WO2015199156A1 - Process for producing optical member, and ultraviolet-curable resin composition for use in same - Google Patents

Process for producing optical member, and ultraviolet-curable resin composition for use in same Download PDF

Info

Publication number
WO2015199156A1
WO2015199156A1 PCT/JP2015/068262 JP2015068262W WO2015199156A1 WO 2015199156 A1 WO2015199156 A1 WO 2015199156A1 JP 2015068262 W JP2015068262 W JP 2015068262W WO 2015199156 A1 WO2015199156 A1 WO 2015199156A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin composition
curable resin
optical
Prior art date
Application number
PCT/JP2015/068262
Other languages
French (fr)
Japanese (ja)
Inventor
貴文 水口
隼 本橋
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2015199156A1 publication Critical patent/WO2015199156A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a method for producing an optical member by laminating an optical substrate having a light shielding part and another optical substrate, and an ultraviolet curable resin composition therefor.
  • a touch panel In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used.
  • a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
  • a strip-shaped light shielding portion is formed on the outermost edge of the transparent protective plate in order to improve the contrast of the display image.
  • the transparent protective plate on which the light-shielding part is formed is bonded with the ultraviolet curable resin composition, sufficient ultraviolet light does not reach the light-shielding region that is a shadow of the light-shielding part of the ultraviolet curable resin by the light-shielding part, Insufficient curing of the resin. If the resin is not sufficiently cured, problems such as display unevenness in the vicinity of the light shielding portion occur.
  • Patent Document 1 discloses a technique in which an organic peroxide is contained in an ultraviolet curable resin and heated after ultraviolet irradiation to cure the resin in the light shielding portion. Yes. However, there is a concern that the heating process may damage the liquid crystal display device and the like. Furthermore, since a heating step of usually 60 minutes or more is required to make the resin sufficiently cured, there is a problem that productivity is poor.
  • Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for curing the resin of the light shielding part by irradiating ultraviolet rays from the outer side surface of the light shielding part forming surface.
  • Patent Document 3 discloses a technique using the slow-acting property of a cationic polymerizable ultraviolet curable resin, but the flexibility of the cured resin is inferior.
  • Patent Document 4 discloses a technique for obtaining an optical member by curing in two stages, such as performing a main curing after a temporary curing.
  • a normal resin composition is cured, the flexibility that the resin follows the substrate at the time of temporary curing cannot be obtained, and the resin and the substrate are peeled off due to the influence, or bubbles generated at the time of bonding Bonding was difficult due to the phenomenon that it was difficult to disappear.
  • the present invention relates to the following (1) to (11).
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays in the following [Step 3] is 1.5 to 10 times the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in the following [Step 1].
  • An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate.
  • Step 2 A step of bonding another optical substrate or an uncured portion of another optical substrate obtained in Step 1 to an uncured portion of the optical substrate obtained in Step 1;
  • Step 3 A step of irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate to cure the cured product layer.
  • the molar extinction coefficient of the photopolymerization initiator (B) measured in acetonitrile or methanol is 300 ml / (g ⁇ cm) or more at 302 nm or 313 nm, and is 100 ml / (g ⁇ cm) or less at 365 nm.
  • the optical base material is a transparent glass substrate having a light shielding portion, a transparent resin substrate having a light shielding portion, a glass substrate having a light shielding portion and a transparent electrode formed thereon, and a transparent electrode formed on the transparent substrate having the light shielding portion.
  • the ultraviolet curing according to any one of (4) to (6), comprising at least one selected from the group consisting of a glass substrate, a substrate with a film attached thereto, a liquid crystal display unit, a plasma display unit, and an organic EL display unit. Mold resin composition.
  • the storage rigidity of the resin layer at a curing rate of 98% when irradiated with ultraviolet rays is 3 to 20 versus the storage rigidity of the resin layer at 25 ° C. when the curing rate is 70 to 80% when irradiated with ultraviolet rays.
  • An ultraviolet curable resin composition having a storage rigidity (25 ° C.) at a curing rate of 80% and 1 ⁇ 10 2 Pa to 1 ⁇ 10 5 Pa.
  • the ultraviolet curable resin composition according to (8) which is used in the production method according to (1).
  • (10) One selected from the group consisting of (meth) acrylate (A), urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and (meth) acrylate monomer
  • (11) The ultraviolet curable resin composition according to any one of (4) to (10), wherein the optical member is a touch panel.
  • FIG. 6 is a process diagram showing manufacturing steps according to Example 1, Example 2, and Comparative Example 1.
  • FIG. It is the schematic which shows the one aspect
  • the method for producing an optical member of the present invention is characterized in that at least two optical substrates are bonded together by the following [Step 1] to [Step 3].
  • An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate, By irradiating the coating layer with ultraviolet rays, a cured portion (hereinafter referred to as “cured portion of the cured product layer” or simply “cured portion”) present on the optical substrate side (lower side of the coated layer) of the coated layer.
  • uncured portion of the cured product layer (hereinafter referred to as “uncured portion of the cured product layer” or simply “uncured portion”) existing on the side opposite to the optical substrate side (the upper side of the coating layer, usually the air side).
  • Another optical substrate is bonded to the uncured portion of the cured product layer of the optical substrate obtained in Step 1, or the other optical substrate obtained in Step 1 is cured. The process of bonding the uncured part of the material layer.
  • Step 3 A step of curing the cured product layer by irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate.
  • the curable resin composition of the present invention by using the curable resin composition of the present invention, an optical member such as a display unit having little damage to the optical substrate, good productivity, good curability and adhesion is obtained. And the degree of curing of the resin is high. Further, the optical member is coated with an ultraviolet curable resin composition, the coating layer is irradiated with ultraviolet rays, the optical substrate is bonded, and the ultraviolet rays are further irradiated to form an optical member. Bonding is easy even if it is obtained, the optical substrate follows during temporary curing, peels off, prevents bubbles or distortion of the optical substrate, and prevents display unevenness and adheres.
  • FIG. 1 is a process diagram showing a first embodiment of a manufacturing process of an optical member of the present invention.
  • This method is a method of obtaining an optical member (a liquid crystal display unit having a light shielding part) by bonding the liquid crystal display unit 1 and a transparent substrate 2 having a light shielding part.
  • the liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
  • the transparent substrate 2 having a light shielding portion is a transparent substrate such as a glass plate, a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, an alicyclic polyolefin polymer (COP) plate.
  • the transparent substrate 2 having a black frame-shaped light-shielding portion 4 on the surface of the transparent substrate 3 can be suitably used, and the light-shielding portion 4 is formed by attaching a tape, applying a paint, printing, or the like.
  • the present invention can also be applied to a device that does not have the light shielding portion 4.
  • the case where the light shielding portion 4 is provided will be described as a specific example.
  • transparent substrate having a light-shielding portion can be read as “transparent substrate”, and can be considered as an example in which the light-shielding portion is not provided as it is.
  • the ultraviolet curable resin composition containing (meth) acrylate (A) and a photoinitiator (B) is made into the transparent which has the display surface of the liquid crystal display unit 1, and a light-shielding part. It is applied to the surface of the surface of the substrate 2 where the light shielding portion 4 is formed.
  • the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method.
  • the ultraviolet curable resin composition applied to the surface of the liquid crystal display unit 1 and the transparent substrate 2 having the light shielding portion may be the same, or different ultraviolet curable resin compositions may be used.
  • both are the same ultraviolet curable resin composition.
  • the film thickness of the cured product of each ultraviolet curable resin is adjusted so that the cured resin layer 7 after bonding is preferably 50 to 500 ⁇ m, more preferably 50 to 350 ⁇ m, and still more preferably 100 to 350 ⁇ m.
  • the film thickness of the cured layer of the ultraviolet curable resin existing on the surface of the transparent substrate 2 having the light-shielding portion depends on the film thickness, the ultraviolet curable resin usually existing on the surface of the liquid crystal display unit 1 is used. It is preferable that the thickness is equal to or thicker than the thickness of the cured product layer of the mold resin. This is to minimize the portion that remains uncured even after irradiation with ultraviolet rays in Step 3 described later, thereby eliminating the risk of curing failure.
  • the ultraviolet curable resin composition layer 5 after application is irradiated with ultraviolet rays 8 and a cured portion (in the drawing, the liquid crystal display unit side or the transparent substrate side as viewed from the ultraviolet curable resin composition) is present (in the figure). Curing with uncured parts (not shown in the figure) present on the upper side of the coating layer (on the opposite side of the liquid crystal display unit side or on the opposite side of the transparent substrate side) (on the atmospheric side when performed in the atmosphere) A physical layer 6 is obtained.
  • the irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 , and particularly preferably 10 to 500 mJ / cm 2 .
  • uncured refers to a fluid state in a 25 ° C. environment.
  • the resin composition layer is touched with a finger after ultraviolet irradiation and a liquid component adheres to the finger, it is determined to have an uncured portion.
  • any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
  • the ratio of the maximum illuminance at 200 to 320 nm (illuminance) Ratio) is 30 or less, and particularly preferably, the illuminance at 200 to 320 nm is 10 or less.
  • the adhesive strength of the finally obtained optical member will be inferior. This is because if the illuminance at a low wavelength is high, the curing of the ultraviolet curable resin composition proceeds excessively at the time of curing in the step 1, and the contribution to the adhesion at the time of curing in the ultraviolet irradiation in the step 3 is reduced. This is thought to be due to this.
  • the illuminance is usually 30 to 1000 mW / cm 2 at each wavelength (for example, 365 nm).
  • the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if the above condition is not satisfied, such illuminance can be obtained by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of irradiation in step 1. Irradiation at a ratio is possible. Although it does not specifically limit as a base material which adjusts the illumination intensity ratio of an ultraviolet-ray, For example, the glass plate, soda-lime glass, PET film etc.
  • step 1 irradiation with ultraviolet rays is usually carried out in the air at the upper surface on the coating side (on the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side when viewed from the ultraviolet curable resin composition layer) (normal air From the surface). Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation.
  • the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side.
  • the state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation. That is, when oxygen or ozone is sprayed on the surface of the coating layer, oxygen inhibition of curing of the ultraviolet curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured or the uncured portion
  • the film thickness can be increased.
  • Step 2 Next, as shown in FIG. 1B, the liquid crystal display unit 1 and the transparent substrate 2 having a light shielding portion are bonded together so that the uncured portions face each other. Bonding can be performed either in air or in vacuum. Here, in order to make it easy to prevent bubbles from being generated at the time of bonding, it is preferable to bond in a vacuum. As described above, when a cured product of an ultraviolet curable resin having a cured portion and an uncured portion is obtained on each of the liquid crystal display unit and the transparent substrate, the adhesion can be improved.
  • the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 8 from the transparent substrate 2 side which has a light-shielding part, and ultraviolet curable type
  • the resin composition (coating layer) is cured.
  • the dose of ultraviolet rays is preferably from about 100 ⁇ 4000mJ / cm 2 in accumulated light quantity, particularly preferably from 200 ⁇ 3000mJ / cm 2 or so, more highly preferably 1500 ⁇ 3000mJ / cm 2.
  • the light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light.
  • a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used. In this way, the optical member shown in FIG. 5 can be obtained.
  • the optical member of the present invention may be manufactured by the second modified embodiment described below.
  • the matter similar to the content mentioned previously in 1st Embodiment is applicable, the overlapping description is not repeated.
  • the same members as those in the first embodiment described above are denoted by the same reference numerals in the drawing, and the description thereof will not be repeated here.
  • a light shielding part 4 on a transparent substrate 2 having a light shielding part is formed by using an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B).
  • the resulting coating layer (ultraviolet curable resin composition layer 5) is irradiated with ultraviolet rays 8 to the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition).
  • a cured product layer 6 having an existing cured portion and an uncured portion existing on the upper side (the side opposite to the transparent substrate side) of the coating layer is obtained.
  • the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less, preferably when the maximum illuminance in the range of 320 to 450 nm is set to 100.
  • the illuminance at 200 to 320 nm is 10 or less.
  • the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance at 200 to 320 nm is higher than 30, the adhesive strength of the optical member finally obtained may be inferior.
  • Bonding can be performed either in air or in vacuum.
  • Step 3 Next, as shown in FIG. 2C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, so that an ultraviolet curable type is obtained.
  • the cured product layer 6 having an uncured portion of the resin composition is cured.
  • FIG. 3 is a process diagram showing a third embodiment of a method for producing an optical member using the ultraviolet curable resin composition of the present invention.
  • the matter similar to the content mentioned previously in 1st Embodiment is applicable, the overlapping description is not repeated.
  • the same members as those in the first embodiment described above are denoted by the same reference numerals in the drawing, and the description thereof will not be repeated here.
  • Step 1 First, as shown in FIG. 3A, an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B) was applied to the surface of the liquid crystal display unit 1. Thereafter, the ultraviolet curable resin composition layer 5 is irradiated with ultraviolet rays 8, and a cured portion existing on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer ( A cured product layer 6 having an uncured portion present on the side opposite to the transparent substrate side is obtained.
  • the maximum illuminance at 200 to 320 nm is preferably 30 or less, particularly preferably 200 when the maximum illuminance in the range of 320 to 450 nm is 100.
  • the illuminance at ⁇ 320 nm is 10 or less.
  • the maximum illuminance in the range of 320 nm to 450 nm is 100, if the maximum illuminance at 200 to 320 nm is higher than 30, the adhesive strength of the finally obtained optical member may be deteriorated.
  • the liquid crystal display unit 1 is formed such that the uncured portion of the obtained cured product layer 6 and the surface on which the light shielding portion on the transparent substrate 2 having the light shielding portion is formed face each other. And a transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum. Here, the bonding is preferably performed in a vacuum. This is because the vacuum is filled with the resin when transferred to atmospheric pressure even if a vacuum state portion is interposed between the base material and the ultraviolet curable resin composition by performing in vacuum.
  • Step 3 the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, thereby ultraviolet curing type.
  • the cured product layer 6 having an uncured portion of the resin composition is cured.
  • some of the embodiments of the method for producing an optical member of the present invention are described with one specific optical substrate.
  • the liquid crystal display unit and the transparent substrate having the light-shielding portion have been described, but in the manufacturing method of the present invention, various members described later can be used as an optical substrate instead of the liquid crystal display unit.
  • the various members mentioned later as an optical base material can be used.
  • an optical substrate such as a liquid crystal display unit and a transparent substrate
  • these various members are further bonded to another optical substrate layer (for example, a film bonded with a cured layer of an ultraviolet curable resin composition). Or what laminated
  • any method for adjusting the film thickness of the uncured portion by spraying ozone is not applied only to the above-described embodiment, and can be applied to any manufacturing method included in the present invention.
  • the optical substrate is an optical substrate
  • the optical substrate bonded thereto is at least one display body unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit.
  • One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded.
  • a mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
  • the ultraviolet curable resin composition is applied to either the surface of the protective base material having the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to apply.
  • One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto
  • the aspect which is a display body unit which has an optical base material which has a light-shielding part.
  • the ultraviolet curable resin is applied to either the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided, the display surface of the display unit, or both of them. It is preferable to apply the composition.
  • the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
  • the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion
  • the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided.
  • the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion
  • the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel.
  • the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
  • the light-shielding part of the optical base material having the light-shielding part may be provided on any of the optical base materials, but is usually formed in a frame shape around the optical base material in the form of a transparent plate or sheet, and the width is The thickness is preferably about 0.5 to 10 mm, more preferably about 1 to 8 mm, and still more preferably about 2 to 8 mm.
  • the curing rate represents the curing rate as seen from the curing component of the ultraviolet curable resin composition, and represents a value calculated by removing components that are not cured such as a softening agent.
  • the curing rate in the present invention can be calculated from the following formula (1) from the liquid specific gravity before curing at 25 ° C. and the film specific gravity at 25 ° C. obtained by curing (Formula 1).
  • the ultraviolet curable resin composition of the present invention is a resin layer when the ultraviolet ray is irradiated in the above [Step 3] with respect to the storage rigidity at 25 ° C. of the resin layer when the ultraviolet ray is irradiated in the above [Step 1].
  • the resin composition is characterized in that the storage rigidity is usually 1.5 to 20 times, preferably 3 to 20 times (more preferably 3 to 10 times). Further, as a characteristic of the resin composition itself, a resin layer having a curing rate of 98% or more when irradiated with ultraviolet rays with respect to the storage rigidity at 25 ° C.
  • any ultraviolet curable resin composition having a viscosity of 1 ⁇ 10 2 Pa to 1 ⁇ 10 5 Pa can be applied.
  • a method for measuring the storage rigidity for example, it can be measured by the following method. Specifically, two PET films having a thickness of 40 ⁇ m coated with a fluorine-based mold release agent are prepared, and the obtained UV-curable resin composition is cured on one of the release agent-coated surfaces.
  • the film thickness is 600 ⁇ m.
  • the two PET films are bonded together so that the respective release agent application surfaces face each other.
  • the resin composition was cured by irradiating ultraviolet rays with an integrated light amount of 2000 mJ / cm 2 through a PET film with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two PET films are peeled off to produce a cured product for measuring the rigidity.
  • the rigidity can be measured in a temperature range of 20 to 40 ° C. using ARES (TA Instruments).
  • ARES TA Instruments
  • the storage rigidity of each component in the resin composition at a curing rate of 70 to 80% at 25 ° C. and the storage rigidity at a curing ratio of 98% or more are measured. This can be realized by adjusting the weight ratio so as to be within the target range.
  • the curing rate at the time of the main curing in [Step 3] is 95% or more.
  • the ultraviolet curable resin composition of the present invention is characterized in that the storage rigidity at 25 ° C. is 1 ⁇ 10 2 Pa to 1 ⁇ 10 4 Pa during the temporary curing.
  • the storage rigidity is higher than 1 ⁇ 10 4 Pa, the ultraviolet curable resin composition shrinks due to curing, and a shrinking force is generated. Therefore, the resin composition does not follow the base material and peels off. Or the base material is distorted or the stress is not sufficiently relaxed, resulting in display unevenness when the optical member is obtained.
  • the storage rigidity at the time of pre-curing is in the above range, so that the space created at the time of bonding without causing problems when moved to atmospheric pressure is made of resin. It becomes possible to fill.
  • the storage rigidity is preferably 300 to 3000 Pa, and more preferably 500 to 2000 Pa.
  • the curing rate of the resin at the time of temporary curing is 60 to 90%, and the storage rigidity of the cured product having the curing rate is the above value and the preferred value. Further, distortion of the substrate and display unevenness can be prevented.
  • the curing rate during the main curing in [Step 3] is usually 95% or more.
  • the storage rigidity of the resin layer at 25 ° C. when irradiated with ultraviolet rays in [Step 1] is stored in the resin layer when irradiated with ultraviolet rays in [Step 3]. It is a resin composition characterized by having a rigidity of 1.5 to 10 times.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 1 with respect to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays at a curing rate of 70 to 80%.
  • a resin whose rigidity changes rapidly in accordance with the curing rate, and by suppressing the rigidity when the curing rate is low to a certain range, it is easy for the base material in a state where the curing rate is low. Since it adhere
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays in [Step 3] is 2 to 7 as compared to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in [Step 1].
  • the ratio is more preferably double, and particularly preferably 2.5 to 5 times.
  • the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 2 to 7 with respect to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays at a curing rate of 80%.
  • the ultraviolet curable resin composition of the present invention is characterized in that the storage rigidity at 25 ° C. is 1 ⁇ 10 2 Pa to 1 ⁇ 10 6 Pa at the time of the main curing.
  • the storage rigidity is greater than 1 ⁇ 10 6 Pa, the UV curable resin composition may be excessively shrunk due to curing, so that the base material may be distorted, and the stress is not sufficiently relaxed. The possibility of display unevenness when the optical member is obtained is reduced.
  • the storage rigidity is preferably 1.0 ⁇ 10 2 to 1.0 ⁇ 10 5 Pa, and more preferably 1.0 ⁇ 10 2 to 3.0 ⁇ 10 4 Pa.
  • the ultraviolet curable resin composition of the present invention contains (meth) acrylate (A) and a photopolymerization initiator (B). Moreover, the other component which can be added to the ultraviolet curable resin composition used for optics as an arbitrary component can be contained.
  • the phrase “can be added to an ultraviolet curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to an extent that it cannot be used for optics is not included.
  • a cured sheet having a thickness after curing of 200 ⁇ m is prepared with the ultraviolet curable resin composition used in the present invention, a preferable average transmittance of the sheet with light having a wavelength of 400 to 800 nm is: It is preferably at least 90% or more.
  • a suitable composition ratio of the ultraviolet curable resin composition is such that (meth) acrylate (A) is 25 to 90% by weight and the photopolymerization initiator (B) is 0% with respect to the total amount of the ultraviolet curable resin composition. 2-5% by weight, other components are the balance.
  • any photopolymerization initiator that is usually used can be used as the photopolymerization initiator (B).
  • the (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is not particularly limited, but urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, It is preferable to use any selected from the group consisting of (meth) acrylate monomers. More preferably, it is an embodiment containing both (i) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer.
  • “(meth) acrylate” means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like.
  • the urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
  • polyhydric alcohol examples have 1 to 10 carbon atoms such as neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc.
  • Triols such as alkylene glycol, trimethylolpropane, pentaerythritol, alcohols having a cyclic skeleton such as tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, and the like; and these polyhydric alcohols and polybasic acids (for example, succinic acid) , Phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride, etc.) polyester polyol obtained by reaction with polyhydric alcohol and ⁇ -caprolactone Tone alcohol, polycarbonate polyol (for example, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate), polyether polyol (for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide modified bisphenol A, etc.) And polyo
  • the polyhydric alcohol is preferably polypropylene glycol or hydrogenated polybutadiene diol.
  • polypropylene glycol having a weight average molecular weight of 2000 or more and water.
  • An added polybutadiene diol is particularly preferred.
  • the upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less.
  • the hydrogenated polybutadiene polyol (A) can be used as long as it is a hydrogenated reduction product of a general polybutadiene polyol, but particularly for optical applications, those having few residual double bonds are preferred, and the iodine value is 20
  • the following are particularly preferred:
  • As for this molecular weight all generally available molecular weight distributions can be used, but those having a molecular weight of 500 to 3000 are particularly preferred when a balance between flexibility and curability is achieved.
  • organic polyisocyanate examples include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and dicyclopentanyl isocyanate.
  • the hydroxyl group-containing (meth) acrylate is a compound having at least one hydroxyl group and one (meth) acrylate in one molecule.
  • 2-hydroxyethyl (meth) acrylate is particularly preferred from the viewpoint of excellent curability and flexibility.
  • a polymerizable compound described later in the present invention may be added during the reaction.
  • the reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer (first reaction). Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained (second reaction).
  • the first reaction can be carried out in the absence of a solvent, but is carried out in a solvent having a high viscosity of the product and not having an alcoholic hydroxyl group or in a (meth) acrylate monomer described later in order to improve workability.
  • a solvent having a high viscosity of the product and not having an alcoholic hydroxyl group or in a (meth) acrylate monomer described later in order to improve workability.
  • the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene, and tetramethylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and dipropylene glycol.
  • Glycol ethers such as dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate , Propylene glycol monoethyl ether acetate, Propylene glycol monomethyl ether acetate, esters such as dialkyl glutarate, dialkyl succinate, dialkyl adipate, cyclic esters such as ⁇ -butyrolactone, petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha, etc. Can be carried out alone or in a mixed organic solvent.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C.
  • the end point of the reaction is confirmed by a decrease in the amount of isocyanate.
  • a catalyst may be added for the purpose of shortening the reaction time.
  • this catalyst either a basic catalyst or an acidic catalyst is used.
  • the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine and ammonia, and phosphines such as tributylphosphine and triphenylphosphine.
  • acidic catalysts examples include copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, titanium tetraisopropoxide, zirconium tetrabutoxide, aluminum chloride, tin octylate, octyltin trilaurate, dibutyltin dilaurate, Mention may be made of Lewis acid catalysts such as octyltin diacetate. The amount of these catalysts added is usually 0.1 to 1 part by weight based on 100 parts by weight of the total weight of the diol compound and the polyisocyanate compound.
  • the urethane (meth) acrylate of the present invention is obtained by reacting (second reaction) a (meth) acrylate compound (C) having at least one hydroxyl group with respect to the remaining isocyanate group after the first reaction. be able to.
  • the second reaction of the present invention is charged in an equivalent relationship such that the isocyanate group of the intermediate obtained after the first reaction is eliminated.
  • the amount is preferably 1.0 to 2.0 mol.
  • the second reaction of the present invention can also be carried out in the absence of a solvent, but in the above-mentioned solvent and / or polymerizable compound (F) described later in the present invention in order to improve workability because the product has a high viscosity. Preferably it is done.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C.
  • the end point of the reaction is confirmed by a decrease in the amount of isocyanate.
  • the aforementioned catalyst may be added for the purpose of shortening the reaction time.
  • a polymerization inhibitor such as 4-methoxyphenol is already added to the acrylate compound used as a raw material, but a polymerization inhibitor may be added again during the reaction.
  • examples of such polymerization inhibitors include hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-4-cresol, 3-hydroxythiophenol, Examples include p-benzoquinone, 2,5-dihydroxy-p-benzoquinone, and phenothiazine. The amount used is 0.01 to 1% by weight based on the reaction raw material mixture.
  • the weight average molecular weight of the urethane (meth) acrylate is preferably about 7000 to 25000, and more preferably 10,000 to 20000. When the weight average molecular weight is less than 7000, shrinkage tends to increase, and when the weight average molecular weight is greater than 25000, curability tends to be poor.
  • urethane (meth) acrylates can be used alone or in admixture of two or more.
  • the weight ratio of urethane (meth) acrylate in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule.
  • a (meth) acrylate having a polyisoprene skeleton can be obtained as “UC-203” (manufactured by Kuraray Co., Ltd.).
  • the (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
  • the weight ratio of the (meth) acrylate having a polyisoprene skeleton in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the (meth) acrylate having a polybutadiene skeleton has a (meth) acryloyl group at the terminal or side chain of the polybutadiene molecule.
  • the (meth) acrylates having a polybutadiene skeleton are "TEAI-1000 (Nippon Soda Co., Ltd.)", “TE-2000 (Nippon Soda Co., Ltd.)", “EMA-3000 (Nippon Soda Co., Ltd.)” Manufactured by Kogyo Co., Ltd.).
  • the (meth) acrylate having a polybutadiene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 30,000, more preferably about 1,000 to 10,000.
  • the (meth) acrylate monomer a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used.
  • the (meth) acrylate monomer indicates (meth) acrylate excluding the urethane (meth) acrylate, the following epoxy (meth) acrylate, and the (meth) acrylate having the polyisoprene skeleton.
  • the (meth) acrylate having one (meth) acryloyl group in the molecule include isooctyl (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having 5 to 20 carbon atoms such as (meth) acrylate, isostearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, tridecyl (meth) acrylate, benzyl (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyeth
  • alkyl (meth) acrylates having 10 to 20 carbon atoms 2-ethylhexyl carbitol acrylate, acryloylmorpholine, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate and polypropylene oxide-modified nonylphenyl (meth) acrylate are preferred.
  • alkyl (meth) acrylate having 10 to 20 carbon atoms, dicyclopentenyloxyethyl (meth) Preferred are acrylate, polypropylene oxide-modified nonylphenyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate.
  • an alkyl (meth) acrylate having 1 to 5 carbon atoms having a hydroxyl group and acryloylmorpholine are preferable, and acryloylmorpholine is particularly preferable.
  • composition of the present invention can contain (meth) acrylates other than (meth) acrylate having one (meth) acryloyl group as long as the characteristics of the present invention are not impaired.
  • Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate and ethylene oxide-modified phosphoric acid di (meth) acrylate
  • Tri (meth) acrylate trimethylolpropane polyethoxytri (me
  • these (meth) acrylate monomer components can be used 1 type or in mixture of 2 or more types by arbitrary ratios.
  • the weight ratio of the (meth) acrylate monomer in the photocurable transparent adhesive composition of the present invention is usually preferably 5 to 70% by weight, more preferably 10 to 50% by weight. If it is less than 5% by weight, the curability tends to be poor, and if it is more than 70% by weight, the shrinkage tends to increase.
  • both (i) urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer in the ultraviolet curable resin composition The total content of both (i) and (ii) is usually preferably 25 to 90% by weight, more preferably 40 to 90% by weight, still more preferably 40 to 80% by weight, based on the total amount of the resin composition. %.
  • epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired.
  • Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate.
  • Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct.
  • Diglycidyl ether ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
  • (Meth) acrylic acid is reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound.
  • the reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours.
  • a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride.
  • paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
  • An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound.
  • the weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
  • the weight ratio of the epoxy (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
  • the content ratio of (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is preferably 25 to 90% by weight, more preferably 40 to 90% by weight, based on the total amount of the ultraviolet curable resin composition. %, More preferably 40 to 80% by weight.
  • the (meth) acrylate (A) is selected from the group consisting of the urethane (meth) acrylate, the (meth) acrylate having the polyisoprene skeleton, and the (meth) acrylate monomer. It is preferable to contain at least one of the above.
  • the content of the urethane (meth) acrylate is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, and the content of the (meth) acrylate having a polyisoprene skeleton is preferably 20 to 80%.
  • the content ratio of the (meth) acrylate monomer is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
  • the (meth) acrylate (A) contains the urethane (meth) acrylate or the (meth) acrylate having a polyisoprene skeleton, and the content ratio is 20 to 80% by weight, More preferably, it is 30 to 70% by weight and contains a (meth) acrylate monomer, and its content is 5 to 70% by weight, preferably 10 to 50% by weight.
  • the photopolymerization initiator (B) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine.
  • Fin oxide bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure (trade name) 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure (trade name) ONE; manufactured by Lambarti), 1- [4- (2-Hydroxyethoxy) -phenyl] -2 Hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl ⁇ -2-Methyl-propan-1-one (Irgacure 127; manufactured by BASF
  • the photopolymerization initiator (B) has a molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol of 300 ml / (g ⁇ cm) or more and a molar extinction coefficient at 365 nm of 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g ⁇ cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength. When the molar extinction coefficient at 302 nm or 313 nm is 300 ml / (g ⁇ cm) or more, curing at the time of curing in Step 3 becomes more sufficient.
  • a photopolymerization initiator (B) examples include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173).
  • these photopolymerization initiators (B) can be used alone or in admixture of two or more at any ratio.
  • the weight ratio of the photopolymerization initiator (B) in the photocurable resin composition of the present invention is usually preferably 0.2 to 5% by weight, more preferably 0.3 to 3% by weight. When it is more than 5% by weight, when obtaining a cured product layer having a cured part and an uncured part on the side opposite to the optical substrate side, the uncured part cannot be formed or the transparency of the resin cured product layer is low. There is a risk of getting worse.
  • the ultraviolet curable resin composition of the present invention includes, as other components, a photopolymerization initiation assistant described below, a general formula (1 ), A softening component to be described later, an additive to be described later, and the like.
  • the content ratio of the other components with respect to the total amount of the ultraviolet curable resin composition of the present invention is a balance obtained by subtracting the total amount of the (meth) acrylate (A) and the photopolymerization initiator (B) from the total amount.
  • the total amount of the other components is preferably 0 to 74% by weight, more preferably about 5 to 70% by weight, based on the total amount of the ultraviolet curable resin composition of the present invention.
  • amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator.
  • examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester.
  • the content in the adhesive resin composition of the present invention is usually preferably 0.005 to 5% by weight, more preferably 0.01 to 3% by weight. is there.
  • the ultraviolet curable resin composition of the present invention can contain a compound having a structure represented by the general formula (1) as necessary.
  • n represents an integer of 0 to 40
  • m represents an integer of 10 to 50.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 have 1 to 18 carbon atoms.
  • the compound having the structure represented by the general formula (1) can be obtained, for example, as Unisafe (trade name) PKA-5017 (polyethylene glycol-polypropylene glycol allyl butyl ether) manufactured by NOF Corporation.
  • the weight ratio in the ultraviolet curable resin composition when using the compound having the structure represented by the general formula (1) is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • a softening component can be used in the ultraviolet curable resin composition of the present invention as necessary.
  • Specific examples of the softening component that can be used include polymers or oligomers excluding the (meth) acrylate and the compound having the structure represented by the general formula (1), phthalates, phosphates, glycols, Examples thereof include acid esters, aliphatic dibasic acid esters, fatty acid esters, epoxy plasticizers, castor oils, and terpene hydrogenated resins.
  • oligomer and polymer examples include an oligomer or a polymer having a polyisoprene skeleton, a polybutadiene skeleton, a polybutene skeleton or a xylene skeleton and an esterified product thereof. In some cases, a polymer or an oligomer having a polybutadiene skeleton and an ester thereof are used. It is preferred to use a compound.
  • polystyrene resin composition examples include butadiene homopolymer, epoxy-modified polybutadiene, butadiene-styrene random copolymer, maleic acid-modified polybutadiene, and terminal hydroxyl group-modified liquid polybutadiene or liquid hydrogenated polybutadiene. It is done. Further, in the softening component, the above-mentioned softening components can be mixed and used.
  • the weight ratio of the softening component in the ultraviolet curable resin composition is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
  • an antioxidant In the ultraviolet curable resin composition of the present invention, an antioxidant, an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added. You may add additives, such as an agent (for example, hindered amine compound etc.) and a filler.
  • an agent for example, hindered amine compound etc.
  • antioxidants include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-di
  • organic solvent examples include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
  • silane coupling agent examples include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, ⁇ -mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltri
  • polymerization inhibitor examples include paramethoxyphenol and methylhydroquinone.
  • the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Mixed esterified product with undecane, bis (2,2,6,6-tetramethyl-4-piperidy
  • the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like.
  • examples thereof include powder or beads obtained by spheroidizing these.
  • the weight ratio of the various additives in the photocurable transparent adhesive composition is preferably 0.01 to 3% by weight, more preferably 0.01 to 1% by weight. More preferably, it is 0.02 to 0.5% by weight.
  • the ultraviolet curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C., and if necessary, impurities may be removed by an operation such as filtration.
  • impurities may be removed by an operation such as filtration.
  • the ultraviolet curable resin composition of the present invention is produced by bonding at least two optical substrates, at least one of which is an optical substrate having a light-shielding part, by the above [Step 1] to [Step 3]. Used in the way.
  • the cure shrinkage of the cured product of the ultraviolet curable resin composition of the present invention is preferably 3.0% or less, and particularly preferably 2.0% or less.
  • the transmittance at 400 nm to 800 nm of the cured product of the ultraviolet curable resin composition of the present invention is preferably 90% or more.
  • the transmittance at 400 to 450 nm is preferably 90% or more.
  • the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) used in the production method of the present invention are described below.
  • “Wt%” in the content of each component indicates a content ratio with respect to the total amount of the ultraviolet curable resin composition of the present invention.
  • the (meth) acrylate (A) is at least one (meth) acrylate selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and a (meth) acrylate monomer.
  • the ultraviolet curable resin composition as described.
  • (A2) As the (meth) acrylate (A), (I) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton, and (Ii) (meth) acrylate monomers,
  • (A3) As the (meth) acrylate (A), (I) urethane (meth) acrylate obtained by reaction of poly C2-C4 alkylene glycol, diisocyanate and hydroxy C2-C4 alkyl (meth) acrylate, and (Ii) (meth) acrylate monomers, The ultraviolet curable resin composition as described in said (4) or said (A1) containing both of these.
  • (A4) The ultraviolet curable resin composition according to any one of (A1) to (A3) above, wherein the urethane (meth) acrylate has a weight average molecular weight of 7000 to 25000.
  • (A5) In the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B), as the photopolymerization initiator (B), an ultraviolet curable resin composition containing an acylphosphine oxide compound, Alternatively, the ultraviolet curable resin composition according to any one of the above (A1) to (A4), which contains an acylphosphine oxide compound as the photopolymerization initiator (B).
  • Acylphosphine oxide compounds are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • the ultraviolet curable resin composition according to (A5) above which is at least one compound selected from the group consisting of bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide.
  • the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) further contains other components in addition to the component (A) and the component (B).
  • (A9) (Meth) acrylate (A) includes (i) at least one of urethane (meth) acrylate or polyisoprene (meth) acrylate in an amount of 20 to 80% by weight and (ii) (meth) acrylate monomer in an amount of 5 to 70% by weight,
  • (A10) The ultraviolet curable resin composition according to any one of the above (A7) to (A9), which contains 10 to 80% by weight of the compound represented by the general formula (1) as another component.
  • (A11) An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) having a cured shrinkage of 3% or less of the cured product of the ultraviolet curable resin composition, or (A1) above The ultraviolet curable resin composition according to any one of (A10) to (A10).
  • the cured sheet of the ultraviolet curable resin composition having a thickness of 200 ⁇ m has an average transmittance of at least 90% in the wavelength region of 400 to 450 nm and an average transmittance in the wavelength region of 400 to 800 nm.
  • the ultraviolet curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the [Step 1] to [Step 3].
  • the optical substrate used in the method for producing an optical member of the present invention include a transparent plate, a sheet, a touch panel, and a display unit.
  • the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface.
  • at least one of a plurality of optical base materials used is an optical base material having a light shielding portion. The position of the light shielding part in the optical substrate having the light shielding part is not particularly limited.
  • a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate.
  • the light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
  • Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given.
  • an optical substrate used in the present invention for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
  • the optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called “body”).
  • Examples of the sheet that can be used as the optical substrate used in the present invention include an icon sheet, a decorative sheet, and a protective sheet.
  • Examples of the plate (transparent plate) that can be used in the method for producing an optical member of the present invention include a decorative plate and a protective plate.
  • materials for these sheets or plates those listed as materials for transparent plates can be applied.
  • Examples of the material of the touch panel surface that can be used as the optical substrate used in the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP.
  • the thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 ⁇ m to 5 cm, preferably about 10 ⁇ m to 10 mm, more preferably about 50 ⁇ m to 3 mm. Is the thickness.
  • a plate-shaped or sheet-shaped transparent optical base material having a light-shielding portion and the functional laminate are cured products of the ultraviolet curable resin composition of the present invention.
  • the optical member bonded together can be mentioned.
  • a display unit with an optical functional material by using a display unit such as a liquid crystal display device as one of optical substrates and an optical functional material as another optical substrate ( Hereinafter, it is also referred to as a display panel).
  • the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass.
  • the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
  • the visibility of the display image is further improved when the refractive index of the cured product is 1.45 to 1.55 for improving the visibility. .
  • the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
  • Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
  • An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part.
  • the optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
  • a touch panel or touch panel input sensor in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using the cured product of the ultraviolet curable resin composition of the present invention.
  • a display panel in which a plate-like or sheet-like optical substrate having a light-shielding part is bonded to the display screen of the display unit using the cured product of the ultraviolet curable resin composition of the present invention.
  • the ultraviolet curable resin composition of the present invention By using the ultraviolet curable resin composition of the present invention and bonding a plurality of optical substrates selected from the above optical substrates by the method described in Steps 1 to 3, the optical member of the present invention is bonded. can get.
  • the ultraviolet curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces. good.
  • the functional laminate is a touch panel or a display unit
  • any one surface of the protective base material having a light shielding part, preferably the light shielding part is provided.
  • the resin composition may be applied to only one of the provided surface and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
  • a light shielding portion of the protective base material is provided in Step 1, in which a protective base material or a touch panel for protecting the display screen of the display body unit is bonded to the display body unit.
  • the resin composition may be applied to only one of the substrate surface opposite to the surface or the touch surface of the touch panel and the display surface of the display unit, or to both of them.
  • the optical member including the display unit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
  • UV-curable resin composition Urethane acrylate (reaction product of 3 components (molar ratio 1: 1.2: 2) of hydrogenated polybutadienediol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate) 16 parts by weight , GI-2000 (both end hydroxylated polybutadiene, manufactured by Nippon Soda Co., Ltd.) 18 parts by weight, Nisseki Polybutene LV-100 (liquid polybutene, manufactured by JX Nippon Steel & Nisseki Energy Co., Ltd.), Clearon (Product Name) M105 (aromatically modified hydrogenated terpene resin, manufactured by Yashara Chemical Co., Ltd.) 16 parts, LA (lauryl acrylate, Osaka Organic Chemical Industry Co., Ltd.) 11 parts by weight, S-1800A (isostearyl acrylate) , Shin-Nakamura Chemical Co., Ltd.) 25 parts, Speed Cure (trade
  • Example 1 As shown in FIG. 4 (a), the UV curable resin composition A is 2 cm wide and 15 cm long on the transparent substrate 10 which is a PET film that has been subjected to easy adhesion treatment on both sides having a width of 3 cm and a length of 15 cm. The coating was applied so that the film thickness was 250 ⁇ m. Thereafter, the obtained coating layer 5 is integrated from the atmosphere side through an ultraviolet cut filter 9 that blocks a wavelength of 320 nm or less using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy).
  • D bulb manufactured by Heraeus Noblelight Fusion Ubuy
  • a cured product layer 6 having a cured portion existing on the lower side (transparent substrate side) of the coating layer and an uncured portion existing on the upper side (atmosphere side) of the coating layer is irradiated with ultraviolet rays 8 having a light amount of 100 mJ / cm 2. Formed. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit.
  • the transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), with an ultra-high pressure mercury lamp (TOSCURE (trade name) 752, manufactured by Harrison Toshiba Lighting Co., Ltd.), the accumulated light amount is 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side).
  • the cured resin layer was cured by irradiating with ultraviolet rays 8 to obtain a joined body of a PET film and a liquid crystal display unit.
  • the storage rigidity in the cured product layer (curing rate: 70%) in the temporary curing was 1000 Pa
  • the storage rigidity in the cured product layer (curing rate: 99%) in the main curing was 14000 Pa.
  • Example 2 A curing present on the lower side (transparent substrate side) of the coating layer on the PET film in the same manner as in Example 1 except that the ultraviolet cut filter that blocks the wavelength of 320 nm or less is changed to a glass plate having a thickness of 0.5 mm.
  • cured material layer 6 which has a non-hardened part which exists in the upper part (atmosphere side) of a part and an application layer was formed.
  • the ratio of the maximum illuminance in the range of 200 to 320 nm was 21 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG.
  • the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit.
  • the transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG.
  • an ultra-high pressure mercury lamp TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.
  • TOSCURE752 is used to irradiate ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the PET film side (transparent substrate 3 side).
  • the cured resin layer was cured to obtain a joined body of the PET film and the liquid crystal display unit.
  • the storage rigidity in the cured product layer (curing rate: 75%) in the temporary curing was 1500 Pa
  • the storage rigidity in the cured product layer (curing rate: 99%) in the main curing was 14000 Pa.
  • Comparative Example 1 Adjustment of UV curable resin composition 9 parts by weight of urethane acrylate (hydrogenated polybutadiene diol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate, 3 components (molar ratio 1: 1.2: 2)), GI-2000 (both end hydroxyl groups) 55 parts by weight of hydrogenated polybutadiene (manufactured by Nippon Soda Co., Ltd.), 13 parts of Nisseki Polybutene LV-100 (liquid polybutene, JX Nippon Steel Nisseki Energy Co., Ltd.), LA (lauryl acrylate, Osaka Organic Chemical Industry) 15 parts by weight (made by Co., Ltd.), 3 parts by S-1800A (isostearyl acrylate, made by Shin-Nakamura Chemical Co., Ltd.), Speed Cure (trade name) TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) (Manuvl
  • the viscosity at 25 ° C. was 3500 mPa ⁇ s.
  • the UV curable resin composition A is 2 cm wide and 15 cm long on the transparent substrate 10 which is a PET film that has been subjected to easy adhesion treatment on both sides having a width of 3 cm and a length of 15 cm.
  • the coating was applied so that the film thickness was 250 ⁇ m.
  • the obtained coating layer 5 is integrated from the atmosphere side through an ultraviolet cut filter 9 that blocks a wavelength of 320 nm or less using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy).
  • D bulb manufactured by Heraeus Noblelight Fusion Ubuy
  • a cured product layer 6 having a cured portion existing on the lower side (transparent substrate side) of the coating layer and an uncured portion existing on the upper side (atmosphere side) of the coating layer is irradiated with ultraviolet rays 8 having a light amount of 100 mJ / cm 2. Formed. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100. Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit.
  • the transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), with an ultra-high pressure mercury lamp (TOSCURE (trade name) 752, manufactured by Harrison Toshiba Lighting Co., Ltd.), the accumulated light amount is 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side).
  • the cured resin layer was cured by irradiating with ultraviolet rays 8 to obtain a joined body of a PET film and a liquid crystal display unit.
  • the storage rigidity in the cured product layer (curing rate: 70%) in the temporary curing was 1200 Pa
  • the storage stiffness in the cured product layer (curing rate: 99%) in the main curing was 1500 Pa.
  • Adhesive strength The adhesion of the joined body of the PET film and the liquid crystal display unit obtained in Examples 1 and 2 and Comparative Example 1 was measured by a method based on JISZ0237. Necessary for horizontally fixing the joined body of the PET film and the liquid crystal display unit, that is, with the liquid crystal display unit horizontally so that the PET film is on the upper surface, and peeling it off from the end of the PET film in the vertical direction (90 ° upward). The force was measured. The results are shown in Table 1 below.
  • the optical member produced by the production method of the present invention is cured by irradiating the ultraviolet curable resin composition with ultraviolet rays before laminating the substrates, and then irradiating with ultraviolet rays again after laminating. Although it was manufactured, it had high adhesive strength.
  • the obtained ultraviolet curable resin composition A was sufficiently cured, and the durometer E hardness was measured using a durometer hardness meter (type E) by a method based on JIS K7215 to evaluate flexibility. More specifically, the ultraviolet curable resin composition was poured into a cylindrical mold so that the film thickness was 1 cm, and the resin composition was sufficiently cured by irradiation with ultraviolet rays. The hardness of the obtained cured product was measured with a durometer hardness meter (type E). As a result, the measured value was less than 10, and the flexibility was excellent.
  • An ultraviolet curable resin composition A is applied to each of the display surface of the liquid crystal display unit having an area of 3.5 inches and the surface on which the light shielding portion on the transparent substrate having the light shielding portion (width 5 mm) is formed on the outer peripheral portion.
  • the film was applied to a film thickness of 125 ⁇ m.
  • an electrodeless UV lamp (D bulb manufactured by Heraeus Noble Light Fusion Ubuy Co., Ltd.) was used for the coating layer thus obtained, through an UV cut filter that blocks wavelengths of 320 nm or less, and an integrated light quantity of 100 mJ / A cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed by performing ultraviolet irradiation of cm 2 .
  • the ultraviolet ray irradiated to the ultraviolet curable resin composition A had a maximum illuminance ratio of 3 when the maximum illuminance in the range of 320 nm to 450 nm was 100.
  • the liquid crystal display unit 1 and the transparent substrate 3 having a light shielding portion were bonded together so that the uncured portions faced each other.
  • the resin cured product layer is cured by irradiating ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the glass substrate side having a light shielding portion with an ultra-high pressure mercury lamp (TOSCURE 752, manufactured by Harrison Toshiba Lighting Co., Ltd.).
  • TOSCURE 752 manufactured by Harrison Toshiba Lighting Co., Ltd.
  • the transparent substrate was removed from the obtained optical member, and the cured resin layer of the light shielding part was washed away with heptane, and then the cured state was confirmed. There was no evidence that the uncured resin composition was removed, and the resin in the light shielding portion was sufficiently cured.
  • the method for producing an optical member of the present invention is capable of obtaining an optical member such as a display unit having little damage to the optical substrate, good productivity, and good curability and adhesion.
  • the optical member obtained by the present invention can be suitably incorporated in a display device such as a liquid crystal display, a plasma display, or an organic EL display.
  • 1 liquid crystal display unit 2 transparent substrate with light shielding part, 3 transparent substrate, 4 light shielding part, 5 ultraviolet curable resin composition layer, 6 cured product layer with uncured part, 7 resin cured product layer, 8 ultraviolet light, 9 Short wavelength UV cut filter or glass plate, 10 PET film with easy adhesion treatment on both sides

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

A process for producing an optical member which includes at least two optical substrates laminated to each other, the process comprising the following steps 1 to 3 and using a resin composition in which the 25°C storage modulus of a resin layer irradiated with ultraviolet rays in the following step 3 is 1.5-10 times that of the resin layer irradiated with ultraviolet rays in the following step 1 and which, after irradiated with ultraviolet rays in the following step 1, has a 25°C storage modulus of 1×102-1×104 Pa: [step 1] a step in which an ultraviolet-curable resin composition comprising a (meth)acrylate (A) and a photopolymerization initiator (B) is applied to at least one optical substrate to form a coating layer and the coating layer is irradiated with ultraviolet rays, thereby obtaining an optical substrate having a cured object layer comprising a cured portion of the coating layer which is present on the optical-substrate side and an uncured portion which is present on the reverse side from the optical-substrate side; [step 2] a step in which the uncured portion of the optical substrate obtained in step 1 is laminated to another optical substrate or to the uncured portion of another optical substrate obtained in step 1; and [step 3] a step in which the uncured-portion-containing cured object layer of the optical substrate laminated in step 2 is irradiated with ultraviolet rays through the other optical substrate, thereby curing the cured object layer.

Description

光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物Manufacturing method of optical member and ultraviolet curable resin composition used therefor
 本発明は、遮光部を有する光学基材と他の光学基材を貼り合わせて、光学部材を製造する方法及びそのための紫外線硬化型樹脂組成物に関する。 The present invention relates to a method for producing an optical member by laminating an optical substrate having a light shielding part and another optical substrate, and an ultraviolet curable resin composition therefor.
 近年、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置の表示画面にタッチパネルを貼り合わせ、画面入力を可能とした表示装置が広く利用されている。このタッチパネルは、透明電極が形成されたガラス板又は樹脂製フィルムが僅かな隙間を空けて向き合って貼り合されており、必要に応じて、そのタッチ面の上に、ガラス又は樹脂製の透明保護板を貼り合せた構造を有している。 In recent years, display devices that allow screen input by attaching a touch panel to a display screen of a display device such as a liquid crystal display, a plasma display, or an organic EL display have been widely used. In this touch panel, a glass plate or a resin film on which a transparent electrode is formed is bonded with a slight gap facing each other. If necessary, a transparent protection made of glass or resin is provided on the touch surface. It has a structure in which plates are bonded together.
 タッチパネルにおける透明電極が形成されたガラス板又はフィルムと、ガラス又は樹脂製の透明保護板との貼り合せ、又はタッチパネルと表示体ユニットの貼り合わせには、両面粘着シートを用いる技術がある。しかし、両面粘着シートを用いると気泡が入りやすいという問題があった。両面粘着シートに代わる技術として、柔軟性のある紫外線硬化型樹脂組成物で貼り合せる技術が提案されている。 There is a technique of using a double-sided pressure-sensitive adhesive sheet for bonding a glass plate or film on which a transparent electrode is formed on a touch panel and a transparent protective plate made of glass or resin, or bonding a touch panel and a display unit. However, when a double-sided pressure-sensitive adhesive sheet is used, there is a problem that air bubbles easily enter. As a technique replacing the double-sided pressure-sensitive adhesive sheet, a technique of bonding with a flexible ultraviolet curable resin composition has been proposed.
 一方で、透明保護板には表示画像のコントラストを向上させるために最外の縁に帯状の遮光部が形成されている。遮光部が形成された透明保護板を紫外線硬化型樹脂組成物で貼り合わせた場合、該遮光部によって紫外線硬化型樹脂のうち該遮光部の影になる遮光領域に充分な紫外線が到達せず、樹脂の硬化が不十分になる。樹脂の硬化が不十分であると、遮光部付近の表示ムラ等の問題が発生する。 On the other hand, a strip-shaped light shielding portion is formed on the outermost edge of the transparent protective plate in order to improve the contrast of the display image. When the transparent protective plate on which the light-shielding part is formed is bonded with the ultraviolet curable resin composition, sufficient ultraviolet light does not reach the light-shielding region that is a shadow of the light-shielding part of the ultraviolet curable resin by the light-shielding part, Insufficient curing of the resin. If the resin is not sufficiently cured, problems such as display unevenness in the vicinity of the light shielding portion occur.
 遮光領域における樹脂の硬化を向上させる技術として、特許文献1では、有機過酸化物を紫外線硬化型樹脂に含有させ、紫外線照射後に加熱して遮光部部分の樹脂の硬化を行う技術が開示されている。しかしながら、加熱工程は液晶表示装置等にダメージを与えることが懸念される。さらに、樹脂を十分な硬化状態にするために通常60分間以上の加熱工程を必要とするため、生産性に乏しいという問題があった。また、特許文献2では、遮光部の形成面の外方側面側から紫外線を照射して、遮光部の樹脂の硬化を行う技術が開示されている。しかしながら、液晶表示装置の形状によっては、側面から紫外線を照射することが困難であるため、該方法には制限があった。また、特許文献3では、カチオン重合性の紫外線硬化型樹脂の遅効性を利用した技術も開示されているが、硬化後の樹脂の柔軟性が劣るものだった。 As a technique for improving the curing of the resin in the light shielding region, Patent Document 1 discloses a technique in which an organic peroxide is contained in an ultraviolet curable resin and heated after ultraviolet irradiation to cure the resin in the light shielding portion. Yes. However, there is a concern that the heating process may damage the liquid crystal display device and the like. Furthermore, since a heating step of usually 60 minutes or more is required to make the resin sufficiently cured, there is a problem that productivity is poor. Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for curing the resin of the light shielding part by irradiating ultraviolet rays from the outer side surface of the light shielding part forming surface. However, depending on the shape of the liquid crystal display device, since it is difficult to irradiate ultraviolet rays from the side, the method has been limited. Further, Patent Document 3 discloses a technique using the slow-acting property of a cationic polymerizable ultraviolet curable resin, but the flexibility of the cured resin is inferior.
 また、特許文献4では、仮硬化後に本硬化をするといった2段階で硬化して光学部材をえる技術が開示されている。しかしながら、通常の樹脂組成物を硬化したのでは、仮硬化時に基板に樹脂が追従するほどの柔軟性を得られないことや、該影響により樹脂と基板が剥離したり、貼り合わせ時に発生する気泡が消えにくい等の現象が生ずることで貼り合わせの困難性があった。さらに、歪みが生じたり、表示ムラが生ずる問題、又は光学部材は接着強度が劣るという問題があった。 Also, Patent Document 4 discloses a technique for obtaining an optical member by curing in two stages, such as performing a main curing after a temporary curing. However, when a normal resin composition is cured, the flexibility that the resin follows the substrate at the time of temporary curing cannot be obtained, and the resin and the substrate are peeled off due to the influence, or bubbles generated at the time of bonding Bonding was difficult due to the phenomenon that it was difficult to disappear. Furthermore, there is a problem that distortion occurs, display unevenness occurs, or an optical member has a poor adhesive strength.
日本国特許第4711354号公報Japanese Patent No. 4711354 日本国特開2009-186954号公報Japanese Unexamined Patent Publication No. 2009-186554 日本国特開2010-248387号公報Japanese Unexamined Patent Publication No. 2010-248387 国際公開第2013/111810号パンフレットInternational Publication No. 2013/111810 Pamphlet
 本発明は、貼り合わせが容易であると共に、接着強度の高い光学部材を得ることができる光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物を提供することを目的とする。 It is an object of the present invention to provide a method for producing an optical member that can be easily bonded and obtain an optical member having high adhesive strength, and an ultraviolet curable resin composition used therefor.
 本発明者らは前記課題を解決するため鋭意研究の結果、本発明を完成した。即ち、本発明は、下記(1)~(11)に関する。 The inventors of the present invention have completed the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention relates to the following (1) to (11).
(1)下記工程1~3を有する、少なくとも2つの光学基材が貼りあわされた光学部材の製造方法であって、
 下記[工程1]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、下記[工程3]において紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であって、下記[工程1]において紫外線を照射した際の25℃における貯蔵剛性率が1×10Pa~1×10Paである樹脂組成物を用いる光学部材の製造方法:
[工程1]少なくとも1つの光学基材に、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物を塗布して塗布層を形成し、該塗布層に紫外線を照射することにより、該塗布層の光学基材側に存在する硬化部分と、光学基材側と反対側に存在する未硬化部分とを有する硬化物層を有する光学基材を得る工程;
[工程2]工程1で得られた光学基材の未硬化部分に対して、他の光学基材、又は、工程1で得られた他の光学基材の未硬化部分を貼り合わせる工程;
[工程3]工程2で貼り合わされた光学基材の未硬化部分を有する硬化物層に、光学基材を通して紫外線を照射して、該硬化物層を硬化させる工程。
(2)前記工程1で使用される光学基材のうち少なくとも1つが遮光部を有する(1)記載の光学部材の製造方法。
(3)前記工程1において、紫外線の照射量が5~2000mJ/cmである(1)又は(2)に記載の光学部材の製造方法。
(4)(1)~(3)のいずれか一項に記載の光学部材の製造方法に使用する、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物。
(5)(メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上である(4)に記載の紫外線硬化型樹脂組成物。
(6)アセトニトリル又はメタノール中で測定した光重合開始剤(B)のモル吸光係数が、302nm又は313nmでは300ml/(g・cm)以上であり、365nmでは100ml/(g・cm)以下である(4)又は(5)に記載の紫外線硬化型樹脂組成物。
(7)前記光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、遮光部と透明電極が形成されたガラス基板、遮光部を有する透明基板に透明電極が形成されたガラス基板、フィルムが貼りあわされた基板、液晶表示ユニット、プラズマ表示ユニット及び有機EL表示ユニットの群から選ばれる1種以上からなる(4)~(6)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(8)紫外線を照射した際の硬化率70~80%における樹脂層の25℃における貯蔵剛性率に対して、紫外線を照射した際の硬化率98%における樹脂層の貯蔵剛性率が3~20倍であって、硬化率80%における貯蔵剛性率(25℃)が1×10Pa~1×10Paである紫外線硬化型樹脂組成物。
(9)(1)記載の製造方法に用いる、(8)記載の紫外線硬化型樹脂組成物。
(10)(メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上である(8)又は(9)に記載の紫外線硬化型樹脂組成物。
(11)光学部材が、タッチパネルである(4)~(10)のいずれか一項に記載の紫外線硬化型樹脂組成物。
(1) A method for producing an optical member having the following steps 1 to 3, wherein at least two optical substrates are bonded together,
The storage rigidity of the resin layer when irradiated with ultraviolet rays in the following [Step 3] is 1.5 to 10 times the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in the following [Step 1]. A method for producing an optical member using a resin composition having a storage rigidity at 25 ° C. of 1 × 10 2 Pa to 1 × 10 4 Pa when irradiated with ultraviolet rays in [Step 1] below:
[Step 1] An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate. A step of obtaining an optical substrate having a cured product layer having a cured portion present on the optical substrate side of the coating layer and an uncured portion present on the opposite side of the optical substrate side by irradiating with ultraviolet rays;
[Step 2] A step of bonding another optical substrate or an uncured portion of another optical substrate obtained in Step 1 to an uncured portion of the optical substrate obtained in Step 1;
[Step 3] A step of irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate to cure the cured product layer.
(2) The method for producing an optical member according to (1), wherein at least one of the optical substrates used in the step 1 has a light shielding portion.
(3) The method for producing an optical member according to (1) or (2), wherein in the step 1, the amount of ultraviolet irradiation is 5 to 2000 mJ / cm 2 .
(4) An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B), which is used in the method for producing an optical member according to any one of (1) to (3) object.
(5) One selected from the group consisting of (meth) acrylate (A), urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and (meth) acrylate monomer The ultraviolet curable resin composition as described in (4) above.
(6) The molar extinction coefficient of the photopolymerization initiator (B) measured in acetonitrile or methanol is 300 ml / (g · cm) or more at 302 nm or 313 nm, and is 100 ml / (g · cm) or less at 365 nm. (4) or the ultraviolet curable resin composition as described in (5).
(7) The optical base material is a transparent glass substrate having a light shielding portion, a transparent resin substrate having a light shielding portion, a glass substrate having a light shielding portion and a transparent electrode formed thereon, and a transparent electrode formed on the transparent substrate having the light shielding portion. The ultraviolet curing according to any one of (4) to (6), comprising at least one selected from the group consisting of a glass substrate, a substrate with a film attached thereto, a liquid crystal display unit, a plasma display unit, and an organic EL display unit. Mold resin composition.
(8) The storage rigidity of the resin layer at a curing rate of 98% when irradiated with ultraviolet rays is 3 to 20 versus the storage rigidity of the resin layer at 25 ° C. when the curing rate is 70 to 80% when irradiated with ultraviolet rays. An ultraviolet curable resin composition having a storage rigidity (25 ° C.) at a curing rate of 80% and 1 × 10 2 Pa to 1 × 10 5 Pa.
(9) The ultraviolet curable resin composition according to (8), which is used in the production method according to (1).
(10) One selected from the group consisting of (meth) acrylate (A), urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and (meth) acrylate monomer The ultraviolet curable resin composition according to (8) or (9) above.
(11) The ultraviolet curable resin composition according to any one of (4) to (10), wherein the optical member is a touch panel.
本発明の製造方法の第1の実施形態を示す工程図である。It is process drawing which shows 1st Embodiment of the manufacturing method of this invention. 本発明の製造方法の第2の実施形態を示す工程図である。It is process drawing which shows 2nd Embodiment of the manufacturing method of this invention. 本発明の製造方法の第3の実施形態を示す工程図である。It is process drawing which shows 3rd Embodiment of the manufacturing method of this invention. 実施例1、実施例2及び比較例1に係る製造工程を示す工程図である。6 is a process diagram showing manufacturing steps according to Example 1, Example 2, and Comparative Example 1. FIG. 本発明により得られる光学部材の一態様を示す概略図である。It is the schematic which shows the one aspect | mode of the optical member obtained by this invention.
 まず、本発明の光学部材の製造方法について説明する。
 本発明の光学部材の製造方法においては、下記[工程1]~[工程3]により、少なくとも2つの光学基材を貼り合わせることを特徴とする。
[工程1] 少なくとも一つの光学基材に対して、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物を塗布して、塗布層を形成し、該塗布層に、紫外線を照射することにより、該塗布層の光学基材側(塗布層の下部側)に存在する硬化部分(以下、「硬化物層の硬化部分」又は単に「硬化部分」と言う。)と、光学基材側と反対側(塗布層の上部側、通常は大気側)に存在する未硬化部分(以下、「硬化物層の未硬化部分」又は単に「未硬化部分」と言う。)とを有する硬化物層を有する光学基材を得る工程。
[工程2] 工程1で得られた光学基材の硬化物層の未硬化部分に対して、他の光学基材を貼り合わせるか、又は、工程1により得られた他の光学基材の硬化物層の未硬化部分を貼り合わせる工程。
[工程3] 工程2で貼り合された光学基材の未硬化部分を有する硬化物層に、光学基材を通して、紫外線を照射して、該硬化物層を硬化させる工程。
 そして、本発明の硬化性樹脂組成物を使用することにより、光学基材へのダメージが少なく、且つ、生産性が良好で、硬化性および密着性の良い表示体ユニット等の光学部材を得ることができ、樹脂の硬化度が高く、さらに、光学基材に紫外線硬化型樹脂組成物を塗布し、該塗布層に紫外線を照射した後に光学基材を貼り合わせ、さらに紫外線を照射して光学部材を得た場合であっても貼り合わせが容易であり、仮硬化時に光学基材が追従し、剥がれ、気泡ないし光学基材に歪みが生じることや、表示ムラが生じることを防止すると共に、接着強度の高い光学部材を得ることができる光学部材の製造方法及びそれに用いる紫外線硬化型樹脂組成物を提供することが可能となる。
 以下に工程1~工程3を経由する本発明の光学部材の製造方法の具体的な実施の形態について、液晶表示ユニットと遮光部を有する透明基板との貼り合せを例に図面を参照して説明する。
First, the manufacturing method of the optical member of this invention is demonstrated.
The method for producing an optical member of the present invention is characterized in that at least two optical substrates are bonded together by the following [Step 1] to [Step 3].
[Step 1] An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate, By irradiating the coating layer with ultraviolet rays, a cured portion (hereinafter referred to as “cured portion of the cured product layer” or simply “cured portion”) present on the optical substrate side (lower side of the coated layer) of the coated layer. )) And the uncured portion (hereinafter referred to as “uncured portion of the cured product layer” or simply “uncured portion”) existing on the side opposite to the optical substrate side (the upper side of the coating layer, usually the air side). A step of obtaining an optical substrate having a cured product layer.
[Step 2] Another optical substrate is bonded to the uncured portion of the cured product layer of the optical substrate obtained in Step 1, or the other optical substrate obtained in Step 1 is cured. The process of bonding the uncured part of the material layer.
[Step 3] A step of curing the cured product layer by irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate.
Then, by using the curable resin composition of the present invention, an optical member such as a display unit having little damage to the optical substrate, good productivity, good curability and adhesion is obtained. And the degree of curing of the resin is high. Further, the optical member is coated with an ultraviolet curable resin composition, the coating layer is irradiated with ultraviolet rays, the optical substrate is bonded, and the ultraviolet rays are further irradiated to form an optical member. Bonding is easy even if it is obtained, the optical substrate follows during temporary curing, peels off, prevents bubbles or distortion of the optical substrate, and prevents display unevenness and adheres. It becomes possible to provide the manufacturing method of the optical member which can obtain an optical member with high intensity | strength, and the ultraviolet curable resin composition used therefor.
In the following, a specific embodiment of the optical member manufacturing method of the present invention that goes through steps 1 to 3 will be described with reference to the drawings, taking as an example the bonding of a liquid crystal display unit and a transparent substrate having a light shielding portion. To do.
(第1の実施形態)
 図1は、本発明の光学部材の製造工程の第1の実施形態を示す工程図である。
 この方法は、液晶表示ユニット1と遮光部を有する透明基板2を貼り合わせることにより光学部材(遮光部を有する液晶表示ユニット)を得る方法である。
 液晶表示ユニット1は、電極を形成した一対の基板間に液晶材料が封入されたものに偏光板、駆動用回路、信号入力ケーブル、バックライトユニットが備わったものを言う。
 遮光部を有する透明基板2は、ガラス板、ポリメチルメタクリレート(PMMA)板、ポリカーボネート(PC)板、脂環式ポリオレフィンポリマー(COP)板等の透明基板である。
 ここで、透明基板2は透明基板3の表面上に黒色枠状の遮光部4を有するものを好適に使用でき、遮光部4はテープの貼付や塗料の塗布又は印刷等によって形成されている。尚、本発明においては遮光部4を有さないものにも適用できるが、以下の第1~3の実施形態の説明では、遮光部4を備える場合を具体例として説明を行う。遮光部4を有さない場合には、「遮光部を有する透明基板」を「透明基板」と読み替えれば、そのまま遮光部を有さない場合の例と考えることができる。
(First embodiment)
FIG. 1 is a process diagram showing a first embodiment of a manufacturing process of an optical member of the present invention.
This method is a method of obtaining an optical member (a liquid crystal display unit having a light shielding part) by bonding the liquid crystal display unit 1 and a transparent substrate 2 having a light shielding part.
The liquid crystal display unit 1 is a liquid crystal display unit in which a liquid crystal material is sealed between a pair of substrates on which electrodes are formed, and a polarizing plate, a driving circuit, a signal input cable, and a backlight unit are provided.
The transparent substrate 2 having a light shielding portion is a transparent substrate such as a glass plate, a polymethyl methacrylate (PMMA) plate, a polycarbonate (PC) plate, an alicyclic polyolefin polymer (COP) plate.
Here, the transparent substrate 2 having a black frame-shaped light-shielding portion 4 on the surface of the transparent substrate 3 can be suitably used, and the light-shielding portion 4 is formed by attaching a tape, applying a paint, printing, or the like. In the present invention, the present invention can also be applied to a device that does not have the light shielding portion 4. However, in the following description of the first to third embodiments, the case where the light shielding portion 4 is provided will be described as a specific example. In the case where the light-shielding portion 4 is not provided, “transparent substrate having a light-shielding portion” can be read as “transparent substrate”, and can be considered as an example in which the light-shielding portion is not provided as it is.
[工程1]
 まず、図1(a)に示すように、(メタ)アクリレート(A)および光重合開始剤(B)を含む紫外線硬化型樹脂組成物を、液晶表示ユニット1の表示面と遮光部を有する透明基板2の遮光部4が形成されている面の表面に塗布する。塗布の方法としては、スリットコーター、ロールコーター、スピンコーター、スクリーン印刷法等が挙げられる。ここで、液晶表示ユニット1と遮光部を有する透明基板2の表面に塗布する紫外線硬化型樹脂組成物は同一であってもよいし、異なる紫外線硬化型樹脂組成物を用いても構わない。通常は両者が同じ紫外線硬化型樹脂組成物であることが好ましい。
 各紫外線硬化型樹脂の硬化物の膜厚は、貼り合せた後の樹脂硬化物層7が好ましくは50~500μm、より好ましくは50~350μm、更に好ましくは100~350μmとなるように調整される。ここで、遮光部を有する透明基板2の表面上に存在する紫外線硬化型樹脂の硬化物層の膜厚はその膜厚にもよるが、通常、液晶表示ユニット1の表面上に存在する紫外線硬化型樹脂の硬化物層の膜厚と同程度か又はそれよりも厚い方が好ましい。後記工程3において、紫外線を照射した後も、未硬化のまま残る部分を最小限にして、硬化不良の恐れをなくすためである。
[Step 1]
First, as shown to Fig.1 (a), the ultraviolet curable resin composition containing (meth) acrylate (A) and a photoinitiator (B) is made into the transparent which has the display surface of the liquid crystal display unit 1, and a light-shielding part. It is applied to the surface of the surface of the substrate 2 where the light shielding portion 4 is formed. Examples of the coating method include a slit coater, a roll coater, a spin coater, and a screen printing method. Here, the ultraviolet curable resin composition applied to the surface of the liquid crystal display unit 1 and the transparent substrate 2 having the light shielding portion may be the same, or different ultraviolet curable resin compositions may be used. Usually, it is preferable that both are the same ultraviolet curable resin composition.
The film thickness of the cured product of each ultraviolet curable resin is adjusted so that the cured resin layer 7 after bonding is preferably 50 to 500 μm, more preferably 50 to 350 μm, and still more preferably 100 to 350 μm. . Here, although the film thickness of the cured layer of the ultraviolet curable resin existing on the surface of the transparent substrate 2 having the light-shielding portion depends on the film thickness, the ultraviolet curable resin usually existing on the surface of the liquid crystal display unit 1 is used. It is preferable that the thickness is equal to or thicker than the thickness of the cured product layer of the mold resin. This is to minimize the portion that remains uncured even after irradiation with ultraviolet rays in Step 3 described later, thereby eliminating the risk of curing failure.
 塗布後の紫外線硬化型樹脂組成物層5に紫外線8を照射して、塗布層の下部側(紫外線硬化型樹脂組成物からみて液晶表示ユニット側または透明基板側)に存在する硬化部分(図では未表示)と塗布層の上部側(液晶表示ユニット側と反対側または透明基板側と反対側)(大気中で行うときは大気側)に存在する未硬化部分(図では未表示)を有する硬化物層6を得る。照射量は5~2000mJ/cmが好ましく、特に好ましくは、10~1000mJ/cm、特に好ましくは10~500mJ/cmである。照射量が少なすぎると、最終的に貼り合せた光学部材の樹脂の硬化度が不十分となるおそれがあり、照射量が多すぎると未硬化成分が少なくなり、液晶表示ユニット1と遮光部を有する透明基板2の貼り合せが不良となる恐れがある。
 本発明において、「未硬化」とは25℃環境下で流動性がある状態を示すものとする。また、紫外線照射後に樹脂組成物層を指で触り、指に液状成分が付着する場合は、未硬化部分を有するものと判断される。
 紫外~近紫外の紫外線照射による硬化には、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、または無電極ランプ等が挙げられる。
 さらに好ましくは、本発明の工程1においては、紫外線硬化型樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率(照度比)は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率(照度比)は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう。これは、低波長での照度が高いと、工程1における硬化時に過度に紫外線硬化型樹脂組成物の硬化が進んでしまい、工程3における紫外線の照射における硬化の際の密着性に対する寄与が減少してしまうためと考えられる。尚、照度としては通常、各波長(例えば、365nm)で例えば30~1000mW/cmである。
 ここで、上記照度比率となるように紫外線を照射する方法は、例えば、紫外~近紫外の光線を照射するランプとして、当該照度比率の条件を満たすランプを適用する方法や、ランプ自体が当該照度の条件を満たさない場合であっても、工程1の照射時において短波長の紫外線をカットする基材(例えば、短波紫外線カットフィルター、ガラス板、フィルム等)を使用することで、このような照度比率で照射することが可能となる。紫外線の照度比率を調整する基材としては特には限定されないが、例えば、短波紫外線カット処理が施されたガラス板、ソーダ石灰ガラス、PETフィルム等が挙げられる。
 工程1において、紫外線の照射は、通常大気中で、塗布側の上部側表面(紫外線硬化型樹脂組成物層から見て、液晶表示ユニット側と反対側または透明基板側と反対側)(通常大気面)から照射するのが好ましい。また、真空にした後に硬化阻害性の気体を塗布層の上面表面に噴霧しながら紫外線の照射を行っても構わない。大気中で樹脂組成物を硬化した場合には、液晶表示ユニット側と反対側または透明基板側と反対側は大気側となる。
The ultraviolet curable resin composition layer 5 after application is irradiated with ultraviolet rays 8 and a cured portion (in the drawing, the liquid crystal display unit side or the transparent substrate side as viewed from the ultraviolet curable resin composition) is present (in the figure). Curing with uncured parts (not shown in the figure) present on the upper side of the coating layer (on the opposite side of the liquid crystal display unit side or on the opposite side of the transparent substrate side) (on the atmospheric side when performed in the atmosphere) A physical layer 6 is obtained. The irradiation amount is preferably 5 to 2000 mJ / cm 2 , particularly preferably 10 to 1000 mJ / cm 2 , and particularly preferably 10 to 500 mJ / cm 2 . If the amount of irradiation is too small, the degree of cure of the resin of the optical member that is finally bonded may be insufficient. If the amount of irradiation is too large, the amount of uncured components decreases, and the liquid crystal display unit 1 and the light-shielding portion There is a possibility that the bonding of the transparent substrate 2 will be defective.
In the present invention, “uncured” refers to a fluid state in a 25 ° C. environment. In addition, when the resin composition layer is touched with a finger after ultraviolet irradiation and a liquid component adheres to the finger, it is determined to have an uncured portion.
For the curing by ultraviolet to near ultraviolet irradiation, any light source may be used as long as it is a lamp that irradiates ultraviolet to near ultraviolet rays. For example, a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
More preferably, in step 1 of the present invention, when the maximum illuminance in the range of 320 nm to 450 nm is 100, the ratio of the maximum illuminance at 200 to 320 nm (illuminance) Ratio) is 30 or less, and particularly preferably, the illuminance at 200 to 320 nm is 10 or less. When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of maximum illuminance (illuminance ratio) at 200 to 320 nm is higher than 30, the adhesive strength of the finally obtained optical member will be inferior. This is because if the illuminance at a low wavelength is high, the curing of the ultraviolet curable resin composition proceeds excessively at the time of curing in the step 1, and the contribution to the adhesion at the time of curing in the ultraviolet irradiation in the step 3 is reduced. This is thought to be due to this. The illuminance is usually 30 to 1000 mW / cm 2 at each wavelength (for example, 365 nm).
Here, the method of irradiating ultraviolet rays so as to achieve the above illuminance ratio includes, for example, a method of applying a lamp that satisfies the illuminance ratio as a lamp that irradiates ultraviolet to near ultraviolet rays, Even if the above condition is not satisfied, such illuminance can be obtained by using a base material (for example, a short wave ultraviolet cut filter, a glass plate, a film, etc.) that cuts short wavelength ultraviolet rays at the time of irradiation in step 1. Irradiation at a ratio is possible. Although it does not specifically limit as a base material which adjusts the illumination intensity ratio of an ultraviolet-ray, For example, the glass plate, soda-lime glass, PET film etc. which were given the short wave ultraviolet-ray cut process are mentioned.
In step 1, irradiation with ultraviolet rays is usually carried out in the air at the upper surface on the coating side (on the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side when viewed from the ultraviolet curable resin composition layer) (normal air From the surface). Further, ultraviolet irradiation may be performed while spraying a curing-inhibiting gas on the upper surface of the coating layer after evacuation. When the resin composition is cured in the atmosphere, the side opposite to the liquid crystal display unit side or the side opposite to the transparent substrate side is the atmosphere side.
 紫外線照射時に、紫外線硬化型樹脂層(塗布層)表面に酸素又はオゾンを吹きかけることにより、未硬化部分の状態や未硬化部分の膜厚を調整することができる。
 即ち、塗布層の表面に酸素又はオゾンを吹きかけることにより、その表面において、紫外線硬化型樹脂組成物の硬化の酸素阻害が生じるため、その表面の未硬化部分を確実にしたり、また、未硬化部分の膜厚を厚くすることができる。
The state of the uncured portion and the film thickness of the uncured portion can be adjusted by spraying oxygen or ozone onto the surface of the ultraviolet curable resin layer (coating layer) during the ultraviolet irradiation.
That is, when oxygen or ozone is sprayed on the surface of the coating layer, oxygen inhibition of curing of the ultraviolet curable resin composition occurs on the surface, so that the uncured portion of the surface can be ensured or the uncured portion The film thickness can be increased.
[工程2]
 次に、未硬化部分同士が対向する形で、図1(b)に示すように、液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
 ここで、貼り合わせの際に気泡が生じることを防ぎやすくするために、真空中で貼り合わせることが好適である。
 このように、液晶表示ユニット及び透明基板の各々に硬化部分及び未硬化部分を有する紫外線硬化型樹脂の硬化物を得てから貼り合わせると、接着力の向上を期待することができる。
[Step 2]
Next, as shown in FIG. 1B, the liquid crystal display unit 1 and the transparent substrate 2 having a light shielding portion are bonded together so that the uncured portions face each other. Bonding can be performed either in air or in vacuum.
Here, in order to make it easy to prevent bubbles from being generated at the time of bonding, it is preferable to bond in a vacuum.
As described above, when a cured product of an ultraviolet curable resin having a cured portion and an uncured portion is obtained on each of the liquid crystal display unit and the transparent substrate, the adhesion can be improved.
[工程3]
 次に、図1(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合せて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物(塗布層)を硬化させる。
 紫外線の照射量は積算光量で約100~4000mJ/cmが好ましく、特に好ましくは、200~3000mJ/cm程度であり、さらには1500~3000mJ/cmが極めて好ましい。紫外~近紫外の光線照射による硬化に使用する光源については、紫外~近紫外の光線を照射するランプであれば光源を問わない。例えば、低圧、高圧若しくは超高圧水銀灯、メタルハライドランプ、(パルス)キセノンランプ、または無電極ランプ等が挙げられる。
 こうして、図5に示す光学部材を得ることができる。
[Step 3]
Next, as shown in FIG.1 (c), the optical member obtained by bonding the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with the ultraviolet-ray 8 from the transparent substrate 2 side which has a light-shielding part, and ultraviolet curable type The resin composition (coating layer) is cured.
The dose of ultraviolet rays is preferably from about 100 ~ 4000mJ / cm 2 in accumulated light quantity, particularly preferably from 200 ~ 3000mJ / cm 2 or so, more highly preferably 1500 ~ 3000mJ / cm 2. The light source used for curing by irradiation with ultraviolet to near ultraviolet light may be any lamp as long as it is a lamp that emits ultraviolet to near ultraviolet light. For example, a low-pressure, high-pressure or ultrahigh-pressure mercury lamp, metal halide lamp, (pulse) xenon lamp, or electrodeless lamp can be used.
In this way, the optical member shown in FIG. 5 can be obtained.
(第2の実施形態)
 第1の実施形態に加えて、次のような変形した第2の実施形態により本発明の光学部材を製造しても構わない。尚、第1の実施形態において先述した内容と同様の事項が適用できるが、重複する説明は繰り返さない。また、上述した第1の実施の形態における構成部材と同じ部材については図中同一の符号を付し、その説明はここでは繰り返さない。
(Second Embodiment)
In addition to the first embodiment, the optical member of the present invention may be manufactured by the second modified embodiment described below. In addition, although the matter similar to the content mentioned previously in 1st Embodiment is applicable, the overlapping description is not repeated. The same members as those in the first embodiment described above are denoted by the same reference numerals in the drawing, and the description thereof will not be repeated here.
[工程1]
 まず、図2(a)に示すように、(メタ)アクリレート(A)及び光重合開始剤(B)を含む紫外線硬化型樹脂を、遮光部を有する透明基板2上の遮光部4が形成された面に塗布した後、得られた塗布層(紫外線硬化型樹脂組成物層5)に紫外線8を照射して、塗布層の下部側(前記紫外線硬化型樹脂組成物からみて透明基板側)に存在する硬化部分と塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層6を得る。
 このとき、好適には紫外線硬化型樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度の比率は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう恐れがある。
[Step 1]
First, as shown in FIG. 2A, a light shielding part 4 on a transparent substrate 2 having a light shielding part is formed by using an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B). After coating on the coated surface, the resulting coating layer (ultraviolet curable resin composition layer 5) is irradiated with ultraviolet rays 8 to the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition). A cured product layer 6 having an existing cured portion and an uncured portion existing on the upper side (the side opposite to the transparent substrate side) of the coating layer is obtained.
At this time, the ratio of the maximum illuminance at 200 to 320 nm is preferably 30 or less, preferably when the maximum illuminance in the range of 320 to 450 nm is set to 100. The illuminance at 200 to 320 nm is 10 or less. When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the ratio of the maximum illuminance at 200 to 320 nm is higher than 30, the adhesive strength of the optical member finally obtained may be inferior.
[工程2]
 次に、図2(b)に示すように、得られた硬化物層6の未硬化部分と液晶表示ユニット1の表示面が対向する形で液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。
[Step 2]
Next, as shown in FIG. 2B, a transparent substrate 2 having a liquid crystal display unit 1 and a light shielding portion in a form in which the uncured portion of the obtained cured product layer 6 and the display surface of the liquid crystal display unit 1 face each other. Paste. Bonding can be performed either in air or in vacuum.
[工程3]
 次に、図2(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合わせて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物の未硬化部分を有する硬化物層6を硬化させる。
[Step 3]
Next, as shown in FIG. 2C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, so that an ultraviolet curable type is obtained. The cured product layer 6 having an uncured portion of the resin composition is cured.
 こうして、図5に示された光学部材を得ることが出来る。 Thus, the optical member shown in FIG. 5 can be obtained.
(第3の実施形態)
 図3は、本発明の紫外線硬化型樹脂組成物を使用する光学部材の製造方法の第3の実施形態を示す工程図である。尚、第1の実施形態において先述した内容と同様の事項が適用できるが、重複する説明は繰り返さない。また、上述した第1の実施の形態における構成部材と同じ部材については図中同一の符号を付し、その説明はここでは繰り返さない。
(Third embodiment)
FIG. 3 is a process diagram showing a third embodiment of a method for producing an optical member using the ultraviolet curable resin composition of the present invention. In addition, although the matter similar to the content mentioned previously in 1st Embodiment is applicable, the overlapping description is not repeated. The same members as those in the first embodiment described above are denoted by the same reference numerals in the drawing, and the description thereof will not be repeated here.
[工程1]
 まず、図3(a)に示すように、(メタ)アクリレート(A)及び光重合開始剤(B)を含む紫外線硬化型樹脂を、液晶表示ユニット1の表面に塗布した。その後、紫外線硬化型樹脂組成物層5に紫外線8を照射して、塗布層の下部側(前記紫外線硬化型樹脂組成物からみて透明基板側)に存在する硬化部分と、塗布層の上部側(透明基板側と反対側)に存在する未硬化部分を有する硬化物層6を得る。
 このとき、好適には紫外線硬化型樹脂組成物に照射される紫外線が、320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度は30以下であり、特に好ましくは200~320nmにおける照度が10以下である。320nm~450nmの範囲での最大照度を100とした時、200~320nmにおける最大照度は30よりも高いと、最終的に得られる光学部材の接着強度が劣ってしまう恐れがある。
[Step 1]
First, as shown in FIG. 3A, an ultraviolet curable resin containing (meth) acrylate (A) and a photopolymerization initiator (B) was applied to the surface of the liquid crystal display unit 1. Thereafter, the ultraviolet curable resin composition layer 5 is irradiated with ultraviolet rays 8, and a cured portion existing on the lower side of the coating layer (on the transparent substrate side as viewed from the ultraviolet curable resin composition) and the upper side of the coating layer ( A cured product layer 6 having an uncured portion present on the side opposite to the transparent substrate side is obtained.
At this time, the maximum illuminance at 200 to 320 nm is preferably 30 or less, particularly preferably 200 when the maximum illuminance in the range of 320 to 450 nm is 100. The illuminance at ~ 320 nm is 10 or less. When the maximum illuminance in the range of 320 nm to 450 nm is 100, if the maximum illuminance at 200 to 320 nm is higher than 30, the adhesive strength of the finally obtained optical member may be deteriorated.
[工程2]
 次に、図3(b)に示すように、得られた硬化物層6の未硬化部分と遮光部を有する透明基板2上の遮光部が形成された面が対向する形で液晶表示ユニット1と遮光部を有する透明基板2を貼り合せる。貼り合せは、大気中及び真空中のいずれでもできる。ここで、貼り合わせは、真空中で行うことが好ましい。真空中で行うことで、基材と紫外線硬化型樹脂組成物との間に真空状態部分が介在しても、大気圧下に移した際に真空が樹脂で埋められるためである。
[Step 2]
Next, as shown in FIG. 3B, the liquid crystal display unit 1 is formed such that the uncured portion of the obtained cured product layer 6 and the surface on which the light shielding portion on the transparent substrate 2 having the light shielding portion is formed face each other. And a transparent substrate 2 having a light shielding portion are bonded together. Bonding can be performed either in air or in vacuum. Here, the bonding is preferably performed in a vacuum. This is because the vacuum is filled with the resin when transferred to atmospheric pressure even if a vacuum state portion is interposed between the base material and the ultraviolet curable resin composition by performing in vacuum.
[工程3]
 次に、図3(c)に示すように、透明基板2及び液晶表示ユニット1を貼り合せて得た光学部材に、遮光部を有する透明基板2側から紫外線8を照射して、紫外線硬化型樹脂組成物の未硬化部分を有する硬化物層6を硬化させる。
[Step 3]
Next, as shown in FIG. 3C, the optical member obtained by laminating the transparent substrate 2 and the liquid crystal display unit 1 is irradiated with ultraviolet rays 8 from the transparent substrate 2 side having a light-shielding portion, thereby ultraviolet curing type. The cured product layer 6 having an uncured portion of the resin composition is cured.
 こうして、図5に示された光学部材を得ることが出来る。 Thus, the optical member shown in FIG. 5 can be obtained.
 上記各実施形態は本発明の光学部材の製造方法の実施態様のいくつかを一つの具体的な光学基材で説明したものである。各実施形態では液晶表示ユニットおよび遮光部を有する透明基板を用いて説明したが、本発明の製造方法においては、液晶表示ユニットに代えて光学基材として後述する各種部材を使用することができ、透明基板についても、光学基材として後述する各種部材を使用することができる。
 それだけでなく、液晶表示ユニットおよび透明基板等の光学基材としては、これら各種部材に、更に、他の光学基材層(例えば、紫外線硬化型樹脂組成物の硬化物層で貼り合されたフィルム又はその他の光学基材層を積層したもの)を使用しても構わない。
 さらに、第1の実施形態の項で記載した、紫外線硬化型樹脂組成物の塗布方法、樹脂硬化物の膜厚、紫外線照射の際の照射量及び光源、及び、紫外線硬化型樹脂層表面に酸素又はオゾンを吹きかけることによる未硬化部分の膜厚調整方法等はいずれも、上記実施形態にのみ適用されるものでは無く、本発明に含まれるいずれの製造方法にも適用できる。
In the above embodiments, some of the embodiments of the method for producing an optical member of the present invention are described with one specific optical substrate. In each embodiment, the liquid crystal display unit and the transparent substrate having the light-shielding portion have been described, but in the manufacturing method of the present invention, various members described later can be used as an optical substrate instead of the liquid crystal display unit. Also about a transparent substrate, the various members mentioned later as an optical base material can be used.
In addition, as an optical substrate such as a liquid crystal display unit and a transparent substrate, these various members are further bonded to another optical substrate layer (for example, a film bonded with a cured layer of an ultraviolet curable resin composition). Or what laminated | stacked the other optical base material layer) may be used.
Furthermore, the coating method of the ultraviolet curable resin composition described in the section of the first embodiment, the film thickness of the cured resin, the irradiation amount and the light source at the time of ultraviolet irradiation, and oxygen on the surface of the ultraviolet curable resin layer Alternatively, any method for adjusting the film thickness of the uncured portion by spraying ozone is not applied only to the above-described embodiment, and can be applied to any manufacturing method included in the present invention.
 上記液晶表示ユニットも含め、上記の第1~第3の実施形態で製造し得る光学部材の具体的態様を下記に示す。
(i) 遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び遮光部と透明電極が形成してあるガラス基板からなる群から選ばれる少なくとも一つの光学基材であり、それと貼り合される光学基材が液晶表示ユニット、プラズマ表示ユニットおよび有機ELユニットからなる群から選ばれる少なくとも一つの表示体ユニットであり、得られる光学部材が、該遮光部を有する光学基材を有する表示体ユニットである態様。
(ii) 一方の光学基材が遮光部を有する保護基材であり、それと貼り合される他の光学基材がタッチパネル又はタッチパネルを有する表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が、遮光部を有する保護基材を有するタッチパネル又はそれを有する表示体ユニットである態様。
 この場合、工程1においては、遮光部を有する保護基材の遮光部を設けられた面、又は、タッチパネルのタッチ面の何れか一方の面又はその両者に、前記の紫外線硬化型樹脂組成物を塗布するのが好ましい。
(iii) 一方の光学基材が遮光部を有する光学基材であり、それと貼り合される他の光学基材が表示体ユニットであり、少なくとも2つの光学基材が貼り合された光学部材が遮光部を有する光学基材を有する表示体ユニットである態様。
 この場合、工程1において、遮光部を有する光学基材の遮光部が設けられた側の面、又は、表示体ユニットの表示面の何れか一方、又は、その両者に、前記の紫外線硬化型樹脂組成物を塗布するのが好ましい。
 遮光部を有する光学基材の具体例としては、例えば、遮光部を有する表示画面用の保護板、又は、遮光部を有する保護基材を設けたタッチパネル等を挙げることが出来る。
 遮光部を有する光学基材の遮光部が設けられた側の面とは、例えば、遮光部を有する光学基材が遮光部を有する表示画面用の保護板であるときは、該保護板の遮光部が設けられた側の面である。また、遮光部を有する光学基材が、遮光部を有する保護基材を有するタッチパネルであるときには、遮光部を有する保護基材は遮光部を有する面がタッチパネルのタッチ面に貼り合されることから、遮光部を有する光学基材の遮光部が設けられた側の面とは、該タッチパネルのタッチ面とは反対のタッチパネルの基材面を意味する。
 遮光部を有する光学基材の遮光部は、光学基材の何れに設けられても良いが、通常透明板状又はシート状の光学基材の周囲に、枠状に作成され、その幅は、0.5~10mm程度が好ましく、より好ましくは1~8mm程度、さらに好ましくは2~8mm程度である。
Specific modes of the optical members that can be manufactured in the first to third embodiments including the liquid crystal display unit will be described below.
(I) At least one selected from the group consisting of an optical substrate having a light-shielding portion, a transparent glass substrate having a light-shielding portion, a transparent resin substrate having a light-shielding portion, and a glass substrate on which the light-shielding portion and the transparent electrode are formed. The optical substrate is an optical substrate, and the optical substrate bonded thereto is at least one display body unit selected from the group consisting of a liquid crystal display unit, a plasma display unit, and an organic EL unit. The aspect which is a display body unit which has an optical base material which has.
(Ii) One optical base material is a protective base material having a light-shielding part, and another optical base material bonded to it is a touch panel or a display unit having a touch panel, and at least two optical base materials are bonded. A mode in which the optical member is a touch panel having a protective base material having a light-shielding portion or a display unit having the same.
In this case, in Step 1, the ultraviolet curable resin composition is applied to either the surface of the protective base material having the light shielding portion, the touch surface of the touch panel, or both of them. It is preferable to apply.
(Iii) One optical substrate is an optical substrate having a light-shielding portion, the other optical substrate bonded to it is a display unit, and an optical member having at least two optical substrates bonded thereto The aspect which is a display body unit which has an optical base material which has a light-shielding part.
In this case, in the step 1, the ultraviolet curable resin is applied to either the surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided, the display surface of the display unit, or both of them. It is preferable to apply the composition.
Specific examples of the optical substrate having a light shielding part include a display screen protective plate having a light shielding part, or a touch panel provided with a protective substrate having a light shielding part.
For example, when the optical substrate having the light-shielding portion is a protective plate for a display screen having the light-shielding portion, the surface of the optical substrate having the light-shielding portion is provided on the side on which the light-shielding portion is provided. It is the surface on the side where the part is provided. In addition, when the optical substrate having the light shielding portion is a touch panel having a protective substrate having the light shielding portion, the surface having the light shielding portion of the protective substrate having the light shielding portion is bonded to the touch surface of the touch panel. The surface of the optical substrate having the light shielding portion on the side where the light shielding portion is provided means the substrate surface of the touch panel opposite to the touch surface of the touch panel.
The light-shielding part of the optical base material having the light-shielding part may be provided on any of the optical base materials, but is usually formed in a frame shape around the optical base material in the form of a transparent plate or sheet, and the width is The thickness is preferably about 0.5 to 10 mm, more preferably about 1 to 8 mm, and still more preferably about 2 to 8 mm.
 次に、本発明の光学基材の貼り合わせ用紫外線硬化型樹脂組成物について説明する。ここで、本明細書において、硬化率とは紫外線硬化型樹脂組成物の硬化成分からみた硬化率を表しており、柔軟化剤等の硬化しない成分は除いて算出されるものを表している。尚、硬化率は本発明において、硬化収縮率は、25℃における硬化前の液比重と硬化して得られる25℃における膜比重から下記の数式(1)から算出できる
(数式1)
硬化収縮率=(膜比重-液比重)/膜比重×100  (1)
 本発明の紫外線硬化型樹脂組成物は、上記[工程1]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、上記[工程3]において紫外線を照射した際の樹脂層の貯蔵剛性率が通常1.5~20倍、好ましくは3~20倍(より好ましくは、3~10倍)であることを特徴とする樹脂組成物であることを特徴とする。また、樹脂組成物自体の特性としては紫外線を照射した際の硬化率70~80%における樹脂層の25℃における貯蔵剛性率に対して、紫外線を照射した際の硬化率98%以上における樹脂層の25℃における貯蔵剛性率が通常1.5~20倍、好ましくは3~20倍であることを特徴とする樹脂組成物であって、硬化率70~80%における貯蔵剛性率(25℃)が1×10Pa~1×10Paである紫外線硬化型樹脂組成物であれば適用可能である。
 貯蔵剛性率の測定方法としては、例えば下記の手法で測定することができる。具体的には、フッ素系離型剤を塗布した厚さ40μmのPETフィルム2枚を用意し、そのうちの1枚の離型剤塗布面に、得られた紫外線硬化型樹脂組成物を硬化後の膜厚が600μmとなるように塗布する。その後、2枚のPETフィルムを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせる。PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線照射し、該樹脂組成物を硬化させた。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製する。そして、剛性率については、ARES(TA Instruments)を用いて、20~40℃の温度領域において剛性率を測定できる。尚、上記所望の貯蔵剛性率を実現するにあたっては、樹脂組成物中の各成分の25℃における硬化率70~80%の貯蔵剛性率及び硬化率98%以上での貯蔵剛性率を各々測定し、目的とする範囲に収まるように重量比を調整することで実現することができる。
 [工程3]における本硬化時における硬化率は95%以上である。
Next, the ultraviolet curable resin composition for bonding optical substrates of the present invention will be described. Here, in this specification, the curing rate represents the curing rate as seen from the curing component of the ultraviolet curable resin composition, and represents a value calculated by removing components that are not cured such as a softening agent. The curing rate in the present invention can be calculated from the following formula (1) from the liquid specific gravity before curing at 25 ° C. and the film specific gravity at 25 ° C. obtained by curing (Formula 1).
Curing shrinkage = (film specific gravity−liquid specific gravity) / film specific gravity × 100 (1)
The ultraviolet curable resin composition of the present invention is a resin layer when the ultraviolet ray is irradiated in the above [Step 3] with respect to the storage rigidity at 25 ° C. of the resin layer when the ultraviolet ray is irradiated in the above [Step 1]. The resin composition is characterized in that the storage rigidity is usually 1.5 to 20 times, preferably 3 to 20 times (more preferably 3 to 10 times). Further, as a characteristic of the resin composition itself, a resin layer having a curing rate of 98% or more when irradiated with ultraviolet rays with respect to the storage rigidity at 25 ° C. of the resin layer at a curing rate of 70 to 80% when irradiated with ultraviolet rays. Is a resin composition characterized in that the storage rigidity at 25 ° C. is usually 1.5 to 20 times, preferably 3 to 20 times, and the storage rigidity at a curing rate of 70 to 80% (25 ° C.) Any ultraviolet curable resin composition having a viscosity of 1 × 10 2 Pa to 1 × 10 5 Pa can be applied.
As a method for measuring the storage rigidity, for example, it can be measured by the following method. Specifically, two PET films having a thickness of 40 μm coated with a fluorine-based mold release agent are prepared, and the obtained UV-curable resin composition is cured on one of the release agent-coated surfaces. It is applied so that the film thickness is 600 μm. Thereafter, the two PET films are bonded together so that the respective release agent application surfaces face each other. The resin composition was cured by irradiating ultraviolet rays with an integrated light amount of 2000 mJ / cm 2 through a PET film with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two PET films are peeled off to produce a cured product for measuring the rigidity. As for the rigidity, the rigidity can be measured in a temperature range of 20 to 40 ° C. using ARES (TA Instruments). In order to achieve the desired storage rigidity, the storage rigidity of each component in the resin composition at a curing rate of 70 to 80% at 25 ° C. and the storage rigidity at a curing ratio of 98% or more are measured. This can be realized by adjusting the weight ratio so as to be within the target range.
The curing rate at the time of the main curing in [Step 3] is 95% or more.
 本発明の紫外線硬化型樹脂組成物は、前記仮硬化時に25℃における貯蔵剛性率が1×10Pa~1×10Paであることを特徴とする。
 貯蔵剛性率が1×10Paより大きいと紫外線硬化型樹脂組成物は硬化により収縮するところ、収縮する力が生じることとなることから、樹脂組成物が基材に追従せず、剥がれが生じたり、基材が歪んでしまったり、応力が十分に緩和されないことで、光学部材を得た際に表示ムラが生じることとなる。また、真空中での貼り合わせにおいては、仮硬化時の貯蔵剛性率が上記範囲にあることで、大気圧下に移動させた際に不具合を生じさせることなく貼り合わせ時に生じた空間を樹脂で埋めることが可能となる。一方、1×10Pa以下であると、剛性率が低すぎるために十分に硬化物としての形状を保つことができないことから、仮硬化時に適した硬化物を得ることができなくなる。ここで、上記貯蔵剛性率が300~3000Paであることが好ましく、500~2000Paであることがより好ましい。
 仮硬化時の樹脂の硬化率としては、[工程1]における仮硬化時の硬化率は60~90%であり、当該硬化率の硬化物において貯蔵剛性率が上記値及び好適値であることで、基板の歪み及び表示ムラを防止することができる。
The ultraviolet curable resin composition of the present invention is characterized in that the storage rigidity at 25 ° C. is 1 × 10 2 Pa to 1 × 10 4 Pa during the temporary curing.
When the storage rigidity is higher than 1 × 10 4 Pa, the ultraviolet curable resin composition shrinks due to curing, and a shrinking force is generated. Therefore, the resin composition does not follow the base material and peels off. Or the base material is distorted or the stress is not sufficiently relaxed, resulting in display unevenness when the optical member is obtained. In addition, in bonding in vacuum, the storage rigidity at the time of pre-curing is in the above range, so that the space created at the time of bonding without causing problems when moved to atmospheric pressure is made of resin. It becomes possible to fill. On the other hand, when it is 1 × 10 2 Pa or less, since the rigidity is too low, the shape as a cured product cannot be sufficiently maintained, and thus a cured product suitable for temporary curing cannot be obtained. Here, the storage rigidity is preferably 300 to 3000 Pa, and more preferably 500 to 2000 Pa.
As the curing rate of the resin at the time of temporary curing, the curing rate at the time of temporary curing in [Step 1] is 60 to 90%, and the storage rigidity of the cured product having the curing rate is the above value and the preferred value. Further, distortion of the substrate and display unevenness can be prevented.
 ここで、[工程3]における本硬化時における硬化率は通常95%以上である。
 本発明においては、上記の通り、上記[工程1]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、上記[工程3]において紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であることを特徴とする樹脂組成物であることを特徴とする。硬化率で表すと硬化率70~80%における紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、硬化率98%における紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であることを特徴とする樹脂組成物であることを特徴とする。
 このように、急激に剛性率が硬化率に応じて変化する樹脂であって、硬化率が低い場合における剛性率を一定の範囲に抑えることで、硬化率が低い状態においては、基材に容易に接着させることが可能で、基材の反りに沿って接着することから容易に接着させることが可能となる。そして、基材の反りの変化に追従することとなり、基材に応力を生じさせることも防止できる。一方で、硬化率が高い状態においては、貼り合された光学基材同士の接着が剛直になるため、接着強度が顕著に高めることが可能となる。さらに、得られた硬化部材において、適度な柔軟性を保ちつつ耐湿熱性にも優れた硬化物となる。
 ここで、上記[工程1]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、上記[工程3]において紫外線を照射した際の樹脂層の貯蔵剛性率が2~7倍であることがより好ましく、2.5~5倍であることが特に好ましい。硬化率で表すと硬化率80%における紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、硬化率98%における紫外線を照射した際の樹脂層の貯蔵剛性率が2~7倍であることが好ましく、2.5~5倍であることが特に好ましい。
Here, the curing rate during the main curing in [Step 3] is usually 95% or more.
In the present invention, as described above, the storage rigidity of the resin layer at 25 ° C. when irradiated with ultraviolet rays in [Step 1] is stored in the resin layer when irradiated with ultraviolet rays in [Step 3]. It is a resin composition characterized by having a rigidity of 1.5 to 10 times. In terms of the curing rate, the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 1 with respect to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays at a curing rate of 70 to 80%. It is a resin composition characterized by being 5 to 10 times.
In this way, a resin whose rigidity changes rapidly in accordance with the curing rate, and by suppressing the rigidity when the curing rate is low to a certain range, it is easy for the base material in a state where the curing rate is low. Since it adhere | attaches along the curvature of a base material, it becomes possible to make it adhere | attach easily. And it will follow the change of the curvature of a substrate, and it can also prevent generating a stress in a substrate. On the other hand, in a state where the curing rate is high, the adhesion between the bonded optical base materials becomes rigid, so that the adhesive strength can be significantly increased. Furthermore, in the obtained cured member, it becomes a cured product excellent in moisture and heat resistance while maintaining appropriate flexibility.
Here, the storage rigidity of the resin layer when irradiated with ultraviolet rays in [Step 3] is 2 to 7 as compared to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in [Step 1]. The ratio is more preferably double, and particularly preferably 2.5 to 5 times. In terms of the curing rate, the storage rigidity of the resin layer when irradiated with ultraviolet rays at a curing rate of 98% is 2 to 7 with respect to the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays at a curing rate of 80%. Is preferably doubled, and is particularly preferably 2.5 to 5 times.
 また、本発明の紫外線硬化型樹脂組成物は、前記本硬化時に25℃における貯蔵剛性率が1×10Pa~1×10Paであることを特徴とする。ここで、貯蔵剛性率が1×10Paより大きいことで紫外線硬化型樹脂組成物は硬化により収縮が大きくなりすぎることから基材が歪んでしまう恐れや、応力が十分に緩和されないことで、光学部材を得た際に表示ムラが生じる恐れが低減される。一方、1×10Pa以下であると、剛性率が低すぎるため接着強度が低いものとなる。ここで、上記貯蔵剛性率が1.0×10~1.0×10Paであることが好ましく、1.0×10~3.0×10Paであることがより好ましい。 The ultraviolet curable resin composition of the present invention is characterized in that the storage rigidity at 25 ° C. is 1 × 10 2 Pa to 1 × 10 6 Pa at the time of the main curing. Here, because the storage rigidity is greater than 1 × 10 6 Pa, the UV curable resin composition may be excessively shrunk due to curing, so that the base material may be distorted, and the stress is not sufficiently relaxed. The possibility of display unevenness when the optical member is obtained is reduced. On the other hand, if it is 1 × 10 2 Pa or less, the rigidity is too low and the adhesive strength is low. Here, the storage rigidity is preferably 1.0 × 10 2 to 1.0 × 10 5 Pa, and more preferably 1.0 × 10 2 to 3.0 × 10 4 Pa.
 本発明の紫外線硬化型樹脂組成物は(メタ)アクリレート(A)及び光重合開始剤(B)を含有する。また、任意成分として、光学用に使用する紫外線硬化型樹脂組成物に添加可能なその他の成分を含有することができる。
 なお、「光学用に使用する紫外線硬化型樹脂組成物に添加可能」とは、硬化物の透明性を、光学用に使用出来ない程度に低下させる添加物が含まれないことを意味する。
 本発明に使用する紫外線硬化型樹脂組成物で、硬化後の厚さが200μmとなる硬化物のシートを作製したとき、該シートの、400~800nmの波長の光での好ましい平均透過率は、少なくとも90%以上であることが好ましい。
 該紫外線硬化型樹脂組成物の好適な組成割合は、該紫外線硬化型樹脂組成物の総量に対して、(メタ)アクリレート(A)が25~90重量%、光重合開始剤(B)が0.2~5重量%、その他の成分が残部である。
 本発明の紫外線硬化型樹脂組成物において、光重合開始剤(B)としては、通常使用されている光重合開始剤は何れも使用出来る。
The ultraviolet curable resin composition of the present invention contains (meth) acrylate (A) and a photopolymerization initiator (B). Moreover, the other component which can be added to the ultraviolet curable resin composition used for optics as an arbitrary component can be contained.
The phrase “can be added to an ultraviolet curable resin composition used for optics” means that an additive that lowers the transparency of the cured product to an extent that it cannot be used for optics is not included.
When a cured sheet having a thickness after curing of 200 μm is prepared with the ultraviolet curable resin composition used in the present invention, a preferable average transmittance of the sheet with light having a wavelength of 400 to 800 nm is: It is preferably at least 90% or more.
A suitable composition ratio of the ultraviolet curable resin composition is such that (meth) acrylate (A) is 25 to 90% by weight and the photopolymerization initiator (B) is 0% with respect to the total amount of the ultraviolet curable resin composition. 2-5% by weight, other components are the balance.
In the ultraviolet curable resin composition of the present invention, any photopolymerization initiator that is usually used can be used as the photopolymerization initiator (B).
 本発明の紫外線硬化型樹脂組成物における(メタ)アクリレート(A)としては、特に限定されないが、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選択されるいずれかを使用することが好ましい。より好ましくは(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、(ii)(メタ)アクリレートモノマーの両者を含む態様である。
 なお、本明細書において「(メタ)アクリレート」とは、メタアクリレート及びアクリレートのいずれか一方又は両者を意味する。「(メタ)アクリル酸」等についても同様である。
The (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is not particularly limited, but urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, It is preferable to use any selected from the group consisting of (meth) acrylate monomers. More preferably, it is an embodiment containing both (i) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer.
In the present specification, “(meth) acrylate” means either one or both of methacrylate and acrylate. The same applies to “(meth) acrylic acid” and the like.
 上記ウレタン(メタ)アクリレートは多価アルコール、ポリイソシアネート及びヒドロキシル基含有(メタ)アクリレートを反応させることによって得られる。 The urethane (meth) acrylate is obtained by reacting polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meth) acrylate.
 多価アルコールとしては、例えば、ネオペンチルグリコール、3-メチル-1、5-ペンタンジオール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1、6-ヘキサンジオール等の炭素数1~10のアルキレングリコール、トリメチロールプロパン、ペンタエリスリトール等のトリオール、トリシクロデカンジメチロール、ビス-〔ヒドロキシメチル〕-シクロヘキサン等の環状骨格を有するアルコール等;及びこれら多価アルコールと多塩基酸(例えば、コハク酸、フタル酸、ヘキサヒドロ無水フタル酸、テレフタル酸、アジピン酸、アゼライン酸、テトラヒドロ無水フタル酸等)との反応によって得られるポリエステルポリオール、多価アルコールとε-カプロラクトンとの反応によって得られるカプロラクトンアルコール、ポリカーボネートポリオール(例えば1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートジオール等)、ポリエーテルポリオール(例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイド変性ビスフェノールA等)、水添ポリブタジエンジオール等のポリオレフィンポリオール等が挙げられる。他の(A)成分との相溶性の観点から、上記多価アルコールとしてはポリプロピレングリコール、水添ポリブタジエンジオールが好ましく、基材への密着性の観点から重量平均分子量が2000以上のポリプロピレングリコール及び水添ポリブタジエンジオールが特に好ましい。このときの重量平均分子量の上限は特に限定されないが、10000以下が好ましく、5000以下がより好ましい。また、水添ポリブタジエンポリオール(A)としては、一般的なポリブタジエンポリオールの水素添加還元生成物であれば使用できるが、特に光学用途に関しては残留二重結合が少ないものが好ましく、ヨウ素価としては20以下が特に好ましい。また、この分子量に関しては一般的に入手できる分子量分布のものは全て使用できるが、特に柔軟性と硬化性のバランスをとった場合には分子量が500~3000のものが特に好ましい。 Examples of the polyhydric alcohol have 1 to 10 carbon atoms such as neopentyl glycol, 3-methyl-1,5-pentanediol, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, etc. Triols such as alkylene glycol, trimethylolpropane, pentaerythritol, alcohols having a cyclic skeleton such as tricyclodecane dimethylol, bis- [hydroxymethyl] -cyclohexane, and the like; and these polyhydric alcohols and polybasic acids (for example, succinic acid) , Phthalic acid, hexahydrophthalic anhydride, terephthalic acid, adipic acid, azelaic acid, tetrahydrophthalic anhydride, etc.) polyester polyol obtained by reaction with polyhydric alcohol and ε-caprolactone Tone alcohol, polycarbonate polyol (for example, polycarbonate diol obtained by reaction of 1,6-hexanediol and diphenyl carbonate), polyether polyol (for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide modified bisphenol A, etc.) And polyolefin polyols such as hydrogenated polybutadiene diol. From the viewpoint of compatibility with the other component (A), the polyhydric alcohol is preferably polypropylene glycol or hydrogenated polybutadiene diol. From the viewpoint of adhesion to the substrate, polypropylene glycol having a weight average molecular weight of 2000 or more and water. An added polybutadiene diol is particularly preferred. The upper limit of the weight average molecular weight at this time is not particularly limited, but is preferably 10,000 or less, and more preferably 5000 or less. The hydrogenated polybutadiene polyol (A) can be used as long as it is a hydrogenated reduction product of a general polybutadiene polyol, but particularly for optical applications, those having few residual double bonds are preferred, and the iodine value is 20 The following are particularly preferred: As for this molecular weight, all generally available molecular weight distributions can be used, but those having a molecular weight of 500 to 3000 are particularly preferred when a balance between flexibility and curability is achieved.
 有機ポリイソシアネートとしては、例えばイソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート又はジシクロペンタニルイソシアネート等が挙げられる。 Examples of the organic polyisocyanate include isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and dicyclopentanyl isocyanate.
 又、ヒドロキシル基含有(メタ)アクリレートとしては、1分子中にヒドロキシル基と(メタ)アクリレートを少なくとも各々1個づつ有する化合物であり、具体的には、2-ヒドロキシエチル(メタ)アクリレート、プロピレングリコールモノ(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ペンタンジオールモノ(メタ)アクリレート、ヘキサンジオールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、エトキシ化ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレートなどの2価アルコールのモノ(メタ)アクリレート; Further, the hydroxyl group-containing (meth) acrylate is a compound having at least one hydroxyl group and one (meth) acrylate in one molecule. Specifically, 2-hydroxyethyl (meth) acrylate, propylene glycol Mono (meth) acrylate, butanediol mono (meth) acrylate, pentanediol mono (meth) acrylate, hexanediol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, triethylene glycol mono (Meth) acrylate, tripropylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypro Mono (meth) acrylates of dihydric alcohols such as lenglycol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, ethoxylated neopentyl glycol mono (meth) acrylate, and hydroxypivalate neopentyl glycol mono (meth) acrylate ;
 トリメチロールプロパンモノ(メタ)アクリレート、エトキシ化トリメチロールプロパンモノ(メタ)アクリレート、プロポキシ化トリメチロールプロパンモノ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートモノ(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパンジ(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等の3価のアルコールのモノアクリレート及びジ(メタ)アクリレートや、これらアルコールの水酸基の一部をアルキル基やε-カプロラクトンで変性したモノ及びジ(メタ)アクリレート; Trimethylolpropane mono (meth) acrylate, ethoxylated trimethylolpropane mono (meth) acrylate, propoxylated trimethylolpropane mono (meth) acrylate, tris (2-hydroxyethyl) isocyanurate mono (meth) acrylate, glycerin mono (meta) ) Acrylate, trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane di (meth) acrylate, propoxylated trimethylolpropane di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, glycerin Mono- and di (meth) acrylates of trivalent alcohols such as di (meth) acrylate, and some of the hydroxyl groups of these alcohols are alkyl groups or ε-caprolactates In modified mono- and di (meth) acrylate;
 ペンタエリスリトールモノ(メタ)アクリレート、ジペンタエリスリトールモノ(メタ)アクリレート、ジトリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の、4価以上のアルコールの多官能(メタ)アクリレートでヒドロキシル基を有するものや、これらアルコールの水酸基の一部をアルキル基やε-カプロラクトンで変性したヒドロキシル基を有する多官能(メタ)アクリレート、等が挙げられる。 Pentaerythritol mono (meth) acrylate, dipentaerythritol mono (meth) acrylate, ditrimethylolpropane mono (meth) acrylate, pentaerythritol di (meth) acrylate, dipentaerythritol di (meth) acrylate, ditrimethylolpropane di (meth) Acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa Polyfunctional alcohols such as (meth) acrylate, ditrimethylolpropane hexa (meth) acrylate, etc. Data) and those having a hydroxyl group in acrylates, polyfunctional (meth) acrylate having a hydroxyl group partially modified with an alkyl group and ε- caprolactone hydroxyl groups of these alcohols, and the like.
 上記した少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物のうち、硬化性と柔軟性に優れる点から、2-ヒドロキシエチル(メタ)アクリレートが特に好ましい。作業性容易な点から、本発明の中で後述する重合性化合物を反応時に添加してもよい。 Of the above-mentioned (meth) acrylate compounds having at least one hydroxyl group, 2-hydroxyethyl (meth) acrylate is particularly preferred from the viewpoint of excellent curability and flexibility. From the viewpoint of easy workability, a polymerizable compound described later in the present invention may be added during the reaction.
 上記ウレタン(メタ)アクリレートを得るための反応は、例えば、以下のようにして行う。即ち、多価アルコールにその水酸基1当量あたり有機ポリイソシアネートをそのイソシアネート基が好ましくは1.1~2.0当量、さらに好ましくは1.1~1.5当量になるように混合し、反応温度を好ましくは70~90℃で反応させ、ウレタンオリゴマーを合成する(第一の反応)。次いで、ウレタンオリゴマーのイソシアネート基1当量あたり、ヒドロキシ(メタ)アクリレート化合物をその水酸基が好ましくは1~1.5当量となるように混合し、70~90℃で反応させて目的とするウレタン(メタ)アクリレートを得ることができる(第二の反応)。 The reaction for obtaining the urethane (meth) acrylate is performed, for example, as follows. That is, the polyhydric alcohol is mixed with an organic polyisocyanate per equivalent of the hydroxyl group so that the isocyanate group is preferably 1.1 to 2.0 equivalent, more preferably 1.1 to 1.5 equivalent. Is preferably reacted at 70 to 90 ° C. to synthesize a urethane oligomer (first reaction). Next, the hydroxy (meth) acrylate compound is mixed so that the hydroxyl group is preferably 1 to 1.5 equivalents per equivalent of the isocyanate group of the urethane oligomer, and reacted at 70 to 90 ° C. to react with the target urethane (meth). ) Acrylate can be obtained (second reaction).
 本発明において、第一の反応は、無溶剤で行うことができるが、生成物の粘度が高く作業性向上のためアルコール性水酸基を有さない溶剤中あるいは後述する(メタ)アクリレートモノマー中で行なうことが好ましい。溶剤の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、ベンゼン、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、グルタル酸ジアルキル、コハク酸ジアルキル、アジピン酸ジアルキル等のエステル類、γ-ブチロラクトン等の環状エステル類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等の単独又は混合有機溶媒中で行うことができる。 In the present invention, the first reaction can be carried out in the absence of a solvent, but is carried out in a solvent having a high viscosity of the product and not having an alcoholic hydroxyl group or in a (meth) acrylate monomer described later in order to improve workability. It is preferable. Specific examples of the solvent include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic hydrocarbons such as benzene, toluene, xylene, and tetramethylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and dipropylene glycol. Glycol ethers such as dimethyl ether, dipropylene glycol diethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, ethyl acetate, butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, propylene glycol monomethyl ether acetate , Propylene glycol monoethyl ether acetate, Propylene glycol monomethyl ether acetate, esters such as dialkyl glutarate, dialkyl succinate, dialkyl adipate, cyclic esters such as γ-butyrolactone, petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, solvent naphtha, etc. Can be carried out alone or in a mixed organic solvent.
 反応温度は通常30~150℃、好ましくは50~100℃の範囲である。反応の終点はイシアネート量の減少で確認する。また、これらの反応時間の短縮を目的として触媒を添加してもよい。この触媒としては、塩基性触媒及び酸性触媒のいずれかが用いられる。塩基性触媒の例としては、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミン、アンモニアなどのアミン類、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類を挙げることができる。また酸性触媒の例としては、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、トリブトキシアルミニウム、チタニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、塩化アルミニウム、オクチル酸スズ、オクチルスズトリラウレート、ジブチルスズジラウレート、オクチルスズジアセテート等のルイス酸触媒を挙げることができる。これら触媒の添加量は、ジオール化合物とポリイソシアネート化合物の総重量部100重量部に対して、通常0.1~1重量部である。 The reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C. The end point of the reaction is confirmed by a decrease in the amount of isocyanate. A catalyst may be added for the purpose of shortening the reaction time. As this catalyst, either a basic catalyst or an acidic catalyst is used. Examples of the basic catalyst include amines such as pyridine, pyrrole, triethylamine, diethylamine, dibutylamine and ammonia, and phosphines such as tributylphosphine and triphenylphosphine. Examples of acidic catalysts include copper naphthenate, cobalt naphthenate, zinc naphthenate, tributoxyaluminum, titanium tetraisopropoxide, zirconium tetrabutoxide, aluminum chloride, tin octylate, octyltin trilaurate, dibutyltin dilaurate, Mention may be made of Lewis acid catalysts such as octyltin diacetate. The amount of these catalysts added is usually 0.1 to 1 part by weight based on 100 parts by weight of the total weight of the diol compound and the polyisocyanate compound.
 本発明のウレタン(メタ)アクリレートは第一の反応後、続いて残存するイソシアネート基に対し少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物(C)を反応(第二の反応)させて得ることができる。 The urethane (meth) acrylate of the present invention is obtained by reacting (second reaction) a (meth) acrylate compound (C) having at least one hydroxyl group with respect to the remaining isocyanate group after the first reaction. be able to.
 本発明の第二の反応は、第一の反応後に得られた中間体のイソシアネート基が無くなるような当量関係で仕込む。具体的に好ましくは、第一の反応後に得られた中間体のNCO基1.0molに対し少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物のOH基を1.0~3.0mol、更に好ましくは1.0~2.0molとする。 The second reaction of the present invention is charged in an equivalent relationship such that the isocyanate group of the intermediate obtained after the first reaction is eliminated. Specifically, preferably, 1.0 to 3.0 mol of OH groups of a (meth) acrylate compound having at least one hydroxyl group with respect to 1.0 mol of NCO groups of the intermediate obtained after the first reaction, The amount is preferably 1.0 to 2.0 mol.
 本発明の第二の反応も、無溶剤で行うことができるが、生成物の粘度が高く作業性向上のため上述した溶剤中及び/又は本発明の中で後述する重合性化合物(F)で行うことが好ましい。また、反応温度は通常30~150℃、好ましくは50~100℃の範囲である。反応の終点はイシアネート量の減少で確認する。これらの反応時間の短縮を目的として前述の触媒を添加してもよい。 The second reaction of the present invention can also be carried out in the absence of a solvent, but in the above-mentioned solvent and / or polymerizable compound (F) described later in the present invention in order to improve workability because the product has a high viscosity. Preferably it is done. The reaction temperature is usually in the range of 30 to 150 ° C, preferably 50 to 100 ° C. The end point of the reaction is confirmed by a decrease in the amount of isocyanate. The aforementioned catalyst may be added for the purpose of shortening the reaction time.
 原料として用いるアクリレート化合物には、既に4-メトキシフェノール等の重合禁止剤が添加されているのが普通であるが、反応時に改めて重合禁止剤を添加してもよい。そのような重合禁止剤の例としては、ハイドロキノン、4-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-4-クレゾール、3-ヒドロキシチオフェノール、p-ベンゾキノン、2,5-ジヒドロキシ-p-ベンゾキノン、フェノチアジン等が挙げられる。その使用量は反応原料混合物に対し0.01~1重量%である。 Usually, a polymerization inhibitor such as 4-methoxyphenol is already added to the acrylate compound used as a raw material, but a polymerization inhibitor may be added again during the reaction. Examples of such polymerization inhibitors include hydroquinone, 4-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-4-cresol, 3-hydroxythiophenol, Examples include p-benzoquinone, 2,5-dihydroxy-p-benzoquinone, and phenothiazine. The amount used is 0.01 to 1% by weight based on the reaction raw material mixture.
 上記ウレタン(メタ)アクリレートの重量平均分子量としては7000~25000程度が好ましく、10000~20000がより好ましい。重量平均分子量が7000より小さいと収縮が大きくなる傾向があり、重量平均分子量が25000より大きいと硬化性が乏しくなる傾向がある。 The weight average molecular weight of the urethane (meth) acrylate is preferably about 7000 to 25000, and more preferably 10,000 to 20000. When the weight average molecular weight is less than 7000, shrinkage tends to increase, and when the weight average molecular weight is greater than 25000, curability tends to be poor.
 本発明の紫外線硬化型樹脂組成物においては、ウレタン(メタ)アクリレートは、1種または2種以上を任意の割合で混合して使用することができる。ウレタン(メタ)アクリレートの本発明の光硬化型透明接着剤組成物中における重量割合は通常20~80重量%が好ましく、より好ましくは30~70重量%である。 In the ultraviolet curable resin composition of the present invention, urethane (meth) acrylates can be used alone or in admixture of two or more. The weight ratio of urethane (meth) acrylate in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
 上記ポリイソプレン骨格を有する(メタ)アクリレートは、ポリイソプレン分子の末端又は側鎖に(メタ)アクリロイル基を有する。ポリイソプレン骨格を有する(メタ)アクリレートは「UC-203」(クラレ社製)として入手することができる。ポリイソプレン骨格を有する(メタ)アクリレートはポリスチレン換算の数平均分子量が1000~50000が好ましく、25000~45000程度がより好ましい。
 ポリイソプレン骨格を有する(メタ)アクリレートの本発明の光硬化型透明接着剤組成物中における重量割合は通常20~80重量%が好ましく、より好ましくは30~70重量%である。
The (meth) acrylate having the polyisoprene skeleton has a (meth) acryloyl group at the terminal or side chain of the polyisoprene molecule. A (meth) acrylate having a polyisoprene skeleton can be obtained as “UC-203” (manufactured by Kuraray Co., Ltd.). The (meth) acrylate having a polyisoprene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 50,000, more preferably about 25,000 to 45,000.
The weight ratio of the (meth) acrylate having a polyisoprene skeleton in the photocurable transparent adhesive composition of the present invention is usually preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
 上記ポリブタジエン骨格を有する(メタ)アクリレートは、ポリブタジエン分子の末端又は側鎖に(メタ)アクリロイル基を有する。ポリブタジエン骨格を有する(メタ)アクリレートは「TEAI-1000(日本曹達社製)」「TE-2000(日本曹達社製)」「EMA-3000(日本曹達社製)」「SPBDA-S30(大阪有機化学工業社製)」として入手する事が出来る。ポリブタジエン骨格を有する(メタ)アクリレートはポリスチレン換算の数平均分子量が1000~30000が好ましく、1000~10000程度がより好ましい。 The (meth) acrylate having a polybutadiene skeleton has a (meth) acryloyl group at the terminal or side chain of the polybutadiene molecule. The (meth) acrylates having a polybutadiene skeleton are "TEAI-1000 (Nippon Soda Co., Ltd.)", "TE-2000 (Nippon Soda Co., Ltd.)", "EMA-3000 (Nippon Soda Co., Ltd.)" Manufactured by Kogyo Co., Ltd.). The (meth) acrylate having a polybutadiene skeleton preferably has a polystyrene-equivalent number average molecular weight of 1,000 to 30,000, more preferably about 1,000 to 10,000.
 上記(メタ)アクリレートモノマーとしては、好適には分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートを使用することができる。
 ここで、(メタ)アクリレートモノマーとは、上記ウレタン(メタ)アクリレート、下記エポキシ(メタ)アクリレート及び上記ポリイソプレン骨格を有する(メタ)アクリレートを除いた(メタ)アクリレートを示す。
As the (meth) acrylate monomer, a (meth) acrylate having one (meth) acryloyl group in the molecule can be preferably used.
Here, the (meth) acrylate monomer indicates (meth) acrylate excluding the urethane (meth) acrylate, the following epoxy (meth) acrylate, and the (meth) acrylate having the polyisoprene skeleton.
 分子中に1個の(メタ)アクリロイル基を有する(メタ)アクリレートとしては、具体的にはイソオクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、セチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、トリデシル(メタ)アクリレート等の炭素数5~20のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリロイルモルホリン、フェニルグリシジル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、1-アダマンチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、1-アダマンチルメタクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート、ジシクロペンタジエンオキシエチル(メタ)アクリレート、等の環状骨格を有する(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する炭素数1~5のアルキル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート、エチレンオキシド変性フェノキシ化リン酸(メタ)アクリレート、エチレンオキシド変性ブトキシ化リン酸(メタ)アクリレート及びエチレンオキシド変性オクチルオキシ化リン酸(メタ)アクリレート等を挙げることができる。中でも、炭素数10~20のアルキル(メタ)アクリレート、2-エチルヘキシルカルビトールアクリレート、アクリロイルモルホリン、4-ヒドロキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレートが好ましく、特に、樹脂の柔軟性の観点から、炭素数10~20のアルキル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ポリプロピレンオキサイド変性ノニルフェニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレートが好ましい。
 一方、ガラスへの密着性を向上させる観点からは、水酸基を有する炭素数1~5のアルキル(メタ)アクリレート、アクリロイルモルホリンが好ましく、アクリロイルモルホリンが特に好ましい。
Specific examples of the (meth) acrylate having one (meth) acryloyl group in the molecule include isooctyl (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, isodecyl (meth) acrylate, stearyl ( Alkyl (meth) acrylates having 5 to 20 carbon atoms such as (meth) acrylate, isostearyl (meth) acrylate, cetyl (meth) acrylate, isomyristyl (meth) acrylate, tridecyl (meth) acrylate, benzyl (meth) acrylate, tetrahydro Furfuryl (meth) acrylate, acryloylmorpholine, phenylglycidyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl ) Acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, 1-adamantyl acrylate, 2-methyl-2-adamantyl acrylate, 2-ethyl-2-adamantyl acrylate, 1-adamantyl methacrylate, polypropylene oxide modified nonyl Carbon having a hydroxyl group such as (meth) acrylate having a cyclic skeleton such as phenyl (meth) acrylate and dicyclopentadieneoxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate Number 1-5 alkyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polypropylene oxide Polyalkylene glycol (meth) acrylate such as nonylphenyl (meth) acrylate, ethylene oxide modified phenoxylated phosphoric acid (meth) acrylate, ethylene oxide modified butoxylated phosphoric acid (meth) acrylate, ethylene oxide modified octyloxylated phosphoric acid (meth) acrylate, etc. Can be mentioned. Among them, alkyl (meth) acrylates having 10 to 20 carbon atoms, 2-ethylhexyl carbitol acrylate, acryloylmorpholine, 4-hydroxybutyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isostearyl (meth) acrylate, dicyclo Pentenyloxyethyl (meth) acrylate and polypropylene oxide-modified nonylphenyl (meth) acrylate are preferred. In particular, from the viewpoint of resin flexibility, alkyl (meth) acrylate having 10 to 20 carbon atoms, dicyclopentenyloxyethyl (meth) Preferred are acrylate, polypropylene oxide-modified nonylphenyl (meth) acrylate, and tetrahydrofurfuryl (meth) acrylate.
On the other hand, from the viewpoint of improving the adhesion to glass, an alkyl (meth) acrylate having 1 to 5 carbon atoms having a hydroxyl group and acryloylmorpholine are preferable, and acryloylmorpholine is particularly preferable.
 本発明の組成物には、本発明の特性を損なわない範囲で(メタ)アクリロイル基を1個有する(メタ)アクリレート以外の(メタ)アクリレートを含有することができる。例えば、トリシクロデカンジメチロールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、アルキレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート及びエチレンオキシド変性リン酸ジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート等のトリメチロールC2~C10アルカントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート等のトリメチロールC2~C10アルカンポリアルコキシトリ(メタ)アクリレート、トリス[(メタ)アクロイルオキシエチル]イソシアヌレ-ト、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート等のアルキレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレートペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等を挙げることができる。
 本発明においては、併用する場合は、硬化収縮を抑えるために、1又は2官能の(メタ)アクリレートを使用することが好ましい。
The composition of the present invention can contain (meth) acrylates other than (meth) acrylate having one (meth) acryloyl group as long as the characteristics of the present invention are not impaired. For example, tricyclodecane dimethylol di (meth) acrylate, dioxane glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, alkylene oxide modified bisphenol A type di (meth) acrylate Trimethylol C2-C10 alkanes such as caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate and ethylene oxide-modified phosphoric acid di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethyloloctane tri (meth) acrylate Tri (meth) acrylate, trimethylolpropane polyethoxytri (meth) acrylate, trimethylolpropane polypropoxytri ( Trimethylol C2-C10 alkane polyalkoxy tri (meth) acrylate such as acrylate, trimethylolpropane polyethoxypolypropoxy tri (meth) acrylate, tris [(meth) acryloyloxyethyl] isocyanurate, pentaerythritol tri ( (Meth) acrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate and other alkylene oxide modified trimethylolpropane tri (meth) acrylate pentaerythritol polyethoxytetra (meth) acrylate, Pentaerythritol polypropoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrime Trimethylolpropane tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
In this invention, when using together, in order to suppress cure shrinkage, it is preferable to use mono- or bifunctional (meth) acrylate.
 本発明の紫外線硬化型樹脂組成物においては、これら(メタ)アクリレートモノマー成分は、1種または2種以上を任意の割合で混合して使用することができる。(メタ)アクリレートモノマーの本発明の光硬化型透明接着剤組成物中における重量割合は通常5~70重量%が好ましく、より好ましくは10~50重量%である。5重量%より少ないと硬化性が乏しくなる傾向があり、70重量%より多いと収縮が大きくなる傾向がある。
 該紫外線硬化型樹脂組成物における(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、(ii)(メタ)アクリレートモノマーの両者を含む態様においては、(i)及び(ii)の両者の合計含量が、該樹脂組成物の総量に対して、通常、25~90重量%が好ましく、より好ましくは40~90重量%、さらに好ましくは40~80重量%である。
In the ultraviolet curable resin composition of this invention, these (meth) acrylate monomer components can be used 1 type or in mixture of 2 or more types by arbitrary ratios. The weight ratio of the (meth) acrylate monomer in the photocurable transparent adhesive composition of the present invention is usually preferably 5 to 70% by weight, more preferably 10 to 50% by weight. If it is less than 5% by weight, the curability tends to be poor, and if it is more than 70% by weight, the shrinkage tends to increase.
In the aspect containing both (i) urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton and (ii) (meth) acrylate monomer in the ultraviolet curable resin composition, The total content of both (i) and (ii) is usually preferably 25 to 90% by weight, more preferably 40 to 90% by weight, still more preferably 40 to 80% by weight, based on the total amount of the resin composition. %.
 本発明の紫外線硬化型樹脂組成物には、本発明の特性を損なわない範囲でエポキシ(メタ)アクリレートを使用することができる。エポキシ(メタ)アクリレートは、硬化性の向上や硬化物の硬度や硬化速度を向上させる機能がある。また、エポキシ(メタ)アクリレートとしては、グリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を反応させることにより得られたものであればいずれも使用できるが、好ましく使用されるエポキシ(メタ)アクリレートを得るためのグリシジルエーテル型エポキシ化合物としては、ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールA或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、水素添加ビスフェノールF或いはそのアルキレンオキサイド付加体のジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、へキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等を挙げることができる。 In the ultraviolet curable resin composition of the present invention, epoxy (meth) acrylate can be used as long as the characteristics of the present invention are not impaired. Epoxy (meth) acrylate has a function of improving curability and improving the hardness and curing speed of a cured product. Any epoxy (meth) acrylate can be used as long as it is obtained by reacting a glycidyl ether type epoxy compound with (meth) acrylic acid, and preferably used epoxy (meth) acrylate. Examples of the glycidyl ether type epoxy compound to be obtained include diglycidyl ether of bisphenol A or its alkylene oxide adduct, diglycidyl ether of bisphenol F or its alkylene oxide adduct, diglycidyl of hydrogenated bisphenol A or its alkylene oxide adduct. Diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether of ether, hydrogenated bisphenol F or its alkylene oxide adduct Neopentyl glycol diglycidyl ether, butanediol diglycidyl ether hexanediol diglycidyl ether to, cyclohexanedimethanol diglycidyl ether, and polypropylene glycol diglycidyl ether.
 エポキシ(メタ)アクリレートは、これらグリシジルエーテル型エポキシ化合物と、(メタ)アクリル酸を、下記のような条件で反応させることにより得られる。 Epoxy (meth) acrylate is obtained by reacting these glycidyl ether type epoxy compounds with (meth) acrylic acid under the following conditions.
 グリシジルエーテル型エポキシ化合物のエポキシ基1当量に対して、(メタ)アクリル酸を0.9~1.5モル、より好ましくは0.95~1.1モルの比率で反応させる。反応温度は80~120℃が好ましく、反応時間は10~35時間程度である。反応を促進させるために、例えばトリフェニルフォスフィン、TAP、トリエタノールアミン、テトラエチルアンモニウムクロライド等の触媒を使用するのが好ましい。又、反応中、重合を防止するために重合禁止剤として、例えば、パラメトキシフェノール、メチルハイドロキノン等を使用することもできる。 (Meth) acrylic acid is reacted at a ratio of 0.9 to 1.5 mol, more preferably 0.95 to 1.1 mol, per 1 equivalent of epoxy group of the glycidyl ether type epoxy compound. The reaction temperature is preferably 80 to 120 ° C., and the reaction time is about 10 to 35 hours. In order to accelerate the reaction, it is preferable to use a catalyst such as triphenylphosphine, TAP, triethanolamine, or tetraethylammonium chloride. Further, in order to prevent polymerization during the reaction, for example, paramethoxyphenol, methylhydroquinone or the like can be used as a polymerization inhibitor.
 本発明において好適に使用することができるエポキシ(メタ)アクリレートとしては、ビスフェノールA型のエポキシ化合物より得られた、ビスフェノールA型エポキシ(メタ)アクリレートである。エポキシ(メタ)アクリレートの重量平均分子量としては500~10000が好ましい。
 エポキシ(メタ)アクリレートの本発明の紫外線硬化型樹脂組成物中における重量割合は通常1~80重量%、好ましくは5~30重量%である。
An epoxy (meth) acrylate that can be suitably used in the present invention is a bisphenol A type epoxy (meth) acrylate obtained from a bisphenol A type epoxy compound. The weight average molecular weight of the epoxy (meth) acrylate is preferably 500 to 10,000.
The weight ratio of the epoxy (meth) acrylate in the ultraviolet curable resin composition of the present invention is usually 1 to 80% by weight, preferably 5 to 30% by weight.
 本発明の紫外線硬化型樹脂組成物における(メタ)アクリレート(A)の含有割合としては、紫外線硬化型樹脂組成物の総量に対して、25~90重量%が好ましく、より好ましくは40~90重量%であり、さらに好ましくは40~80重量%である。
 本発明の紫外線硬化型樹脂組成物において、(メタ)アクリレート(A)として、前記ウレタン(メタ)アクリレート、前記ポリイソプレン骨格を有する(メタ)アクリレート及び前記(メタ)アクリレートモノマーからなる群から選択される少なくとも一つを含有することが好ましい。前記ウレタン(メタ)アクリレートの含有割合は、好ましくは20~80重量%、より好ましくは30~70重量%であり、前記ポリイソプレン骨格を有する(メタ)アクリレートの含有割合は、好ましくは20~80重量%、より好ましくは30~70重量%であり、前記(メタ)アクリレートモノマーの含有割合は、好ましくは5~70重量%、より好ましくは10~50重量%である。
 本発明の紫外線硬化型樹脂組成物において、(メタ)アクリレート(A)として、前記ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートを含有し、その含有割合が20~80重量%、好ましくは30~70重量%であり、且つ、(メタ)アクリレートモノマーを含有し、その含有割合が5~70重量%、好ましくは10~50重量%であるとき、さらに好ましい。
The content ratio of (meth) acrylate (A) in the ultraviolet curable resin composition of the present invention is preferably 25 to 90% by weight, more preferably 40 to 90% by weight, based on the total amount of the ultraviolet curable resin composition. %, More preferably 40 to 80% by weight.
In the ultraviolet curable resin composition of the present invention, the (meth) acrylate (A) is selected from the group consisting of the urethane (meth) acrylate, the (meth) acrylate having the polyisoprene skeleton, and the (meth) acrylate monomer. It is preferable to contain at least one of the above. The content of the urethane (meth) acrylate is preferably 20 to 80% by weight, more preferably 30 to 70% by weight, and the content of the (meth) acrylate having a polyisoprene skeleton is preferably 20 to 80%. The content ratio of the (meth) acrylate monomer is preferably 5 to 70% by weight, more preferably 10 to 50% by weight.
In the ultraviolet curable resin composition of the present invention, the (meth) acrylate (A) contains the urethane (meth) acrylate or the (meth) acrylate having a polyisoprene skeleton, and the content ratio is 20 to 80% by weight, More preferably, it is 30 to 70% by weight and contains a (meth) acrylate monomer, and its content is 5 to 70% by weight, preferably 10 to 50% by weight.
 本発明の組成物に含有される光重合開始剤(B)としては、特に限定されないが、例えば、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー(商品名)184;BASF製)、2-ヒドロキシ-2-メチル-[4-(1-メチルビニル)フェニル]プロパノールオリゴマー(エサキュア(商品名)ONE;ランバルティ製)、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(イルガキュアー127;BASF製)、2,2-ジメトキシ-2-フェニルアセトフェノン(イルガキュアー651;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア(商品名)1173;BASF製)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(イルガキュアー907;BASF製)、オキシ-フェニル-アセチックアシッド2-[2-オキソ-2-フェニル-アセトキシ-エトキシ]-エチルエステルとオキシ-フェニル-アセチックアシッド2-[2-ヒドロキシ-エトキシ]-エチルエステルの混合物(イルガキュアー754;BASF製)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、イソプロピルチオキサントン等を挙げることができる。 The photopolymerization initiator (B) contained in the composition of the present invention is not particularly limited, and examples thereof include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and 2,4,6-trimethylbenzoylphenylethoxyphosphine. Fin oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone ( Irgacure (trade name) 184; manufactured by BASF), 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenyl] propanol oligomer (Esacure (trade name) ONE; manufactured by Lambarti), 1- [4- (2-Hydroxyethoxy) -phenyl] -2 Hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl } -2-Methyl-propan-1-one (Irgacure 127; manufactured by BASF), 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl -Propan-1-one (Darocur (trade name) 1173; manufactured by BASF), 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (Irgacure 907; manufactured by BASF), Oxy-phenyl-acetic acid 2- [2-oxo-2-phenyl-acetoxy-ethoxy] -ethyl ester A mixture of tellurium and oxy-phenyl-acetic acid 2- [2-hydroxy-ethoxy] -ethyl ester (Irgacure 754; manufactured by BASF), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl)- Examples include butan-1-one, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, and isopropylthioxanthone.
 本発明においては、前記光重合開始剤(B)について、アセトニトリル又はメタノール中で測定した302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であって、365nmでのモル吸光係数が100ml/(g・cm)以下である光重合開始剤を使用することが好ましい。このような光重合開始剤を使用することで、接着強度の向上に寄与させることができる。302nm又は313nmにおけるモル吸光係数が300ml/(g・cm)以上であることで、工程3での硬化時の硬化がより十分となる。一方、365nmでのモル吸光係数が100ml/(g・cm)以下であることで、工程1における硬化時に過度な硬化を適切に抑制でき、密着性をより向上させることが可能となる。
 このような光重合開始剤(B)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュアー184;BASF製)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(ダロキュア1173;BASF製)、1-[4-(2-ヒドロキシエトキシ)-フェニル-]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュアー2959;BASF製)、フェニルグリオキシリックアシッドメチルエステル(ダロキュアMBF;BASF製)等が挙げられる。
In the present invention, the photopolymerization initiator (B) has a molar extinction coefficient at 302 nm or 313 nm measured in acetonitrile or methanol of 300 ml / (g · cm) or more and a molar extinction coefficient at 365 nm of 100 ml. It is preferable to use a photopolymerization initiator that is not more than / (g · cm). By using such a photopolymerization initiator, it is possible to contribute to an improvement in adhesive strength. When the molar extinction coefficient at 302 nm or 313 nm is 300 ml / (g · cm) or more, curing at the time of curing in Step 3 becomes more sufficient. On the other hand, when the molar extinction coefficient at 365 nm is 100 ml / (g · cm) or less, excessive curing at the time of curing in Step 1 can be appropriately suppressed, and adhesion can be further improved.
Examples of such a photopolymerization initiator (B) include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by BASF), 2-hydroxy-2-methyl-1-phenyl-propan-1-one (Darocur 1173). Manufactured by BASF), 1- [4- (2-hydroxyethoxy) -phenyl-]-2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959; manufactured by BASF), phenylglyoxylic acid And methyl ester (Darocur MBF; manufactured by BASF).
 本発明の紫外線硬化型樹脂組成物においては、これら光重合開始剤(B)は、1種または2種以上を任意の割合で混合して使用することができる。光重合開始剤(B)の本発明の光硬化型樹脂組成物中における重量割合は通常0.2~5重量%が好ましく、より好ましくは0.3~3重量%である。5重量%より多いと、硬化部分と光学基材側と反対側に存在する未硬化部分を有する硬化物層を得る際に、未硬化部分が形成できなかったり、樹脂硬化物層の透明性が悪くなったりするおそれがある。 In the ultraviolet curable resin composition of the present invention, these photopolymerization initiators (B) can be used alone or in admixture of two or more at any ratio. The weight ratio of the photopolymerization initiator (B) in the photocurable resin composition of the present invention is usually preferably 0.2 to 5% by weight, more preferably 0.3 to 3% by weight. When it is more than 5% by weight, when obtaining a cured product layer having a cured part and an uncured part on the side opposite to the optical substrate side, the uncured part cannot be formed or the transparency of the resin cured product layer is low. There is a risk of getting worse.
 本発明の紫外線硬化型樹脂組成物は、前記(メタ)アクリレート(A)及び上記光重合開始剤(B)以外に、その他の成分として、下記する光重合開始助剤、後記する一般式(1)で示される構造を有する化合物、後記する柔軟化成分、及び、後記する添加剤等を含むことができる。本発明の紫外線硬化型樹脂組成物の総量に対するその他の成分の含有割合は、総量から、前記(メタ)アクリレート(A)及び上記光重合開始剤(B)の合計量を減じた残部である。具体的には該その他の成分の総量は、本発明の紫外線硬化型樹脂組成物の総量に対して0~74重量%が好ましく、より好ましくは5~70重量%程度である。 In addition to the (meth) acrylate (A) and the photopolymerization initiator (B), the ultraviolet curable resin composition of the present invention includes, as other components, a photopolymerization initiation assistant described below, a general formula (1 ), A softening component to be described later, an additive to be described later, and the like. The content ratio of the other components with respect to the total amount of the ultraviolet curable resin composition of the present invention is a balance obtained by subtracting the total amount of the (meth) acrylate (A) and the photopolymerization initiator (B) from the total amount. Specifically, the total amount of the other components is preferably 0 to 74% by weight, more preferably about 5 to 70% by weight, based on the total amount of the ultraviolet curable resin composition of the present invention.
 更に、光重合開始助剤となりうるアミン類等を上記の光重合開始剤と併用することもできる。使用しうるアミン類等としては、安息香酸2-ジメチルアミノエチルエステル、ジメチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチルエステルまたはp-ジメチルアミノ安息香酸イソアミルエステル等が挙げられる。該アミン類等の光重合開始助剤を使用する場合、本発明の接着用樹脂組成物中の含有量は通常0.005~5重量%が好ましく、より好ましくは0.01~3重量%である。 Furthermore, amines that can serve as photopolymerization initiation assistants can be used in combination with the above photopolymerization initiator. Examples of amines that can be used include benzoic acid 2-dimethylaminoethyl ester, dimethylaminoacetophenone, p-dimethylaminobenzoic acid ethyl ester, and p-dimethylaminobenzoic acid isoamyl ester. When using a photopolymerization initiation aid such as the amines, the content in the adhesive resin composition of the present invention is usually preferably 0.005 to 5% by weight, more preferably 0.01 to 3% by weight. is there.
 本発明の紫外線硬化型樹脂組成物必要に応じて、一般式(1)で示される構造を有する化合物を含有させることができる。 The ultraviolet curable resin composition of the present invention can contain a compound having a structure represented by the general formula (1) as necessary.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、nは0~40の整数、mは10~50の整数を示す。RおよびRは同一であっても異なっていてもよい。RおよびRは炭素数1~18のアルキル基、炭素数1~18のアルケニル基、炭素数1~18のアルキニル基又は炭素数5~18のアリール基である。)
 一般式(1)で示される構造を有する化合物は、例えば日油株式会社製ユニセーフ(商品名)PKA-5017(ポリエチレングリコール-ポリプロピレングリコールアリルブチルエーテル)等として入手することができる。
 一般式(1)で示される構造を有する化合物を使用する際の紫外線硬化型樹脂組成物中における重量割合は、通常10~80重量%が好ましく、より好ましくは10~70重量%である。
(In the formula, n represents an integer of 0 to 40, and m represents an integer of 10 to 50. R 1 and R 2 may be the same or different. R 1 and R 2 have 1 to 18 carbon atoms. An alkyl group having 1 to 18 carbon atoms, an alkynyl group having 1 to 18 carbon atoms, or an aryl group having 5 to 18 carbon atoms.)
The compound having the structure represented by the general formula (1) can be obtained, for example, as Unisafe (trade name) PKA-5017 (polyethylene glycol-polypropylene glycol allyl butyl ether) manufactured by NOF Corporation.
The weight ratio in the ultraviolet curable resin composition when using the compound having the structure represented by the general formula (1) is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
 本発明の紫外線硬化型樹脂組成物には、必要に応じて柔軟化成分を使用することができる。使用できる柔軟化成分の具体例としては、前記(メタ)アクリレート及び一般式(1)で示される構造を有する化合物を除くポリマー又はオリゴマー、フタル酸エステル類、リン酸エステル類、グリコールエステル類、クエン酸エステル類、脂肪族二塩基酸エステル類、脂肪酸エステル類、エポキシ系可塑剤、ヒマシ油類、テルペン系水素添加樹脂等が挙げられる。上記オリゴマー、ポリマーの例としては、ポリイソプレン骨格、ポリブタジエン骨格、ポリブテン骨格又はキシレン骨格を有するオリゴマー又はポリマー及びそのエステル化物を例示することができ、場合により、ポリブタジエン骨格を有するポリマー又はオリゴマー及びそのエステル化物を使用することが好ましい。ポリブタジエン骨格を有するポリマー又はオリゴマー及びそのエステル化物の具体例としては、ブタジエンホモポリマー、エポキシ変性ポリブタジエン、ブタジエン-スチレンランダムコポリマー、マレイン酸変性ポリブタジエンおよび末端水酸基変性された液状ポリブタジエン又は液状水添ポリブタジエンが挙げられる。また、柔軟化成分においては、上記各柔軟化成分を混合して使用することも可能である。
 かかる柔軟化成分の紫外線硬化型樹脂組成物中における重量割合は、通常10~80重量%が好ましく、より好ましくは10~70重量%である。
A softening component can be used in the ultraviolet curable resin composition of the present invention as necessary. Specific examples of the softening component that can be used include polymers or oligomers excluding the (meth) acrylate and the compound having the structure represented by the general formula (1), phthalates, phosphates, glycols, Examples thereof include acid esters, aliphatic dibasic acid esters, fatty acid esters, epoxy plasticizers, castor oils, and terpene hydrogenated resins. Examples of the oligomer and polymer include an oligomer or a polymer having a polyisoprene skeleton, a polybutadiene skeleton, a polybutene skeleton or a xylene skeleton and an esterified product thereof. In some cases, a polymer or an oligomer having a polybutadiene skeleton and an ester thereof are used. It is preferred to use a compound. Specific examples of the polymer or oligomer having a polybutadiene skeleton and esterified products thereof include butadiene homopolymer, epoxy-modified polybutadiene, butadiene-styrene random copolymer, maleic acid-modified polybutadiene, and terminal hydroxyl group-modified liquid polybutadiene or liquid hydrogenated polybutadiene. It is done. Further, in the softening component, the above-mentioned softening components can be mixed and used.
The weight ratio of the softening component in the ultraviolet curable resin composition is usually preferably 10 to 80% by weight, more preferably 10 to 70% by weight.
 本発明の紫外線硬化型樹脂組成物には、必要に応じて酸化防止剤、有機溶剤、シランカップリング剤、重合禁止剤、レベリング剤、帯電防止剤、表面潤滑剤、蛍光増白剤、光安定剤(例えば、ヒンダードアミン化合物等)、充填剤等の添加剤を加えてもよい。 In the ultraviolet curable resin composition of the present invention, an antioxidant, an organic solvent, a silane coupling agent, a polymerization inhibitor, a leveling agent, an antistatic agent, a surface lubricant, a fluorescent whitening agent, and a light stabilizer are optionally added. You may add additives, such as an agent (for example, hindered amine compound etc.) and a filler.
 酸化防止剤の具体例としては、例えば、BHT、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ジブチルヒドロキシトルエン等が挙げられる。 Specific examples of the antioxidant include, for example, BHT, 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine Pentaerythrityl tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl- 4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, , N-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4,6-tris (3,5-di-t -Butyl-4-hydroxybenzyl) benzene, tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, octylated diphenylamine, 2,4-bis [(octylthio) methyl-O-cresol Isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], dibutylhydroxytoluene and the like.
 有機溶剤の具体例としては、例えば、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。 Specific examples of the organic solvent include alcohols such as methanol, ethanol and isopropyl alcohol, dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran, dioxane, toluene, xylene and the like.
 シランカップリング剤の具体例としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、γ-メルカプロプロピルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。 Specific examples of the silane coupling agent include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, γ-mercapropropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3 -Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane , Silane coupling agents such as chloropropylmethyldimethoxysilane and 3-chloropropyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, Titanium coupling agents such as tetraisopropyldi (dioctylphosphite) titanate, neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, Neoalkoxy zirconate, neoalkoxy tris neodecanoyl zirconate, neoalkoxy tris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxy tris Ethylene-aminoethyl) zirconate, neoalkoxy tris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al- acetylacetonate, Al- methacrylate, zirconium or the like Al- propionate, or aluminum coupling agent, and the like.
 重合禁止剤の具体例としては、パラメトキシフェノール、メチルハイドロキノン等が挙げられる。 Specific examples of the polymerization inhibitor include paramethoxyphenol and methylhydroquinone.
 光安定剤の具体例としては、例えば、1,2,2,6,6-ペンタメチル-4-ピペリジルアルコール、2,2,6,6-テトラメチル-4-ピペリジルアルコール、1,2,2,6,6-ペンタメチル-4-ピペリジル(メタ)アクリレート(アデカ(株)製、LA-82)、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。 Specific examples of the light stabilizer include, for example, 1,2,2,6,6-pentamethyl-4-piperidyl alcohol, 2,2,6,6-tetramethyl-4-piperidyl alcohol, 1,2,2, 6,6-pentamethyl-4-piperidyl (meth) acrylate (LA-82, manufactured by ADEKA Corporation), tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3 4-butanetetracarboxylate, tetrakis (2,2,6,6-totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5 Mixed esterified product with undecane, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate decanedioate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidine-4- Yl) carbonate, 2,2,6,6, -tetramethyl-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6, 6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-teto Methylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1, 1-dimethylethyl) -4-hydroxyphenyl] methyl] butylmalonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, 1,1-dimethyl Reaction product of ethyl hydroperoxide and octane, N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine) -4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N′-bis (2,2, A polycondensate of 6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, poly [[6- (1 , 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [( 2,2,6,6-tetramethyl-4-piperidyl) imino]], a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 2,2, 4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7-oxa-3,20-diazadispiro [5 · 1 · 11 · 2] heneicosane-21-one, β-alanine, N,-( 2, 2, 6, 6-tetramethyl-4-piperidinyl) -dodecyl ester / tetradecyl ester, N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione 2,2,4,4-tetramethyl-7-oxa-3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa -3,20-diazadicyclo- [5,1,11,2] -heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1, 2,2,6,6-pentamethyl-4-piperidinyl) ester, higher fatty acid ester of 2,2,6,6-tetramethyl-4-piperidinol Hindered amines such as 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl), benzophenone compounds such as octabenzone, 2- (2H— Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- ( 3,4,5,6-tetrahydrophthalimido-methyl) -5-methylphenyl] benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- ( 2-hydroxy-3,5-di-tert-pentylphenyl) benzotriazole, methyl 3- (3- (2H-benzotriazol) -2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol reaction product, benzo such as 2- (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol Triazole compounds, benzoate compounds such as 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazine Examples include triazine compounds such as -2-yl) -5-[(hexyl) oxy] phenol, and hindered amine compounds are particularly preferable.
 充填剤の具体例としては、例えば、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられる。 Specific examples of the filler include, for example, crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc and the like. Examples thereof include powder or beads obtained by spheroidizing these.
 各種添加剤の組成物中に存在する場合、各種添加剤の光硬化型透明接着剤組成物中における重量割合は、0.01~3重量%が好ましく、より好ましくは0.01~1重量%、さらに好ましくは0.02~0.5重量%である。 When present in the composition of various additives, the weight ratio of the various additives in the photocurable transparent adhesive composition is preferably 0.01 to 3% by weight, more preferably 0.01 to 1% by weight. More preferably, it is 0.02 to 0.5% by weight.
 本発明の紫外線硬化型樹脂組成物は、前記した各成分を常温~80℃で混合溶解して得ることができ、必要により夾雑物をろ過等の操作により取り除いてもよい。本発明の接着用樹脂組成物は、塗布性を考え、25℃の粘度が300~15000mPa・sの範囲となるように、成分の配合比を適宜調節することが好ましい。 The ultraviolet curable resin composition of the present invention can be obtained by mixing and dissolving the aforementioned components at room temperature to 80 ° C., and if necessary, impurities may be removed by an operation such as filtration. In the adhesive resin composition of the present invention, it is preferable to appropriately adjust the blending ratio of the components so that the viscosity at 25 ° C. is in the range of 300 to 15000 mPa · s in view of applicability.
 本発明の紫外線硬化型樹脂組成物は、前記[工程1]~[工程3]により、少なくとも一つが遮光部を有する光学基材である少なくとも2つの光学基材を貼り合わせて、光学部材を製造する方法に使用される。
 本発明の紫外線硬化型樹脂組成物の硬化物の硬化収縮率は3.0%以下であることが好ましく、2.0%以下であることが特に好ましい。これにより、紫外線硬化型樹脂組成物が硬化する際に、樹脂硬化物に蓄積される内部応力を低減することができ、基材と紫外線硬化型樹脂組成物の硬化物からなる層との界面に歪みができることを有効に防止することができる。
 また、ガラス等の基材が薄い場合には、硬化収縮率が大きい場合には硬化時の反りが大きくなるころから、表示性能に大きな悪影響を及ぼすため、当該観点からも、硬化収縮率は少ない方が好ましい。
The ultraviolet curable resin composition of the present invention is produced by bonding at least two optical substrates, at least one of which is an optical substrate having a light-shielding part, by the above [Step 1] to [Step 3]. Used in the way.
The cure shrinkage of the cured product of the ultraviolet curable resin composition of the present invention is preferably 3.0% or less, and particularly preferably 2.0% or less. Thereby, when the ultraviolet curable resin composition is cured, the internal stress accumulated in the cured resin can be reduced, and the interface between the base material and the layer made of the cured product of the ultraviolet curable resin composition can be reduced. It is possible to effectively prevent the distortion.
In addition, when the substrate such as glass is thin, when the curing shrinkage rate is large, since the warpage during curing becomes large, the display performance is greatly adversely affected. Is preferred.
 本発明の紫外線硬化型樹脂組成物の硬化物の400nm~800nmでの透過率は、90%以上であることが好ましい。透過率が90%未満である場合、光が透過し難く、表示装置に使用した場合に視認性が低下してしまう恐れがある。
 また、硬化物の400~450nmでの透過率が高いと視認性の向上が一層期待できることから、400~450nmでの透過率が90%以上であることが好ましい。
The transmittance at 400 nm to 800 nm of the cured product of the ultraviolet curable resin composition of the present invention is preferably 90% or more. When the transmittance is less than 90%, it is difficult for light to pass therethrough, and the visibility may be lowered when used in a display device.
Further, when the cured product has a high transmittance at 400 to 450 nm, the visibility can be further improved. Therefore, the transmittance at 400 to 450 nm is preferably 90% or more.
 本発明の製造方法に用いる、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物について、いくつかの好ましい態様を下記に記載する。各成分の含有量における「重量%」は、本発明の紫外線硬化型樹脂組成物の総量に対する含有割合を示す。
(A1)
 前記(メタ)アクリレート(A)がウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレートおよび(メタ)アクリレートモノマーからなる群から選ばれる少なくとも一つの(メタ)アクリレートである前記(4)に記載の紫外線硬化型樹脂組成物。
(A2)
 前記(メタ)アクリレート(A)として、
(i)ウレタン(メタ)アクリレート又はポリイソプレン骨格を有する(メタ)アクリレートの少なくとも何れか一方、及び、
(ii)(メタ)アクリレートモノマー、
の両者を含む前記(4)又は上記(A1)に記載の紫外線硬化型樹脂組成物。
(A3)
 前記(メタ)アクリレート(A)として、
(i)ポリC2-C4アルキレングリコール、ジイソシアネート及びヒドロキシC2-C4アルキル(メタ)アクリレートの反応により得られるウレタン(メタ)アクリレート、及び、
(ii)(メタ)アクリレートモノマー、
の両者を含む前記(4)又は上記(A1)に記載の紫外線硬化型樹脂組成物。
Some preferable embodiments of the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) used in the production method of the present invention are described below. “Wt%” in the content of each component indicates a content ratio with respect to the total amount of the ultraviolet curable resin composition of the present invention.
(A1)
In the above (4), the (meth) acrylate (A) is at least one (meth) acrylate selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, and a (meth) acrylate monomer. The ultraviolet curable resin composition as described.
(A2)
As the (meth) acrylate (A),
(I) at least one of urethane (meth) acrylate or (meth) acrylate having a polyisoprene skeleton, and
(Ii) (meth) acrylate monomers,
The ultraviolet curable resin composition as described in said (4) or said (A1) containing both of these.
(A3)
As the (meth) acrylate (A),
(I) urethane (meth) acrylate obtained by reaction of poly C2-C4 alkylene glycol, diisocyanate and hydroxy C2-C4 alkyl (meth) acrylate, and
(Ii) (meth) acrylate monomers,
The ultraviolet curable resin composition as described in said (4) or said (A1) containing both of these.
 (A4)
 ウレタン(メタ)アクリレートの重量平均分子量が7000~25000である上記(A1)~(A3)のいずれか一つに記載の紫外線硬化型樹脂組成物。
(A5)
 (メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物において、光重合開始剤(B)として、アシルフォスフィンオキサイド化合物を含有する紫外線硬化型樹脂組成物、又は、光重合開始剤(B)として、アシルフォスフィンオキサイド化合物を含有する上記(A1)~(A4)のいずれか一つに記載の紫外線硬化型樹脂組成物。
(A6)
 アシルフォスフィンオキサイド化合物が、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルエトキシフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドおよびビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイドからなる群から選ばれる少なくとも一つの化合物である上記(A5)に記載の紫外線硬化型樹脂組成物。
(A4)
The ultraviolet curable resin composition according to any one of (A1) to (A3) above, wherein the urethane (meth) acrylate has a weight average molecular weight of 7000 to 25000.
(A5)
In the ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B), as the photopolymerization initiator (B), an ultraviolet curable resin composition containing an acylphosphine oxide compound, Alternatively, the ultraviolet curable resin composition according to any one of the above (A1) to (A4), which contains an acylphosphine oxide compound as the photopolymerization initiator (B).
(A6)
Acylphosphine oxide compounds are 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoylphenylethoxyphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. And the ultraviolet curable resin composition according to (A5) above, which is at least one compound selected from the group consisting of bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide.
(A7)
 (メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物が、(A)成分及び(B)成分以外に、更に、その他の成分を含有する紫外線硬化型樹脂組成物、又は、上記(A1)~(A6)の何れか一つに記載の紫外線硬化型樹脂組成物。
(A8)
 (メタ)アクリレート(A)が25~90重量%、光重合開始剤(B)が0.2~5重量%、その他の成分が残部である上記(A7)に記載の紫外線硬化型樹脂組成物。
(A9)
 (メタ)アクリレート(A)として、(i)ウレタン(メタ)アクリレート又はポリイソプレン(メタ)アクリレートの少なくとも一方を20~80重量%および(ii)(メタ)アクリレートモノマーを5~70重量%含み、両者の合計が40~90重量%である上記(A8)に記載の紫外線硬化型樹脂組成物。
(A7)
The ultraviolet curable resin composition containing the (meth) acrylate (A) and the photopolymerization initiator (B) further contains other components in addition to the component (A) and the component (B). The composition or the ultraviolet curable resin composition according to any one of (A1) to (A6) above.
(A8)
The ultraviolet curable resin composition according to the above (A7), wherein (meth) acrylate (A) is 25 to 90% by weight, photopolymerization initiator (B) is 0.2 to 5% by weight, and other components are the balance. .
(A9)
(Meth) acrylate (A) includes (i) at least one of urethane (meth) acrylate or polyisoprene (meth) acrylate in an amount of 20 to 80% by weight and (ii) (meth) acrylate monomer in an amount of 5 to 70% by weight, The ultraviolet curable resin composition according to the above (A8), wherein the total of both is 40 to 90% by weight.
(A10)
 その他の成分として、一般式(1)で表される化合物を10~80重量%含む上記(A7)~(A9)の何れか一つに記載の紫外線硬化型樹脂組成物。
(A11)
 紫外線硬化型樹脂組成物の硬化物の硬化収縮率が3%以下である(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物、又は、上記(A1)~(A10)の何れか一つに記載の紫外線硬化型樹脂組成物。
(A12)
 200μmの厚さの紫外線硬化型樹脂組成物の硬化物のシートについて、400~450nmの波長域での平均透過率が少なくとも90%であり、且つ、400~800nmの波長域での平均透過率が少なくとも90%である、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物、又は、上記(A1)~(A11)のいずれか一つに記載の紫外線硬化型樹脂組成物。
(A10)
The ultraviolet curable resin composition according to any one of the above (A7) to (A9), which contains 10 to 80% by weight of the compound represented by the general formula (1) as another component.
(A11)
An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) having a cured shrinkage of 3% or less of the cured product of the ultraviolet curable resin composition, or (A1) above The ultraviolet curable resin composition according to any one of (A10) to (A10).
(A12)
The cured sheet of the ultraviolet curable resin composition having a thickness of 200 μm has an average transmittance of at least 90% in the wavelength region of 400 to 450 nm and an average transmittance in the wavelength region of 400 to 800 nm. An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) at least 90%, or the ultraviolet ray according to any one of (A1) to (A11) above A curable resin composition.
 本発明の紫外線硬化型樹脂組成物は、前記[工程1]~[工程3]により、複数の光学基材を張り合わせて光学部材を製造するための接着剤として好適に使用することができる。
 本発明の光学部材の製造方法において使用する光学基材としては、透明板、シート、タッチパネル、及び表示体ユニット等を挙げることができる。
 本発明において「光学基材」とは、表面に遮光部を有さない光学基材と、表面に遮光部を有する光学基材の両者を意味する。本発明の光学部材の製造方法においては、複数用いられる光学基材のうち少なくとも一つが、遮光部を有する光学基材である。
 上記遮光部を有する光学基材における遮光部の位置は、特に限定されない。好ましい態様としては、該光学基材の周辺部に、幅0.05~20mm、好ましくは0.05~10mm程度、より好ましくは0.1~6mm程度の幅を有する帯状の遮光部が形成される場合が挙げられる。光学基材上の遮光部は、テープの貼り付けや塗料の塗布又は印刷等によって形成することができる。
The ultraviolet curable resin composition of the present invention can be suitably used as an adhesive for producing an optical member by laminating a plurality of optical substrates by the [Step 1] to [Step 3].
Examples of the optical substrate used in the method for producing an optical member of the present invention include a transparent plate, a sheet, a touch panel, and a display unit.
In the present invention, the “optical substrate” means both an optical substrate having no light shielding part on the surface and an optical substrate having a light shielding part on the surface. In the method for producing an optical member of the present invention, at least one of a plurality of optical base materials used is an optical base material having a light shielding portion.
The position of the light shielding part in the optical substrate having the light shielding part is not particularly limited. As a preferred embodiment, a band-shaped light shielding portion having a width of 0.05 to 20 mm, preferably about 0.05 to 10 mm, more preferably about 0.1 to 6 mm is formed in the peripheral portion of the optical substrate. Is the case. The light-shielding portion on the optical substrate can be formed by attaching a tape, applying a coating or printing.
 本発明に用いる光学基材の材質としては、様々な材料が使用できる。具体的には、PET、PC、PMMA、PCとPMMAの複合体、ガラス、COC、COP、プラスチック(アクリル樹脂等)等の樹脂が挙げられる。本発明に用いる光学基材、例えば透明板又はシートとしては、偏光板等のフィルム又はシートを複数積層したシート又は透明板、積層していないシート又は透明板、及び、無機ガラスから作成された透明板(無機ガラス板及びその加工品、例えばレンズ、プリズム、ITOガラス)等を使用することができる。
 また、本発明に用いる光学基材は、上記した偏光板などの他、タッチパネル(タッチパネル入力センサー)又は下記の表示ユニット等の、複数の機能板又はシートからなる積層体(以下、「機能性積層体」とも言う。)を含む。
Various materials can be used as the material of the optical substrate used in the present invention. Specifically, resins such as PET, PC, PMMA, a composite of PC and PMMA, glass, COC, COP, plastic (such as acrylic resin), and the like can be given. As an optical substrate used in the present invention, for example, a transparent plate or sheet, a sheet or transparent plate obtained by laminating a plurality of films or sheets such as polarizing plates, a non-laminated sheet or transparent plate, and a transparent made from inorganic glass Plates (inorganic glass plates and processed products thereof, such as lenses, prisms, ITO glass) and the like can be used.
The optical substrate used in the present invention is a laminate composed of a plurality of functional plates or sheets (hereinafter referred to as “functional laminate”) such as a touch panel (touch panel input sensor) or the following display unit in addition to the polarizing plate described above. Also called "body").
 本発明に用いる光学基材として使用することができるシートとしては、アイコンシート、化粧シート、保護シートが挙げられる。本発明の光学部材の製造方法に使用することができる板(透明板)としては化粧板、保護板が挙げられる。これらのシートないし板の材質としては、透明板の材質として列挙したものが適用できる。
 本発明に用いる光学基材として使用することができるタッチパネル表面の材質としては、ガラス、PET、PC、PMMA、PCとPMMAの複合体、COC、COPが挙げられる。
 透明板又はシート等の板状又はシート状の光学基材の厚さは、特に制限されず、通常は、5μm程度から5cm程度、好ましくは10μm程度から10mm程度、より好ましくは50μm~3mm程度の厚さである。
Examples of the sheet that can be used as the optical substrate used in the present invention include an icon sheet, a decorative sheet, and a protective sheet. Examples of the plate (transparent plate) that can be used in the method for producing an optical member of the present invention include a decorative plate and a protective plate. As materials for these sheets or plates, those listed as materials for transparent plates can be applied.
Examples of the material of the touch panel surface that can be used as the optical substrate used in the present invention include glass, PET, PC, PMMA, a composite of PC and PMMA, COC, and COP.
The thickness of a plate-like or sheet-like optical substrate such as a transparent plate or a sheet is not particularly limited, and is usually about 5 μm to 5 cm, preferably about 10 μm to 10 mm, more preferably about 50 μm to 3 mm. Is the thickness.
 本発明の製造方法で得られる好ましい光学部材としては、遮光部を有する板状又はシート状の透明光学基材と、上記機能性積層体とが、本発明の紫外線硬化型樹脂組成物の硬化物で貼り合された光学部材を挙げることができる。
 また、本発明の製造方法において、光学基材の一つとして液晶表示装置等の表示ユニットを使用し、他の光学基材として光学機能材料を使用することにより、光学機能材料付き表示体ユニット(以下、表示パネルともいう。)を製造することができる。上記の表示ユニットとしては、例えば、ガラスに偏光板を貼り付けてあるLCD、ELディスプレイ、EL照明、電子ペーパーやプラズマディスプレイ等の表示装置が挙げられる。また、光学機能材料としては、アクリル板、PC板、PET板、PEN板等の透明プラスチック板、強化ガラス、タッチパネル入力センサーが挙げられる。
As a preferable optical member obtained by the production method of the present invention, a plate-shaped or sheet-shaped transparent optical base material having a light-shielding portion and the functional laminate are cured products of the ultraviolet curable resin composition of the present invention. The optical member bonded together can be mentioned.
Further, in the manufacturing method of the present invention, a display unit with an optical functional material (by using a display unit such as a liquid crystal display device as one of optical substrates and an optical functional material as another optical substrate ( Hereinafter, it is also referred to as a display panel). Examples of the display unit include display devices such as LCD, EL display, EL illumination, electronic paper, and plasma display in which a polarizing plate is attached to glass. Further, examples of the optical functional material include transparent plastic plates such as acrylic plates, PC plates, PET plates, and PEN plates, tempered glass, and touch panel input sensors.
 光学基材を張り合わせる接着材として使用した場合に、視認性向上のために硬化物の屈折率が1.45~1.55であるとき、表示画像の視認性がより向上するため、が好ましい。
 当該屈折率の範囲内であれば、光学基材として使用される基材との屈折率の差を低減させることができ、光の乱反射を抑えて光損失を低減させることが可能となる。
When used as an adhesive for laminating an optical substrate, it is preferable that the visibility of the display image is further improved when the refractive index of the cured product is 1.45 to 1.55 for improving the visibility. .
Within the range of the refractive index, the difference in refractive index from the base material used as the optical base material can be reduced, and the light loss can be reduced by suppressing the irregular reflection of light.
 本発明の製造方法で得られる光学部材の好ましい態様としては、下記(i)~(vii)を挙げることができる。
(i)遮光部を有する光学基材と前記機能性積層体とを、本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせた光学部材。
(ii)遮光部を有する光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、及び、遮光物と透明電極が形成してあるガラス基板からなる群から選ばれる光学基材であり、機能性積層体が表示体ユニット又はタッチパネルである上記(i)に記載の光学部材。
(iii)表示体ユニットが液晶表示体ユニット、プラズマ表示体ユニットおよび有機EL表示ユニットのいずれかである上記(ii)に記載の光学部材。
(iv)遮光部を有する板状又はシート状の光学基材を、タッチパネルのタッチ面側の表面に本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせたタッチパネル(又はタッチパネル入力センサー)。
(v)遮光部を有する板状又はシート状の光学基材を、表示体ユニットの表示画面上に本発明の紫外線硬化型樹脂組成物の硬化物を用いて貼り合わせた表示パネル。
(vi)遮光部を有する板状又はシート状の光学基材が、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルである、上記(v)に記載の表示パネル。
(vii)紫外線硬化型樹脂組成物が、前記(A1)~(A12)のいずれか一つに記載の紫外線硬化型樹脂組成物である、上記(i)~(vi)のいずれか一つに記載の光学部材、タッチパネル又は表示パネル。
Preferred embodiments of the optical member obtained by the production method of the present invention include the following (i) to (vii).
(I) The optical member which bonded together the optical base material which has a light-shielding part, and the said functional laminated body using the hardened | cured material of the ultraviolet curable resin composition of this invention.
(Ii) An optical base selected from the group consisting of a transparent glass substrate having a light shielding part, a transparent resin substrate having a light shielding part, and a glass substrate on which a light shielding material and a transparent electrode are formed, as the optical base material having the light shielding part. The optical member according to (i), which is a material and the functional laminate is a display unit or a touch panel.
(Iii) The optical member according to (ii), wherein the display unit is any one of a liquid crystal display unit, a plasma display unit, and an organic EL display unit.
(Iv) A touch panel (or touch panel input sensor) in which a plate-shaped or sheet-shaped optical substrate having a light-shielding portion is bonded to the surface on the touch surface side of the touch panel using the cured product of the ultraviolet curable resin composition of the present invention. ).
(V) A display panel in which a plate-like or sheet-like optical substrate having a light-shielding part is bonded to the display screen of the display unit using the cured product of the ultraviolet curable resin composition of the present invention.
(Vi) The display panel according to (v) above, wherein the plate-shaped or sheet-shaped optical substrate having a light-shielding portion is a protective substrate or a touch panel for protecting the display screen of the display unit.
(Vii) The ultraviolet curable resin composition according to any one of (i) to (vi), wherein the ultraviolet curable resin composition is the ultraviolet curable resin composition according to any one of (A1) to (A12). The optical member, touch panel or display panel described.
 本発明の紫外線硬化型樹脂組成物を用いて、前記工程1~3に記載の方法で、上記の各光学基材から選ばれる複数の光学基材を貼り合わせることにより、本発明の光学部材が得られる。前記工程1において、紫外線硬化型樹脂組成物は、貼り合わせる2つの光学基材における、硬化物層を介して対向する面の一方のみに塗布しても良いし、両方の面に塗布しても良い。
 例えば、前記機能性積層体がタッチパネル又は表示体ユニットである上記(ii)に記載の光学部材の場合、工程1において、遮光部を有する保護基材のいずれか一方の面、好ましくは遮光部が設けられた面、及び、タッチパネルのタッチ面又は表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
 また、表示体ユニットの表示画面を保護するための保護基材又はタッチパネルを表示体ユニットと貼り合わせた上記(vi)の光学部材の場合、工程1において、保護基材の遮光部が設けられた面又はタッチパネルのタッチ面とは反対の基材面、及び、表示体ユニットの表示面の何れか一方のみに該樹脂組成物を塗布しても良いし、その両方に塗布しても良い。
By using the ultraviolet curable resin composition of the present invention and bonding a plurality of optical substrates selected from the above optical substrates by the method described in Steps 1 to 3, the optical member of the present invention is bonded. can get. In the step 1, the ultraviolet curable resin composition may be applied to only one of the surfaces facing each other through the cured product layer in the two optical substrates to be bonded, or may be applied to both surfaces. good.
For example, in the case of the optical member according to the above (ii) in which the functional laminate is a touch panel or a display unit, in Step 1, any one surface of the protective base material having a light shielding part, preferably the light shielding part is provided. The resin composition may be applied to only one of the provided surface and the touch surface of the touch panel or the display surface of the display unit, or may be applied to both of them.
In the case of the optical member of (vi) described above in which a protective base material or a touch panel for protecting the display screen of the display body unit is bonded to the display body unit, in Step 1, a light shielding portion of the protective base material is provided. The resin composition may be applied to only one of the substrate surface opposite to the surface or the touch surface of the touch panel and the display surface of the display unit, or to both of them.
 本発明の製造方法により得られた表示体ユニットと遮光部を有する光学基材とを含む光学部材は、例えば、テレビ、小型ゲーム機、携帯電話、パソコンなどの電子機器に組み込むことができる。 The optical member including the display unit obtained by the manufacturing method of the present invention and the optical base material having the light shielding portion can be incorporated into an electronic device such as a television, a small game machine, a mobile phone, and a personal computer.
 以下、本発明を実施例により更に具体的に説明するが、本発明はこれら実施例により何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
紫外線硬化型樹脂組成物の調製
 ウレタンアクリレート(水添ポリブタジエンジオール(分子量3000)、イソホロンジイソシアネート、2-ヒドロヒキシエチルアクリレートの3成分(モル比1:1.2:2)の反応物)16重量部、GI-2000(両末端水酸基水添ポリブタジエン、日本曹達(株)社製)18重量部、日石ポリブテンLV-100(液状ポリブテン、JX日鋼日石エネルギー(株)社製)13部、クリアロン(商品名)M105(芳香族変性水添テルペン樹脂、ヤスハラケミカル(株)社製)16部、LA(ラウリルアクリレート、大阪有機化学工業(株)社製)11重量部、S-1800A(イソステアリルアクリレート、新中村化学(株)社製)25部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)0.5重量部、イルガキュアー(商品名)184D(BASF社製)0.5部を加熱混合して調製した(紫外線硬化型樹脂組成物A)。25℃における粘度は4000mPa・sであった。
Preparation of UV-curable resin composition Urethane acrylate (reaction product of 3 components (molar ratio 1: 1.2: 2) of hydrogenated polybutadienediol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate) 16 parts by weight , GI-2000 (both end hydroxylated polybutadiene, manufactured by Nippon Soda Co., Ltd.) 18 parts by weight, Nisseki Polybutene LV-100 (liquid polybutene, manufactured by JX Nippon Steel & Nisseki Energy Co., Ltd.), Clearon (Product Name) M105 (aromatically modified hydrogenated terpene resin, manufactured by Yashara Chemical Co., Ltd.) 16 parts, LA (lauryl acrylate, Osaka Organic Chemical Industry Co., Ltd.) 11 parts by weight, S-1800A (isostearyl acrylate) , Shin-Nakamura Chemical Co., Ltd.) 25 parts, Speed Cure (trade name) TPO (2,4,6-trimethyl) 0.5 parts by weight of rubenzoyldiphenylphosphine oxide (manufactured by LAMBSON) and 0.5 parts of Irgacure (trade name) 184D (manufactured by BASF) were mixed by heating (ultraviolet curable resin composition A). The viscosity at 25 ° C. was 4000 mPa · s.
 得られた本発明の紫外線硬化型樹脂組成物を用いて以下の評価を行った。
(画像表示装置の製造)
実施例1
 図4(a)に示すように幅3cm、長さ15cmの両面に易接着処理の施されたPETフィルムである透明基材10上に紫外線硬化型樹脂組成物Aを幅2cm、長さ15cm、膜厚が250μmとなるように塗布した。その後、得られた塗布層5に、無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、320nm以下の波長を遮る紫外線カットフィルター9越しに、大気側から積算光量100mJ/cmの紫外線8を照射し、塗布層の下部側(透明基板側)に存在する硬化部分と塗布層の上部側(大気側)に存在する未硬化部分を有する硬化物層6を形成した。尚、この時紫外線硬化型樹脂組成物Aに照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は3であった。
 さらに、図4(b)に示すようにPETフィルム上の塗布層の上部側(大気側)に存在する未硬化部分と、10インチの液晶表示ユニットの一面が対向する形で、図4(b)に示すように透明基板2と液晶表示ユニット1を貼り合せた。最後に、図4(c)に示すように超高圧水銀ランプ(TOSCURE(商品名)752、ハリソン東芝ライティング社製)で、PETフィルム側(透明基材10側)から積算光量2000mJ/cmの紫外線8を照射することにより樹脂硬化物層を硬化させ、PETフィルムと液晶表示ユニットの接合体を得た。
 仮硬化における硬化物層(硬化率;70%)における貯蔵剛性率は1000Paであり、本硬化における硬化物層(硬化率;99%)における貯蔵剛性率は14000Paであった。
The following evaluation was performed using the obtained ultraviolet curable resin composition of the present invention.
(Manufacture of image display devices)
Example 1
As shown in FIG. 4 (a), the UV curable resin composition A is 2 cm wide and 15 cm long on the transparent substrate 10 which is a PET film that has been subjected to easy adhesion treatment on both sides having a width of 3 cm and a length of 15 cm. The coating was applied so that the film thickness was 250 μm. Thereafter, the obtained coating layer 5 is integrated from the atmosphere side through an ultraviolet cut filter 9 that blocks a wavelength of 320 nm or less using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy). A cured product layer 6 having a cured portion existing on the lower side (transparent substrate side) of the coating layer and an uncured portion existing on the upper side (atmosphere side) of the coating layer is irradiated with ultraviolet rays 8 having a light amount of 100 mJ / cm 2. Formed. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100.
Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit. The transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), with an ultra-high pressure mercury lamp (TOSCURE (trade name) 752, manufactured by Harrison Toshiba Lighting Co., Ltd.), the accumulated light amount is 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side). The cured resin layer was cured by irradiating with ultraviolet rays 8 to obtain a joined body of a PET film and a liquid crystal display unit.
The storage rigidity in the cured product layer (curing rate: 70%) in the temporary curing was 1000 Pa, and the storage rigidity in the cured product layer (curing rate: 99%) in the main curing was 14000 Pa.
実施例2
 320nm以下の波長を遮る紫外線カットフィルターを、厚さ0.5mmのガラス板に変更した以外は、実施例1と同様にしてPETフィルム上に塗布層の下部側(透明基板側)に存在する硬化部分と塗布層の上部側(大気側)に存在する未硬化部分を有する硬化物層6を形成した。尚、この時紫外線硬化型樹脂組成物Aに照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は21であった。
 さらに、図4(b)に示すようにPETフィルム上の塗布層の上部側(大気側)に存在する未硬化部分と、10インチの液晶表示ユニットの一面が対向する形で、図4(b)に示すように透明基板2と液晶表示ユニット1を貼り合せた。最後に、図4(c)に示すように超高圧水銀ランプ(TOSCURE752、ハリソン東芝ライティング社製)で、PETフィルム側(透明基板3側)から積算光量2000mJ/cmの紫外線8を照射することにより樹脂硬化物層を硬化させ、PETフィルムと液晶表示ユニットの接合体を得た。
 仮硬化における硬化物層(硬化率;75%)における貯蔵剛性率は1500Paであり、本硬化における硬化物層(硬化率;99%)における貯蔵剛性率は14000Paであった。
Example 2
A curing present on the lower side (transparent substrate side) of the coating layer on the PET film in the same manner as in Example 1 except that the ultraviolet cut filter that blocks the wavelength of 320 nm or less is changed to a glass plate having a thickness of 0.5 mm. The hardened | cured material layer 6 which has a non-hardened part which exists in the upper part (atmosphere side) of a part and an application layer was formed. In this case, the ratio of the maximum illuminance in the range of 200 to 320 nm was 21 when the maximum illuminance in the range of 320 to 450 nm was 100.
Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit. The transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), an ultra-high pressure mercury lamp (TOSCURE752, manufactured by Harrison Toshiba Lighting Co., Ltd.) is used to irradiate ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the PET film side (transparent substrate 3 side). Thus, the cured resin layer was cured to obtain a joined body of the PET film and the liquid crystal display unit.
The storage rigidity in the cured product layer (curing rate: 75%) in the temporary curing was 1500 Pa, and the storage rigidity in the cured product layer (curing rate: 99%) in the main curing was 14000 Pa.
比較例1
(紫外線硬化型樹脂組成物の調整)
 ウレタンアクリレート(水添ポリブタジエンジオール(分子量3000)、イソホロンジイソシアネート、2-ヒドロヒキシエチルアクリレートの3成分(モル比1:1.2:2)の反応物)9重量部、GI-2000(両末端水酸基水添ポリブタジエン、日本曹達(株)社製)55重量部、日石ポリブテンLV-100(液状ポリブテン、JX日鋼日石エネルギー(株)社製)13部、LA(ラウリルアクリレート、大阪有機化学工業(株)社製)15重量部、S-1800A(イソステアリルアクリレート、新中村化学(株)社製)3部、スピードキュア(商品名)TPO(2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、LAMBSON社製)0.75重量部を加熱混合して調製した(紫外線硬化型樹脂組成物B)。25℃における粘度は3500mPa・sであった。
(画像表示装置の製造)
 図4(a)に示すように幅3cm、長さ15cmの両面に易接着処理の施されたPETフィルムである透明基材10上に紫外線硬化型樹脂組成物Aを幅2cm、長さ15cm、膜厚が250μmとなるように塗布した。その後、得られた塗布層5に、無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、320nm以下の波長を遮る紫外線カットフィルター9越しに、大気側から積算光量100mJ/cmの紫外線8を照射し、塗布層の下部側(透明基板側)に存在する硬化部分と塗布層の上部側(大気側)に存在する未硬化部分を有する硬化物層6を形成した。尚、この時紫外線硬化型樹脂組成物Bに照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は3であった。
 さらに、図4(b)に示すようにPETフィルム上の塗布層の上部側(大気側)に存在する未硬化部分と、10インチの液晶表示ユニットの一面が対向する形で、図4(b)に示すように透明基板2と液晶表示ユニット1を貼り合せた。最後に、図4(c)に示すように超高圧水銀ランプ(TOSCURE(商品名)752、ハリソン東芝ライティング社製)で、PETフィルム側(透明基材10側)から積算光量2000mJ/cmの紫外線8を照射することにより樹脂硬化物層を硬化させ、PETフィルムと液晶表示ユニットの接合体を得た。
 仮硬化における硬化物層(硬化率;70%)における貯蔵剛性率は1200Paであり、本硬化における硬化物層(硬化率;99%)における貯蔵剛性率は1500Paであった。
Comparative Example 1
(Adjustment of UV curable resin composition)
9 parts by weight of urethane acrylate (hydrogenated polybutadiene diol (molecular weight 3000), isophorone diisocyanate, 2-hydroxyethyl acrylate, 3 components (molar ratio 1: 1.2: 2)), GI-2000 (both end hydroxyl groups) 55 parts by weight of hydrogenated polybutadiene (manufactured by Nippon Soda Co., Ltd.), 13 parts of Nisseki Polybutene LV-100 (liquid polybutene, JX Nippon Steel Nisseki Energy Co., Ltd.), LA (lauryl acrylate, Osaka Organic Chemical Industry) 15 parts by weight (made by Co., Ltd.), 3 parts by S-1800A (isostearyl acrylate, made by Shin-Nakamura Chemical Co., Ltd.), Speed Cure (trade name) TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) (Manufactured by LAMBSON) and prepared by heating and mixing 0.75 parts by weight (ultraviolet curable resin composition) ). The viscosity at 25 ° C. was 3500 mPa · s.
(Manufacture of image display devices)
As shown in FIG. 4 (a), the UV curable resin composition A is 2 cm wide and 15 cm long on the transparent substrate 10 which is a PET film that has been subjected to easy adhesion treatment on both sides having a width of 3 cm and a length of 15 cm. The coating was applied so that the film thickness was 250 μm. Thereafter, the obtained coating layer 5 is integrated from the atmosphere side through an ultraviolet cut filter 9 that blocks a wavelength of 320 nm or less using an electrodeless ultraviolet lamp (D bulb, manufactured by Heraeus Noblelight Fusion Ubuy). A cured product layer 6 having a cured portion existing on the lower side (transparent substrate side) of the coating layer and an uncured portion existing on the upper side (atmosphere side) of the coating layer is irradiated with ultraviolet rays 8 having a light amount of 100 mJ / cm 2. Formed. At this time, the ratio of the maximum illuminance in the range of 200 to 320 nm was 3 when the maximum illuminance in the range of 320 to 450 nm was 100.
Further, as shown in FIG. 4 (b), the uncured portion present on the upper side (atmosphere side) of the coating layer on the PET film is opposed to one surface of the 10 inch liquid crystal display unit. The transparent substrate 2 and the liquid crystal display unit 1 were bonded together as shown in FIG. Finally, as shown in FIG. 4 (c), with an ultra-high pressure mercury lamp (TOSCURE (trade name) 752, manufactured by Harrison Toshiba Lighting Co., Ltd.), the accumulated light amount is 2000 mJ / cm 2 from the PET film side (transparent substrate 10 side). The cured resin layer was cured by irradiating with ultraviolet rays 8 to obtain a joined body of a PET film and a liquid crystal display unit.
The storage rigidity in the cured product layer (curing rate: 70%) in the temporary curing was 1200 Pa, and the storage stiffness in the cured product layer (curing rate: 99%) in the main curing was 1500 Pa.
(接着強度)
 実施例1~2、及び比較例1で得られたPETフィルムと液晶表示ユニットの接合体を、JISZ0237に準拠する方法により密着性を測定した。PETフィルムと液晶表示ユニットの接合体を、即ち、PETフィルムが上面となるように液晶表示ユニットを水平に固定し、PETフィルムの端部から垂直方向(90°上方)に引き剥すのに必要な力を測定した。結果を下記表1に示す。
(Adhesive strength)
The adhesion of the joined body of the PET film and the liquid crystal display unit obtained in Examples 1 and 2 and Comparative Example 1 was measured by a method based on JISZ0237. Necessary for horizontally fixing the joined body of the PET film and the liquid crystal display unit, that is, with the liquid crystal display unit horizontally so that the PET film is on the upper surface, and peeling it off from the end of the PET film in the vertical direction (90 ° upward). The force was measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果より、本発明の製造方法により作製された光学部材は、基材を貼り合わせる前に紫外線硬化型樹脂組成物に紫外線を照射し、貼り合わせを行った後に再度紫外線を照射して硬化させて製造したものであるが、高い接着強度を有していた。 From the above results, the optical member produced by the production method of the present invention is cured by irradiating the ultraviolet curable resin composition with ultraviolet rays before laminating the substrates, and then irradiating with ultraviolet rays again after laminating. Although it was manufactured, it had high adhesive strength.
 また、得られた本発明の紫外線硬化型樹脂組成物Aを用いて以下評価を行った。 Moreover, the following evaluation was performed using the obtained ultraviolet curable resin composition A of the present invention.
(硬化性)
 厚さ1mmのスライドガラス2枚を用意し、そのうちの1枚に得られた紫外線硬化型樹脂組成物Aの膜厚が200μmとなるように塗布した。その塗布面に他方のスライドガラスを貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射した。硬化物の硬化状態を確認したところ完全に硬化していた。
(Curable)
Two slide glasses having a thickness of 1 mm were prepared, and the ultraviolet curable resin composition A obtained on one of them was applied so that the film thickness was 200 μm. The other slide glass was bonded to the coated surface. The resin composition was irradiated with ultraviolet rays having a cumulative light amount of 2000 mJ / cm 2 through a glass with a high-pressure mercury lamp (80 W / cm, ozone-less). When the cured state of the cured product was confirmed, it was completely cured.
(硬化収縮率)
 フッ素系離型剤を塗布した厚さ1mmのスライドガラス2枚を用意し、そのうち1枚の離型剤塗布面に、得られた紫外線硬化型樹脂組成物Aを膜厚が200μmとなるよう塗布した。その後、2枚のスライドガラスを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。ガラス越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させた。その後、2枚のスライドガラスを剥離し、膜比重測定用の硬化物を作製した。JIS K7112 B法に準拠し、硬化物の比重(DS)を測定した。また、25℃で樹脂組成物の液比重(DL)を測定した。DS及びDLの測定結果から、次式より硬化収縮率を算出したところ、2.5%未満であった。
 硬化収縮率(%)=(DS-DL)÷DS×100
(Curing shrinkage)
Two glass slides with a thickness of 1 mm coated with a fluorine-based release agent are prepared, and the obtained UV curable resin composition A is applied to one of the release agent application surfaces so that the film thickness becomes 200 μm. did. Thereafter, the two slide glasses were bonded so that the respective release agent application surfaces face each other. The resin composition was cured by irradiating the resin composition with ultraviolet rays having an accumulated light amount of 2000 mJ / cm 2 through a glass with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two slide glasses were peeled off to produce a cured product for measuring the film specific gravity. Based on JIS K7112 B method, specific gravity (DS) of hardened | cured material was measured. Moreover, the liquid specific gravity (DL) of the resin composition was measured at 25 degreeC. From the measurement results of DS and DL, the cure shrinkage rate was calculated from the following formula and found to be less than 2.5%.
Curing shrinkage (%) = (DS−DL) ÷ DS × 100
(耐熱、耐湿接着性)
 厚さ0.8mmのスライドガラスと厚さ0.8mmのアクリル板を用意し、一方に得られた紫外線硬化型樹脂組成物Aを膜厚が200μmとなるように塗布した後、その塗布面に他方を貼り合わせた。ガラス越しに、高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を該樹脂組成物に照射し、該樹脂組成物を硬化させ、接着性評価用サンプルを作製した。これを、85℃、85%RH環境下、250時間放置した。その評価用サンプルにおいて、目視にてスライドガラス又はアクリル板の樹脂硬化物からの剥がれを確認したが、剥がれはなかった。
(Heat and moisture resistant adhesion)
Prepare a slide glass with a thickness of 0.8 mm and an acrylic plate with a thickness of 0.8 mm, and apply the ultraviolet curable resin composition A obtained on one side so that the film thickness becomes 200 μm. The other was stuck together. Through the glass, the resin composition was irradiated with ultraviolet rays having an integrated light quantity of 2000 mJ / cm 2 with a high-pressure mercury lamp (80 W / cm, ozone-less), and the resin composition was cured to prepare a sample for evaluating adhesiveness. This was left to stand at 85 ° C. and 85% RH for 250 hours. In the sample for evaluation, peeling of the slide glass or the acrylic plate from the cured resin was visually confirmed, but there was no peeling.
(柔軟性)
 得られた紫外線硬化型樹脂組成物Aを充分に硬化させ、JIS K7215に準拠する方法により、デュロメータ硬度計(タイプE)を用いてデュロメータE硬さを測定し、柔軟性を評価した。より具体的には、紫外線硬化型樹脂組成物を膜厚が1cmとなるように円柱状の型に流し込み、紫外線を照射して該樹脂組成物を十分に硬化させた。得られた硬化物の硬度をデュロメータ硬度計(タイプE)で測定した。その結果、測定値は10未満であり、柔軟性に優れていた。
(Flexibility)
The obtained ultraviolet curable resin composition A was sufficiently cured, and the durometer E hardness was measured using a durometer hardness meter (type E) by a method based on JIS K7215 to evaluate flexibility. More specifically, the ultraviolet curable resin composition was poured into a cylindrical mold so that the film thickness was 1 cm, and the resin composition was sufficiently cured by irradiation with ultraviolet rays. The hardness of the obtained cured product was measured with a durometer hardness meter (type E). As a result, the measured value was less than 10, and the flexibility was excellent.
(透明性)
 フッ素系離型剤を塗布した厚さ40μmのPETフィルム2枚を用意し、そのうちの1枚の離型剤塗布面に、得られた紫外線硬化型樹脂組成物Aを硬化後の膜厚が600μmとなるように塗布した。その後、2枚のPETフィルムを、それぞれの離型剤塗布面が互いに向かい合うように貼り合わせた。PETフィルム越しに高圧水銀灯(80W/cm、オゾンレス)で積算光量2000mJ/cmの紫外線を照射し、該樹脂組成物を硬化させた。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製した。その後、2枚のPETフィルムを剥離し、剛性率測定用の硬化物を作製する。そして、剛性率については、ARES(TA Instruments)を用いて、20~40℃の温度領域において剛性率を測定できる。
(transparency)
Two PET films with a thickness of 40 μm coated with a fluorine-based mold release agent were prepared, and the film thickness after curing the obtained UV-curable resin composition A on one of the release agent-coated surfaces was 600 μm. It applied so that it might become. Thereafter, the two PET films were bonded together so that the respective release agent application surfaces face each other. The resin composition was cured by irradiating ultraviolet rays with an integrated light quantity of 2000 mJ / cm 2 through a PET film with a high-pressure mercury lamp (80 W / cm, ozone-less). Thereafter, the two PET films were peeled off to prepare a cured product for measuring the rigidity. Thereafter, the two PET films are peeled off to produce a cured product for measuring the rigidity. As for the rigidity, the rigidity can be measured in a temperature range of 20 to 40 ° C. using ARES (TA Instruments).
(遮光部下の樹脂の硬化性)
 面積が3.5インチの液晶表示ユニットの表示面及び外周部に遮光部(幅5mm)を有する透明基板上の遮光部が形成されている面に、紫外線硬化型樹脂組成物Aをそれぞれの基板に膜厚が125μmとなるように塗布した。ついで、得られた塗布層に無電極紫外線ランプ(ヘレウス・ノーブルライト・フュージョン・ユーブイ社製、Dバルブ)を用いて、320nm以下の波長を遮る紫外線カットフィルター越しに、大気側から積算光量100mJ/cmの紫外線照射を行い、硬化部分と大気側に存在する未硬化部分を有する硬化物層を形成した。尚、紫外線硬化型樹脂組成物Aに照射された紫外線は、320nm~450nmの範囲での最大照度を100とした時、200~320nmの範囲での最大照度の比率は3であった。
 その後、未硬化部分が対向する形で液晶表示ユニット1と遮光部を有する透明基板3を貼り合せた。最後に、超高圧水銀ランプ(TOSCURE752、ハリソン東芝ライティング社製)で、遮光部を有するガラス基板側から積算光量2000mJ/cmの紫外線8を照射することにより樹脂硬化物層を硬化させ、光学部材を作製した。得られた光学部材から透明基板を外して遮光部分の樹脂硬化物層をヘプタンで洗い流した後、硬化状態を確認した。未硬化の樹脂組成物が除去された形跡は無く、遮光部の樹脂は十分硬化していた。
(Curability of the resin under the shading part)
An ultraviolet curable resin composition A is applied to each of the display surface of the liquid crystal display unit having an area of 3.5 inches and the surface on which the light shielding portion on the transparent substrate having the light shielding portion (width 5 mm) is formed on the outer peripheral portion. The film was applied to a film thickness of 125 μm. Next, an electrodeless UV lamp (D bulb manufactured by Heraeus Noble Light Fusion Ubuy Co., Ltd.) was used for the coating layer thus obtained, through an UV cut filter that blocks wavelengths of 320 nm or less, and an integrated light quantity of 100 mJ / A cured product layer having a cured portion and an uncured portion existing on the atmosphere side was formed by performing ultraviolet irradiation of cm 2 . The ultraviolet ray irradiated to the ultraviolet curable resin composition A had a maximum illuminance ratio of 3 when the maximum illuminance in the range of 320 nm to 450 nm was 100.
Thereafter, the liquid crystal display unit 1 and the transparent substrate 3 having a light shielding portion were bonded together so that the uncured portions faced each other. Finally, the resin cured product layer is cured by irradiating ultraviolet rays 8 with an integrated light amount of 2000 mJ / cm 2 from the glass substrate side having a light shielding portion with an ultra-high pressure mercury lamp (TOSCURE 752, manufactured by Harrison Toshiba Lighting Co., Ltd.). Was made. The transparent substrate was removed from the obtained optical member, and the cured resin layer of the light shielding part was washed away with heptane, and then the cured state was confirmed. There was no evidence that the uncured resin composition was removed, and the resin in the light shielding portion was sufficiently cured.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2014年6月27日付で出願された日本国特許出願(2014-132179)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (2014-132179) for which it applied on June 27, 2014, The whole is used by reference. Also, all references cited herein are incorporated as a whole.
 本発明の光学部材の製造方法は、光学基材へのダメージが少なく、且つ、生産性が良好であり、硬化性および密着性の良い表示体ユニット等の光学部材を得ることができるものである。本発明により得られる光学部材は、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の表示装置に、好適に組み込むことができる。 The method for producing an optical member of the present invention is capable of obtaining an optical member such as a display unit having little damage to the optical substrate, good productivity, and good curability and adhesion. . The optical member obtained by the present invention can be suitably incorporated in a display device such as a liquid crystal display, a plasma display, or an organic EL display.
1 液晶表示ユニット、2 遮光部を有する透明基板、3 透明基板、4 遮光部、5 紫外線硬化型樹脂組成物層、6 未硬化部分を有する硬化物層、7 樹脂硬化物層、8 紫外線、9 短波長紫外線カットフィルター又はガラス板、10 両面に易接着処理の施されたPETフィルム 1 liquid crystal display unit, 2 transparent substrate with light shielding part, 3 transparent substrate, 4 light shielding part, 5 ultraviolet curable resin composition layer, 6 cured product layer with uncured part, 7 resin cured product layer, 8 ultraviolet light, 9 Short wavelength UV cut filter or glass plate, 10 PET film with easy adhesion treatment on both sides

Claims (11)

  1.  下記工程1~3を有する、少なくとも2つの光学基材が貼りあわされた光学部材の製造方法であって、
     下記[工程1]において紫外線を照射した際の樹脂層の25℃における貯蔵剛性率に対して、下記[工程3]において紫外線を照射した際の樹脂層の貯蔵剛性率が1.5~10倍であって、下記[工程1]において紫外線を照射した際の25℃における貯蔵剛性率が1×10Pa~1×10Paである樹脂組成物を用いる光学部材の製造方法:
    [工程1]少なくとも1つの光学基材に、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物を塗布して塗布層を形成し、該塗布層に紫外線を照射することにより、該塗布層の光学基材側に存在する硬化部分と、光学基材側と反対側に存在する未硬化部分とを有する硬化物層を有する光学基材を得る工程;
    [工程2]工程1で得られた光学基材の未硬化部分に対して、他の光学基材、又は、工程1で得られた他の光学基材の未硬化部分を貼り合わせる工程;
    [工程3]工程2で貼り合わされた光学基材の未硬化部分を有する硬化物層に、光学基材を通して紫外線を照射して、該硬化物層を硬化させる工程。
    A method for producing an optical member having at least two optical substrates bonded together, comprising the following steps 1 to 3,
    The storage rigidity of the resin layer when irradiated with ultraviolet rays in the following [Step 3] is 1.5 to 10 times the storage rigidity at 25 ° C. of the resin layer when irradiated with ultraviolet rays in the following [Step 1]. A method for producing an optical member using a resin composition having a storage rigidity at 25 ° C. of 1 × 10 2 Pa to 1 × 10 4 Pa when irradiated with ultraviolet rays in [Step 1] below:
    [Step 1] An application layer is formed by applying an ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) to at least one optical substrate. A step of obtaining an optical substrate having a cured product layer having a cured portion present on the optical substrate side of the coating layer and an uncured portion present on the opposite side of the optical substrate side by irradiating with ultraviolet rays;
    [Step 2] A step of bonding another optical substrate or an uncured portion of another optical substrate obtained in Step 1 to an uncured portion of the optical substrate obtained in Step 1;
    [Step 3] A step of irradiating the cured product layer having an uncured portion of the optical substrate bonded in Step 2 with ultraviolet rays through the optical substrate to cure the cured product layer.
  2.  前記工程1で使用される光学基材のうち少なくとも1つが遮光部を有する請求項1記載の光学部材の製造方法。 The method for producing an optical member according to claim 1, wherein at least one of the optical base materials used in the step 1 has a light shielding portion.
  3.  前記工程1において、紫外線の照射量が5~2000mJ/cmである請求項1又は2に記載の光学部材の製造方法。 The method for producing an optical member according to claim 1 or 2, wherein, in the step 1, an irradiation amount of ultraviolet rays is 5 to 2000 mJ / cm 2 .
  4.  請求項1~3のいずれか一項に記載の光学部材の製造方法に使用する、(メタ)アクリレート(A)及び光重合開始剤(B)を含有する紫外線硬化型樹脂組成物。 An ultraviolet curable resin composition containing (meth) acrylate (A) and a photopolymerization initiator (B) used in the method for producing an optical member according to any one of claims 1 to 3.
  5.  (メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上である請求項4に記載の紫外線硬化型樹脂組成物。 The (meth) acrylate (A) is at least one selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and a (meth) acrylate monomer. The ultraviolet curable resin composition according to claim 4.
  6.  アセトニトリル又はメタノール中で測定した光重合開始剤(B)のモル吸光係数が、302nm又は313nmでは300ml/(g・cm)以上であり、365nmでは100ml/(g・cm)以下である請求項4又は5に記載の紫外線硬化型樹脂組成物。 The molar extinction coefficient of the photopolymerization initiator (B) measured in acetonitrile or methanol is 300 ml / (g · cm) or more at 302 nm or 313 nm, and 100 ml / (g · cm) or less at 365 nm. Or the ultraviolet curable resin composition of 5.
  7.  前記光学基材が、遮光部を有する透明ガラス基板、遮光部を有する透明樹脂基板、遮光部と透明電極が形成されたガラス基板、遮光部を有する透明基板に透明電極が形成されたガラス基板、フィルムが貼りあわされた基板、液晶表示ユニット、プラズマ表示ユニット及び有機EL表示ユニットの群から選ばれる1種以上からなる請求項4~6のいずれか一項に記載の紫外線硬化型樹脂組成物。 The optical substrate is a transparent glass substrate having a light shielding portion, a transparent resin substrate having a light shielding portion, a glass substrate having a light shielding portion and a transparent electrode, a glass substrate having a transparent electrode formed on the transparent substrate having a light shielding portion, The ultraviolet curable resin composition according to any one of claims 4 to 6, comprising at least one selected from the group of a substrate having a film attached thereto, a liquid crystal display unit, a plasma display unit, and an organic EL display unit.
  8.  紫外線を照射した際の硬化率70~80%における樹脂層の25℃における貯蔵剛性率に対して、紫外線を照射した際の硬化率98%における樹脂層の貯蔵剛性率が3~20倍であって、硬化率80%における貯蔵剛性率(25℃)が1×10Pa~1×10Paである光学基材貼り合わせ用紫外線硬化型樹脂組成物。 The storage rigidity of the resin layer at a curing rate of 98% when irradiated with ultraviolet rays is 3 to 20 times the storage rigidity of the resin layer at 25 ° C. when the curing rate is 70 to 80% when irradiated with ultraviolet rays. An ultraviolet curable resin composition for laminating an optical base material having a storage rigidity (25 ° C.) at a curing rate of 80% of 1 × 10 2 Pa to 1 × 10 5 Pa.
  9.  請求項1~3のいずれか一項に記載の製造方法に用いる、請求項8記載の紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition according to claim 8, which is used in the production method according to any one of claims 1 to 3.
  10.  (メタ)アクリレート(A)が、ウレタン(メタ)アクリレート、ポリイソプレン骨格を有する(メタ)アクリレート、ポリブタジエン骨格を有する(メタ)アクリレート、(メタ)アクリレートモノマーからなる群から選ばれる1種以上である請求項8又は9に記載の光学基材貼り合わせ用紫外線硬化型樹脂組成物。 The (meth) acrylate (A) is at least one selected from the group consisting of urethane (meth) acrylate, (meth) acrylate having a polyisoprene skeleton, (meth) acrylate having a polybutadiene skeleton, and a (meth) acrylate monomer. The ultraviolet curable resin composition for optical base material bonding of Claim 8 or 9.
  11.  光学部材が、タッチパネルである請求項4~10のいずれか一項に記載の光学基材貼り合わせ用紫外線硬化型樹脂組成物。 The ultraviolet curable resin composition for laminating an optical substrate according to any one of claims 4 to 10, wherein the optical member is a touch panel.
PCT/JP2015/068262 2014-06-27 2015-06-24 Process for producing optical member, and ultraviolet-curable resin composition for use in same WO2015199156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-132179 2014-06-27
JP2014132179A JP2016011976A (en) 2014-06-27 2014-06-27 Manufacturing method of optical member and ultraviolet curable resin composition

Publications (1)

Publication Number Publication Date
WO2015199156A1 true WO2015199156A1 (en) 2015-12-30

Family

ID=54938234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068262 WO2015199156A1 (en) 2014-06-27 2015-06-24 Process for producing optical member, and ultraviolet-curable resin composition for use in same

Country Status (3)

Country Link
JP (1) JP2016011976A (en)
TW (1) TW201615419A (en)
WO (1) WO2015199156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423215A (en) * 2017-08-30 2019-03-05 琳得科株式会社 No-solvent type adherence composition, adhesive sheet and display body

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181787A (en) * 2016-03-30 2017-10-05 ソニー株式会社 Display device, optical element, and electronic apparatus
JP6823940B2 (en) * 2016-04-20 2021-02-03 日東電工株式会社 Active energy ray-curable adhesive composition, laminated polarizing film and its manufacturing method, laminated optical film and image display device
JP2017134807A (en) * 2016-08-04 2017-08-03 株式会社 ディー・エヌ・エー Program, system, and method for providing predetermined service
JP6815550B1 (en) * 2020-05-26 2021-01-20 グンゼ株式会社 Cover film and its manufacturing method
JP2021060617A (en) * 2020-12-29 2021-04-15 ソニー株式会社 Display device and electronic apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186253A (en) * 1998-12-24 2000-07-04 Three Bond Co Ltd Adhesive composition for optical disk
JP2007182557A (en) * 2005-12-06 2007-07-19 Jsr Corp Impact resisting adhesive layer, method for producing the same and impact resisting adhesive laminated structure
JP2011038088A (en) * 2009-07-14 2011-02-24 Toagosei Co Ltd Active energy ray-curable adhesive composition
JP2012001601A (en) * 2010-06-15 2012-01-05 Denki Kagaku Kogyo Kk Method for separating bonded body using excimer light irradiation
WO2012099171A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method
JP2013170200A (en) * 2012-02-20 2013-09-02 Emulsion Technology Co Ltd Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet using the same
JP2013234208A (en) * 2010-09-03 2013-11-21 Denki Kagaku Kogyo Kk Resin composition and adhesive
JP2014005368A (en) * 2012-06-25 2014-01-16 Dic Corp Ultraviolet-curable resin composition for adhesive and adhesive
WO2014024471A1 (en) * 2012-08-08 2014-02-13 日本化薬株式会社 Ultraviolet curable resin composition, cured product and article
WO2014091769A1 (en) * 2012-12-14 2014-06-19 デクセリアルズ株式会社 Photocurable resin composition, and method of manufacturing image display device employing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186253A (en) * 1998-12-24 2000-07-04 Three Bond Co Ltd Adhesive composition for optical disk
JP2007182557A (en) * 2005-12-06 2007-07-19 Jsr Corp Impact resisting adhesive layer, method for producing the same and impact resisting adhesive laminated structure
JP2011038088A (en) * 2009-07-14 2011-02-24 Toagosei Co Ltd Active energy ray-curable adhesive composition
JP2012001601A (en) * 2010-06-15 2012-01-05 Denki Kagaku Kogyo Kk Method for separating bonded body using excimer light irradiation
JP2013234208A (en) * 2010-09-03 2013-11-21 Denki Kagaku Kogyo Kk Resin composition and adhesive
WO2012099171A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Display panel with flat plate, method for manufacturing display panel with flat plate, and resin composition
WO2013111810A1 (en) * 2012-01-25 2013-08-01 デクセリアルズ株式会社 Image display device fabrication method
JP2013170200A (en) * 2012-02-20 2013-09-02 Emulsion Technology Co Ltd Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet using the same
JP2014005368A (en) * 2012-06-25 2014-01-16 Dic Corp Ultraviolet-curable resin composition for adhesive and adhesive
WO2014024471A1 (en) * 2012-08-08 2014-02-13 日本化薬株式会社 Ultraviolet curable resin composition, cured product and article
WO2014091769A1 (en) * 2012-12-14 2014-06-19 デクセリアルズ株式会社 Photocurable resin composition, and method of manufacturing image display device employing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423215A (en) * 2017-08-30 2019-03-05 琳得科株式会社 No-solvent type adherence composition, adhesive sheet and display body

Also Published As

Publication number Publication date
JP2016011976A (en) 2016-01-21
TW201615419A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6568567B2 (en) UV curable resin composition
JP5331271B1 (en) METHOD FOR MANUFACTURING OPTICAL MEMBER AND USE OF UV-CURABLE RESIN COMPOSITION FOR THE SAME
WO2015119245A1 (en) Ultraviolet-curable adhesive composition for touch panel, optical member production method using same, cured product, and touch panel
JP6620092B2 (en) UV curable resin composition for touch panel, laminating method and article using the same
WO2015199156A1 (en) Process for producing optical member, and ultraviolet-curable resin composition for use in same
WO2015190561A1 (en) Ultraviolet curable resin composition for touch panel, bonding method using same, and product
WO2015190552A1 (en) Uv-curable resin composition for use in touchscreen, and bonding method and article using said uv-curable resin
WO2016117526A1 (en) Method for producing image display device, curable resin composition to be used therein, touch panel, and image display device
JP6378184B2 (en) Manufacturing method of optical member and ultraviolet curable resin composition used therefor
JP6353908B2 (en) Method for producing optical member and curable resin composition used therefor
JP6499406B2 (en) Method for producing optical member and curable resin composition used therefor
WO2017073584A1 (en) Ultraviolet curable resin composition for touch panels, cured product using same, and touch panel
WO2019016963A1 (en) Ultraviolet curable adhesive, and lamination method and article using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812493

Country of ref document: EP

Kind code of ref document: A1