WO2017070993A1 - 一种合金钻头及其制备方法 - Google Patents

一种合金钻头及其制备方法 Download PDF

Info

Publication number
WO2017070993A1
WO2017070993A1 PCT/CN2015/095050 CN2015095050W WO2017070993A1 WO 2017070993 A1 WO2017070993 A1 WO 2017070993A1 CN 2015095050 W CN2015095050 W CN 2015095050W WO 2017070993 A1 WO2017070993 A1 WO 2017070993A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
tungsten
drill bit
additive
alloy drill
Prior art date
Application number
PCT/CN2015/095050
Other languages
English (en)
French (fr)
Inventor
刘彬
徐跃华
巫吉
曹志华
Original Assignee
西迪技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西迪技术股份有限公司 filed Critical 西迪技术股份有限公司
Priority to US15/770,751 priority Critical patent/US10697048B2/en
Publication of WO2017070993A1 publication Critical patent/WO2017070993A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/56Button-type inserts
    • E21B10/567Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal
    • B23B2224/20Tantalum carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2222/00Materials of the tool or the workpiece
    • B25D2222/21Metals
    • B25D2222/51Hard metals, e.g. tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/105Exchangeable tool components
    • B25D2250/111Bits, i.e. inserts or attachments for hammer, chisel, pick

Definitions

  • the invention relates to the technical field of drill bits, in particular to an alloy drill bit and a preparation method thereof.
  • Drill bits are a kind of wear-resistant parts used in oil drilling, geological drilling and tunnel engineering. They are often in direct contact with rocks, corrosive liquids and other impurities, and the purpose of drilling is achieved by friction, impact and erosion. The performance of the drill bit will directly affect the drilling quality, drilling efficiency and drilling cost.
  • roller cone bits and polycrystalline diamond compact (PDC) drill bits are widely used, but they still have some insurmountable problems.
  • the prior art roller cone bit is generally made of a conventional tungsten-cobalt alloy, while the conventional tungsten-cobalt alloy has the unique corrosion resistance of the hard alloy, but its hardness and strength are a contradiction, that is, the cone bit It can't have good wear resistance and impact toughness; therefore, under the actual harsh working conditions, its mechanical properties can not meet the requirements, and the service life will be seriously damaged.
  • the prior art PDC bit is generally made of cast iron or steel as a base material, and then the diamond composite sheet is welded or welded on the surface of the substrate as a hard wear layer, and the base material is generally obtained by casting or machining. Then, the hard surface treatment is done by thermal spraying technology, which is often complicated and costly. Moreover, if the PDC bit is in the actual drilling operation, if there is foreign matter in the bottom of the well, the PDC bit will cause chipping or thermal friction, and the temperature will rise. The carcass, even the molten solder layer, produces a tooth-off phenomenon that affects the rate of penetration of the machine, thereby accelerating the bit failure.
  • the object of the present invention is to provide an alloy drill bit and a preparation method thereof, and the alloy drill bit provided by the invention has high wear resistance and impact toughness, and has good corrosion resistance and fatigue resistance. .
  • the invention provides an alloy drill bit having the following components:
  • binder phase of 14 wt% to 30 wt%, the binder phase being one or more of Co, Ni, Fe, and Cu;
  • an additive 0.32 wt% to 9.7 wt% of an additive, the additive being one or more of TaC, MoC, Cr 3 C 2 and MnC;
  • the balance is a hard phase, and the hard phase is WC.
  • the composition of the alloy drill bit is a tungsten cobalt alloy, an iron tungsten alloy or a copper tungsten alloy.
  • the composition of the tungsten-cobalt alloy is:
  • the balance is WC.
  • the composition of the iron-tungsten alloy is:
  • the balance is WC.
  • the composition of the copper-tungsten alloy is:
  • the balance is WC.
  • the grain size of the tungsten-cobalt alloy, the iron-tungsten alloy, and the copper-tungsten alloy is 3 ⁇ m to 10.3 ⁇ m.
  • the WC as the hard phase in the alloy drill provided by the invention can make the alloy drill bit have better hardness and wear resistance, and Cu, Ni, Fe or Co as the binder phase can make the alloy drill bit have better density and strength.
  • the corrosion resistance and fatigue resistance of the alloy drill bit can be improved.
  • the additive of TaC, MoC, Cr 3 C 2 or MnC can further improve the high temperature resistance and wear resistance of the alloy drill bit; therefore, the alloy drill bit provided by the present invention is It has high wear resistance and impact toughness, and also has good corrosion resistance and fatigue resistance.
  • the present invention provides a method for preparing an alloy drill bit according to the above technical solution, comprising:
  • the hard phase, the binder phase and the additive are mixed to obtain a mixture, the hard phase is WC, and the binder phase is one or more of Co, Ni, Fe and Cu, and the additive is TaC One or more of MoC, Cr 3 C 2 and MnC;
  • the mixture is subjected to cold isostatic pressing to obtain a powder blank
  • the drill blank is sintered to obtain an alloy drill.
  • the method further comprises:
  • the resulting mixture was sequentially ground, dried and granulated to obtain a mixture.
  • the pressure of the cold isostatic pressing is from 180 MPa to 280 MPa.
  • the sintering temperature is from 1430 ° C to 1470 ° C.
  • the preparation method of the alloy drill bit provided by the invention has the advantages of high wear resistance and impact toughness and good corrosion resistance by the combination of the hard phase, the binder phase and the additive.
  • Sexual and anti-fatigue properties the alloy drill bit prepared by this method has excellent performance, can effectively extend the service life of the drill bit, reduce the frequency of bit replacement during operation, save cost and improve work efficiency.
  • Example 1 is a schematic structural view of a drill blank prepared in Example 1 of the present invention.
  • Figure 2 is a front elevational view of a bit blank prepared in Example 1 of the present invention.
  • Fig. 3 is a photograph of an alloy drill provided in Example 1 of the present invention.
  • the invention provides an alloy drill bit having the following components:
  • binder phase of 14 wt% to 30 wt%, the binder phase being one or more of Co, Ni, Fe, and Cu;
  • an additive 0.32 wt% to 9.7 wt% of an additive, the additive being one or more of TaC, MoC, Cr 3 C 2 and MnC;
  • the balance is a hard phase, and the hard phase is WC.
  • the binder phase in the alloy drill bit may be Co and Ni; in other embodiments, the binder phase in the alloy drill bit may be Fe, Co, and Ni; In an embodiment, the binder phase in the alloy drill bit may be Cu and Ni.
  • the binder phase in the alloy drill bit when the binder phase in the alloy drill bit is Co and Ni, the mass content of the binder phase is 14 wt% to 22.5 wt%, and the mass ratio of Co to Ni is (9 ⁇ ). 14.5): (5-8).
  • the mass content of the binder phase is 22.4 wt% to 30 wt%, and the mass ratio of Fe, Co and Ni (15 to 20): (3.6 to 5.1): (3.8 to 4.9).
  • the mass content of the binder phase is 18.8 wt% to 26.9 wt%, and the mass ratio of Cu to Ni is (14.3). ⁇ 20.5): (4.5 to 6.4).
  • the additive in the alloy drill bit may be TaC and MoC; in other embodiments, the additive in the alloy drill bit is Cr 3 C 2 or MnC.
  • the mass content of the additive when the additive in the alloy drill bit is TaC and MoC, the mass content of the additive is 0.65 wt% to 1.15 wt%, and the mass ratio of TaC to MoC is (0.35 to 0.6): (0.3 to 0.55).
  • the additive alloy drill when the additive alloy drill case where the Cr 3 C 2, Cr 3 C 2 mass content of 0.32wt% ⁇ 0.4wt%.
  • the additive in the alloy drill bit is MnC, the mass content of MnC is 6.8 wt% to 9.7 wt%.
  • the alloy drill bit has a composition of tungsten cobalt alloy, iron tungsten alloy or copper tungsten alloy.
  • the composition of the tungsten-cobalt alloy is:
  • the balance is WC.
  • the content of Co in the tungsten-cobalt alloy is 10 wt% to 14 wt%; in other embodiments, the content of Co in the tungsten-cobalt alloy is 11 wt% to 13 wt%; In the embodiment, the content of Co in the tungsten-cobalt alloy is from 11.5 wt% to 12.5% wt%.
  • the content of Ni in the tungsten-cobalt alloy is 5.5 wt% to 7.5% by weight; in other embodiments, the content of Ni in the tungsten-cobalt alloy is 6 wt% to 7 wt%; In another embodiment, the content of Ni in the tungsten-cobalt alloy is 6.4 wt% to 6.6 wt%. In an embodiment of the invention, the content of TaC in the tungsten-cobalt alloy is 0.4 wt% to 0.55 wt%; in other embodiments, the content of TaC in the tungsten-cobalt alloy is 0.45 wt% to 0.5 wt%.
  • the content of TaC in the tungsten-cobalt alloy is from 0.46 wt% to 0.48 wt%. In an embodiment of the invention, the content of MoC in the tungsten-cobalt alloy is 0.35 wt% to 0.5 wt%; in other embodiments, the content of MoC in the tungsten-cobalt alloy is 0.4 wt% to 0.45 wt%. In another embodiment, the content of MoC in the tungsten-cobalt alloy is from 0.42 wt% to 0.43 wt%.
  • the composition of the iron-tungsten alloy is:
  • the balance is WC.
  • the content of Co in the iron-tungsten alloy is 4 wt% to 5 wt%; in other embodiments, the content of Co in the iron-tungsten alloy is 4.2 wt% to 4.8 wt%; In another embodiment, the content of Co in the iron-tungsten alloy is 4.4% by weight to 4.6% by weight. In an embodiment of the invention, the content of Ni in the iron-tungsten alloy is 4 wt% to 4.5 wt%; in other embodiments, the content of Ni in the iron-tungsten alloy is 4.2 wt% to 4.3 wt%.
  • the content of Cr 3 C 2 in the iron-tungsten alloy is 0.34 wt% to 0.38 wt%; in other embodiments, the content of Cr 3 C 2 in the iron-tungsten alloy is 0.35 Wt% to 0.36 wt%.
  • the composition of the copper-tungsten alloy is:
  • the balance is WC.
  • the content of Cu in the copper-tungsten alloy is 15 wt% to 18 wt%; in other embodiments, the content of Cu in the copper-tungsten alloy is 16 wt% to 17 wt%.
  • the content of MnC in the copper-tungsten alloy is 7 wt% to 9 wt%; in other embodiments, the content of MnC in the copper-tungsten alloy is 7.5 wt% to 8.5 wt%; In another embodiment, the content of MnC in the copper-tungsten alloy is 7.8 wt% to 8.2 wt%.
  • the content of Ni in the copper-tungsten alloy is 5 wt% to 6 wt%; in other embodiments, the content of Ni in the copper-tungsten alloy is 5.2 wt% to 5.8 wt%; In another embodiment, the content of Ni in the copper-tungsten alloy is 5.4 wt% to 5.6 wt%.
  • the tungsten-cobalt alloy, the iron-tungsten alloy, and the copper-tungsten alloy have a grain size of from 3 ⁇ m to 10.3 ⁇ m; in other embodiments, the tungsten-cobalt alloy, the iron-tungsten alloy, and the copper-tungsten The grain size of the alloy is 5 ⁇ m to 8 ⁇ m; in another embodiment, the tungsten-cobalt alloy, the iron-tungsten alloy, and the copper-tungsten alloy have a grain size of 6 ⁇ m to 7 ⁇ m.
  • the diameter of the alloy drill bit is 140 mm to 200 mm; in other embodiments, the diameter of the alloy drill bit is 150 mm to 180 mm; in other embodiments, the diameter of the alloy drill bit It is 160mm to 170mm.
  • the height of the alloy drill bit is from 80 mm to 90 mm; in other embodiments, the height of the alloy drill bit is from 82 mm to 88 mm; in other embodiments, the height of the alloy drill bit For 84mm ⁇ 86mm.
  • the alloy drill bit provided by the embodiment of the invention has a large size.
  • the present invention provides a method for preparing an alloy drill bit according to the above technical solution, comprising:
  • the hard phase, the binder phase and the additive are mixed to obtain a mixture, the hard phase is WC, and the binder phase is one or more of Co, Ni, Fe and Cu, and the additive is TaC One or more of MoC, Cr 3 C 2 and MnC;
  • the mixture is subjected to cold isostatic pressing to obtain a powder blank
  • the drill blank is sintered to obtain an alloy drill.
  • the present invention mixes a hard phase, a binder phase and an additive to obtain a mixture
  • the hard phase is WC
  • the binder phase is one or more of Co, Ni, Fe and Cu
  • the additive It is one or more of TaC, MoC, Cr 3 C 2 and MnC.
  • the hard phase, the binder phase and the additive are identical to the hard phase, the binder and the additive described in the above technical solutions, and are not described herein again.
  • the hard phase, the binder phase and the additive are used in an amount such that the mass of the hard phase, the binder phase and the additive in the obtained mixture is in a hard phase with the bit alloy described in the above technical solution,
  • the mass content of the binder phase and the additive may be the same, and will not be described herein.
  • the preparation method of the alloy drill bit is:
  • the mixture is subjected to cold isostatic pressing to obtain a powder blank
  • the drill blank is sintered to obtain an alloy drill.
  • the amounts of WC, Co, Ni, TaC and MoC when WC, Co, Ni, TaC and MoC are mixed are such that the obtained mixture is identical to the composition of the tungsten-cobalt alloy in the above technical solution, and Let me repeat.
  • the preparation method of the alloy drill bit is:
  • the mixture is subjected to cold isostatic pressing to obtain a powder blank
  • the drill blank is sintered to obtain an alloy drill.
  • the preparation method of the alloy drill bit is:
  • the mixture is subjected to cold isostatic pressing to obtain a powder blank
  • the drill blank is sintered to obtain an alloy drill.
  • the amounts of WC, Ni, Cu, and MnC when WC, Ni, Cu, and MnC are mixed are such that the obtained mixture is identical to the composition of the copper-tungsten alloy in the above technical solution, and will not be described herein.
  • the hard phase is in a powder state.
  • the hard phase has a Vickers particle size of 7 ⁇ m to 25 ⁇ m; in other embodiments, the hard phase has a Vickers particle size of 7 ⁇ m to 12 ⁇ m; in other embodiments, The hard phase has a Vickers particle size of 20 ⁇ m to 25 ⁇ m.
  • the mass ratio of the hard phase of 7 ⁇ m to 12 ⁇ m and the hard phase of 20 ⁇ m to 25 ⁇ m is (25-40): (60-75); in other embodiments, the The mass ratio of the hard phase of 7 ⁇ m to 12 ⁇ m and the hard phase of 20 ⁇ m to 25 ⁇ m is (30 to 35): (65 to 70).
  • the present invention performs cold isostatic pressing on the mixture to obtain a powder.
  • a powder having a higher density and a higher strength can be obtained by cold isostatic pressing.
  • the cold isostatic pressure is from 180 MPa to 280 MPa; in other embodiments, the cold isostatic pressure is from 200 MPa to 250 MPa; in other embodiments, the The pressure of cold isostatic pressing is 220 MPa to 230 MPa.
  • the cold isostatic pressing time is 14 min to 20 min; in other embodiments, the cold isostatic pressing time is 16 min to 18 min.
  • the method for operating the cold isostatic pressing of the present invention is not particularly limited, and a cold isostatic pressing operation technique well known to those skilled in the art may be employed.
  • the method further comprises:
  • the resulting mixture was sequentially ground, dried and granulated to obtain a mixture.
  • the mixture can make the alloy drill bit prepared by the method provided by the invention have better wear resistance and impact toughness, and also has better corrosion resistance and fatigue resistance.
  • the method of grinding may be wet ball milling.
  • the ball ratio in the wet ball milling process may be (3 to 5): 1; in other embodiments, the ball ratio in the wet ball milling process may be ( 3.5 to 4.5): 1; In another embodiment, the ratio of the ball to the ball during the wet ball milling may be (3.8 to 4.2):1.
  • the material of the grinding ball during the wet ball milling process may be a cemented carbide.
  • the diameter of the grinding ball during the wet ball milling process may be 5 mm to 10 mm; in other embodiments, the diameter of the grinding ball during the wet ball milling process may be 5 mm, 6 mm, 8.5. Mm, 9.5mm or 10mm.
  • the solvent in the wet ball milling process is alcohol.
  • the wet ball milling time is from 30 hours to 40 hours; in other embodiments, the wet ball milling time is from 34 hours to 36 hours.
  • the drying method is vacuum drying.
  • the degree of vacuum of the vacuum drying is 0.06 MPa to 0.1 MPa; in other embodiments, the vacuum degree of the vacuum drying is 0.07 MPa to 0.08 MPa.
  • the drying temperature is from 90 ° C to 100 ° C; in other embodiments, the drying temperature is from 92 ° C to 98 ° C; in other embodiments, the drying is performed. The temperature is from 94 ° C to 96 ° C.
  • the drying time is from 5 hours to 8 hours; in other embodiments, the drying time is from 6 hours to 7 hours.
  • the method of granulating is drum granulation.
  • the present invention processes the powder blank to obtain a drill blank.
  • the method of shape machining is a five-axis CNC machining.
  • the five-axis CNC machining is based on Cimatron E five-axis automatic programming and IMSpost post-processing, and is simulated by Cimatron and VERICUT, first performing product graphics analysis, establishing and adjusting programming coordinates, and then The tool and multi-axis blank required for programming are established.
  • the numerical control machining process is designed by first processing the bottom of the product and slotting, and then processing the top and middle paths of the product.
  • the present invention sinters the drill blank to obtain an alloy drill.
  • the sintered apparatus may be a pressure sintering furnace.
  • the sintering temperature is from 1430 ° C to 1470 ° C; in other embodiments, the sintering temperature is from 1440 ° C to 1460 ° C.
  • the sintering time is from 6 hours to 12 hours; in other embodiments, the sintering time is from 8 hours to 10 hours.
  • the holding time after sintering is 30 minutes to 50 minutes; in other embodiments, the holding time after sintering is 35 minutes to 45 minutes.
  • the density of the alloy drill provided by the present invention was tested by the density of the drainage method. As a result of the test, the density of the alloy drill provided by the present invention was 14 g/cm 3 to 15 g/cm 3 .
  • the hardness of the alloy drill provided by the present invention was tested by a Rockwell hardness tester. As a result of the test, the hardness of the alloy drill provided by the present invention was 85 HRA to 95 HRA.
  • the bending strength of the alloy drill provided by the present invention was tested on a universal strength testing machine by a three-point bending method.
  • the test result is that the alloy drill provided by the present invention has a bending strength of 3100 MPa to 3200 MPa.
  • the normal temperature dry sliding wear test was carried out on a MM2000 sliding wear tester.
  • the sample size was 10 mm ⁇ 10 mm ⁇ 10 mm, and the grinding ring material was quenched + low temperature tempered (hardness HRC53) 42CrMo, the normal load was 20 Kgf, and the grinding ring was applied.
  • the rotation speed is 400r/min, the wear time is 60min, and the total sliding distance is about 3800m.
  • the relative wear resistance of the alloy drill provided by the present invention is 78 to 80 (quenching + low temperature tempering 42CrMo steel is 1).
  • the sample corrosion loss/sample corrosion weight loss is used as an index of corrosion resistance of the material to test the relative corrosion resistance of the alloy drill bit provided by the present invention.
  • the relative corrosion resistance of the alloy drill provided by the present invention is 32 to 35 (1 for 316L stainless steel).
  • Co, Ni, TaC, MoC and WC are mixed to obtain a mixture containing There are 12 wt% Co, 6 wt% Ni, 0.5 wt% TaC, 0.5 wt% MoC, the balance being WC, the mass ratio of the powder having a Fahrenheit particle size of 11 ⁇ m and a powder having a particle size of 23 ⁇ m in the WC. 25:75;
  • the mixture was ground by a wet ball milling process for 36 hours, the ball milling ratio during the grinding process was 4:1, and the ground product was vacuum dried at 0.08 MPa, 95 ° C, and the dried product was rolled. Granules, obtaining a mixture;
  • the mixture was subjected to cold isostatic pressing at 225 MPa for 16 minutes to obtain a powder
  • the powder blank is machined by five-axis numerical control machining to obtain a drill blank; firstly, three inclined holes are drilled at the bottom of the blank (threaded portion), and then the groove is cut; the top of the blank is processed, and the powder is processed. The middle part of the blank; finally, three large holes and an inverted buckle and 30 holes are processed; the shape of the drill blank is as shown in FIG. 1 and FIG. 2, and FIG. 1 is the structure of the drill blank prepared in the first embodiment of the present invention. 2 is a front view of a drill blank prepared in Example 1 of the present invention;
  • the drill blank was placed in a pressure sintering furnace for high-temperature sintering to obtain an alloy drill having a sintering time of 12 h, a sintering temperature of 1470 ° C, and a holding time after sintering of 30 min.
  • FIG. 3 is a photograph of the alloy drill bit according to the first embodiment of the present invention.
  • the alloy drill bit prepared in the first embodiment of the present invention has a diameter of 175 mm and a height of 87 mm.
  • the density, hardness, bending strength, relative wear resistance and relative corrosion resistance of the alloy drill bit prepared in the first embodiment of the present invention are detected.
  • the detection result is provided by the embodiment 1 of the present invention.
  • the alloy drill has a density of 14.30 g/cm 3 , a hardness of 90.5 HRA, a flexural strength of 3100 MPa, a relative wear resistance of 79.7, and a relative corrosion resistance of 32.8.
  • Cu, Ni, MnC and WC were mixed to obtain a mixture containing 20.5 wt% of Cu, 6.4 wt% of Ni, 9.7 wt% of MnC, the balance being WC, and the WC of the WC was 12 ⁇ m.
  • the mass ratio of the powder and the powder having a particle size of 25 ⁇ m is 40:60;
  • the mixture was ground by a wet ball milling process for 36 hours, the ball milling ratio during the grinding process was 3.5:1, and the milled product was vacuum dried at 0.08 MPa, 95 ° C, and the dried product was rolled. Granules, obtaining a mixture;
  • the mixture was subjected to cold isostatic pressing at 250 MPa for 18 minutes to obtain a powder
  • the powder blank is machined by five-axis numerical control machining to obtain a drill blank; firstly, three inclined holes are drilled at the bottom of the blank (threaded portion), and then the groove is cut; the top of the blank is processed, and the powder is processed. The middle of the blank; the last is to process 3 large holes and inverted buckles and 30 holes;
  • the drill bit blank was placed in a pressure sintering furnace for high-temperature sintering to obtain an alloy drill bit, the sintering time was 12 h, the sintering temperature was 1460 ° C, and the holding time after sintering was 50 min.
  • the density, hardness, bending strength, relative wear resistance and relative corrosion resistance of the alloy drill bit prepared in Example 2 of the present invention are detected, and the detection result is provided by Embodiment 2 of the present invention.
  • the alloy drill has a density of 14.45 g/cm 3 , a hardness of 89.4 HRA, a flexural strength of 3200 MPa, a relative wear resistance of 78.5, and a relative corrosion resistance of 35.2.
  • the present invention provides an alloy drill having a composition of 14 wt% to 30 wt% of a binder phase, the binder phase being one or more of Co, Ni, Fe, and Cu; From wt% to 9.7 wt% of the additive, the additive is one or more of TaC, MoC, Cr 3 C 2 and MnC; the balance is a hard phase, and the hard phase is WC.
  • the WC as the hard phase in the alloy drill provided by the invention can make the alloy drill bit have better hardness and wear resistance, and Cu, Ni, Fe or Co as the binder phase can make the alloy have better density and strength, and at the same time It can also improve the corrosion resistance and fatigue resistance of the alloy drill bit.
  • the additive of TaC, MoC, Cr 3 C 2 or MnC can further improve the high temperature resistance and wear resistance of the alloy drill bit; therefore, the alloy drill bit provided by the present invention has High wear resistance and impact toughness also have good corrosion resistance and fatigue resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Drilling Tools (AREA)
  • Earth Drilling (AREA)

Abstract

一种合金钻头被公开,该合金钻头的成分为:14wt%~30wt%的粘结相,粘结相为Co、Ni、Fe和Cu中的一种或几种;0.32wt%~9.7wt%的添加剂,添加剂为TaC、MoC、Cr 3C 2和MnC中的一种或几种;余量为硬质相,硬质相为WC。该合金钻头中WC作为硬质相能够提高合金钻头的硬度和耐磨性,Cu、Ni、Fe或Co为粘结相可以提高合金钻头的耐腐蚀性能及抗疲劳性能,TaC、MoC、Cr 3C 2或MnC为添加剂能够进一步提高合金钻头的耐高温性能及耐磨损性能;因此该合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性及抗疲劳性能。

Description

一种合金钻头及其制备方法
本申请要求于2015年10月29日提交中国专利局、申请号为201510719112.7、发明名称为“一种合金钻头及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及钻头技术领域,尤其涉及一种合金钻头及其制备方法。
背景技术
钻头是石油钻井、地质钻探及隧道工程中常用设备中的一种耐磨零件,它们往往直接与岩石、腐蚀液及其他杂质接触,通过摩擦、撞击与冲刷实现钻探的目的。钻头工作性能的好坏将直接影响钻井质量、钻井效率和钻井成本。
目前,在钻探行业或道路建筑工程领域,牙轮钻头及聚晶金刚石复合片(PDC)钻头被广泛应用,但是它们仍然存在一些难以克服的问题。现有技术中的牙轮钻头一般是采用传统的钨钴合金制作,而传统的钨钴合金虽然具有硬质合金特有的耐腐蚀性,但是其硬度和强度是一对矛盾体,即牙轮钻头不能兼具好的耐磨性及冲击韧性;因此在实际恶劣的工况条件下,其机械性能不能满足要求,使用寿命将严重受损。现有技术中的PDC钻头,一般是以铸铁或钢件作为基体材料,然后在基体表面熔覆或焊接金刚石复合片作为硬面耐磨层,其基体材料一般是采用铸造或者机加工获得的,然后再通过热喷涂技术做硬面处理,往往工艺复杂且成本较高;而且PDC钻头在实际钻井作业中,如果井底有异物,会导致PDC钻头产生崩齿或热摩擦现象,温度升高烧黑胎体,甚至熔化钎焊层,产生掉齿现象,影响机械钻速,从而加速钻头失效。
因此,现有技术急需一种具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性和抗疲劳性能的钻头。
发明内容
有鉴于此,本发明的目的在于提供一种合金钻头及其制备方法,本发明提供的合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐性及抗疲劳性能。
本发明提供了一种合金钻头,成分为:
14wt%~30wt%的粘结相,所述粘结相为Co、Ni、Fe和Cu中的一种或几种;
0.32wt%~9.7wt%的添加剂,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
余量为硬质相,所述硬质相为WC。
优选的,所述合金钻头的成分为钨钴合金、铁钨合金或铜钨合金。
优选的,所述钨钴合金的成分为:
9wt%~14.5wt%的Co,
5wt%~8wt%的Ni,
0.35wt%~0.6wt%的TaC,
0.3wt%~0.55wt%的MoC,
余量为WC。
优选的,所述铁钨合金的成分为:
15wt%~20wt%的Fe,
3.6wt%~5.1wt%的Co,
3.8wt%~4.9wt%的Ni,
0.32wt%~0.4wt%的Cr3C2
余量为WC。
优选的,所述铜钨合金的成分为:
14.3wt%~20.5wt%的Cu,
6.8wt%~9.7wt%的MnC,
4.5wt%~6.4wt%的Ni,
余量为WC。
优选的,所述钨钴合金、铁钨合金和铜钨合金的晶粒度为 3μm~10.3μm。
本发明提供的合金钻头中WC作为硬质相能够使合金钻头具有较好的硬度和耐磨性,Cu、Ni、Fe或Co为粘结相可以使合金钻头具有较好的致密度及强度,同时还可提高合金钻头的耐腐蚀性能及抗疲劳性能,TaC、MoC、Cr3C2或MnC为添加剂能够进一步提高合金钻头的耐高温性能及耐磨损性能;因此本发明提供的合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性及抗疲劳性能。
本发明提供了一种上述技术方案所述的合金钻头的制备方法,包括:
将硬质相、粘结相和添加剂混合,得到混合料,所述硬质相为WC,所述粘结相为Co、Ni、Fe和Cu中的一种或几种,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
将所述混合料进行冷等静压成型,得到粉坯;
将所述粉坯进行形状加工,得到钻头粉坯;
将所述钻头粉坯进行烧结,得到合金钻头。
优选的,将硬质相、粘结相和添加剂混合后还包括:
将得到的混合物依次进行磨制、干燥和制粒,得到混合料。
优选的,所述冷等静压的压力为180MPa~280MPa。
优选的,所述烧结的温度为1430℃~1470℃。
本发明提供的合金钻头的制备方法,通过硬质相、粘结相和添加剂的配合使用,使制备得到的合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性及抗疲劳性能,这种方法制备得到的合金钻头性能优异,可以有效延长钻头的使用寿命,减少作业过程中钻头的更换频率,节约成本并提高工作效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附 图。
图1为本发明实施例1制备的钻头粉坯的结构示意图;
图2为本发明实施例1制备的钻头粉坯的前视图;
图3为本发明实施例1提供的合金钻头的照片。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种合金钻头,成分为:
14wt%~30wt%的粘结相,所述粘结相为Co、Ni、Fe和Cu中的一种或几种;
0.32wt%~9.7wt%的添加剂,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
余量为硬质相,所述硬质相为WC。
在本发明的实施例中,所述合金钻头中的粘结相可以为Co和Ni;在其他的实施例中,所述合金钻头中的粘结相可以为Fe、Co和Ni;在另外的实施例中,所述合金钻头中的粘结相可以为Cu和Ni。在本发明的实施例中,当所述合金钻头中的粘结相为Co和Ni的情况下,粘结相的质量含量为14wt%~22.5wt%,Co和Ni的质量比为(9~14.5):(5~8)。在本发明的实施例中,当所述合金钻头中的粘结相为Fe、Co和Ni的情况下,粘结相的质量含量为22.4wt%~30wt%,Fe、Co和Ni的质量比为(15~20):(3.6~5.1):(3.8~4.9)。在本发明的实施例中,当所述合金钻头中的粘结相为Cu和Ni的情况下,粘结相的质量含量为18.8wt%~26.9wt%,Cu和Ni的质量比为(14.3~20.5):(4.5~6.4)。
在本发明的实施例中,所述合金钻头中的添加剂可以为TaC和MoC;在其他的实施例中,所述合金钻头中的添加剂为Cr3C2或MnC。在本发明的实施例中,当所述合金钻头中的添加剂为TaC和MoC的情况下,添加剂 的质量含量为0.65wt%~1.15wt%,TaC和MoC的质量比为(0.35~0.6):(0.3~0.55)。在本发明的实施例中,当合金钻头中的添加剂为Cr3C2的情况下,Cr3C2的质量含量为0.32wt%~0.4wt%。在本发明的实施例中,当合金钻头中的添加剂为MnC的情况下,MnC的质量含量为6.8wt%~9.7wt%。
在本发明的实施例中,所述合金钻头的成分为钨钴合金、铁钨合金或铜钨合金。在本发明的实施例中,所述钨钴合金的成分为:
9wt%~14.5wt%的Co,
5wt%~8wt%的Ni,
0.35wt%~0.6wt%的TaC,
0.3wt%~0.55wt%的MoC,
余量为WC。
在本发明的实施例中,所述钨钴合金中Co的含量为10wt%~14wt%;在其他的实施例中,所述钨钴合金中Co的含量为11wt%~13wt%;在另外的实施例中,所述钨钴合金中Co的含量为11.5wt%~12.5wt%。在本发明的实施例中,所述钨钴合金中Ni的含量为5.5wt%~7.5wt%;在其他的实施例中,所述钨钴合金中Ni的含量为6wt%~7wt%;在另外的实施例中,所述钨钴合金中Ni的含量为6.4wt%~6.6wt%。在本发明的实施例中,所述钨钴合金中TaC的含量为0.4wt%~0.55wt%;在其他的实施例中,所述钨钴合金中TaC的含量为0.45wt%~0.5wt%;在另外的实施例中,所述钨钴合金中TaC的含量为0.46wt%~0.48wt%。在本发明的实施例中,所述钨钴合金中MoC的含量为0.35wt%~0.5wt%;在其他的实施例中,所述钨钴合金中MoC的含量为0.4wt%~0.45wt%;在另外的实施例中,所述钨钴合金中MoC的含量为0.42wt%~0.43wt%。
在本发明的实施例中,所述铁钨合金的成分为:
15wt%~20wt%的Fe,
3.6wt%~5.1wt%的Co,
3.8wt%~4.9wt%的Ni,
0.32wt%~0.4wt%的Cr3C2
余量为WC。
在本发明的实施例中,所述铁钨合金中Co的含量为4wt%~5wt%;在其他的实施例中,所述铁钨合金中Co的含量为4.2wt%~4.8wt%;在另外的实施例中,所述铁钨合金中Co的含量为4.4wt%~4.6wt%。在本发明的实施例中,所述铁钨合金中Ni的含量为4wt%~4.5wt%;在其他的实施例中,所述铁钨合金中Ni的含量为4.2wt%~4.3wt%。在本发明的实施例中,所述铁钨合金中Cr3C2的含量为0.34wt%~0.38wt%;在其他的实施例中,所述铁钨合金中Cr3C2的含量为0.35wt%~0.36wt%。
在本发明的实施例中,所述铜钨合金的成分为:
14.3wt%~20.5wt%的Cu,
6.8wt%~9.7wt%的MnC,
4.5wt%~6.4wt%的Ni,
余量为WC。
在本发明的实施例中,所述铜钨合金中Cu的含量为15wt%~18wt%;在其他的实施例中,所述铜钨合金中Cu的含量为16wt%~17wt%。在本发明的实施例中,所述铜钨合金中MnC的含量为7wt%~9wt%;在其他的实施例中,所述铜钨合金中MnC的含量为7.5wt%~8.5wt%;在另外的实施例中,所述铜钨合金中MnC的含量为7.8wt%~8.2wt%。在本发明的实施例中,所述铜钨合金中Ni的含量为5wt%~6wt%;在其他的实施例中,所述铜钨合金中Ni的含量为5.2wt%~5.8wt%;在另外的实施例中,所述铜钨合金中Ni的含量为5.4wt%~5.6wt%。
在本发明的实施例中,所述钨钴合金、铁钨合金和铜钨合金的晶粒度为3μm~10.3μm;在其他的实施例中,所述钨钴合金、铁钨合金和铜钨合金的晶粒度为5μm~8μm;在另外的实施例中,所述钨钴合金、铁钨合金和铜钨合金的晶粒度为6μm~7μm。
在本发明的实施例中,所述合金钻头的直径为140mm~200mm;在其他的实施例中,所述合金钻头的直径为150mm~180mm;在另外的实施例中,所述合金钻头的直径为160mm~170mm。在本发明的实施例中,所述合金钻头的高度为80mm~90mm;在其他的实施例中,所述合金钻头的高度为82mm~88mm;在另外的实施例中,所述合金钻头的高度为 84mm~86mm。本发明实施例提供的合金钻头尺寸较大。
本发明提供了一种上述技术方案所述的合金钻头的制备方法,包括:
将硬质相、粘结相和添加剂混合,得到混合料,所述硬质相为WC,所述粘结相为Co、Ni、Fe和Cu中的一种或几种,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
将所述混合料进行冷等静压成型,得到粉坯;
将所述粉坯进行形状加工,得到钻头粉坯;
将所述钻头粉坯进行烧结,得到合金钻头。
本发明将硬质相、粘结相和添加剂混合,得到混合料,所述硬质相为WC,所述粘结相为Co、Ni、Fe和Cu中的一种或几种,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种。在本发明中,所述硬质相、粘结相和添加剂与上述技术方案所述硬质相、粘结剂和添加剂一致,在此不再赘述。在本发明中,所述硬质相、粘结相和添加剂的用量使得到的混合料中硬质相、粘结相和添加剂的质量含量与上述技术方案所述的钻头合金中硬质相、粘结相和添加剂的质量含量一致即可,在此不再赘述。
在本发明的实施例中,所述合金钻头的成分为钨钴合金时,所述合金钻头的制备方法为:
将WC、Co、Ni、TaC和MoC混合,得到混合料;
将所述混合料进行冷等静压成型,得到粉坯;
将所述粉坯进行形状加工,得到钻头粉坯;
将所述钻头粉坯进行烧结,得到合金钻头。
在本发明中,将WC、Co、Ni、TaC和MoC混合时WC、Co、Ni、TaC和MoC的用量使得到的混合料与上述技术方案中钨钴合金的成分一致即可,在此不再赘述。
在本发明的实施例中,所述合金钻头的成分为铁钨合金时,所述合金钻头的制备方法为:
将WC、Co、Ni、Fe和Cr3C2混合,得到混合料;
将所述混合料进行冷等静压成型,得到粉坯;
将所述粉坯进行形状加工,得到钻头粉坯;
将所述钻头粉坯进行烧结,得到合金钻头。
在本发明中,将WC、Co、Ni、Fe和Cr3C2混合时WC、Co、Ni、Fe和Cr3C2的用量使得到的混合料与上述技术方案中铁钨合金的成分一致即可,在此不再赘述。
在本发明的实施例中,所述合金钻头的成分为铜钨合金时,所述合金钻头的制备方法为:
将WC、Ni、Cu和MnC混合,得到混合料;
将所述混合料进行冷等静压成型,得到粉坯;
将所述粉坯进行形状加工,得到钻头粉坯;
将所述钻头粉坯进行烧结,得到合金钻头。
在本发明中,将WC、Ni、Cu和MnC混合时WC、Ni、Cu和MnC的用量使得到的混合料与上述技术方案中铜钨合金的成分一致即可,在此不再赘述。
在本发明的实施例中,所述硬质相为粉末状态。在本发明的实施例中,所述硬质相的费氏粒度为7μm~25μm;在其他的实施例中,所述硬质相的费氏粒度为7μm~12μm;在另外的实施例中,所述硬质相的费氏粒度为20μm~25μm。在本发明的实施例中,所述7μm~12μm的硬质相和20μm~25μm的硬质相的质量比为(25~40):(60~75);在其他的实施例中,所述7μm~12μm的硬质相和20μm~25μm的硬质相的质量比为(30~35):(65~70)。
得到混合料后,本发明将所述混合料进行冷等静压成型,得到粉坯。在本发明中,采用冷等静压成型能够获得密度较高、强度较大的粉坯。在本发明的实施例中,所述冷等静压的压力为180MPa~280MPa;在其他的实施例中,所述冷等静压的压力为200MPa~250MPa;在另外的实施例中,所述冷等静压的压力为220MPa~230MPa。在本发明的实施例中,所述冷等静压的时间为14min~20min;在其他的实施例中,所述冷等静压的时间为16min~18min。本发明对所述冷等静压的操作方法没有特殊的限制,采用本领域技术人员熟知的冷等静压的操作技术方案即可。
在本发明的实施例中,将硬质相、粘结相和添加剂混合后还包括:
将得到的混合物依次进行磨制、干燥和制粒,得到混合料。
在本发明的实施例中,所述混合料能够使本发明提供的方法制备得到的合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性及抗疲劳性能。在本发明的实施例中,所述磨制的方法可以为湿法球磨。在本发明的实施例中,所述湿法球磨过程中的球料比可以为(3~5):1;在其他的实施例中,所述湿法球磨过程中的球料比可以为(3.5~4.5):1;在另外的实施例中,所述湿法球磨过程中的球料比可以为(3.8~4.2):1。在本发明的实施例中,所述湿法球磨过程中磨球的材质可以为硬质合金。在本发明的实施例中,所述湿法球磨过程中磨球的直径可以为5mm~10mm;在其他的实施例中,所述湿法球磨过程中磨球的直径可以为5mm、6mm、8.5mm、9.5mm或10mm。在本发明的实施例中,所述湿法球磨过程中的溶剂为酒精。在本发明的实施例中,所述湿法球磨的时间为30小时~40小时;在其他的实施例中,所述湿法球磨的时间为34小时~36小时。
在本发明的实施例中,所述干燥的方法为真空干燥。在本发明的实施例中,所述真空干燥的真空度为0.06MPa~0.1MPa;在其他的实施例中,所述真空干燥的真空度为0.07MPa~0.08MPa。在本发明的实施例中,所述干燥的温度为90℃~100℃;在其他的实施例中,所述干燥的温度为92℃~98℃;在另外的实施例中,所述干燥的温度为94℃~96℃。在本发明的实施例中,所述干燥的时间为5小时~8小时;在另外的实施例中,所述干燥的时间为6小时~7小时。在本发明的实施例中,所述制粒的方法为滚筒制粒。
得到粉坯后,本发明将所述粉坯进行形状加工,得到钻头粉坯。在本发明的实施例中,所述形状加工的方法为五轴数控加工。在本发明的实施例中,所述五轴数控加工是基于Cimatron E五轴自动编程与IMSpost后置处理,并用Cimatron和VERICUT进行仿真的方法,首先进行产品图形分析,建立和调整编程坐标,然后建立编程所需刀具及多轴毛坯,基于粉坯和产品的特点,数控加工工艺按先加工产品底部并开槽,再加工产品顶部和中部的路径来设计。
得到钻头粉坯后,本发明将所述钻头粉坯进行烧结,得到合金钻头。在本发明的实施例中,所述烧结的设备可以为压力烧结炉。在本发明的实施例中,所述烧结的温度为1430℃~1470℃;在其他的实施例中,所述烧结的温度为1440℃~1460℃。在本发明的实施例中,所述烧结的时间为6小时~12小时;在其他的实施例中,所述烧结的时间为8小时~10小时。在本发明的实施例中,所述烧结后的保温时间为30分钟~50分钟;在其他的实施例中,所述烧结后的保温时间为35分钟~45分钟。
采用排水法测密度,测试本发明提供的合金钻头的密度,测试结果为,本发明提供的合金钻头的密度为14g/cm3~15g/cm3
采用洛氏硬度计测试本发明提供的合金钻头的硬度,测试结果为,本发明提供的合金钻头的硬度为85HRA~95HRA。
采用三点抗弯法,在万能强度试验机上测试本发明提供的合金钻头的抗弯强度,测试结果为,本发明提供的合金钻头的抗弯强度为3100MPa~3200MPa。
在MM2000型滑动磨损试验机上进行常温干滑动磨损试验,试样尺寸为10mm×10mm×10mm,对磨环材料为淬火+低温回火(硬度HRC53)的42CrMo,法向载荷为20Kgf,对磨环转速为400r/min,磨损时间60min,总滑动距离约3800m;以相对耐磨性(=标样磨损失重量/试样磨损失重量)作为材料耐磨性的指标,检测本发明提供的合金钻头的相对耐磨性。检测结果为,本发明提供的合金钻头的相对耐磨性为78~80(淬火+低温回火42CrMo钢为1)。
采用20℃恒温浸泡腐蚀测试方法,在0.5mol/L盐酸水溶液中测试材料的耐蚀性能,以316L不锈钢为对比试样,测试168小时浸泡后的腐蚀失重量,以相对耐腐性(=标样腐蚀失重量/试样腐蚀失重量)作为材料耐蚀性的指标,检测本发明提供的合金钻头的相对耐腐性。检测结果为,本发明提供的合金钻头的相对耐腐性为32~35(316L不锈钢为1)。
本发明以下实施例所用原料均为市售商品。
实施例1
将Co、Ni、TaC、MoC和WC混合,得到混合物,所述混合物中含 有12wt%的Co、6wt%的Ni、0.5wt%的TaC、0.5wt%的MoC,余量为WC,所述WC中费氏粒度为11μm的粉末和费氏粒度为23μm的粉末的质量比为25:75;
将所述混合物采用湿球磨工艺进行磨制36小时,磨制过程中的球磨比为4:1,将磨制后的产物在0.08MPa、95℃下真空干燥,将干燥后的产物进行滚筒制粒,得到混合料;
将所述混合料在225MPa下进行16分钟的冷等静压成型,得到粉坯;
将所述粉坯利用五轴数控加工进行机加工,得到钻头粉坯;首先加工粉坯底部(有螺纹部分)钻3个斜孔,然后挖槽;翻面加工粉坯的顶部,再加工粉坯的中部;最后是加工3个大孔和倒扣及30个孔;所述钻头粉坯的形状如图1和图2所示,图1为本发明实施例1制备的钻头粉坯的结构示意图,图2为本发明实施例1制备的钻头粉坯的前视图;
将所述钻头粉坯放入压力烧结炉内进行高温烧结,得到合金钻头,所述烧结的时间为12h,烧结的温度为1470℃,烧结后的保温时间为30min。
本发明实施例1制备得到的合金钻头如图3所示,图3为本发明实施例1提供的合金钻头的照片,本发明实施例1制备得到的合金钻头的直径为175mm,高度为87mm。
按照上述技术方案所述的方法,检测本发明实施例1制备得到的合金钻头的密度、硬度、抗弯强度、相对耐磨性和相对耐腐性,检测结果为,本发明实施例1提供的合金钻头的密度为14.30g/cm3,硬度为90.5HRA,抗弯强度为3100MPa,相对耐磨性为79.7,相对耐腐性为32.8。
实施例2
将Cu、Ni、MnC和WC混合,得到混合物,所述混合物中含有20.5wt%的Cu、6.4wt%的Ni、9.7wt%的MnC,余量为WC,所述WC中费氏粒度为12μm的粉末和费氏粒度为25μm的粉末的质量比为40:60;
将所述混合物采用湿球磨工艺进行磨制36小时,磨制过程中的球磨比为3.5:1,将磨制后的产物在0.08MPa、95℃下真空干燥,将干燥后的产物进行滚筒制粒,得到混合料;
将所述混合料在250MPa下进行18分钟的冷等静压成型,得到粉坯;
将所述粉坯利用五轴数控加工进行机加工,得到钻头粉坯;首先加工粉坯底部(有螺纹部分)钻3个斜孔,然后挖槽;翻面加工粉坯的顶部,再加工粉坯的中部;最后是加工3个大孔和倒扣及30个孔;
将所述钻头粉坯放入压力烧结炉内进行高温烧结,得到合金钻头,所述烧结的时间为12h,烧结的温度为1460℃,烧结后的保温时间为50min。
按照上述技术方案所述的方法,检测本发明实施例2制备得到的合金钻头的密度、硬度、抗弯强度、相对耐磨性和相对耐腐性,检测结果为,本发明实施例2提供的合金钻头的密度为14.45g/cm3,硬度为89.4HRA,抗弯强度为3200MPa,相对耐磨性为78.5,相对耐腐性为35.2。
由以上实施例可知,本发明提供了一种合金钻头,成分为:14wt%~30wt%的粘结相,所述粘结相为Co、Ni、Fe和Cu中的一种或几种;0.32wt%~9.7wt%的添加剂,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;余量为硬质相,所述硬质相为WC。本发明提供的合金钻头中WC作为硬质相能够使合金钻头具有较好的硬度和耐磨性,Cu、Ni、Fe或Co为粘结相可以使合金具有较好的致密度及强度,同时还可提高合金钻头的耐腐蚀性能及抗疲劳性能,TaC、MoC、Cr3C2或MnC为添加剂能够进一步提高合金钻头的耐高温性能及耐磨损性能;因此本发明提供的合金钻头在具有较高的耐磨性和冲击韧性的同时还具有较好的耐腐蚀性及抗疲劳性能。

Claims (10)

  1. 一种合金钻头,成分为:
    14wt%~30wt%的粘结相,所述粘结相为Co、Ni、Fe和Cu中的一种或几种;
    0.32wt%~9.7wt%的添加剂,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
    余量为硬质相,所述硬质相为WC。
  2. 根据权利要求1所述的合金钻头,其特征在于,所述合金钻头的成分为钨钴合金、铁钨合金或铜钨合金。
  3. 根据权利要求2所述的合金钻头,其特征在于,所述钨钴合金的成分为:
    9wt%~14.5wt%的Co,
    5wt%~8wt%的Ni,
    0.35wt%~0.6wt%的TaC,
    0.3wt%~0.55wt%的MoC,
    余量为WC。
  4. 根据权利要求2所述的合金钻头,其特征在于,所述铁钨合金的成分为:
    15wt%~20wt%的Fe,
    3.6wt%~5.1wt%的Co,
    3.8wt%~4.9wt%的Ni,
    0.32wt%~0.4wt%的Cr3C2
    余量为WC。
  5. 根据权利要求2所述的合金钻头,其特征在于,所述铜钨合金的成分为:
    14.3wt%~20.5wt%的Cu,
    6.8wt%~9.7wt%的MnC,
    4.5wt%~6.4wt%的Ni,
    余量为WC。
  6. 根据权利要求2所述的合金钻头,其特征在于,所述钨钴合金、铁钨合金和铜钨合金的晶粒度为3μm~10.3μm。
  7. 一种权利要求1~6中任意一项所述的合金钻头的制备方法,包括:
    将硬质相、粘结相和添加剂混合,得到混合料,所述硬质相为WC,所述粘结相为Co、Ni、Fe和Cu中的一种或几种,所述添加剂为TaC、MoC、Cr3C2和MnC中的一种或几种;
    将所述混合料进行冷等静压成型,得到粉坯;
    将所述粉坯进行形状加工,得到钻头粉坯;
    将所述钻头粉坯进行烧结,得到合金钻头。
  8. 根据权利要求7所述的方法,其特征在于,将硬质相、粘结相和添加剂混合后还包括:
    将得到的混合物依次进行磨制、干燥和制粒,得到混合料。
  9. 根据权利要求7所述的方法,其特征在于,所述冷等静压的压力为180MPa~280MPa。
  10. 根据权利要求7所述的方法,其特征在于,所述烧结的温度为1430℃~1470℃。
PCT/CN2015/095050 2015-10-29 2015-11-19 一种合金钻头及其制备方法 WO2017070993A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,751 US10697048B2 (en) 2015-10-29 2015-11-19 Alloy drill and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510719112.7 2015-10-29
CN201510719112.7A CN105349867B (zh) 2015-10-29 2015-10-29 一种合金钻头及其制备方法

Publications (1)

Publication Number Publication Date
WO2017070993A1 true WO2017070993A1 (zh) 2017-05-04

Family

ID=55325926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095050 WO2017070993A1 (zh) 2015-10-29 2015-11-19 一种合金钻头及其制备方法

Country Status (3)

Country Link
US (1) US10697048B2 (zh)
CN (1) CN105349867B (zh)
WO (1) WO2017070993A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035175B2 (en) 2017-05-03 2021-06-15 Schlumberger Technology Corporation Drill bit body construction

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191606A (zh) * 2016-07-15 2016-12-07 无锡森锐硬质合金制品有限公司 一种耐高温硬质合金
CN110869581B (zh) 2017-05-31 2022-04-01 斯伦贝谢技术有限公司 具有预成形硬面堆焊部段的切割工具
CN107245628B (zh) * 2017-06-27 2019-02-01 株洲硬质合金集团有限公司 采用Ni-Cu连续固溶体作粘结相的硬质合金材料及其制备方法
CN107676034A (zh) * 2017-09-19 2018-02-09 西迪技术股份有限公司 一种耐磨材料及扭力冲击器
CN108277414A (zh) * 2018-02-25 2018-07-13 株洲市超宇实业有限责任公司 一种用于3d玻璃热弯机硬质合金均热板的生产方法
USD875147S1 (en) * 2018-05-10 2020-02-11 Seed Technologies Corp., Ltd. Drill bit
US11180989B2 (en) * 2018-07-03 2021-11-23 Baker Hughes Holdings Llc Apparatuses and methods for forming an instrumented cutting for an earth-boring drilling tool
CN109439993A (zh) * 2018-10-23 2019-03-08 株洲市超宇实业有限责任公司 一种聚乙烯、聚丙烯造粒模板用硬质合金材料及应用
CN109576598A (zh) * 2018-11-27 2019-04-05 汪杨志 具有良好导热性能的钻头合金
DE102019110950A1 (de) * 2019-04-29 2020-10-29 Kennametal Inc. Hartmetallzusammensetzungen und deren Anwendungen
CN110195742B (zh) * 2019-05-28 2023-12-05 成都高新区正通特种材料厂 高耐磨合金材料的轴承
CN111455250A (zh) * 2020-04-26 2020-07-28 株洲精特硬质合金有限公司 一种铁矿石破碎用硬质合金材料及其制备方法
CN111826569A (zh) * 2020-07-21 2020-10-27 广东正信硬质材料技术研发有限公司 一种耐磨高硬度硬质合金钻具及其制备方法
EP4204657A1 (en) 2020-08-27 2023-07-05 Services Pétroliers Schlumberger Blade cover
CN112359258B (zh) * 2020-10-22 2022-04-08 长沙黑金刚实业有限公司 一种矿用硬质合金配方、矿用硬质合金及其制备方法
CN113234981A (zh) * 2021-05-20 2021-08-10 九江金鹭硬质合金有限公司 一种耐高温高热膨胀系数硬质合金
CN113846257B (zh) * 2021-09-29 2022-11-15 郑州大学 一种中熵合金粘结剂硬质合金及其制备方法
GB202204522D0 (en) * 2022-03-30 2022-05-11 Element Six Gmbh Cemented carbide material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015740A1 (en) * 1993-01-15 1994-07-21 Sandvik Ab Long hole drill with titanium based carbonitride alloy inserts
JP2002120104A (ja) * 2000-10-13 2002-04-23 Mitsubishi Materials Corp 耐チッピング性のすぐれた表面被覆超硬合金製切削工具
CN103266249A (zh) * 2013-05-24 2013-08-28 成都工业学院 一种碳化钒钛硬质合金及其制备的钻井钻头及制备方法
CN103614604A (zh) * 2013-12-16 2014-03-05 重庆市科学技术研究院 用于采矿用旋转钻进切削钻头的硬质合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2433727T3 (en) * 2010-09-24 2015-05-26 Sandvik Intellectual Property A process for preparing a sintered composite member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994015740A1 (en) * 1993-01-15 1994-07-21 Sandvik Ab Long hole drill with titanium based carbonitride alloy inserts
JP2002120104A (ja) * 2000-10-13 2002-04-23 Mitsubishi Materials Corp 耐チッピング性のすぐれた表面被覆超硬合金製切削工具
CN103266249A (zh) * 2013-05-24 2013-08-28 成都工业学院 一种碳化钒钛硬质合金及其制备的钻井钻头及制备方法
CN103614604A (zh) * 2013-12-16 2014-03-05 重庆市科学技术研究院 用于采矿用旋转钻进切削钻头的硬质合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035175B2 (en) 2017-05-03 2021-06-15 Schlumberger Technology Corporation Drill bit body construction

Also Published As

Publication number Publication date
CN105349867A (zh) 2016-02-24
US20180305790A1 (en) 2018-10-25
US10697048B2 (en) 2020-06-30
CN105349867B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
WO2017070993A1 (zh) 一种合金钻头及其制备方法
CN105950935A (zh) 冷镦成形紧固件用硬质合金模具材料及其制备方法
CN102703790B (zh) 一种梯度钴含量烧结碳化钨合金材料
CN101985717B (zh) 高韧性超粗晶钨钴硬质合金的制备方法
KR20110079901A (ko) 텅스텐 카바이드를 주성분으로 하는 초경합금 제작용의 몰리브덴 함유 금속 분말
CN112359258B (zh) 一种矿用硬质合金配方、矿用硬质合金及其制备方法
CN105950936B (zh) 温锻成形钛合金紧固件用硬质合金模具材料及制备方法
KR20090130075A (ko) 공구
CN103173673A (zh) 一种硬质合金材料
CN104561723A (zh) 一种复合基体用硬质合金及其制备方法
CN110735075A (zh) 一种高耐磨wc基硬质合金的制备方法
CN108570589B (zh) 一种硬质合金刀具材料及其制备方法
CN113151724B (zh) 一种采用氧化料制备双性能DP- Ti(C,N)金属陶瓷的方法
CN103320667B (zh) 一种硬质合金及其制备方法
CN105604490B (zh) 一种高性能孕镶金刚石钻头胎体及钻头的制备方法
CN105441936A (zh) 高速钢锥柄麻花钻涂层工艺技术
CN115138849B (zh) 一种无粘结相硬质合金刀具材料的制备方法
CN112877578A (zh) 超细晶粒硬质合金及其制备方法
CN103184382B (zh) 一种耐腐蚀的硬质合金及制备方法
CN105967719B (zh) 一种超微钻头复合材料的制备方法
CN108411180A (zh) 一种加钌硬质合金
CN113528918A (zh) 一种低钴高强度硬质合金及其制备方法
CN110964966A (zh) 适用于切削高锰钢的硬质合金及其制备方法
CN110923590A (zh) 一种SiC晶须增韧超细硬质合金及其制备方法和应用
CN105734383A (zh) 一种碳化钒钛基硬质合金及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907054

Country of ref document: EP

Kind code of ref document: A1