WO2017204425A1 - Permanent magnet electrical equipment having non-uniform magnetic pole length - Google Patents

Permanent magnet electrical equipment having non-uniform magnetic pole length Download PDF

Info

Publication number
WO2017204425A1
WO2017204425A1 PCT/KR2016/013249 KR2016013249W WO2017204425A1 WO 2017204425 A1 WO2017204425 A1 WO 2017204425A1 KR 2016013249 W KR2016013249 W KR 2016013249W WO 2017204425 A1 WO2017204425 A1 WO 2017204425A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
phase
teeth
wound
winding current
Prior art date
Application number
PCT/KR2016/013249
Other languages
French (fr)
Korean (ko)
Inventor
정시욱
김종무
박병건
안민혁
이지영
전연도
정연호
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2017204425A1 publication Critical patent/WO2017204425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet electric machine, and in particular, to provide a non-uniform polar arc angle and a special pole slot combination and winding arrangement method for reducing torque pulsation.
  • a general permanent magnet electric machine (hereinafter, referred to as including both linear and rotary types) includes a stator composed of iron cores, a winding wire wound around a stator tooth, and a rotor composed of iron cores and a plurality of permanent magnets attached thereto.
  • the permanent magnet can be classified into a permanent magnet type, a surface-mounted permanent magnet type, etc., and magnetic poles are formed through the permanent magnet attached to the rotor core.
  • the permanent magnet electric machine generates cogging torque due to the magnetic interaction between the permanent magnet and the stator teeth even under no load, which causes torque pulsation, a source of vibration and noise, and deteriorates control performance.
  • permanent magnets having opposite polarities are configured to have a repetitive arrangement at regular intervals, and the arrangement of permanent magnets
  • the gap is defined as the pole gap and corresponds to 180 degrees.
  • the magnetic pole of the permanent magnet has an arc shape, and is generally called a polar arc angle.
  • the width of the permanent magnets may be generally defined as the width of the permanent magnets. In electrical terms, this corresponds to 180 degrees.
  • the polar angle or the permanent magnet width ⁇ of a permanent magnet is generally configured to be the same regardless of the permanent magnet polarity.
  • the present invention provides a non-uniform arc angle or permanent magnet width and a special pole number slot combination and winding arrangement method for reducing torque pulsation in order to solve the above problems.
  • One aspect of the present invention includes a rotor including first and second magnetic poles alternately disposed with the rotor core, the polar angle of the polar angle of the first magnetic pole and the second magnetic pole are different; And a stator core, teeth having teeth arranged at regular intervals along its circumferential direction, and winding wires wound around each tooth, wherein the stator makes relative motion with the rotor.
  • FIG. 1 is a block diagram of a permanent magnet motor having a uniform polar angle of rotation type according to the prior art
  • Figure 2 is a block diagram of a permanent magnet motor having a uniform permanent magnet width of the linear type according to the prior art.
  • FIG. 3 is a block diagram of a torque pulsation reduction permanent magnet electric machine in a 10-pole 12-slot method according to an embodiment of the present invention.
  • FIG. 4 is a first embodiment showing a winding structure of the stator of FIG. 3.
  • FIG. 5 is a second embodiment showing the winding structure of the stator of FIG. 3.
  • Figure 6 is a third embodiment showing the winding structure of the stator in the form of a 14 pole 12 slot.
  • FIG. 7 is a fourth embodiment showing the winding structure of the stator in the form of a 14 pole 12 slot.
  • FIG. 8 is a fifth embodiment showing the winding structure of the stator in the form of a 14 pole 18 slot.
  • FIG. 9 is a sixth embodiment showing the winding structure of the stator in the form of a 22-pole 24-slot.
  • 10 is a seventh embodiment showing the winding structure of the stator in the form of a 22 pole 24 slot.
  • 11 is an eighth embodiment showing the winding structure of the stator in the form of a 26-pole 24-slot.
  • FIG. 12 is a ninth embodiment showing the winding structure of the stator in the form of a 26-pole 24-slot.
  • FIG. 13 is a first embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
  • FIG. 14 is a second embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
  • 15 is a third embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
  • FIG. 16 is a fourth exemplary embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
  • 17 is a fifth embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
  • FIG. 18 is a sixth embodiment showing the magnetic pole structure of the rotor of FIG. 3.
  • 19 is a seventh embodiment showing the magnetic pole structure of the rotor of FIG.
  • 20 to 25 are diagrams for comparing the pulsation of the electric machine according to the prior art and the electric machine caulking torque and the output torque according to the present invention.
  • 26 to 28 are diagrams showing a conventional electromotive force of the electric device according to the prior art and the electric device according to the present invention.
  • 29 is a configuration diagram of a permanent magnet electric device according to another embodiment of the present invention.
  • 30 is a graph showing harmonic reduction of a driving voltage during weak field operation.
  • 33 is a block diagram of a torque pulsation reduction permanent magnet electric machine in the 10-pole 12-slot method according to another embodiment of the present invention.
  • 34 is a block diagram of a permanent magnet linear electric machine in the 10-pole 12 slot method according to another embodiment of the present invention.
  • 35 is a configuration diagram of a permanent magnet linear electric machine showing the fault structure of FIG. 34.
  • FIG. 3 is a block diagram of a permanent magnet electric machine in the 10-pole 12 slot method according to an embodiment of the present invention.
  • the permanent magnet electric device includes a stator 200 and a rotor 100 relative to the stator 200.
  • the rotor 100 includes the rotor core 110, the first magnetic poles 120 and the second magnetic poles 130, and the first magnetic poles 120 and the second magnetic poles ( The number of poles 130 is 10.
  • the first magnetic poles 120 and the second magnetic poles 130 are formed of a permanent magnet.
  • the rotor core 110 may be manufactured in a hollow cylindrical shape and may be inserted and installed to have a rotating shaft fixed to a central portion thereof.
  • the first and second magnetic poles 120 and 130 may be alternately disposed at predetermined intervals on an outer circumferential surface thereof. ) May be combined.
  • the first magnetic poles 120 are located in a first symmetrical position with respect to the center of the rotor core 110, and the second magnetic poles 130 are located in a second symmetrical position with respect to the center. .
  • the first magnetic poles 120 and the second magnetic poles 130 are alternately positioned and spaced apart from the outer circumferential surface of the rotor core 110.
  • the first magnetic poles 120 and the second magnetic poles 130 are disposed at equal intervals.
  • the stator 200 includes a stator core 210, twelve teeth 220 disposed at regular intervals along the circumferential direction of the stator core 210, and each tooth 220. It has winding windings 222 wound on.
  • the stator 200 also has slots 230.
  • the slots 230 are twelve. As such, it has ten poles and twelve slots, which is one example, and may have poles and slot numbers satisfying Equation 1 below.
  • the number of poles and the number of slots satisfying Equation 1 are 10 poles and 12 slots, 14 poles and 12 slots, 14 poles and 18 slots, 22 poles and 24 slots, 26 Number of poles and number of 24 slots, and an extended combination (20 poles and 24 slots, 30 poles and 36 slots, 28 poles and 24 slots, etc.), which is an integer multiple of this combination.
  • Such claim pole firing angle ( ⁇ 2) of the first pole firing angle of the magnetic pole (120) ( ⁇ 1) and second magnetic poles (130) are different from each other. That is, when the center of the stator core 210 is a reference, the length of the circumferential direction of the first magnetic pole 120 and the length of the circumferential direction of the second magnetic pole 130 are different from each other to reduce caulking torque and torque pulsation. can do. In other words, it is the width (or length) of the circumferential direction of the lateral surface facing the center of the stator core 210 of the first magnetic pole 120 and the inner surface facing the center of the stator core 210 of the second magnetic pole 130. The widths (or lengths) in the circumferential direction of are different from each other.
  • each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined.
  • the stator 200 has a form of a winding structure consisting of a so-called concentrated winding. More specifically, referring to FIG. 4, the teeth A1 to A4 in the U phase are accompanied by the U phase windings A10 to A40, respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40.
  • the stator teeth are each provided with slots 1-12.
  • One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth. The windings of the same phase wound on two neighboring teeth are connected in series.
  • teeth there are a total of 12 teeth (A1 to C4), for example, between two teeth wound around the U-phase and two teeth wound around the U-phase, two teeth wound around the V-phase and 2 teeth wound around the W-phase respectively. Teeth are located.
  • the centers of the U phases have a mechanical angle of 180 degrees.
  • the centers of phase V also have 180 degrees of mechanical angle with each other, and the centers of phase W have 180 degrees of mechanical angle with each other.
  • the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
  • FIG. 4 has a form in which two windings are wound in a slot, alternatively, one winding may be wound in a slot, and FIG. 5 shows an embodiment thereof.
  • the stator 200 has a form of a winding structure composed of so-called concentrated windings. More specifically, two of the teeth A1 to A4 in the U phase carry the U phase windings A10 and A20, respectively. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
  • the U-phase winding A10 is wound around one tooth A1 of two neighboring teeth A1 and A2.
  • the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2.
  • the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated with the current direction reversed.
  • teeth For example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
  • the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth.
  • one tooth A4 on which the U phase is wound is wound counterclockwise, the next tooth B1 is clockwise rotated, and the next tooth C1 is wound counterclockwise again. It may also be wound in the opposite direction.
  • all the windings of each phase are connected in series with each other. That is, the A10 and A20 windings are connected in series with each other, the B10 and B20 windings are connected in series with each other, and the C10 and C20 windings are connected in series with each other.
  • Figure 6 shows the windings in the case of different poles, 14 poles and 12 slots.
  • teeth A1 and A2 are wound around the U-phase winding, and B1 and B2 are wound next to the V-phase winding, and C1 and C2 are wound next to the W-phase winding. do. This condition is repeated with the winding current direction reversed.
  • the stator 200 has a form of a winding structure composed of so-called concentrated windings. More specifically, the teeth A1 to A4 in the U phase carry the U phase windings A10 to A40 respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40.
  • One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth.
  • the centers of the U phases have a mechanical angle of 180 degrees.
  • the centers of phase V also have 180 degrees of mechanical angle with each other, and the centers of phase W have 180 degrees of mechanical angle with each other.
  • the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth.
  • the first tooth A1 has a countercurrent direction and the next tooth A2 has a winding current direction in a clockwise direction.
  • the first tooth may be clockwise and the next tooth counterclockwise.
  • the first tooth B1 is clockwise and the next tooth B2 is the winding current direction in the counterclockwise direction.
  • the first tooth may be counterclockwise and the next tooth clockwise in the winding current direction.
  • the first tooth C1 is counterclockwise, and the next tooth C2 is the winding current direction in the clockwise direction.
  • the first tooth may be clockwise and the next tooth counterclockwise. This configuration is repeated with the current direction reversed.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
  • FIG. 6 has a form in which two windings are wound in a slot
  • one winding may be wound in a slot
  • FIG. 7 shows an embodiment and the winding structure is the same as that of FIG. 5.
  • the stator 200 has a form of a winding structure composed of a so-called concentrated winding. More specifically, two of the teeth A1 to A4 in the U phase carry the U phase windings A10 and A20, respectively. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
  • the U-phase winding A10 is wound around one tooth A1 of two neighboring teeth A1 and A2.
  • the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2.
  • the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated with the winding current direction reversed.
  • teeth For example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
  • the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth.
  • one tooth A1 in which the U phase is wound is counterclockwise, and the next tooth B1 is clockwise in the clockwise direction, and the next tooth C1 is again counterclockwise.
  • Winding current direction It can also be the winding current direction in the opposite direction.
  • all the windings of each phase are connected in series with each other. That is, the A10 and A20 windings are connected in series with each other, the B10 and B20 windings are connected in series with each other, and the C10 and C20 windings are connected in series with each other.
  • FIGS. 4 to 7 show winding arrangements for 12 slots.
  • windings may be arranged in the same manner even when the slots are increased.
  • Fig. 8 shows the winding arrangement in the case of 18 slots in 14 poles, the first teeth of the U phase become the winding current direction in the counterclockwise direction, and the next of the teeth V phase of the winding current direction in the counterclockwise direction. In the next tooth, the W phase becomes the winding current direction counterclockwise.
  • the W phase becomes the winding current direction in the clockwise direction for the next tooth
  • the U phase becomes the winding current direction in the clockwise direction for the next tooth
  • the V current becomes the winding current direction in the clockwise direction for the next tooth.
  • the V-phase becomes the winding current direction counterclockwise for the next tooth
  • the W-phase becomes the winding current direction counter-clockwise for the next tooth
  • the U-phase becomes the winding current direction for the next tooth.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A60 windings are connected in series with each other, the B10 to B60 windings are connected in series with each other, and the C10 to C60 windings are connected in series with each other.
  • Figure 9 shows the winding arrangement of the 22-pole 24 slot, the first tooth (A1) the U phase is the winding current direction in the counterclockwise direction, the next tooth (A2) the U phase is the winding current direction, clockwise, In the tooth A3, the U phase becomes the winding current direction in the counterclockwise direction, and in the tooth A4, the U phase becomes the winding current direction in the clockwise direction.
  • the V phase becomes the winding current direction in the clockwise direction, the counterclockwise direction, the clockwise direction, and the counterclockwise direction.
  • the W phase becomes the winding current direction in the counterclockwise direction, clockwise direction, and counterclockwise direction.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A80 windings are connected in series with each other, the B10 to B80 windings are connected in series with each other, and the C10 to C80 windings are connected in series with each other.
  • FIG. 10 shows the winding arrangement in the case where a winding is wound in a single layer in a slot in a 22-pole 24 slot, specifically, the U-phase winding A10 in one tooth A1 of two neighboring teeth A1 and A2. ) Is wound with the winding current direction in the counterclockwise direction. Then, the V-phase winding B10 is wound around the teeth B1 of one of the two neighboring teeth B1 and B2 next in the clockwise direction. The winding B20 of the V phase is wound around the teeth B3 of one of the two neighboring teeth B3 and B4 next with the winding current direction in the clockwise direction.
  • the winding C10 of the W phase is wound with the winding current direction in the counterclockwise direction to one tooth C2 of the next two neighboring teeth C1 and C2.
  • the winding C20 of the W phase is wound around the teeth C3 of one of the two neighboring teeth C3 and C4 next with the winding current direction counterclockwise.
  • the winding A20 of the U phase is then wound around the teeth A3 of one of the two neighboring teeth A3 and A4 with the winding current direction in the clockwise direction. This pattern is then repeated with the winding current direction reversed.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
  • Fig. 11 shows the winding arrangement of the 26-pole 24-slot, in which the U-phase becomes the winding current direction in the counterclockwise-clockwise-counterclockwise-clockwise direction from the first tooth to the four neighboring teeth, In the four teeth, the V phase becomes the winding current direction clockwise-counterclockwise-clockwise-counterclockwise.The next four teeth are W-clocked counterclockwise-clockwise-counterclockwise- The winding current is clockwise. The winding arrangement described above is then repeated with the winding current direction reversed.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A80 windings are connected in series with each other, the B10 to B80 windings are connected in series with each other, and the C10 to C80 windings are connected in series with each other.
  • FIG. 12 shows the winding arrangement in the case where a winding is wound in a single layer in a slot in a 26-pole 24 slot, specifically, a U-phase winding A10 on one tooth A1 of two neighboring teeth A1 and A2.
  • the U-phase winding A20 is wound around the teeth A3 of one of the two neighboring teeth A3 and A4 next to each other with the winding current direction in the counterclockwise direction.
  • the winding B10 of V phase is wound around the teeth B1 of one of the two neighboring teeth B1 and B2 next in the clockwise direction.
  • the winding B20 of the V phase is wound around the teeth B3 of one of the two neighboring teeth B3 and B4 next with the winding current direction in the clockwise direction.
  • the winding C10 of the W phase is wound around the teeth C1 of one of the two neighboring teeth C1 and C2 having the winding current direction in the counterclockwise direction, and the next two teeth C3 and the next neighboring teeth C1 and C2 are wound.
  • the winding C20 of the W phase is wound with the winding current direction counterclockwise. The winding arrangement described above is then repeated with the winding current direction reversed.
  • all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
  • FIG. 13 is a diagram illustrating a first embodiment of the rotor of FIG. 3.
  • the rotor of FIG. 3 includes a rotor core 110 substantially on an inner circumferential surface to which the rotating shaft is fixed.
  • the rotor comprises first magnetic poles 120 consisting of five permanent magnets consisting of rare earth magnets containing, for example, neodymium and dysprosium.
  • the first magnetic poles 120 made of five permanent magnets have the same magnetic polarity as the N pole or the S pole, and are mounted on the outer circumferential surface of the core 110.
  • the first magnetic poles 120 of the five permanent magnets are arranged in the circumferential direction at regular intervals therebetween.
  • each of the permanent magnets is bent at a constant radius of curvature around the central axis of the rotating shaft.
  • the core 110 includes second magnetic poles 130 each having five protrusions radially outwardly arranged between the first magnetic poles composed of five permanent magnets and arranged in a circumferential direction at a constant pitch. It is provided.
  • the magnet polarity of the five permanent magnets causes the five protrusions to eventually magnetize to the same magnet polarity as opposed to the magnet polarity of the five permanent magnets, the second magnetic pole consisting of these protrusions May be referred to hereinafter as a 'consequent pole'.
  • the core 110 includes a space 140 between the first magnetic poles 120 made of permanent magnets and the second magnetic pole 130 made of a sequence pole, which is formed of the permanent magnets.
  • a magnetic barrier is provided between the first stimulus 120 made up and the second stimulus 130 made up of a sequence pole.
  • the outer surface of the second pole 130, consisting of each sequence pole, is curved with a constant radius of curvature around the central axis of the rotating shaft. Magnetic interaction between each pole of the rotor 110 (the first magnetic pole 120 made of permanent magnets and the second magnetic pole 130 made of a sequence pole) causes the rotor 110 to rotate. Generate torque.
  • the polar angle of the first magnetic pole 120 and the polar angle of the second magnetic pole 130 are different.
  • FIG. 14 illustrates an embodiment in which the first magnetic pole 120 made of a permanent magnet is surface-attached to the rotor core 110.
  • FIG. 15 illustrates a form in which the first magnetic pole 120 and the second magnetic pole 130 made of ten permanent magnets are embedded in the rotor core 110.
  • the rotor has a rotor core 110, first poles 120 and second poles 130 made of ten permanent magnets installed around the rotor core 110.
  • the first magnetic poles 120 and the second magnetic poles 130 are alternately formed, and a groove 140 is formed between the first magnetic poles 120 and the second magnetic poles 130.
  • the polar angles of the first magnetic poles 120 and the second magnetic poles 130 are different.
  • FIG. 16 illustrates another embodiment in which the first magnetic poles 120 made of permanent magnets are not embedded in the rotor core 110 but attached to the surface.
  • FIG. 17 shows another embodiment of the rotor.
  • another embodiment of the rotor includes a rotor core 110, first teeth 120-1 protruding radially about a rotation axis of the rotor core 110, and the first teeth.
  • Second teeth 130-protruding radially about a rotation axis of the first magnetic pole 120 and the rotor core 110 made of the first windings 120-2 wound on the teeth 120-1.
  • the first teeth 120-1 and the second teeth 130-1 are alternately formed.
  • the rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor.
  • the core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
  • the number of teeth 120-1 and 130-1 is not limited to the embodiment of the present invention and may be appropriately adjusted for stable driving characteristics of the motor.
  • the teeth 120-1 and 130-1 may include extension parts 120-3 and 130-3 whose ends extend in the circumferential direction so as to correspond to the inner diameter surface of the stator.
  • the windings 120-2 and 130-2 are wound around the teeth 120-1 and 130-1, respectively, to generate a magnetic field by an external power source. Unlike a motor in which a permanent magnet is inserted into the rotor, in the embodiment of the present invention, a magnetic field is generated by supplying current to the coils 120-2 and 130-2 wound on the rotor.
  • FIG. 18 is a view showing still another embodiment of the rotor.
  • another embodiment of the rotor includes a rotor core 110, first teeth 120-1 protruding radially about a rotation axis of the rotor core 110, and the first teeth.
  • the first teeth 120-1 and the second teeth 130-1 are alternately formed.
  • the rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor.
  • the core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
  • the winding 120-2 is wound around one tooth 120-1 among the teeth 120-1 and 130-1, and the permanent magnet 130-2 is wound around the other tooth 130-1. This is purchased.
  • the teeth 120-1 on which the windings 120-2 are wound may include an extension 120-3 whose end portion extends in the circumferential direction so as to correspond to the inner diameter surface of the stator.
  • the winding 120-2 is wound around the tooth 120-1 to generate a magnetic field by an external power source.
  • a current is supplied to the winding 120-2 wound on the rotor to generate a magnetic field together with the permanent magnet.
  • 19 is a view showing still another embodiment of the rotor.
  • another embodiment of the rotor includes the rotor core 110, first teeth 120-1 protruding radially about the axis of rotation of the rotor core 110, and the first teeth.
  • the first teeth 120-1 and the second teeth 130-1 are alternately formed.
  • the rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor.
  • the core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
  • the winding 120-2 is wound around one tooth 120-1 among the teeth 120-1 and 130-1, and the permanent magnet 130-2 is wound around the other tooth 130-1. Is formed.
  • the teeth 120-1 on which the windings 120-2 are wound may include an extension 120-3 whose end portion extends in the circumferential direction so as to correspond to the inner diameter surface of the stator.
  • the winding 120-2 is wound around the tooth 120-1 to generate a magnetic field by an external power source.
  • a current is supplied to the winding 120-2 wound on the rotor to generate a magnetic field together with the permanent magnet.
  • 20 to 25 are diagrams for comparing the pulsation of the caulking torque and the output torque of the electric device according to the prior art and the electric device according to the present invention.
  • FIG. 20 illustrates a uniform polar angle as an electric device according to the prior art
  • FIG. 21 illustrates an electrical device according to the present invention, and the polar angle is not uniform. That is, in FIG. 20, the polar angle is constant at 145 degrees, and FIG. 21 is different from the repeated 130 degrees and 160 degrees.
  • FIGS. 22 and 23 show the counter electromotive force according to the position of the rotor according to the related art and the present invention (that is, the electric angle).
  • the dotted line represents the counter electromotive force according to the prior art, Other counter electromotive force is shown in this invention.
  • the caulking torque is shown in Figure 24, the caulking torque is non-uniform polar angle is 97% less than the uniform polar angle.
  • FIG. 25 shows an output torque waveform in which the nonuniform polar angle is reduced by 67% compared to the uniform polar angle.
  • FIGS. 26 to 28 are diagrams showing phase electromotive force of an electric device according to the prior art and an electric device according to the present invention.
  • FIG. 26 shows a uniform polar angle as an electric device according to the prior art
  • FIG. 27 shows an electrical device according to the present invention, and the polar angle is not uniform. That is, in FIG. 28, the polar angle is constant at 145 degrees, and FIG. 27 is different from the repeated 130 degrees and 160 degrees.
  • the counter electromotive force has the same characteristics under the premise that the total amount of permanent magnets is the same as can be seen from FIG. 28.
  • torque is expressed as the product of back EMF and phase current, so that torque pulsation can be reduced without loss of torque.
  • Figure 29 is a partial configuration diagram of the abrupt type permanent magnet electric device of the con- cept pole structure according to another embodiment of the present invention.
  • the stator 1100 moves against the rotor 2100, and the stator 1100 is a plurality of teeth 1110 of N (number of power phases) and winding wires wound around each tooth (not shown).
  • the rotor 2100 may include first magnetic poles 2110 and second magnetic poles 2120 formed therein. The first magnetic poles 2110 and the second magnetic poles 2120 are alternately arranged.
  • the first magnetic poles 2110 are made of permanent magnets, and may be disposed as all the N poles or all the S poles with the same polarity.
  • the second stimulus 2120 is composed of a sequence pole.
  • the stator 1100 includes phase windings for each of the N (number of power phases) phases and phase windings having a phase difference of 180 degrees with each of the N phases.
  • the rotor 1100 has phase windings for three phases U, V, and W, and a 180 degree phase difference (/ U, / V, / W) with each of the three phases. It may include merchant wires having.
  • the shortest distance between the teeth of the stator is called SO
  • the longest distance is called SWID
  • the thickness of the rotor permanent magnet is LM.
  • Harmonic reduction of the driving voltage during field operation is shown
  • FIG. 31 shows the output torque improvement
  • FIG. 32 shows the output improvement during the field weakening operation.
  • FIG. 30 shows harmonics when SO is 7, SWID is 11, and LM is 6 at uniform polar angle, and (b) is SO at 7 and SWID is 11 at non-uniform polar angle.
  • the polar arc is one of 170 degrees, the other one is 95 degrees, and the LM is 6 to show harmonic characteristics.
  • the electric equipment of the present invention shows that the harmonics are reduced than the electric equipment of the prior art.
  • Figure 31 shows the output torque according to the current phase angle change shows that the output torque is improved than when the electric device of the present invention has a uniform polar angle of the prior art.
  • Figure 32 shows the output according to the speed, the electric device of the present invention can be seen that the output is improved than the electric device of the prior art.
  • Figure 33 is a block diagram of a permanent magnet electric machine in a 10-pole 12 slot method according to another embodiment of the present invention.
  • the permanent magnet electric device in the 10-pole 12 slot system according to another embodiment of the present invention, includes a rotor 100 and a stator 200 rotatably supporting the rotor 100. .
  • the rotor 100 includes the rotor core 110, the first magnetic poles 120 and the second magnetic poles 130, and the first magnetic poles 120 and the second magnetic poles ( The number of poles 130 is 10.
  • the first magnetic poles 120 and the second magnetic poles 130 are formed of a permanent magnet.
  • the rotor core 110 may be manufactured in a hollow cylindrical shape and may be inserted and installed to have a rotating shaft fixed to a central portion thereof.
  • the first and second magnetic poles 120 and 130 may be alternately disposed at predetermined intervals on an outer circumferential surface thereof. ) May be combined.
  • the first magnetic poles 120 are located in a first symmetrical position with respect to the center of the rotor core 110, and the second magnetic poles 130 are located in a second symmetrical position with respect to the center. .
  • the first magnetic poles 120 and the second magnetic poles 130 are alternately positioned and spaced apart from the outer circumferential surface of the rotor core 110.
  • the first magnetic poles 120 and the second magnetic poles 130 are disposed at equal intervals.
  • the stator 200 has a stator core 210 and upper winding lines 222 disposed at regular intervals along its circumferential direction inside the stator core 210.
  • the permanent magnet electric device according to another embodiment of FIG. 33 is different from FIG. 3 because it is configured as a concentric type without teeth, unlike FIG. 3.
  • other parts than this structure may be formed in the same manner as the structure of FIG. 3, and have 10 poles and 12 slots. These poles and slots are one example and may have a pole number and a slot number satisfying Equation (1).
  • the electrode firing angle of the firing angle of the magnetic poles of the first pole (120) ( ⁇ 1) and the second magnetic pole (130) ( ⁇ 2) are different from each other thereby to reduce the cogging torque and torque pulsation.
  • each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined.
  • This wiring method can be used if the above description does not contradict each other.
  • both the stator and the core may be included.
  • 34 is a block diagram of a permanent magnet linear electric machine in the 10-pole 12 slot method according to another embodiment of the present invention.
  • the mover 300 moves against the stator 400.
  • the mover 300 has a mover core 310 and a plurality of teeth 320 formed on the mover core 310 and a winding wire wound around each tooth
  • the stator 400 includes a stator core 410 and a stator core.
  • First poles 420 and second poles 430 formed at 410 are included, and the number of poles of the first poles 420 and the second poles 430 is ten.
  • the first magnetic poles 420 and the second magnetic poles 430 are formed of a permanent magnet.
  • the first magnetic poles 420 and the second magnetic poles 430 are alternately positioned and spaced apart from the outer circumferential surface of the stator core 410.
  • the first magnetic poles 420 and the second magnetic poles 430 are arranged at equal intervals.
  • the permanent magnet linear electric device according to still another embodiment of FIG. 34 is different from FIG.
  • other parts than this structure may be formed in the same manner as the structure of FIG. 3, and have 10 poles and 12 slots.
  • These poles and slots are one example and may have a pole number and a slot number satisfying Equation (1).
  • the width ⁇ 1 of the first magnetic pole 420 as described above ) And the width of the second magnetic pole 430 ( ⁇ 2) ) are different from each other, so that caulking torque and torque pulsation can be reduced.
  • each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined.
  • This wiring method can be used if the above description does not contradict each other.
  • the mover 300 has a form of a winding structure consisting of a so-called concentrated winding. More specifically, the teeth A1 to A4 in the U phase carry the U phase windings A10 to A40 respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40.
  • the mover teeth each have slots 1-12.
  • One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth.
  • the U-phase windings A40 and A10 are wound around two neighboring teeth A4 and A1.
  • the V-phase windings B10 and B20 are wound around two neighboring teeth B1 and B2.
  • the windings C10 and C20 of the W phase are wound around the next two neighboring teeth C1 and C2.
  • teeth there are a total of 12 teeth (A1 to C4), for example, between two teeth wound around the U-phase and two teeth wound around the U-phase, two teeth wound around the V-phase and 2 teeth wound around the W-phase respectively. Teeth are located.
  • the centers of the U phases have electrical angles of 180 degrees with each other.
  • the centers of phase V also have electrical angles of 180 degrees with each other, and the centers of phase W have 180 degrees of electrical angles with each other.
  • the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth.
  • FIG. 34 has a form in which two windings are wound in a slot, alternatively, one winding may be wound in a slot, and FIG. 35 shows the embodiment.
  • the mover 300 has a form of a winding structure composed of so-called concentrated windings. More specifically, two of the teeth A1 to A4 in the U phase each carry a U phase winding A10.A20. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
  • the U-phase winding A10 is wound around one tooth A4 of two neighboring teeth A4 and A1.
  • the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2.
  • the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2.
  • teeth For example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
  • the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth.
  • One tooth A4 on which the U phase is wound is counterclockwise, and the next tooth B1 is clockwise in the clockwise direction, and the next tooth C1 is again counterclockwise in the winding current direction. It can also be the winding current direction in the opposite direction.
  • This wiring method can be used if the above description does not contradict each other.
  • the combination is divided by two.
  • the phase winding arrangement (/ A, A, B, / B, / C, C) in six slots is characterized by having a phase of 180 degrees electrically from each other.
  • the winding current direction of the winding of the first P / 2 pole and the slot of Q / 2 and the winding current of the winding of the remaining P / 2 pole and the slot of Q / 2 The direction is characterized by having an electrical phase of 180 degrees.
  • each merchant wire must be connected in series to eliminate magnetic inequality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The present invention relates to a permanent magnet electrical equipment and, more particularly, to a permanent magnet electrical equipment having, for the purpose of reducing torque ripple, non-uniform pole pitch angles and pole number and slot combinations therefor. Further, according to the present invention, provided is a permanent magnet electrical equipment comprising: a rotor comprising first magnetic poles and second magnetic poles arranged alternately with a rotor core, wherein the pole pitch angle of the first magnetic poles and the pole pitch angle of the second magnetic poles are different from each other; and a stator comprising a stator core, teeth disposed at regular intervals on the inner side of the stator core along the circumferential direction of the stator core, and phase winding wires wound around each tooth, the stator supporting the rotator to be rotatable. Accordingly, the present invention has non-uniform pole pitch angles and a pole number and slot combinations therefor, thereby being capable of reducing torque ripple.

Description

비균일 자극 길이를 가지는 영구자석 전기기기Permanent magnet electric equipment with nonuniform magnetic pole length
본 발명은 영구자석 전기기기에 관한 것으로, 특히, 토크 맥동 저감을 위해 비균일한 극호각과 이를 위한 특별한 극수 슬롯 조합과 권선 배치 방법을 제공하는데 있다.The present invention relates to a permanent magnet electric machine, and in particular, to provide a non-uniform polar arc angle and a special pole slot combination and winding arrangement method for reducing torque pulsation.
종래의 영구자석 전기기기는 선형 및 회전형이 있으며, 사용 목적에 따라 자동화 장비, 로봇, 공작기계, 자동차 등과 같이 다양한 응용 분에 적용되고 있다. 일반적인 영구자석 전기기기(이하 선형 및 회전형을 모두 포함하는 것으로 지칭)는 철심으로 구성되는 고정자, 고정자 치에 권선되는 상권선, 그리고 철심으로 구성된 회전자와 이에 부착되는 복수의 영구자석으로 구성된다. 이때 영구자석이 부착되는 형태에 따라 매입 영구자석형, 표면부착 영구자석형 등으로 구분이 가능하며, 회전자 철심에 부착된 영구자석을 통해 자극이 형성되게 된다.Conventional permanent magnet electric devices are linear and rotary type, and are applied to various applications such as automation equipment, robots, machine tools, automobiles, etc. according to the purpose of use. A general permanent magnet electric machine (hereinafter, referred to as including both linear and rotary types) includes a stator composed of iron cores, a winding wire wound around a stator tooth, and a rotor composed of iron cores and a plurality of permanent magnets attached thereto. . At this time, the permanent magnet can be classified into a permanent magnet type, a surface-mounted permanent magnet type, etc., and magnetic poles are formed through the permanent magnet attached to the rotor core.
영구자석 전기기기는 무부하시에도 영구자석과 고정자 치간의 자기적 상호작용으로 인해 코깅 토크가 발생하며, 이는 토크 맥동을 발생시키며 진동과 소음의 원인원이며, 제어 성능을 악화시키는 요인이 된다. The permanent magnet electric machine generates cogging torque due to the magnetic interaction between the permanent magnet and the stator teeth even under no load, which causes torque pulsation, a source of vibration and noise, and deteriorates control performance.
종래의 영구자석 전기기기는 회전형의 경우에 도 1과 같이 서로 반대의 극성(N극, S극)을 가지는 영구자석이 일정한 간격을 두고 반복적인 배열을 가지도록 구성되며, 이때 영구자석의 배치 간격을 극간격이라고 정의하고 전기적으로 180도에 해당한다. 이와 같은 회전형 전기기기에서는 영구자석에 의한 자극이 호(arc) 형상을 가지게 되며, 통상 극호각이라고 호칭한다. In the case of the conventional permanent magnet electric machine, as shown in FIG. 1, permanent magnets having opposite polarities (N pole, S pole) are configured to have a repetitive arrangement at regular intervals, and the arrangement of permanent magnets The gap is defined as the pole gap and corresponds to 180 degrees. In such a rotary electric machine, the magnetic pole of the permanent magnet has an arc shape, and is generally called a polar arc angle.
이와 유사하게 도 2와 같이 선형 전기기기에서는 영구자석에 의한 자극이 직사각형상이므로 일반적으로 영구자석 폭이라고 정의할 수 있으며, 이 경우에도 회전형 전기기기와 동일하게 영구자석의 배치 간격은 극간격이며, 전기적으로는 180도에 해당하게 된다.Similarly, as shown in FIG. 2, since the magnetic poles of the permanent magnets are rectangular in shape, the width of the permanent magnets may be generally defined as the width of the permanent magnets. In electrical terms, this corresponds to 180 degrees.
종래에는 영구자석의 극호각 또는 영구자석 폭(β)은 영구자석 극성에 관계없이 항상 동일하도록 구성되는 것이 일반적이었다.Conventionally, the polar angle or the permanent magnet width β of a permanent magnet is generally configured to be the same regardless of the permanent magnet polarity.
본 발명은 전술한 문제점을 해결하기 위하여 토크 맥동 저감을 위해 비균일한 극호각 또는 영구자석 폭과 이를 위한 특별한 극수 슬롯 조합과 권선 배치 방법을 제공하는데 있다.The present invention provides a non-uniform arc angle or permanent magnet width and a special pole number slot combination and winding arrangement method for reducing torque pulsation in order to solve the above problems.
본 발명의 일 측면은 회전자 코어와 교대로 배치되는 제1 자극들 및 제2 자극들을 포함하고 있으며, 상기 제1 자극의 극호각과 제2 자극의 극호각이 상이한 회전자; 및 고정자 코어와, 상기 고정자 코어에는 그 둘레 방향을 따라 일정한 간격을 두고 배치되어 있는 치형들과 각 치형에 권선되는 상권선들을 가지며, 상기 고정자는 회전자와 상대 운동을 한다.One aspect of the present invention includes a rotor including first and second magnetic poles alternately disposed with the rotor core, the polar angle of the polar angle of the first magnetic pole and the second magnetic pole are different; And a stator core, teeth having teeth arranged at regular intervals along its circumferential direction, and winding wires wound around each tooth, wherein the stator makes relative motion with the rotor.
상기와 같은 본 발명에 따르면, 비균일한 극호각 또는 영구 자석폭과 이를 위한 극수 슬롯 조합을 갖고 있어 토크 맥동을 저감시킬 수 있다.According to the present invention as described above, having a non-uniform polar angle or permanent magnet width and the number of pole slots for this, it is possible to reduce the torque pulsation.
도 1은 종래 기술에 따른 회전형의 균일한 극호각을 갖는 영구자석 전동기의 구성도이며, 도 2는 종래 기술에 따른 선형형의 균일한 영구 자석폭을 갖는 영구자석 전동기의 구성도이다.1 is a block diagram of a permanent magnet motor having a uniform polar angle of rotation type according to the prior art, Figure 2 is a block diagram of a permanent magnet motor having a uniform permanent magnet width of the linear type according to the prior art.
도 3은 본 발명의 일 실시예에 따른 10극 12 슬롯 방식에서 토크 맥동 저감 영구 자석 전기기기의 구성도이다.3 is a block diagram of a torque pulsation reduction permanent magnet electric machine in a 10-pole 12-slot method according to an embodiment of the present invention.
도 4는 도 3의 고정자의 권선 구조를 보여주는 제1 실시예이다.FIG. 4 is a first embodiment showing a winding structure of the stator of FIG. 3.
도 5는 도 3의 고정자의 권선 구조를 보여주는 제2 실시예이다.FIG. 5 is a second embodiment showing the winding structure of the stator of FIG. 3.
도 6은 14극 12슬롯 형태에서 고정자의 권선 구조를 보여주는 제3 실시예이다.Figure 6 is a third embodiment showing the winding structure of the stator in the form of a 14 pole 12 slot.
도 7은 14극 12슬롯 형태에서 고정자의 권선 구조를 보여주는 제4 실시예이다.7 is a fourth embodiment showing the winding structure of the stator in the form of a 14 pole 12 slot.
도 8은 14극 18슬롯 형태에서 고정자의 권선 구조를 보여주는 제5 실시예이다.8 is a fifth embodiment showing the winding structure of the stator in the form of a 14 pole 18 slot.
도 9는 22극 24슬롯 형태에서 고정자의 권선 구조를 보여주는 제6 실시예이다.9 is a sixth embodiment showing the winding structure of the stator in the form of a 22-pole 24-slot.
도 10은 22극 24슬롯 형태에서 고정자의 권선 구조를 보여주는 제7 실시예이다.10 is a seventh embodiment showing the winding structure of the stator in the form of a 22 pole 24 slot.
도 11은 26극 24슬롯 형태에서 고정자의 권선 구조를 보여주는 제8 실시예이다.11 is an eighth embodiment showing the winding structure of the stator in the form of a 26-pole 24-slot.
도 12는 26극 24슬롯 형태에서 고정자의 권선 구조를 보여주는 제9 실시예이다.12 is a ninth embodiment showing the winding structure of the stator in the form of a 26-pole 24-slot.
도 13은 도 3의 회전자의 자극 구조를 보여주는 제1 실시예이다.FIG. 13 is a first embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
도 14는 도 3의 회전자의 자극 구조를 보여주는 제2 실시예이다.FIG. 14 is a second embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
도 15는 도 3의 회전자의 자극 구조를 보여주는 제3 실시예이다.15 is a third embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
도 16은 도 3의 회전자의 자극 구조를 보여주는 제4 실시예이다.FIG. 16 is a fourth exemplary embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
도 17은 도 3의 회전자의 자극 구조를 보여주는 제5 실시예이다.17 is a fifth embodiment illustrating a magnetic pole structure of the rotor of FIG. 3.
도 18은 도 3의 회전자의 자극 구조를 보여주는 제6 실시예이다.18 is a sixth embodiment showing the magnetic pole structure of the rotor of FIG. 3.
도 19는 도 3의 회전자의 자극 구조를 보여주는 제7 실시예이다.19 is a seventh embodiment showing the magnetic pole structure of the rotor of FIG.
도 20 내지 도 25는 종래 기술에 따른 전기기기와 본 발명에 따른 전기기기 코킹 토크와 출력 토크의 맥동을 비교하기 위한 도면이다.20 to 25 are diagrams for comparing the pulsation of the electric machine according to the prior art and the electric machine caulking torque and the output torque according to the present invention.
도 26 내지 도 28은 종래 기술에 따른 전기기기와 본 발명에 따른 전기기기의 상역기전력을 나타내는 도면이다.26 to 28 are diagrams showing a conventional electromotive force of the electric device according to the prior art and the electric device according to the present invention.
도 29는 본 발명의 다른 실시예에 따른 영구자석 전기기기의 구성도이다.29 is a configuration diagram of a permanent magnet electric device according to another embodiment of the present invention.
도 30은 약계자 운전시 구동 전압의 고조파 저감을 보여주는 그래프이다.30 is a graph showing harmonic reduction of a driving voltage during weak field operation.
도 31은 출력 토크 향상을 보여주는 그래프이다.31 is a graph showing output torque improvement.
도 32는 약계자 운전시 출력 향상을 보여주는 그래프이다.32 is a graph showing an improvement in power during weak field operation.
도 33은 본 발명의 다른 실시예에 따른 10극 12 슬롯 방식에서 토크 맥동 저감 영구 자석 전기기기의 구성도이다.33 is a block diagram of a torque pulsation reduction permanent magnet electric machine in the 10-pole 12-slot method according to another embodiment of the present invention.
도 34는 본 발명의 또 다른 실시예에 따른 10극 12 슬롯 방식에서 영구자석 선형 전기기기의 구성도이다.34 is a block diagram of a permanent magnet linear electric machine in the 10-pole 12 slot method according to another embodiment of the present invention.
도 35는 도 34의 단층권 구조를 보여주는 영구자석 선형 전기기기의 구성도이다.35 is a configuration diagram of a permanent magnet linear electric machine showing the fault structure of FIG. 34.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여 이하에서는 본 발명의 바람직한 실시예를 예시하고 이를 참조하여 살펴본다.In order to explain the present invention, the operational advantages of the present invention, and the objects achieved by the practice of the present invention, the following describes exemplary embodiments of the present invention and looks at it with reference.
먼저, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.First, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention, and singular forms may include plural forms unless the context clearly indicates otherwise. Also in this application, terms such as "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, one or more other It is to be understood that the present invention does not exclude the possibility of the presence or the addition of features, numbers, steps, operations, components, parts, or a combination thereof.
본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 3은 본 발명의 일 실시예에 따른 10극 12 슬롯 방식에서 영구 자석 전기기기의 구성도이다.3 is a block diagram of a permanent magnet electric machine in the 10-pole 12 slot method according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일실시예에 따른 10극 12 슬롯 방식에서 영구자석 전기기기는 고정자(200)와 그 고정자(200)와 상대 운동하는 회전자(100)로 이루어져 있다.3, in the 10-pole 12-slot system according to an embodiment of the present invention, the permanent magnet electric device includes a stator 200 and a rotor 100 relative to the stator 200.
여기에서, 상기 회전자(100)는 회전자 코어(110)와 제1 자극들(120) 및 제2 자극들(130)을 포함하고 있으며, 제1 자극들(120)과 제2 자극들(130)의 극수는 10개이다. 여기에서, 제1 자극들(120)과 제2 자극들(130)은 영구자석으로 형성되어 있다.Here, the rotor 100 includes the rotor core 110, the first magnetic poles 120 and the second magnetic poles 130, and the first magnetic poles 120 and the second magnetic poles ( The number of poles 130 is 10. Here, the first magnetic poles 120 and the second magnetic poles 130 are formed of a permanent magnet.
상기 회전자 코어(110)는 중공 원통형으로 제작되며 중앙부위에 회전축이 고정되게 삽입 설치될 수 있으며, 외주면에 일정간격을 가지고 교대로 배치되는 제1 자극들(120)과 제2 자극들(130)이 결합될 수 있다.The rotor core 110 may be manufactured in a hollow cylindrical shape and may be inserted and installed to have a rotating shaft fixed to a central portion thereof. The first and second magnetic poles 120 and 130 may be alternately disposed at predetermined intervals on an outer circumferential surface thereof. ) May be combined.
그리고, 상기 제1 자극들(120)은 상기 회전자 코어(110)의 중심에 대하여 제1대칭위치에 위치되어 있으며, 제2 자극들(130)은 중심에 대하여 제2대칭위치에 위치되어 있다.The first magnetic poles 120 are located in a first symmetrical position with respect to the center of the rotor core 110, and the second magnetic poles 130 are located in a second symmetrical position with respect to the center. .
상기 제1 자극들(120)과 제2 자극들(130)은 회전자 코어(110)의 외주면에 교대로 위치하며 이격되어 있다. 상기 제1 자극들(120)과 제2 자극들(130)은 등간격 배치되어 있다. The first magnetic poles 120 and the second magnetic poles 130 are alternately positioned and spaced apart from the outer circumferential surface of the rotor core 110. The first magnetic poles 120 and the second magnetic poles 130 are disposed at equal intervals.
다음으로, 상기 고정자(200)는 고정자 코어(210)와, 상기 고정자 코어(210)의 내측에는 그 둘레방향을 따라 일정한 간격을 두고 배치되어 있는 12개의 치형들(220)과 각 치형(220)에 권선되는 상권선들(222)을 가지고 있다. Next, the stator 200 includes a stator core 210, twelve teeth 220 disposed at regular intervals along the circumferential direction of the stator core 210, and each tooth 220. It has winding windings 222 wound on.
또한, 상기 고정자 (200)는 슬롯들(230)을 갖는다. 여기에서 슬롯들(230)은 12개이다. 이처럼 10개의 극수와 12개의 슬롯을 가지고 있으며, 이는 하나의 일예이며 아래 수학식 1을 만족하는 극수와 슬롯 수를 가질 수 있다.The stator 200 also has slots 230. Here, the slots 230 are twelve. As such, it has ten poles and twelve slots, which is one example, and may have poles and slot numbers satisfying Equation 1 below.
(수학식1) (Equation 1)
Q/(m×t)=짝수Q / (m × t) = even
여기에서, Q는 슬롯수, t는 슬롯수와 극쌍수의 최대 공약수 그리고 m은 전동기의 상(phase) 수이다. Where Q is the number of slots, t is the greatest common divisor of slots and pole pairs, and m is the phase number of the motor.
상기 수학식 1을 만족하는 극수와 슬롯수는 10개의 극수와 12개의 슬롯수 그리고,14개의 극수와 12개의 슬롯수, 14개의 극수와 18개의 슬롯수, 22개의 극수와 24개의 슬롯수, 26개의 극수와 24개의 슬롯 수 등이며, 이러한 조합의 정수배인 확장 조합(20개의 극수와 24개의 슬롯수, 30개의 극수와 36개의 슬롯수, 28개의 극수와 24개의 슬롯수 등)도 가능하다.The number of poles and the number of slots satisfying Equation 1 are 10 poles and 12 slots, 14 poles and 12 slots, 14 poles and 18 slots, 22 poles and 24 slots, 26 Number of poles and number of 24 slots, and an extended combination (20 poles and 24 slots, 30 poles and 36 slots, 28 poles and 24 slots, etc.), which is an integer multiple of this combination.
이와 같은 극수와 슬롯수의 조합에서 극쌍수(P/2)와 슬롯쌍수(Q/2)의 차이가 1이면 이층권과 단층권의 구성이 가능하고(아래 수학식 1을 만족하면), 그렇지 않으면 이층권의 구성만 가능하다. 이를 수식으로 나타내면 아래와 같다.In this combination of poles and slots, if the difference between pole pairs (P / 2) and slot pairs (Q / 2) is 1, it is possible to construct a double layer and a single layer (if the following Equation 1 is satisfied), otherwise Otherwise, only the composition of the second floor is possible. This is expressed as a formula below.
(수학식 2)(Equation 2)
|P/2-Q/2|=1| P / 2-Q / 2 | = 1
여기에서, P는 극수이고, Q는 슬롯수이다.Where P is the number of poles and Q is the number of slots.
이와 같은 제1 자극(120)의 극호각(β1 )과 제2 자극(130)의 극호각(β2 )은 서로 다르다. 즉, 고정자 코어(210)의 중심을 기준으로 할 때에 원주상에서 제1 자극(120)의 원주 방향의 길이와 제2 자극(130)의 원주 방향의 길이가 서로 달리하여 코킹 토크 및 토크 맥동을 저감할 수 있다. 이는 달리 표현하면 제1 자극(120)의 고정자 코어(210)의 중심을 향하는 안측 표면의 원주 방향의 폭(또는 길이)과 제2 자극(130)의 고정자 코어(210)의 중심을 향하는 안측 표면의 원주 방향의 폭(또는 길이)이 서로 다르다. 물론, 이는 달리 표현하면 제1 자극(120)의 고정자 코어(210)의 중심을 향하는 외측 표면의 원주 방향의 폭(또는 길이)과 제2 자극(130)의 고정자 코어(210)의 중심을 향하는 외측 표면의 원주 방향의 폭(또는 길이)이 서로 다르다Such claim pole firing angle (β 2) of the first pole firing angle of the magnetic pole (120) (β 1) and second magnetic poles (130) are different from each other. That is, when the center of the stator core 210 is a reference, the length of the circumferential direction of the first magnetic pole 120 and the length of the circumferential direction of the second magnetic pole 130 are different from each other to reduce caulking torque and torque pulsation. can do. In other words, it is the width (or length) of the circumferential direction of the lateral surface facing the center of the stator core 210 of the first magnetic pole 120 and the inner surface facing the center of the stator core 210 of the second magnetic pole 130. The widths (or lengths) in the circumferential direction of are different from each other. Of course, this means, in other words, the circumferential width (or length) of the outer surface toward the center of the stator core 210 of the first magnetic pole 120 and the center of the stator core 210 of the second magnetic pole 130. Circumferential widths (or lengths) of the outer surfaces are different
그러나 집중권의 경우에 제1 자극(120)과 제2 자극(130)의 극호각을 달리할 경우에 상권선에 유기되는 유기전압의 불평형이 발생하며 이로 인해 순환 전류가 발생할 수 있으므로, 이를 해결하기 위하여 위에서 언급한 특별한 극수와 슬롯수의 조합이 필요하며 그에 더해서 상권선의 결선법이 필요하다.However, when the polarity of the first magnetic pole 120 and the second magnetic pole 130 is different in the case of the concentrated zone, an unbalance of the induced voltage induced in the upper winding occurs, which may cause a circulating current. In order to do this, a special combination of the number of poles and slots mentioned above is required, and in addition, the wiring method of the merchant wire is required.
상기 기본 조합의 경우에 각각의 상권선은 모두 직렬 결선이 필요하며, 기본 조합의 정수배인 확장 조합의 경우는 조합되는 기본 조합간에는 병렬 결선 또는 직렬 결선이 가능하다.In the case of the basic combination, each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined.
한편, 상기 고정자(200)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지고 있다. 보다 구체적으로,도 4를 참조하면 U상에서의 치형(A1~A4)은 각각 U상 권선(A10~A40)을 수반한다. 유사하게 V상에서의 치형(B1~B4)은 각각 V상 권선(B10~B40)을 수반한다. 또한 W상에서의 치형(C1~C4)은 W상 권선(C10~C40)을 수반한다. 상기 고정자 치형은 각각 슬롯(1~12)을 구비한다. On the other hand, the stator 200 has a form of a winding structure consisting of a so-called concentrated winding. More specifically, referring to FIG. 4, the teeth A1 to A4 in the U phase are accompanied by the U phase windings A10 to A40, respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40. The stator teeth are each provided with slots 1-12.
상기 이웃하는 2개의 치형에 하나의 동일한 상의 권선이 감긴다. 즉, 이웃하는 2개의 치형마다 하나의 동일한 상의 권선이 감긴다. 그리고, 이처럼 이웃하는 2개의 치형에 감기는 동일한 상의 권선은 직렬로 연결된다.One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth. The windings of the same phase wound on two neighboring teeth are connected in series.
구체적으로, 이웃하는 2 개의 치형(A4과 A1)에 모두 U상의 권선(A40, A10)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)에 모두 V상의 권선(B10,B20)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)에 모두 W상의 권선(C10, C20)이 감긴다. 이러한, U, V, W 상의 권선 패턴이 전류 방향이 반대로 된 상태에서 반복된다. Specifically, the U-phase windings A40 and A10 are wound around two neighboring teeth A4 and A1. Then, the V-phase windings B10 and B20 are wound around two neighboring teeth B1 and B2. Finally, the windings C10 and C20 of the W phase are wound around the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated in a state in which the current direction is reversed.
총 12개의 치형(A1~C4)을 갖기 때문에 예를 들어 U상의 권선이 감긴 2개의 치형과 다음으로 U상의 권선이 감긴 2 개의 치형 사이에는 각각 V 상이 권선된 2개의 치형과 W상이 권선된 2 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between two teeth wound around the U-phase and two teeth wound around the U-phase, two teeth wound around the V-phase and 2 teeth wound around the W-phase respectively. Teeth are located.
다시 말하면, U상의 중심들은 서로 180도의 기계각을 갖는다고 할 수 있다. 물론, V상의 중심들도 서로 180도의 기계각을 갖고 W상의 중심들도 서로 180도의 기계각을 갖게 된다.In other words, the centers of the U phases have a mechanical angle of 180 degrees. Of course, the centers of phase V also have 180 degrees of mechanical angle with each other, and the centers of phase W have 180 degrees of mechanical angle with each other.
이와 같은 상황에서, 어느 한 상이 권선되는 이웃하는 2 개의 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다.In such a situation, the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A40 권선은 서로 직렬로 연결되어 있고, B10 내지 B40 권선은 서로 직렬로 연결되며, C10 내지 C40 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
한편, 도 4는 슬롯에 2개의 권선이 감기는 형태를 가지고 있으나, 이와 달리 슬롯에 하나의 권선이 감기도록 구현할 수도 있으며, 도 5는 그 실시예를 보여준다.Meanwhile, although FIG. 4 has a form in which two windings are wound in a slot, alternatively, one winding may be wound in a slot, and FIG. 5 shows an embodiment thereof.
상기 고정자(200)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지고 있다. 보다 구체적으로, U상에서의 치형(A1~A4)중 2개는 각각 U상 권선(A10,A20)을 수반한다. 유사하게 V상에서의 치형(B1~B4)중 2개는 각각 V상 권선(B10, B20)을 수반한다. 또한 W상에서의 치형(C1~C4)중 2개는 W상 권선(C10, C20)을 수반한다. 상기 이웃하는 2개의 치형중 하나의 치형에 하나의 상의 권선이 감긴다. The stator 200 has a form of a winding structure composed of so-called concentrated windings. More specifically, two of the teeth A1 to A4 in the U phase carry the U phase windings A10 and A20, respectively. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
구체적으로, 이웃하는 2 개의 치형(A1과 A2)중 하나의 치형(A1)에 U상의 권선(A10)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)중 하나의 치형(B1)에 V상의 권선(B10)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)중 하나에 W상의 권선(C10)이 감긴다. 이러한, U, V, W 상의 권선 패턴은 전류 방향이 반대로 된 상태에서 반복된다. Specifically, the U-phase winding A10 is wound around one tooth A1 of two neighboring teeth A1 and A2. Then, the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2. Finally, the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated with the current direction reversed.
총 12개의 치형(A1~C4)를 갖기 때문에 예를 들어 U상의 권선이 감긴 1개의 치형과 다음으로 U상의 권선이 감긴 1 개의 치형 사이에는 각각 V 상이 권선된 1개의 치형과 W상이 권선된 1 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
이와 같은 상황에서, 상이 권선되는 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다. 도 5를 참조하면, U상이 권선되는 1개의 치형(A4)에는 반시계방향, 다음의 치형(B1)은 시계 방향으로 권선되고, 그 다음의 치형(C1)에는 다시 반시계방향으로 권선된다. 이와 반대 방향으로 권선될 수도 있다.In such a situation, the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth. Referring to FIG. 5, one tooth A4 on which the U phase is wound is wound counterclockwise, the next tooth B1 is clockwise rotated, and the next tooth C1 is wound counterclockwise again. It may also be wound in the opposite direction.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10와 A20 권선은 서로 직렬로 연결되어 있고, B10와 B20 권선은 서로 직렬로 연결되며, C10과 C20 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 and A20 windings are connected in series with each other, the B10 and B20 windings are connected in series with each other, and the C10 and C20 windings are connected in series with each other.
한편, 도 6은 극수가 다른 경우에 권선을 보여주고 있는데, 극수가 14극이고 슬롯이 12개인 경우를 보여준다.On the other hand, Figure 6 shows the windings in the case of different poles, 14 poles and 12 slots.
다만, 도 4와 달리, 치형이 U상 권선이 감기는 A1과 A2가 연속되고, 다음으로 V상 권선이 감기는 B1과 B2가 연속되며, 다음으로 W상 권선이 감기는 C1과 C2가 연속된다. 이러한 상태가 권선 전류 방향이 반대가 된 상태에서 반복된다.However, unlike FIG. 4, teeth A1 and A2 are wound around the U-phase winding, and B1 and B2 are wound next to the V-phase winding, and C1 and C2 are wound next to the W-phase winding. do. This condition is repeated with the winding current direction reversed.
상기 고정자(200)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지고 있다. 보다 구체적으로, U상에서의 치형(A1~A4)은 각각 U상 권선(A10~A40)을 수반한다. 유사하게 V상에서의 치형(B1~B4)은 각각 V상 권선(B10~B40)을 수반한다. 또한 W상에서의 치형(C1~C4)은 W상 권선(C10~C40)을 수반한다. The stator 200 has a form of a winding structure composed of so-called concentrated windings. More specifically, the teeth A1 to A4 in the U phase carry the U phase windings A10 to A40 respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40.
상기 이웃하는 2개의 치형에 하나의 동일한 상의 권선이 감긴다. 즉, 이웃하는 2개의 치형마다 하나의 동일한 상의 권선이 감긴다.One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth.
구체적으로, 이웃하는 2 개의 치형(A1과 A2)에 모두 U상의 권선(A10, A20)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)에 모두 V상의 권선(B10, B20)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)에 모두 W상의 권선(C10, C20)이 감긴다. 이러한, U, V, W 상의 권선 패턴이 전류 방향이 반대로 된 상태에서 반복된다. Specifically, the U-phase windings A10 and A20 are wound around two neighboring teeth A1 and A2. Then, the V-phase windings B10 and B20 are wound around the next two teeth B1 and B2. Finally, the windings C10 and C20 of the W phase are wound around the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated in a state in which the current direction is reversed.
총 12개의 치형(A1~C4)를 갖기 때문에 예를 들어 U상의 권선이 감긴 2개의 치형과 다음으로 U상의 권선이 감긴 2 개의 치형 사이에는 순서대로 각각 V 상이 권선된 2개의 치형과 W상이 권선된 2 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between the two teeth wound on the U-phase winding and the next two teeth wound on the U-phase winding, the two teeth and the W-phase wound each in turn Two teeth are placed.
다시 말하면, U상의 중심들은 서로 180도의 기계각을 갖는다고 할 수 있다. 물론, V상의 중심들도 서로 180도의 기계각을 갖고 W상의 중심들도 서로 180도의 기계각을 갖게 된다.In other words, the centers of the U phases have a mechanical angle of 180 degrees. Of course, the centers of phase V also have 180 degrees of mechanical angle with each other, and the centers of phase W have 180 degrees of mechanical angle with each other.
이와 같은 상황에서, 어느 한 상이 권선되는 이웃하는 2 개의 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다. 도 6을 참조하면, U상이 권선되는 2개의 치형(A1과 A2)에서, 처음의 치형(A1)은 반시계방향, 다음의 치형(A2)은 시계 방향으로 권선 전류 방향을 갖는 것이 바람직하다. 물론, 처음의 치형은 시계 방향, 다음의 치형은 반시계 방향으로 권선 전류 방향이 될 수도 있다.In such a situation, the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth. Referring to FIG. 6, in the two teeth A1 and A2 in which the U phase is wound, it is preferable that the first tooth A1 has a countercurrent direction and the next tooth A2 has a winding current direction in a clockwise direction. Of course, the first tooth may be clockwise and the next tooth counterclockwise.
또한, V상이 권선되는 2개의 치형(B1과 B2)에서, 처음의 치형(B1)은 시계방향, 다음의 치형(B2)은 반시계 방향으로 권선 전류 방향이 됨이 바람직하다. 물론, 처음의 치형은 반시계 방향, 다음의 치형은 시계 방향으로 권선 전류 방향이 될 수도 있다.Further, in the two teeth B1 and B2 in which the V phase is wound, it is preferable that the first tooth B1 is clockwise and the next tooth B2 is the winding current direction in the counterclockwise direction. Of course, the first tooth may be counterclockwise and the next tooth clockwise in the winding current direction.
또한, W상이 권선되는 2개의 치형(C1과 C2)에서, 처음의 치형(C1)은 반시계방향, 다음의 치형(C2)은 시계 방향으로 권선 전류 방향이 됨이 바람직하다. 물론, 처음의 치형은 시계 방향, 다음의 치형은 반시계 방향으로 권선 전류 방향이 될 수도 있다. 이러한 구성이 전류 방향이 반대로 된 상태에서 반복된다.Further, in the two teeth C1 and C2 on which the W phase is wound, it is preferable that the first tooth C1 is counterclockwise, and the next tooth C2 is the winding current direction in the clockwise direction. Of course, the first tooth may be clockwise and the next tooth counterclockwise. This configuration is repeated with the current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A40 권선은 서로 직렬로 연결되어 있고, B10 내지 B40 권선은 서로 직렬로 연결되며, C10 내지 C40 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
한편, 도 6은 슬롯에 2개의 권선이 감기는 형태를 가지고 있으나, 이와 달리 슬롯에 하나의 권선이 감기도록 구현할 수도 있으며, 도 7은 그 실시예를 보여주며 권선 구조는 도 5와 동일하다.Meanwhile, although FIG. 6 has a form in which two windings are wound in a slot, alternatively, one winding may be wound in a slot, and FIG. 7 shows an embodiment and the winding structure is the same as that of FIG. 5.
상기 고정자(200)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지있다. 보다 구체적으로, U상에서의 치형(A1~A4)중 2개는 각각 U상 권선(A10, A20)을 수반한다. 유사하게 V상에서의 치형(B1~B4)중 2개는 각각 V상 권선(B10, B20)을 수반한다. 또한 W상에서의 치형(C1~C4)중 2개는 W상 권선(C10, C20)을 수반한다. 상기 이웃하는 2개의 치형중 하나의 치형에 하나의 상의 권선이 감긴다. The stator 200 has a form of a winding structure composed of a so-called concentrated winding. More specifically, two of the teeth A1 to A4 in the U phase carry the U phase windings A10 and A20, respectively. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
구체적으로, 이웃하는 2 개의 치형(A1과 A2)중 하나의 치형(A1)에 U상의 권선(A10)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)중 하나의 치형(B1)에 V상의 권선(B10)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)중 하나에 W상의 권선(C10)이 감긴다. 이러한, U, V, W 상의 권선 패턴이 권선 전류 방향이 반대로 된 상태에서 반복된다. Specifically, the U-phase winding A10 is wound around one tooth A1 of two neighboring teeth A1 and A2. Then, the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2. Finally, the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2. This winding pattern on U, V, W is repeated with the winding current direction reversed.
총 12개의 치형(A1~C4)을 갖기 때문에 예를 들어 U상의 권선이 감긴 1개의 치형과 다음으로 U상의 권선이 감긴 1 개의 치형 사이에는 각각 V 상이 권선된 1개의 치형과 W상이 권선된 1 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
이와 같은 상황에서, 상이 권선되는 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다. 도 7을 참조하면, U상이 권선되는 1개의 치형(A1)에는 반시계 방향, 다음의 치형(B1)은 시계 방향으로 권선 전류 방향이 되고, 그 다음의 치형(C1)에는 다시 반시계방향으로 권선 전류 방향이 된다. 이와 반대 방향으로 권선 전류 방향이 될 수도 있다.In such a situation, the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth. Referring to FIG. 7, one tooth A1 in which the U phase is wound is counterclockwise, and the next tooth B1 is clockwise in the clockwise direction, and the next tooth C1 is again counterclockwise. Winding current direction. It can also be the winding current direction in the opposite direction.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10와 A20 권선은 서로 직렬로 연결되어 있고, B10와 B20 권선은 서로 직렬로 연결되며, C10과 C20 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 and A20 windings are connected in series with each other, the B10 and B20 windings are connected in series with each other, and the C10 and C20 windings are connected in series with each other.
한편, 도 4 내지 도 7은 12 슬롯에 대한 권선 배치를 보여주고 있는바, 이와 달리 슬롯이 증가되는 경우에도 동일한 방식으로 권선을 배치할 수 있다.Meanwhile, FIGS. 4 to 7 show winding arrangements for 12 slots. Alternatively, windings may be arranged in the same manner even when the slots are increased.
이와 관련하여 도 8은 14극에 18슬롯인 경우에 권선 배치를 보여주며, 첫번째 치형에는 U상이 반시계 방향으로 권선 전류 방향이 되고, 다음 치형에는 V상이 반시계 방향을 권선 전류 방향이 되며, 그 다음 치형에는 W상이 반시계 방향으로 권선 전류 방향이 된다.In this regard, Fig. 8 shows the winding arrangement in the case of 18 slots in 14 poles, the first teeth of the U phase become the winding current direction in the counterclockwise direction, and the next of the teeth V phase of the winding current direction in the counterclockwise direction. In the next tooth, the W phase becomes the winding current direction counterclockwise.
그리고, 계속해서 다음 치형에는 W상이 시계 방향으로 권선 전류 방향이 되고, 그 다음 치형에는 U상이 시계 방향으로 권선 전류 방향이 되고, 그 다음 치형에는 V상이 시계 방향을 권선 전류 방향이 된다.Subsequently, the W phase becomes the winding current direction in the clockwise direction for the next tooth, the U phase becomes the winding current direction in the clockwise direction for the next tooth, and the V current becomes the winding current direction in the clockwise direction for the next tooth.
계속해서 다음 치형에는 V상이 반시계 방향으로 권선 전류 방향이 되고, 그 다음 치형에는 W상이 반시계 방향으로 권선 전류 방향이 되고, 그 다음 치형에는 U상이 반시계 방향을 권선 전류 방향이 된다. 그 다음 부터는 위에서 설명한 권선 배치가 권선 전류 방향이 반대로 된 상태에서 반복된다.Subsequently, the V-phase becomes the winding current direction counterclockwise for the next tooth, the W-phase becomes the winding current direction counter-clockwise for the next tooth, and the U-phase becomes the winding current direction for the next tooth. The winding arrangement described above is then repeated with the winding current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A60 권선은 서로 직렬로 연결되어 있고, B10 내지 B60 권선은 서로 직렬로 연결되며, C10 내지 C60 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A60 windings are connected in series with each other, the B10 to B60 windings are connected in series with each other, and the C10 to C60 windings are connected in series with each other.
한편, 도 9는 22극 24 슬롯의 권선 배치를 보여주는데, 첫번째 치형(A1)에는 U상이 반시계 방향으로 권선 전류 방향이 되고, 다음 치형(A2)에는 U상이 시계 방향으로 권선 전류 방향이 되고, 그 다음 치형(A3)에는 U상이 반시계 방향으로 권선 전류 방향이 되고, 그 다음 치형(A4)에는 U상이 시계 방향으로 권선 전류 방향이 된다. 그리고, 그 다음 치형부터 이웃하는 4개의 치형(B1~B4)에는 V상이 시계 방향-반시계 방향-시계 방향-반시계 방향으로 권선 전류 방향이 되며, 그 다음 치형에서부터 이웃하는 4개의 치형(C1~C4)에는 W상이 반시계 방향-시계 방향-반시계 방향-시계 방향으로 권선 전류 방향이 된다.On the other hand, Figure 9 shows the winding arrangement of the 22-pole 24 slot, the first tooth (A1) the U phase is the winding current direction in the counterclockwise direction, the next tooth (A2) the U phase is the winding current direction, clockwise, In the tooth A3, the U phase becomes the winding current direction in the counterclockwise direction, and in the tooth A4, the U phase becomes the winding current direction in the clockwise direction. In the next teeth, neighboring four teeth B1 to B4, the V phase becomes the winding current direction in the clockwise direction, the counterclockwise direction, the clockwise direction, and the counterclockwise direction. In C4), the W phase becomes the winding current direction in the counterclockwise direction, clockwise direction, and counterclockwise direction.
그 다음 부터는 위에서 설명한 권선 배치가 권선 전류 방향이 반대가 된 상태에서 반복된다.The winding arrangement described above is then repeated with the winding current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A80 권선은 서로 직렬로 연결되어 있고, B10 내지 B80 권선은 서로 직렬로 연결되며, C10 내지 C80 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A80 windings are connected in series with each other, the B10 to B80 windings are connected in series with each other, and the C10 to C80 windings are connected in series with each other.
도 10은 22극 24 슬롯에서 슬롯에 권선이 1층으로 권선되는 경우에 권선 배치를 보여주는데, 구체적으로, 이웃하는 2 개의 치형(A1과 A2)중 하나의 치형(A1)에 U상의 권선(A10)이 반시계 방향으로 권선 전류 방향을 가지며 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)중 하나의 치형(B1)에 V상의 권선(B10)이 시계 방향으로 권선 전류 방향을 가지며 감긴다. 다음의 이웃하는 2 개의 치형(B3과 B4)중 하나의 치형(B3)에 V상의 권선(B20)이 시계 방향으로 권선 전류 방향을 가지며 감긴다. 다음의 이웃하는 2 개의 치형(C1과 C2)중 하나의 치형(C2)에 W상의 권선(C10)이 반시계 방향으로 권선 전류 방향이 가지며 감긴다. 다음의 이웃하는 2 개의 치형(C3과 C4)중 하나의 치형(C3)에 W상의 권선(C20)이 반시계 방향으로 권선 전류 방향을 가지며 감긴다. 그 다음에 이웃하는 2개의 치형(A3와 A4) 중 하나의 치형(A3)에 U상의 권선(A20)이 시계 방향으로 권전 전류 방향을 가지며 감긴다. 이후에는 이러한 패턴이 권선 전류 방향이 반대로 된 상태에서 반복된다.FIG. 10 shows the winding arrangement in the case where a winding is wound in a single layer in a slot in a 22-pole 24 slot, specifically, the U-phase winding A10 in one tooth A1 of two neighboring teeth A1 and A2. ) Is wound with the winding current direction in the counterclockwise direction. Then, the V-phase winding B10 is wound around the teeth B1 of one of the two neighboring teeth B1 and B2 next in the clockwise direction. The winding B20 of the V phase is wound around the teeth B3 of one of the two neighboring teeth B3 and B4 next with the winding current direction in the clockwise direction. The winding C10 of the W phase is wound with the winding current direction in the counterclockwise direction to one tooth C2 of the next two neighboring teeth C1 and C2. The winding C20 of the W phase is wound around the teeth C3 of one of the two neighboring teeth C3 and C4 next with the winding current direction counterclockwise. The winding A20 of the U phase is then wound around the teeth A3 of one of the two neighboring teeth A3 and A4 with the winding current direction in the clockwise direction. This pattern is then repeated with the winding current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A40 권선은 서로 직렬로 연결되어 있고, B10 내지 B40 권선은 서로 직렬로 연결되며, C10 내지 C40 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
한편, 도 11은 26극 24 슬롯의 권선 배치를 보여주는데, 첫번째 치형에서부터 4개의 이웃하는 치형에는 U상이 반시계 방향-시계 방향-반시계 방향-시계 방향으로 권선 전류 방향이 되고, 다음 치형부터 이웃하는 4개의 치형에는 V상이 시계 방향-반시계 방향-시계 방향-반시계 방향으로 권선 전류 방향이 되며, 그 다음 치형에서부터 이웃하는 4개의 치형에는 W상이 반시계 방향-시계 방향-반시계 방향-시계 방향으로 권선 전류 방향이 된다. 그 다음 부터는 위에서 설명한 권선 배치가 권선 전류 방향이 반대로 되어 반복된다.On the other hand, Fig. 11 shows the winding arrangement of the 26-pole 24-slot, in which the U-phase becomes the winding current direction in the counterclockwise-clockwise-counterclockwise-clockwise direction from the first tooth to the four neighboring teeth, In the four teeth, the V phase becomes the winding current direction clockwise-counterclockwise-clockwise-counterclockwise.The next four teeth are W-clocked counterclockwise-clockwise-counterclockwise- The winding current is clockwise. The winding arrangement described above is then repeated with the winding current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A80 권선은 서로 직렬로 연결되어 있고, B10 내지 B80 권선은 서로 직렬로 연결되며, C10 내지 C80 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A80 windings are connected in series with each other, the B10 to B80 windings are connected in series with each other, and the C10 to C80 windings are connected in series with each other.
도 12는 26극 24 슬롯에서 슬롯에 권선이 1층으로 권선되는 경우에 권선 배치를 보여주는데, 구체적으로, 이웃하는 2 개의 치형(A1과 A2)중 하나의 치형(A1)에 U상의 권선(A10)이 반시계 방향으로 권전 전류 방향을 가지며 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(A3과 A4)중 하나의 치형(A3)에 U상의 권선(A20)이 반시계 방향으로 권선 전류 방향을 가지며 감긴다. 다음의 이웃하는 2 개의 치형(B1과 B2)중 하나의 치형(B1)에 V상의 권선(B10)이 시계 방향으로 권선 전류 방향을 가지며 감긴다. 다음의 이웃하는 2 개의 치형(B3과 B4)중 하나의 치형(B3)에 V상의 권선(B20)이 시계 방향으로 권선 전류 방향을 가지며 감긴다. FIG. 12 shows the winding arrangement in the case where a winding is wound in a single layer in a slot in a 26-pole 24 slot, specifically, a U-phase winding A10 on one tooth A1 of two neighboring teeth A1 and A2. ) Is wound in a counterclockwise direction with the winding current direction. The U-phase winding A20 is wound around the teeth A3 of one of the two neighboring teeth A3 and A4 next to each other with the winding current direction in the counterclockwise direction. The winding B10 of V phase is wound around the teeth B1 of one of the two neighboring teeth B1 and B2 next in the clockwise direction. The winding B20 of the V phase is wound around the teeth B3 of one of the two neighboring teeth B3 and B4 next with the winding current direction in the clockwise direction.
그리고, 다음의 이웃하는 2 개의 치형(C1과 C2)중 하나의 치형(C1)에 W상의 권선(C10)이 반시계 방향으로 권선 전류 방향을 가지며 감기고, 다음의 이웃하는 2개의 치형(C3와 C4)중 하나의 치형(C3)에는 W상의 권선(C20)가 반시계 방향으로 권선 전류 방향을 가지며 감긴다. 그 다음 부터는 위에서 설명한 권선 배치가 권선 전류 방향이 반대로 된 상태에서 반복된다.Then, the winding C10 of the W phase is wound around the teeth C1 of one of the two neighboring teeth C1 and C2 having the winding current direction in the counterclockwise direction, and the next two teeth C3 and the next neighboring teeth C1 and C2 are wound. In one tooth C3 of C4), the winding C20 of the W phase is wound with the winding current direction counterclockwise. The winding arrangement described above is then repeated with the winding current direction reversed.
그리고, 이와 같은 구성에서 각 상의 모든 권선은 서로 직렬로 연결되어 있다. 즉, A10 내지 A40 권선은 서로 직렬로 연결되어 있고, B10 내지 B40 권선은 서로 직렬로 연결되며, C10 내지 C40 권선은 서로 직렬로 연결된다.In this configuration, all the windings of each phase are connected in series with each other. That is, the A10 to A40 windings are connected in series with each other, the B10 to B40 windings are connected in series with each other, and the C10 to C40 windings are connected in series with each other.
한편, 도 13은 도 3의 회전자의 제1 실시예를 보여주는 도면이다.FIG. 13 is a diagram illustrating a first embodiment of the rotor of FIG. 3.
도 13을 참조하면, 도 3의 회전자는 상기 회전 샤프트가 고정되는 내주면에 실질적으로 회전자 코어(110)를 포함한다. Referring to FIG. 13, the rotor of FIG. 3 includes a rotor core 110 substantially on an inner circumferential surface to which the rotating shaft is fixed.
상기 회전자는, 예를 들어 네오디뮴(neodymium) 및 디스프로슘(dysprosium)을 함유하는 희토류 자석으로 구성되는 5개의 영구자석들로 이루어진 제1 자극들(120)을 포함한다. 5개의 영구자석들로 이루어진 제1 자극들(120)은 N극 또는 S극과 같은 동일한 자석 극성을 가지고, 상기 코어(110)의 외주면에 장착된다. The rotor comprises first magnetic poles 120 consisting of five permanent magnets consisting of rare earth magnets containing, for example, neodymium and dysprosium. The first magnetic poles 120 made of five permanent magnets have the same magnetic polarity as the N pole or the S pole, and are mounted on the outer circumferential surface of the core 110.
상기 5개의 영구자석들로 이루어진 제1 자극들(120)은 그 사이에서 일정한 간격으로 원주방향에 배열된다.The first magnetic poles 120 of the five permanent magnets are arranged in the circumferential direction at regular intervals therebetween.
상기 각각의 영구 자석들의 외부면은 상기 회전 샤프트의 중심축 둘레에 일정한 곡률 반경으로 굴곡된다.The outer surface of each of the permanent magnets is bent at a constant radius of curvature around the central axis of the rotating shaft.
상기 코어(110)에는 5개의 영구자석들로 이루어진 제1 자극들 사이에서 개별적으로 배치되고 일정한 피치로 원주방향에 배열되는 반경 외측방향으로 돌출된 5개의 돌출부로 이루어진 제2 자극들(130)이 구비된다. The core 110 includes second magnetic poles 130 each having five protrusions radially outwardly arranged between the first magnetic poles composed of five permanent magnets and arranged in a circumferential direction at a constant pitch. It is provided.
상기 회전자(110)의 구성에서, 상기 5개의 영구자석들의 자석 극성은 5개의 돌출부가 5개의 영구 자석들의 자석 극성에 반대되는 동일한 자석 극성으로 결과적으로 자화되도록 하는데, 이러한 돌출부로 이루어진 제2 자극은 이하에서 '컨시퀀트 폴(consequent pole)'로 언급될 수 있다. In the configuration of the rotor 110, the magnet polarity of the five permanent magnets causes the five protrusions to eventually magnetize to the same magnet polarity as opposed to the magnet polarity of the five permanent magnets, the second magnetic pole consisting of these protrusions May be referred to hereinafter as a 'consequent pole'.
상기 코어(110)는 영구자석들로 이루어진 제1 자극들(120)과 컨시퀀트 폴로 이루어진 제2 자극(130) 사이에서 공간(140)을 포함하고, 이러한 공간(140)은 상기 영구자석들로 이루어진 제1 자극(120)과 컨시퀀트 폴로 이루어진 제2 자극(130) 사이에서 자성 장벽을 제공한다. 각각의 컨시퀀트 폴로 이루어진 제2 자극(130)의 외부면은 상기 회전 샤프트의 중심 축 둘레에 일정한 곡률 반경을 가지고 굴곡된다. 상기 회전자(110)의 각각의 극(영구자석들로 이루어진 제1 자극(120) 및 컨시퀀트 폴로 이루어진 제2 자극(130)) 사이에서의 자기적인 상호 작용은 회전자(110)를 회전시키는 토크를 생성한다. 상기 제1 자극(120)의 극호각과 제2 자극(130)의 극호각은 상이하다.The core 110 includes a space 140 between the first magnetic poles 120 made of permanent magnets and the second magnetic pole 130 made of a sequence pole, which is formed of the permanent magnets. A magnetic barrier is provided between the first stimulus 120 made up and the second stimulus 130 made up of a sequence pole. The outer surface of the second pole 130, consisting of each sequence pole, is curved with a constant radius of curvature around the central axis of the rotating shaft. Magnetic interaction between each pole of the rotor 110 (the first magnetic pole 120 made of permanent magnets and the second magnetic pole 130 made of a sequence pole) causes the rotor 110 to rotate. Generate torque. The polar angle of the first magnetic pole 120 and the polar angle of the second magnetic pole 130 are different.
한편, 도 14는 영구 자석으로 이루어진 제1 자극(120)을 회전자 코어(110)에 표면 부착한 실시예이다.Meanwhile, FIG. 14 illustrates an embodiment in which the first magnetic pole 120 made of a permanent magnet is surface-attached to the rotor core 110.
다음으로, 도 15는 10개의 영구 자석들로 이루어진 제1 자극(120)과 제2 자극(130)이 회전자 코어(110)에 매입되어 있는 형태를 나타낸다.Next, FIG. 15 illustrates a form in which the first magnetic pole 120 and the second magnetic pole 130 made of ten permanent magnets are embedded in the rotor core 110.
도 15를 참조하면, 회전자는 회전자 코어(110)와, 회전자 코어(110)의 주위에 설치되는 10개의 영구 자석으로 이루어진 제1 자극들(120)과 제2 자극(130)을 가진다.Referring to FIG. 15, the rotor has a rotor core 110, first poles 120 and second poles 130 made of ten permanent magnets installed around the rotor core 110.
상기 제1 자극들(120)과 제2 자극들(130)은 교대로 형성되어 있으며 제1 자극들(120)과 제2 자극들(130) 사이에는 홈(140)이 형성되어 있다. 여기에서, 제1 자극들(120)과 제2 자극들(130)의 극호각은 상이하다.The first magnetic poles 120 and the second magnetic poles 130 are alternately formed, and a groove 140 is formed between the first magnetic poles 120 and the second magnetic poles 130. Here, the polar angles of the first magnetic poles 120 and the second magnetic poles 130 are different.
한편, 도 16은 영구자석으로 이루어진 제1 자극들(120)이 회전자 코어(110)에 매입되어 있지 않고 표면에 부착되어 있는 다른 실시예를 나타낸다.Meanwhile, FIG. 16 illustrates another embodiment in which the first magnetic poles 120 made of permanent magnets are not embedded in the rotor core 110 but attached to the surface.
다음으로, 도 17은 회전자의 또 다른 실시예를 나타낸다. Next, FIG. 17 shows another embodiment of the rotor.
도 17을 참조하면, 회전자의 또 다른 실시예는 회전자 코어(110)와, 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제1 치형들(120-1)과 상기 제1 치형들(120-1)에 감겨 있는 제1 권선들(120-2)로 이루어진 제1 자극(120) 및 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제2 치형들(130-1)과 상기 제2 치형들(130-1)에 감겨 있는 제2 권선들(130-2)로 이루어진 제2 자극(130)을 포함한다. 제1 치형들(120-1)과 제2 치형들(130-1)은 교대로 형성되어 있다.Referring to FIG. 17, another embodiment of the rotor includes a rotor core 110, first teeth 120-1 protruding radially about a rotation axis of the rotor core 110, and the first teeth. Second teeth 130-protruding radially about a rotation axis of the first magnetic pole 120 and the rotor core 110 made of the first windings 120-2 wound on the teeth 120-1. 1) and a second magnetic pole 130 composed of second windings 130-2 wound around the second teeth 130-1. The first teeth 120-1 and the second teeth 130-1 are alternately formed.
상기 회전자 코어(110)은 회전자의 회전 중심이 되는 축으로서, 원형의 단면을 가지도록 형성될 수 있다. 상기 코어(110)는 회전자의 본체가 되는 부분으로서, 상기 회전축의 외경면에 밀착되어 설치될 수 있으며, 상기 회전축을 중심으로 방사상으로 돌출된 복수의 치형(120-1, 130-1)를 포함할 수 있다. The rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor. The core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
상기 치형(120-1, 130-1)의 개수는 본 발명의 실시예에 한정되지 않으며 모터의 안정된 구동 특성을 위하여 적절하게 조절될 수 있다.The number of teeth 120-1 and 130-1 is not limited to the embodiment of the present invention and may be appropriately adjusted for stable driving characteristics of the motor.
실시예에서 상기 치형(120-1, 130-1)는 상기 고정자의 내경면에 대응되도록 그 끝단이 원주 방향을 따라 연장된 연장부(120-3, 130-3)를 포함할 수 있다.In an embodiment, the teeth 120-1 and 130-1 may include extension parts 120-3 and 130-3 whose ends extend in the circumferential direction so as to correspond to the inner diameter surface of the stator.
상기 권선들(120-2, 130-2)은 상기 치형들(120-1, 130-1)에 각각 권선되어 외부 전원에 의해 자기장을 발생시킨다. 회전자의 내부에 영구자석이 삽입되는 모터와 달리 본 발명의 실시예에서는 회전자에 권선된 코일(120-2, 130-2)에 전류를 공급하여 자기장을 발생시킨다.The windings 120-2 and 130-2 are wound around the teeth 120-1 and 130-1, respectively, to generate a magnetic field by an external power source. Unlike a motor in which a permanent magnet is inserted into the rotor, in the embodiment of the present invention, a magnetic field is generated by supplying current to the coils 120-2 and 130-2 wound on the rotor.
한편, 도 18은 회전자의 또 다른 실시예를 나타내는 도면이다.18 is a view showing still another embodiment of the rotor.
도 18을 참조하면, 회전자의 또 다른 실시예는 회전자 코어(110)와, 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제1 치형들(120-1)과 상기 제1 치형들(120-1)에 감겨 있는 제1 권선들(120-2)로 이루어진 제1 자극(120) 및 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제2 치형들(130-1)과 상기 제2 치형들(130-1)에 매입되어 있는 영구자석들(130-2)로 이루어진 제2 자극(130)을 포함한다. 제1 치형(120-1)과 제2 치형들(130-1)은 교대로 형성되어 있다.Referring to FIG. 18, another embodiment of the rotor includes a rotor core 110, first teeth 120-1 protruding radially about a rotation axis of the rotor core 110, and the first teeth. Second teeth 130-protruding radially about a rotation axis of the first magnetic pole 120 and the rotor core 110 made of the first windings 120-2 wound on the teeth 120-1. 1) and a second magnetic pole 130 made of permanent magnets 130-2 embedded in the second teeth 130-1. The first teeth 120-1 and the second teeth 130-1 are alternately formed.
상기 회전자 코어(110)은 회전자의 회전 중심이 되는 축으로서, 원형의 단면을 가지도록 형성될 수 있다. 상기 코어(110)는 회전자의 본체가 되는 부분으로서, 상기 회전축의 외경면에 밀착되어 설치될 수 있으며, 상기 회전축을 중심으로 방사상으로 돌출된 복수의 치형(120-1, 130-1)를 포함할 수 있다. The rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor. The core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
실시예에서 상기 치형들(120-1, 130-1)중에서 하나의 치형(120-1)에는 권선(120-2)가 감겨져 있으며, 다른 치형(130-1)에는 영구 자석(130-2)이 매입되어 있다.In the embodiment, the winding 120-2 is wound around one tooth 120-1 among the teeth 120-1 and 130-1, and the permanent magnet 130-2 is wound around the other tooth 130-1. This is purchased.
여기에서, 권선(120-2)이 감겨 있는 치형(120-1)은 상기 고정자의 내경면에 대응되도록 그 끝단이 원주 방향을 따라 연장된 연장부(120-3)를 포함할 수 있다.Here, the teeth 120-1 on which the windings 120-2 are wound may include an extension 120-3 whose end portion extends in the circumferential direction so as to correspond to the inner diameter surface of the stator.
상기 권선(120-2)은 상기 치형(120-1)에 권선되어 외부 전원에 의해 자기장을 발생시킨다. 상기 실시예에서는 회전자에 권선된 권선(120-2)에 전류를 공급하여 영구 자석과 함께 자기장을 발생시킨다.The winding 120-2 is wound around the tooth 120-1 to generate a magnetic field by an external power source. In this embodiment, a current is supplied to the winding 120-2 wound on the rotor to generate a magnetic field together with the permanent magnet.
한편, 도 19는 회전자의 또 다른 실시예를 나타내는 도면이다.19 is a view showing still another embodiment of the rotor.
도 19를 참조하면, 회전자의 또 다른 실시예는 회전자 코어(110)와, 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제1 치형들(120-1)과 상기 제1 치형들(120-1)에 감겨 있는 제1 권선들(120-2)로 이루어진 제1 자극(120) 및 회전자 코어(110)의 회전축을 중심으로 방사상으로 돌출된 제2 치형들(130-1)과 상기 제2 치형들(130-1)의 표면에 형성되어 있는 영구자석들(130-2)로 이루어진 제2 자극(130)을 포함한다. 제1 치형(120-1)과 제2 치형들(130-1)은 교대로 형성되어 있다.Referring to FIG. 19, another embodiment of the rotor includes the rotor core 110, first teeth 120-1 protruding radially about the axis of rotation of the rotor core 110, and the first teeth. Second teeth 130-protruding radially about a rotation axis of the first magnetic pole 120 and the rotor core 110 made of the first windings 120-2 wound on the teeth 120-1. 1) and a second magnetic pole 130 made of permanent magnets 130-2 formed on the surfaces of the second teeth 130-1. The first teeth 120-1 and the second teeth 130-1 are alternately formed.
상기 회전자 코어(110)는 회전자의 회전 중심이 되는 축으로서, 원형의 단면을 가지도록 형성될 수 있다. 상기 코어(110)는 회전자의 본체가 되는 부분으로서, 상기 회전축의 외경면에 밀착되어 설치될 수 있으며, 상기 회전축을 중심으로 방사상으로 돌출된 복수의 치형(120-1, 130-1)를 포함할 수 있다. The rotor core 110 may be formed to have a circular cross section as an axis serving as a rotation center of the rotor. The core 110 is a part that becomes the main body of the rotor, may be installed in close contact with the outer diameter surface of the rotating shaft, the plurality of teeth (120-1, 130-1) protruding radially around the rotating shaft It may include.
실시예에서 상기 치형들(120-1, 130-1)중에서 하나의 치형(120-1)에는 권선(120-2)가 감겨져 있으며, 다른 치형(130-1)에는 영구 자석(130-2)이 형성되어 있다.In the embodiment, the winding 120-2 is wound around one tooth 120-1 among the teeth 120-1 and 130-1, and the permanent magnet 130-2 is wound around the other tooth 130-1. Is formed.
여기에서, 권선(120-2)이 감겨 있는 치형(120-1)은 상기 고정자의 내경면에 대응되도록 그 끝단이 원주 방향을 따라 연장된 연장부(120-3)를 포함할 수 있다.Here, the teeth 120-1 on which the windings 120-2 are wound may include an extension 120-3 whose end portion extends in the circumferential direction so as to correspond to the inner diameter surface of the stator.
상기 권선(120-2)은 상기 치형(120-1)에 권선되어 외부 전원에 의해 자기장을 발생시킨다. 상기 실시예에서는 회전자에 권선된 권선(120-2)에 전류를 공급하여 영구 자석과 함께 자기장을 발생시킨다.The winding 120-2 is wound around the tooth 120-1 to generate a magnetic field by an external power source. In this embodiment, a current is supplied to the winding 120-2 wound on the rotor to generate a magnetic field together with the permanent magnet.
한편, 도 20 내지 도 25는 종래 기술에 따른 전기기기와 본 발명에 따른 전기기기의 코킹 토크와 출력 토크의 맥동을 비교하기 위한 도면이다.20 to 25 are diagrams for comparing the pulsation of the caulking torque and the output torque of the electric device according to the prior art and the electric device according to the present invention.
도 20은 종래 기술에 따른 전기기기로 균일한 극호각을 가지고 있으며, 도 21은 본 발명에 따른 전기기기를 나타내며 극호각이 균일하지 않다. 즉, 도 20은 극호각이 145도로 일정하고, 도 21은 130도와 160도가 반복되어 상이하다.FIG. 20 illustrates a uniform polar angle as an electric device according to the prior art, and FIG. 21 illustrates an electrical device according to the present invention, and the polar angle is not uniform. That is, in FIG. 20, the polar angle is constant at 145 degrees, and FIG. 21 is different from the repeated 130 degrees and 160 degrees.
이와 같은 종래 기술과 본 발명에 따른 회전자의 위치(즉, 전기각)에 따른 역기전력을 도 22와 도 23이 보여주고 있으며, 도 22와 도 23에서 점선이 종래 기술에 따른 역기전력을 나타내며 실선이 본 발명에 다른 역기전력을 나타낸다.22 and 23 show the counter electromotive force according to the position of the rotor according to the related art and the present invention (that is, the electric angle). In FIGS. 22 and 23, the dotted line represents the counter electromotive force according to the prior art, Other counter electromotive force is shown in this invention.
이때, 코킹 토크가 도 24에 도시되어 있는데 코킹 토크가 비 균일 극호각이 균일 극호각 대비 97%가 저감되어 있다.At this time, the caulking torque is shown in Figure 24, the caulking torque is non-uniform polar angle is 97% less than the uniform polar angle.
또한, 도 25는 출력 토크 파형을 보여주는데 비균일 극호각이 균일 극호각 대비 67% 저감되어 있다.In addition, FIG. 25 shows an output torque waveform in which the nonuniform polar angle is reduced by 67% compared to the uniform polar angle.
다음으로, 도 26 내지 도 28은 종래 기술에 따른 전기기기와 본 발명에 따른 전기기기의 상역기전력을 나타내는 도면이다.Next, FIGS. 26 to 28 are diagrams showing phase electromotive force of an electric device according to the prior art and an electric device according to the present invention.
도 26은 종래 기술에 따른 전기기기로 균일한 극호각을 가지고 있으며, 도 27은 본 발명에 따른 전기기기를 나타내며 극호각이 균일하지 않다. 즉, 도 28은 극호각이 145도로 일정하고, 도 27은 130도와 160도가 반복되어 상이하다.FIG. 26 shows a uniform polar angle as an electric device according to the prior art, and FIG. 27 shows an electrical device according to the present invention, and the polar angle is not uniform. That is, in FIG. 28, the polar angle is constant at 145 degrees, and FIG. 27 is different from the repeated 130 degrees and 160 degrees.
이와 같은 상황에서 상역기전력은 도 28을 보면 알 수 있는 바와 같이 영구자석 총량이 동일하다는 전제하에서 동일한 특성을 갖는다.In such a situation, the counter electromotive force has the same characteristics under the premise that the total amount of permanent magnets is the same as can be seen from FIG. 28.
일반적으로 토크는 역기전력과 상전류의 곱으로 표현되므로, 토크의 손실없이 토크 맥동 저감이 가능하다.In general, torque is expressed as the product of back EMF and phase current, so that torque pulsation can be reduced without loss of torque.
한편, 도 29는 본 발명의 다른 실시예에 따른 컨시퀀트 폴 구조의 외전형 영구 자석 전기기기의 부분 구성도이다.On the other hand, Figure 29 is a partial configuration diagram of the abrupt type permanent magnet electric device of the con- cept pole structure according to another embodiment of the present invention.
먼저, 고정자(1100)가 회전자(2100)에 대향하여 운동하며, 고정자(1100)는 N(전원 위상의 수)의 배수 개의 치형들(1110)과 각 치형에 권선되는 상권선들(미도시)을 가지고, 회전자(2100)는 내측에 형성되어 있는 제1 자극들(2110)과 제2 자극들(2120)을 포함한다. 상기 제1 자극들(2110)과 제2 자극들(2120)은 교대로 배치되어 있다. First, the stator 1100 moves against the rotor 2100, and the stator 1100 is a plurality of teeth 1110 of N (number of power phases) and winding wires wound around each tooth (not shown). The rotor 2100 may include first magnetic poles 2110 and second magnetic poles 2120 formed therein. The first magnetic poles 2110 and the second magnetic poles 2120 are alternately arranged.
여기서, 제1 자극들(2110)은 영구자석들로 이루어져 있으며 동일 극성으로서 모두 N극 또는 모두 S극으로 배치될 수 있다. 그리고, 제2 자극들(2120)은 컨시퀀트 폴로 이루어진다. Here, the first magnetic poles 2110 are made of permanent magnets, and may be disposed as all the N poles or all the S poles with the same polarity. And, the second stimulus 2120 is composed of a sequence pole.
고정자(1100)에는 N(전원 위상의 수)상 각각을 위한 상권선들 및 N상 각각과 180도 위상 차이를 갖는 상권선들이 포함된다. The stator 1100 includes phase windings for each of the N (number of power phases) phases and phase windings having a phase difference of 180 degrees with each of the N phases.
즉, 3상인 경우(N=3)에, 회전자(1100)는 3상 U, V, W 각각을 위한 상권선들 및 3상 각각과 180도 위상 차이(/U, /V, /W)를 갖는 상권선들을 포함할 수 있다.That is, in the case of three phases (N = 3), the rotor 1100 has phase windings for three phases U, V, and W, and a 180 degree phase difference (/ U, / V, / W) with each of the three phases. It may include merchant wires having.
이때, 어느 하나의 상과 그의 /상(180도 위상 차이가 나는 상)이 인접하여 반복되도록 배치되는 치형과 상권선의 각 그룹에는, 그 치형과 상권선의 수가 홀수개 또는 짝수개 포함될 수 있다.At this time, each of the teeth and the upper winding line arranged such that any one image and its / phase (an image having a phase difference of 180 degrees) is repeated adjacently, the number of the teeth and the upper winding line may be odd or even.
이와 같은 본 발명의 다른 실시예에 따른 영구자석 전기기기에서 고정자의 치형들간의 가장 짧은 거리를 SO라하고, 가장 먼거리를 SWID라 하며, 회전자의 영구자석의 두께를 LM이라고 하면 도 30는 약계자 운전시 구동 전압의 고조파 저감을 보여주며, 도 31은 출력 토크 향상을 보여주며, 도 32는 약계자 운전시 출력 향상을 보여 준다.In the permanent magnet electric machine according to another embodiment of the present invention, the shortest distance between the teeth of the stator is called SO, the longest distance is called SWID, and the thickness of the rotor permanent magnet is LM. Harmonic reduction of the driving voltage during field operation is shown, FIG. 31 shows the output torque improvement, and FIG. 32 shows the output improvement during the field weakening operation.
즉, 도 30에서 (a)는 균일 극호각에서 SO가 7이고, SWID가 11이며, LM이 6일때 고조파를 보여주며, (b)는 비균일 극호각에서 SO가 7이고, SWID가 11이며, 극호간이 하나는 170도이고 다른 하나는 95도이며 LM이 6일때 고조파 특성을 보여주는데 본 발명의 전기기기가 종래 기술의 전기기기보다 고조파가 저감되어 있는 것을 보여준다.That is, in FIG. 30, (a) shows harmonics when SO is 7, SWID is 11, and LM is 6 at uniform polar angle, and (b) is SO at 7 and SWID is 11 at non-uniform polar angle. For example, the polar arc is one of 170 degrees, the other one is 95 degrees, and the LM is 6 to show harmonic characteristics. The electric equipment of the present invention shows that the harmonics are reduced than the electric equipment of the prior art.
그리고, 도 31은 전류 위상각 변화에 따른 출력 토크를 보여주는데 본 발명의 전기기기가 종래 기술인 균일 극호각을 가지는 경우 보다 출력 토크가 향상된 것을 보여준다.And, Figure 31 shows the output torque according to the current phase angle change shows that the output torque is improved than when the electric device of the present invention has a uniform polar angle of the prior art.
다음으로, 도 32는 속도에 따른 출력을 보여주는데, 본 발명의 전기기기가 종래 기술의 전기기기보다 출력이 향상됨을 알 수 있다. Next, Figure 32 shows the output according to the speed, the electric device of the present invention can be seen that the output is improved than the electric device of the prior art.
한편, 도 33은 본 발명의 다른 실시예에 따른 10극 12 슬롯 방식에서 영구자석 전기기기의 구성도이다.On the other hand, Figure 33 is a block diagram of a permanent magnet electric machine in a 10-pole 12 slot method according to another embodiment of the present invention.
도 33을 참조하면, 본 발명의 다른 실시예에 따른 10극 12 슬롯 방식에서 영구자석 전기기기는 회전자(100)와 그 회전자(100)를 회전가능하게 지지하는 고정자(200)로 이루어져 있다.Referring to FIG. 33, in the 10-pole 12 slot system according to another embodiment of the present invention, the permanent magnet electric device includes a rotor 100 and a stator 200 rotatably supporting the rotor 100. .
여기에서, 상기 회전자(100)는 회전자 코어(110)와 제1 자극들(120) 및 제2 자극들(130)을 포함하고 있으며, 제1 자극들(120)과 제2 자극들(130)의 극수는 10개이다. 여기에서, 제1 자극들(120)과 제2 자극들(130)은 영구자석으로 형성되어 있다.Here, the rotor 100 includes the rotor core 110, the first magnetic poles 120 and the second magnetic poles 130, and the first magnetic poles 120 and the second magnetic poles ( The number of poles 130 is 10. Here, the first magnetic poles 120 and the second magnetic poles 130 are formed of a permanent magnet.
상기 회전자 코어(110)는 중공 원통형으로 제작되며 중앙부위에 회전축이 고정되게 삽입 설치될 수 있으며, 외주면에 일정간격을 가지고 교대로 배치되는 제1 자극들(120)과 제2 자극들(130)이 결합될 수 있다.The rotor core 110 may be manufactured in a hollow cylindrical shape and may be inserted and installed to have a rotating shaft fixed to a central portion thereof. The first and second magnetic poles 120 and 130 may be alternately disposed at predetermined intervals on an outer circumferential surface thereof. ) May be combined.
그리고, 상기 제1 자극들(120)은 상기 회전자 코어(110)의 중심에 대하여 제1대칭위치에 위치되어 있으며, 제2 자극들(130)은 중심에 대하여 제2대칭위치에 위치되어 있다.The first magnetic poles 120 are located in a first symmetrical position with respect to the center of the rotor core 110, and the second magnetic poles 130 are located in a second symmetrical position with respect to the center. .
상기 제1 자극들(120)과 제2 자극들(130)은 회전자 코어(110)의 외주면에 교대로 위치하며 이격되어 있다. 상기 제1 자극들(120)과 제2 자극들(130)은 등간격 배치되어 있다. The first magnetic poles 120 and the second magnetic poles 130 are alternately positioned and spaced apart from the outer circumferential surface of the rotor core 110. The first magnetic poles 120 and the second magnetic poles 130 are disposed at equal intervals.
다음으로, 상기 고정자(200)는 고정자 코어(210)와, 상기 고정자 코어(210)의 내측에 그 둘레방향을 따라 일정한 간격을 두고 배치되어 있는 상권선들(222)을 가지고 있다. 이와 같은 도 33의 다른 실시예에 따른 영구 자석 전기기기는 도 3과 달리 치형들이 없는 공심형으로 구성되어 있어 도 3과 차이가 있다. 하지만 이러한 구조 이외의 다른 부분에서는 도 3의 구조와 동일하게 형성할 수 있으며, 10개의 극수와 12개의 슬롯을 가지고 있다. 이러한 극수와 슬롯은 하나의 일예이며 수학식 1을 만족하는 극수와 슬롯 수를 가질 수 있다.Next, the stator 200 has a stator core 210 and upper winding lines 222 disposed at regular intervals along its circumferential direction inside the stator core 210. The permanent magnet electric device according to another embodiment of FIG. 33 is different from FIG. 3 because it is configured as a concentric type without teeth, unlike FIG. 3. However, other parts than this structure may be formed in the same manner as the structure of FIG. 3, and have 10 poles and 12 slots. These poles and slots are one example and may have a pole number and a slot number satisfying Equation (1).
이와 같은 제1 자극(120)의 극호각(β1 )과 제2 자극(130)의 극호각(β2 )은 서로 다르며 이에 따라 코킹 토크 및 토크 맥동을 저감할 수 있다. The electrode firing angle of the firing angle of the magnetic poles of the first pole (120) (β 1) and the second magnetic pole (130) (β 2) are different from each other thereby to reduce the cogging torque and torque pulsation.
그러나 집중권의 경우에 제1 자극(120)과 제2 자극(130)의 극호각을 달리할 경우에 상권선에 유기되는 유기전압의 불평형이 발생하며 이로 인해 순환 전류가 발생할 수 있으므로, 이를 해결하기 위하여 위에서 언급한 특별한 극수와 슬롯수의 조합이 필요하며 그에 더해서 상권선의 결선법이 필요하다.However, when the polarity of the first magnetic pole 120 and the second magnetic pole 130 is different in the case of the concentrated zone, an unbalance of the induced voltage induced in the upper winding occurs, which may cause a circulating current. In order to do this, a special combination of the number of poles and slots mentioned above is required, and in addition, the wiring method of the merchant wire is required.
상기 기본 조합의 경우에 각각의 상권선은 모두 직렬 결선이 필요하며, 기본 조합의 정수배인 확장 조합의 경우는 조합되는 기본 조합간에는 병렬 결선 또는 직렬 결선이 가능하다. 이러한 상권선의 결선법은 위에서 설명한 내용이 서로 모순되지 않는다면 사용가능하다. 이처럼 본 발명에서 제안하는 극수/슬롯 조합과 그에 따른 권선법과 회전자 자극의 구조를 적용하는 경우, 고정자는 철심형 이든 공심형이든 모두 포함될 수 있다.In the case of the basic combination, each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined. This wiring method can be used if the above description does not contradict each other. As described above, when the pole / slot combination and the winding method and the structure of the rotor magnetic pole proposed in the present invention are applied, both the stator and the core may be included.
도 34는 본 발명의 또 다른 실시예에 따른 10극 12 슬롯 방식에서 영구자석 선형 전기기기의 구성도이다.34 is a block diagram of a permanent magnet linear electric machine in the 10-pole 12 slot method according to another embodiment of the present invention.
도 34와 같이, 본 발명의 또 다른 실시예에 따른 10극 12 슬롯 방식에서 영구자석 선형 전기기기는 이동자(300)가 고정자(400)에 대향하여 운동한다.As shown in FIG. 34, in the 10-pole 12 slot system according to another embodiment of the present invention, the mover 300 moves against the stator 400.
상기 이동자(300)는 이동자 코어(310)와 이동자 코어(310)에 형성된 다수개의 치형들(320)과 각 치형에 권선되는 상권선들을 가지고, 고정자(400)는 고정자 코어(410)와 고정자 코어(410)에 형성된 제1 자극들(420) 및 제2 자극들(430)을 포함하고 있으며, 제1 자극들(420)과 제2 자극들(430)의 극수는 10개이다. 여기에서, 제1 자극들(420)과 제2 자극들(430)은 영구자석으로 형성되어 있다. The mover 300 has a mover core 310 and a plurality of teeth 320 formed on the mover core 310 and a winding wire wound around each tooth, and the stator 400 includes a stator core 410 and a stator core. First poles 420 and second poles 430 formed at 410 are included, and the number of poles of the first poles 420 and the second poles 430 is ten. Here, the first magnetic poles 420 and the second magnetic poles 430 are formed of a permanent magnet.
상기 제1 자극들(420)과 제2 자극들(430)은 고정자 코어(410)의 외주면에 교대로 위치하며 이격되어 있다. 상기 제1 자극들(420)과 제2 자극들(430)은 등간격 배치되어 있다.The first magnetic poles 420 and the second magnetic poles 430 are alternately positioned and spaced apart from the outer circumferential surface of the stator core 410. The first magnetic poles 420 and the second magnetic poles 430 are arranged at equal intervals.
이와 같은 도 34의 또 다른 실시예에 따른 영구자석 선형 전기기기는 도 3과 달리 회전형이 아니고 선형으로 구성되어 있어 도 3과 차이가 있다. 하지만 이러한 구조 이외의 다른 부분에서는 도 3의 구조와 동일하게 형성할 수 있으며, 10개의 극수와 12개의 슬롯을 가지고 있다. 이러한 극수와 슬롯은 하나의 일예이며 수학식 1을 만족하는 극수와 슬롯 수를 가질 수 있다.The permanent magnet linear electric device according to still another embodiment of FIG. 34 is different from FIG. However, other parts than this structure may be formed in the same manner as the structure of FIG. 3, and have 10 poles and 12 slots. These poles and slots are one example and may have a pole number and a slot number satisfying Equation (1).
이와 같은 제1 자극(420)의 폭(β1 )과 제2 자극(430)의 폭(β2 )은 서로 다르며 이에 따라 코킹 토크 및 토크 맥동을 저감할 수 있다. The width β 1 of the first magnetic pole 420 as described above ) And the width of the second magnetic pole 430 (β 2) ) Are different from each other, so that caulking torque and torque pulsation can be reduced.
그러나 집중권의 경우에 제1 자극(420)과 제2 자극(430)의 폭을 달리할 경우에 상권선에 유기되는 유기전압의 불평형이 발생하며 이로 인해 순환 전류가 발생할 수 있으므로, 이를 해결하기 위하여 위에서 언급한 특별한 극수와 슬롯수의 조합이 필요하며 그에 더해서 상권선의 결선법이 필요하다.However, when the width of the first magnetic pole 420 and the second magnetic pole 430 is different in the concentrated zone, an unbalance of the induced voltage induced in the upper winding occurs, which may cause a circulating current. In order to do this, a special combination of the number of poles and slots mentioned above is required, in addition to the wiring method of the merchant wire.
상기 기본 조합의 경우에 각각의 상권선은 모두 직렬 결선이 필요하며, 기본 조합의 정수배인 확장 조합의 경우는 조합되는 기본 조합간에는 병렬 결선 또는 직렬 결선이 가능하다. 이러한 상권선의 결선법은 위에서 설명한 내용이 서로 모순되지 않는다면 사용가능하다.In the case of the basic combination, each of the winding wires need to be connected in series, and in the case of the expansion combination that is an integer multiple of the basic combination, parallel connection or serial connection is possible between the basic combinations combined. This wiring method can be used if the above description does not contradict each other.
한편, 상기 이동자(300)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지고 있다. 보다 구체적으로, U상에서의 치형(A1~A4)은 각각 U상 권선(A10~A40)을 수반한다. 유사하게 V상에서의 치형(B1~B4)은 각각 V상 권선(B10~B40)을 수반한다. 또한 W상에서의 치형(C1~C4)은 W상 권선(C10~C40)을 수반한다. 상기 이동자 치형은 각각 슬롯(1~12)을 구비한다. On the other hand, the mover 300 has a form of a winding structure consisting of a so-called concentrated winding. More specifically, the teeth A1 to A4 in the U phase carry the U phase windings A10 to A40 respectively. Similarly, teeth B1 to B4 in the V phase are accompanied by V phase windings B10 to B40, respectively. In addition, the teeth C1 to C4 in the W phase are accompanied by the W phase windings C10 to C40. The mover teeth each have slots 1-12.
상기 이웃하는 2개의 치형에 하나의 동일한 상의 권선이 감긴다. 즉, 이웃하는 2개의 치형마다 하나의 동일한 상의 권선이 감긴다.One winding of the same phase is wound around the two neighboring teeth. That is, one winding of the same phase is wound every two neighboring teeth.
구체적으로, 이웃하는 2 개의 치형(A4과 A1)에 모두 U상의 권선(A40, A10)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)에 모두 V상의 권선(B10,B20)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)에 모두 W상의 권선(C10, C20)이 감긴다. 이러한, U, V, W 상의 권선 패턴이 권선 전류 방향이 반대로 되면서 반복된다. Specifically, the U-phase windings A40 and A10 are wound around two neighboring teeth A4 and A1. Then, the V-phase windings B10 and B20 are wound around two neighboring teeth B1 and B2. Finally, the windings C10 and C20 of the W phase are wound around the next two neighboring teeth C1 and C2. Such a winding pattern on U, V, W is repeated while the winding current direction is reversed.
총 12개의 치형(A1~C4)을 갖기 때문에 예를 들어 U상의 권선이 감긴 2개의 치형과 다음으로 U상의 권선이 감긴 2 개의 치형 사이에는 각각 V 상이 권선된 2개의 치형과 W상이 권선된 2 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between two teeth wound around the U-phase and two teeth wound around the U-phase, two teeth wound around the V-phase and 2 teeth wound around the W-phase respectively. Teeth are located.
다시 말하면, U상의 중심들은 서로 180도의 전기각을 갖는다고 할 수 있다. 물론, V상의 중심들도 서로 180도의 전기각을 갖고 W상의 중심들도 서로 180도의 전기각을 갖게 된다.In other words, the centers of the U phases have electrical angles of 180 degrees with each other. Of course, the centers of phase V also have electrical angles of 180 degrees with each other, and the centers of phase W have 180 degrees of electrical angles with each other.
이와 같은 상황에서, 어느 한 상이 권선되는 이웃하는 2 개의 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다. In such a situation, the winding current direction for every two neighboring teeth on which one phase is wound may be opposite to the winding current direction of the neighboring teeth.
한편, 도 34는 슬롯에 2개의 권선이 감기는 형태를 가지고 있으나, 이와 달리 슬롯에 하나의 권선이 감기도록 구현할 수도 있으며, 도 35는 그 실시예를 보여준다.Meanwhile, although FIG. 34 has a form in which two windings are wound in a slot, alternatively, one winding may be wound in a slot, and FIG. 35 shows the embodiment.
상기 이동자(300)는 소위 집중 권선으로 구성되는 권선구조의 형태를 가지고 있다. 보다 구체적으로, U상에서의 치형(A1~A4)중 2개는 각각 U상 권선(A10.A20)을 수반한다. 유사하게 V상에서의 치형(B1~B4)중 2개는 각각 V상 권선(B10, B20)을 수반한다. 또한 W상에서의 치형(C1~C4)중 2개는 W상 권선(C10, C20)을 수반한다. 상기 이웃하는 2개의 치형중 하나의 치형에 하나의 상의 권선이 감긴다. The mover 300 has a form of a winding structure composed of so-called concentrated windings. More specifically, two of the teeth A1 to A4 in the U phase each carry a U phase winding A10.A20. Similarly, two of the teeth B1 to B4 in the V phase carry the V phase windings B10 and B20, respectively. In addition, two of the teeth C1 to C4 in the W phase carry the W phase windings C10 and C20. A winding of one phase is wound around one of the two neighboring teeth.
구체적으로, 이웃하는 2 개의 치형(A4과 A1)중 하나의 치형(A4)에 U상의 권선(A10)이 감긴다. 그리고, 다음의 이웃하는 2 개의 치형(B1과 B2)중 하나의 치형(B1)에 V상의 권선(B10)이 감긴다. 마지막으로 다음의 이웃하는 2 개의 치형(C1과 C2)중 하나에 W상의 권선(C10)이 감긴다. 이러한, U, V, W 상의 권선 패턴이 전류 방향이 반대로 되면서 반복된다. Specifically, the U-phase winding A10 is wound around one tooth A4 of two neighboring teeth A4 and A1. Then, the V-phase winding B10 is wound around one tooth B1 of two neighboring teeth B1 and B2. Finally, the winding of W phase C10 is wound around one of the next two neighboring teeth C1 and C2. Such a winding pattern on U, V, W is repeated while the current direction is reversed.
총 12개의 치형(A1~C4)를 갖기 때문에 예를 들어 U상의 권선이 감긴 1개의 치형과 다음으로 U상의 권선이 감긴 1 개의 치형 사이에는 각각 V 상이 권선된 1개의 치형과 W상이 권선된 1 개의 치형이 위치하게 된다. Since there are a total of 12 teeth (A1 to C4), for example, between one tooth wound around the U-phase winding and one tooth wound next to the U-phase winding, there is one tooth wound around the V-phase and one wound around the W-phase, respectively. Teeth are located.
이와 같은 상황에서, 상이 권선되는 치형마다 권선 전류 방향은 이웃하는 치형의 권선 전류 방향과 반대일 수 있다. U상이 권선되는 1개의 치형(A4)에는 반시계방향, 다음의 치형(B1)은 시계 방향으로 권선 전류 방향이 되고, 그 다음의 치형(C1)에는 다시 반시계방향으로 권선 전류 방향이 된다. 이와 반대 방향으로 권선 전류 방향이 될 수도 있다. 이러한 상권선의 결선법은 위에서 설명한 내용이 서로 모순되지 않는다면 사용 가능하다.In such a situation, the winding current direction for each tooth to which the phase is wound may be opposite to the winding current direction of the neighboring tooth. One tooth A4 on which the U phase is wound is counterclockwise, and the next tooth B1 is clockwise in the clockwise direction, and the next tooth C1 is again counterclockwise in the winding current direction. It can also be the winding current direction in the opposite direction. This wiring method can be used if the above description does not contradict each other.
이처럼 본 발명에서 제안하는 극수/슬롯 조합과 그에 따른 권선법과 회전자 자극의 구조를 적용하는 경우, 고정자 대신 이동자를 회전자 대신 고정자를 적용하면 모두 포함될 수 있다.As such, when the pole / slot combination and the winding method and the structure of the rotor poles proposed in the present invention are applied, all of the movers may be included instead of the stator.
한편, 본 발명에서 제시하고 있는 기본적인 극수 슬롯수 조합(10극 12슬롯, 14극 12슬롯, 14극 18슬롯, 22극 24슬롯, 26극 24슬롯)에서 특징적인 것으로는, 임의 어떠한 상권선이라도 그것과 기계적으로 180도 반대편에 있는 상권선은 항상 전류의 방향이 반대로 구성되게 된다는 것이다. On the other hand, it is characteristic of the basic number of poles combinations (10 pole 12 slots, 14 pole 12 slots, 14 poles 18 slots, 22 poles 24 slots, 26 poles 24 slots) proposed in the present invention. The winding wire, which is mechanically opposite to it 180 degrees, will always have the direction of current reversed.
즉 다시 말해서 앞서 설명한 기본적인 극수 슬롯수 조합을 다시 살펴보면, 모두 2로 나누어 지는 조합으로 되어 있다. 10극 12슬롯의 경우, 5극 6슬롯이 2개가 붙어 있는 조합인데, 처음의 5극 6슬롯에서의 상권선(A, /A, /B, B, C, /C)과 다음의 5극 6슬롯에서의 상권선 배치(/A, A, B, /B, /C, C)는 서로 전기적으로 180도 위상을 가지는 것을 특징으로 한다. In other words, if you look again at the basic combination of the number of slots, the combination is divided by two. In the case of 10-pole 12-slot, there are two 5-pole 6-slot combinations, each of which is the first winding 5-pole 6 slot (A, / A, / B, B, C, / C) and the next 5-pole. The phase winding arrangement (/ A, A, B, / B, / C, C) in six slots is characterized by having a phase of 180 degrees electrically from each other.
이를 극수를 P라 하고, 슬롯수를 Q라 할 때 처음 P/2의 극과 Q/2의 슬롯의 상권선의 권선 전류 방향과 나머지 P/2의 극과 Q/2의 슬롯의 상권선의 권선 전류 방향은 전기적으로 180도 위상을 가지는 것을 특징으로 한다.When the number of poles is called P and the number of slots is Q, the winding current direction of the winding of the first P / 2 pole and the slot of Q / 2 and the winding current of the winding of the remaining P / 2 pole and the slot of Q / 2 The direction is characterized by having an electrical phase of 180 degrees.
이러한 방법으로 나머지 조합들도 분석해 보면 항상 동일한 양상을 가지게 되어 있으며, 전술한 모든 기본 조합들에서는 각 상권선이 모두 직렬로 연결되어야만 자기적 불평형을 제거할 수 있다. In this way, the rest of the combinations are analyzed to always have the same aspect. In all the basic combinations described above, each merchant wire must be connected in series to eliminate magnetic inequality.
하지만, 기본 조합의 확장 조합인, 예를 들어 20극 24슬롯의 경우는 10극 12슬롯이 2개가 있는 것이므로 처음의 10극 12슬롯과 다음의 10극 12슬롯은 동일한 위상을 가지는 상권선의 반복이므로, 이러한 경우에는 직렬 또는 병렬을 하더라도 무방하다.However, in the case of the extension combination of the basic combination, for example, a 20-pole 24-slot, there are two 10-pole 12 slots. In this case, serial or parallel may be used.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Claims (20)

  1. 서로 다른 극성을 가지는 제1 자극들 및 제2 자극들을 포함하고 있으며, 상기 제1 자극의 극호각과 제2 자극의 극호각이 상이한 회전자; 및 A rotor including first magnetic poles and second magnetic poles having different polarities, wherein the polar angles of the first and second poles are different from each other; And
    상기 회전자와 대향하며 복수의 치형과 각 치형에 권선되는 상권선들을 가지는 고정자를 포함하는 영구자석 전기기기.And a stator having a plurality of teeth and a winding winding wound around each tooth and facing the rotor.
  2. 청구항 1항에 있어서, The method according to claim 1,
    상기 회전자의 극수와 상기 고정자의 슬롯수는 다음 수학식 1을 만족하는 영구자석 전기기기.The number of poles of the rotor and the number of slots of the stator satisfies the following equation (1).
    (수학식1) (Equation 1)
    Q/(m×t)=짝수Q / (m × t) = even
    여기에서, Q는 슬롯수, t는 슬롯수와 극쌍수의 최대 공약수 그리고 m은 전동기의 상(phase) 수이다. Where Q is the number of slots, t is the greatest common divisor of slots and pole pairs, and m is the phase number of the motor.
  3. 청구항 1항 또는 청구항 2항에 있어서,The method according to claim 1 or 2,
    상기 고정자에 있어서 이웃하는 2개의 치형에 하나의 동일한 상의 권선이 서로 전류의 방향이 반대로 흐르도록 권선된 영구자석 전기기기.A permanent magnet electric machine in which the windings of one same phase in two neighboring teeth of the stator are wound so that directions of current flow in opposite directions.
  4. 청구항 1항 또는 청구항 2항에 있어서,The method according to claim 1 or 2,
    극수를 P라 하고, 슬롯수를 Q라 할 때 처음 P/2의 극과 Q/2의 슬롯의 상권선의 권선 전류 방향과 나머지 P/2의 극과 Q/2의 슬롯의 상권선의 권선 전류 방향은 전기적으로 180도 위상을 가지는 것을 특징으로 하는 영구자석 전기기기.When the number of poles is P and the number of slots is Q, the winding current direction of the winding of the first P / 2 pole and the slot of Q / 2 and the winding current direction of the winding of the remaining P / 2 pole and the slot of Q / 2 Permanent magnet electric machine, characterized in that the electrical phase 180 degrees.
  5. 청구항 1항에 있어서,The method according to claim 1,
    상기 고정자에 있어서 이웃하는 2개의 치형중 하나의 치형에 U상의 권선이 제1 권선 전류 방향으로 감기고 다른 하나의 치형에 U상의 권선이 제2 권선 전류 방향으로 감기며, 다음의 이웃하는 2 개의 치형 중 상기 U상이 권선된 다른 하나의 치형에 인접한 하나의 치형에 V상의 권선이 제2 권선 전류 방향으로 감기며 다른 하나의 치형에 V상의 권선이 제1 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 상기 V상이 권선된 다른 하나의 치형에 인접한 하나에 W상의 권선이 제1 권선 전류 방향으로 감기고 다른 하나의 치형에 W상의 권선이 제2 권선 전류 방향으로 감기며 이와 같은 패턴이 권선 전류 방향을 반대로 된 상태에서 반복되고 제1 권선 전류 방향과 제2 권선 전류 방향은 권선 전류 방향이 반대이며, 각 상의 권선은 모두 직렬로 연결되고, 12개의 슬롯을 가지고 이층권으로 권선된 영구자석 전기기기.In the stator, the winding of the U phase is wound in the direction of the first winding current to one of the two neighboring teeth, and the winding of the U phase is wound in the direction of the second winding current to the other tooth, and the next two neighboring teeth The winding of the V phase is wound in the direction of the second winding current on one tooth adjacent to the other teeth of which the U phase is wound, and the winding of the V phase is wound in the first winding current direction on the other tooth, and the next neighbor The winding of the W phase is wound in the direction of the first winding current on one of the two teeth that are adjacent to the other teeth of which the V phase is wound, and the winding of the W phase is wound in the second winding current direction on the other tooth. The winding current direction is repeated in the reversed state, and the first winding current direction and the second winding current direction are opposite in the winding current direction, and the windings of each phase are all connected in series. A permanent magnet electric machine with the winding slots 12 to the bi-layer volume.
  6. 청구항 1항에 있어서,The method according to claim 1,
    상기 고정자에 있어서 이웃하는 2 개의 치형중 하나의 치형에만 U상의 권선이 제1 권선 전류 방향으로 감기고, 다음의 이웃하는 2 개의 치형 중 하나의 치형에만 V상의 권선이 제2 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나에만 W상의 권선이 제1 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나의 치형에만 U상의 권선이 제2 권선 전류 방향으로 감기고, 그 다음의 이웃하는 2 개의 치형 중 하나의 치형에만 V상의 권선이 제1 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나에만 W상의 권선이 제2 권선 전류 방향으로 감기며, 제1 권선 전류 방향과 제2 권선 전류 방향은 권선 전류 방향이 반대이며, 각상의 권선은 모두 직렬로 연결되며, 12개의 슬롯을 구비하며 단층권으로 권선된 영구자석 전기기기.In the stator, the winding of the U phase is wound in the direction of the first winding current only in one of two neighboring teeth, and the winding of the V phase is wound in the direction of the second winding current only in one of the next two neighboring teeth. The winding of the W phase is wound in the direction of the first winding current only in one of the next two neighboring teeth, the winding of the U phase is wound in the direction of the second winding current only in the teeth of one of the next two neighboring teeth, The winding of the V phase is wound in the direction of the first winding current only on one tooth of the next two neighboring teeth, and the winding of the W phase is wound in the direction of the second winding current only on one of the next two neighboring teeth, The first winding current direction and the second winding current direction are opposite in the winding current directions, and the windings of each phase are all connected in series, and have 12 slots and are wound in a single layer winding. Group.
  7. 청구항 1항에 있어서,The method according to claim 1,
    상기 고정자의 제1 치형에는 U상이 제1 권선 전류 방향으로 권선되고, 제2 치형에는 V상이 제1 권선 전류 방향을 권선되며, 제3 치형에는 W상이 제1 권선 전류 방향으로 권선되고, 제4 치형에는 W상이 제2 권선 전류 방향으로 권선되며, 제5 치형에는 U상이 제2 권선 전류 방향으로 권선되고, 제6 치형에는 V상이 제2 권선 전류 방향으로 권선되며, 제7 치형에는 V상이 제1 권선 전류 방향으로 권선되며, 제8 치형에는 W상이 제1 권선 전류 방향으로 권선되고, 제9 치형에는 U상이 제1 권선 전류 방향을 권선되며, 이와 같은 패턴이 권선 전류 방향을 반대로 된 상태에서 반복되고, 각상의 권선은 모두 직렬로 연결되며, 14개의 극과 18개의 슬롯을 가지며 이층권으로 권선되는 영구자석 전기기기.The U-phase is wound in the first winding current direction on the first tooth of the stator, the V-phase is wound in the first winding current direction on the second tooth, and the W-phase is wound in the first winding current direction on the third tooth. W teeth are wound in the second winding current direction on the teeth, U phases are wound in the second winding current directions on the fifth teeth, V phases are wound in the second winding current directions on the sixth teeth, and V phase is made on the seventh teeth. In a state in which the winding is in the direction of the first winding current, the W phase is wound in the first winding current direction on the eighth teeth, and the U phase is wound in the first winding current direction on the ninth teeth. Repeated, permanent windings of each phase, all connected in series, having 14 poles and 18 slots and wound in a double-layer winding.
  8. 청구항 1항에 있어서,The method according to claim 1,
    상기 고정자의 제1 치형에서부터 4개의 이웃하는 제4 치형에는 U상이 제1 권선 전류 방향-제2 권선 전류 방향-제1 권선 전류 방향-제2 권선 전류 방향으로 권선되고, 다음 제5 치형부터 이웃하는 4개의 제8 치형에는 V상이 제2 권선 전류 방향-제1 권선 전류 방향-제2 권선 전류 방향-제1 권선 전류 방향으로 권선되며, 그 다음 제9 치형에서부터 이웃하는 4개의 제12 치형에는 W상이 제1 권선 전류 방향-제2 권선 전류 방향-제1 권선 전류 방향-제2 권선 전류 방향으로 권선되고, 이러한 패턴이 권선 전류 방향이 반대로 된 상태에서 반복되고, 각상의 권선은 모두 직렬로 연결되며, 24개의 슬롯을 가지고 이층권으로 권선되는 영구자석 전기기기.The U-phase is wound from the first tooth of the stator to four neighboring fourth teeth in a first winding current direction-second winding current direction-first winding current direction-second winding current direction, and the next from the fifth tooth. The four eighth teeth are wound in the V phase in the second winding current direction-first winding current direction-second winding current direction-first winding current direction, and then from the ninth tooth to the four neighboring twelfth teeth. The W phase is wound in the first winding current direction-second winding current direction-first winding current direction-second winding current direction, and this pattern is repeated with the winding current direction reversed, and the windings of each phase are all in series. Permanent magnet electric device connected to and wound in a two-stage winding with 24 slots.
  9. 청구항 1항에 있어서,The method according to claim 1,
    상기 고정자의 이웃하는 2 개의 치형중 하나의 치형에 U상의 권선이 제1 권선 전류 방향으로 감기고, 다음의 이웃하는 2 개의 치형중 하나의 치형에 U상의 권선이 제1 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나의 치형에 V상의 권선이 제2 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나의 치형에 V상의 권선이 제2 권선 전류 방향으로 감기며, 그 다음의 이웃하는 2 개의 치형중 하나의 치형에 W상의 권선이 제1 권선 전류 방향으로 감기며, 그 다음에 이웃하는 2개의 치형 중 하나의 치형에 W상의 권선이 제1 권선 전류 방향으로 감기며, 이후에는 이러한 패턴이 권선 전류 방향이 반대로 되어 반복되며, 각상의 권선은 모두 직렬로 연결되며 24개의 슬롯을 가지고 단층권으로 권선되는 영구자석 전기기기.A winding of the U phase is wound in the direction of the first winding current to one of two neighboring teeth of the stator, and a winding of the U phase is wound in the direction of the first winding current to the tooth of one of the next two neighboring teeth, The winding of the V phase is wound in the direction of the second winding current on one tooth of the next two neighboring teeth, and the winding of the V phase is wound in the direction of the second winding current on the tooth of one of the next two neighboring teeth. The winding of the W phase is wound in the direction of the first winding current to one of the two neighboring teeth, and the winding of the W phase is then directed to the first winding current direction of one of the two neighboring teeth. This pattern is repeated after the winding current direction is reversed, and each phase winding is connected in series and has 24 slots and is a permanent magnet electric device.
  10. 청구항 5항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 5 to 9,
    각각의 극수 슬롯 조합의 정수배로 이루어지는 극수 슬롯비 구성으로 이루지는 것을 특징으로 하는 영구자석 전기기기.Permanent magnet electric machine, characterized in that consisting of a pole number ratio configuration consisting of an integer multiple of each pole number slot combination.
  11. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극과 제2 자극은 영구자석으로 이루어진 회전자를 가지는 영구자석 전기기기.The first magnetic pole and the second magnetic pole of the rotor is a permanent magnet electric device having a rotor made of a permanent magnet.
  12. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극과 제2 자극은 회전자 코어에 매입되어 있는 영구자석으로 이루어진 회전자를 가지는 영구자석 전기기기.And a first magnetic pole and a second magnetic pole of the rotor having a rotor made of a permanent magnet embedded in the rotor core.
  13. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극은 회전자 코어의 표면에 부착되어 있고, 제2 자극은 회전자 코어에 매입되어 있는 영구자석으로 이루어진 회전자를 가지는 영구자석 전기기기.And a first magnetic pole of the rotor attached to a surface of the rotor core, and a second magnetic pole having a rotor made of permanent magnet embedded in the rotor core.
  14. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극은 회전자 코어에 매입된 영구 자석으로 이루어져 있으며, 제2 자극은 컨시퀀트 폴로 이루어진 회전자를 가지는 영구자석 전기기기.The first magnetic pole of the rotor is made of a permanent magnet embedded in the rotor core, the second magnetic pole is a permanent magnet electric device having a rotor consisting of a sequence pole.
  15. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극은 회전자 코어의 표면에 부착된 영구 자석으로 이루어져 있으며, 제2 자극은 컨스퀀트 폴로 이루어진 회전자를 가지는 영구자석 전기기기.The first magnetic pole of the rotor is made of a permanent magnet attached to the surface of the rotor core, the second magnetic pole is a permanent magnet electric device having a rotor consisting of a consequent pole.
  16. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극들은 회전자 코어의 회전축을 중심으로 방사상으로 돌출된 제1 치형들과 상기 제1 치형들에 감겨 있는 제1 권선들로 이루어지며, The first magnetic poles of the rotor consists of first teeth radially projecting about the axis of rotation of the rotor core and first windings wound around the first teeth,
    상기 제2 자극들은 회전자 코어의 회전축을 중심으로 방사상으로 돌출된 제2 치형들과 상기 제2 치형들에 감겨 있는 제2 권선들로 이루어진 회전자를 가지는 영구자석 전기기기.And the second magnetic poles have a rotor comprising second teeth projecting radially about the axis of rotation of the rotor core and second windings wound around the second teeth.
  17. 청구항 1항에 있어서,The method according to claim 1,
    상기 회전자의 제1 자극은 회전자 코어의 회전축을 중심으로 방사상으로 돌출된 제1 치형들과 상기 제1 치형들에 감겨 있는 제1 권선들로 이루어지며, The first magnetic pole of the rotor consists of first teeth protruding radially about the axis of rotation of the rotor core and first windings wound around the first teeth,
    상기 제2 자극은 회전자 코어의 회전축을 중심으로 방사상으로 돌출된 제2 치형들과 상기 제2 치형들에 매입되어 있는 영구자석들로 이루어진 회전자를 가지는 영구자석 전기기기.And the second magnetic pole has a rotor comprising second teeth projecting radially about the axis of rotation of the rotor core and permanent magnets embedded in the second teeth.
  18. 청구항 1항에 있어서 The method according to claim 1
    상기 제 1 자극은 회전자 코어의 표면에 부착된 영구 자석으로 이루어지며,The first magnetic pole consists of a permanent magnet attached to the surface of the rotor core,
    상기 회전자의 제 2 자극은 회전자 코어의 회전축을 중심으로 방사상으로 돌출된 치형들과 상기 치형들에 감겨 있는 권선들로 이루어지는 회전자를 영구자석 가지는 전기기기.And the second magnetic pole of the rotor has a permanent magnet of the rotor consisting of teeth radially projecting about the axis of rotation of the rotor core and windings wound around the teeth.
  19. 서로 다른 극성을 가지는 제1 자극들 및 제2 자극들을 포함하고 있으며, 상기 제1 자극의 극호각과 제2 자극의 극호각이 상이한 회전자; 및 A rotor including first magnetic poles and second magnetic poles having different polarities, wherein the polar angles of the first and second poles are different from each other; And
    상기 회전자와 대향하며 복수의 상권선들을 가지는 고정자를 포함하는 영구자석 전기기기.Permanent magnet electric machine comprising a stator facing the rotor and having a plurality of merchant winding.
  20. 서로 다른 극성을 가지는 제1 자극들 및 제2 자극들을 포함하고 있으며, 상기 제1 자극의 폭과 제2 자극의 폭이 상이한 고정자; 및 A stator including first and second magnetic poles having different polarities and having different widths of the first and second magnetic poles; And
    상기 고정자와 대향하며 복수의 치형과 각 치형에 권선되는 상권선들을 가지는 이동자를 포함하는 영구자석 전기기기.Permanent magnet electric machine comprising a mover facing the stator and having a plurality of teeth and winding windings wound around each tooth.
PCT/KR2016/013249 2016-05-26 2016-11-17 Permanent magnet electrical equipment having non-uniform magnetic pole length WO2017204425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0064812 2016-05-26
KR1020160064812A KR102156869B1 (en) 2016-05-26 2016-05-26 Permanent magnet electrical machine having non-identical polo length

Publications (1)

Publication Number Publication Date
WO2017204425A1 true WO2017204425A1 (en) 2017-11-30

Family

ID=60412501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013249 WO2017204425A1 (en) 2016-05-26 2016-11-17 Permanent magnet electrical equipment having non-uniform magnetic pole length

Country Status (2)

Country Link
KR (1) KR102156869B1 (en)
WO (1) WO2017204425A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015096A1 (en) * 2020-07-17 2022-01-20 엘지이노텍 주식회사 Motor
CN115149765A (en) * 2022-07-05 2022-10-04 北京航空航天大学 Six-phase fault-tolerant permanent magnet synchronous motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589674B1 (en) * 2018-01-31 2023-10-16 엘지이노텍 주식회사 Rotor and motor having the same
CN112600327B (en) * 2020-12-09 2022-07-29 珠海格力电器股份有限公司 Permanent magnet synchronous motor and washing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327139A (en) * 1996-06-04 1997-12-16 Shibaura Eng Works Co Ltd Rotor for motor
KR20010035213A (en) * 2001-01-17 2001-05-07 김용일 Brushless, coreless, ac type linear motor and linear motion apparatus having the same
EP1128321A2 (en) * 2000-02-24 2001-08-29 Nokia Mobile Phones Ltd. A roller device
WO2012039028A1 (en) * 2010-09-22 2012-03-29 三菱電機株式会社 Rotating electrical machine and method of manufacturing same
JP5709907B2 (en) * 2011-02-04 2015-04-30 三菱電機株式会社 Permanent magnet embedded rotary electric machine for vehicles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189158A (en) * 1985-02-14 1986-08-22 Tokyo Electric Co Ltd Brushless motor
KR100860606B1 (en) 2006-12-28 2008-09-26 한국전기연구원 Inner rotor type permanent magnet excited transverse flux motor
KR101092212B1 (en) 2009-06-30 2011-12-13 한국전기연구원 Doubly Salient Permanent Magnet Electric Machine
KR101101299B1 (en) 2010-04-28 2012-01-04 한국전기연구원 Winding Configuration of Doubly Salient Permanent Magnet Electric Machine
JP5038475B2 (en) * 2010-09-28 2012-10-03 本田技研工業株式会社 Rotor
KR101587423B1 (en) 2013-08-23 2016-02-03 한국전기연구원 Electric Machine Having Asymmetric Magnetic Pole Shape for Torque Ripple Reduction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327139A (en) * 1996-06-04 1997-12-16 Shibaura Eng Works Co Ltd Rotor for motor
EP1128321A2 (en) * 2000-02-24 2001-08-29 Nokia Mobile Phones Ltd. A roller device
KR20010035213A (en) * 2001-01-17 2001-05-07 김용일 Brushless, coreless, ac type linear motor and linear motion apparatus having the same
WO2012039028A1 (en) * 2010-09-22 2012-03-29 三菱電機株式会社 Rotating electrical machine and method of manufacturing same
JP5709907B2 (en) * 2011-02-04 2015-04-30 三菱電機株式会社 Permanent magnet embedded rotary electric machine for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015096A1 (en) * 2020-07-17 2022-01-20 엘지이노텍 주식회사 Motor
CN115149765A (en) * 2022-07-05 2022-10-04 北京航空航天大学 Six-phase fault-tolerant permanent magnet synchronous motor

Also Published As

Publication number Publication date
KR20170133698A (en) 2017-12-06
KR102156869B1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
WO2013147550A1 (en) Stator having three-line connection structure, bldc motor using same, and driving method therefor
WO2017204425A1 (en) Permanent magnet electrical equipment having non-uniform magnetic pole length
WO2017078431A1 (en) Motor
WO2013081225A1 (en) Stator of electric machine, electric motor provided with same, and electric vehicle provided with electric motor
WO2018194208A1 (en) Stator of rotating electric apparatus
WO2018169203A1 (en) Variable-flux motor
WO2019066487A1 (en) Rotating electric device
WO2018147610A1 (en) Stator and motor comprising same
WO2017123013A1 (en) Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor
EP3476021A1 (en) Stator and motor having the same
WO2018044141A1 (en) Apparatus for sensing rotor location and motor comprising apparatus
WO2017003033A1 (en) Outer wheel rotor type switched reluctance motor
WO2018026177A1 (en) Rear holder and motor comprising same
WO2013085231A1 (en) Rotor including permanent magnets having different thicknesses and motor including same
WO2020235713A1 (en) Split core assembly and stator comprising same
WO2017131296A1 (en) Electric rotation machine
WO2019135583A1 (en) Direct current generator utilizing multi-brush
WO2020032463A1 (en) Insulator and motor comprising same
WO2021096143A1 (en) Hub-type electric driving device
WO2021172761A1 (en) Motor
WO2016171439A1 (en) Laundry treatment apparatus and magnetic gear device
EP3475476A1 (en) Washing machine
WO2018194194A1 (en) Stator of rotating electric apparatus
WO2022139501A1 (en) Stator of rotating electric machine
WO2021210704A1 (en) Stator and rotary electric apparatus comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903273

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903273

Country of ref document: EP

Kind code of ref document: A1