like core structure according to an embodiment of the present invention.
  • FIG. 12 is a perspective view showing a bipolar dual feed coil structure feeding device of a board core structure according to an embodiment of the present invention.
  • FIG. 13 is a perspective view illustrating a bipolar double layer feed coil structure feeding device of a board core structure according to an embodiment of the present invention.
  • FIG. 14 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the continuous core structure illustrated in FIG. 6.
  • FIG. 15 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a continuous core structure according to an embodiment of the present invention.
  • 16 is a perspective view showing a bipolar dual feed coil structure feeding device of a continuous core structure according to an embodiment of the present invention.
  • FIG. 17 is a perspective view illustrating a bipolar double layer feed coil structure feeding device of a continuous core structure according to an exemplary embodiment of the present invention.
  • FIG. 18 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the hybrid core structure illustrated in FIG. 8.
  • FIG. 19 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
  • 20 is a perspective view showing a bipolar dual feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
  • 21 is a perspective view showing a bipolar bi-layer feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a terminal pole type double feed coil structure feeding device as a board core structure according to an embodiment of the present invention
  • FIG. 3 is a perspective view showing a substrate and a pillar in the board core structure shown in FIG.
  • the 'plate-shaped core structure' refers to a structure in which a substrate 110 formed in a 'c' shape is formed of a rectangular board, and the 'double feeding coil structure' is supplied to a column part.
  • the term 'single pole type' refers to the magnetic poles formed in the pillar part 120 to be formed in the same magnetic pole.
  • the core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
  • the substrate 110 is embedded in a plurality of spaced apart along the road progress direction, the both ends of the horizontal substrate portion 111 and the horizontal substrate portion 111 to prevent the magnetic flux leakage to the lower side as the magnetic flux to the outer surface It includes a vertical substrate 113 to prevent leakage.
  • the horizontal substrate 111 serves to form the shape of the magnetic field generated in the core structure 100.
  • the horizontal substrate part 111 blocks the magnetic field from being formed under the core structure 100, that is, the road underground, and supports the core structure 100. To prevent the magnetic field is induced in the rebar that can be installed in the lower portion of the horizontal substrate 111.
  • the vertical substrate 113 prevents a magnetic field from leaking to both sides so that most of the magnetic field can be formed in an upper direction of the core structure 100, that is, in an upper direction of the road.
  • the height of the vertical substrate portion 113 formed on both sides can be varied, the higher the height can reduce the amount of magnetic flux leaking to the side and can also increase the power output. This will be described again with reference to FIG. 5.
  • the pillar portion 120 is formed in the center of the horizontal substrate portion 111 in the form of a pillar, when the feed line is wound in the form of a solenoid is located in the center of the feed line serves as a magnetic core.
  • the shape of the cross section of the pillar part 120 may be circular or polygonal, and the cross section may be a donut shape or a full shape. In other words, a small diameter hole is drilled in the center of the cross section to reduce the cost, and thus the hollow pillar may be viewed.
  • the size of the height, the outer diameter, and the inner diameter of the pillar portion 120 may be varied depending on the degree of winding the feed line or other conditions, similar to the bent portion of the vertical substrate 113.
  • the outer diameter of the pillar 120 may be 150 mm
  • the inner diameter may be 20 mm.
  • the upper predetermined length portion of the pillar portion 120 may be blocked in the center of the cross section, by forming the pillar portion 120 in this way can further improve the magnetic flux density.
  • the spacing between the plurality of core structures 100 embedded in the road may vary depending on the size of the incoming power or the installation conditions, and may be changed individually.
  • the interval between the core structures 100 may be 300mm.
  • the expected feeding power of the substrate type is about 11% higher than that of the continuous type and about 16% higher than the mixed type based on the substrate structure described later.
  • the horizontal substrate 111 has a size of 720 mm and a width of 300 mm, an outer diameter of the pillar part 120 is 150 mm and an inner diameter of 20 mm, and then the interval between the core structures 100 is 300 mm.
  • the measured output voltage is 2585V and the expected output is 42.08kW.
  • the substrate 110 and the pillar portion 120 may be manufactured by using ferrite, but the material may be used as long as the material having the characteristics of the ferromagnetic material is not limited thereto.
  • ferrite is a ferromagnetic material, has a high permeability and low conductivity, and generally refers to a magnetic ceramic including iron oxide.
  • a manufacturing method a mixture of iron oxide, zinc oxide, manganese oxide, nickel oxide, and the like is prepared by sintering.
  • the feeder line 130 includes a first feeder line 131 and a second feeder line 133, each of which is a wire into and out of an electric current, and forms a magnetic field directed upwardly or downwardly according to a direction wound around the pillar 120.
  • the first feed line 131 is disposed to be wound one or more times in order to the plurality of pillar parts 120.
  • the first feed line 131 is disposed on the first pillar part 120 from the left side. Going up from the bottom to the top of the inside in a counterclockwise winding once, move to the second column 120, and then go down from the top to the bottom in a counterclockwise direction. Again moving to the third column 120 next to it is arranged repeating the same process.
  • the second feed line 133 is disposed while the current flows in a direction opposite to the first feed line 131 and is wound around the pillar part 120 in order from the last core structure 100, but the first feed line 131 is arranged in the pillar part 120. It is wound on the outside of the rolled up and doubled again, and the winding direction is the same as that of the first feeder.
  • the first feed line 131 is rolled down from the top to the bottom of the third pillar 120 on which the first feed line 131 is wound and then counterclockwise. Moving to the second pillar 120 is wound up from the bottom to the top and wound one time counterclockwise. Again, the first feed line 131 next to it is moved to the first pillar portion 120 wound and is disposed while repeating the same process.
  • the first feed line 131 and the second feed line 133 are connected to each other and wound. Is double wound as described above.
  • the first and second feed lines 131 and 133 wound around the pillar part 120 which are ferromagnetic bodies, generate a magnetic field directed toward the top or the bottom of the core structure 100 in the direction in which the feed lines are wound.
  • the direction of the magnetic field is indicated by an arrow on the pillar part 120.
  • the alternating current momentarily changes the direction of the current, and thus the direction of the magnetic field also changes.
  • the direction of the magnetic field shown in FIG. 2 becomes the direction of the magnetic field at any moment.
  • the magnetic field generated in the wire is overlapped to form a magnetic field having a certain polarity on the upper part of the pillar part 120. This is because magnetic force lines generated around the first and second feed lines 131 and 133 overlap and magnetic force lines acting in one direction in the center of the first and second feed lines 131 and 133.
  • the first and second feed lines 131 and 133 are all wound around the pillar part 120 in a counterclockwise direction so that a current flows around the pillar part 113 in a counterclockwise direction at one point and flows out.
  • the upper part of N) becomes the N pole, and immediately at another point in time, when the direction of the current changes, it becomes the S pole.
  • a magnetic field is formed by drawing a circle from the outside to the inside around at a moment around the first and second feed lines 131 and 133 disposed between the respective core structures 100.
  • the directions of the magnetic field are indicated by arrows on the first and second feed lines 131 and 133 disposed between the core structures 100, and as described above, the direction of the magnetic field is repeatedly changed.
  • the position and direction of the magnetic field formed in each of the core structures 100 are formed along the direction in which the core structure 100 is buried in a specific place or a road such as a parking lot.
  • a magnetic field emerges from the column 120 in an upward direction when viewed in a vertical direction, and then a magnetic field is formed so that the magnetic flux is emitted upward in the first and second feed lines 131 and 133 positioned between the core structures 100. .
  • Figure 4 is a perspective view and a front view showing a conventional commercialized core structure for comparison with one embodiment of the present invention (a) and (b) in the two '11' core (11) coil 13 in the uneven portion
  • the inserted coil is arranged like a rail in the longitudinal direction, and in (c) and (d), the cores 11 having a rod shape and forming an 'E' shape are arranged at regular intervals, and the feed coil 13 is positioned thereon.
  • the power supply output and the harmful electromagnetic field (EMF) are shown in Table 1 below in comparison with the conventional commercially available power supply module 10 shown in FIG. 4.
  • Maxwell magnetic field simulation tool (Ansys_Maxwell 16.0) was used as the measurement tool, and the expected output value was calculated using the magnetic B-Field analysis and induced voltage.
  • type a shown in Table 1 refers to the power supply module 10 shown in (a) and (b) of Figure 4
  • type b is the power supply module 10 shown in (c) and (d)
  • One embodiment of the present invention refers to the core structure 100 shown in FIG.
  • FIG. 5 is a perspective view illustrating the core structure 100 in which the number of windings of the feed coil 130 wound around the pillar 120 in the core structure 100 shown in FIG. 3 is different.
  • the first and second feed lines 131 and 133 were respectively wound three times at 120, and in (b) the first and second feed lines 131 and 133 were respectively wound five times at the column 120.
  • a feed current of 720 mm in width, 80 mm in height, and 200 A of feed current is flowed, and then the feed power output and electromagnetic wave (EMF) are modeled.
  • EMF electromagnetic wave
  • the first and second feed lines 131 and 133 of the plank core structure 100 illustrated in FIG. 5A are respectively wound three times twice on the pillar part 120, and the horizontal substrate part 111 is formed.
  • the power supply output is measured in the following conditions as shown in Table 2 below, and the amount of harmful electromagnetic waves (EMF) leaked is shown in Table 3 below. Units are kW and ⁇ T.
  • Maxwell magnetic field simulation tool (Ansys_Maxwell 16.0) was used as a measurement tool, and the expected output value was calculated using magnetic B-Field analysis and induced voltage.
  • the board-shaped core structure 100 shown in FIG. 5B is wound twice each of the first and second feed lines 131 and 133 on the column portion 120, and the horizontal substrate portion 111 of the
  • the power supply output under the above conditions while varying the horizontal length and the height of the vertical substrate 113 is measured in Table 4 below, and the amount of harmful electromagnetic waves (EMF) leaked is shown in Table 5 below. Units are kW and ⁇ T.
  • the feed module of the double feed coil structure wound around the feed line 130 three times on the column portion 120 The feed power output is 42kW, while the feed power of the conventional commercial feed module 10 shown in (c) and (d) of Figure 4 is 33kW, the output of the plank core structure 100 of the present invention is It can be seen from Table 2 that about 27% increase.
  • each of the feed line 130 on the pillar part 120 is changed in the core structure 100 wound three times. It can be seen from Table 3 that a value smaller than the value of the electromagnetic wave (EMF) measured in the conventional b feed module 10 is measured.
  • EMF electromagnetic wave
  • the magnetoresistance decreases as the width of the substrate 111 increases, thereby increasing the magnetic resistance to about 15 to 17. It can be seen that the feed capacity can be increased by%.
  • the power supply capacity can be increased by 10 to 12%.
  • the power supply capacity can be increased to 28.9%.
  • the height of the column portion 120 and the height of the vertical substrate 113 is to be changed in the same way. This is because the feeding power is increased and the harmful electromagnetic field (EMF) is reduced as the height of the vertical substrate 113 made of ferromagnetic material increases.
  • EMF harmful electromagnetic field
  • FIG. 6 is a perspective view illustrating a terminal pole type dual structure power supply device as a continuous core structure according to an exemplary embodiment of the present invention
  • FIG. 7 is a perspective view illustrating a substrate and a pillar in the continuous core structure shown in FIG. 6.
  • 'continuous core structure' refers to the bar-shaped core structure 100 continuously arranged spaced apart
  • 'double feeding coil structure' refers to the feed coil 130 in the column
  • the winding refers to the structure
  • the term "single stimulus" refers to each of the magnetic poles formed in the column portion 113 is formed to be the same as the same magnetic pole.
  • the core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
  • the substrate 110 has a 'c' shaped bar shape, and the pillar portion 120 is formed in a pillar shape over the center of the plurality of horizontal substrate portions 111.
  • the pillar portion 120 is again arranged in a plurality at a predetermined interval in the road progression direction continuously, when the feed line 130 is wound in the solenoid form on the pillar portion 120 is located in the inner center of the feed line 130 and the magnetic core Plays a role.
  • the shape of the cross section of the pillar part 120 may be circular or polygonal, and a hole of a small diameter is drilled in the center of the cross section so as to form a hollow column.
  • the height of the vertical substrate portion 113 and the height of the pillar portion 113, the size of the outer diameter and the inner diameter may be varied depending on the degree of winding the feed line or other conditions.
  • the outer diameter of the pillar portion 113 is 150 mm, and the inner diameter is 20 mm (see FIG. 7).
  • the upper predetermined length portion of the pillar portion 120 may be blocked by the central section of the cross section.
  • the magnetic flux density may be further improved by forming the pillar portion 120.
  • the feeding power is lower than the board-shaped core structure 100 described above on the basis of the substrate structure, but the feeding power is higher than the hybrid core structure 100 to be described later.
  • the size of the horizontal substrate portion 111 is 720 mm and 20 mm
  • the height of the vertical substrate 113 is 80 mm
  • the outer diameter of the column 120 is 150 mm
  • the inner diameter is 20 mm.
  • the materials of the substrate 110 and the pillar part 120 and the structures of the first feed line 131 and the second feed line 133 are the same as described with reference to FIG.
  • FIG. 6 the direction of the magnetic field generated in the power supply module 110 is indicated by an arrow. However, the direction of the magnetic field is also the same as that described in FIG.
  • FIG. 8 is a perspective view illustrating a terminal type dual structure power supply device as a hybrid core structure according to an embodiment of the present invention
  • FIG. 9 is a perspective view, a side view, and a plan view of a substrate and a pillar in the hybrid core structure of FIG. 8.
  • the core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
  • the substrate 110 has a shape of a 'c'-shaped bar, and a certain number of pieces are formed to form a group, and the groups are again spaced apart along the traveling direction of the road.
  • the pillar part 120 is formed in a pillar shape over the center of the plurality of horizontal substrate parts 111 constituting the pair.
  • the interval between the horizontal substrate portions 111 in the core structure 100 forming one set may be 30 mm as an example, the thickness of the vertical substrate 113 may be 20 mm, as described above the horizontal substrate portion ( The gap between the 111 and the height of the vertical substrate 113 can be changed individually.
  • a plurality of core structures 100 forming one pair of the core structures 100 are continuously buried to be spaced apart along the traveling direction of the road.
  • the spacing between the core structures 100 constituting one pair may be 300 mm as an example, and the spacing may be individually changed by each of the plurality of core structures 100.
  • the pillar portion 120 Since the pillar portion 120 has the same shape as described above, it will be omitted.
  • the height of the vertical substrate portion 113, the length of the horizontal and vertical lengths of the substrate 111 forming one group, and the height, outer diameter, and inner diameter of the pillar portion 120 may be different from those of winding the feed line as described above. Each condition can be changed individually by conditions.
  • the horizontal length of the core structure 100 forming one group is 720 mm and the vertical length is 320 mm, and the height of the vertical substrate 113 is 80 mm, the outer diameter of the pillar part 120 is 150 mm and the inner diameter is 20 mm. (See FIG. 9).
  • the feeding power is lower than that of the board-shaped core structure 100 and the continuous core structure 100 described above on the basis of the substrate structure, but the feeding power is higher than that of the conventional commercial feeding device. It can save the cost of construction and has the advantage of easy installation on the road of various shapes.
  • the feeding power of the hybrid core structure 100 is a core structure 100 constituting a pair of horizontal 720mm, vertical 320mm, the height of the vertical substrate portion 111 to 80mm, the core constituting a group
  • the spacing between the structures 100 is 300 mm, and when the feeding power is measured with the outer diameter of the pillar portion 120 being 150 mm and the inner diameter being 20 mm, the induced voltage is 2223 V and the expected output is 35.56 kW.
  • Materials of the substrate 110 and the pillar part 120 and the structures of the first feed line 120 and the second feed line 130 are the same as described with reference to FIG. 2 and will be omitted.
  • the direction of the magnetic field generated in the core structure 100 is indicated by an arrow. Since the direction of the magnetic field is also the same as described with reference to FIG.
  • FIG. 10 is a planar core structure shown in FIG. 2, which is a perspective view illustrating a final end of a terminal type double feed coil structure feeding device, wherein all of the magnetic poles formed in the column 120 are the same as either the N pole or the S pole.
  • the first and second feed lines 131 and 133 are wound in the same direction in which the first and second feed lines 131 and 133 are wound around the column 120, and the first and second feed lines 131 and 133 are wound three times, respectively. , Shows the final stage state in the entire power supply device (100).
  • the first feed line 131 the current direction of which is the same as the traveling direction of the road is wound in the counterclockwise direction inside the pillar portion 120, and then comes out from the final end
  • the second feed line 133 is the first feed line ( 131)
  • the direction in which the first and second feed lines 131 and 133 are wound around the column 120 and the direction in which current flows in each of the feed lines 131 and 133 are indicated by arrows.
  • FIG. 11 is a view showing an embodiment of a terminal type double-layer feed coil structure feeding device as a board-shaped core structure, in which a structure in which the first and second feed lines 131 and 133 are wound around the column part 120 is different.
  • the currents of the first and second feed lines 131 and 133 are made the same so that the magnetic poles formed on the pillar part 120 are the same as either the north pole or the south pole.
  • the first feed line 131 is first wound on the lower portion of each pillar 120 to a middle portion, and then the second feed line 133, which is returned from the last end, is wound on the first feed line 120, respectively. From the upper part of 131), the structure in which the feeder is wound is wound in two layers.
  • the first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state of the entire core structure 100 was illustrated.
  • the structure and function of the substrate 100 in the plank core structure 100 is the same as described in Figure 2 will be omitted.
  • the wound structure of the feed line 130, the first feed line 131, the current direction is the same as the driving direction is wound from the bottom to the upper portion of the first pillar portion 120 to the left after winding to the middle portion in the counterclockwise direction , Enter the left side of the next pillar portion 120 next to the same height from the middle to the bottom of the same winding in the same anti-clockwise direction, and next to the next pillar portion 120 adjacent to enter the same counterclockwise from the bottom to the top Winding in the direction, this manner is repeated to reach the final stage.
  • the second feed line 133 coming out of the final stage is wound up from the middle of the first feed line 131 and continues upward, and then wound in a counterclockwise direction to the next pillar portion 120.
  • the second feed line 133 enters the right side of the pillar part 120 and is wound from the upper portion of the pillar part 120 to the portion where the first feed line 131 is wound, but wound in the same counterclockwise direction, and alternating such a manner. Up to the first input.
  • the first and second feed lines 131 and 133 when the first and second feed lines 131 and 133 are wound around the pillar portion 120 and the current flows in each of the feed lines 131 and 133, the first and second feed lines 120 may be pillar portions. It can be seen that the current directions are also the same by winding all of them in the counterclockwise direction.
  • the direction of the magnetic field generated in each pillar 120 and the first and second feed lines 131 and 133 is a single N pole or S pole is formed at any point, such as NNN ... or SSS ... Form.
  • the feeder lines 131 and 133 are wound around the pillars 120 of the core structure 100 so that the double feed coil structure and the double-layer feed coil structure are used. It can be easily selected. That is, when the excavation depth of the road on which the core structure 100 of the power feeding device is to be embedded is deep, a feeding device having a two-layer feeding coil structure may be selected, and when it is shallow, a feeding device having a double feeding coil structure may be selected. Useful at
  • FIG. 12 is a perspective view showing an embodiment of a bipolar dual feeding coil structure feeding device as a board-shaped core structure
  • the term "bipolar type" is the N pole is formed in each adjacent pillar portion 120
  • the current directions of the first and second feed lines 131 and 133 may be different for each pillar 120 so that the and S poles may be alternately formed.
  • the double feed coil structure is referred to as FIG. 10.
  • the first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state was illustrated.
  • the structure and function of the board-shaped substrate 110 in the board-shaped core structure 100 are the same as those described with reference to FIG.
  • the first feed line 131 the current direction of which is the same as the traveling direction of the road, is wound from the bottom to the top of the left side of the first pillar portion 120 to the counterclockwise direction, and in the following pillar portion 120
  • the first feed line 131 is staggered to the opposite side of the pillar portion 120 and wound inward in a clockwise direction, and the same manner is repeated alternately to reach the final end.
  • the second feed line 133 returning from the last end is wound from the top to the bottom of the first feed line 131 to the bottom in the counterclockwise direction, and in the next pillar 120, the second feed line 133 is the pillar part.
  • Crossed to the opposite side of the 120 is wound from the top to the bottom of the first feed line 131 from the top to the winding in the clockwise direction, alternately leading to the first input terminal.
  • the first and second feed lines 131 and 133 are double-wound to the pillar part 120, and have different structures in which the first and second feed lines 131 and 133 are wound.
  • the direction in which the 131 and 133 are wound around the pillar 120 and the direction in which the current flows in each of the feed lines 131 and 133 are indicated by arrows.
  • the direction of the magnetic field generated around the pillar part 120 is alternately formed with the north pole and the south pole. That is, it can be seen that the direction of the magnetic field generated in each of the pillars 120 is alternately formed with the N pole and the S pole, such as N-S-N-S...
  • FIG. 13 is a planar core structure, which is a perspective view and a front view showing an embodiment of a bi-stimulation double layer feed coil structure feeding device.
  • the term “bipole type” is the same as that of the description of FIG.
  • the structure ' is as described above in FIG.
  • the first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state was illustrated.
  • the structure and function of the substrate 110 of the plank core structure 100 is the same as described in Figure 2 will be omitted.
  • the first feed line 131 having the same current direction as the driving direction enters from the left side to the left first pillar 120 and is wound from the bottom to the top, wound up to the middle in the counterclockwise direction, In the pillar portion 120 is crossed to the right side and wound in the clockwise direction from the middle portion of the same height to the lower side, and then continues to the left side of the next pillar portion 120 next to the same way to reach the final end.
  • the second feed line 131 coming out of the last end is wound up from the middle of the first feed line 131 and the upper part, and then rolled up counterclockwise to return to the right side.
  • the first feeder line 131 is wound up and then rolled up from the top of the first feeder line 131 to the upper side, and then rolled clockwise to return to the left side. It is wound up from the top of the part and then rolled up counterclockwise to the right side, and then alternately leads to the first input terminal.
  • the first feed line 131 is wound on the lower portion of the pillar 120
  • the second feed line 133 is then wound on the upper portion thereof
  • the second feed line 131 and 133 always cross each other at the portion where the feed lines 131 and 133 cross each other.
  • the feed line 133 is positioned upward, but the direction in which the feed lines 131 and 133 are wound in each pillar portion 120 alternately varies for each pillar portion 120.
  • the direction in which the first and second feed lines 131 and 133 are wound around the pillar part 120 is alternately changed for each pillar part 120, and accordingly, the direction in which the current flows is alternately changed. It can be seen that the direction of the magnetic field generated at any point between the parts 120 is in the form of NSNS ..., in which the N pole and the S pole are alternately formed.
  • the double feed coil structure feeder and the double-layer feed coil structure feeder can select a feeder having a two-layer feed coil structure when the feeder is deep according to the excavation depth of the road where the feeder is to be embedded, and when the feeder is shallow, the double feeder The coil feeder can be selected to be useful in the field.
  • FIGS. 10 to 13 are perspective views illustrating various embodiments in which the plank core structure 100 illustrated in FIGS. 10 to 13 is replaced with the continuous core structure 100 of the rod-shaped substrate.
  • FIG. 14 is a continuous core structure, a terminal pole type double feed coil structure feeding device
  • FIG. 15 is a continuous core structure, a terminal pole type double feed coil structure feeding device
  • FIG. 16 is a continuous core structure, bipolar type It is a double feed coil structure feeding device
  • FIG. 17 shows a bipolar bipolar feed coil structure feeding device as a continuous core structure.
  • the rod-shaped core structure 100 illustrated in FIGS. 14 to 17 has a lower feed power than the board-shaped core structure 100, but can lower construction cost and is suitable for a straight road.
  • FIGS. 10 to 13 are perspective views illustrating various embodiments in which the plank core structure 100 illustrated in FIGS. 10 to 13 is replaced with the hybrid core structure 100 of a rod-shaped substrate.
  • FIG. 18 is a mixed core structure, a terminal pole type double feed coil structure feeding device
  • FIG. 19 is a mixed core structure, a terminal pole type double feed coil structure feeding device
  • FIG. 20 is a mixed core structure, a bipolar double feed coil. It is a structure feeding device
  • FIG. 21 shows a bipolar bilayer feed coil structure feeding device as a mixed core structure.
  • the hybrid core structure 100 illustrated in FIGS. 18 to 21 has a lower feed power than the continuous core structure 100, but can lower construction cost and is suitable for a curved road.
  • the structure of the substrate 110 and the pillar part 120 in the core structure 100 is improved, so that the power feeding device can be easily applied to the road in response to the improvement of the power feeding output, the electromagnetic wave (EMF) reduction, and various installation environments.
  • EMF electromagnetic wave
  • the core structure for the power supply device of the electric vehicle as described above is not limited to the configuration and operation of the embodiments described above.
  • the above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.
  • first feeder 133 second feeder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention relates to a core structure for a power supply device of an electric vehicle, which can supply power with a higher capacity than conventional power supply devices by modifying the structure and disposition of a core for a power supply device of an electric vehicle, and which comprises: a plurality of horizontal substrates which are embedded to be spaced apart from each other along a proceeding direction of a specific location or a road so as to minimize a magnetic flux leakage to the bottom; vertical substrate parts which are portions formed by upwardly bending both ends of the horizontal substrate parts so as to minimize a magnetic flux leakage to the outer surface; and pillar parts which are formed in the center of the horizontal substrate parts.

Description

전기자동차의 급전장치용 코어 구조체Core structure for electric power feeding device of electric vehicle
본 발명은 전기자동차의 급전장치용 코어 구조체에 관한 것으로, 더욱 상세하게는 전기자동차의 급전장치용 급전코어의 구조 및 배치를 변경함으로써 기존의 급전장치보다 고용량의 전력을 공급할 수 있는 전기자동차의 급전장치용 코어 구조체에 관한 것이다.The present invention relates to a core structure for a power feeding device of an electric vehicle, and more particularly, to change the structure and arrangement of the power feeding device feeding core of the electric vehicle, the electric power supply of the electric vehicle capable of supplying a higher capacity than the conventional power feeding device It relates to a core structure for an apparatus.
전기자동차 중에서 도로에 매설된 급전선로로부터 전자기유도 원리에 의해 비접촉 방식으로 전력을 전달 받아 정차 및 주행 중에 배터리를 충전할 수 있는 온라인 전기자동차가 있다. Among electric vehicles, there is an online electric vehicle that can receive electric power from a feeder line embedded in a road in a non-contact manner based on an electromagnetic induction principle to charge a battery while stopping and driving.
이와 같은 온라인 전기자동차는 차량의 운행 중에 충전을 할 수 있으므로 기존 전기자동차 상용화의 가장 큰 문제였던 배터리용량과 비용에 대한 문제를 해결할 수 있다. Since such an online electric vehicle can be charged while the vehicle is in operation, it can solve the problem of battery capacity and cost, which is the biggest problem of the existing electric vehicle commercialization.
온라인 전기자동차가 비접촉 방식으로 전력을 전달 받기 위해서는 먼저 급전장치가 도로에 매설되어야 하는데, 이때 급전장치의 코어 형상이나 급전선의 구조를 어떻게 하느냐에 따라 급전장치에서 발생하는 자기력선의 분포가 달라져 전력 전송에 영향을 미치는 점을 고려해야 한다. 그리고 온라인 전기자동차의 집전장치와 도로표면과의 간격이 불규칙하거나 커지더라도 전력을 잘 전달할 수 있는 구조가 필요하고, 온라인 전기자동차가 도로에 매설된 급전장치 부근을 어느 정도 벗어나더라도 원활한 집전이 이루어져 온라인 전기자동차가 일반도로를 자유롭게 주행할 수 있도록 할 수 있어야 한다.In order for an electric vehicle to receive electric power in a non-contact manner, a feeder must be embedded in the road first, and the distribution of the magnetic field lines generated by the feeder varies depending on the core shape of the feeder and the structure of the feeder. Consideration should be given to this. In addition, even if the distance between the current collector and the road surface of the online electric vehicle is irregular or large, a structure that can transfer power well is needed. Electric vehicles must be able to drive freely on the roads.
도 1은 비접촉 자기 유도 방식의 온라인 전기자동차의 충전을 위해 도로에 매설되어 있는 일반적인 듀얼 레일 급전장치를 나타낸 것으로, 전력을 공급하는 급전라인(2)과 자기장의 형태를 인위적으로 조정하여 급전라인(2) 하부 측으로 자기력선속의 누설을 방지하고 자기력선속을 도로 위쪽으로 집중시키도록 하기 위하여 설치되는 페라이트 코어 모듈(1)을 포함하여 구성된다. 1 is a view illustrating a general dual rail power supply device embedded in a road for charging a non-contact magnetic induction type electric vehicle, and a power supply line 2 artificially adjusting a shape of a power supply line 2 and a magnetic field to supply power ( 2) It comprises a ferrite core module (1) which is installed to prevent leakage of magnetic force flux to the lower side and to concentrate the magnetic force flux up the road.
이러한 종래의 일반적인 듀얼 레일 급전장치의 경우에 급전장치에 소요되는 페라이트의 양을 줄이기 위해서 막대 모양의 페라이트 코어 모듈(1)을 도로의 진행방향에 따라 일정 간격으로 배치하여 사용하였다. 그러나 이러한 구조의 급전장치에서는 페라이트 코어 모듈(1)의 페라이트 막대들 사이의 간격이 좁아서 급격한 굴곡의 도로에 설치하려 하면 설치도 어렵고 원래의 급전효율도 유지하기가 어렵다. In the case of the conventional dual rail feeder, a rod-shaped ferrite core module 1 is disposed at regular intervals along a road direction in order to reduce the amount of ferrite required by the feeder. However, in the feeding device of such a structure, the spacing between the ferrite rods of the ferrite core module 1 is narrow, so that it is difficult to install and to maintain the original feeding efficiency when attempting to install on a sudden curved road.
즉, 도로의 곡선 형태에 따라 페라이트 코어 모듈(1)을 배치하기 위해서는 페라이트 코어 모듈(1) 사이의 일측면이 벌어지거나 좁아져야 하기 때문에 자속이 벌어진 페라이트 코어 모듈(1) 사이로 누설되어 원하는 자기장 모양이 형성되기 어렵다. 결국 이러한 문제점으로 인하여 집전장치에서 집전할 수 있는 효율이 떨어지게 된다. That is, in order to arrange the ferrite core module 1 according to the curved shape of the road, one side between the ferrite core modules 1 must be widened or narrowed, so that the magnetic flux is leaked between the ferrite core modules 1 where the magnetic flux is spread, and thus the desired magnetic field shape is obtained. This is difficult to form. As a result, the efficiency that can be collected in the current collector due to this problem is reduced.
그리고, 종래의 일반적인 듀얼 레일 급전장치의 경우에 있어서는 급전 용량을 증가시키기 위해서는 급전선에 흐르는 전류를 증가 시키거나 급전선의 가닥수를 증가 시켜야만 하는데, 이는 다음과 같은 문제점이 있다. In the case of the conventional dual rail feeder, in order to increase the feed capacity, the current flowing through the feeder must be increased or the number of strands of the feeder must be increased. This has the following problems.
먼저, 증가된 전류량을 감당할 수 있도록 급전선의 굵기를 증가시킴으로써 급전선 단가가 상승하고 급전 인버터와 같은 관련 장치들도 변경된 급전선에 따라 변경하여야 하므로 전체적인 전기자동차 급전 시스템 구축비용이 대폭 상승하게 되는 문제점이 있다.First, the cost of the feeder line is increased by increasing the thickness of the feeder line to cover the increased amount of current, and related devices such as the feed inverter must also be changed according to the changed feeder line, thereby significantly increasing the overall electric vehicle power supply system construction cost. .
또한, 급전선의 굵기를 증가시키게 되면 실제 도로의 설치 작업 시 늘어난 무게로 인한 문제점 및 도로의 굴곡에 따라 급전선을 손쉽게 구부리기가 힘들어 지는 문제점등으로 인하여 설치 작업이 어려워지는 문제점이 있다.In addition, when the thickness of the feeder line is increased, there is a problem that the installation work is difficult due to the problem of increased weight during the installation work of the actual road and the difficulty of easily bending the feeder line according to the curvature of the road.
관련 선행기술로는 한국등록특허 10-1226525호(등록일: 2013. 01. 21)가 있다.Related prior art is Korean Patent Registration No. 10-1226525 (Registration date: January 21, 2013).
본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로서, 전기자동차의 급전장치용 코어 구조체에서 급전코어의 구조를 변화시킴으로써 온라인 전기자동차의 급전 및 배전 전체 시스템에서 기존의 급전선 용량의 변경 없이도 전력 전달 효율을 높일 수 있고 실제 도로에 급전장치 설치 작업 시 도로의 굴곡에 따라 손쉽게 작업할 수 있도록 하는 전기자동차의 급전장치용 코어 구조체를 제공하기 위한 것이다.The present invention was devised to solve the above problems, and by changing the structure of the power supply core in the power supply core structure of the electric vehicle, power transmission efficiency without changing the power supply capacity of the existing electric power supply and distribution system of the entire electric vehicle It is to provide a core structure for the electric vehicle power feeding device to increase the power and to easily work according to the curvature of the road when installing the power feeding device on the actual road.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않는다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above.
상기 과제를 달성하기 위한 본 발명의 전기자동차의 급전장치용 코어 구조체는, 특정장소나 도로 진행방향을 따라 이격되게 다수개가 매설되며 하부로의 자속누설을 방지하는 수평기판부와, 상기 수평기판부의 양단이 상측 방향으로 절곡된 부위로서 외측면으로의 자속누설을 방지하는 수직기판부 및 상기 수평기판부 중앙에 형성된 기둥부;를 포함 할 수 있다.Core structure for the electric power feeding device of the electric vehicle of the present invention for achieving the above object is a plurality of horizontally embedded in a specific place or along the road progress direction to prevent the magnetic flux leakage to the bottom and both ends of the horizontal substrate It may include a vertical substrate portion and a pillar portion formed in the center of the horizontal substrate portion to prevent magnetic flux leakage to the outer surface as the bent portion in the upper direction.
구체적으로, 상기 수평기판부 및 수직기판부는 직사각형의 판자 형태인 것을 특징으로 할 수 있다.Specifically, the horizontal substrate portion and the vertical substrate portion may be characterized in that the rectangular board shape.
구체적으로, 상기 수평기판부 및 수직기판부는 막대(bar) 형태이고, 상기 기둥부는 다수개의 상기 수평기판부에 걸쳐 형성되고 이격되게 배치되는 것을 특징으로 할 수 있다. In detail, the horizontal substrate portion and the vertical substrate portion may have a bar shape, and the pillar portion may be formed over a plurality of the horizontal substrate portions and disposed to be spaced apart from each other.
구체적으로, 다수개의 상기 수평기판부 및 수직기판부와, 하나의 상기 기둥부는 하나의 조를 이루고, 상기 조는 이격되게 배치되는 것을 특징으로 할 수 있다.Specifically, a plurality of the horizontal substrate portion and the vertical substrate portion, and one of the pillar portion may form a pair, the jaw may be arranged to be spaced apart.
구체적으로, 복수개의 상기 수평기판부들 간의 매설 간격은 각각이 개별적으로 변경이 가능한 것을 특징으로 할 수 있다.Specifically, the buried interval between a plurality of the horizontal substrate portion may be characterized in that each can be changed individually.
구체적으로, 상기 수평기판부의 폭, 상기 수직기판부의 높이 및 기둥부의 높이는 각각이 개별적으로 변경이 가능한 것을 특징으로 할 수 있다.Specifically, the width of the horizontal substrate portion, the height of the vertical substrate portion and the height of the pillar portion may be characterized in that each can be changed individually.
구체적으로, 상기 기둥부는 단면의 중심 부분이 비어있는 기둥 형상인 것을 특징으로 할 수 있다. Specifically, the pillar portion may be characterized in that the pillar shape of the center portion of the cross section is empty.
구체적으로, 상기 기둥부 상부의 일정길이는 단면 중심 부분이 막혀 있는 것을 특징으로 할 수 있다.Specifically, the predetermined length of the upper portion of the pillar may be characterized in that the center portion of the cross section is blocked.
구체적으로, 상기 수평기판부, 수직기판부 및 기둥부는 강자성체의 특성을 갖는 것을 특징으로 할 수 있다. In detail, the horizontal substrate portion, the vertical substrate portion, and the pillar portion may have characteristics of a ferromagnetic material.
구체적으로, 상기 수평기판부, 수직기판부 및 기둥부는 산화철을 포함한 자성체 세라믹인 것을 특징으로 할 수 있다.Specifically, the horizontal substrate portion, the vertical substrate portion and the pillar portion may be characterized in that the magnetic ceramic containing iron oxide.
구체적으로, 상기 기둥부는 단면이 다각형 또는 원형인 것을 특징으로 할 수 있다.Specifically, the pillar portion may be characterized in that the cross section is polygonal or circular.
이상에서 설명한 바와 같이 본 발명은 전기자동차의 급전장치용 코어 구조체에서 급전코어의 구조를 기둥 형태의 코어에 감는 솔레노이드 구조로 하고 코어 기판을 판자형태로 한 급전모듈을 도로에 일정 간격으로 설치하도록 하기 때문에, 급전장치를 실제 도로에 설치 시 급전효율의 저하 없이도 도로의 굴곡에 따라 손쉽게 설치할 수 있게 하고, 기둥 형태의 코어에 생성되는 자기장의 세기를 극대화할 수 있기 때문에 온라인 전기자동차의 급전 및 배전 전체 시스템에서 전력 전송 효율을 높일 수 있는 효과가 있다. As described above, the present invention provides a solenoid structure in which a structure of a power feeding core is wound around a pillar-shaped core in a power feeding device core structure of an electric vehicle, and a power feeding module having a core board as a board is installed at a predetermined interval on the road. Therefore, when the power feeding device is installed on a real road, it can be easily installed according to the curvature of the road without sacrificing the feeding efficiency, and the strength of the magnetic field generated in the core of the column can be maximized, so that the entire electric power feeding and distribution of the online electric vehicle The system has the effect of increasing the power transmission efficiency.
또한, 급전장치의 급전용량을 증가시키기 위하여 급전선의 굵기를 늘리지 않아도 되기 때문에, 전기자동차용 급전 시스템의 전체 설치비용을 줄일 수 있는 효과가 있다.In addition, since the thickness of the feeder does not have to be increased in order to increase the power supply of the power supply device, there is an effect that the overall installation cost of the electric vehicle power supply system can be reduced.
도 1은 종래의 전기자동차용 급전장치의 구조를 나타낸 도면이다.1 is a view showing the structure of a conventional electric power feeding device for an electric vehicle.
도 2는 본 발명의 일실시예에 따른 판자형 코어 구조체를 나타낸 사시도이다.2 is a perspective view showing a plank core structure according to an embodiment of the present invention.
도 3은 도2에 도시된 급전장치에서 기판부와 기둥부를 도시한 사시도, 측면도 및 평면도이다.3 is a perspective view, a side view, and a plan view showing a substrate portion and a pillar portion in the power feeding device shown in FIG.
도 4는 종래의 다양한 전기자동차의 코어 구조를 나타낸 사시도 및 정면도이다.4 is a perspective view and a front view showing a core structure of a variety of conventional electric vehicles.
도 5는 도 2에 도시된 판자형 코어 구조체에서 급전코일의 감은 횟수를 달리하여 나타낸 사시도이다.FIG. 5 is a perspective view illustrating the winding number of winding coils of the board-shaped core structure shown in FIG.
도 6은 본 발명의 일실시예에 따른 연속형 코어 구조체를 나타낸 사시도이다.6 is a perspective view showing a continuous core structure according to an embodiment of the present invention.
도 7은 도 6에 도시된 급전장치에서 기판과 기둥부를 도시한 사시도 및 평면도이다.FIG. 7 is a perspective view and a plan view illustrating a substrate and a pillar in the power feeding device shown in FIG. 6.
도 8은 본 발명의 일실시예에 따른 혼합형 코어 구조체를 나타낸 사시도이다.8 is a perspective view showing a hybrid core structure according to an embodiment of the present invention.
도 9는 도 8에 도시된 급전장치에서 기판과 기둥부를 도시한 사시도, 측면도 및 평면도이다.FIG. 9 is a perspective view, a side view, and a plan view illustrating a substrate and a pillar in the power feeding device shown in FIG. 8.
도 10은 도 2에 도시된 판자형 코어 구조체의 단자극형 이중 급전코일 구조 급전장치의 종단부를 나타낸 사시도이다.FIG. 10 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the board core structure shown in FIG. 2.
도 11은 본 발명의 일실시예에 따른 판자형 코어 구조체의 단자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.11 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a board-like core structure according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 판자형 코어 구조체의 쌍자극형 이중 급전코일 구조 급전장치를 나타낸 사시도이다.12 is a perspective view showing a bipolar dual feed coil structure feeding device of a board core structure according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 판자형 코어 구조체의 쌍자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.FIG. 13 is a perspective view illustrating a bipolar double layer feed coil structure feeding device of a board core structure according to an embodiment of the present invention.
도 14는 도 6에서 도시된 연속형 코어 구조체의 단자극형 이중 급전코일 구조 급전장치의 종단부를 나타낸 사시도이다. FIG. 14 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the continuous core structure illustrated in FIG. 6.
도 15는 본 발명의 일실시예에 따른 연속형 코어 구조체의 단자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.15 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a continuous core structure according to an embodiment of the present invention.
도 16은 본 발명의 일실시예에 따른 연속형 코어 구조체의 쌍자극형 이중 급전코일 구조 급전장치를 나타낸 사시도이다.16 is a perspective view showing a bipolar dual feed coil structure feeding device of a continuous core structure according to an embodiment of the present invention.
도 17은 본 발명의 일실시예에 따른 연속형 코어 구조체의 쌍자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.FIG. 17 is a perspective view illustrating a bipolar double layer feed coil structure feeding device of a continuous core structure according to an exemplary embodiment of the present invention.
도 18는 도 8에서 도시된 혼합형 코어 구조체의 단자극형 이중 급전코일 구조 급전장치의 종단부를 나타낸 사시도이다. FIG. 18 is a perspective view illustrating an end of a terminal pole type double feed coil structure feeding device of the hybrid core structure illustrated in FIG. 8.
도 19는 본 발명의 일실시예에 따른 혼합형 코어 구조체의 단자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.19 is a perspective view illustrating a terminal pole type two-layer feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
도 20은 본 발명의 일실시예에 따른 혼합형 코어 구조체의 쌍자극형 이중 급전코일 구조 급전장치를 나타낸 사시도이다.20 is a perspective view showing a bipolar dual feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
도 21은 본 발명의 일실시예에 따른 혼합형 코어 구조체의 쌍자극형 이층 급전코일 구조 급전장치를 나타낸 사시도이다.21 is a perspective view showing a bipolar bi-layer feed coil structure feeding device of a hybrid core structure according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호로 표시한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. Like elements in the figures are denoted by the same reference numerals wherever possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
도 2는 본 발명의 일실시예에 따른 판자형 코어 구조체로서, 단자극형 이중 급전코일 구조 급전장치를 나타낸 사시도이고, 도 3은 도2에 도시된 판자형 코어 구조체에서 기판과 기둥부를 도시한 사시도, 측면도 및 평면도로서, '판자형 코어 구조체'라 함은 'ㄷ' 모양으로 형성된 기판(110)이 직사각형 모양의 판자로 이루어진 구조를 지칭하고, '이중 급전코일 구조'라 함은 기둥부에 급전코일을 이중으로 감은 구조를 지칭하고, '단자극형'이라 함은 기둥부(120)에 형성된 자극이 모두 같은 자극으로 동일하게 형성되도록 한 것을 지칭한다. 이러한 전기자동차의 급전장치용 코어 구조체(100)는 기판(110) 및 기둥부(120)를 포함한다.FIG. 2 is a perspective view illustrating a terminal pole type double feed coil structure feeding device as a board core structure according to an embodiment of the present invention, and FIG. 3 is a perspective view showing a substrate and a pillar in the board core structure shown in FIG. As a side view and a plan view, the 'plate-shaped core structure' refers to a structure in which a substrate 110 formed in a 'c' shape is formed of a rectangular board, and the 'double feeding coil structure' is supplied to a column part. Refers to a structure in which the coil is wound in a double, and the term 'single pole type' refers to the magnetic poles formed in the pillar part 120 to be formed in the same magnetic pole. The core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
기판(110)은 도로 진행방향을 따라 이격되게 다수개가 매설되며 하부로의 자속누설을 방지하는 수평기판부(111)와 수평기판부(111)의 양단이 상측 방향으로 절곡된 부위로서 외측면으로의 자속누설을 방지하는 수직기판부(113)를 포함한다.The substrate 110 is embedded in a plurality of spaced apart along the road progress direction, the both ends of the horizontal substrate portion 111 and the horizontal substrate portion 111 to prevent the magnetic flux leakage to the lower side as the magnetic flux to the outer surface It includes a vertical substrate 113 to prevent leakage.
수평기판부(111)는 코어 구조체(100)에서 발생되는 자기장의 모양을 형성하는 역할을 하는데, 코어 구조체(100)의 하부, 즉 도로 지하로 자기장이 형성되는 것을 차단하고 코어 구조체(100)를 지지하기 위해 수평기판부(111) 하부에 설치될 수 있는 철근에 자기장이 유도되는 것을 방지한다.The horizontal substrate 111 serves to form the shape of the magnetic field generated in the core structure 100. The horizontal substrate part 111 blocks the magnetic field from being formed under the core structure 100, that is, the road underground, and supports the core structure 100. To prevent the magnetic field is induced in the rebar that can be installed in the lower portion of the horizontal substrate 111.
수직기판부(113)는 양측면으로 자기장이 누설되는 것을 방지함으로써 코어 구조체(100)의 상부, 즉 도로의 상부 방향으로 대부분의 자기장이 형성될 수 있도록 한다. The vertical substrate 113 prevents a magnetic field from leaking to both sides so that most of the magnetic field can be formed in an upper direction of the core structure 100, that is, in an upper direction of the road.
또한 양 측면에 형성된 수직기판부(113)의 높이는 변동될 수 있는데, 그 높이가 높아질수록 측면으로 누설되는 자속의 양을 줄일 수 있고 급전출력도 높일 수 있다. 이에 대해서는 도 5에서 다시 설명하기로 한다. In addition, the height of the vertical substrate portion 113 formed on both sides can be varied, the higher the height can reduce the amount of magnetic flux leaking to the side and can also increase the power output. This will be described again with reference to FIG. 5.
기둥부(120)는 수평기판부(111) 중앙에 기둥 형태로 형성되는데, 급전선이 솔레노이드 형태로 감길 때 그 급전선의 중앙에 위치하여 자기 코어의 역할을 한다. 여기서 기둥부(120)의 단면의 모양은 원형 또는 다각형이 될 수 있으며, 단면은 도너츠 형태가 될 수 도 있고 속이 꽉 찬 형태가 될 수 있다. 즉, 원가절감을 위해 단면의 중앙에는 작은 직경의 구멍이 뚫려서 전체적으로 보면 속이 빈 기둥 형태가 될 수 있다. The pillar portion 120 is formed in the center of the horizontal substrate portion 111 in the form of a pillar, when the feed line is wound in the form of a solenoid is located in the center of the feed line serves as a magnetic core. Here, the shape of the cross section of the pillar part 120 may be circular or polygonal, and the cross section may be a donut shape or a full shape. In other words, a small diameter hole is drilled in the center of the cross section to reduce the cost, and thus the hollow pillar may be viewed.
또한 기둥부(120)의 높이, 외경 및 내경의 크기는 수직기판부(113)의 절곡된 부분과 마찬가지로 급전선이 감기는 정도나 다른 조건에 의해서 변동될 수 있다. 가령 수평기판부(111) 크기가 가로 720mm, 세로 300mm, 수직기판부(113)의 절곡된 부분 높이가 80mm라고 한다면, 기둥부(120)의 외경은 150mm, 내경은 20mm로 할 수 있다. In addition, the size of the height, the outer diameter, and the inner diameter of the pillar portion 120 may be varied depending on the degree of winding the feed line or other conditions, similar to the bent portion of the vertical substrate 113. For example, if the horizontal substrate 111 has a horizontal size of 720 mm, a vertical 300 mm, and a height of the bent portion of the vertical substrate 113 is 80 mm, the outer diameter of the pillar 120 may be 150 mm, and the inner diameter may be 20 mm.
그리고, 기둥부(120)의 상부 일정길이 부분은 단면 중심 부분이 막혀 있을 수도 있는데, 이와 같이 기둥부(120)를 형성함으로써 자속밀도를 더 향상시킬 수 있다. In addition, the upper predetermined length portion of the pillar portion 120 may be blocked in the center of the cross section, by forming the pillar portion 120 in this way can further improve the magnetic flux density.
이상과 같이 도로에 매설되는 다수개의 코어 구조체(100)들 사이의 간격은 유입되는 전력의 크기나 설치 여건에 따라서 유동적으로 변화할 수 있고, 개별적으로도 변경이 가능하다. As described above, the spacing between the plurality of core structures 100 embedded in the road may vary depending on the size of the incoming power or the installation conditions, and may be changed individually.
가령, 주변에 자기장의 영향을 받을 수 있는 시설물이 있을 때는 코어 구조체(100)의 매설 간격을 넓혀서 자기장의 세기를 약하게 하여 대응할 수 있고, 그 외의 도로에서는 간격을 좁혀서 자기장의 세기를 강하게 하여 대응할 수도 있다.For example, when there is a facility that can be affected by the magnetic field, it is possible to cope by weakening the strength of the magnetic field by widening the buried interval of the core structure 100, and in the other roads to cope by strengthening the strength of the magnetic field by narrowing the interval have.
본 발명에서는 매설 간격의 일례로서, 수직기판부(111) 크기를 가로 720mm, 세로 300mm로 하였을 때, 코어 구조체(100)들 사이의 간격은 300mm로 할 수 있다. In the present invention, as an example of the buried interval, when the size of the vertical substrate 111 is horizontal 720mm, vertical 300mm, the interval between the core structures 100 may be 300mm.
그리고, 본 발명의 일 실시례로서 기판(110)을 판자형으로 구성하면 후에 상술할 기판 구조 기준으로 기판형의 예상되는 급전 출력이 연속형보다는 11%가량 높고, 혼합형보다 16%정도 높아진다.In an embodiment of the present invention, when the substrate 110 is formed in a board shape, the expected feeding power of the substrate type is about 11% higher than that of the continuous type and about 16% higher than the mixed type based on the substrate structure described later.
가령, 수평기판부(111) 크기를 가로 720mm, 세로 300mm로 하고, 기둥부(120)의 외경을 150mm, 내경을 20mm로 한 후, 코어 구조체(100)들 사이의 간격을 300mm로 한 후 급전출력을 측정하면, 유도전압 2585V, 예상 출력 42.08kW가 출력된다. For example, the horizontal substrate 111 has a size of 720 mm and a width of 300 mm, an outer diameter of the pillar part 120 is 150 mm and an inner diameter of 20 mm, and then the interval between the core structures 100 is 300 mm. The measured output voltage is 2585V and the expected output is 42.08kW.
또한, 기판(110)과 기둥부(120)는 페라이트(ferrite)를 이용하여 제조할 수 있는데, 이에 한정하지 않고 강자성체의 특성을 갖는 재료라면 얼마든지 대체 사용이 가능하다. In addition, the substrate 110 and the pillar portion 120 may be manufactured by using ferrite, but the material may be used as long as the material having the characteristics of the ferromagnetic material is not limited thereto.
즉, 페라이트는 강자성체이고 투자율이 높고 전도성이 낮은 특성을 갖는데 보통 산화철을 포함한 자성체 세라믹을 총칭한다. 제조방법으로는 산화철과 산화아연, 산화망간, 산화니켈 등의 혼합물을 소결하여 제조한다.In other words, ferrite is a ferromagnetic material, has a high permeability and low conductivity, and generally refers to a magnetic ceramic including iron oxide. As a manufacturing method, a mixture of iron oxide, zinc oxide, manganese oxide, nickel oxide, and the like is prepared by sintering.
급전선(130)은 제1 급전선(131)과 제2 급전선(133)을 포함하는데 각각은 전류가 들어가고 나오는 전선으로서 기둥부(120)에 감긴 방향에 따라 상부 또는 하부로 향하는 자기장을 형성한다. The feeder line 130 includes a first feeder line 131 and a second feeder line 133, each of which is a wire into and out of an electric current, and forms a magnetic field directed upwardly or downwardly according to a direction wound around the pillar 120.
제1 급전선(131)은 복수개의 기둥부(120)에 차례대로 1회 이상 감겨서 배치되는데, 이를 도 10을 참조하여 설명하면 제1 급전선(131)은 좌측으로부터 첫 번째 기둥부(120)에 안쪽에 하부에서 상부로 올라가며 시계 반대 방향으로 한차례 감긴 후 두 번째 기둥부(120)로 옮겨가 상부에서 하부로 내려가며 시계 반대 방향으로 한차례 감긴다. 다시 그 옆의 세 번째 기둥부(120)로 옮겨가며 같은 과정을 반복하며 배치된다. The first feed line 131 is disposed to be wound one or more times in order to the plurality of pillar parts 120. When this is described with reference to FIG. 10, the first feed line 131 is disposed on the first pillar part 120 from the left side. Going up from the bottom to the top of the inside in a counterclockwise winding once, move to the second column 120, and then go down from the top to the bottom in a counterclockwise direction. Again moving to the third column 120 next to it is arranged repeating the same process.
제2 급전선(133)은 제1 급전선(131)과 반대 방향으로 전류가 흐르며 마지막 코어 구조체(100)에서부터 차례로 기둥부(120)에 감기면서 배치되되 제1 급전선(131)이 기둥부(120)에 감기고 난 그 외부에 이중으로 다시 감겨 배치되며 감긴 방향은 제1 급전선과 같게 된다.The second feed line 133 is disposed while the current flows in a direction opposite to the first feed line 131 and is wound around the pillar part 120 in order from the last core structure 100, but the first feed line 131 is arranged in the pillar part 120. It is wound on the outside of the rolled up and doubled again, and the winding direction is the same as that of the first feeder.
도 2, 또는 도 5를 참조하여 설명하면 제1 급전선(131)이 감겨진 세 번째 기둥부(120)의 외부에 상부에서 하부로 내려가며 시계 반대 방향으로 한차례 감긴 후 제1 급전선(131)이 감겨진 두 번째 기둥부(120)로 옮겨가 하부에서 상부로 올라가며 시계 반대 방향으로 한차례 감긴다. 다시 그 옆의 제1 급전선(131)이 감겨진 첫 번째 기둥부(120)로 옮겨가며 같은 과정을 반복하며 배치된다.Referring to FIG. 2 or FIG. 5, the first feed line 131 is rolled down from the top to the bottom of the third pillar 120 on which the first feed line 131 is wound and then counterclockwise. Moving to the second pillar 120 is wound up from the bottom to the top and wound one time counterclockwise. Again, the first feed line 131 next to it is moved to the first pillar portion 120 wound and is disposed while repeating the same process.
여기서 전기자동차의 급전장치용 코어 구조체(100)의 맨 마지막 단에 위치한 기둥부(120)에서는 도 10을 참고하면, 제1 급전선(131)과 제2 급전선(133)이 서로 이어지며 감기는 방식은 상술한 바와 같이 이중으로 감기게 된다.Here, in the pillar portion 120 located at the last end of the electric power feeding device core structure 100 of the electric vehicle, referring to FIG. 10, the first feed line 131 and the second feed line 133 are connected to each other and wound. Is double wound as described above.
이와 같이 강자성체인 기둥부(120)에 감긴 제1, 2 급전선(131, 133)에 의하여 코어 구조체(100)에는 급전선이 감긴 방향에 따라 상부 또는 하부로 향하는 자기장이 생성된다. 도 2에서 기둥부(120) 상부에 자기장의 방향을 화살표로 표시하였다. As described above, the first and second feed lines 131 and 133 wound around the pillar part 120, which are ferromagnetic bodies, generate a magnetic field directed toward the top or the bottom of the core structure 100 in the direction in which the feed lines are wound. In FIG. 2, the direction of the magnetic field is indicated by an arrow on the pillar part 120.
단 급전선(130)에 흐르는 전류는 교류가 대부분이고, 교류는 순간적으로 전류의 방향이 변화하므로 그때마다 자기장의 방향도 변화한다. 도 2에 도시된 자기장의 방향은 어느 한 순간에서의 자기장의 방향이 된다.Since the current flowing through the feed line 130 is mostly alternating current, the alternating current momentarily changes the direction of the current, and thus the direction of the magnetic field also changes. The direction of the magnetic field shown in FIG. 2 becomes the direction of the magnetic field at any moment.
즉, 기둥부(120)에 솔레노이드 형태로 감긴 제1, 2 급전선(131, 133)에 전류가 흐르면 전선에 생성되는 자기장이 중첩되어 기둥부(120)의 상부에 일정한 극성을 띄는 자기장이 형성되는데, 이것은 제1, 2 급전선(131, 133) 주변에 생성된 자기력선이 중첩되면서 제1, 2 급전선(131, 133) 중앙에 한 방향으로 작용하는 자기력선이 발생하는 것이다. That is, when current flows in the first and second feed lines 131 and 133 wound in the solenoid form in the pillar part 120, the magnetic field generated in the wire is overlapped to form a magnetic field having a certain polarity on the upper part of the pillar part 120. This is because magnetic force lines generated around the first and second feed lines 131 and 133 overlap and magnetic force lines acting in one direction in the center of the first and second feed lines 131 and 133.
여기서 제1,2 급전선(131, 133)이 모두 시계 반대 방향으로 기둥부(120)에 감겨져 있어 전류가 어느 한 시점에서 시계 반대 방향으로 기둥부(113) 주위를 돌아서 흘러 나가게 되며 기둥부(113)의 상부는 N극이 되고, 곧이어 또 다른 어느 한 시점에서는 전류의 방향이 바뀌게 되면 S극이 된다.Here, the first and second feed lines 131 and 133 are all wound around the pillar part 120 in a counterclockwise direction so that a current flows around the pillar part 113 in a counterclockwise direction at one point and flows out. The upper part of N) becomes the N pole, and immediately at another point in time, when the direction of the current changes, it becomes the S pole.
그리고 각각의 코어 구조체(100) 사이에 배치된 제1, 2 급전선(131, 133)을 중심으로 어느 한 순간에 주위에 밖에서 안쪽으로 원을 그리며 자기장이 형성 된다. 도 2에서 코어 구조체(100) 사이에 배치된 제1, 2 급전선(131, 133)에 자기장의 방향을 화살표로 표시하였고, 상술한 바와 같이 교류에 의해 자기장의 방향은 반복적으로 변화한다. And a magnetic field is formed by drawing a circle from the outside to the inside around at a moment around the first and second feed lines 131 and 133 disposed between the respective core structures 100. In FIG. 2, the directions of the magnetic field are indicated by arrows on the first and second feed lines 131 and 133 disposed between the core structures 100, and as described above, the direction of the magnetic field is repeatedly changed.
결과적으로 각각의 코어 구조체(100)들에 형성되는 자기장의 위치와 방향은 주차장과 같은 특정장소나 도로에서 코어 구조체(100)가 매설된 방향을 따라 형성되되, 먼저, 기둥부(120)에서는 도로의 진행방향에서 수직으로 보아서 기둥부(120)에서 상부 방향으로 자기장이 나오고, 다음으로 코어 구조체(100) 사이에 위치한 제1, 2 급전선(131,133)에서도 상부 방향으로 자속이 나오도록 자기장이 형성된다.As a result, the position and direction of the magnetic field formed in each of the core structures 100 are formed along the direction in which the core structure 100 is buried in a specific place or a road such as a parking lot. A magnetic field emerges from the column 120 in an upward direction when viewed in a vertical direction, and then a magnetic field is formed so that the magnetic flux is emitted upward in the first and second feed lines 131 and 133 positioned between the core structures 100. .
도 4는 본 발명의 일실시예와 비교하기 위한 기존 상용화된 코어 구조를 나타낸 사시도와 정면도로서 (a)와 (b)에서는 'ㄷ' 형태의 코어(11) 2개가 요철 부분에 코일(13)이 삽입된 채로 길이 방향으로 레일처럼 배치되고, (c)와 (d)에서는 막대 모양이며 'E' 형태를 이루는 코어(11)가 일정한 간격으로 배치되고 그 위에 급전코일(13)이 위치한다. Figure 4 is a perspective view and a front view showing a conventional commercialized core structure for comparison with one embodiment of the present invention (a) and (b) in the two '11' core (11) coil 13 in the uneven portion The inserted coil is arranged like a rail in the longitudinal direction, and in (c) and (d), the cores 11 having a rod shape and forming an 'E' shape are arranged at regular intervals, and the feed coil 13 is positioned thereon.
이와 같이 도 4에 도시된 기존 상용화된 급전모듈(10)을 상술한 본 발명의 일실시예와 비교하여 급전출력과 유해한 전자기장(EMF)을 아래의 표 1에 나타내었다. As described above, the power supply output and the harmful electromagnetic field (EMF) are shown in Table 1 below in comparison with the conventional commercially available power supply module 10 shown in FIG. 4.
여기서 측정도구로는 맥스웰 자기장 시뮬레이션 툴(Ansys_Maxwell 16.0)을 사용하였고, Magnetic B-Field 분석과 Induced Voltage를 이용한 예상 출력값을 계산하였다. 그리고, 표 1에 나타난 종류 a는 도 4의 (a)와 (b)에 도시된 급전모듈(10)을 지칭하는 것이고, 종류 b는 (c)와 (d)에 도시된 급전모듈(10)을 지칭하는 것이며, 본 발명의 일실시예는 도 2에 도시된 코어 구조체(100)를 지칭한다.Maxwell magnetic field simulation tool (Ansys_Maxwell 16.0) was used as the measurement tool, and the expected output value was calculated using the magnetic B-Field analysis and induced voltage. In addition, type a shown in Table 1 refers to the power supply module 10 shown in (a) and (b) of Figure 4, type b is the power supply module 10 shown in (c) and (d) One embodiment of the present invention refers to the core structure 100 shown in FIG.
종류Kinds 유도 전압Induction voltage EMF (μT) EMF (μT) 예상출력(kW)Expected output (kW)
a 급전모듈a Feed module 823823 26.9526.95 14.8114.81
b 급전모듈b Feed module 920920 28.8928.89 16.5616.56
본 발명의 일 실시예One embodiment of the present invention 12741274 25.8925.89 22.9322.93
표 1에서 나타난 바와 같이, 도 3에 도시된 기둥부(120)에 제1,2 급전선(131, 133)이 1회씩 감긴 형태의 본 발명의 일실시예의 측정결과는 상용화된 종류 b 급전모듈의 경우보다 급전 출력은 38.4%(=22.93/16.56)가 향상되었고 유해한 전자기장(EMF)은 10.4%(=25.89/28.89)가 오히려 감소되었음을 알 수 있다.As shown in Table 1, the measurement results of the embodiment of the present invention in which the first and second feed lines 131 and 133 are wound once on the column 120 shown in FIG. The feed power was improved by 38.4% (= 22.93 / 16.56) and the harmful electromagnetic field (EMF) was reduced by 10.4% (= 25.89 / 28.89).
도 5는 도 3에 도시된 코어 구조체(100)에서 기둥부(120)에 감기는 급전코일(130)의 감은 횟수를 달리한 코어 구조체(100)를 나타낸 사시도로서, (a)에서는 기둥부(120)에 제1,2 급전선(131,133)을 각각 3회씩 감았고, (b)에서는 기둥부(120)에 제1,2 급전선(131, 133)을 각각 5회씩 감았다. FIG. 5 is a perspective view illustrating the core structure 100 in which the number of windings of the feed coil 130 wound around the pillar 120 in the core structure 100 shown in FIG. 3 is different. The first and second feed lines 131 and 133 were respectively wound three times at 120, and in (b) the first and second feed lines 131 and 133 were respectively wound five times at the column 120.
그리고, 도 5의 (a)와 (b)에 도시된 수직기판부(111)의 폭, 즉 가로 길이와 수직기판부(113)의 높이, 즉 절곡된 부분의 높이를 변경하면 누설되는 유해한 전자기파(EMF) 및 급전출력이 달라진다. In addition, harmful electromagnetic waves (EMF) leaking when the width of the vertical substrate portion 111 shown in FIGS. 5A and 5B, that is, the horizontal length and the height of the vertical substrate portion 113, that is, the height of the bent portion are changed. ) And feed output are different.
먼저, 비교를 위하여 현재 상용화되어 설치 및 운용중인 도 1의 급전구조에서 폭을 720mm, 높이를 80mm하고 200A의 급전 전류를 흘린 후, 현재 실제 운용중인 급전픽업을 모델링하여 급전출력과 전자기파(EMF)를 계산하였더니, 각각 33kW 와 28.58μT로 계산되었다. First, in the feed structure of FIG. 1 currently commercialized and installed and operated for comparison, a feed current of 720 mm in width, 80 mm in height, and 200 A of feed current is flowed, and then the feed power output and electromagnetic wave (EMF) are modeled. Were calculated to be 33kW and 28.58μT, respectively.
다음으로, 도 5의 (a)에 도시된 판자형 코어 구조체(100)의 제1,2 급전선(131, 133)을 기둥부(120)에 이중으로 각각 3회씩 이중으로 감고, 수평기판부(111)의 가로 길이와 수직기판부(113)의 높이를 변화시켜 가며 위와 같은 조건으로 급전출력을 아래의 표 2에, 누설되는 유해한 전자기파(EMF)의 양을 측정하여 아래의 표 3에 나타내었다. 단위는 kW 및 μT 이다. Next, the first and second feed lines 131 and 133 of the plank core structure 100 illustrated in FIG. 5A are respectively wound three times twice on the pillar part 120, and the horizontal substrate part 111 is formed. By varying the horizontal length and the height of the vertical substrate 113, the power supply output is measured in the following conditions as shown in Table 2 below, and the amount of harmful electromagnetic waves (EMF) leaked is shown in Table 3 below. Units are kW and μT.
그리고 측정도구로는 맥스웰 자기장 시뮬레이션 툴(Ansys_Maxwell 16.0)을 사용하였고, Magnetic B-Field 분석과 Induced Voltage를 이용한 예상 출력값을 계산하였다. Maxwell magnetic field simulation tool (Ansys_Maxwell 16.0) was used as a measurement tool, and the expected output value was calculated using magnetic B-Field analysis and induced voltage.
가로높이        Width 720mm720 mm 620mm620mm 520mm520 mm 420mm420mm
80mm80 mm 42.08442.084 40.01440.014 37.08037.080 34.09234.092
90mm90 mm 42.30042.300 40.08640.086 37.38637.386 33.98433.984
100mm100 mm 42.62442.624 40.55440.554 37.51237.512 33.58833.588
110mm110 mm 43.23643.236 40.84240.842 37.56637.566 33.46233.462
120mm120 mm 43.90243.902 41.09441.094 36.19836.198 33.82233.822
가로높이        Width 720mm720 mm 420mm420mm
80mm80 mm 28.1628.16 28.4128.41
90mm90 mm 28.1828.18 28.5628.56
100mm100 mm 28.1228.12 28.5528.55
110mm110 mm 27.9227.92 28.2328.23
120mm120 mm 27.8827.88 28.3828.38
이어서, 도 5의 (b)에 도시된 판자형 코어 구조체(100)를, 제1,2 급전선(131, 133)을 기둥부(120)에 이중으로 각각 5회씩 감고, 수평기판부(111)의 가로 길이와 수직기판부(113)의 높이를 변화시켜 가며 위와 같은 조건으로 급전출력을 아래의 표 4에, 누설되는 유해한 전자기파(EMF)의 양을 측정하여 아래의 표 5에 나타내었다. 단위는 kW 및 μT 이다. Subsequently, the board-shaped core structure 100 shown in FIG. 5B is wound twice each of the first and second feed lines 131 and 133 on the column portion 120, and the horizontal substrate portion 111 of the The power supply output under the above conditions while varying the horizontal length and the height of the vertical substrate 113 is measured in Table 4 below, and the amount of harmful electromagnetic waves (EMF) leaked is shown in Table 5 below. Units are kW and μT.
가로높이        Width 720mm720 mm 620mm620mm 520mm520 mm 420mm420mm
145mm145 mm 60.5260.52 58.4558.45 55.5255.52 52.5352.53
155mm155 mm 61.8961.89 59.6859.68 56.9856.98 53.5753.57
165mm165 mm 62.8362.83 60.7660.76 57.7257.72 53.7953.79
175mm175 mm 65.9265.92 63.5363.53 60.2560.25 56.1556.15
185mm185 mm 67.6767.67 65.8665.86 60.9760.97 58.6958.69
가로높이        Width 720mm720 mm 420mm420mm
145mm145 mm 33.6833.68 33.9333.93
155mm155 mm 32.2932.29 32.3832.38
165mm165 mm 31.9331.93 32.3632.36
175mm175 mm 30.6030.60 30.9130.91
185mm185 mm 30.5430.54 31.0431.04
판자형 코어 구조체(100)로서, 수평기판부(111)의 가로 길이를 720mm, 높이를 80mm로 동일하게 하였을 때, 급전선(130)을 기둥부(120)에 3회 감은 이중 급전코일 구조의 급전모듈은 급전출력이 42kW이고, 반면에 도 4의 (c)와 (d)에 도시된 종래의 상용 급전모듈(10)의 급전출력은 33kW으로, 본 발명의 판자형 코어 구조체(100)의 출력이 약 27%가 증가되었음을 표 2를 통해 알 수 있다. As the board-shaped core structure 100, when the horizontal length of the horizontal board portion 111 is equal to 720 mm and the height is 80 mm, the feed module of the double feed coil structure wound around the feed line 130 three times on the column portion 120 The feed power output is 42kW, while the feed power of the conventional commercial feed module 10 shown in (c) and (d) of Figure 4 is 33kW, the output of the plank core structure 100 of the present invention is It can be seen from Table 2 that about 27% increase.
그리고, 기둥부(120)에 급전선(130)을 이중으로 각각 3회씩 감은 코어 구조체(100)에서 기판(111)의 가로의 길이와 너비를 변화시켜도 도 4의 (c)와 (d)에 도시된 종래의 b 급전모듈(10)에서 측정된 전자기파(EMF) 값보다 작은 값이 측정되었음을 표 3을 통해 알 수 있다.In addition, even if the length and width of the width of the substrate 111 are changed in the core structure 100 wound three times, each of the feed line 130 on the pillar part 120, as illustrated in FIGS. 4C and 4D. It can be seen from Table 3 that a value smaller than the value of the electromagnetic wave (EMF) measured in the conventional b feed module 10 is measured.
다음으로 급전선(130)을 기둥부(120)에 5회 감은 판자형 코어 구조체의 이중 급전코일 구조의 급전모듈의 경우에는 기판(111)의 가로 길이가 커질수록 자기저항이 감소하여 약 15~17%까지 급전용량을 증가 시킬 수 있음을 알 수 있다. Next, in the case of the feed module having the double feed coil structure of the board core structure wound around the feed line 130 five times on the pillar part 120, the magnetoresistance decreases as the width of the substrate 111 increases, thereby increasing the magnetic resistance to about 15 to 17. It can be seen that the feed capacity can be increased by%.
또한 기판(111)의 가로 길이를 고정하고 수직기판부(113)의 높이를 높일수록 10~12%까지 급전용량을 증가 시킬 수 있음을 알 수 있다. In addition, it can be seen that as the width of the substrate 111 is fixed and the height of the vertical substrate 113 is increased, the power supply capacity can be increased by 10 to 12%.
다시, 수평기판부(111)의 가로 길이와 수직기판부(113)의 높이를 동시에 최대로 하였을 때는, 28.9%까지 급전용량을 증가 시킬 수 있음을 알 수 있다. Again, when the horizontal length of the horizontal substrate portion 111 and the height of the vertical substrate portion 113 are maximized at the same time, it can be seen that the power supply capacity can be increased to 28.9%.
또한, 이와 같이 급전용량을 증가시켰음에도 전자기파(EMF)는 10%가 감소했음을 알 수 있다. In addition, it can be seen that the electromagnetic wave (EMF) is reduced by 10% despite the increase in the power supply.
이것은 판자형 코어 구조체(100)일 때는 형성되는 자기장의 모양이 기판(110)의 형상을 따라 이루어져 급전용량이 증가하여도 누설되는 전자기파(EMF)는 감소하기 때문인 것으로 판단된다. This is because the shape of the magnetic field formed when the plank core structure 100 is formed along the shape of the substrate 110 reduces the leakage of electromagnetic waves (EMF) even when the power supply is increased.
또한, 여기서 기둥부(120)의 높이와 수직기판부(113)의 높이는 동일하게 변경되도록 하였다. 이는 강자성체 재질로 이루어진 수직기판부(113))의 높이가 높아질수록 급전출력은 증가되고 유해한 전자기장(EMF)은 감소되기 때문이다.In addition, the height of the column portion 120 and the height of the vertical substrate 113 is to be changed in the same way. This is because the feeding power is increased and the harmful electromagnetic field (EMF) is reduced as the height of the vertical substrate 113 made of ferromagnetic material increases.
반면, 기둥부(120)의 높이를 변경하지 않고 수직기판부(113)의 높이만을 변경하였을 경우에는 유해한 전자기장(EMF)의 값은 큰 변동이 없지만, 급전출력은 현저히 낮은 경향을 보였다. On the other hand, when only the height of the vertical substrate portion 113 is changed without changing the height of the pillar portion 120, the value of the harmful electromagnetic field (EMF) does not change significantly, but the power supply output tended to be significantly lower.
다시, 수직기판부(113)의 높이 변경 없이 기둥부(120)의 높이를 증가시키면 급전출력은 증가되지만 유해한 전자기장(EMF) 값이 증가 되는 경향을 확인 할 수 있었다.Again, increasing the height of the pillar portion 120 without changing the height of the vertical substrate 113, the feed power is increased but the harmful electromagnetic field (EMF) value was confirmed to increase the tendency.
도 6은 본 발명의 일실시예에 따른 연속형 코어 구조체로서, 단자극형 이중 구조 급전장치를 나타낸 사시도이고, 도 7은 도6에 도시된 연속형 코어 구조체에서 기판과 기둥부를 도시한 사시도, 측면도 및 평면도로서, '연속형 코어 구조체'라 함은 이격되게 연속적으로 배치된 막대 모양 코어 구조체(100)를 지칭하고, '이중 급전코일 구조'라 함은 기둥부에 급전코일(130)을 이중으로 감은 구조를 지칭하고, '단자극형'이라 함은 기둥부(113)에 형성된 각각의 자극이 모두 같은 자극으로 동일하게 형성되도록 한 것을 지칭한다. 이러한 전기자동차의 급전장치용 코어 구조체(100)는 기판(110) 및 기둥부(120)를 포함한다. FIG. 6 is a perspective view illustrating a terminal pole type dual structure power supply device as a continuous core structure according to an exemplary embodiment of the present invention, and FIG. 7 is a perspective view illustrating a substrate and a pillar in the continuous core structure shown in FIG. 6. And as a plan view, 'continuous core structure' refers to the bar-shaped core structure 100 continuously arranged spaced apart, 'double feeding coil structure' refers to the feed coil 130 in the column The winding refers to the structure, and the term "single stimulus" refers to each of the magnetic poles formed in the column portion 113 is formed to be the same as the same magnetic pole. The core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
기판(110)은 그 모양이 'ㄷ'형 막대 모양이고, 기둥부(120)는 다수개의 수평기판부(111) 중앙에 걸쳐 기둥 형태로 형성된다.The substrate 110 has a 'c' shaped bar shape, and the pillar portion 120 is formed in a pillar shape over the center of the plurality of horizontal substrate portions 111.
기둥부(120)는 다시 도로 진행방향을 따라 일정한 간격으로 다수개가 연속적으로 배치되며, 급전선(130)이 기둥부(120)에 솔레노이드 형태로 감길 때 급전선(130)의 내부 중심에 위치하여 자기 코어의 역할을 한다. The pillar portion 120 is again arranged in a plurality at a predetermined interval in the road progression direction continuously, when the feed line 130 is wound in the solenoid form on the pillar portion 120 is located in the inner center of the feed line 130 and the magnetic core Plays a role.
기둥부(120)의 단면의 모양은 원형 또는 다각형이 될 수 있으며, 단면의 중앙에는 작은 직경의 구멍이 뚫려서 전체적으로 보면 속이 빈 기둥 형태가 된다. The shape of the cross section of the pillar part 120 may be circular or polygonal, and a hole of a small diameter is drilled in the center of the cross section so as to form a hollow column.
수직기판부(113)의 높이와 기둥부(113)의 높이, 외경 및 내경의 크기는 급전선이 감기는 정도나 다른 조건에 의해서 변동될 수 있다. The height of the vertical substrate portion 113 and the height of the pillar portion 113, the size of the outer diameter and the inner diameter may be varied depending on the degree of winding the feed line or other conditions.
일례로서 막대 모양의 기판(111) 하나의 크기가 가로 720mm, 세로 20mm, 절곡된 부분의 높이가 80mm라고 한다면, 기둥부(113)의 외경은 150mm, 내경은 20mm로 하였다(도 7 참조).As an example, if the size of one rod-shaped substrate 111 is 720 mm wide, 20 mm long, and the height of the bent portion is 80 mm, the outer diameter of the pillar portion 113 is 150 mm, and the inner diameter is 20 mm (see FIG. 7).
그리고, 상술한 바와 같이 기둥부(120)의 상부 일정길이 부분은 단면 중심 부분이 막혀 있을 수도 있는데, 이와 같이 기둥부(120)를 형성함으로써 자속밀도를 더 향상시킬 수 있다. In addition, as described above, the upper predetermined length portion of the pillar portion 120 may be blocked by the central section of the cross section. Thus, the magnetic flux density may be further improved by forming the pillar portion 120.
이와 같은 연속형 코어 구조체(100)에서는, 기판 구조 기준으로 상술한 판자형 코어 구조체(100) 보다는 급전출력이 낮아지지만 후술할 혼합형 코어 구조체(100) 보다는 급전출력이 높아진다. In the continuous core structure 100 as described above, the feeding power is lower than the board-shaped core structure 100 described above on the basis of the substrate structure, but the feeding power is higher than the hybrid core structure 100 to be described later.
가령, 수평기판부(111) 크기를 가로 720mm, 세로 20mm로 하고, 수직기판부(113)의 높이를 80mm로 하고, 기둥부(120)의 외경을 150mm, 내경을 20mm로 하여 급전출력을 측정하면, 유도전압 2350V, 예상 출력 37.6kW가 출력된다. 이 수치는 기판구조 기준으로 판자형보다는 낮고, 혼합형보다는 높은 수치이다.For example, if the size of the horizontal substrate portion 111 is 720 mm and 20 mm, the height of the vertical substrate 113 is 80 mm, the outer diameter of the column 120 is 150 mm, and the inner diameter is 20 mm. Induction voltage 2350V, expected output 37.6kW. This figure is lower than the board type and higher than the mixed type based on the substrate structure.
또한, 기판(110)과 기둥부(120)의 재질 및 제1 급전선(131)과 제2 급전선(133)의 구조는 도 2에서 설명한 바와 같으므로 생략하기로 한다. In addition, the materials of the substrate 110 and the pillar part 120 and the structures of the first feed line 131 and the second feed line 133 are the same as described with reference to FIG.
그리고, 도 6에서 급전모듈(110)에 생성되는 자기장의 방향을 화살표로 표시하였는데, 이러한 자기장의 방향 또한 도2에서 설명한 바와 같으므로 생략하기로 한다. In FIG. 6, the direction of the magnetic field generated in the power supply module 110 is indicated by an arrow. However, the direction of the magnetic field is also the same as that described in FIG.
도 8은 본 발명의 일실시예에 따른 혼합형 코어 구조체로서, 단자극형 이중 구조 급전장치를 나타낸 사시도이고, 도 9는 도8에 도시된 혼합형 코어 구조체에서 기판과 기둥부를 도시한 사시도, 측면도 및 평면도로서, '혼합형 코어 구조체'라 함은 이격되게 배열된 막대 모양 기판이 하나의 군을 이루되 이러한 군들이 특정장소나 도로의 진행방향에 따라 다시 이격되게 배치되는 구조를 지칭하고, '이중 급전코일 구조'라 함은 기둥부에 급전코일을 이중으로 감은 구조를 지칭하고, '단자극형'이라 함은 기둥부(113)에 형성된 자극이 모두 N극과 S극 중 어느 하나로 동일하게 형성되도록 한 것을 지칭한다. 이러한 전기자동차의 급전장치용 코어 구조체(100)는 기판(110) 및 기둥부(120)를 포함한다. FIG. 8 is a perspective view illustrating a terminal type dual structure power supply device as a hybrid core structure according to an embodiment of the present invention, and FIG. 9 is a perspective view, a side view, and a plan view of a substrate and a pillar in the hybrid core structure of FIG. 8. As the 'mixed core structure' refers to a structure in which bar-shaped substrates spaced apart form one group, but these groups are spaced apart again according to a specific place or a moving direction of a road, and a 'double feed coil' 'Structure' refers to a structure in which the feed coil is wound in a double portion, and 'single pole type' means that all the magnetic poles formed in the pillar portion 113 are formed to be identical to either the north pole or the south pole. Refer. The core structure 100 for a power feeding device of such an electric vehicle includes a substrate 110 and a pillar portion 120.
기판(110)은 그 모양이 'ㄷ'형 막대 모양으로서 일정개수가 모여 하나의 조를 이루고 이러한 조가 다시 도로의 진행방향을 따라 이격되게 배치된다. The substrate 110 has a shape of a 'c'-shaped bar, and a certain number of pieces are formed to form a group, and the groups are again spaced apart along the traveling direction of the road.
기둥부(120)는 상기 하나의 조를 이루는 다수개의 수평기판부(111) 중앙에 걸쳐 기둥 형태로 형성된다. The pillar part 120 is formed in a pillar shape over the center of the plurality of horizontal substrate parts 111 constituting the pair.
여기서 하나의 조를 이루는 코어 구조체(100)에서 수평기판부(111)들 사이의 간격은 일례로서 30mm가 될 수 있고, 수직기판부(113) 굵기는 20mm가 될 수 있으며, 상술한 바와 같이 수평기판부(111)들 사이의 간격과 수직기판부(113) 높이는 개별적으로 변경이 가능하다.Here, the interval between the horizontal substrate portions 111 in the core structure 100 forming one set may be 30 mm as an example, the thickness of the vertical substrate 113 may be 20 mm, as described above the horizontal substrate portion ( The gap between the 111 and the height of the vertical substrate 113 can be changed individually.
또한, 이렇게 하나의 조를 이루는 코어 구조체(100)는 다시 도로의 진행방향을 따라 이격되게 다수개가 연속적으로 매설된다. 이들 하나의 조를 이루는 코어 구조체(100)들 사이의 간격은 일례로서 300mm가 될 수 있으며, 그 간격은 다수개의 코어 구조체(100) 각각이 개별적으로 변경이 가능하다.In addition, a plurality of core structures 100 forming one pair of the core structures 100 are continuously buried to be spaced apart along the traveling direction of the road. The spacing between the core structures 100 constituting one pair may be 300 mm as an example, and the spacing may be individually changed by each of the plurality of core structures 100.
기둥부(120)는 형태는 상술한 바와 같으므로 생략하기로 한다. Since the pillar portion 120 has the same shape as described above, it will be omitted.
수직기판부(113)의 높이와, 하나의 군을 이루는 기판(111)의 가로와 세로의 길이 및 기둥부(120)의 높이, 외경 및 내경의 크기는 상술한 바와 같이 급전선이 감기는 정도나 다른 조건에 의해서 각각이 개별적으로 변동될 수 있다. The height of the vertical substrate portion 113, the length of the horizontal and vertical lengths of the substrate 111 forming one group, and the height, outer diameter, and inner diameter of the pillar portion 120 may be different from those of winding the feed line as described above. Each condition can be changed individually by conditions.
일례로서 하나의 군을 이루는 코어 구조체(100)의 가로의 길이가 720mm이고 세로의 길이는 320mm, 수직기판부(113)의 높이가 80mm라고 한다면, 기둥부(120)의 외경은 150mm, 내경은 20mm로 할 수 있다(도 9 참조).As an example, if the horizontal length of the core structure 100 forming one group is 720 mm and the vertical length is 320 mm, and the height of the vertical substrate 113 is 80 mm, the outer diameter of the pillar part 120 is 150 mm and the inner diameter is 20 mm. (See FIG. 9).
이와 같이 코어 구조체(100)를 혼합형으로 구성하면 기판 구조 기준으로 상술한 판자형 코어 구조체(100) 및 연속형 코어 구조체(100) 보다는 급전출력이 낮아지지만 종래의 상용화된 급전장치보다는 급전출력이 높고 소요되는 공사비를 절약할 수 있으며, 다양한 모양의 도로에 용이하게 설치하기 쉽다는 장점이 있다. When the core structure 100 is configured in a mixed manner as described above, the feeding power is lower than that of the board-shaped core structure 100 and the continuous core structure 100 described above on the basis of the substrate structure, but the feeding power is higher than that of the conventional commercial feeding device. It can save the cost of construction and has the advantage of easy installation on the road of various shapes.
이러한 혼합형 코어 구조체(100)의 급전출력은, 하나의 조를 이루는 코어 구조체(100) 크기를 가로 720mm, 세로 320mm로 하고, 수직기판부(111)의 높이를 80mm로 하고, 하나의 조를 이루는 코어 구조체(100)간의 간격은 300mm 하며, 기둥부(120)의 외경을 150mm, 내경을 20mm로 하여 급전출력을 측정하면, 유도전압 2223V, 예상 출력 35.56kW가 된다. The feeding power of the hybrid core structure 100 is a core structure 100 constituting a pair of horizontal 720mm, vertical 320mm, the height of the vertical substrate portion 111 to 80mm, the core constituting a group The spacing between the structures 100 is 300 mm, and when the feeding power is measured with the outer diameter of the pillar portion 120 being 150 mm and the inner diameter being 20 mm, the induced voltage is 2223 V and the expected output is 35.56 kW.
기판(110)과 기둥부(120)의 재질 및 제1 급전선(120)과 제2 급전선(130)의 구조는 도 2에서 설명한 바와 같으므로 생략하기로 한다. Materials of the substrate 110 and the pillar part 120 and the structures of the first feed line 120 and the second feed line 130 are the same as described with reference to FIG. 2 and will be omitted.
그리고, 도 8에서 코어 구조체(100)에 생성되는 자기장의 방향을 화살표로 표시하였다. 이러한 자기장의 방향 또한 도2에서 설명한 바와 같으므로 생략하기로 한다. In FIG. 8, the direction of the magnetic field generated in the core structure 100 is indicated by an arrow. Since the direction of the magnetic field is also the same as described with reference to FIG.
도 10은 도 2에 도시된 판자형 코어 구조체로서, 단자극형 이중 급전코일 구조 급전장치의 최종단을 나타낸 사시도이며, 기둥부(120)에 형성되는 자극이 모두 N극과 S극 중 어느 하나로 동일하게 형성되도록 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 방향을 동일하게 하고, 기둥부(120)에 제1,2 급전선(131, 133)을 각각 3회씩 감았으며, 전체 급전장치(100)에서의 최종단 상태를 도시한 것이다. FIG. 10 is a planar core structure shown in FIG. 2, which is a perspective view illustrating a final end of a terminal type double feed coil structure feeding device, wherein all of the magnetic poles formed in the column 120 are the same as either the N pole or the S pole. The first and second feed lines 131 and 133 are wound in the same direction in which the first and second feed lines 131 and 133 are wound around the column 120, and the first and second feed lines 131 and 133 are wound three times, respectively. , Shows the final stage state in the entire power supply device (100).
먼저, 전류 방향이 도로의 진행방향과 같은 제1 급전선(131)이 기둥부(120) 안쪽에 시계반대 방향으로 감기고, 다음으로 최종단에서 돌아 나오되 제2 급전선(133)은 제1 급전선(131) 외부에 감겨 2중으로 감긴 구조로서, 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 방향과 각 급전선(131, 133)에서 전류가 흐르는 방향을 화살표로 표시하였다.First, the first feed line 131, the current direction of which is the same as the traveling direction of the road is wound in the counterclockwise direction inside the pillar portion 120, and then comes out from the final end, the second feed line 133 is the first feed line ( 131) As a structure wound around the outside and double-wound, the direction in which the first and second feed lines 131 and 133 are wound around the column 120 and the direction in which current flows in each of the feed lines 131 and 133 are indicated by arrows.
판자형 코어 구조체(100)의 기판(110) 구조 및 기능은 도 2에서 설명한 바와 동일하므로 생략하기로 한다. Since the structure and function of the substrate 110 of the plank core structure 100 are the same as those described with reference to FIG. 2, a description thereof will be omitted.
도 11은 판자형 코어 구조체로서, 단자극형 이층 급전코일 구조 급전장치의 일 실시예를 나타낸 도면으로서, 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 구조를 달리한 본 발명의 또 다른 실시예를 나타낸 사시도이다. FIG. 11 is a view showing an embodiment of a terminal type double-layer feed coil structure feeding device as a board-shaped core structure, in which a structure in which the first and second feed lines 131 and 133 are wound around the column part 120 is different. A perspective view showing still another embodiment of the invention.
기둥부(120)에 형성되는 자극이 모두 N극과 S극중 어느 하나로 동일하게 형성되도록 제1,2 급전선(131, 133)의 전류 방향을 동일하게 하고, 전류의 흐름이 도로의 진행방향과 같은 제1 급전선(131)을 먼저 각 기둥부(120)의 하부에 중간 부분까지 감은 후, 이어서 최종단에서 돌아 나오는 제2 급전선(133)을 각각의 기둥부(120)에서 감겨진 제1 급전선(131)의 위 부분부터 이어서 감아 급전선이 감기는 구조가 2층 형태가 되도록 하였다. The currents of the first and second feed lines 131 and 133 are made the same so that the magnetic poles formed on the pillar part 120 are the same as either the north pole or the south pole. The first feed line 131 is first wound on the lower portion of each pillar 120 to a middle portion, and then the second feed line 133, which is returned from the last end, is wound on the first feed line 120, respectively. From the upper part of 131), the structure in which the feeder is wound is wound in two layers.
그리고 기둥부(120)에 제1,2 급전선(131, 133)을 각각 3회씩 감았고 전체 코어 구조체(100)에서의 최종단 상태를 도시하였다. 또한, 판자형 코어 구조체(100)에서 기판(100)의 구조 및 기능은 도 2에서 설명한 바와 동일하므로 생략하기로 한다. The first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state of the entire core structure 100 was illustrated. In addition, the structure and function of the substrate 100 in the plank core structure 100 is the same as described in Figure 2 will be omitted.
구체적으로, 급전선(130)의 감긴 구조는, 전류 방향이 주행방향과 같은 제1 급전선(131)은 좌측 첫 번째 기둥부(120)에 하부에서부터 상부로 감기되 시계반대 방향으로 중간 부분까지 감긴 후, 이웃한 다음의 기둥부(120)의 좌측면으로 들어가 같은 높이의 중간 부분부터 하부로 동일한 시계반대 방향으로 감기고, 다시 이웃한 다음의 기둥부(120)로 이어져 들어가 하부로부터 상부로 동일한 시계 반대 방향으로 감겨서, 이와 같은 방식을 반복하여 최종단에 이르게 된다. Specifically, the wound structure of the feed line 130, the first feed line 131, the current direction is the same as the driving direction is wound from the bottom to the upper portion of the first pillar portion 120 to the left after winding to the middle portion in the counterclockwise direction , Enter the left side of the next pillar portion 120 next to the same height from the middle to the bottom of the same winding in the same anti-clockwise direction, and next to the next pillar portion 120 adjacent to enter the same counterclockwise from the bottom to the top Winding in the direction, this manner is repeated to reach the final stage.
최종단에서 돌아 나오는 제2 급전선(133)은 제1 급전선(131)과 중간 부분부터 이어져 상부로 감겨 올라가되 시계 반대 방향으로 감긴 후 그 다음의 기둥부(120)로 이어진다. 여기서 제2 급전선(133)은 기둥부(120)의 우측면으로 들어가 기둥부(120)의 상부에서부터 제1 급전선(131)이 감겨진 부분까지 감기되 동일한 시계 반대 방향으로 감기고, 이와 같은 방식을 교대로 하여 최초의 입력단까지 이르게 된다.The second feed line 133 coming out of the final stage is wound up from the middle of the first feed line 131 and continues upward, and then wound in a counterclockwise direction to the next pillar portion 120. Here, the second feed line 133 enters the right side of the pillar part 120 and is wound from the upper portion of the pillar part 120 to the portion where the first feed line 131 is wound, but wound in the same counterclockwise direction, and alternating such a manner. Up to the first input.
즉, 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 방향과 각 급전선(131, 133)에서 전류가 흐르는 방향을 화살표를 보면 제1,2 급전선(120)이 기둥부(113)에 모두 시계반대 방향으로 감겨 전류 방향도 동일해짐을 알 수 있다. That is, when the first and second feed lines 131 and 133 are wound around the pillar portion 120 and the current flows in each of the feed lines 131 and 133, the first and second feed lines 120 may be pillar portions. It can be seen that the current directions are also the same by winding all of them in the counterclockwise direction.
때문에 각 기둥부(120) 및 제1,2 급전선(131, 133)에 생성되는 자기장의 방향은 어느 한 시점에서 단일한 N극 또는 S극이 형성되어 N-N-N... 또는 S-S-S... 와 같은 형태가 된다. Therefore, the direction of the magnetic field generated in each pillar 120 and the first and second feed lines 131 and 133 is a single N pole or S pole is formed at any point, such as NNN ... or SSS ... Form.
이와 같이 코어 구조체(100)의 기둥부(120)에 급전선(131, 133)이 감기는 구조를 달리하여 이중 급전코일 구조와 이층 급전코일 구조로 함으로써 급전장치가 실제 도로에 매설될 때 상황에 따라 용이하게 선택될 수 있도록 하였다. 즉, 급전장치의 코어 구조체(100)가 매설될 도로의 굴착 가능 깊이가 깊을 때는 이층 급전코일 구조의 급전장치를 선택할 수 있고, 얕을 때는 이중 급전코일 구조의 급전장치를 선택할 수 있도록 하여 실제 현장에서 유용하도록 하였다.In this way, the feeder lines 131 and 133 are wound around the pillars 120 of the core structure 100 so that the double feed coil structure and the double-layer feed coil structure are used. It can be easily selected. That is, when the excavation depth of the road on which the core structure 100 of the power feeding device is to be embedded is deep, a feeding device having a two-layer feeding coil structure may be selected, and when it is shallow, a feeding device having a double feeding coil structure may be selected. Useful at
도 12은 판자형 코어 구조체로서, 쌍자극형 이중 급전코일 구조 급전장치의 일 실시예를 나타낸 사시도인데, '쌍자극형'이라 함은 이웃하는 각 기둥부(120)에 형성되는 자극이 N극과 S극이 서로 교대로 형성될 수 있도록 제1,2 급전선(131, 133)의 전류 방향이 각 기둥부(120) 마다 다르게 되도록 한 것을 지칭하고, '이중 급전코일 구조'라 함은 도 10에 대한 설명에서 상술한 바와 같다. 그리고 기둥부(120)에 제1,2 급전선(131, 133)을 각각 3회씩 감은 것을 나타내었고 최종단 상태를 도시하였다. 그리고 판자형 코어 구조체(100)에서 판자형 기판(110)의 구조 및 기능은 도 2에서 설명한 바와 동일하므로 생략하기로 한다. 12 is a perspective view showing an embodiment of a bipolar dual feeding coil structure feeding device as a board-shaped core structure, the term "bipolar type" is the N pole is formed in each adjacent pillar portion 120 The current directions of the first and second feed lines 131 and 133 may be different for each pillar 120 so that the and S poles may be alternately formed. The double feed coil structure is referred to as FIG. 10. As described above in the description. The first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state was illustrated. In addition, since the structure and function of the board-shaped substrate 110 in the board-shaped core structure 100 are the same as those described with reference to FIG.
구체적으로, 전류 방향이 도로의 진행방향과 같은 제1 급전선(131)이 좌측 첫 번째 기둥부(120) 안쪽에 하부에서부터 상부로 감기되 시계반대 방향으로 감기고, 그 다음의 기둥부(120)에서는 제1 급전선(131)이 기둥부(120)의 반대 측면으로 엇갈려 들어가 안쪽에 시계 방향으로 감기고, 이와 같은 방식을 교대로 반복하여 최종단에 이르게 된다. Specifically, the first feed line 131, the current direction of which is the same as the traveling direction of the road, is wound from the bottom to the top of the left side of the first pillar portion 120 to the counterclockwise direction, and in the following pillar portion 120 The first feed line 131 is staggered to the opposite side of the pillar portion 120 and wound inward in a clockwise direction, and the same manner is repeated alternately to reach the final end.
최종단에서 돌아 나오는 제2 급전선(133)은 제1 급전선(131) 외부에 상부로부터 하부로 감기되 시계 반대 방향으로 감기고, 그 다음의 기둥부(120)에서는 제2 급전선(133)이 기둥부(120)의 반대 측면으로 엇갈려 들어가 제1 급전선(131)의 외부에 상부로부터 하부로 감기되 시계 방향으로 감기고, 이와 같은 방식을 교대로 하여 최초의 입력단까지 이르게 된다.The second feed line 133 returning from the last end is wound from the top to the bottom of the first feed line 131 to the bottom in the counterclockwise direction, and in the next pillar 120, the second feed line 133 is the pillar part. Crossed to the opposite side of the 120 is wound from the top to the bottom of the first feed line 131 from the top to the winding in the clockwise direction, alternately leading to the first input terminal.
즉, 본 실시예에서는 제1,2 급전선(131, 133)이 기둥부(120)에 2중으로 감기되, 각 기둥부(120)에서 감기는 방향을 달리하는 구조로서, 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 방향과 각 급전선(131, 133)에서 전류가 흐르는 방향을 화살표로 표시하였다.That is, in the present exemplary embodiment, the first and second feed lines 131 and 133 are double-wound to the pillar part 120, and have different structures in which the first and second feed lines 131 and 133 are wound. The direction in which the 131 and 133 are wound around the pillar 120 and the direction in which the current flows in each of the feed lines 131 and 133 are indicated by arrows.
이에 따라 기둥부(120) 주위에 생성되는 자기장의 방향이 N극과 S극 교대로 형성된다. 즉, 각 기둥부(120)에 생성되는 자기장의 방향은 N극과 S극이 교대로 형성되어 N-S-N-S... 와 같은 형태가 됨을 알 수 있다.Accordingly, the direction of the magnetic field generated around the pillar part 120 is alternately formed with the north pole and the south pole. That is, it can be seen that the direction of the magnetic field generated in each of the pillars 120 is alternately formed with the N pole and the S pole, such as N-S-N-S...
이와 같이 이웃하는 기둥부(120) 간에 자극이 교대로 형성되도록 한 쌍자극형 급전장치인 경우에는 상대적으로 차량 정차 중에 집전이 용이하게 된다. As described above, in the case of a bi-stimulus type power supply device such that magnetic poles are alternately formed between neighboring pillar portions 120, current collection is relatively easy during vehicle stopping.
도 13은 판자형 코어 구조체로서, 쌍자극형 이층 급전코일 구조 급전장치의 일 실시예를 나타낸 사시도 및 정면도인데, '쌍자극형'이라 함은 도 12에 대한 설명에서와 같고, '이층 급전코일 구조'라 함은 도 11에서 상술한 바와 같다. 그리고 기둥부(120)에 제1,2 급전선(131, 133)을 각각 3회씩 감은 것을 나타내었고 최종단 상태를 도시하였다. 그리고 판자형 코어 구조체(100)의 기판(110)의 구조 및 기능은 도 2에서 설명한 바와 동일하므로 생략하기로 한다. FIG. 13 is a planar core structure, which is a perspective view and a front view showing an embodiment of a bi-stimulation double layer feed coil structure feeding device. The term “bipole type” is the same as that of the description of FIG. The structure 'is as described above in FIG. The first and second feed lines 131 and 133 were wound three times on the column 120, respectively, and the final stage state was illustrated. And the structure and function of the substrate 110 of the plank core structure 100 is the same as described in Figure 2 will be omitted.
구체적으로, 전류 방향이 주행방향과 같은 제1 급전선(131)은 좌측 첫 번째 기둥부(120)에 좌측면에서부터 들어가 하부에서부터 상부로 감기되 시계반대 방향으로 중간 부분까지 감긴 후, 이웃한 다음의 기둥부(120)에서는 엇갈려서 우측면으로 들어가 같은 높이의 중간 부분부터 하부로 시계 방향으로 감기고, 다시 이웃한 다음의 기둥부(120)의 좌측면으로 이어져 같은 방식을 반복하여 최종단에 이르게 된다. In detail, the first feed line 131 having the same current direction as the driving direction enters from the left side to the left first pillar 120 and is wound from the bottom to the top, wound up to the middle in the counterclockwise direction, In the pillar portion 120 is crossed to the right side and wound in the clockwise direction from the middle portion of the same height to the lower side, and then continues to the left side of the next pillar portion 120 next to the same way to reach the final end.
최종단에서 돌아 나오는 제2 급전선(131)은 제1 급전선(131)과 중간 부분부터 이어져 상부로 감겨 올라가되 시계 반대 방향으로 감겨 우측면으로 돌아 나가고, 다시 그 다음의 기둥부(120)에서는 엇갈려서 좌측면으로 들어가 제1 급전선(131)이 감긴 부분 다음부터 상부로 감겨 올라가되 시계 방향으로 감겨 좌측면으로 돌아 나가고, 다시 좌측 첫 번째 기둥부(120)의 우측면으로 들어가 제1 급전선(131)이 감긴 부분 다음부터 상부로 감겨 올라가되 시계반대 방향으로 감겨 우측면으로 돌아 나가고, 이와 같은 방식을 교대로 하여 최초의 입력단까지 이르게 된다.The second feed line 131 coming out of the last end is wound up from the middle of the first feed line 131 and the upper part, and then rolled up counterclockwise to return to the right side. The first feeder line 131 is wound up and then rolled up from the top of the first feeder line 131 to the upper side, and then rolled clockwise to return to the left side. It is wound up from the top of the part and then rolled up counterclockwise to the right side, and then alternately leads to the first input terminal.
즉, 본 실시예에서는 제1 급전선(131)이 기둥부(120)의 하부에 감기고 제2 급전선(133)은 이어서 그 상부에 감기며 각 급전선(131, 133)이 교차하는 부분에서는 항상 제2 급전선(133)이 상부로 위치하도록 하되, 각 기둥부(120)에서 각 급전선(131, 133)이 감기는 방향은 각각의 기둥부(120)마다 교대로 달리하는 구조이다. That is, in this embodiment, the first feed line 131 is wound on the lower portion of the pillar 120, the second feed line 133 is then wound on the upper portion thereof, and the second feed line 131 and 133 always cross each other at the portion where the feed lines 131 and 133 cross each other. The feed line 133 is positioned upward, but the direction in which the feed lines 131 and 133 are wound in each pillar portion 120 alternately varies for each pillar portion 120.
이렇게 제1,2 급전선(131, 133)이 기둥부(120)에 감기는 방향이 각각의 기둥부(120) 마다 교대로 달라지고 그에 따라 전류가 흐르는 방향이 교대로 달라짐에 따라 이웃하는 각 기둥부(120)들 간에 어느 한 시점에서 생성되는 자기장의 방향은 N극과 S극이 교대로 형성되는 N-S-N-S... 와 같은 형태가 됨을 알 수 있다.As described above, the direction in which the first and second feed lines 131 and 133 are wound around the pillar part 120 is alternately changed for each pillar part 120, and accordingly, the direction in which the current flows is alternately changed. It can be seen that the direction of the magnetic field generated at any point between the parts 120 is in the form of NSNS ..., in which the N pole and the S pole are alternately formed.
이와 같이 자극이 교대로 형성되는 쌍자극형 급전장치(100)인 경우에는 상대적으로 차량 정차 중에 집전이 용이하게 된다. As described above, in the case of the bi-stimulus type power supply device 100 in which magnetic poles are alternately formed, current collection is relatively easy while the vehicle is stopped.
또한 이중 급전코일 구조 급전장치와 이층 급전코일 구조 급전장치는 상술한 바와 같이 급전장치가 매설될 도로의 굴착 깊이에 따라 깊을 때는 2층 급전코일 구조의 급전장치를 선택할 수 있고, 얕을 때는 이중 급전코일 구조의 급전장치를 선택할 수 있어 실제 현장에서 유용하도록 하였다.As described above, the double feed coil structure feeder and the double-layer feed coil structure feeder can select a feeder having a two-layer feed coil structure when the feeder is deep according to the excavation depth of the road where the feeder is to be embedded, and when the feeder is shallow, the double feeder The coil feeder can be selected to be useful in the field.
도 14 내지 도 17은 도 10 내지 도 13에서 도시된 판자형 코어 구조체(100)를 막대 모양 기판의 연속형 코어 구조체(100)로 대체한 다양한 실시예를 나타낸 사시도이다.14 to 17 are perspective views illustrating various embodiments in which the plank core structure 100 illustrated in FIGS. 10 to 13 is replaced with the continuous core structure 100 of the rod-shaped substrate.
도 14는 연속형 코어 구조체로서, 단자극형 이중 급전코일 구조 급전장치이고, 도 15는 연속형 코어 구조체로서, 단자극형 이층 급전코일 구조 급전장치이며, 도 16은 연속형 코어 구조체로서, 쌍자극형 이중 급전코일 구조 급전장치이며, 도 17은 연속형 코어 구조체로서, 쌍자극형 이층 급전코일 구조 급전장치를 도시한 것이다. 14 is a continuous core structure, a terminal pole type double feed coil structure feeding device, FIG. 15 is a continuous core structure, a terminal pole type double feed coil structure feeding device, and FIG. 16 is a continuous core structure, bipolar type It is a double feed coil structure feeding device, and FIG. 17 shows a bipolar bipolar feed coil structure feeding device as a continuous core structure.
도 14 내지 도 17에 도시된 막대 모양 코어 구조체(100)는 판자형 코어 구조체(100) 보다 급전출력은 떨어지지만 건설단가를 낮출 수 있고 직선도로에 적합하다. The rod-shaped core structure 100 illustrated in FIGS. 14 to 17 has a lower feed power than the board-shaped core structure 100, but can lower construction cost and is suitable for a straight road.
도 18 내지 도 21은 도 10 내지 도 13에서 도시된 판자형 코어 구조체(100)를 막대 모양 기판의 혼합형 코어 구조체(100)로 대체한 다양한 실시예를 나타낸 사시도이다.18 to 21 are perspective views illustrating various embodiments in which the plank core structure 100 illustrated in FIGS. 10 to 13 is replaced with the hybrid core structure 100 of a rod-shaped substrate.
도 18은 혼합형 코어 구조체로서, 단자극형 이중 급전코일 구조 급전장치이고, 도 19는 혼합형 코어 구조체로서, 단자극형 이층 급전코일 구조 급전장치이며, 도 20은 혼합형 코어 구조체로서, 쌍자극형 이중 급전코일 구조 급전장치이며, 도 21은 혼합형 코어 구조체로서, 쌍자극형 이층 급전코일 구조 급전장치를 도시한 것이다. 18 is a mixed core structure, a terminal pole type double feed coil structure feeding device, FIG. 19 is a mixed core structure, a terminal pole type double feed coil structure feeding device, and FIG. 20 is a mixed core structure, a bipolar double feed coil. It is a structure feeding device, and FIG. 21 shows a bipolar bilayer feed coil structure feeding device as a mixed core structure.
도 18 내지 도 21에 도시된 혼합형코어 구조체(100)는 연속형 코어 구조체(100) 보다 급전출력은 떨어지지만 건설단가를 낮출 수 있고 곡선도로에 적합하다. The hybrid core structure 100 illustrated in FIGS. 18 to 21 has a lower feed power than the continuous core structure 100, but can lower construction cost and is suitable for a curved road.
이상과 같이 본 발명에서는 코어 구조체(100)에서 기판(110)과 기둥부(120)의 구조를 달리함으로써 급전출력 향상과 전자기파(EMF) 감소 및 다양한 설치 환경에 대응하여 급전장치를 도로에 용이하게 매설할 수 있는 장점이 있다. As described above, in the present invention, the structure of the substrate 110 and the pillar part 120 in the core structure 100 is improved, so that the power feeding device can be easily applied to the road in response to the improvement of the power feeding output, the electromagnetic wave (EMF) reduction, and various installation environments. There is an advantage that can be buried.
상기와 같은 전기자동차의 급전장치용 코어 구조체는 위에서 설명된 실시예들의 구성과 작동 방식에 한정되는 것이 아니다. 상기 실시예들은 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 다양한 변형이 이루어질 수 있도록 구성될 수도 있다. The core structure for the power supply device of the electric vehicle as described above is not limited to the configuration and operation of the embodiments described above. The above embodiments may be configured such that various modifications may be made by selectively combining all or part of the embodiments.
<부호의 설명><Description of the code>
100: 코어 구조체 110: 기판100 core structure 110 substrate
111: 수평기판부 113: 수직기판부111: horizontal substrate portion 113: vertical substrate portion
120: 기둥부 130: 급전선120: pillar 130: feeder
131: 제1 급전선 133: 제2 급전선131: first feeder 133: second feeder
200: 집전장치200: current collector

Claims (11)

  1. 자기유도방식에 의하여 비접촉으로 전력을 공급하는 전기자동차의 급전장치용 코어 구조체에 있어서,In the core structure for a power feeding device of an electric vehicle that supplies power in a non-contact manner by a magnetic induction method,
    특정장소나 도로의 도로 진행방향을 따라 이격되게 매설되어 자속누설을 방지하는 수평기판부;A horizontal board portion which is buried apart along a road moving direction of a specific place or road to prevent magnetic flux leakage;
    상기 수평기판부의 양단에 상측 방향으로 절곡되어 형성된 수직기판부; 및Vertical substrate portions formed at both ends of the horizontal substrate portion by bending in an upward direction; And
    상기 수평기판부 중앙에 형성된 급전선을 감을 수 있는 기둥부;를 포함하는 전기자동차의 급전장치용 코어 구조체.Core structure for a power supply device of an electric vehicle comprising a; pillar portion that can wind the feed line formed in the center of the horizontal substrate.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 수평기판부 및 수직기판부는 직사각형의 판자 형태인 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.The horizontal substrate portion and the vertical substrate portion of the electric power supply device core structure, characterized in that the rectangular board shape.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 수평기판부 및 수직기판부는 막대(bar) 형태로 배치되며,The horizontal substrate portion and the vertical substrate portion is arranged in the form of a bar (bar),
    상기 기둥부는 다수개의 상기 수평기판부에 걸쳐 형성되고 이격되게 배치되는 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.The pillar portion is formed over a plurality of the horizontal substrate portion core structure for a power supply device of an electric vehicle, characterized in that spaced apart.
  4. 청구항 3에 있어서,The method according to claim 3,
    다수개의 상기 수평기판부 및 수직기판부와, 하나의 상기 기둥부는 하나의 조를 이루고, 상기 조는 이격되게 배치되는 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.A plurality of the horizontal substrate portion and the vertical substrate portion, and one of the pillar portion forms a pair, the jaw is a core structure for a power supply device of an electric vehicle, characterized in that spaced apart.
  5. 청구항 1에 있어서,The method according to claim 1,
    복수개의 상기 수평기판부 간의 매설 간격은 변경 가능한 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.Core structure for a power feeding device of an electric vehicle, characterized in that the buried interval between the plurality of horizontal substrate portion can be changed.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 수평기판부의 폭, 상기 수직기판부의 높이 및 기둥부의 높이는 변경 가능한 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.The width of the horizontal substrate portion, the height of the vertical substrate portion and the height of the pillar portion core structure for a power supply device of an electric vehicle, characterized in that it can be changed.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 기둥부는 단면의 중심 부분이 공동의 기둥 형상인 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.The pillar portion core structure for a power supply device of an electric vehicle, characterized in that the central portion of the cross section is a hollow columnar shape.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 기둥부 상부 공동은 밀폐되는 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.Core structure for a power supply device for an electric vehicle, characterized in that the pillar upper cavity is sealed.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 수평기판부, 수직기판부 및 기둥부는 강자성체인 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체. The horizontal substrate portion, the vertical substrate portion and the pillar portion core structure for a power supply device of an electric vehicle, characterized in that the ferromagnetic material.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 수평기판부, 수직기판부 및 기둥부는 세라믹 자성체인 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체. The horizontal substrate portion, the vertical substrate portion and the pillar portion core structure for a power supply device of an electric vehicle, characterized in that the ceramic magnetic material.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 기둥부는 단면이 다각형 또는 원형인 것을 특징으로 하는 전기자동차의 급전장치용 코어 구조체.The pillar unit has a polygonal or circular cross section core structure for a power supply device of an electric vehicle.
PCT/KR2016/011452 2015-10-30 2016-10-13 Core structure for power supply device of electric vehicle WO2017073938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150151992A KR101794185B1 (en) 2015-10-30 2015-10-30 The Core structure for power supply device of electric vehicle
KR10-2015-0151992 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073938A1 true WO2017073938A1 (en) 2017-05-04

Family

ID=58631782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011452 WO2017073938A1 (en) 2015-10-30 2016-10-13 Core structure for power supply device of electric vehicle

Country Status (3)

Country Link
KR (1) KR101794185B1 (en)
CN (1) CN106655530A (en)
WO (1) WO2017073938A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435304B2 (en) 2020-06-24 2024-02-21 株式会社Soken Contactless power supply device
CN113555974B (en) * 2021-07-29 2023-10-10 西南交通大学 Mixed shielding structure for inhibiting leakage magnetic field of wireless power supply system and optimization method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836344A (en) * 1987-05-08 1989-06-06 Inductran Corporation Roadway power and control system for inductively coupled transportation system
KR20110073760A (en) * 2009-12-24 2011-06-30 한국과학기술원 Module-structured power supply device for electric vehicle and winding method of power cable therefor
KR20120116622A (en) * 2011-04-13 2012-10-23 한국과학기술원 Ferrite core structure for power supply device of electric vehicle and road structure using thereof
KR20130033234A (en) * 2011-09-26 2013-04-03 한국과학기술원 Loop type emf shielding apparatus
KR20150087377A (en) * 2012-11-22 2015-07-29 파라마운트 픽처어즈 코오포레이션 Regenerative energy system for ground transportation vehicles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399319B2 (en) 1997-10-17 2003-04-21 株式会社豊田自動織機 Non-contact power supply system for tracked bogies
WO2011046414A2 (en) * 2009-10-16 2011-04-21 Korea Advanced Institute Of Science And Technology Power supply apparatus for on-line electric vehicle, method for forming same and magnetic field cancelation apparatus
KR101131581B1 (en) 2009-12-16 2012-03-30 한국과학기술원 Module-structured power supply device for electric vehicle
KR101038759B1 (en) 2009-12-21 2011-06-03 한국과학기술원 Collector device for electric vehicle with active cancellation of emf
WO2012141357A1 (en) * 2011-04-15 2012-10-18 한국과학기술원 Power feeding rail module using non-contact magnetic inductive charging method, road structure using same, and method for constructing road
WO2014006895A1 (en) * 2012-07-05 2014-01-09 パナソニック株式会社 Wireless power transmission device, wireless power sending device and power receiving device
CN104682580B (en) * 2015-03-24 2016-11-02 哈尔滨工业大学 The electric automobile dynamic radio electric power system in parallel based on multistage composite resonance structure and use the method for supplying power to that this system realizes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836344A (en) * 1987-05-08 1989-06-06 Inductran Corporation Roadway power and control system for inductively coupled transportation system
KR20110073760A (en) * 2009-12-24 2011-06-30 한국과학기술원 Module-structured power supply device for electric vehicle and winding method of power cable therefor
KR20120116622A (en) * 2011-04-13 2012-10-23 한국과학기술원 Ferrite core structure for power supply device of electric vehicle and road structure using thereof
KR20130033234A (en) * 2011-09-26 2013-04-03 한국과학기술원 Loop type emf shielding apparatus
KR20150087377A (en) * 2012-11-22 2015-07-29 파라마운트 픽처어즈 코오포레이션 Regenerative energy system for ground transportation vehicles

Also Published As

Publication number Publication date
KR20170051691A (en) 2017-05-12
CN106655530A (en) 2017-05-10
KR101794185B1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
WO2020190121A1 (en) Reception coil for wireless charging of transportation means and power reception apparatus for wireless charging of transportation means
WO2011046414A2 (en) Power supply apparatus for on-line electric vehicle, method for forming same and magnetic field cancelation apparatus
WO2017073938A1 (en) Core structure for power supply device of electric vehicle
WO2018194208A1 (en) Stator of rotating electric apparatus
WO2016003190A1 (en) Variable inductor and manufacturing method therefor
WO2016003040A1 (en) Magnetic substance holding device
WO2010076976A4 (en) Electric vehicle transportation system
WO2015156494A1 (en) Magnetic body holding apparatus for minimizing residual magnetism
WO2012141512A2 (en) Ferrite core structure for a power supply device of an electric vehicle and power supply road structure using same
WO2011037434A2 (en) Power supply and acquisition device for on-line electric vehicle
WO2016052827A1 (en) Wireless power transmission apparatus
WO2018169203A1 (en) Variable-flux motor
WO2011034393A9 (en) Power supply and acquisition apparatus for on-line electric vehicle
WO2017104939A1 (en) Cable-stayed bridge lightning protection apparatus for distributing lightning current
WO2020045890A1 (en) Pcb ct device, applied to circuit breaker, for detecting stand-alone momentary current
WO2017073937A1 (en) Power supply device for electric vehicle
AR017275A1 (en) SYNCHRONIC COMPENSATOR PLANT, USE OF SUCH PLANT AND METHOD TO COMPENSATE THE PHASE IN A HIGH VOLTAGE POWER SYSTEM
WO2012015202A2 (en) Method for constructing bamboo mat which is easily assembled and installed
WO2017204425A1 (en) Permanent magnet electrical equipment having non-uniform magnetic pole length
WO2019039684A1 (en) Wireless power transceiver and display apparatus with the same
EP3652762A1 (en) Wireless power transceiver and display apparatus with the same
WO2020130645A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
KR101879938B1 (en) Power Supply device for electric vehicle using lines of generating reverse magnetic field
TR200000804T2 (en) A method for setting up a transformer / reactor and a vertical arrangement and a transformer / reactor
CN103229592A (en) Electric induction heat treatment of longitudinally-oriented workpieces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860122

Country of ref document: EP

Kind code of ref document: A1