WO2017073584A1 - Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel - Google Patents

Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel Download PDF

Info

Publication number
WO2017073584A1
WO2017073584A1 PCT/JP2016/081646 JP2016081646W WO2017073584A1 WO 2017073584 A1 WO2017073584 A1 WO 2017073584A1 JP 2016081646 W JP2016081646 W JP 2016081646W WO 2017073584 A1 WO2017073584 A1 WO 2017073584A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
curable resin
meth
ultraviolet curable
acrylate
Prior art date
Application number
PCT/JP2016/081646
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 真二郎
貴文 水口
隼 本橋
麻衣 鍔本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to KR1020187010312A priority Critical patent/KR20180075494A/en
Priority to JP2017547811A priority patent/JPWO2017073584A1/en
Priority to CN201680060820.7A priority patent/CN108137993A/en
Publication of WO2017073584A1 publication Critical patent/WO2017073584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L57/00Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C08L57/02Copolymers of mineral oil hydrocarbons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to an ultraviolet curable resin composition for bonding at least two optical substrates, a cured product using the same, and a touch panel.
  • a touch panel In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used.
  • a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
  • the touch panel and the display unit are bonded with an ultraviolet curable adhesive
  • the cured film of the resin composition is too hard at the time of bonding, the cured resin is less likely to follow the substrate when the substrate is distorted.
  • a problem occurs.
  • a gap is generated between the substrate and the cured resin layer when cured after bonding, and the substrate and the cured product layer are peeled off, resulting in a decrease in yield.
  • peeling occurs due to biting air or the like.
  • Patent Document 1 discloses a technique for preventing this problem by a method of moving the pressing means on the substrate and spreading it out as a bonding method.
  • a method of moving the pressing means on the substrate and spreading it out as a bonding method.
  • a gap is generated between the substrate and the cured resin layer during curing after bonding, or due to the impact or environmental change described above. The problem of generating gaps will remain.
  • Patent Document 2 discloses a technique for preventing the above problem of peeling by using a resin composition having a high elongation rate and high adhesion.
  • the components in the resin composition must be operated, and in order to satisfy the physical properties, the range in which the resin composition material and the component ratio in the composition can be adjusted is limited, It becomes difficult to ensure other physical properties such as elasticity.
  • a resin having only a high elongation has a limited ability to follow the substrate, and it is difficult to sufficiently follow the substrate and prevent the generation of a gap during curing after bonding.
  • the present invention provides a cured resin layer having a low shrinkage rate, high adhesive strength, and high flexibility, whereby an optical member such as a display unit having good curability and adhesion can be obtained. It aims at providing the ultraviolet curable resin composition for touchscreens which a hardened
  • the present inventors have completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention relates to the following (1) to (11).
  • R 1 represents a hydrogen atom, a hydroxyl group, a methylol group, or an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group.
  • R 2 has a condensed polycyclic hydrocarbon group (meta ) Represents an organic group not containing an acryloyl group, n represents 0 or 1.
  • n represents 0 or 1.
  • Each of a plurality of R 1 may be present independently and may be the same or different.
  • the organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group of R 1 is any one of the following formulas (2A) to (2C):
  • R 3 is R 3 are each independently of.
  • Plurality of represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms And may be the same or different.
  • the organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group represented by R 2 is any one of the following (3A) to (3C):
  • R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. A plurality of R 3 are each independently selected. And may be the same or different.
  • the ultraviolet curable resin composition as described in (1) represented by these.
  • the photopolymerizable oligomer (C) is selected from the group consisting of urethane (meth) acrylate, polyisoprene or (meth) acrylate having a hydrogenated polyisoprene skeleton, polybutadiene or (meth) acrylate having a hydrogenated polybutadiene skeleton.
  • the photopolymerizable oligomer (C) is a urethane (meth) acrylate having at least one skeleton selected from the group consisting of polypropylene / polybutadiene / hydrogenated polybutadiene / polyisoprene / hydrogenated polyisoprene (4 ) UV curable resin composition.
  • the photopolymerizable monomer (D) the following formula (10)
  • R 5 represents a hydrogen atom or CH 3 , and n represents an integer of 1 to 3)
  • the liquid softening component (B1) is contained, and the liquid softening component (B1) includes any one of hydroxyl group-containing polymer and liquid terpene resin, or both of them (1) to (7)
  • the ultraviolet curable resin composition of this invention is demonstrated.
  • the phrase “can be added to an ultraviolet curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to an extent that it cannot be used for optics is not included.
  • (meth) acrylate means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like.
  • “Acrylate” represents only acrylate, and methacrylate is excluded.
  • the ultraviolet curable resin composition of the present invention contains a compound (A) represented by the following formula (1).
  • R 1 s each independently represent a hydrogen atom, a hydroxyl group, a methylol group, or an organic group that does not contain a (meth) acryloyl group having a condensed polycyclic hydrocarbon group.
  • R 2 represents a condensed polycyclic ring.
  • An organic group not containing a (meth) acryloyl group having a hydrocarbon group, n represents 0 or 1.
  • a plurality of R 1 s exist independently and may be the same or different. .
  • R 1 is any one of the following formulas (2A) to (2C) as an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group.
  • R 3 is R 3 are each independently of. Plurality of represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms And may be the same or different.
  • light resistance is excellent in the order of (2C), (2A), and (2B).
  • R 3 is preferably a hydrogen atom or an organic group having 1 to 3 carbon atoms.
  • R 1 is preferably any one of the following formulas (4A) to (4C).
  • R 2 is an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group, and any one of the following formulas (3A) to (3C):
  • R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • a plurality of R 3 are each independently selected. And may be the same or different.
  • R 3 is preferably a hydrogen atom or an organic group having 1 to 3 carbon atoms.
  • R 2 is preferably any one of the following formulas (5A) to (5C).
  • specific examples of the compound represented by the above formula (1) include esterified products of glycerin and ester compounds of pentaerythritol.
  • the esterified product of glycerin is represented by the following formula (6).
  • R 4 is the above formulas (7A) to (7C) and two are hydrogen atoms is a 1-substituent
  • two R 4 are the above formulas (7A) to (7C)
  • An atom is a disubstituted product
  • three of R 4 are the above formulas (7A) to (7C).
  • R 4 is a hydrogen atom or the following formula (7A) ⁇ (7C)
  • R 3 and * are the same as described above.
  • a plurality of R 3 and R 4 are present independently and may be the same or different.
  • light resistance is excellent in the order of (7C), (7A), and (7B).
  • R 4 in the formula (6) is preferably any one of the following formulas (8A) to (8C).
  • the ultraviolet curable resin composition of the present invention may contain a mixture of 1-substituted to 3-substituted products.
  • the mixture it is preferable that three of R 4 are compounds represented by any one of the above formulas (7A) to (7C). Particularly preferred are compounds.
  • each of R 4 in (7A) - the formula the substituent represented by (7C) are different (6) A mixture of compounds is preferred.
  • the esterified product of pentaerythritol is represented by the following formula (9).
  • R 4 is represented by the above formulas (7A) to (7C) and three are hydrogen atoms is a single substituent, and two of R 4 are the above formulas (7A) to (7C), and two are hydrogen.
  • An atom is a disubstituted product, three of R 4 are the above formulas (7A) to (7C), and one is a hydrogen atom, a three substituent, and four of R 4 are the above formulas (7A) to (7C). ) Is a 4-substitution.
  • R 4 is the same as described above.
  • a plurality of R 4 may be present independently and may be the same or different.
  • R 4 is the formulas (7A) to (7C)
  • it is preferably any one of the formulas (8A) to (8C).
  • two or more of R 4 in the formula (9) are any one of the formulas (7A) to (7C).
  • the ultraviolet curable resin composition of the present invention contains a mixture of a plurality of compounds having different numbers in which R 4 is substituted by any one of the above formulas (7A) to (7C) in the above formula (9). Can be made.
  • it is set as the said mixture, it is preferable that it is a 2 substituted body or a 3 substituted body.
  • each of R 4 in (7A) - the formula the substituent represented by (7C) are different (9)
  • a mixture of compounds is preferred.
  • it is preferably a mixture of compounds of the above formula (9), which are disubstituted and trisubstituted, each having a different substituent represented by (7A) to (7C) of R 4 .
  • the esterified product of pentaerythritol has more ester bond sites than the esterified product of glycerin and compatibility is improved, it is suitable for mixing with other raw materials.
  • Particularly preferred compounds include the following compounds.
  • the softening point of the compound represented by the above formula (1) is preferably 80 to 150 ° C, more preferably 90 to 105 ° C. By being in such a softening point, it can contribute to improving the elasticity of a resin cured material layer. Further, it is possible to immediately follow the substrate according to the pressure / temperature change and restore it.
  • the acid value is preferably 2 to 10.
  • the hydroxyl value is preferably 38 to 47. By being in such a range, generation
  • APHA is preferably 150 or less, and more preferably 50 or less. By being in such a suitable range, the visibility of the touch panel can be remarkably improved.
  • the ultraviolet curable resin composition for a touch panel of the present invention is a resin composition used for bonding at least two optical substrates, and contains a liquid softening component (B1) as a softening component (B). be able to.
  • the liquid softening component (B1) can be used without particular limitation as long as it is liquid at room temperature (25 ° C.).
  • the liquid softening component (B1) is not cross-linked by ultraviolet rays, and is present between the cross-links of the photopolymerizable oligomer or photopolymerizable monomer, thereby providing flexibility and reducing the shrinkage rate. have.
  • liquid softening component (B1) examples include polymers, oligomers, phthalates, phosphates, glycols, citrates, and aliphatic dibasic esters that are compatible in the composition. , Fatty acid esters, epoxy plasticizers, castor oils, terpene resins, hydrogenated terpene resins, liquid terpenes, and the like.
  • oligomer and polymer examples include polyisoprene skeleton, hydrogenated polyisoprene skeleton, polybutadiene skeleton, oligomer or polymer having hydrogenated polybutadiene skeleton or xylene skeleton and esterified product thereof, adipic acid ester oligomer, polybutene, and the like. be able to. From the viewpoint of transparency, hydrogenated terpene resins, hydrogenated polyisoprene, hydrogenated polybutadiene, polybutene, and liquid terpenes are preferable.
  • the liquid softening component (B1) the specific gravity of the liquid at 20 ° C. is preferably 0.93 or less, the dielectric constant at 1 Hz is preferably 3.5 or less, and the iodine value is 400. The following is preferable.
  • the liquid softening component (B1) preferably has a viscosity of 0.01 to 100 Pa ⁇ s with a cone plate rheometer at 25 ° C. under atmospheric pressure.
  • the ultraviolet curable resin composition for touch panels of this invention can contain a solid softening component (B2) as a softening component (B).
  • the solid softening component (B2) can be used without particular limitation as long as it is solid at room temperature (25 ° C.).
  • the solid softening component (B2) is not cross-linked by ultraviolet rays, is present between the cross-links of the photopolymerizable oligomer or photopolymerizable monomer, and sticks to the hardened product surface by arranging on the hardened product layer surface. Can be provided, and the effect of improving the adhesion improving function is exhibited.
  • Examples of such a solid softening component (B2) include polymers, oligomers, phthalates, phosphate esters, glycol esters, citrate esters, and aliphatic dibasic esters that are compatible in the composition. , Fatty acid esters, epoxy plasticizers, castor oils, terpene resins, hydrogenated terpene resins, liquid terpenes, and the like.
  • oligomer and polymer examples include polyisoprene skeleton, hydrogenated polyisoprene skeleton, polybutadiene skeleton, oligomer or polymer having hydrogenated polybutadiene skeleton or xylene skeleton and esterified product thereof, adipic acid ester oligomer, polybutene, and the like. be able to. From the viewpoint of transparency, hydrogenated terpene resins, hydrogenated polyisoprene, hydrogenated polybutadiene, polybutene, and liquid terpenes are preferable.
  • hydroxyl group-containing polymers such as hydrogenated polybutadiene contained in the side chain, and liquid terpene resins are particularly preferable.
  • a softening point is 60 degreeC or more, and it is more preferable that it is 70 degreeC or more.
  • the said liquid softening component (B1) and said (solid softening component (B2) and the total amount of the compound of the said Formula (1)) are constant mass ratios.
  • the ratio is usually 50.5: 49.5 to 99.9: 0.1.
  • the softening point of the solid softening component (B2) is generally correlated with the molecular weight of the solid softening component, and the softening point of the solid softening component (B2) showing a softening point of 60 ° C or higher is 60 to 115 ° C.
  • the mass ratio of the liquid softening component (B1) and (the total amount of the compound described in the formula (1) and the solid softening component (B2)) is preferably Is in the range of 94.9 to 50.5: 49.5 to 5.1, more preferably 89.9 to 50.5: 49.5 to 10.1.
  • the solid softening component (B2) having a softening point of 115 ° C. to 150 ° C. is used, the liquid softening component (B1) and (the solid softening component (B2) and the compound of the formula (1) are used.
  • the mass ratio of the total amount is preferably in the range of 99.9 to 55.5: 44.5 to 0.1, more preferably 99.9 to 60.5: 39.5 to 0.1.
  • the liquid softening component (B1) has a larger mass ratio than the solid softening component (B2), so that the elasticity of the cured resin layer in temporary curing or main curing can be remarkably improved. it can. And since it has high elasticity in this way, even when stress generated by pressure / temperature change or contraction rate difference between the substrate and the resin composition is applied to the substrate, it can immediately follow and restore to the substrate Can do. In addition, since the cured resin layer follows the substrate even after curing after bonding, it is difficult for separation to occur, so that the yield can be improved.
  • the weight ratio of the softening component in the ultraviolet curable resin composition (the total amount of the solid softening component (B2) and the compound represented by the formula (1)) is usually 5 to 40% by weight, preferably 10 to 35%. % By weight.
  • the liquid softening component (B1) is usually 10 to 70% by weight, preferably 20 to 60% by weight.
  • the ultraviolet curable resin composition of the present invention can contain a photopolymerizable oligomer (C).
  • a photopolymerizable oligomer (C) in the ultraviolet curable resin composition of this invention,
  • skeleton It is preferable to use one selected from the group consisting of (meth) acrylates having a polybutadiene skeleton.
  • urethane (meth) acrylate is preferable from the viewpoint of adhesive strength, and has at least one skeleton selected from the group consisting of polybutadiene / hydrogenated polybutadiene / polyisoprene / hydrogenated polyisoprene from the viewpoint of moisture resistance. Urethane (meth) acrylate is more preferable.
  • the urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • polyhydric alcohol examples include polybutadiene glycol, hydrogenated polybutadiene glycol, polyisoprene glycol, hydrogenated polyisoprene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4 A cyclic skeleton such as butanediol, alkylene glycol having 1 to 10 carbon atoms such as 1,6-hexanediol, triol such as trimethylolpropane and pentaerythritol, tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, etc.
  • polycarbonate polyol for example, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate, etc.
  • polyether polyol for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-modified bisphenol A, etc.
  • the polyhydric alcohol is preferably propylene glycol, polybutadiene glycol, hydrogenated polybutadiene glycol, polyisoprene glycol, or hydrogenated polyisoprene glycol, and weight average molecular weight from the viewpoint of transparency and flexibility.
  • Hydrogenated polybutadiene glycol is preferred from the viewpoints of discoloration such as heat-resistant coloring and compatibility.
  • the upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less. Moreover, you may use together 2 or more types of polyhydric alcohol as needed.
  • organic polyisocyanate examples include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and dicyclopentanyl isocyanate.
  • isophorone diisocyanate is preferable from the viewpoint of toughness.
  • hydroxyl group-containing (meth) acrylates include hydroxy C2-C4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono ( A (meth) acrylate, a hydroxycaprolactone (meth) acrylate, a hydroxyl group terminal polyalkylene glycol (meth) acrylate, etc. can be used.
  • hydroxy C2-C4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono ( A (meth) acrylate, a hydroxycaprolactone (meth) acrylate, a hydroxyl group terminal polyalkylene glycol (meth) acryl
  • the reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer. Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably about 7,000 to 100,000, and more preferably 10,000 to 60,000. When the weight average molecular weight is 7000 or more, the shrinkage becomes smaller, and when the weight average molecular weight is 100,000 or less, the curability is further improved.
  • urethane (meth) acrylates can be used alone or in admixture of two or more.
  • the weight ratio of urethane (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight.
  • the (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule.
  • (Meth) acrylates having a polyisoprene skeleton are available as UC-203, UC102, and UC-1 (manufactured by Kuraray Co., Ltd.).
  • the (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
  • the weight ratio of the (meth) acrylate having a polyisoprene skeleton in the ultraviolet curable resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight.
  • the ultraviolet curable resin composition of the present invention contains a photopolymerizable monomer (D).
  • a photopolymerizable monomer (D) a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used.
  • the photopolymerizable monomer (D) excludes (meth) acrylate having urethane (meth) acrylate, polyisoprene or hydrogenated polyisoprene skeleton, (meth) acrylate having polybutadiene or hydrogenated polybutadiene skeleton ( (Meth) acrylate is shown.
  • R 5 represents a hydrogen atom or CH 3 , and n represents an integer of 1 to 3
  • the monofunctional acrylate represented by these can be used conveniently.
  • the composition ratio of the ultraviolet curable resin composition is preferably 1 to 20% by weight of the monofunctional acrylate represented by the above formula (10), 5 to 90% by weight of the photopolymerizable oligomer (C),
  • the photopolymerizable monomer (D) other than (10) is 5 to 90% by weight
  • the photopolymerization initiator (E) is 0.1 to 5% by weight
  • the other components are the balance.
  • Examples of the monofunctional acrylate represented by the formula (10) in the ultraviolet curable resin composition of the present invention include 4-hydroxybutyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxyethyl acrylate, and the like. 2 or more may be used in combination as required.
  • R 5 when n is 2 or less (particularly when n is 1 or less), R 5 is preferably a methyl group. When n is 3 or more, R 5 is preferably a hydrogen atom.
  • a total carbon number of 2 or more is preferable because a resin composition with low volatility and low cloudiness can be obtained.
  • the following formula (11) is preferable because a resin composition with low volatility and low cloudiness can be obtained.
  • n represents an integer of 2 to 4.
  • the monofunctional acrylate represented by these is preferable.
  • Examples of the monofunctional acrylate represented by the formula (11) include 4-hydroxybutyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxyethyl acrylate and the like.
  • 4-hydroxybutyl acrylate is particularly preferable from the viewpoint of low volatility. When a methacrylate resin is used, the curing rate tends to be slow, and when the resin composition is actually used, it may take time to cure.
  • the MOH / (MC + MB) is preferably 0.3 or less, particularly preferably 0.28 or less, and particularly preferably 0.25 or less.
  • the monofunctional acrylate represented by the formula (10) that satisfies the condition is referred to as a low volatility / whitening-resistant acrylate.
  • the content of the photopolymerizable monomer represented by the formula (10) is preferably 1 to 20% by weight, more preferably 2 to 10% by weight, and particularly preferably 5.5 to 8% by weight.
  • the content of the formula (10) component is 1% or more, the whitening resistance is further improved.
  • it is 20% by weight or less bubbles do not easily enter during bonding, and compatibility with other components is improved and the liquid does not become cloudy.
  • containing a methacrylate having a hydroxyl group in the ultraviolet curable resin composition may adversely affect physical properties such as a decrease in the curing rate and whitening resistance.
  • the content is preferably 10% by weight or less, particularly preferably 5% by weight or less.
  • Specific examples of the (meth) acrylate having one (meth) acryloyl group in the molecule other than the photopolymerizable monomer represented by the formula (10) include isooctyl (meth) acrylate and isoamyl (meth) acrylate. , Lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, tridecyl (meth) acrylate, etc.
  • alkyl (meth) acrylates benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl Acrylate, dicyclopentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 1-adamantyl acrylate, 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 1-adamantyl methacrylate, polypropylene oxide modified nonylphenyl (meth) acrylate, (meth) acrylate having a cyclic skeleton such as dicyclopentadieneoxyethyl (meth) acrylate, alkyl (meth) acrylate
  • X represents an acryloyl group
  • R 6 represents an alkyl group having 8 to 20 carbon atoms (preferably 10 to 20 carbon atoms)
  • a monofunctional acrylate represented by the following formula (13) is preferred from the viewpoint of adhesive strength:
  • the monofunctional acrylate represented by these is more preferable.
  • isostearyl acrylate is more preferable from the viewpoints of low volatility, reactivity, and flexibility.
  • the number of R 6 alkyl groups in the above formula (12) is defined as MR, and the formula (10).
  • the resin composition preferably a resin composition containing both compounds such that MR / (MC + MB) (hereinafter referred to as a special ratio) is 5.5 or less, and particularly preferably 5 or less. preferable. Further, from the viewpoint of making the whitening resistance particularly excellent, the resin composition contains both compounds having the low volatility / whitening resistance acrylate and the special ratio of 5.5 or less. It is preferably 5 or less.
  • composition of the present invention can contain (a (meth) acrylate other than a (meth) acrylate having one (meth) acryloyl group in the molecule) as long as the characteristics of the present invention are not impaired.
  • a (meth) acrylate other than a (meth) acrylate having one (meth) acryloyl group in the molecule for example, tricyclodecane dimethylol di (meth) acrylate, dioxane glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, alkylene oxide modified bisphenol A type di (meth) acrylate Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, trimethylolpropane tri
  • trimethylol C2-C10 alkane polyalkoxy tri (meth) acrylate tris [(meth) acryloyloxyethyl] isocyanurate
  • pentaerythritol tri (meth) Alkylene oxide modified trimethylolpropane tri (meth) acrylate such as acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate
  • pentaerythritol polyethoxytetra (meth) acrylate penta Erythritol polypropoxytetra (meth) acrylate
  • pentaerythritol tetra (meth) acrylate ditrime Trimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (
  • these (meth) acrylate monomer components can be used alone or in admixture of two or more at any ratio.
  • the weight ratio of the photopolymerizable monomer (D) other than the above formula (1) in the photocurable transparent resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight. If it is less than 5% by weight, the curability may be poor, and if it is more than 90% by weight, shrinkage may increase.
  • the ratio (weight ratio) of the component of formula (10): component of formula (12) is preferably in the range of 1: 2 to 1:25, particularly in the range of 1: 3 to 1:15. preferable.
  • epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired.
  • Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate.
  • Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct.
  • Diglycidyl ether ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
  • (Meth) acrylic acid is preferably reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound.
  • the reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours.
  • a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride.
  • paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
  • An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound.
  • the weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
  • the weight ratio of the epoxy (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
  • the photopolymerization initiator (E) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine.
  • Fin oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure ONE; manufactured by Lamberti), 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl -1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-methyl -Propan-1-one (Irgacure 127; manufactured by BASF), 2,2-dimethoxy-2-phen
  • the molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol is 300 ml / (g ⁇ cm) or more, and the molar extinction coefficient at 365 nm is 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g ⁇ cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength.
  • the molar extinction coefficient at 302 nm or 313 nm is 300 ml / (g ⁇ cm) or more, curing at the time of curing in the following step 3 is sufficient.
  • photopolymerization initiator (E) examples include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173).
  • these photopolymerization initiators (E) can be used alone or in admixture of two or more at any ratio.
  • the weight ratio of the photopolymerization initiator (E) in the ultraviolet curable resin composition of the present invention is usually 0.2 to 5% by weight, preferably 0.3 to 3% by weight. If it is 5% by weight or less, when obtaining a cured product layer having a cured portion and an uncured portion on the side opposite to the optical substrate side, the uncured portion is reliably formed, and the transparency of the cured resin layer is obtained. Will improve.
  • the ultraviolet curable resin composition of the present invention can contain additives, which will be described later, as other components.
  • amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator.
  • examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester.
  • the content in the ultraviolet curable resin composition of the present invention is usually 0.005 to 5% by weight, preferably 0.01 to 3% by weight.
  • an antioxidant In the ultraviolet curable resin composition of the present invention, an antioxidant, an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added. You may add additives, such as an agent (for example, hindered amine compound etc.) and a filler.
  • an agent for example, hindered amine compound etc.
  • antioxidants include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-di
  • organic solvent examples include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
  • silane coupling agent examples include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, ⁇ -mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltri
  • polymerization inhibitor examples include paramethoxyphenol and methylhydroquinone.
  • the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid And 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Unde Mixed ester with decanoic acid bis (2,2,6,6-tetramethyl)
  • the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like.
  • examples thereof include powder or beads obtained by spheroidizing these.
  • the weight ratio of the various additives in the photocurable transparent resin composition is 0.01 to 3% by weight, preferably 0.01 to 1% by weight, more preferably 0.02 to 0.5% by weight.
  • the ultraviolet curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C., and if necessary, impurities may be removed by an operation such as filtration.
  • impurities may be removed by an operation such as filtration.
  • Step 1 By applying the ultraviolet curable resin composition to at least one optical substrate to form a coating layer, and irradiating the coating layer with ultraviolet rays, an optical group in the coating layer is formed.
  • a cured portion (hereinafter referred to as “cured portion of the cured product layer” or simply “cured portion”) present on the material side (lower side of the coating layer) and the side opposite to the optical substrate side (upper side of the coating layer) Step of obtaining an optical substrate having a cured product layer having an uncured portion (hereinafter, referred to as “uncured portion of the cured product layer” or simply “uncured portion”) present on the atmosphere side.
  • Step 1 there is no particular limitation on the curing rate of the coating layer after ultraviolet irradiation, and there is an uncured portion on the surface opposite to the optical substrate side (the upper side of the coating layer, usually the air side).
  • Step 2 Another optical substrate is bonded to the uncured portion of the cured product layer of the optical substrate obtained in Step 1, or the other optical substrate obtained in Step 1 is cured. The process of bonding the uncured part of the material layer.
  • FIG. 1 is a process diagram showing a first embodiment of a production process of an optical member using the ultraviolet curable resin composition of the present invention.
  • This method is a method of obtaining an optical member by bonding the liquid crystal display unit 1 and the transparent substrate 2 together.
  • the liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
  • the transparent substrate 2 is a transparent substrate such as a glass plate, a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, an alicyclic polyolefin polymer (COP) plate, an acrylic resin, or polyethylene terephthalate.
  • the transparent substrate may be subjected to hard coat treatment or antireflection treatment on one side or both sides.
  • the transparent substrate 2 having a black frame-shaped light-shielding portion 4 on the surface of the transparent substrate can be preferably used, and the light-shielding portion 4 is formed by applying a tape, applying a paint, printing, or the like. In the present invention, the present invention can also be applied to a device that does not have the light shielding portion 4.
  • transparent substrate having a light-shielding portion can be read as “transparent substrate”, and can be considered as an example in which the light-shielding portion is not provided as it is.
  • an ultraviolet curable resin composition is apply
  • the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method.
  • the ultraviolet curable resin composition applied to the surface of the liquid crystal display unit 1 and the transparent substrate 2 having the light shielding portion may be the same, or different ultraviolet curable resin compositions may be used. Usually, it is preferable that both are the same ultraviolet curable resin composition.
  • the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
  • the film thickness of the cured product of each ultraviolet curable resin is adjusted so that the cured resin layer 7 after bonding has a thickness of 50 to 500 ⁇ m, preferably 50 to 350 ⁇ m, and more preferably 100 to 350 ⁇ m.
  • the film thickness of the cured layer of the ultraviolet curable resin existing on the surface of the transparent substrate 2 having the light-shielding portion depends on the film thickness, the ultraviolet curable resin usually existing on the surface of the liquid crystal display unit 1 is used.
  • the thickness is equal to or thicker than the thickness of the cured product layer of the mold resin. This is to minimize the portion that remains uncured even after irradiation with ultraviolet rays in Step 3 described later, thereby eliminating the risk of curing failure.
  • the ultraviolet curable resin composition layer 5 after application is irradiated with ultraviolet rays 8 and a cured portion (in the drawing, the liquid crystal display unit side or the transparent substrate side as viewed from the ultraviolet curable resin composition) is present (in the figure). Curing with uncured parts (not shown in the figure) present on the upper side of the coating layer (on the opposite side of the liquid crystal display unit side or on the opposite side of the transparent substrate side) (on the atmospheric side when performed in the atmosphere) A physical layer 6 is obtained.
  • the irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 .
  • uncured refers to a fluid state in a 25 ° C. environment.
  • the resin composition layer is touched with a finger after ultraviolet irradiation and a liquid component adheres to the finger, it is determined to have an uncured portion.
  • any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
  • the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm.
  • the (illuminance ratio) is preferably 30 or less, and particularly preferably the illuminance at 200 to 320 nm is 10 or less.
  • the maximum illuminance in the range of 320 nm to 450 nm is 100
  • the ratio of the maximum illuminance (illuminance ratio) at 200 to 320 nm is higher than 30, the adhesive strength of the optical member finally obtained may be inferior. is there. This is because if the illuminance at a low wavelength is high, the curing of the ultraviolet curable resin composition proceeds excessively at the time of curing in the step 1, and the contribution to the adhesion at the time of curing in the ultraviolet irradiation in the step 3 is reduced. This is thought to be due to this.
  • the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if the above condition is not satisfied, such illuminance can be obtained by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of irradiation in step 1. Irradiation at a ratio is possible. Although it does not specifically limit as a base material which adjusts the illumination intensity ratio of an ultraviolet-ray, For example, the glass plate, soda-lime glass, PET film etc.
  • irradiation with ultraviolet rays is usually carried out in the air at the upper surface on the coating side (on the opposite side of the liquid crystal display unit side or on the transparent substrate side as seen from the ultraviolet curable resin composition) (normal atmospheric surface) ). Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation.
  • the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side.
  • ultraviolet rays may be irradiated in a vacuum environment or in a gas environment that does not cause hardening inhibition such as nitrogen.
  • step 3 when step 3 is omitted, curing can be suitably performed in a vacuum or while spraying a gas (for example, nitrogen) that promotes curing. Thereby, even if the step 3 is omitted, sufficient adhesion can be performed.
  • the state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation. That is, when oxygen or ozone is sprayed on the surface of the coating layer, oxygen inhibition of curing of the ultraviolet curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured or the uncured portion
  • the film thickness can be increased.
  • the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 8 from the transparent substrate 2 side which has a light-shielding part, and ultraviolet curable type
  • the resin composition (coating layer) is cured.
  • the dose of ultraviolet rays is preferably about 100 ⁇ 4000mJ / cm 2 in accumulated light quantity, particularly preferably 200 ⁇ 3000mJ / cm 2 approximately.
  • the light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used. In this way, an optical member as shown in FIG. 5 can be obtained.
  • the optical member of the present invention may be manufactured by the second modified embodiment described below. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted.
  • the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
  • the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less. Particularly preferably, the illuminance at 200 to 320 nm is 10 or less.
  • the adhesive strength of the final optical member is further improved.
  • a transparent substrate 2 having a liquid crystal display unit 1 and a light shielding portion in a form in which the uncured portion of the obtained cured product layer 6 and the display surface of the liquid crystal display unit 1 face each other.
  • Bonding can be performed either in air or in vacuum.
  • FIG. 3 is a process diagram showing a third embodiment of a method for producing an optical member using the ultraviolet curable resin composition of the present invention. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted. In addition, the same code
  • the ultraviolet curable composition was applied to the surface of the liquid crystal display unit 1. Thereafter, the ultraviolet curable resin composition layer 5 is irradiated with ultraviolet rays 8, and a cured portion existing on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer ( A cured product layer 6 having an uncured portion present on the side opposite to the transparent substrate side is obtained.
  • the wavelength of ultraviolet rays irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the maximum illuminance at 200 to 320 nm is preferably 30 or less. The illuminance at 200 to 320 nm is preferably 10 or less. When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the maximum illuminance at 200 to 320 nm is 30 or less, the adhesive strength of the optical member finally obtained is further improved.
  • the liquid crystal display unit 1 is formed such that the uncured portion of the obtained cured product layer 6 and the surface on which the light shielding portion on the transparent substrate 2 having the light shielding portion is formed face each other. And a transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum.
  • the optical member of the present invention may be manufactured according to the following modified fourth embodiment. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted.
  • the fourth embodiment is described based on the second embodiment in which the step 3 is omitted, but the omission can be performed in the first to third embodiments.
  • the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
  • the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less. Particularly preferably, the illuminance at 200 to 320 nm is 10 or less.
  • the adhesive strength of the final optical member is further improved.
  • any method for adjusting the film thickness of the uncured portion by spraying nitrogen or ozone is not applied only to the above-described embodiment, but can be applied to any manufacturing method included in the present invention.
  • optical base material is an optical base material
  • the optical base material bonded thereto is at least one display unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit.
  • One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded.
  • a mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
  • the ultraviolet curable resin composition is applied to either the surface of the protective base material having the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to apply.
  • One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto
  • the aspect which is a display body unit which has an optical base material which has a light-shielding part.
  • the ultraviolet curable resin is applied to either the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided, the display surface of the display unit, or both of them. It is preferable to apply the composition.
  • the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
  • the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion
  • the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided.
  • the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion
  • the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel.
  • the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
  • the light-shielding part of the optical base material having the light-shielding part may be at any position of the optical base material, but is usually created in a frame shape around the optical base material in the form of a transparent plate or sheet, and its width is The thickness is about 0.5 mm to 10 mm, preferably about 1 to 8 mm, and more preferably about 2 to 8 mm.
  • the ultraviolet curable resin composition of the present invention is produced by bonding at least two optical substrates by the above (Step 1) to (Step 2) and, if necessary, further (Step 3). Can be used in the way.
  • the curing shrinkage of the cured product of the ultraviolet curable resin composition of the present invention is preferably 4.0% or less, and particularly preferably 3.0% or less.
  • the transmittance at 400 nm to 800 nm of the cured product of the ultraviolet curable resin composition of the present invention is preferably 90% or more. If the transmittance is 90% or less, light is easily transmitted, and visibility is improved when used in a display device. Further, when the cured product has a high transmittance at 400 to 450 nm, the visibility can be further improved. Therefore, the transmittance at 400 to 450 nm is preferably 90% or more.
  • the ultraviolet curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the above (Step 1) to (Step 3).
  • an optical base material used in the manufacturing method of the optical member using the resin composition of this invention a transparent plate, a sheet
  • the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface.
  • at least one of a plurality of optical substrates used is an optical substrate having a light shielding part.
  • the position of the light shielding part in the optical substrate having the light shielding part is not particularly limited.
  • a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate.
  • the light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
  • Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given.
  • an optical substrate used in the present invention for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
  • the optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called “body”).
  • Examples of the sheet that can be used as an optical substrate used in the method for producing an optical member using the resin composition of the present invention include an icon sheet, a decorative sheet, and a protective sheet.
  • Examples of the plate (transparent plate) that can be used in the method for producing an optical member using the resin composition of the present invention include a decorative plate and a protective plate.
  • materials for these sheets or plates those listed as materials for transparent plates can be applied.
  • Examples of the material of the touch panel surface that can be used as an optical substrate used in the method for producing an optical member using the resin composition of the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP. Is mentioned.
  • the thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 ⁇ m to 5 cm, preferably about 10 ⁇ m to 10 mm, more preferably about 50 ⁇ m to 3 mm. Is the thickness.
  • a plate-like or sheet-like transparent optical base material having a light-shielding portion and the functional laminate described above are used.
  • cured material of the ultraviolet curable resin composition can be mentioned.
  • a display unit such as a liquid crystal display device, as one of the optical base materials, and using an optical functional material as another optical base material.
  • a display unit with an optical functional material (hereinafter also referred to as a display panel) can be manufactured.
  • Examples of the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass.
  • Examples of the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
  • the refractive index of the cured product is 1.45 to 1.55 in order to improve the visibility because the visibility of the display image is further improved.
  • the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
  • Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
  • An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part.
  • the optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
  • a touch panel or touch panel input sensor in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using the cured product of the ultraviolet curable resin composition of the present invention.
  • a display panel in which a plate-like or sheet-like optical substrate having a light-shielding part is bonded to the display screen of the display unit using the cured product of the ultraviolet curable resin composition of the present invention.
  • the ultraviolet curable resin composition of the present invention By using the ultraviolet curable resin composition of the present invention and bonding a plurality of optical substrates selected from the above optical substrates by the method described in (Step 1) to (Step 3), The optical member of the invention is obtained.
  • the ultraviolet curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces. good.
  • the functional laminate is a touch panel or a display unit
  • any one surface of the protective base material having a light shielding part, preferably the light shielding part is provided.
  • the resin composition may be applied to only one of the provided surface and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
  • a light shielding portion of the protective base material is provided in Step 1, in which a protective base material or a touch panel for protecting the display screen of the display body unit is bonded to the display body unit.
  • the resin composition may be applied to only one of the substrate surface opposite to the surface or the touch surface of the touch panel and the display surface of the display unit, or to both of them.
  • the optical member including the display unit knit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
  • Synthesis example 1 To a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature control device, GI-2000 manufactured by Nippon Soda Co., Ltd. (iodine value: 12.2, hydroxyl value: 46.8 mg ⁇ KOH) as a hydrogenated polybutadiene polyol compound / G) is 545.99 g (0.23 mol), 7.19 g (0.0023 mol) of Exenol 3020 (polypropylene glycol, hydroxyl value: 35.9 mg ⁇ KOH / g) manufactured by Asahi Glass Co., Ltd. as a diol compound is polymerizable.
  • GI-2000 manufactured by Nippon Soda Co., Ltd.
  • Example 1 15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of a pine crystal KE-311 and S-1800A manufactured by Kogyo Co., Ltd.
  • Example 2 15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of pine crystal KE-359 and S-1800A manufactured by Kogyo Co., Ltd.
  • Example 3 15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of Pine Crystal PE-590 manufactured by Kogyo Co., Ltd., 13 parts by mass of LV-100 (polybutene) manufactured by JX Nippon Mining & Energy, GI-2000 manufactured by Nippon Soda Co., Ltd.
  • LAMBSON speed cure TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) 0.5 parts by mass
  • BASF IRGACURE184 (1-hydroxycyclohexyl phenyl ketone) 0.5 parts by mass Part
  • PBD (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3 manufactured by Wako Pure Chemical Industries, Ltd. 4-oxadiazole 0.1 parts by mass, Nippon Kasei Co., Ltd.
  • Examples 1 to 3 are shown in Table 1 and evaluated as follows.
  • the refractive index (25 ° C.) of the resin was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
  • Each resin composition of Examples 1 to 3 was applied to a slide glass having a thickness of 1 mm so that the film thickness became 200 ⁇ m, and a release PET film was bonded to the coated surface. Thereafter, the composition was irradiated with ultraviolet rays having an integrated light amount of 4000 mJ / cm 2 through a peeled PET film with a high-pressure mercury lamp (80 W / cm, with ozone-less / IR cut filter). The obtained joined body was put in an environment of 80 ° C. and 85% RH for 48 hours, and then the state of the film 15 minutes after being taken out in the environment of 25 ° C. and 45% RH, and the state of the cured film 3 hours after being taken out. It was confirmed visually. As a result of the evaluation, the compositions of Examples 1 to 3 were all good. ⁇ : No whitening of the film ⁇ : Whitening after 15 minutes but no whitening after 3 hours ⁇ : Whitening after 15 minutes and also whitening after 3 hours
  • a glass joined body was obtained according to the following experimental example. Two glass plates having a size of width 2 cm ⁇ length 3.5 cm ⁇ thickness 1 mm were prepared, and each resin composition was applied to the center of one glass plate so as to form a circle having a thickness of 200 ⁇ m and a diameter of 1 cm. . Thereafter, an electrodeless ultraviolet lamp (D-bulb manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.) is used for the obtained coating layer, and the accumulated light quantity is 100 mJ from the atmosphere through an ultraviolet cut filter that blocks a wavelength of 320 nm or less.
  • D-bulb manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.
  • the cured product layer having a cured portion present on the lower side (glass plate side) of the coating layer and an uncured portion present on the upper side (atmosphere side) of the coating layer.
  • the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100.
  • the uncured portion existing on the upper side (atmosphere side) of the coating layer and the other glass plate are bonded in a cross shape (direction crossing 90 ° C.), and the accumulated light amount is 2000 mJ / over through the bonded glass.
  • the cured resin layer was cured by irradiating cm 2 ultraviolet rays to obtain a joined body.
  • the ultraviolet curable resin composition of the present invention has good curability, high whitening resistance, strong adhesion to the base material, and further, after being directly applied to the base material to be bonded, It can be seen that even when cured by irradiating with ultraviolet rays and the other substrate is bonded, it has a high adhesive force.
  • compositions of Examples 1 to 3 were applied to the display surface of the liquid crystal display unit having an area of 3.5 inches and the surface on which the light-shielding portion on the transparent substrate having the light-shielding portion (width 5 mm) was formed on the outer periphery. It apply
  • an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.) was used for the obtained coating layer, and the accumulated light quantity from the atmosphere side was 100 mJ / A cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed by performing ultraviolet irradiation of cm 2 . At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100. Thereafter, a liquid crystal display unit and a transparent substrate having a light-shielding portion were bonded together with the uncured portions facing each other.
  • D bulb manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.
  • the resin cured product layer is cured by irradiating UV light with an integrated light amount of 2000 mJ / cm 2 from the glass substrate side having the light shielding portion with an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.). Produced.
  • the transparent substrate was removed from the obtained optical member, and the cured resin layer of the light shielding part was washed away with heptane, and then the cured state was confirmed. There was no evidence that the uncured resin composition was removed, and the resin in the light shielding portion was sufficiently cured.
  • 1 liquid crystal display unit 2 transparent substrate having light-shielding part, 3 transparent substrate, 4 light-shielding part, 5 ultraviolet curable resin composition (ultraviolet curable resin composition layer), 6 cured material layer having uncured part, 7 resin Hardened material layer, 8 UV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is an ultraviolet curable resin composition for touch panels, which has good productivity and enables the achievement of an optical member such as a display unit having good curability and adhesion properties, and which follows a substrate even if cured by means of ultraviolet irradiation after application to an optical base and subsequent bonding, thereby being not susceptible to the formation of a void. An ultraviolet curable resin composition which contains a compound (A) represented by formula (1). (In the formula, R1 represents a hydrogen atom, a hydroxyl group, a methylol group or an organic group that does not contain a (meth)acryloyl group having a condensed polycyclic hydrocarbon group; R2 represents an organic group that does not contain a (meth)acryloyl group having a condensed polycyclic hydrocarbon group; and n represents 0 or 1.)

Description

タッチパネル用紫外線硬化型樹脂組成物、それを用いた硬化物及びタッチパネルUV curable resin composition for touch panel, cured product and touch panel using the same
 本発明は、少なくとも2つの光学基材を貼り合わせるための紫外線硬化型樹脂組成物と、それを用いた硬化物及びタッチパネルに関する。 The present invention relates to an ultraviolet curable resin composition for bonding at least two optical substrates, a cured product using the same, and a touch panel.
 近年、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置の表示画面にタッチパネルを貼り合わせ、画面入力を可能とした表示装置が広く利用されている。このタッチパネルは、透明電極が形成されたガラス板又は樹脂製フィルムが僅かな隙間を空けて向き合って貼り合されており、必要に応じて、そのタッチ面の上に、ガラス又は樹脂製の透明保護板を貼り合せた構造を有している。 In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used. In this touch panel, a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
 タッチパネルにおける透明電極が形成されたガラス板又はフィルムと、ガラス又は樹脂製の透明保護板との貼り合せ、又はタッチパネルと表示体ユニットの貼り合わせには、両面粘着シートを用いる技術がある。しかし、両面粘着シートを用いると気泡が入りやすいという問題があった。両面粘着シートに代わる技術として、柔軟性のある紫外線硬化型樹脂組成物で貼り合せる技術が提案されている。 There is a technique of using a double-sided pressure-sensitive adhesive sheet for bonding a glass plate or film on which a transparent electrode is formed on a touch panel and a transparent protective plate made of glass or resin, or bonding a touch panel and a display unit. However, when a double-sided pressure-sensitive adhesive sheet is used, there is a problem that air bubbles easily enter. As a technique replacing the double-sided pressure-sensitive adhesive sheet, a technique of bonding with a flexible ultraviolet curable resin composition has been proposed.
 一方で、タッチパネルと表示体ユニットを紫外線硬化型接着剤で貼り合わせた場合、貼り合わせ時に樹脂組成物の硬化膜が硬すぎると、基板が歪んだ際に樹脂硬化物が基板に追従しにくいという問題が発生する。当該問題が発生すると、貼り合わせ後に硬化させた際に基板と樹脂硬化物層との間に隙間が発生し、基板と硬化物層が剥がれてしまい、歩留りの低下を招いてしまう。また、外部的な衝撃や外部環境の変化により基板が歪んだ際に空気をかむ等して剥がれが発生してしまう恐れがある。 On the other hand, when the touch panel and the display unit are bonded with an ultraviolet curable adhesive, if the cured film of the resin composition is too hard at the time of bonding, the cured resin is less likely to follow the substrate when the substrate is distorted. A problem occurs. When this problem occurs, a gap is generated between the substrate and the cured resin layer when cured after bonding, and the substrate and the cured product layer are peeled off, resulting in a decrease in yield. Further, when the substrate is distorted due to an external impact or a change in the external environment, there is a possibility that peeling occurs due to biting air or the like.
 気泡等の隙間の介入を防ぐ技術として、特許文献1では、貼り合わせの手法として押圧手段を基板上で移動させて濡れ広げる方法により、当該問題を防止する技術が開示されている。しかしながら、貼り合わせ時に気泡の介入を有効に防いだとしても、貼り合わせ後の硬化時に基板と樹脂硬化物層との間に隙間が生じてしまう問題や、上記のような衝撃ないし環境変化に起因する隙間の発生の問題が残ることになってしまう。 As a technique for preventing the intervention of gaps such as bubbles, Patent Document 1 discloses a technique for preventing this problem by a method of moving the pressing means on the substrate and spreading it out as a bonding method. However, even if air bubbles are effectively prevented during bonding, there is a problem that a gap is generated between the substrate and the cured resin layer during curing after bonding, or due to the impact or environmental change described above. The problem of generating gaps will remain.
 一方で、特許文献2には、伸び率が高く、密着性が高い樹脂組成物を用いて、上記剥離の問題を防止する技術が開示されている。しかし、当該物性を満たすために樹脂組成物中の成分を操作しなければならず、当該物性を満たすために樹脂組成物の材料及び組成物中の成分比率を調整できる範囲が制限されてしまい、他の弾力性等の物性をも担保することが困難となってしまう。また、伸び率が高いに過ぎない樹脂では、基板へ追従する能力は限界があり、貼り合わせ後の硬化時において、十分に基板に追従して隙間の発生を防止することは困難であった。また、硬化性樹脂組成物による硬化物層を有するタッチパネルに外部圧力が生じたり、環境負荷によって基板に歪みが生じたりした際に、密着性のみでは基板の剥がれを有効に防止することができないという問題もあった。
 そこで、収縮率が低く、接着強度が高く、さらに柔軟性が高い樹脂組成物が求められていた。
On the other hand, Patent Document 2 discloses a technique for preventing the above problem of peeling by using a resin composition having a high elongation rate and high adhesion. However, in order to satisfy the physical properties, the components in the resin composition must be operated, and in order to satisfy the physical properties, the range in which the resin composition material and the component ratio in the composition can be adjusted is limited, It becomes difficult to ensure other physical properties such as elasticity. Further, a resin having only a high elongation has a limited ability to follow the substrate, and it is difficult to sufficiently follow the substrate and prevent the generation of a gap during curing after bonding. In addition, when external pressure is generated on a touch panel having a cured product layer made of a curable resin composition, or when the substrate is distorted due to environmental load, peeling of the substrate cannot be effectively prevented only by adhesion. There was also a problem.
Therefore, a resin composition having a low shrinkage rate, a high adhesive strength, and a high flexibility has been demanded.
日本国特開2012-133166号公報Japanese Unexamined Patent Publication No. 2012-133166 日本国特開2014-132349号公報Japanese Unexamined Patent Publication No. 2014-132349
 本発明は、収縮率が低く、接着強度が高く、さらに柔軟性が高い樹脂硬化物層を提供することで、硬化性および密着性の良い表示体ユニット等の光学部材を得ることができ、樹脂硬化物層が基板に追従し、空隙を生じにくいタッチパネル用紫外線硬化型樹脂組成物を提供することを目的とする。 The present invention provides a cured resin layer having a low shrinkage rate, high adhesive strength, and high flexibility, whereby an optical member such as a display unit having good curability and adhesion can be obtained. It aims at providing the ultraviolet curable resin composition for touchscreens which a hardened | cured material layer tracks a board | substrate and does not produce a space | gap easily.
 本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、下記(1)~(11)に関する。
(1)少なくとも2つの光学基材を貼り合わせるために用いる、下記式(1)で表される化合物(A)を含有する紫外線硬化型樹脂組成物。
The present inventors have completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention relates to the following (1) to (11).
(1) An ultraviolet curable resin composition containing a compound (A) represented by the following formula (1), which is used for bonding at least two optical substrates.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Rは水素原子、水酸基、メチロール基又は縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。Rは縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。nは0又は1を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
(2)前記Rの前記縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基が、下記式(2A)~(2C)のいずれか
(In the formula, R 1 represents a hydrogen atom, a hydroxyl group, a methylol group, or an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group. R 2 has a condensed polycyclic hydrocarbon group (meta ) Represents an organic group not containing an acryloyl group, n represents 0 or 1. Each of a plurality of R 1 may be present independently and may be the same or different.
(2) The organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group of R 1 is any one of the following formulas (2A) to (2C):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
で表され、前記Rの前記縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基が下記(3A)~(3C)のいずれか
(Wherein, * is bonded to the carbon atom adjacent to R 1 in the formula (1), R 3 is R 3 are each independently of. Plurality of represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms And may be the same or different.)
And the organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group represented by R 2 is any one of the following (3A) to (3C):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
で表される(1)に記載の紫外線硬化型樹脂組成物。
(3)光重合性オリゴマー(C)、光重合性モノマー(D)及び光重合開始剤(E)の少なくともいずれかを含む(1)又は(2)に記載の紫外線硬化型樹脂組成物。
(4)光重合性オリゴマー(C)が、ウレタン(メタ)アクリレート、ポリイソプレン又は水添ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン又は水添ポリブタジエン骨格を有する(メタ)アクリレートからなる群から選択されるいずれか1種以上を含有する(1)又は(2)に記載の紫外線硬化型樹脂組成物。
(5)光重合性オリゴマー(C)が、ポリプロピレン/ポリブタジエン/水添ポリブタジエン/ポリイソプレン/水添ポリイソプレンからなる群から選ばれる少なくとも1種以上の骨格をもつウレタン(メタ)アクリレートである(4)に記載の紫外線硬化型樹脂組成物。
(6)光重合性モノマー(D)として、下記式(10)
(In the above formula, * is bonded to a carbon atom adjacent to R 2 in the formula (1), R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. A plurality of R 3 are each independently selected. And may be the same or different.)
The ultraviolet curable resin composition as described in (1) represented by these.
(3) The ultraviolet curable resin composition according to (1) or (2), comprising at least one of a photopolymerizable oligomer (C), a photopolymerizable monomer (D), and a photopolymerization initiator (E).
(4) The photopolymerizable oligomer (C) is selected from the group consisting of urethane (meth) acrylate, polyisoprene or (meth) acrylate having a hydrogenated polyisoprene skeleton, polybutadiene or (meth) acrylate having a hydrogenated polybutadiene skeleton. The ultraviolet curable resin composition according to (1) or (2), which contains any one or more of the above.
(5) The photopolymerizable oligomer (C) is a urethane (meth) acrylate having at least one skeleton selected from the group consisting of polypropylene / polybutadiene / hydrogenated polybutadiene / polyisoprene / hydrogenated polyisoprene (4 ) UV curable resin composition.
(6) As the photopolymerizable monomer (D), the following formula (10)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Rは水素原子、又はCHを示し、nは1~3の整数を示す)
で表される単官能アクリレートを含有する(1)~(5)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(7)前記式(10)が4-ヒドロキシブチルアクリレートである(6)に記載の紫外線硬化型樹脂組成物。
(8)液状柔軟化成分(B1)を含有し、液状柔軟化成分(B1)がヒドロキシル基含有ポリマー、液状テルペン系樹脂のいずれか一方、又はその両方を含む(1)~(7)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(9)光重合性モノマー(D)として、下記式(12)
Figure JPOXMLDOC01-appb-C000011
(式中、Xはアクリロイル基を示し、Rは炭素数10~20個のアルキル基を表す)
で表される単官能アクリレートを含有する(1)~(8)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(10)光重合性モノマー(D)として、下記式(13)
Figure JPOXMLDOC01-appb-C000012
(式中、Xはアクリロイル基を示し、Rは炭素数12~18個のアルキル基を表す)
で表される単官能アクリレートを含有する(1)~(8)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(11)(1)~(10)のいずれか一項に記載の紫外線硬化型樹脂組成物に活性エネルギー線を照射して得られる硬化物。
(12)(1)~(10)のいずれか一項に記載の紫外線硬化型樹脂組成物を用いてなるタッチパネル。
(In the formula, R 5 represents a hydrogen atom or CH 3 , and n represents an integer of 1 to 3)
The ultraviolet curable resin composition according to any one of (1) to (5), which comprises a monofunctional acrylate represented by the formula:
(7) The ultraviolet curable resin composition according to (6), wherein the formula (10) is 4-hydroxybutyl acrylate.
(8) The liquid softening component (B1) is contained, and the liquid softening component (B1) includes any one of hydroxyl group-containing polymer and liquid terpene resin, or both of them (1) to (7) The ultraviolet curable resin composition according to claim 1.
(9) As the photopolymerizable monomer (D), the following formula (12)
Figure JPOXMLDOC01-appb-C000011
(Wherein X represents an acryloyl group, and R 6 represents an alkyl group having 10 to 20 carbon atoms)
The ultraviolet curable resin composition according to any one of (1) to (8), which comprises a monofunctional acrylate represented by:
(10) As the photopolymerizable monomer (D), the following formula (13)
Figure JPOXMLDOC01-appb-C000012
(Wherein X represents an acryloyl group and R 7 represents an alkyl group having 12 to 18 carbon atoms)
The ultraviolet curable resin composition according to any one of (1) to (8), which comprises a monofunctional acrylate represented by:
(11) A cured product obtained by irradiating the ultraviolet ray curable resin composition according to any one of (1) to (10) with active energy rays.
(12) A touch panel using the ultraviolet curable resin composition according to any one of (1) to (10).
本発明の製造方法の第1の実施形態を示す工程図である。It is process drawing which shows 1st Embodiment of the manufacturing method of this invention. 本発明の製造方法の第2の実施形態を示す工程図である。It is process drawing which shows 2nd Embodiment of the manufacturing method of this invention. 本発明の製造方法の第3の実施形態を示す工程図である。It is process drawing which shows 3rd Embodiment of the manufacturing method of this invention. 本発明の製造方法の第4の実施形態を示す工程図である。It is process drawing which shows 4th Embodiment of the manufacturing method of this invention. 本発明により得られる光学部材の概略図である。It is the schematic of the optical member obtained by this invention.
 まず、本発明の紫外線硬化型樹脂組成物について説明する。なお、「光学用に使用する紫外線硬化型樹脂組成物に添加可能」とは、硬化物の透明性を、光学用に使用出来ない程度に低下させる添加物が含まれないことを意味する。尚、本明細書において「(メタ)アクリレート」とは、メタクリレート及びアクリレートのいずれか一方又は両者を意味する。「(メタ)アクリル酸」等についても同様である。また、「アクリレート」とはアクリレートのみを表し、メタクリレートは除外される。
 本発明に使用する紫外線硬化型樹脂組成物で、硬化後の厚さが200μmとなる硬化物のシートを作製したとき、該シートの、400~800nmの波長の光での好ましい平均透過率は、少なくとも90%である。
First, the ultraviolet curable resin composition of this invention is demonstrated. The phrase “can be added to an ultraviolet curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to an extent that it cannot be used for optics is not included. In the present specification, “(meth) acrylate” means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like. “Acrylate” represents only acrylate, and methacrylate is excluded.
When a cured sheet having a thickness after curing of 200 μm is prepared with the ultraviolet curable resin composition used in the present invention, a preferable average transmittance of the sheet with light having a wavelength of 400 to 800 nm is: At least 90%.
 本発明の紫外線硬化型樹脂組成物は、下記式(1)で表される化合物(A)を含有する。 The ultraviolet curable resin composition of the present invention contains a compound (A) represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、複数存在するRはそれぞれ独立して水素原子、水酸基、メチロール基又は縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。Rは縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。nは0又は1を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
 ここで、Rは縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基として、下記式(2A)~(2C)のいずれか
(In the formula, multiple R 1 s each independently represent a hydrogen atom, a hydroxyl group, a methylol group, or an organic group that does not contain a (meth) acryloyl group having a condensed polycyclic hydrocarbon group. R 2 represents a condensed polycyclic ring. An organic group not containing a (meth) acryloyl group having a hydrocarbon group, n represents 0 or 1. A plurality of R 1 s exist independently and may be the same or different. .)
Here, R 1 is any one of the following formulas (2A) to (2C) as an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
で表される有機基であることが好ましく、複数存在するRのうち1つ以上が前記式(2A)~(2C)のいずれかで表される有機基であることがより好ましい。ここで、(2C)、(2A)、(2B)の順番で耐光性が優れる。ここで、式(2A)~(2C)中Rは水素原子又は炭素数1~3の有機基であることが好ましい。特にRは下記式(4A)~(4C)のいずれかであることが好ましい。
(Wherein, * is bonded to the carbon atom adjacent to R 1 in the formula (1), R 3 is R 3 are each independently of. Plurality of represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms And may be the same or different.)
It is preferable that at least one of the plurality of R 1 is an organic group represented by any one of the formulas (2A) to (2C). Here, light resistance is excellent in the order of (2C), (2A), and (2B). Here, in the formulas (2A) to (2C), R 3 is preferably a hydrogen atom or an organic group having 1 to 3 carbon atoms. In particular, R 1 is preferably any one of the following formulas (4A) to (4C).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合する。)
 ここで、(4C)、(4A)、(4B)の順番で耐光性が優れる。
 また、Rは縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基として、下記式(3A)~(3C)のいずれか
(In the formula, * is bonded to the carbon atom adjacent to R 1 in the formula (1).)
Here, light resistance is excellent in the order of (4C), (4A), and (4B).
R 2 is an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group, and any one of the following formulas (3A) to (3C):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ここで、(3C)、(3A)、(3B)の順番で耐光性が優れる。
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
で表される有機基であることが好ましい。ここで、式(3A)~(3C)中Rは水素原子又は炭素数1~3の有機基であることが好ましい。ここで、特にRは下記式(5A)~(5C)のいずれかであることが好ましい。
Here, light resistance is excellent in the order of (3C), (3A), and (3B).
(In the above formula, * is bonded to a carbon atom adjacent to R 2 in the formula (1), R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. A plurality of R 3 are each independently selected. And may be the same or different.)
It is preferable that it is an organic group represented by these. Here, in the formulas (3A) to (3C), R 3 is preferably a hydrogen atom or an organic group having 1 to 3 carbon atoms. Here, in particular, R 2 is preferably any one of the following formulas (5A) to (5C).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(前記式中、*は前記式(1)のRに隣接する炭素原子に結合する。)
 ここで、(5C)、(5A)、(5B)の順番で耐光性が優れる。
(In the formula, * is bonded to the carbon atom adjacent to R 2 in the formula (1).)
Here, light resistance is excellent in the order of (5C), (5A), and (5B).
 ここで、上記式(1)で表される化合物は、グリセリンのエステル化物と、ペンタエリスリトールのエステル化合物が具体的に挙げられる。 Here, specific examples of the compound represented by the above formula (1) include esterified products of glycerin and ester compounds of pentaerythritol.
 グリセリンのエステル化物としては、下記式(6)で表せられる。ここで、Rの1つが前記式(7A)~(7C)であり2つが水素原子であるものを1置換体、Rの2つが前記式(7A)~(7C)であり1つが水素原子であるものを2置換体、Rの3つが前記式(7A)~(7C)であるものを3置換体とする。 The esterified product of glycerin is represented by the following formula (6). Here, one in which R 4 is the above formulas (7A) to (7C) and two are hydrogen atoms is a 1-substituent, two R 4 are the above formulas (7A) to (7C), and one is hydrogen An atom is a disubstituted product, and three of R 4 are the above formulas (7A) to (7C).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、Rは水素原子又は下記式(7A)~(7C)のいずれか Or (wherein, R 4 is a hydrogen atom or the following formula (7A) ~ (7C)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
を表す。ここで、Rと*は前記と同じである。複数存在するR3、はそれぞれ独立して存在し、同一であっても異なっていてもよい。)
 ここで、(7C)、(7A)、(7B)の順番で耐光性が優れる。
 ここで、式(6)のRは下記式(8A)~(8C)のいずれかであることが好ましい。
Represents. Here, R 3 and * are the same as described above. A plurality of R 3 and R 4 are present independently and may be the same or different. )
Here, light resistance is excellent in the order of (7C), (7A), and (7B).
Here, R 4 in the formula (6) is preferably any one of the following formulas (8A) to (8C).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 ここで、(8C)、(8A)、(8B)の順番で耐光性が優れる。
 ここで、2置換体又は3置換体であることが好ましく、特に3置換体が好ましい。さらに、本発明の紫外線硬化型樹脂組成物中には、1置換体~3置換体の混合物を含有させることができる。当該混合物とする場合には、Rのうち3つが上記式(7A)~(7C)のいずれかで表される化合物であることが好ましく、特に3置換体である式(6)に記載の化合物であることが特に好ましい。
 ここで、上記式(6)のRのうち2置換体~3置換体を取る場合、各々のRの(7A)~(7C)で表される置換基が異なる上記式(6)の化合物の混合物であることが好ましい。
Here, light resistance is excellent in the order of (8C), (8A), and (8B).
Here, a 2-substituted product or a 3-substituted product is preferable, and a 3-substituted product is particularly preferable. Further, the ultraviolet curable resin composition of the present invention may contain a mixture of 1-substituted to 3-substituted products. In the case of the mixture, it is preferable that three of R 4 are compounds represented by any one of the above formulas (7A) to (7C). Particularly preferred are compounds.
Here, when taking the 2 substituents to 3 substituents of R 4 in the formula (6), each of R 4 in (7A) - the formula the substituent represented by (7C) are different (6) A mixture of compounds is preferred.
 ペンタエリスリトールのエステル化物としては、下記式(9)で表せられる。ここで、Rの1つが前記式(7A)~(7C)であり3つが水素原子であるものを1置換体、Rの2つが前記式(7A)~(7C)であり2つが水素原子であるものを2置換体、Rの3つが前記式(7A)~(7C)であり1つが水素原子であるものを3置換体、Rの4つが前記式(7A)~(7C)であるものを4置換体とする。 The esterified product of pentaerythritol is represented by the following formula (9). Here, one in which R 4 is represented by the above formulas (7A) to (7C) and three are hydrogen atoms is a single substituent, and two of R 4 are the above formulas (7A) to (7C), and two are hydrogen. An atom is a disubstituted product, three of R 4 are the above formulas (7A) to (7C), and one is a hydrogen atom, a three substituent, and four of R 4 are the above formulas (7A) to (7C). ) Is a 4-substitution.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式中、Rは前記と同じである。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
 ここで、Rが前記式(7A)~(7C)である場合においては、同じく前記式(8A)~(8C)のいずれかであることが好ましい。
 ここで、上記式(9)のRのうち2つ以上が上記式(7A)~(7C)のいずれかであることが好ましい。さらに、本発明の紫外線硬化型樹脂組成物中には、上記式(9)でRが上記式(7A)~(7C)のいずれかで置換された数が異なる複数の化合物の混合物を含有させることができる。当該混合物とする場合には、2置換体又は3置換体であることが好ましい。
 ここで、上記式(9)のRのうち2置換体~4置換体を取る場合、各々のRの(7A)~(7C)で表される置換基が異なる上記式(9)の化合物の混合物であることが好ましい。
 特に、2置換体及び3置換体であって、各々のRの(7A)~(7C)で表される置換基が異なる上記式(9)の化合物の混合物であることが好ましい。
 また、ペンタエリスリトールのエステル化物は、グリセリンンのエステル化物と比較して、エステル結合部位が多くなるため、相溶性が向上することから、他原料との混合において好適である。
(In the formula, R 4 is the same as described above. A plurality of R 4 may be present independently and may be the same or different.)
Here, when R 4 is the formulas (7A) to (7C), it is preferably any one of the formulas (8A) to (8C).
Here, it is preferable that two or more of R 4 in the formula (9) are any one of the formulas (7A) to (7C). Further, the ultraviolet curable resin composition of the present invention contains a mixture of a plurality of compounds having different numbers in which R 4 is substituted by any one of the above formulas (7A) to (7C) in the above formula (9). Can be made. When it is set as the said mixture, it is preferable that it is a 2 substituted body or a 3 substituted body.
Here, when taking the 2 substituents 1-4 substituents of R 4 in the formula (9), each of R 4 in (7A) - the formula the substituent represented by (7C) are different (9) A mixture of compounds is preferred.
In particular, it is preferably a mixture of compounds of the above formula (9), which are disubstituted and trisubstituted, each having a different substituent represented by (7A) to (7C) of R 4 .
In addition, since the esterified product of pentaerythritol has more ester bond sites than the esterified product of glycerin and compatibility is improved, it is suitable for mixing with other raw materials.
 特に好適な化合物としては、下記の化合物が挙げられる。 Particularly preferred compounds include the following compounds.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 市販品としては、KE-311、KE-359、PE-590(荒川化学工業社製)等として入手することができる。 Commercially available products can be obtained as KE-311, KE-359, PE-590 (Arakawa Chemical Industries).
 上記式(1)で表される化合物の軟化点としては、80~150℃であることが好ましく、90~105℃であることがより好ましい。このような軟化点にあることで、樹脂硬化物層の弾力性を向上させることに寄与することができる。また、圧力・温度変化に応じて基板にすぐに追従して復元することができる。
 酸価としては、2~10であることが好ましい。水酸基価としては、38~47であることが好ましい。このような範囲にあることで、樹脂成分の分解物の発生を効果的に抑制することができる。
 APHAとしては、150以下であることが好ましく、50以下であることがより好ましい。このような好適な範囲にあることで、タッチパネルの視認性を顕著に向上させることが可能となる。
The softening point of the compound represented by the above formula (1) is preferably 80 to 150 ° C, more preferably 90 to 105 ° C. By being in such a softening point, it can contribute to improving the elasticity of a resin cured material layer. Further, it is possible to immediately follow the substrate according to the pressure / temperature change and restore it.
The acid value is preferably 2 to 10. The hydroxyl value is preferably 38 to 47. By being in such a range, generation | occurrence | production of the decomposition product of a resin component can be suppressed effectively.
APHA is preferably 150 or less, and more preferably 50 or less. By being in such a suitable range, the visibility of the touch panel can be remarkably improved.
 本発明のタッチパネル用紫外線硬化型樹脂組成物は、少なくとも2つの光学基材を貼り合わせるために用いる樹脂組成物であって、柔軟化成分(B)として、液状柔軟化成分(B1)を含有することができる。液状柔軟化成分(B1)は室温(25℃)において、液状であれば特に限定することなく使用することができる。液状柔軟化成分(B1)は紫外線によって架橋することはなく、光重合性オリゴマーないし光重合性モノマーの架橋の間に介在して存在することで、柔軟性を付与するとともに収縮率を低減する機能を有している。
 このような液状柔軟化成分(B1)としては、組成物中に相溶するポリマー、オリゴマー、フタル酸エステル類、リン酸エステル類、グリコールエステル類、クエン酸エステル類、脂肪族二塩基酸エステル類、脂肪酸エステル類、エポキシ系可塑剤、ヒマシ油類、テルペン系樹脂、水素添加テルペン系樹脂、および液状テルペン等が挙げられる。上記オリゴマー、ポリマーの例としては、ポリイソプレン骨格、水添ポリイソプレン骨格、ポリブタジエン骨格、水添ポリブタジエン骨格又はキシレン骨格を有するオリゴマー又はポリマー及びそのエステル化物、アジピン酸エステル系オリゴマー、ポリブテン等を例示することができる。透明性の観点から、水素添加テルペン系樹脂、水添ポリイソプレン、水添ポリブタジエン、ポリブテン、液状テルペンが好ましい。さらに、接着強度とその他材料との相溶性の観点から、ヒドロキシル基を末端若しくは側鎖に含有する水素添加テルペン系樹脂、ヒドロキシル基を末端若しくは側鎖に含有する水添ポリイソプレン、ヒドロキシル基を末端若しくは側鎖に含有する水添ポリブタジエン等のヒドロキシル基含有ポリマー、液状テルペン樹脂が特に好ましい。
 液状柔軟化成分(B1)としては、20℃での液体の比重が0.93以下であることが好ましく、1Hzでの誘電率が3.5以下であることが好ましく、また、ヨウ素価が400以下であることが好ましい。
 また、液状柔軟化成分(B1)としては、大気圧下、25℃で、コーンプレートレオメーターで0.01~100Pa・sの粘度であることが好ましい。
The ultraviolet curable resin composition for a touch panel of the present invention is a resin composition used for bonding at least two optical substrates, and contains a liquid softening component (B1) as a softening component (B). be able to. The liquid softening component (B1) can be used without particular limitation as long as it is liquid at room temperature (25 ° C.). The liquid softening component (B1) is not cross-linked by ultraviolet rays, and is present between the cross-links of the photopolymerizable oligomer or photopolymerizable monomer, thereby providing flexibility and reducing the shrinkage rate. have.
Examples of such a liquid softening component (B1) include polymers, oligomers, phthalates, phosphates, glycols, citrates, and aliphatic dibasic esters that are compatible in the composition. , Fatty acid esters, epoxy plasticizers, castor oils, terpene resins, hydrogenated terpene resins, liquid terpenes, and the like. Examples of the oligomer and polymer include polyisoprene skeleton, hydrogenated polyisoprene skeleton, polybutadiene skeleton, oligomer or polymer having hydrogenated polybutadiene skeleton or xylene skeleton and esterified product thereof, adipic acid ester oligomer, polybutene, and the like. be able to. From the viewpoint of transparency, hydrogenated terpene resins, hydrogenated polyisoprene, hydrogenated polybutadiene, polybutene, and liquid terpenes are preferable. Furthermore, from the viewpoint of adhesive strength and compatibility with other materials, hydrogenated terpene resins containing hydroxyl groups at the ends or side chains, hydrogenated polyisoprenes containing hydroxyl groups at the ends or side chains, hydroxyl groups terminated Alternatively, hydroxyl group-containing polymers such as hydrogenated polybutadiene contained in the side chain, and liquid terpene resins are particularly preferable.
As the liquid softening component (B1), the specific gravity of the liquid at 20 ° C. is preferably 0.93 or less, the dielectric constant at 1 Hz is preferably 3.5 or less, and the iodine value is 400. The following is preferable.
The liquid softening component (B1) preferably has a viscosity of 0.01 to 100 Pa · s with a cone plate rheometer at 25 ° C. under atmospheric pressure.
 本発明のタッチパネル用紫外線硬化型樹脂組成物は、柔軟化成分(B)として固体柔軟化成分(B2)を含有することができる。固体柔軟化成分(B2)は室温(25℃)において固体であれば特に限定なく使用することができる。固体柔軟化成分(B2)は紫外線によって架橋することはなく、光重合性オリゴマーないし光重合性モノマーの架橋の間に介在して存在し、硬化物層表面に配列することで硬化物表面にべたつきを付与することができ、密着性向上機能を高める効果を奏する。
 このような固体柔軟化成分(B2)としては、組成物中に相溶するポリマー、オリゴマー、フタル酸エステル類、リン酸エステル類、グリコールエステル類、クエン酸エステル類、脂肪族二塩基酸エステル類、脂肪酸エステル類、エポキシ系可塑剤、ヒマシ油類、テルペン系樹脂、水素添加テルペン系樹脂、および液状テルペン等が挙げられる。上記オリゴマー、ポリマーの例としては、ポリイソプレン骨格、水添ポリイソプレン骨格、ポリブタジエン骨格、水添ポリブタジエン骨格又はキシレン骨格を有するオリゴマー又はポリマー及びそのエステル化物、アジピン酸エステル系オリゴマー、ポリブテン等を例示することができる。透明性の観点から、水素添加テルペン系樹脂、水添ポリイソプレン、水添ポリブタジエン、ポリブテン、液状テルペンが好ましい。さらに、接着強度とその他材料との相溶性の観点から、ヒドロキシル基を末端若しくは側鎖に含有する水素添加テルペン系樹脂、ヒドロキシル基を末端若しくは側鎖に含有する水添ポリイソプレン、ヒドロキシル基を末端若しくは側鎖に含有する水添ポリブタジエン等のヒドロキシル基含有ポリマー、液状テルペン樹脂が特に好ましい。
 固体柔軟化成分(B2)としては、軟化点が60℃以上であることが好ましく、70℃以上であることがより好ましい。
The ultraviolet curable resin composition for touch panels of this invention can contain a solid softening component (B2) as a softening component (B). The solid softening component (B2) can be used without particular limitation as long as it is solid at room temperature (25 ° C.). The solid softening component (B2) is not cross-linked by ultraviolet rays, is present between the cross-links of the photopolymerizable oligomer or photopolymerizable monomer, and sticks to the hardened product surface by arranging on the hardened product layer surface. Can be provided, and the effect of improving the adhesion improving function is exhibited.
Examples of such a solid softening component (B2) include polymers, oligomers, phthalates, phosphate esters, glycol esters, citrate esters, and aliphatic dibasic esters that are compatible in the composition. , Fatty acid esters, epoxy plasticizers, castor oils, terpene resins, hydrogenated terpene resins, liquid terpenes, and the like. Examples of the oligomer and polymer include polyisoprene skeleton, hydrogenated polyisoprene skeleton, polybutadiene skeleton, oligomer or polymer having hydrogenated polybutadiene skeleton or xylene skeleton and esterified product thereof, adipic acid ester oligomer, polybutene, and the like. be able to. From the viewpoint of transparency, hydrogenated terpene resins, hydrogenated polyisoprene, hydrogenated polybutadiene, polybutene, and liquid terpenes are preferable. Furthermore, from the viewpoint of adhesive strength and compatibility with other materials, hydrogenated terpene resins containing hydroxyl groups at the ends or side chains, hydrogenated polyisoprenes containing hydroxyl groups at the ends or side chains, hydroxyl groups terminated Alternatively, hydroxyl group-containing polymers such as hydrogenated polybutadiene contained in the side chain, and liquid terpene resins are particularly preferable.
As a solid softening component (B2), it is preferable that a softening point is 60 degreeC or more, and it is more preferable that it is 70 degreeC or more.
 本願発明においては、上記液状柔軟化成分(B1)と上記(固体柔軟化成分(B2)及び上記式(1)記載の化合物の総量)が一定の質量比であることが好ましい。当該比率は、通常50.5:49.5~99.9:0.1である。
 また、固体柔軟化成分(B2)の軟化点は、一般に固体柔軟化成分の分子量と相関があり、60℃以上の軟化点を示す固体柔軟化成分(B2)のうち、60~115℃の軟化点を示す固体柔軟化成分(B2)を使用する場合には、液状柔軟化成分(B1)と(固体柔軟化成分(B2)及び上記式(1)記載の化合物の総量)の質量比を好ましくは94.9~50.5:49.5~5.1、より好ましくは89.9~50.5:49.5~10.1という範囲とする。115℃~150℃の軟化点を示す固体柔軟化成分(B2)を使用する場合には、液状柔軟化成分(B1)と(固体柔軟化成分(B2)及び上記式(1)記載の化合物の総量)の質量比を好ましくは99.9~55.5:44.5~0.1、より好ましくは99.9~60.5:39.5~0.1という範囲とする。
 本発明では液状柔軟化成分(B1)の方が、固体柔軟化成分(B2)より質量比が大きいことで、仮硬化ないし本硬化での樹脂硬化物層の弾力性を顕著に向上させることができる。そして、このように、高弾力性を有することから、基板に圧力・温度変化や、基板と樹脂組成物の収縮率差により生じる応力がかかった際にも基板にすぐに追従して復元することができる。また、貼り合わせ後の硬化時においても、樹脂硬化物層が基板に追従していくため、剥離が生じにくいことから、歩留りを向上させることが可能となる。
In this invention, it is preferable that the said liquid softening component (B1) and said (solid softening component (B2) and the total amount of the compound of the said Formula (1)) are constant mass ratios. The ratio is usually 50.5: 49.5 to 99.9: 0.1.
The softening point of the solid softening component (B2) is generally correlated with the molecular weight of the solid softening component, and the softening point of the solid softening component (B2) showing a softening point of 60 ° C or higher is 60 to 115 ° C. In the case of using the solid softening component (B2) showing a point, the mass ratio of the liquid softening component (B1) and (the total amount of the compound described in the formula (1) and the solid softening component (B2)) is preferably Is in the range of 94.9 to 50.5: 49.5 to 5.1, more preferably 89.9 to 50.5: 49.5 to 10.1. When the solid softening component (B2) having a softening point of 115 ° C. to 150 ° C. is used, the liquid softening component (B1) and (the solid softening component (B2) and the compound of the formula (1) are used. The mass ratio of the total amount is preferably in the range of 99.9 to 55.5: 44.5 to 0.1, more preferably 99.9 to 60.5: 39.5 to 0.1.
In the present invention, the liquid softening component (B1) has a larger mass ratio than the solid softening component (B2), so that the elasticity of the cured resin layer in temporary curing or main curing can be remarkably improved. it can. And since it has high elasticity in this way, even when stress generated by pressure / temperature change or contraction rate difference between the substrate and the resin composition is applied to the substrate, it can immediately follow and restore to the substrate Can do. In addition, since the cured resin layer follows the substrate even after curing after bonding, it is difficult for separation to occur, so that the yield can be improved.
 柔軟化成分の紫外線硬化型樹脂組成物中における重量割合は、(固体柔軟化成分(B2)及び上記式(1)記載の化合物の総量)は、通常5~40重量%、好ましくは10~35重量%である。液状柔軟化成分(B1)は、通常10~70重量%、好ましくは20~60重量%である。 The weight ratio of the softening component in the ultraviolet curable resin composition (the total amount of the solid softening component (B2) and the compound represented by the formula (1)) is usually 5 to 40% by weight, preferably 10 to 35%. % By weight. The liquid softening component (B1) is usually 10 to 70% by weight, preferably 20 to 60% by weight.
 本願発明の紫外線硬化型樹脂組成物は、光重合性オリゴマー(C)を含有することができる。本発明の紫外線硬化型樹脂組成物における光重合性オリゴマー(C)としては、特に限定されないが、ウレタン(メタ)アクリレート、ポリイソプレン又は水添ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン又は水添ポリブタジエン骨格を有する(メタ)アクリレートからなる群から選択されるいずれかを使用することが好ましい。中でも、接着強度の観点からウレタン(メタ)アクリレートが好ましく、さらに、耐湿性の観点から、ポリブタジエン/水添ポリブタジエン/ポリイソプレン/水添ポリイソプレンからなる群から選ばれる少なくとも1種以上の骨格をもつウレタン(メタ)アクリレートがより好ましい。 The ultraviolet curable resin composition of the present invention can contain a photopolymerizable oligomer (C). Although it does not specifically limit as a photopolymerizable oligomer (C) in the ultraviolet curable resin composition of this invention, The (meth) acrylate, polybutadiene, or hydrogenation which has urethane (meth) acrylate, polyisoprene, or hydrogenated polyisoprene frame | skeleton. It is preferable to use one selected from the group consisting of (meth) acrylates having a polybutadiene skeleton. Among them, urethane (meth) acrylate is preferable from the viewpoint of adhesive strength, and has at least one skeleton selected from the group consisting of polybutadiene / hydrogenated polybutadiene / polyisoprene / hydrogenated polyisoprene from the viewpoint of moisture resistance. Urethane (meth) acrylate is more preferable.
 上記ウレタン(メタ)アクリレートは多価アルコール、ポリイソシアネート及びヒドロキシル基含有(メタ)アクリレートを反応させることによって得られる。 The urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
 多価アルコールとしては、例えば、ポリブタジエングリコール、水添ポリブタジエングリコール、ポリイソプレングリコール、水添ポリイソプレングリコール、ネオペンチルグリコール、3-メチル-1、5-ペンタンジオール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1、6-ヘキサンジオール等の炭素数1~10のアルキレングリコール、トリメチロールプロパン、ペンタエリスリトール等のトリオール、トリシクロデカンジメチロール、ビス-〔ヒドロキシメチル〕-シクロヘキサン等の環状骨格を有するアルコール等;及びこれら多価アルコールと多塩基酸(例えば、コハク酸、フタル酸、ヘキサヒドロ無水フタル酸、テレフタル酸、アジピン酸、アゼライン酸、テトラヒドロ無水フタル酸等)との反応によって得られるポリエステルポリオール、多価アルコールとε-カプロラクトンとの反応によって得られるカプロラクトンアルコール、ポリカーボネートポリオール(例えば1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートジオール等)又はポリエーテルポリオール(例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイド変性ビスフェノールA等)等が挙げられる。接着強度と耐湿性の観点から、上記多価アルコールとしては、プロピレングリコール、ポリブタジエングリコール、水添ポリブタジエングリコール、ポリイソプレングリコール、水添ポリイソプレングリコールが好ましく、透明性と柔軟性の観点から重量平均分子量が2000以上のプロピレングリコール、水添ポリブタジエングリコール、水添ポリイソプレングリコールが特に好ましい。耐熱着色性等の変色性、相溶性の観点から水添ポリブタジエングリコールが好ましい。このときの重量平均分子量の上限は特に限定されないが、10000以下が好ましく、5000以下がより好ましい。また、必要に応じて二種以上の多価アルコールを併用してもよい。 Examples of the polyhydric alcohol include polybutadiene glycol, hydrogenated polybutadiene glycol, polyisoprene glycol, hydrogenated polyisoprene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4 A cyclic skeleton such as butanediol, alkylene glycol having 1 to 10 carbon atoms such as 1,6-hexanediol, triol such as trimethylolpropane and pentaerythritol, tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, etc. Alcohols having; and these polyhydric alcohols and polybasic acids (for example, succinic acid, phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride, etc.) Polyester polyol obtained by reaction, caprolactone alcohol obtained by reaction of polyhydric alcohol and ε-caprolactone, polycarbonate polyol (for example, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate, etc.) or polyether polyol (For example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide-modified bisphenol A, etc.) and the like. From the viewpoint of adhesive strength and moisture resistance, the polyhydric alcohol is preferably propylene glycol, polybutadiene glycol, hydrogenated polybutadiene glycol, polyisoprene glycol, or hydrogenated polyisoprene glycol, and weight average molecular weight from the viewpoint of transparency and flexibility. Is particularly preferably propylene glycol having a viscosity of 2000 or more, hydrogenated polybutadiene glycol, or hydrogenated polyisoprene glycol. Hydrogenated polybutadiene glycol is preferred from the viewpoints of discoloration such as heat-resistant coloring and compatibility. The upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less. Moreover, you may use together 2 or more types of polyhydric alcohol as needed.
 有機ポリイソシアネートとしては、例えばイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート又はジシクロペンタニルイソシアネート等が挙げられる。中でも、強靭性の観点からイソホロンジイソシアネートが好ましい。 Examples of the organic polyisocyanate include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and dicyclopentanyl isocyanate. Among these, isophorone diisocyanate is preferable from the viewpoint of toughness.
 又、ヒドロキシル基含有(メタ)アクリレートとしては、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等のヒドロキシC2~C4アルキル(メタ)アクリレート、ジメチロールシクロヘキシルモノ(メタ)アクリレート、ヒドロキシカプロラクトン(メタ)アクリレート、ヒドロキシル基末端ポリアルキレングリコール(メタ)アクリレート等を使用することができる。 Examples of hydroxyl group-containing (meth) acrylates include hydroxy C2-C4 alkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, dimethylol cyclohexyl mono ( A (meth) acrylate, a hydroxycaprolactone (meth) acrylate, a hydroxyl group terminal polyalkylene glycol (meth) acrylate, etc. can be used.
 上記ウレタン(メタ)アクリレートを得るための反応は、例えば、以下のようにして行う。即ち、多価アルコールにその水酸基1当量あたり有機ポリイソシアネートをそのイソシアネート基が好ましくは1.1~2.0当量、さらに好ましくは1.1~1.5当量になるように混合し、反応温度を好ましくは70~90℃で反応させ、ウレタンオリゴマーを合成する。次いで、ウレタンオリゴマーのイソシアネート基1当量あたり、ヒドロキシ(メタ)アクリレート化合物をその水酸基が好ましくは1~1.5当量となるように混合し、70~90℃で反応させて目的とするウレタン(メタ)アクリレートを得ることができる。 The reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer. Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained.
 上記ウレタン(メタ)アクリレートの重量平均分子量としては7000~100000程度が好ましく、10000~60000がより好ましい。重量平均分子量が7000以上であれば収縮がより小さくなり、重量平均分子量が100000以下であれば硬化性がより向上する。 The weight average molecular weight of the urethane (meth) acrylate is preferably about 7,000 to 100,000, and more preferably 10,000 to 60,000. When the weight average molecular weight is 7000 or more, the shrinkage becomes smaller, and when the weight average molecular weight is 100,000 or less, the curability is further improved.
 本発明の紫外線硬化型樹脂組成物においては、ウレタン(メタ)アクリレートは、1種または2種以上を任意の割合で混合して使用することができる。ウレタン(メタ)アクリレートの本発明の紫外線硬化型樹脂組成物中における重量割合は通常5~90重量%、好ましくは10~50重量%である。 In the ultraviolet curable resin composition of the present invention, urethane (meth) acrylates can be used alone or in admixture of two or more. The weight ratio of urethane (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight.
 上記ポリイソプレン骨格を有する(メタ)アクリレートは、ポリイソプレン分子の末端又は側鎖に(メタ)アクリロイル基を有する。ポリイソプレン骨格を有する(メタ)アクリレートはUC-203、UC102、UC-1(クラレ社製)として入手することができる。ポリイソプレン骨格を有する(メタ)アクリレートはポリスチレン換算の数平均分子量が1000~50000が好ましく、25000~45000程度がより好ましい。
 ポリイソプレン骨格を有する(メタ)アクリレートの本発明の紫外線硬化型樹脂組成物中における重量割合は通常5~90重量%、好ましくは10~50重量%である。
The (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule. (Meth) acrylates having a polyisoprene skeleton are available as UC-203, UC102, and UC-1 (manufactured by Kuraray Co., Ltd.). The (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
The weight ratio of the (meth) acrylate having a polyisoprene skeleton in the ultraviolet curable resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight.
 本発明の紫外線硬化型樹脂組成物においては、光重合性モノマー(D)を含有する。光重合性モノマー(D)としては、好適には分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートを使用することができる。ここで、光重合性モノマー(D)とは、ウレタン(メタ)アクリレート、ポリイソプレン又は水添ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン又は水添ポリブタジエン骨格を有する(メタ)アクリレートを除いた(メタ)アクリレートを示す。 The ultraviolet curable resin composition of the present invention contains a photopolymerizable monomer (D). As the photopolymerizable monomer (D), a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used. Here, the photopolymerizable monomer (D) excludes (meth) acrylate having urethane (meth) acrylate, polyisoprene or hydrogenated polyisoprene skeleton, (meth) acrylate having polybutadiene or hydrogenated polybutadiene skeleton ( (Meth) acrylate is shown.
 本発明の紫外線硬化型樹脂組成物に含有される光重合性モノマー(D)としては、下記式(10) As the photopolymerizable monomer (D) contained in the ultraviolet curable resin composition of the present invention, the following formula (10)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、Rは水素原子、又はCHを示し、nは1~3の整数を示す)
で表される単官能アクリレートが好適に使用できる。
 該紫外線硬化型樹脂組成物の組成割合としては、好適には上記式(10)で表される単官能アクリレートが1~20重量%、光重合性オリゴマー(C)が5~90重量%、式(10)以外の光重合性モノマー(D)が5~90重量%、光重合開始剤(E)が0.1~5重量%、その他の成分が残部である。
(In the formula, R 5 represents a hydrogen atom or CH 3 , and n represents an integer of 1 to 3)
The monofunctional acrylate represented by these can be used conveniently.
The composition ratio of the ultraviolet curable resin composition is preferably 1 to 20% by weight of the monofunctional acrylate represented by the above formula (10), 5 to 90% by weight of the photopolymerizable oligomer (C), The photopolymerizable monomer (D) other than (10) is 5 to 90% by weight, the photopolymerization initiator (E) is 0.1 to 5% by weight, and the other components are the balance.
 本発明の紫外線硬化型樹脂組成物における前記式(10)で表される単官能アクリレートとしては、4-ヒドロキシブチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレート等が挙げられ、必要に応じて二種以上を併用しても良い。ここで、前記式(10)において、nが2以下の時(特にはnが1以下の時)は、Rがメチル基であることが好ましい。また、nが3以上の時においては、Rは水素原子であることが好ましい。また、前記式(10)において総炭素数2以上が、揮発性が少なく、白濁が少ない樹脂組成物を得ることができるため、好ましい。中でも、接着強度と耐白化性の観点から、下記式(11) Examples of the monofunctional acrylate represented by the formula (10) in the ultraviolet curable resin composition of the present invention include 4-hydroxybutyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxyethyl acrylate, and the like. 2 or more may be used in combination as required. Here, in the formula (10), when n is 2 or less (particularly when n is 1 or less), R 5 is preferably a methyl group. When n is 3 or more, R 5 is preferably a hydrogen atom. In the formula (10), a total carbon number of 2 or more is preferable because a resin composition with low volatility and low cloudiness can be obtained. Among these, from the viewpoint of adhesive strength and whitening resistance, the following formula (11)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、nは2~4の整数を示す)
で表される単官能アクリレートが好ましい。前記式(11)で表される単官能アクリレートとしては、4-ヒドロキシブチルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレートなどが挙げられる。さらに、低揮発性の観点から4-ヒドロキシブチルアクリレートが特に好ましい。メタアクリレート系樹脂を使用すると硬化速度が遅くなる傾向があり、実際に樹脂組成物を使用する際硬化に時間がかかってしまうことがある。
 ここで、前記式(10)で表される化合物においては、アクリロイル基を除く総炭素数をMC、OH基の数をMOHとした時に、炭素の分岐鎖の個数をMBとした際に、MOH/(MC+MB)が0.3以下が好ましく、特には0.28以下であることが好ましく、0.25以下であることが特に好ましい。このような範囲にあることで、一定程度高分子量となることから揮発、白濁を抑えるものであり、かつ水酸基による白化防止を防ぐことに有利に働くことを実現することができる。当該条件を満たす前記式(10)で表される単官能アクリレートを、以下、低揮発・耐白化性アクリレートと称す。
(In the formula, n represents an integer of 2 to 4)
The monofunctional acrylate represented by these is preferable. Examples of the monofunctional acrylate represented by the formula (11) include 4-hydroxybutyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxyethyl acrylate and the like. Furthermore, 4-hydroxybutyl acrylate is particularly preferable from the viewpoint of low volatility. When a methacrylate resin is used, the curing rate tends to be slow, and when the resin composition is actually used, it may take time to cure.
Here, in the compound represented by the formula (10), when the total number of carbon atoms excluding the acryloyl group is MC, the number of OH groups is MOH, and the number of carbon branch chains is MB, the MOH / (MC + MB) is preferably 0.3 or less, particularly preferably 0.28 or less, and particularly preferably 0.25 or less. By being in such a range, since it becomes high molecular weight to a certain extent, it can suppress volatilization and white turbidity, and it can be realized that it works advantageously to prevent whitening prevention by hydroxyl groups. Hereinafter, the monofunctional acrylate represented by the formula (10) that satisfies the condition is referred to as a low volatility / whitening-resistant acrylate.
 前記式(10)で表される光重合性モノマーの含有量は、1~20重量%が好ましく、2~10重量%がより好ましく、さらに5.5~8重量%が特に好ましい。式(10)成分の含有量が1%以上であれば、耐白化性がより向上する。一方、20重量%以下であると、貼り合わせ時に気泡が入り難くなったり、その他の成分と相溶性が向上し液が白濁することがない。
 尚、本発明においては、紫外線硬化型樹脂組成物中に、水酸基を有するメタクリレートを含有することは、一部硬化速度の低下や耐白化性等の物性に悪影響を与えることがある。水酸基を有するメタクリレートを含有する場合、10重量%以下が好ましく、5重量%以下が特に好ましい。
The content of the photopolymerizable monomer represented by the formula (10) is preferably 1 to 20% by weight, more preferably 2 to 10% by weight, and particularly preferably 5.5 to 8% by weight. When the content of the formula (10) component is 1% or more, the whitening resistance is further improved. On the other hand, when it is 20% by weight or less, bubbles do not easily enter during bonding, and compatibility with other components is improved and the liquid does not become cloudy.
In the present invention, containing a methacrylate having a hydroxyl group in the ultraviolet curable resin composition may adversely affect physical properties such as a decrease in the curing rate and whitening resistance. When the methacrylate having a hydroxyl group is contained, the content is preferably 10% by weight or less, particularly preferably 5% by weight or less.
 前記式(10)で表される光重合性モノマー以外の分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートとしては、具体的にはイソオクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、セチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート等の炭素数5~25のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルホリン、フェニルグリシジル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、1-アダマンチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、1-アダマンチルメタクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート、ジシクロペンタジエンオキシエチル(メタ)アクリレート等の環状骨格を有する(メタ)アクリレート、水酸基を有する炭素数5~7のアルキル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート、エチレンオキシド変性フェノキシ化リン酸(メタ)アクリレート、エチレンオキシド変性ブトキシ化リン酸(メタ)アクリレート及びエチレンオキシド変性オクチルオキシ化リン酸(メタ)アクリレート、カプロラクトン変性テトラフルフリル(メタ)アクリレート等を挙げることができる。 Specific examples of the (meth) acrylate having one (meth) acryloyl group in the molecule other than the photopolymerizable monomer represented by the formula (10) include isooctyl (meth) acrylate and isoamyl (meth) acrylate. , Lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) acrylate, tridecyl (meth) acrylate, etc. 25 alkyl (meth) acrylates, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl Acrylate, dicyclopentenyloxyethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 1-adamantyl acrylate, 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 1-adamantyl methacrylate, polypropylene oxide modified nonylphenyl (meth) acrylate, (meth) acrylate having a cyclic skeleton such as dicyclopentadieneoxyethyl (meth) acrylate, alkyl (meth) acrylate having 5 to 7 carbon atoms having a hydroxyl group, Polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polypropylene oxide modified nonylphenyl (meth) acrylate, etc. Alkylene glycol (meth) acrylate, ethylene oxide modified phenoxylated phosphoric acid (meth) acrylate, ethylene oxide modified butoxylated phosphoric acid (meth) acrylate and ethylene oxide modified octyloxylated phosphoric acid (meth) acrylate, caprolactone modified tetrafurfuryl (meth) acrylate Etc.
 中でも、柔軟性と反応性の観点から、下記式(12) Above all, from the viewpoint of flexibility and reactivity, the following formula (12)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、Xはアクリロイル基を示し、Rは炭素数8~20個(好適には10~20個)のアルキル基を表す)
で表される単官能アクリレートが好ましく、さらに接着強度の観点から下記式(13)
(In the formula, X represents an acryloyl group, and R 6 represents an alkyl group having 8 to 20 carbon atoms (preferably 10 to 20 carbon atoms)).
A monofunctional acrylate represented by the following formula (13) is preferred from the viewpoint of adhesive strength:
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、Xはアクリロイル基を示し、R7 は炭素数12~18個のアルキル基を表す)
で表される単官能アクリレートがより好ましい。中でも、低揮発性と反応性、及び柔軟性の観点から、イソステアリルアクリレートがさらに好ましい。
 ここで、樹脂組成物自体の白濁を回避して透明性を確保しつつ、相溶性を向上させる観点から、上記式(12)のRのアルキル基の数をMRとし、前記式(10)で表される化合物においては、アクリロイル基を除く総炭素数をMC、炭素の分岐鎖の個数をMBとした際に一定の比率を示すことが好ましい。具体的には、MR/(MC+MB)(以下、特殊比率と称す。)が、5.5以下であるような両化合物を含有する樹脂組成物であることが好ましく、5以下であることが特に好ましい。また、耐白化性も特に優れたものにする観点から、上記低揮発・耐白化性アクリレートを含有しつつ、上記特殊比率が5.5以下であるような両化合物を含有する樹脂組成物であることが好ましく、5以下であることが特に好ましい。
(Wherein X represents an acryloyl group and R 7 represents an alkyl group having 12 to 18 carbon atoms)
The monofunctional acrylate represented by these is more preferable. Among these, isostearyl acrylate is more preferable from the viewpoints of low volatility, reactivity, and flexibility.
Here, from the viewpoint of improving the compatibility while avoiding white turbidity of the resin composition itself and improving the compatibility, the number of R 6 alkyl groups in the above formula (12) is defined as MR, and the formula (10). In the compound represented by the formula (1), it is preferable that a certain ratio is exhibited when the total number of carbon atoms excluding the acryloyl group is MC and the number of branched carbon chains is MB. Specifically, it is preferably a resin composition containing both compounds such that MR / (MC + MB) (hereinafter referred to as a special ratio) is 5.5 or less, and particularly preferably 5 or less. preferable. Further, from the viewpoint of making the whitening resistance particularly excellent, the resin composition contains both compounds having the low volatility / whitening resistance acrylate and the special ratio of 5.5 or less. It is preferably 5 or less.
 本発明の組成物には、本発明の特性を損なわない範囲で(分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレート以外の(メタ)アクリレート)を含有することができる。例えば、トリシクロデカンジメチロールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、アルキレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート等のトリメチロールC2~C10アルカントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート等のトリメチロールC2~C10アルカンポリアルコキシトリ(メタ)アクリレート、トリス[(メタ)アクロイルオキシエチル]イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート等のアルキレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
 本発明においては、併用する場合は、硬化収縮を抑えるために、1又は2官能の(メタ)アクリレートを使用することが好ましい。
The composition of the present invention can contain (a (meth) acrylate other than a (meth) acrylate having one (meth) acryloyl group in the molecule) as long as the characteristics of the present invention are not impaired. For example, tricyclodecane dimethylol di (meth) acrylate, dioxane glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, alkylene oxide modified bisphenol A type di (meth) acrylate Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate Tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, trimethylolpropane polypropoxytri (me ) Acrylate, trimethylolpropane polyethoxypolypropoxy tri (meth) acrylate, etc. trimethylol C2-C10 alkane polyalkoxy tri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, pentaerythritol tri (meth) Alkylene oxide modified trimethylolpropane tri (meth) acrylate such as acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, pentaerythritol polyethoxytetra (meth) acrylate, penta Erythritol polypropoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrime Trimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
In this invention, when using together, in order to suppress cure shrinkage, it is preferable to use mono- or bifunctional (meth) acrylate.
 本発明の紫外線硬化型樹脂組成物においては、これら(メタ)アクリレートモノマー成分は、1種または2種以上を任意の割合で混合して使用することができる。上記式(1)以外の光重合性モノマー(D)の本発明の光硬化型透明樹脂組成物中における重量割合は通常5~90重量%、好ましくは10~50重量%である。5重量%より少ないと硬化性が乏しくなり、90重量%より多いと収縮が大きくなることがある。 In the ultraviolet curable resin composition of the present invention, these (meth) acrylate monomer components can be used alone or in admixture of two or more at any ratio. The weight ratio of the photopolymerizable monomer (D) other than the above formula (1) in the photocurable transparent resin composition of the present invention is usually 5 to 90% by weight, preferably 10 to 50% by weight. If it is less than 5% by weight, the curability may be poor, and if it is more than 90% by weight, shrinkage may increase.
 また、本発明においては、上記式(10)成分:上記式(12)成分の比率(重量比)は1:2~1:25の範囲が好ましく、1:3~1:15の範囲が特に好ましい。 In the present invention, the ratio (weight ratio) of the component of formula (10): component of formula (12) is preferably in the range of 1: 2 to 1:25, particularly in the range of 1: 3 to 1:15. preferable.
 本発明の紫外線硬化型樹脂組成物には、本発明の特性を損なわない範囲でエポキシ(メタ)アクリレートを使用することができる。エポキシ(メタ)アクリレートは、硬化性の向上や硬化物の硬度や硬化速度を向上させる機能がある。また、エポキシ(メタ)アクリレートとしては、グリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を反応させることにより得られたものであればいずれも使用できるが、好ましく使用されるエポキシ(メタ)アクリレートを得るためのグリシジルエーテル型エポキシ化合物としては、ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、へキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等を挙げることができる。 In the ultraviolet curable resin composition of the present invention, epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired. Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate. Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct. Diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
 エポキシ(メタ)アクリレートは、これらグリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を、下記のような条件で反応させることにより得られる。 Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
 グリシジルエーテル型エポキシ化合物のエポキシ基1当量に対して、(メタ)アクリル酸を好ましくは0.9~1.5モル、より好ましくは0.95~1.1モルの比率で反応させる。反応温度は80~120℃が好ましく、反応時間は10~35時間程度である。反応を促進させるために、例えばトリフェニルフォスフィン、TAP、トリエタノールアミン、テトラエチルアンモニウムクロライド等の触媒を使用するのが好ましい。又、反応中、重合を防止するために重合禁止剤として、例えば、パラメトキシフェノール、メチルハイドロキノン等を使用することもできる。 (Meth) acrylic acid is preferably reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound. The reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours. In order to accelerate the reaction, it is preferable to use a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride. Further, in order to prevent polymerization during the reaction, for example, paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
 本発明において好適に使用することができるエポキシ(メタ)アクリレートとしては、ビスフェノールA型のエポキシ化合物より得られた、ビスフェノールA型エポキシ(メタ)アクリレートである。エポキシ(メタ)アクリレートの重量平均分子量としては500~10000が好ましい。
 エポキシ(メタ)アクリレートの本発明の紫外線硬化型樹脂組成物中における重量割合は通常1~80重量%、好ましくは5~30重量%である。
An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound. The weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
The weight ratio of the epoxy (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
 本発明の組成物に含有される光重合開始剤(E)としては、特に限定されないが、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー184;BASF製)、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー(エサキュアONE;ランバルティ製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(イルガキュアー127;BASF製)、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュアー651;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173;BASF製)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(イルガキュアー907;BASF製)、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルとオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物(イルガキュアー754;BASF製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン等を挙げることができる。 The photopolymerization initiator (E) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine. Fin oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure ONE; manufactured by Lamberti), 1- [4- (2-hydroxyethoxy) -phenyl ] -2-Hydroxy-2-methyl -1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl -Propan-1-one (Irgacure 127; manufactured by BASF), 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propane-1- ON (Darocur 1173; manufactured by BASF), 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (Irgacure 907; manufactured by BASF), oxy-phenyl-acetic acid 2- [2-Oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester and oxy-phenyl-acetic A mixture of cyd 2- [2-hydroxy-ethoxy] -ethyl ester (Irgacure 754; manufactured by BASF), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- Examples include chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, and isopropylthioxanthone.
 本発明においては、前記光重合開始剤(E)において、アセトニトリル又はメタノール中で測定した302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であって、365nmでのモル吸光係数が100ml/(g・cm)以下である光重合開始剤を使用することが好ましい。このような光重合開始剤を使用することで、接着強度の向上に寄与させることができる。302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であることで、下記工程3での硬化時の硬化が十分となる。一方、365nmでのモル吸光係数が100ml/(g・cm)以下であることで、下記工程1における硬化時に過度な硬化を適切に抑制でき、密着性を向上させることが可能となる。
 このような光重合開始剤(E)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー184;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173;BASF製)、1-[4-(2-ヒドロキシエトキシ)-フェニル-]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、フェニルグリオキシリックアシッドメチルエステル(ダロキュアMBF;BASF製)等が挙げられる。
In the present invention, in the photopolymerization initiator (E), the molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol is 300 ml / (g · cm) or more, and the molar extinction coefficient at 365 nm is 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g · cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength. When the molar extinction coefficient at 302 nm or 313 nm is 300 ml / (g · cm) or more, curing at the time of curing in the following step 3 is sufficient. On the other hand, when the molar extinction coefficient at 365 nm is 100 ml / (g · cm) or less, excessive curing can be appropriately suppressed at the time of curing in the following step 1, and adhesion can be improved.
Examples of such photopolymerization initiator (E) include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173). Manufactured by BASF), 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), phenylglyoxylic acid And methyl ester (Darocur MBF; manufactured by BASF).
 本発明の紫外線硬化型樹脂組成物においては、これら光重合開始剤(E)は、1種または2種以上を任意の割合で混合して使用することができる。光重合開始剤(E)の本発明の紫外線硬化型樹脂組成物中における重量割合は通常0.2~5重量%、好ましくは0.3~3重量%である。5重量%以下であれば、硬化部分と光学基材側と反対側に存在する未硬化部分を有する硬化物層を得る際に、未硬化部分が確実に形成され、樹脂硬化物層の透明性が向上する。 In the ultraviolet curable resin composition of the present invention, these photopolymerization initiators (E) can be used alone or in admixture of two or more at any ratio. The weight ratio of the photopolymerization initiator (E) in the ultraviolet curable resin composition of the present invention is usually 0.2 to 5% by weight, preferably 0.3 to 3% by weight. If it is 5% by weight or less, when obtaining a cured product layer having a cured portion and an uncured portion on the side opposite to the optical substrate side, the uncured portion is reliably formed, and the transparency of the cured resin layer is obtained. Will improve.
 本発明の紫外線硬化型樹脂組成物は、その他の成分として、後記する添加剤等を含むことができる。 The ultraviolet curable resin composition of the present invention can contain additives, which will be described later, as other components.
 更に、光重合開始助剤となりうるアミン類等を上記の光重合開始剤と併用することもできる。使用しうるアミン類等としては、安息香酸2-ジメチルアミノエチルエステル、ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチルエステルまたはp-ジメチルアミノ安息香酸イソアミルエステル等が挙げられる。該アミン類等の光重合開始助剤を使用する場合、本発明の紫外線硬化型樹脂組成物中の含有量は通常0.005~5重量%、好ましくは0.01~3重量%である。 Furthermore, amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator. Examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester. When a photopolymerization initiation aid such as the amine is used, the content in the ultraviolet curable resin composition of the present invention is usually 0.005 to 5% by weight, preferably 0.01 to 3% by weight.
 本発明の紫外線硬化型樹脂組成物には、必要に応じて酸化防止剤、有機溶剤、シランカップリング剤、重合禁止剤、レベリング剤、帯電防止剤、表面潤滑剤、蛍光増白剤、光安定剤(例えば、ヒンダードアミン化合物等)、充填剤等の添加剤を加えてもよい。 In the ultraviolet curable resin composition of the present invention, an antioxidant, an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added. You may add additives, such as an agent (for example, hindered amine compound etc.) and a filler.
 酸化防止剤の具体例としては、例えば、BHT、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ジブチルヒドロキシトルエン等が挙げられる。 Specific examples of the antioxidant include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t -Butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octylated diphenylamine, 2,4-bis [(octylthio) methyl-O-cresol Isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], dibutylhydroxytoluene and the like.
 有機溶剤の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。 Specific examples of the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
 シランカップリング剤の具体例としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、γ-メルカプロプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。 Specific examples of the silane coupling agent include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, γ-mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane , Silane coupling agents such as chloropropylmethyldimethoxysilane and 3-chloropropyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, Titanium coupling agents such as tetraisopropyldi (dioctylphosphite) titanate, neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, Neoalkoxy zirconate, neoalkoxy tris neodecanoyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris Ethylene-aminoethyl) zirconate, neoalkoxy tris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al- acetylacetonate, Al- methacrylate, zirconium or the like Al- propionate, or aluminum coupling agent, and the like.
 重合禁止剤の具体例としては、パラメトキシフェノール、メチルハイドロキノン等が挙げられる。 Specific examples of the polymerization inhibitor include paramethoxyphenol and methylhydroquinone.
 光安定剤の具体例としては、例えば、1,2,2,6,6-ペンタメチル-4-ピペリジルアルコール、2,2,6,6-テトラメチル-4-ピペリジルアルコール、1,2,2,6,6-ペンタメチル-4-ピペリジル(メタ)アクリレート(アデカ(株)製、LA-82)、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。 Specific examples of the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid And 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Unde Mixed ester with decanoic acid bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidine-4- Yl) carbonate, 2,2,6,6, -tetramethyl-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6, 6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl] ) Propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethyl Peridine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1 -Dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethylethyl Reaction product of hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N′-bis (2,2,6 6- Polycondensate of tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1,1,3 , 3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2, 6,6-tetramethyl-4-piperidyl) imino]], dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol polymer, 2,2,4,4- Tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa-3,20-diazadispiro [5 · 1 · 11 · 2] heneicosan-21-one, β-alanine, N,-(2,2, 6,6-tet Lamethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester, N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2, 2,4,4-tetramethyl-7-oxa-3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3, 20-diazadicyclo- [5,1,11,2] -heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2 , 6,6-pentamethyl-4-piperidinyl) ester, higher fatty acid ester of 2,2,6,6-tetramethyl-4-piperidinol, 1,3 Hindered amines such as benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl), benzophenone compounds such as octabenzone, 2- (2H-benzotriazole-2 -Yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4, 5,6-tetrahydrophthalimido-methyl) -5-methylphenyl] benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy- 3,5-di-tert-pentylphenyl) benzotriazole, methyl 3- (3- (2H-benzotriazole-2-) ) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol reaction product, benzotriazole compounds such as 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol Benzoates such as 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazine-2- Yl) -5-[(hexyl) oxy] phenol and the like, and hindered amine compounds are particularly preferred.
 充填剤の具体例としては、例えば、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられる。 Specific examples of the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like. Examples thereof include powder or beads obtained by spheroidizing these.
 各種添加剤が組成物中に存在する場合、各種添加剤の光硬化型透明樹脂組成物中における重量割合は、0.01~3重量%、好ましくは0.01~1重量%、より好ましくは0.02~0.5重量%である。 When various additives are present in the composition, the weight ratio of the various additives in the photocurable transparent resin composition is 0.01 to 3% by weight, preferably 0.01 to 1% by weight, more preferably 0.02 to 0.5% by weight.
 本発明の紫外線硬化型樹脂組成物は、前記した各成分を常温~80℃で混合溶解して得ることができ、必要により夾雑物をろ過等の操作により取り除いてもよい。本発明の紫外線硬化型樹脂組成物は、塗布性を考え、25℃の粘度が300~40000mPa・sの範囲となるように、成分の配合比を適宜調節することが好ましい。 The ultraviolet curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C., and if necessary, impurities may be removed by an operation such as filtration. In the ultraviolet curable resin composition of the present invention, it is preferable to appropriately adjust the compounding ratio of the components so that the viscosity at 25 ° C. is in the range of 300 to 40,000 mPa · s in view of applicability.
 次に、本発明の紫外線硬化型樹脂組成物を使用した光学部材の製造工程の好ましい形態について説明する。
 本発明の樹脂組成物を用いた光学部材の製造方法においては、下記(工程1)~(工程3)により、少なくとも2つの光学基材を貼り合わせされることが好ましい。尚、(工程2)の段階で十分な接着強度が確保できると判断される場合においては、(工程3)を省くことが可能である。
(工程1) 少なくとも一つの光学基材に対して、前記紫外線硬化型樹脂組成物を塗布して、塗布層を形成し、該塗布層に、紫外線を照射することにより、該塗布層における光学基材側(塗布層の下部側)に存在する硬化部分(以下、「硬化物層の硬化部分」又は単に「硬化部分」と言う。)と、光学基材側と反対側(塗布層の上部側、通常は大気側)に存在する未硬化部分(以下、「硬化物層の未硬化部分」又は単に「未硬化部分」と言う。)とを有する硬化物層を有する光学基材を得る工程。尚、工程1において、紫外線照射後の塗付層の硬化率については特に限定は無く、光学基材側と反対側(塗布層の上部側、通常は大気側)表面に未硬化部分が存在してさえいればよい。紫外線照射後、光学基材側と反対側(塗布層の上部側、通常は大気側)を指で触り、指に液状成分が付着する場合は、未硬化部分を有するものと判断できる。
(工程2) 工程1で得られた光学基材の硬化物層の未硬化部分に対して、他の光学基材を貼り合わせるか、又は、工程1により得られた他の光学基材の硬化物層の未硬化部分を貼り合わせる工程。
(工程3) 貼り合された光学基材における未硬化部分を有する硬化物層に、遮光部を有する光学基材を通して、紫外線を照射して、該硬化物層を硬化させる工程。
 以下に工程1~工程3を経由する本発明の光学部材の製造方法の具体的な実施の形態について、液晶表示ユニットと遮光部を有する透明基板との貼り合せを例に図面を参照して説明する。
 ここで、本発明の紫外線硬化型樹脂組成物は、2つ以上の基板を貼り合わせる際に、少なくとも一つの基板に対しては液状樹脂の状態で塗布され、もう一方の基板に対しては液状樹脂状態又は未硬化部分を有する状態で貼り合わされた後、紫外線により硬化させる場合において、特に優れた接着効果を奏し、空気の介在を防ぐことができるため、このような場合に使用することが特に好ましい。
Next, the preferable form of the manufacturing process of the optical member using the ultraviolet curable resin composition of this invention is demonstrated.
In the method for producing an optical member using the resin composition of the present invention, it is preferable that at least two optical substrates are bonded together by the following (Step 1) to (Step 3). If it is determined that sufficient adhesive strength can be secured at the stage of (Process 2), (Process 3) can be omitted.
(Step 1) By applying the ultraviolet curable resin composition to at least one optical substrate to form a coating layer, and irradiating the coating layer with ultraviolet rays, an optical group in the coating layer is formed. A cured portion (hereinafter referred to as “cured portion of the cured product layer” or simply “cured portion”) present on the material side (lower side of the coating layer) and the side opposite to the optical substrate side (upper side of the coating layer) Step of obtaining an optical substrate having a cured product layer having an uncured portion (hereinafter, referred to as “uncured portion of the cured product layer” or simply “uncured portion”) present on the atmosphere side. In Step 1, there is no particular limitation on the curing rate of the coating layer after ultraviolet irradiation, and there is an uncured portion on the surface opposite to the optical substrate side (the upper side of the coating layer, usually the air side). All you have to do is After irradiation with ultraviolet rays, when the opposite side (the upper side of the coating layer, usually the atmosphere side) of the optical substrate is touched with a finger and a liquid component adheres to the finger, it can be determined that it has an uncured portion.
(Step 2) Another optical substrate is bonded to the uncured portion of the cured product layer of the optical substrate obtained in Step 1, or the other optical substrate obtained in Step 1 is cured. The process of bonding the uncured part of the material layer.
(Process 3) The process of irradiating an ultraviolet-ray through the optical base material which has a light-shielding part to the hardened | cured material layer which has the unhardened part in the bonded optical base material, and hardening this hardened | cured material layer.
In the following, a specific embodiment of the optical member manufacturing method of the present invention that goes through steps 1 to 3 will be described with reference to the drawings, taking as an example the bonding of a liquid crystal display unit and a transparent substrate having a light shielding portion. To do.
Here, when the two or more substrates are bonded together, the ultraviolet curable resin composition of the present invention is applied in a liquid resin state to at least one substrate and is liquid to the other substrate. In the case of being cured by ultraviolet rays after being bonded together in a resin state or a state having an uncured portion, particularly excellent adhesive effect can be obtained and air can be prevented, so that it is particularly useful in such a case. preferable.
(第1の実施形態)
 図1は、本発明の紫外線硬化型樹脂組成物を使用する光学部材の製造工程の第1の実施形態を示す工程図である。
 この方法は、液晶表示ユニット1と透明基板2を貼り合わせることにより光学部材を得る方法である。
 液晶表示ユニット1は、電極を形成した一対の基板間に液晶材料が封入されたものに偏光板、駆動用回路、信号入力ケーブル、バックライトユニットが備わったものを言う。
 透明基板2は、ガラス板、ポリメチルメタクリレート(PMMA)板、ポリカーボネート(PC)板、脂環式ポリオレフィンポリマー(COP)板、アクリル樹脂、ポリエチレンテレフタラート等の透明基板である。透明基板には、片面又は両面にハードコート処理、反射防止処理を施すことは差し支えない。
 ここで、透明基板2は透明基板の表面上に黒色枠状の遮光部4を有するものを好適に使用でき、遮光部4はテープの貼付や塗料の塗布又は印刷等によって形成されている。尚、本発明においては遮光部4を有さないものにも適用できるが、以下の第1~3の実施形態の説明では、遮光部4を備える場合を具体例として説明を行う。遮光部4を有さない場合には、「遮光部を有する透明基板」を「透明基板」と読み替えれば、そのまま遮光部を有さない場合の例と考えることができる。
(First embodiment)
FIG. 1 is a process diagram showing a first embodiment of a production process of an optical member using the ultraviolet curable resin composition of the present invention.
This method is a method of obtaining an optical member by bonding the liquid crystal display unit 1 and the transparent substrate 2 together.
The liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
The transparent substrate 2 is a transparent substrate such as a glass plate, a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, an alicyclic polyolefin polymer (COP) plate, an acrylic resin, or polyethylene terephthalate. The transparent substrate may be subjected to hard coat treatment or antireflection treatment on one side or both sides.
Here, the transparent substrate 2 having a black frame-shaped light-shielding portion 4 on the surface of the transparent substrate can be preferably used, and the light-shielding portion 4 is formed by applying a tape, applying a paint, printing, or the like. In the present invention, the present invention can also be applied to a device that does not have the light shielding portion 4. However, in the following description of the first to third embodiments, the case where the light shielding portion 4 is provided will be described as a specific example. In the case where the light-shielding portion 4 is not provided, “transparent substrate having a light-shielding portion” can be read as “transparent substrate”, and can be considered as an example in which the light-shielding portion is not provided as it is.
(工程1)
 まず、図1(a)に示すように、紫外線硬化型樹脂組成物を、液晶表示ユニット1の表示面と遮光部を有する透明基板2の遮光部が形成されている面の表面に塗布する。塗布の方法としては、スリットコーター、ロールコーター、スピンコーター、スクリーン印刷法等が挙げられる。ここで、液晶表示ユニット1と遮光部を有する透明基板2の表面に塗布する紫外線硬化型樹脂組成物は同一であってもよいし、異なる紫外線硬化型樹脂組成物を用いても構わない。通常は両者が同じ紫外線硬化型樹脂組成物であることが好ましい。ここで、透明基板2上に遮光層が設けられている部分では、基板と遮光層の高さの差を埋めて、遮光層上に樹脂組成物が到達していることが好ましい。
 各紫外線硬化型樹脂の硬化物の膜厚は、貼り合せた後の樹脂硬化物層7が50~500μm、好ましくは50~350μm、更に好ましくは100~350μmとなるように調整される。ここで、遮光部を有する透明基板2の表面上に存在する紫外線硬化型樹脂の硬化物層の膜厚はその膜厚にもよるが、通常、液晶表示ユニット1の表面上に存在する紫外線硬化型樹脂の硬化物層の膜厚と同程度か又はそれよりも厚い方が好ましい。後記工程3において、紫外線を照射した後も、未硬化のまま残る部分を最小限にして、硬化不良の恐れをなくすためである。
(Process 1)
First, as shown to Fig.1 (a), an ultraviolet curable resin composition is apply | coated to the surface of the surface in which the light-shielding part of the transparent substrate 2 which has the display surface of the liquid crystal display unit 1 and a light-shielding part is formed. Examples of the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method. Here, the ultraviolet curable resin composition applied to the surface of the liquid crystal display unit 1 and the transparent substrate 2 having the light shielding portion may be the same, or different ultraviolet curable resin compositions may be used. Usually, it is preferable that both are the same ultraviolet curable resin composition. Here, in the portion where the light shielding layer is provided on the transparent substrate 2, it is preferable that the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
The film thickness of the cured product of each ultraviolet curable resin is adjusted so that the cured resin layer 7 after bonding has a thickness of 50 to 500 μm, preferably 50 to 350 μm, and more preferably 100 to 350 μm. Here, although the film thickness of the cured layer of the ultraviolet curable resin existing on the surface of the transparent substrate 2 having the light-shielding portion depends on the film thickness, the ultraviolet curable resin usually existing on the surface of the liquid crystal display unit 1 is used. It is preferable that the thickness is equal to or thicker than the thickness of the cured product layer of the mold resin. This is to minimize the portion that remains uncured even after irradiation with ultraviolet rays in Step 3 described later, thereby eliminating the risk of curing failure.
 塗布後の紫外線硬化型樹脂組成物層5に紫外線8を照射して、塗布層の下部側(紫外線硬化型樹脂組成物からみて液晶表示ユニット側または透明基板側)に存在する硬化部分(図では未表示)と塗布層の上部側(液晶表示ユニット側と反対側または透明基板側と反対側)(大気中で行うときは大気側)に存在する未硬化部分(図では未表示)を有する硬化物層6を得る。照射量は5~2000mJ/cm2が好ましく、特に好ましくは、10~1000mJ/cm2である。照射量が少なすぎると、最終的に貼り合せた光学部材の樹脂の硬化度が不十分となるおそれがあり、照射量が多すぎると未硬化成分が少なくなり、液晶表示ユニット1と遮光部を有する透明基板2の貼り合せが不良となる恐れがある。
 本発明において、「未硬化」とは25℃環境下で流動性がある状態を示すものとする。また、紫外線照射後に樹脂組成物層を指で触り、指に液状成分が付着する場合は、未硬化部分を有するものと判断される。
 紫外~近紫外の紫外線照射による硬化には、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、または無電極ランプ等が挙げられる。
 本発明の工程1においては、紫外線硬化型樹脂組成物に照射される紫外線の波長は特に限定されないが、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率(照度比)は30以下が好ましく、特に好ましくは200~320nmにおける照度が10以下である。
 320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率(照度比)は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまうことがある。これは、低波長での照度が高いと、工程1における硬化時に過度に紫外線硬化型樹脂組成物の硬化が進んでしまい、工程3における紫外線の照射における硬化の際の密着性に対する寄与が減少してしまうためと考えられる。
 ここで、上記照度比率となるように紫外線を照射する方法は、例えば、紫外~近紫外の光線を照射するランプとして、当該照度比率の条件を満たすランプを適用する方法や、ランプ自体が当該照度の条件を満たさない場合であっても、工程1の照射時において短波長の紫外線をカットする基材(例えば、短波紫外線カットフィルター、ガラス板、フィルム等)を使用することで、このような照度比率で照射することが可能となる。紫外線の照度比率を調整する基材としては特には限定されないが、例えば、短波紫外線カット処理が施されたガラス板、ソーダ石灰ガラス、PETフィルム等が挙げられる。尚、石英ガラス等の表面に凹凸処理を施した減衰板等はあまり効果的ではない。これらのものは、光を散乱させて照度を落とすため、320nm以下の短波長の照度を選択的に小さくすることには向かない。
 工程1において、紫外線の照射は、通常大気中で、塗布側の上部側表面(紫外線硬化型樹脂組成物から見て、液晶表示ユニット側と反対側または透明基板側と反対側)(通常大気面)から照射するのが好ましい。また、真空にした後に硬化阻害性の気体を塗布層の上面表面に噴霧しながら紫外線の照射を行っても構わない。大気中で樹脂組成物を硬化した場合には、液晶表示ユニット側と反対側または透明基板側と反対側は大気側となる。尚、工程1で形成される塗布層表面のタック性を上げたい場合は、真空環境下、又は窒素などの硬化阻害を起こさない気体の環境化で紫外線を照射しても良い。
 一方、工程3を省略する場合においては、真空中または硬化を促進させる気体(例えば、窒素)を噴霧しながら硬化を行うことが好適に行える。これにより、工程3を省略したとしても、十分な接着を行うことが可能となる。
The ultraviolet curable resin composition layer 5 after application is irradiated with ultraviolet rays 8 and a cured portion (in the drawing, the liquid crystal display unit side or the transparent substrate side as viewed from the ultraviolet curable resin composition) is present (in the figure). Curing with uncured parts (not shown in the figure) present on the upper side of the coating layer (on the opposite side of the liquid crystal display unit side or on the opposite side of the transparent substrate side) (on the atmospheric side when performed in the atmosphere) A physical layer 6 is obtained. The irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 . If the amount of irradiation is too small, the degree of cure of the resin of the optical member that is finally bonded may be insufficient. If the amount of irradiation is too large, the amount of uncured components decreases, and the liquid crystal display unit 1 and the light-shielding portion There is a possibility that the bonding of the transparent substrate 2 will be defective.
In the present invention, “uncured” refers to a fluid state in a 25 ° C. environment. In addition, when the resin composition layer is touched with a finger after ultraviolet irradiation and a liquid component adheres to the finger, it is determined to have an uncured portion.
For the curing by ultraviolet to near ultraviolet irradiation, any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays. For example, a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
In step 1 of the present invention, the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm. The (illuminance ratio) is preferably 30 or less, and particularly preferably the illuminance at 200 to 320 nm is 10 or less.
When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance (illuminance ratio) at 200 to 320 nm is higher than 30, the adhesive strength of the optical member finally obtained may be inferior. is there. This is because if the illuminance at a low wavelength is high, the curing of the ultraviolet curable resin composition proceeds excessively at the time of curing in the step 1, and the contribution to the adhesion at the time of curing in the ultraviolet irradiation in the step 3 is reduced. This is thought to be due to this.
Here, the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if the above condition is not satisfied, such illuminance can be obtained by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of irradiation in step 1. Irradiation at a ratio is possible. Although it does not specifically limit as a base material which adjusts the illumination intensity ratio of an ultraviolet-ray, For example, the glass plate, soda-lime glass, PET film etc. which were given the short wave ultraviolet-ray cut process are mentioned. Incidentally, an attenuation plate or the like in which the surface of the quartz glass or the like has been subjected to uneven treatment is not very effective. Since these scatter the light and reduce the illuminance, they are not suitable for selectively reducing the illuminance at a short wavelength of 320 nm or less.
In step 1, irradiation with ultraviolet rays is usually carried out in the air at the upper surface on the coating side (on the opposite side of the liquid crystal display unit side or on the transparent substrate side as seen from the ultraviolet curable resin composition) (normal atmospheric surface) ). Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation. When the resin composition is cured in the atmosphere, the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side. In addition, when it is desired to improve the tackiness of the surface of the coating layer formed in step 1, ultraviolet rays may be irradiated in a vacuum environment or in a gas environment that does not cause hardening inhibition such as nitrogen.
On the other hand, when step 3 is omitted, curing can be suitably performed in a vacuum or while spraying a gas (for example, nitrogen) that promotes curing. Thereby, even if the step 3 is omitted, sufficient adhesion can be performed.
 紫外線照射時に、紫外線硬化型樹脂層(塗布層)表面に酸素又はオゾンを吹きかけることにより、未硬化部分の状態や未硬化部分の膜厚を調整することができる。
 即ち、塗布層の表面に酸素又はオゾンを吹きかけることにより、その表面において、紫外線硬化型樹脂組成物の硬化の酸素阻害が生じるため、その表面の未硬化部分を確実にしたり、また、未硬化部分の膜厚を厚くすることができる。
The state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation.
That is, when oxygen or ozone is sprayed on the surface of the coating layer, oxygen inhibition of curing of the ultraviolet curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured or the uncured portion The film thickness can be increased.
(工程2)
 次に、未硬化部分同士が対向する形で、図1(b)に示すように、液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
 ここで、貼り合わせの際に気泡が生じることを防ぐためには、真空中で貼り合わせることが好適である。
 このように、液晶表示ユニット及び透明基板の各々に硬化部分及び未硬化部分を有する紫外線硬化型樹脂の硬化物を得てから貼り合わせると、接着力の向上を期待することができる。
 貼り合わせは、加圧、プレス等により行うことができる。
(Process 2)
Next, as shown in FIG. 1B, the liquid crystal display unit 1 and the transparent substrate 2 having a light shielding portion are bonded together so that the uncured portions face each other. Bonding can be performed either in air or in vacuum.
Here, in order to prevent bubbles from being generated during bonding, it is preferable to perform bonding in a vacuum.
As described above, when a cured product of an ultraviolet curable resin having a cured portion and an uncured portion is obtained on each of the liquid crystal display unit and the transparent substrate, the adhesion can be improved.
Bonding can be performed by pressing, pressing, or the like.
(工程3)
 次に、図1(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合せて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物(塗布層)を硬化させる。
 紫外線の照射量は積算光量で約100~4000mJ/cm2が好ましく、特に好ましくは、200~3000mJ/cm2程度である。紫外~近紫外の光線照射による硬化に使用する光源については、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、または無電極ランプ等が挙げられる。
 こうして、図5に示すような光学部材を得ることができる。
(Process 3)
Next, as shown in FIG.1 (c), the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 8 from the transparent substrate 2 side which has a light-shielding part, and ultraviolet curable type The resin composition (coating layer) is cured.
The dose of ultraviolet rays is preferably about 100 ~ 4000mJ / cm 2 in accumulated light quantity, particularly preferably 200 ~ 3000mJ / cm 2 approximately. The light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light. For example, a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
In this way, an optical member as shown in FIG. 5 can be obtained.
(第2の実施形態)
 第1の実施形態に加えて、次のような変形した第2の実施形態により本発明の光学部材を製造しても構わない。尚、各工程での詳細は上記の第1の実施形態と同様のことが当てはまるため、同じ部分については説明を省略する。
(Second Embodiment)
In addition to the first embodiment, the optical member of the present invention may be manufactured by the second modified embodiment described below. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted.
(工程1)
 まず、図2(a)に示すように、紫外線硬化型組成物を、遮光部を有する透明基板2上の遮光部4が形成された面に塗布した後、得られた塗布層(紫外線硬化型樹脂組成物層5)に紫外線8を照射して、塗布層の下部側(前記紫外線硬化型樹脂組成物からみて透明基板側)に存在する硬化部分と塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層6を得る。ここで、透明基板2上に遮光層が設けられている場合には、基板と遮光層の高さの差を埋めて、遮光層上に樹脂組成物が到達していることが好ましい。
 このとき、紫外線硬化型樹脂組成物に照射される紫外線の波長は特に限定されないが、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下が好ましく、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下であれば、最終的にられる光学部材の接着強度がより向上する。
(Process 1)
First, as shown to Fig.2 (a), after apply | coating an ultraviolet curable composition to the surface in which the light-shielding part 4 was formed on the transparent substrate 2 which has a light-shielding part, the obtained coating layer (ultraviolet curable type) was obtained. The resin composition layer 5) is irradiated with ultraviolet rays 8, and the cured portion present on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer (opposite of the transparent substrate side) The hardened | cured material layer 6 which has the unhardened part which exists in the side) is obtained. Here, when the light shielding layer is provided on the transparent substrate 2, it is preferable that the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
At this time, the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less. Particularly preferably, the illuminance at 200 to 320 nm is 10 or less. Assuming that the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance at 200 to 320 nm is 30 or less, the adhesive strength of the final optical member is further improved.
(工程2)
 次に、図2(b)に示すように、得られた硬化物層6の未硬化部分と液晶表示ユニット1の表示面が対向する形で液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
(Process 2)
Next, as shown in FIG. 2B, a transparent substrate 2 having a liquid crystal display unit 1 and a light shielding portion in a form in which the uncured portion of the obtained cured product layer 6 and the display surface of the liquid crystal display unit 1 face each other. Paste. Bonding can be performed either in air or in vacuum.
(工程3)
 次に、図2(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合わせて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物の未硬化部分を有する硬化物層6を硬化させる。
(Process 3)
Next, as shown in FIG. 2C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, so that an ultraviolet curable type is obtained. The cured product layer 6 having an uncured portion of the resin composition is cured.
 こうして、図5に示された光学部材を得ることが出来る。 Thus, the optical member shown in FIG. 5 can be obtained.
(第3の実施形態)
 図3は、本発明の紫外線硬化型樹脂組成物を使用する光学部材の製造方法の第3の実施形態を示す工程図である。尚、各工程での詳細は上記の第1の実施形態と同様のことが当てはまるため、同じ部分については説明を省略する。
 なお、上述した第1の実施の形態における構成部材と同じ部材については図中同一の符号を付し、その説明はここでは繰り返さない。
(Third embodiment)
FIG. 3 is a process diagram showing a third embodiment of a method for producing an optical member using the ultraviolet curable resin composition of the present invention. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted.
In addition, the same code | symbol is attached | subjected in the figure about the same member as the structural member in 1st Embodiment mentioned above, and the description is not repeated here.
(工程1)
 まず、図3(a)に示すように、紫外線硬化型組成物を、液晶表示ユニット1の表面に塗布した。その後、紫外線硬化型樹脂組成物層5に紫外線8を照射して、塗布層の下部側(前記紫外線硬化型樹脂組成物からみて透明基板側)に存在する硬化部分と、塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層6を得る。
 このとき、紫外線硬化型樹脂組成物に照射される紫外線の波長は特に限定されないが、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度は30以下が好ましく、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度は30以下であれば、最終的に得られる光学部材の接着強度がより向上する。
(Process 1)
First, as shown in FIG. 3A, the ultraviolet curable composition was applied to the surface of the liquid crystal display unit 1. Thereafter, the ultraviolet curable resin composition layer 5 is irradiated with ultraviolet rays 8, and a cured portion existing on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer ( A cured product layer 6 having an uncured portion present on the side opposite to the transparent substrate side is obtained.
At this time, the wavelength of ultraviolet rays irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the maximum illuminance at 200 to 320 nm is preferably 30 or less. The illuminance at 200 to 320 nm is preferably 10 or less. When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the maximum illuminance at 200 to 320 nm is 30 or less, the adhesive strength of the optical member finally obtained is further improved.
(工程2)
 次に、図3(b)に示すように、得られた硬化物層6の未硬化部分と遮光部を有する透明基板2上の遮光部が形成された面が対向する形で液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
(Process 2)
Next, as shown in FIG. 3B, the liquid crystal display unit 1 is formed such that the uncured portion of the obtained cured product layer 6 and the surface on which the light shielding portion on the transparent substrate 2 having the light shielding portion is formed face each other. And a transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum.
(工程3)
 次に、図3(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合せて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物の未硬化部分を有する硬化物層6を硬化させる。
(Process 3)
Next, as shown in FIG. 3C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, thereby ultraviolet curing type. The cured product layer 6 having an uncured portion of the resin composition is cured.
 こうして、図5に示された光学部材を得ることが出来る。 Thus, the optical member shown in FIG. 5 can be obtained.
(第4の実施形態)
 第1~第3の実施形態に加えて、次のような変形した第4の実施形態により本発明の光学部材を製造しても構わない。尚、各工程での詳細は上記の第1の実施形態と同様のことが当てはまるため、同じ部分については説明を省略する。尚、第4の実施形態は工程3を省略した第2の実施形態をもとに説明を行っているが、同省略を上記第1の実施形態ないし第3の実施形態で行うこともできる。
(Fourth embodiment)
In addition to the first to third embodiments, the optical member of the present invention may be manufactured according to the following modified fourth embodiment. Note that the details in each step are the same as those in the first embodiment, and therefore, the description of the same parts is omitted. The fourth embodiment is described based on the second embodiment in which the step 3 is omitted, but the omission can be performed in the first to third embodiments.
(工程1)
 まず、図4(a)に示すように、紫外線硬化型組成物を、遮光部を有する透明基板2上の遮光部4が形成された面に塗布した後、得られた塗布層(紫外線硬化型樹脂組成物層5)に紫外線8を照射して、塗布層の下部側(前記紫外線硬化型樹脂組成物からみて透明基板側)に存在する硬化部分と塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層6を得る。ここで、透明基板2上に遮光層が設けられている場合には、基板と遮光層の高さの差を埋めて、遮光層上に樹脂組成物が到達していることが好ましい。
 このとき、紫外線硬化型樹脂組成物に照射される紫外線の波長は特に限定されないが、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下が好ましく、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下であれば、最終的にられる光学部材の接着強度がより向上する。
(Process 1)
First, as shown to Fig.4 (a), after apply | coating an ultraviolet curable composition to the surface in which the light-shielding part 4 was formed on the transparent substrate 2 which has a light-shielding part, the obtained coating layer (ultraviolet curable type) was obtained. The resin composition layer 5) is irradiated with ultraviolet rays 8, and the cured portion present on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer (opposite of the transparent substrate side) The hardened | cured material layer 6 which has the unhardened part which exists in the side) is obtained. Here, when the light shielding layer is provided on the transparent substrate 2, it is preferable that the resin composition reaches the light shielding layer by filling the difference in height between the substrate and the light shielding layer.
At this time, the wavelength of the ultraviolet ray irradiated to the ultraviolet curable resin composition is not particularly limited, but when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less. Particularly preferably, the illuminance at 200 to 320 nm is 10 or less. Assuming that the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance at 200 to 320 nm is 30 or less, the adhesive strength of the final optical member is further improved.
(工程2)
 次に、図4(b)に示すように、得られた硬化物層6の未硬化部分と液晶表示ユニット1の表示面が対向する形で液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
(Process 2)
Next, as shown in FIG. 4B, the transparent substrate 2 having the liquid crystal display unit 1 and the light-shielding portion in a form in which the uncured portion of the obtained cured product layer 6 and the display surface of the liquid crystal display unit 1 face each other. Paste. Bonding can be performed either in air or in vacuum.
 こうして、図5に示された光学部材を得ることが出来る。 Thus, the optical member shown in FIG. 5 can be obtained.
 上記各実施形態は本発明の樹脂組成物を用いた光学部材の製造方法の実施態様のいくつかを一つの具体的な光学基材で説明したものである各実施形態では液晶表示ユニットおよび遮光部を有する透明基板を用いて説明したが、当該製造方法においては、液晶表示ユニットに代えて光学基材として後述する各種部材を使用することができ、透明基板についても、光学基材として後述する各種部材を使用することができる。
 それだけでなく、液晶表示ユニットおよび透明基板等の光学基材としては、これら各種部材に、更に、他の光学基材層(例えば、紫外線硬化型樹脂組成物の硬化物層で貼り合されたフィルム又はその他の光学基材層を積層したもの)を使用しても構わない。
 さらに、第1の実施形態の項で記載した、紫外線硬化型樹脂組成物の塗布方法、樹脂硬化物の膜厚、紫外線照射の際の照射量及び光源、及び、紫外線硬化型樹脂層表面に酸素又は窒素、またはオゾンを吹きかけることによる未硬化部分の膜厚調整方法等はいずれも、上記実施形態にのみ適用されるものでは無く、本発明に含まれるいずれの製造方法にも適用できる。
In each of the above embodiments, some of the embodiments of the method for producing an optical member using the resin composition of the present invention are described with one specific optical substrate. In each embodiment, the liquid crystal display unit and the light shielding portion However, in the manufacturing method, various members described later as an optical substrate can be used instead of the liquid crystal display unit, and the transparent substrate is also variously described later as an optical substrate. A member can be used.
In addition, as an optical substrate such as a liquid crystal display unit and a transparent substrate, these various members are further bonded to another optical substrate layer (for example, a film bonded with a cured layer of an ultraviolet curable resin composition). Or what laminated | stacked the other optical base material layer) may be used.
Furthermore, the coating method of the ultraviolet curable resin composition described in the section of the first embodiment, the film thickness of the cured resin, the irradiation amount and the light source at the time of ultraviolet irradiation, and oxygen on the surface of the ultraviolet curable resin layer In addition, any method for adjusting the film thickness of the uncured portion by spraying nitrogen or ozone is not applied only to the above-described embodiment, but can be applied to any manufacturing method included in the present invention.
 上記液晶表示ユニットも含め、上記の第1~第4の実施形態で製造し得る光学部材の具体的態様を下記に示す。
(i) 遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び遮光部と透明電極が形成してあるガラス基板からなる群から選ばれる少なくとも一つの光学基材であり、それと貼り合される光学基材が液晶表示ユニット、プラズマ表示ユニットおよび有機ELユニットからなる群から選ばれる少なくとも一つの表示ユニットであり、得られる光学部材が、該遮光部を有する光学基材を有する表示体ユニットである態様。
(ii) 一方の光学基材が遮光部を有する保護基材であり、それと貼り合される他の光学基材がタッチパネル又はタッチパネルを有する表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が、遮光部を有する保護基材を有するタッチパネル又はそれを有する表示体ユニットである態様。
 この場合、工程1においては、遮光部を有する保護基材の遮光部を設けられた面、又は、タッチパネルのタッチ面の何れか一方の面又はその両者に、前記の紫外線硬化型樹脂組成物を塗布するのが好ましい。
(iii) 一方の光学基材が遮光部を有する光学基材であり、それと貼り合される他の光学基材が表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が遮光部を有する光学基材を有する表示体ユニットである態様。
 この場合、工程1において、遮光部を有する光学基材の遮光部が設けられた側の面、又は、表示体ユニットの表示面の何れか一方、又は、その両者に、前記の紫外線硬化型樹脂組成物を塗布するのが好ましい。
 遮光部を有する光学基材の具体例としては、例えば、遮光部を有する表示画面用の保護板、又は、遮光部を有する保護基材を設けたタッチパネル等を挙げることが出来る。
 遮光部を有する光学基材の遮光部が設けられた側の面とは、例えば、遮光部を有する光学基材が遮光部を有する表示画面用の保護板であるときは、該保護板の遮光部が設けられた側の面である。また、遮光部を有する光学基材が、遮光部を有する保護基材を有するタッチパネルであるときには、遮光部を有する保護基材は遮光部を有する面がタッチパネルのタッチ面に貼り合されることから、遮光部を有する光学基材の遮光部が設けられた側の面とは、該タッチパネルのタッチ面とは反対のタッチパネルの基材面を意味する。
 遮光部を有する光学基材の遮光部は、光学基材の何れの位置にあっても良いが、通常透明板状又はシート状の光学基材の周囲に、枠状に作成され、その幅は、0.5mm~10mm程度であり、好ましくは1~8mm程度、より好ましくは2~8mm程度である。
Specific modes of optical members that can be manufactured in the first to fourth embodiments including the liquid crystal display unit will be described below.
(I) At least one selected from the group consisting of an optical substrate having a light-shielding portion, a transparent glass substrate having a light-shielding portion, a transparent resin substrate having a light-shielding portion, and a glass substrate on which the light-shielding portion and the transparent electrode are formed. The optical base material is an optical base material, and the optical base material bonded thereto is at least one display unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit. The aspect which is a display body unit which has an optical base material to have.
(Ii) One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded. A mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
In this case, in Step 1, the ultraviolet curable resin composition is applied to either the surface of the protective base material having the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to apply.
(Iii) One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto The aspect which is a display body unit which has an optical base material which has a light-shielding part.
In this case, in the step 1, the ultraviolet curable resin is applied to either the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided, the display surface of the display unit, or both of them. It is preferable to apply the composition.
Specific examples of the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
For example, when the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion, the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided. In addition, when the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion, the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel. The surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
The light-shielding part of the optical base material having the light-shielding part may be at any position of the optical base material, but is usually created in a frame shape around the optical base material in the form of a transparent plate or sheet, and its width is The thickness is about 0.5 mm to 10 mm, preferably about 1 to 8 mm, and more preferably about 2 to 8 mm.
 本発明の紫外線硬化型樹脂組成物は、上記(工程1)~(工程2)、必要に応じては、さらに(工程3)により、少なくとも2つの光学基材を貼り合わせて、光学部材を製造する方法に使用することができる。
 本発明の紫外線硬化型樹脂組成物の硬化物の硬化収縮率は4.0%以下であることが好ましく、3.0%以下であることが特に好ましい。これにより、紫外線硬化型樹脂組成物が硬化する際に、樹脂硬化物に蓄積される内部応力を低減することができ、基材と紫外線硬化型樹脂組成物の硬化物からなる層との界面に歪みができることを有効に防止することができる。
 また、ガラス等の基材が薄い場合には、硬化収縮率が大きい場合には硬化時の反りが大きくなるころから、表示性能に大きな悪影響を及ぼすため、当該観点からも、硬化収縮率は少ない方が好ましい。
The ultraviolet curable resin composition of the present invention is produced by bonding at least two optical substrates by the above (Step 1) to (Step 2) and, if necessary, further (Step 3). Can be used in the way.
The curing shrinkage of the cured product of the ultraviolet curable resin composition of the present invention is preferably 4.0% or less, and particularly preferably 3.0% or less. Thereby, when the ultraviolet curable resin composition is cured, the internal stress accumulated in the cured resin can be reduced, and the interface between the base material and the layer made of the cured product of the ultraviolet curable resin composition can be reduced. It is possible to effectively prevent the distortion.
In addition, when the substrate such as glass is thin, when the curing shrinkage rate is large, since the warpage during curing becomes large, the display performance is greatly adversely affected. Is preferred.
 本発明の紫外線硬化型樹脂組成物の硬化物の400nm~800nmでの透過率が90%以上であることが好ましい。透過率が90%以下であれば、光が透過し易く、表示装置に使用した場合に視認性が向上する。
 また、硬化物の400~450nmでの透過率が高いと視認性の向上が一層期待できることから、400~450nmでの透過率が90%以上であることが好ましい。
The transmittance at 400 nm to 800 nm of the cured product of the ultraviolet curable resin composition of the present invention is preferably 90% or more. If the transmittance is 90% or less, light is easily transmitted, and visibility is improved when used in a display device.
Further, when the cured product has a high transmittance at 400 to 450 nm, the visibility can be further improved. Therefore, the transmittance at 400 to 450 nm is preferably 90% or more.
 本発明の紫外線硬化型樹脂組成物は、上記(工程1)~(工程3)により、複数の光学基材を張り合わせて光学部材を製造するための接着剤として好適に使用することができる。
 本発明の樹脂組成物を用いた光学部材の製造方法において使用する光学基材としては、透明板、シート、タッチパネル、及び表示体ユニット等を挙げることができる。
 本発明において「光学基材」とは、表面に遮光部を有さない光学基材と、表面に遮光部を有する光学基材の両者を意味する。本発明の樹脂組成物を用いた光学部材の製造方法においては、好適には複数用いられる光学基材のうち少なくとも一つが、遮光部を有する光学基材である。
 上記遮光部を有する光学基材における遮光部の位置は、特に限定されない。好ましい態様としては、該光学基材の周辺部に、幅0.05~20mm、好ましくは0.05~10mm程度、より好ましくは0.1~6mm程度の幅を有する帯状の遮光部が形成される場合が挙げられる。光学基材上の遮光部は、テープの貼り付けや塗料の塗布又は印刷等によって形成することができる。
The ultraviolet curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the above (Step 1) to (Step 3).
As an optical base material used in the manufacturing method of the optical member using the resin composition of this invention, a transparent plate, a sheet | seat, a touch panel, a display body unit, etc. can be mentioned.
In the present invention, the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface. In the method for producing an optical member using the resin composition of the present invention, preferably, at least one of a plurality of optical substrates used is an optical substrate having a light shielding part.
The position of the light shielding part in the optical substrate having the light shielding part is not particularly limited. As a preferred embodiment, a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate. Is the case. The light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
 本発明に用いる光学基材の材質としては、様々な材料が使用できる。具体的には、PET、PC、PMMA、PCとPMMAの複合体、ガラス、COC、COP、プラスチック(アクリル樹脂等)等の樹脂が挙げられる。本発明に用いる光学基材、例えば透明板又はシートとしては、偏光板等のフィルム又はシートを複数積層したシート又は透明板、積層していないシート又は透明板、及び、無機ガラスから作成された透明板(無機ガラス板及びその加工品、例えばレンズ、プリズム、ITOガラス)等を使用することができる。
 また、本発明に用いる光学基材は、上記した偏光板などの他、タッチパネル(タッチパネル入力センサー)又は下記の表示ユニット等の、複数の機能板又はシートからなる積層体(以下、「機能性積層体」とも言う。)を含む。
Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given. As an optical substrate used in the present invention, for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
The optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called "body").
 本発明の樹脂組成物を用いた光学部材の製造方法に用いる光学基材として使用することができるシートとしては、アイコンシート、化粧シート、保護シートが挙げられる。本発明の樹脂組成物を用いた光学部材の製造方法に使用することができる板(透明板)としては化粧板、保護板が挙げられる。これらのシートないし板の材質としては、透明板の材質として列挙したものが適用できる。
 本発明の樹脂組成物を用いた光学部材の製造方法に用いる光学基材として使用することができるタッチパネル表面の材質としては、ガラス、PET、PC、PMMA、PCとPMMAの複合体、COC、COPが挙げられる。
 透明板又はシート等の板状又はシート状の光学基材の厚さは、特に制限されず、通常は、5μm程度から5cm程度、好ましくは10μm程度から10mm程度、より好ましくは50μm~3mm程度の厚さである。
Examples of the sheet that can be used as an optical substrate used in the method for producing an optical member using the resin composition of the present invention include an icon sheet, a decorative sheet, and a protective sheet. Examples of the plate (transparent plate) that can be used in the method for producing an optical member using the resin composition of the present invention include a decorative plate and a protective plate. As materials for these sheets or plates, those listed as materials for transparent plates can be applied.
Examples of the material of the touch panel surface that can be used as an optical substrate used in the method for producing an optical member using the resin composition of the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP. Is mentioned.
The thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 μm to 5 cm, preferably about 10 μm to 10 mm, more preferably about 50 μm to 3 mm. Is the thickness.
 本発明の樹脂組成物を用いた光学部材の製造方法で得られる好ましい光学部材としては、遮光部を有する板状又はシート状の透明光学基材と、上記機能性積層体とが、本発明の紫外線硬化型樹脂組成物の硬化物で貼り合された光学部材を挙げることができる。
 また、本発明の樹脂組成物を用いた光学部材の製造方法において、光学基材の一つとして液晶表示装置等の表示ユニットを使用し、他の光学基材として光学機能材料を使用することにより、光学機能材料付き表示体ユニット(以下、表示パネルともいう。)を製造することができる。上記の表示ユニットとしては、例えば、ガラスに偏光板を貼り付けてあるLCD、ELディスプレイ、EL照明、電子ペーパーやプラズマディスプレイ等の表示装置が挙げられる。また、光学機能材料としては、アクリル板、PC板、PET板、PEN板等の透明プラスチック板、強化ガラス、タッチパネル入力センサーが挙げられる。
As a preferable optical member obtained by the method for producing an optical member using the resin composition of the present invention, a plate-like or sheet-like transparent optical base material having a light-shielding portion and the functional laminate described above are used. The optical member bonded by the hardened | cured material of the ultraviolet curable resin composition can be mentioned.
Moreover, in the manufacturing method of the optical member using the resin composition of this invention, by using a display unit, such as a liquid crystal display device, as one of the optical base materials, and using an optical functional material as another optical base material. A display unit with an optical functional material (hereinafter also referred to as a display panel) can be manufactured. Examples of the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass. Further, examples of the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
 光学基材を張り合わせる接着材として使用した場合に、視認性向上のために硬化物の屈折率が1.45~1.55であるとき、表示画像の視認性がより向上するため、好ましい。
 当該屈折率の範囲内であれば、光学基材として使用される基材との屈折率の差を低減させることができ、光の乱反射を抑えて光損失を低減させることが可能となる。
When used as an adhesive for laminating an optical substrate, it is preferable that the refractive index of the cured product is 1.45 to 1.55 in order to improve the visibility because the visibility of the display image is further improved.
Within the range of the refractive index, the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
 本発明の製造方法で得られる光学部材の好ましい態様としては、下記(i)~(vii)を挙げることができる。
(i)遮光部を有する光学基材と前記機能性積層体とを、本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせた光学部材。
(ii)遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び、遮光物と透明電極が形成してあるガラス基板からなる群から選ばれる光学基材であり、機能性積層体が表示体ユニット又はタッチパネルである上記(i)に記載の光学部材。
(iii)表示体ユニットが液晶表示体ユニット、プラズマ表示体ユニットおよび有機EL表示ユニットのいずれかである上記(ii)に記載の光学部材。
(iv)遮光部を有する板状又はシート状の光学基材を、タッチパネルのタッチ面側の表面に本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせたタッチパネル(又はタッチパネル入力センサー)。
(v)遮光部を有する板状又はシート状の光学基材を、表示体ユニットの表示画面上に本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせた表示パネル。
(vi)遮光部を有する板状又はシート状の光学基材が、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルである、上記(v)に記載の表示パネル。
(vii)紫外線硬化型樹脂組成物が、前記(1)~(10)のいずれか一項に記載の紫外線硬化型樹脂組成物である、上記(i)~(vi)のいずれか一項に記載の光学部材、タッチパネル又は表示パネル。
Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
(I) The optical member which bonded together the optical base material which has a light-shielding part, and the said functional laminated body using the hardened | cured material of the ultraviolet curable resin composition of this invention.
(Ii) An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part. The optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
(Iii) The optical member according to (ii), wherein the display unit is any one of a liquid crystal display unit, a plasma display unit, and an organic EL display unit.
(Iv) A touch panel (or touch panel input sensor) in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using the cured product of the ultraviolet curable resin composition of the present invention. ).
(V) A display panel in which a plate-like or sheet-like optical substrate having a light-shielding part is bonded to the display screen of the display unit using the cured product of the ultraviolet curable resin composition of the present invention.
(Vi) The display panel according to (v) above, wherein the plate-shaped or sheet-shaped optical substrate having a light-shielding portion is a protective substrate or a touch panel for protecting the display screen of the display unit.
(Vii) The ultraviolet curable resin composition according to any one of (i) to (vi), wherein the ultraviolet curable resin composition is the ultraviolet curable resin composition according to any one of (1) to (10). The optical member, touch panel or display panel described.
 本発明の紫外線硬化型樹脂組成物を用いて、前記(工程1)~(工程3)に記載の方法で、上記の各光学基材から選ばれる複数の光学基材を貼り合わせることにより、本発明の光学部材が得られる。前記工程1において、紫外線硬化型樹脂組成物は、貼り合わせる2つの光学基材における、硬化物層を介して対向する面の一方のみに塗布しても良いし、両方の面に塗布しても良い。
 例えば、前記機能性積層体がタッチパネル又は表示体ユニットである上記(ii)に記載の光学部材の場合、工程1において、遮光部を有する保護基材のいずれか一方の面、好ましくは遮光部が設けられた面、及び、タッチパネルのタッチ面又は表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
 また、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルを表示体ユニットと貼り合わせた上記(vi)の光学部材の場合、工程1において、保護基材の遮光部が設けられた面又はタッチパネルのタッチ面とは反対の基材面、及び、表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
By using the ultraviolet curable resin composition of the present invention and bonding a plurality of optical substrates selected from the above optical substrates by the method described in (Step 1) to (Step 3), The optical member of the invention is obtained. In the step 1, the ultraviolet curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces. good.
For example, in the case of the optical member according to the above (ii) in which the functional laminate is a touch panel or a display unit, in Step 1, any one surface of the protective base material having a light shielding part, preferably the light shielding part is provided. The resin composition may be applied to only one of the provided surface and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
In the case of the optical member of (vi) described above in which a protective base material or a touch panel for protecting the display screen of the display body unit is bonded to the display body unit, in Step 1, a light shielding portion of the protective base material is provided. The resin composition may be applied to only one of the substrate surface opposite to the surface or the touch surface of the touch panel and the display surface of the display unit, or to both of them.
 本発明の製造方法により得られた表示体ニットと遮光部を有する光学基材とを含む光学部材は、例えば、テレビ、小型ゲーム機、携帯電話、パソコンなどの電子機器に組み込むことができる。 The optical member including the display unit knit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
合成例1
 還流冷却器、攪拌機、温度計、温度調節装置を備えた反応器に、水添ポリブタジエンポリオール化合物として日本曹達(株)製GI-2000(ヨウ素価:12.2、水酸基価:46.8mg・KOH/g)を545.99g(0.23mol)、ジオール化合物として旭硝子(株)製エクセノール3020(ポリプロピレングリコール、水酸基価:35.9mg・KOH/g)を7.19g(0.0023mol)、重合性化合物として新中村化学(株)製S-1800A(イソステアリルアクリレート)を208.51g、重合禁止剤として4-メトキシフェノールを0.37gを添加し均一になるまで攪拌し、内部温度を50℃とした。続いてポリイソシアネート化合物としてイソホロンジイソシアネートを61.35g(0.28mol)を添加し80℃で目標のNCO含有量に達するまで反応させた。次に、少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物として大阪有機化学工業(株)製2-ヒドロキシエチルアクリレートを11.00g(0.095mol)、ウレタン化反応触媒としてオクチル酸スズを0.20gを添加し、80℃で反応させ、NCO含有量が0.1%以下となったところを反応の終点とし、ポリウレタン化合物(E-1)を得た。
Synthesis example 1
To a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature control device, GI-2000 manufactured by Nippon Soda Co., Ltd. (iodine value: 12.2, hydroxyl value: 46.8 mg · KOH) as a hydrogenated polybutadiene polyol compound / G) is 545.99 g (0.23 mol), 7.19 g (0.0023 mol) of Exenol 3020 (polypropylene glycol, hydroxyl value: 35.9 mg · KOH / g) manufactured by Asahi Glass Co., Ltd. as a diol compound is polymerizable. 208.51 g of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd. as a compound and 0.37 g of 4-methoxyphenol as a polymerization inhibitor were added and stirred until uniform, and the internal temperature was 50 ° C. did. Subsequently, 61.35 g (0.28 mol) of isophorone diisocyanate was added as a polyisocyanate compound and reacted at 80 ° C. until the target NCO content was reached. Next, 11.00 g (0.095 mol) of 2-hydroxyethyl acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd. was used as the (meth) acrylate compound having at least one hydroxyl group, and 0 octylate tin was used as the urethanization reaction catalyst. .20 g was added and reacted at 80 ° C., and when the NCO content was 0.1% or less, the end point of the reaction was taken to obtain a polyurethane compound (E-1).
実施例1
 合成例1のポリウレタン化合物(E-1)15質量部、新中村化学(株)製S-1800A(イソステアリルアクリレート)9.3質量部、前記式(1)で表される化合物である荒川化学工業(株)製パインクリスタルKE-311とS-1800Aの混合物(質量比で6:4)33.7質量部、JX日鉱日石エネルギー(株)製LV-100(ポリブテン)13質量部、日本曹達(株)製GI-2000(1,2-水素化ポリブタジエングリコール)33質量部、LAMBSON社製スピードキュアTPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)0.5質量部、BASF社製IRGACURE184(1-ヒドロキシシクロヘキシルフェニルケトン)0.5質量部、和光純薬(株)製PBD(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール0.1質量部、日本化成(株)製4-HBA(4-ヒドロキシブチルアクリレート)4.0質量部、BASF社製IRGANOX 1520L(2,4-ビス(オクチルチオメチル)-6-メチルフェノール)0.5質量部、ビックケミー・ジャパン社製BYK-088(シリコン系添加剤)0.1質量部を70℃に加温、混合し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は10120mPa・sであった。
Example 1
15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of a pine crystal KE-311 and S-1800A manufactured by Kogyo Co., Ltd. (mass ratio 6: 4), 13 parts by mass of LV-100 (polybutene) manufactured by JX Nippon Oil & Energy Corporation, Japan 33 parts by mass of GI-2000 (1,2-hydrogenated polybutadiene glycol) manufactured by Soda Co., Ltd., 0.5 parts by mass of speed cure TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by LAMBSON, BASF IRGACURE184 (1-hydroxycyclohexyl phenyl ketone) 0.5 parts by mass, Wako Pure Chemical Industries PBD (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole 0.1 parts by mass, Nippon Kasei Co., Ltd. 4-HBA (4-hydroxybutyl acrylate) 4.0 parts by mass, BASF IRGANOX 1520L (2,4-bis (octylthiomethyl) -6-methylphenol) 0.5 parts by mass, BYK-088 (silicone additive) 0.1 parts by mass of Big Chemie Japan Co., Ltd. at 70 ° C. The resin composition of the present invention was obtained by heating and mixing, and the viscosity of the resin composition was 10120 mPa · s.
実施例2
 合成例1のポリウレタン化合物(E-1)15質量部、新中村化学(株)製S-1800A(イソステアリルアクリレート)9.3質量部、前記式(1)で表される化合物である荒川化学工業(株)製パインクリスタルKE-359とS-1800Aの混合物(質量比で6:4)33.7質量部、JX日鉱日石エネルギー(株)製LV-100(ポリブテン)13質量部、日本曹達(株)製GI-2000(1,2-水素化ポリブタジエングリコール)33質量部、LAMBSON社製スピードキュアTPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)0.5質量部、BASF社製IRGACURE184(1-ヒドロキシシクロヘキシルフェニルケトン)0.5質量部、和光純薬(株)製PBD(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール0.1質量部、日本化成(株)製4-HBA(4-ヒドロキシブチルアクリレート)4.0質量部、BASF社製IRGANOX 1520L(2,4-ビス(オクチルチオメチル)-6-メチルフェノール)0.5質量部、ビックケミー・ジャパン社製BYK-088(シリコン系添加剤)0.1質量部を70℃に加温、混合し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は12270mPa・sであった。
Example 2
15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of pine crystal KE-359 and S-1800A manufactured by Kogyo Co., Ltd. (mass ratio 6: 4), 13 parts by mass of LV-100 (polybutene) manufactured by JX Nippon Oil & Energy, Japan 33 parts by mass of GI-2000 (1,2-hydrogenated polybutadiene glycol) manufactured by Soda Co., Ltd., 0.5 parts by mass of speed cure TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by LAMBSON, BASF IRGACURE184 (1-hydroxycyclohexyl phenyl ketone) 0.5 parts by mass, Wako Pure Chemical Industries PBD (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadiazole 0.1 parts by mass, Nippon Kasei Co., Ltd. 4-HBA (4-hydroxybutyl acrylate) 4.0 parts by mass, BASF IRGANOX 1520L (2,4-bis (octylthiomethyl) -6-methylphenol) 0.5 parts by mass, BYK-088 (silicone additive) 0.1 parts by mass of Big Chemie Japan Co., Ltd. at 70 ° C. The mixture was heated and mixed to obtain the resin composition of the present invention, which had a viscosity of 12270 mPa · s.
実施例3
 合成例1のポリウレタン化合物(E-1)15質量部、新中村化学(株)製S-1800A(イソステアリルアクリレート)9.3質量部、前記式(1)で表される化合物である荒川化学工業(株)製パインクリスタルPE-590 33.7質量部、JX日鉱日石エネルギー(株)製LV-100(ポリブテン)13質量部、日本曹達(株)製GI-2000(1,2-水素化ポリブタジエングリコール)33質量部、LAMBSON社製スピードキュアTPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)0.5質量部、BASF社製IRGACURE184(1-ヒドロキシシクロヘキシルフェニルケトン)0.5質量部、和光純薬(株)製PBD(2-(4-ビフェニル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール0.1質量部、日本化成(株)製4-HBA(4-ヒドロキシブチルアクリレート)4.0質量部、BASF社製IRGANOX 1520L(2,4-ビス(オクチルチオメチル)-6-メチルフェノール)0.5質量部、ビックケミー・ジャパン社製BYK-088(シリコン系添加剤)0.1質量部を70℃に加温、混合し、本発明の樹脂組成物を得た。この樹脂組成物の粘度は9800mPa・sであった。
Example 3
15 parts by mass of the polyurethane compound (E-1) of Synthesis Example 1, 9.3 parts by mass of S-1800A (isostearyl acrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., Arakawa Chemical Co., which is a compound represented by the formula (1) 33.7 parts by mass of Pine Crystal PE-590 manufactured by Kogyo Co., Ltd., 13 parts by mass of LV-100 (polybutene) manufactured by JX Nippon Mining & Energy, GI-2000 manufactured by Nippon Soda Co., Ltd. (1,2-hydrogen) Polybutadiene glycol) 33 parts by mass, LAMBSON speed cure TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) 0.5 parts by mass, BASF IRGACURE184 (1-hydroxycyclohexyl phenyl ketone) 0.5 parts by mass Part, PBD (2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3 manufactured by Wako Pure Chemical Industries, Ltd. 4-oxadiazole 0.1 parts by mass, Nippon Kasei Co., Ltd. 4-HBA (4-hydroxybutyl acrylate) 4.0 parts by mass, BASF IRGANOX 1520L (2,4-bis (octylthiomethyl)- 6 parts of methylphenol) and 0.5 parts by weight of BYK-088 (silicone additive) manufactured by Big Chemie Japan were heated to 70 ° C. and mixed to obtain a resin composition of the present invention. The viscosity of this resin composition was 9800 mPa · s.
 実施例1~3を表1に示し、以下の評価を行った。
Figure JPOXMLDOC01-appb-T000027
Examples 1 to 3 are shown in Table 1 and evaluated as follows.
Figure JPOXMLDOC01-appb-T000027
(粘度)
 E型粘度計(TV-200:東機産業(株)製)を用い、25℃にて測定した。
(viscosity)
Measurement was performed at 25 ° C. using an E-type viscometer (TV-200: manufactured by Toki Sangyo Co., Ltd.).
(液比重)
 密度比重計(DA-505 京都電子工業製)を用い、25℃にて測定した。
(Liquid specific gravity)
Measurement was performed at 25 ° C. using a density / specific gravity meter (DA-505, manufactured by Kyoto Electronics Industry Co., Ltd.).
(屈折率)
 樹脂の屈折率(25℃)をアッベ屈折率計(DR-M2:(株)アタゴ製)で測定した。
(Refractive index)
The refractive index (25 ° C.) of the resin was measured with an Abbe refractometer (DR-M2: manufactured by Atago Co., Ltd.).
(収縮率)
 フッ素系離型剤を塗布した厚さ1mmのスライドガラス2枚を用意し、そのうち1枚の離型剤塗布面に、得られた紫外線硬化型樹脂組成物を膜厚が200μmとなるよう塗布した。その後、2枚のスライドガラスを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量3000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させた。その後、2枚のスライドガラスを剥離し、膜比重測定用の硬化物を作製した。JIS K7112 B法に準拠し、硬化物の比重(DS)を測定した。また、25℃で樹脂組成物の液比重(DL)を測定した。DS及びDLの測定結果から、次式より硬化収縮率を算出したところ、2.5%未満であった。
収縮率(%)=(DS-DL)÷DS×100
(Shrinkage factor)
Two glass slides having a thickness of 1 mm coated with a fluorine-based release agent were prepared, and the obtained ultraviolet curable resin composition was applied to one of the release agent application surfaces so that the film thickness was 200 μm. . Thereafter, the two slide glasses were bonded so that the respective release agent application surfaces face each other. The resin composition was cured by irradiating the resin composition with ultraviolet rays having an integrated light quantity of 3000 mJ / cm 2 through a glass with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two slide glasses were peeled off to produce a cured product for measuring the film specific gravity. Based on JIS K7112 B method, specific gravity (DS) of hardened | cured material was measured. Moreover, the liquid specific gravity (DL) of the resin composition was measured at 25 degreeC. From the measurement results of DS and DL, the cure shrinkage rate was calculated from the following formula and found to be less than 2.5%.
Shrinkage rate (%) = (DS−DL) ÷ DS × 100
(剛性率)
 離型処理されたPETフィルムを2枚用意し、そのうち1枚の離形面に、得られた紫外線硬化型樹脂組成物を膜厚が200μmとなるように塗布した。その後、2枚のPETフィルムを、それぞれ離型面が互いに向かい合うように貼り合せた。PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量3000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させた。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製した。剛性率は、25℃において、ARES(TA Instruments社製)で1.0Hzでの値を測定した。またARESでtan dも測定した。
(Rigidity)
Two release-treated PET films were prepared, and the obtained ultraviolet curable resin composition was applied to one of the release surfaces so that the film thickness was 200 μm. Thereafter, the two PET films were bonded together such that the release surfaces face each other. The resin composition was cured by irradiating the resin composition with ultraviolet rays having an integrated light quantity of 3000 mJ / cm 2 through a PET film with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two PET films were peeled off to prepare a cured product for measuring the rigidity. As for the rigidity, a value at 1.0 Hz was measured with ARES (manufactured by TA Instruments) at 25 ° C. Tand was also measured by ARES.
(0℃濁り)
 試料を100mLガラス瓶に入れたのち、0℃の冷蔵庫に保管した。1週間後、目視にて結晶および濁りの有無を確認した。
(Turbidity at 0 ° C)
The sample was put in a 100 mL glass bottle and then stored in a refrigerator at 0 ° C. After one week, the presence or absence of crystals and turbidity was confirmed visually.
(耐白化性)
 厚さ1mmのスライドガラス2枚を用意し、一方のスライドガラスに実施例1~3の各樹脂組成物を膜厚が200μmとなるように塗布し、その塗布面に他方のスライドガラスを貼り合わせた。その後、ガラス越しに高圧水銀灯(80W/cm、オゾンレス/IRカットフィルター付き)で積算光量4000mJ/cmの紫外線を該組成物に照射した。得られた試験片を80℃85%RH環境下に48時間投入後、25℃45%RH環境に取り出してから15分後の膜の状態と、取り出してから3時間後の硬化膜の状態を目視にて確認した。
 厚さ1mmのスライドガラスに実施例1~3の各樹脂組成物を膜厚が200μmとなるように塗布し、その塗布面に剥離PETフィルムを貼り合わせた。その後、剥離PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス/IRカットフィルター付き)で積算光量4000mJ/cmの紫外線を該組成物に照射した。得られた接合体を80℃85%RH環境下に48時間投入後、25℃45%RH環境に取り出してから15分後の膜の状態と、取り出してから3時間後の硬化膜の状態を目視にて確認した。評価した結果、実施例1~3の組成物はいずれも○であった。
〇:膜の白化なし
△:15分後は白化していたが、3時間後には白化していなかった
×:15分後に白化しており、且つ3時間後も白化していた
(Whitening resistance)
Prepare two slide glasses with a thickness of 1 mm, apply each resin composition of Examples 1 to 3 to one slide glass so that the film thickness is 200 μm, and attach the other slide glass to the coated surface. It was. Thereafter, the composition was irradiated with ultraviolet rays having a cumulative light amount of 4000 mJ / cm 2 through a glass with a high-pressure mercury lamp (80 W / cm, with an ozone-less / IR cut filter). The obtained test piece was placed in an environment of 80 ° C. and 85% RH for 48 hours, and then the state of the film 15 minutes after removal into the 25 ° C. and 45% RH environment, and the state of the cured film 3 hours after removal. It was confirmed visually.
Each resin composition of Examples 1 to 3 was applied to a slide glass having a thickness of 1 mm so that the film thickness became 200 μm, and a release PET film was bonded to the coated surface. Thereafter, the composition was irradiated with ultraviolet rays having an integrated light amount of 4000 mJ / cm 2 through a peeled PET film with a high-pressure mercury lamp (80 W / cm, with ozone-less / IR cut filter). The obtained joined body was put in an environment of 80 ° C. and 85% RH for 48 hours, and then the state of the film 15 minutes after being taken out in the environment of 25 ° C. and 45% RH, and the state of the cured film 3 hours after being taken out. It was confirmed visually. As a result of the evaluation, the compositions of Examples 1 to 3 were all good.
◯: No whitening of the film Δ: Whitening after 15 minutes but no whitening after 3 hours ×: Whitening after 15 minutes and also whitening after 3 hours
(接着強度)
 下記実験例に従いガラスの接合体を得た。
 幅2cm×長さ3.5cm×厚1mmサイズのガラス板を2枚用意し、そのうち一方のガラス板の中央に、前記各樹脂組成物を厚さ200μm、直径1cmの円になるように塗布した。その後、得られた塗布層に、無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、320nm以下の波長を遮る紫外線カットフィルター越しに、大気側から積算光量100mJ/cmの紫外線を照射し、塗布層の下部側(ガラス板側)に存在する硬化部分と塗布層の上部側(大気側)に存在する未硬化部分を有する硬化物層を形成した。尚、この時、照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は3であった。さらに、塗布層の上部側(大気側)に存在する未硬化部分と、もう一方のガラス板を十字(90℃に交差する向き)に貼り合わせ、貼り合わせた方のガラス越しに積算光量2000mJ/cmの紫外線を照射することにより樹脂硬化物層を硬化させ、接合体を得た。
(Adhesive strength)
A glass joined body was obtained according to the following experimental example.
Two glass plates having a size of width 2 cm × length 3.5 cm × thickness 1 mm were prepared, and each resin composition was applied to the center of one glass plate so as to form a circle having a thickness of 200 μm and a diameter of 1 cm. . Thereafter, an electrodeless ultraviolet lamp (D-bulb manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.) is used for the obtained coating layer, and the accumulated light quantity is 100 mJ from the atmosphere through an ultraviolet cut filter that blocks a wavelength of 320 nm or less. / Cm 2 of ultraviolet rays was irradiated to form a cured product layer having a cured portion present on the lower side (glass plate side) of the coating layer and an uncured portion present on the upper side (atmosphere side) of the coating layer. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100. Furthermore, the uncured portion existing on the upper side (atmosphere side) of the coating layer and the other glass plate are bonded in a cross shape (direction crossing 90 ° C.), and the accumulated light amount is 2000 mJ / over through the bonded glass. The cured resin layer was cured by irradiating cm 2 ultraviolet rays to obtain a joined body.
(硬化速度)
 厚さ1mmのスライドガラス2枚を用意し、実施例1~3の各樹脂組成物を膜厚が200μmとなるように塗布し、その塗布面に他方のスライドガラスを貼り合わせた。その後、ガラス越しに高圧水銀灯(80W/cm、オゾンレス/IRカットフィルター付き)で積算光量100mJ/cmの紫外線を該組成物層に照射した。その後、スライドガラスを引き剥がし、該組成物の状態を確認した。評価結果はいずれも○であった。
〇:流動性がない
×:硬化が不十分で流動性がある
(Curing speed)
Two slide glasses having a thickness of 1 mm were prepared, each resin composition of Examples 1 to 3 was applied so that the film thickness was 200 μm, and the other slide glass was bonded to the application surface. Thereafter, the composition layer was irradiated with ultraviolet rays having an integrated light amount of 100 mJ / cm 2 through a glass with a high-pressure mercury lamp (80 W / cm, with ozone-less / IR cut filter). Thereafter, the slide glass was peeled off, and the state of the composition was confirmed. The evaluation results were all good.
○: No fluidity ×: Insufficient curing and fluidity
 以上の結果より、本発明の紫外線硬化型樹脂組成物は、硬化性が良好で、耐白化性が高く、基材に対する接着力が強く、さらに、貼り合わせをする基材に直接塗布した後、紫外線を照射して硬化し、もう一方の基材を貼り合わせた場合においても高い接着力をもつことが分かる。 From the above results, the ultraviolet curable resin composition of the present invention has good curability, high whitening resistance, strong adhesion to the base material, and further, after being directly applied to the base material to be bonded, It can be seen that even when cured by irradiating with ultraviolet rays and the other substrate is bonded, it has a high adhesive force.
(耐熱、耐湿接着性)
 厚さ1mmのスライドガラスと厚さ1mmのガラス板、若しくは片面に偏光フィルムを貼った厚さ1mmのガラス板を用意し、一方に得られた実施例1~3の紫外線硬化型樹脂組成物を膜厚が200μmとなるように塗布した後、その塗布面に他方を貼り合わせた。ガラス越しに、高圧水銀灯(80W/cm、オゾンレス)で積算光量3000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させ、接着性評価用サンプルを作製した。これを用いて、85℃の耐熱試験、60℃90%RHの耐湿試験を行い、100時間放置した。その評価用サンプルにおいて、目視にてガラス又は偏光フィルムからの樹脂硬化物の剥がれを確認したが、剥がれはなかった。
(Heat and moisture resistant adhesion)
A 1 mm thick glass slide and a 1 mm thick glass plate, or a 1 mm thick glass plate with a polarizing film pasted on one side, were prepared, and the UV curable resin compositions of Examples 1 to 3 obtained on one side were prepared. After coating so that the film thickness was 200 μm, the other was bonded to the coated surface. Through the glass, the resin composition was irradiated with ultraviolet rays having an integrated light amount of 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less), and the resin composition was cured to prepare a sample for evaluating adhesiveness. Using this, a heat resistance test at 85 ° C. and a humidity resistance test at 60 ° C. and 90% RH were conducted and left for 100 hours. In the sample for evaluation, peeling of the cured resin from the glass or polarizing film was confirmed visually, but there was no peeling.
(透過率)
 厚さ1mmのスライドガラス2枚を用意し、そのうちの1枚に、得られた実施例1~3の紫外線硬化型樹脂組成物を硬化後の膜厚が200μmとなるように塗布した。その後、2枚のスライドガラスを貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量3000mJ/cmの紫外線照射し、該樹脂組成物を硬化させ、透過率測定用の硬化物を作製した。得られた硬化物の透明性については、分光光度計(U-3310、日立ハイテクノロジーズ(株))を用いて、400~800nm及び400~450nmの波長領域における透過率を測定した。その結果、400~800nmの透過率90%以上であり、かつ、400~450nmの透過率が90%以上であった。
(Transmittance)
Two slide glasses having a thickness of 1 mm were prepared, and the obtained ultraviolet curable resin compositions of Examples 1 to 3 were applied to one of them so that the film thickness after curing was 200 μm. Then, two slide glasses were bonded together. The resin composition was cured by irradiating ultraviolet rays with an integrated light amount of 3000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less) through the glass to prepare a cured product for measuring transmittance. Regarding the transparency of the obtained cured product, the transmittance in the wavelength region of 400 to 800 nm and 400 to 450 nm was measured using a spectrophotometer (U-3310, Hitachi High-Technologies Corporation). As a result, the transmittance at 400 to 800 nm was 90% or more, and the transmittance at 400 to 450 nm was 90% or more.
(遮光部下の樹脂の硬化性)
 面積が3.5インチの液晶表示ユニットの表示面及び外周部に遮光部(幅5mm)を有する透明基板上の遮光部が形成されている面に、実施例1~3の組成物をそれぞれの基板に膜厚が125μmとなるように塗布した。ついで、得られた塗布層に無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、320nm以下の波長を遮る紫外線カットフィルター越しに、大気側から積算光量100mJ/cmの紫外線照射を行い、硬化部分と大気側に存在する未硬化部分を有する硬化物層を形成した。尚、この時組成物に照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は3であった。
その後、未硬化部分が対向する形で液晶表示ユニットと遮光部を有する透明基板を貼り合せた。最後に、超高圧水銀ランプ(TOSCURE752、ハリソン東芝ライティング社製)で、遮光部を有するガラス基板側から積算光量2000mJ/cmの紫外線を照射することにより樹脂硬化物層を硬化させ、光学部材を作製した。得られた光学部材から透明基板を外して遮光部分の樹脂硬化物層をヘプタンで洗い流した後、硬化状態を確認した。未硬化の樹脂組成物が除去された形跡は無く、遮光部の樹脂は十分硬化していた。
(Curability of the resin under the shading part)
The compositions of Examples 1 to 3 were applied to the display surface of the liquid crystal display unit having an area of 3.5 inches and the surface on which the light-shielding portion on the transparent substrate having the light-shielding portion (width 5 mm) was formed on the outer periphery. It apply | coated so that the film thickness might be set to 125 micrometers on a board | substrate. Next, an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy Co., Ltd.) was used for the obtained coating layer, and the accumulated light quantity from the atmosphere side was 100 mJ / A cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed by performing ultraviolet irradiation of cm 2 . At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100.
Thereafter, a liquid crystal display unit and a transparent substrate having a light-shielding portion were bonded together with the uncured portions facing each other. Finally, the resin cured product layer is cured by irradiating UV light with an integrated light amount of 2000 mJ / cm 2 from the glass substrate side having the light shielding portion with an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.). Produced. The transparent substrate was removed from the obtained optical member, and the cured resin layer of the light shielding part was washed away with heptane, and then the cured state was confirmed. There was no evidence that the uncured resin composition was removed, and the resin in the light shielding portion was sufficiently cured.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年10月27日付で出願された日本国特許出願(2015-211045)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (2015-211045) for which it applied on October 27, 2015, The whole is used by reference. Also, all references cited herein are incorporated as a whole.
1 液晶表示ユニット、2 遮光部を有する透明基板、3 透明基板、4 遮光部、5 紫外線硬化型樹脂組成物(紫外線硬化型樹脂組成物層)、6 未硬化部分を有する硬化物層、7 樹脂硬化物層、8 紫外線 1 liquid crystal display unit, 2 transparent substrate having light-shielding part, 3 transparent substrate, 4 light-shielding part, 5 ultraviolet curable resin composition (ultraviolet curable resin composition layer), 6 cured material layer having uncured part, 7 resin Hardened material layer, 8 UV

Claims (12)

  1.  少なくとも2つの光学基材を貼り合わせるために用いる、下記式(1)で表される化合物(A)を含有する紫外線硬化型樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子、水酸基、メチロール基又は縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。Rは縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基を表す。nは0又は1を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
    An ultraviolet curable resin composition containing a compound (A) represented by the following formula (1), which is used for bonding at least two optical substrates.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents a hydrogen atom, a hydroxyl group, a methylol group, or an organic group not containing a (meth) acryloyl group having a condensed polycyclic hydrocarbon group. R 2 has a condensed polycyclic hydrocarbon group (meta ) Represents an organic group not containing an acryloyl group, n represents 0 or 1. Each of a plurality of R 1 may be present independently and may be the same or different.
  2.  前記Rの前記縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基が、下記式(2A)~(2C)のいずれか
    Figure JPOXMLDOC01-appb-C000002
    (前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
    で表され、前記Rの前記縮合多環炭化水素基を有する(メタ)アクリロイル基を含んでいない有機基が下記(3A)~(3C)のいずれか
    Figure JPOXMLDOC01-appb-C000003
    (前記式中、*は前記式(1)のRに隣接する炭素原子に結合し、Rは水素原子又は炭素数1~6の炭化水素基を表す。複数存在するRはそれぞれ独立して存在し、同一であっても異なっていてもよい。)
    で表される請求項1に記載の紫外線硬化型樹脂組成物。
    The organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group of R 1 is any one of the following formulas (2A) to (2C):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, * is bonded to the carbon atom adjacent to R 1 in the formula (1), R 3 is R 3 are each independently of. Plurality of represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms And may be the same or different.)
    And the organic group not containing the (meth) acryloyl group having the condensed polycyclic hydrocarbon group represented by R 2 is any one of the following (3A) to (3C):
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula, * is bonded to a carbon atom adjacent to R 2 in the formula (1), R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. A plurality of R 3 are each independently selected. And may be the same or different.)
    The ultraviolet curable resin composition of Claim 1 represented by these.
  3.  光重合性オリゴマー(C)、光重合性モノマー(D)及び光重合開始剤(E)の少なくともいずれかを含む請求項1又は請求項2に記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition of Claim 1 or Claim 2 containing at least any one of a photopolymerizable oligomer (C), a photopolymerizable monomer (D), and a photoinitiator (E).
  4.  光重合性オリゴマー(C)が、ウレタン(メタ)アクリレート、ポリイソプレン又は水添ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン又は水添ポリブタジエン骨格を有する(メタ)アクリレートからなる群から選択されるいずれか1種以上を含有する請求項1又は2に記載の紫外線硬化型樹脂組成物。 The photopolymerizable oligomer (C) is selected from the group consisting of urethane (meth) acrylate, polyisoprene or (meth) acrylate having a hydrogenated polyisoprene skeleton, polybutadiene or (meth) acrylate having a hydrogenated polybutadiene skeleton The ultraviolet curable resin composition of Claim 1 or 2 containing 1 or more types.
  5.  光重合性オリゴマー(C)が、ポリプロピレン/ポリブタジエン/水添ポリブタジエン/ポリイソプレン/水添ポリイソプレンからなる群から選ばれる少なくとも1種以上の骨格をもつウレタン(メタ)アクリレートである請求項4に記載の紫外線硬化型樹脂組成物。 The photopolymerizable oligomer (C) is a urethane (meth) acrylate having at least one skeleton selected from the group consisting of polypropylene / polybutadiene / hydrogenated polybutadiene / polyisoprene / hydrogenated polyisoprene. UV curable resin composition.
  6.  光重合性モノマー(D)として、下記式(10)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素原子、又はCHを示し、nは1~3の整数を示す)
    で表される単官能アクリレートを含有する請求項1~5のいずれか一項に記載の紫外線硬化型樹脂組成物。
    As the photopolymerizable monomer (D), the following formula (10)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 5 represents a hydrogen atom or CH 3 , and n represents an integer of 1 to 3)
    The ultraviolet curable resin composition according to any one of claims 1 to 5, which comprises a monofunctional acrylate represented by the formula:
  7.  前記式(10)が4-ヒドロキシブチルアクリレートである請求項6に記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition according to claim 6, wherein the formula (10) is 4-hydroxybutyl acrylate.
  8.  液状柔軟化成分(B1)を含有し、液状柔軟化成分(B1)がヒドロキシル基含有ポリマー、液状テルペン系樹脂のいずれか一方、又はその両方を含む請求項1~7のいずれか一項に記載の紫外線硬化型樹脂組成物。 The liquid softening component (B1) is contained, and the liquid softening component (B1) contains one or both of a hydroxyl group-containing polymer and a liquid terpene resin. UV curable resin composition.
  9.  光重合性モノマー(D)として、下記式(12)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Xはアクリロイル基を示し、Rは炭素数10~20個のアルキル基を表す)
    で表される単官能アクリレートを含有する請求項1~8のいずれか一項に記載の紫外線硬化型樹脂組成物。
    As the photopolymerizable monomer (D), the following formula (12)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein X represents an acryloyl group, and R 6 represents an alkyl group having 10 to 20 carbon atoms)
    The ultraviolet curable resin composition according to any one of claims 1 to 8, which comprises a monofunctional acrylate represented by the formula:
  10.  光重合性モノマー(D)として、下記式(13)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xはアクリロイル基を示し、Rは炭素数12~18個のアルキル基を表す)
    で表される単官能アクリレートを含有する請求項1~8のいずれか一項に記載の紫外線硬化型樹脂組成物。
    As the photopolymerizable monomer (D), the following formula (13)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein X represents an acryloyl group and R 7 represents an alkyl group having 12 to 18 carbon atoms)
    The ultraviolet curable resin composition according to any one of claims 1 to 8, which comprises a monofunctional acrylate represented by the formula:
  11.  請求項1~10のいずれか一項に記載の紫外線硬化型樹脂組成物に活性エネルギー線を照射して得られる硬化物。 A cured product obtained by irradiating the ultraviolet curable resin composition according to any one of claims 1 to 10 with active energy rays.
  12.  請求項1~10のいずれか一項に記載の紫外線硬化型樹脂組成物を用いてなるタッチパネル。 A touch panel using the ultraviolet curable resin composition according to any one of claims 1 to 10.
PCT/JP2016/081646 2015-10-27 2016-10-25 Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel WO2017073584A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187010312A KR20180075494A (en) 2015-10-27 2016-10-25 UV-curable resin composition for touch panel, cured product using same and touch panel
JP2017547811A JPWO2017073584A1 (en) 2015-10-27 2016-10-25 UV curable resin composition for touch panel, cured product and touch panel using the same
CN201680060820.7A CN108137993A (en) 2015-10-27 2016-10-25 Touch panel uv-hardening resin constituent, hardening thing and touch panel using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-211045 2015-10-27
JP2015211045 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073584A1 true WO2017073584A1 (en) 2017-05-04

Family

ID=58630538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081646 WO2017073584A1 (en) 2015-10-27 2016-10-25 Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel

Country Status (5)

Country Link
JP (1) JPWO2017073584A1 (en)
KR (1) KR20180075494A (en)
CN (1) CN108137993A (en)
TW (1) TW201728729A (en)
WO (1) WO2017073584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244959A1 (en) * 2018-06-20 2019-12-26 日本化薬株式会社 Adhesive, cured product thereof and optical member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181539B (en) * 2022-09-08 2022-12-20 拓迪化学(上海)有限公司 UV (ultraviolet) light-cured glue for battery and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095794A (en) * 2011-10-28 2013-05-20 Kyoritsu Kagaku Sangyo Kk Method for producing optical display, and resin composition for laminating the same
JP2014189758A (en) * 2013-03-28 2014-10-06 Nippon Shokubai Co Ltd Energy ray-curable resin composition using unsaturated carbonyl-modified conjugated diene-based polymer
JP2015007191A (en) * 2013-06-25 2015-01-15 株式会社日本触媒 Energy ray-curable resin composition using unsaturated carbonyl modified conjugated diene-based hydrogenated polymer
WO2015111584A1 (en) * 2014-01-22 2015-07-30 旭硝子株式会社 Curable resin composition, and layered body and image display device using curable resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014078115A1 (en) * 2012-11-16 2014-05-22 3M Innovative Properties Company Adhesive including pendant (meth) acryloyl groups, article, and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095794A (en) * 2011-10-28 2013-05-20 Kyoritsu Kagaku Sangyo Kk Method for producing optical display, and resin composition for laminating the same
JP2014189758A (en) * 2013-03-28 2014-10-06 Nippon Shokubai Co Ltd Energy ray-curable resin composition using unsaturated carbonyl-modified conjugated diene-based polymer
JP2015007191A (en) * 2013-06-25 2015-01-15 株式会社日本触媒 Energy ray-curable resin composition using unsaturated carbonyl modified conjugated diene-based hydrogenated polymer
WO2015111584A1 (en) * 2014-01-22 2015-07-30 旭硝子株式会社 Curable resin composition, and layered body and image display device using curable resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244959A1 (en) * 2018-06-20 2019-12-26 日本化薬株式会社 Adhesive, cured product thereof and optical member
JP2019218475A (en) * 2018-06-20 2019-12-26 日本化薬株式会社 Adhesive, cured article thereof and optical member

Also Published As

Publication number Publication date
KR20180075494A (en) 2018-07-04
CN108137993A (en) 2018-06-08
TW201728729A (en) 2017-08-16
JPWO2017073584A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6076395B2 (en) UV curable resin composition
WO2015119245A1 (en) Ultraviolet-curable adhesive composition for touch panel, optical member production method using same, cured product, and touch panel
JP6620092B2 (en) UV curable resin composition for touch panel, laminating method and article using the same
JP6778106B2 (en) Ultraviolet curable resin composition for touch panels, bonding method and articles using it
JP6722584B2 (en) Ultraviolet curable resin composition for touch panel, bonding method and article using the same
WO2015199156A1 (en) Process for producing optical member, and ultraviolet-curable resin composition for use in same
JPWO2019069872A1 (en) UV-curable adhesive composition, a cured product thereof, and a method for manufacturing an optical member using the UV-curable adhesive composition.
WO2016117526A1 (en) Method for producing image display device, curable resin composition to be used therein, touch panel, and image display device
JP6378184B2 (en) Manufacturing method of optical member and ultraviolet curable resin composition used therefor
WO2015190571A1 (en) Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2016021517A1 (en) Method for producing optical member and curable resin composition used therein
WO2017073584A1 (en) Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel
JPWO2019093157A1 (en) UV-curable adhesive composition, a cured product thereof, and a method for manufacturing an optical member using the UV-curable adhesive composition.
WO2019016963A1 (en) Ultraviolet curable adhesive, and lamination method and article using same
JP2018012750A (en) Ultraviolet-curable adhesive and lamination method and article using the same
WO2019208517A1 (en) Ultraviolet-curable adhesive composition, cured product thereof, and optical member production method
JPWO2018230610A1 (en) UV-curable adhesive composition for touch panel, cured product thereof, and touch panel using the same
JP2019189712A (en) Ultraviolet curable adhesive composition, lamination method and article using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547811

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010312

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859814

Country of ref document: EP

Kind code of ref document: A1