WO2017068938A1 - Gas barrier film and method for producing gas barrier film - Google Patents

Gas barrier film and method for producing gas barrier film Download PDF

Info

Publication number
WO2017068938A1
WO2017068938A1 PCT/JP2016/079195 JP2016079195W WO2017068938A1 WO 2017068938 A1 WO2017068938 A1 WO 2017068938A1 JP 2016079195 W JP2016079195 W JP 2016079195W WO 2017068938 A1 WO2017068938 A1 WO 2017068938A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
barrier film
silica
silica layer
Prior art date
Application number
PCT/JP2016/079195
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 進也
信也 鈴木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016033868A external-priority patent/JP2017081143A/en
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201680061324.3A priority Critical patent/CN108136728A/en
Publication of WO2017068938A1 publication Critical patent/WO2017068938A1/en
Priority to US15/958,209 priority patent/US20180237908A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a gas barrier film and a method for producing the gas barrier film.
  • a gas barrier film is a film in which an inorganic layer is formed on the surface of a plastic film.
  • a gas barrier film having a structure in which a polysilazane solution known as a glass coating agent is applied to the surface of an inorganic thin film and the resulting coating film is subjected to a modification treatment using vacuum ultraviolet irradiation has been developed.
  • An object of the present invention is to provide a gas barrier film having a high barrier property even under high temperature and high humidity, and a method for producing the same.
  • the present inventors have focused on forming an inorganic layer having a higher barrier property on the surface of a layer formed using polysilazane by a vapor deposition method or the like.
  • a gas barrier film having such a configuration was actually produced, a gas barrier film having a barrier property expected from the function of each layer was not obtained.
  • the present inventors have further studied and found that the performance of the obtained gas barrier film depends on the kind of amine catalyst added to the polysilazane solution, and has completed the present invention.
  • the present invention provides the following [1] to [13].
  • a film substrate, a silica layer, and an inorganic layer in direct contact with the silica layer are included in this order,
  • the silica layer includes a silica polymer containing at least a covalent bond between a silicon atom and an oxygen atom, and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more.
  • Gas barrier film [2] The gas barrier film according to [1], wherein the silica layer contains 0.1 to 5% by mass of the amine based on the total mass of the silica layer.
  • an organic layer is included,
  • Forming a coating layer containing a silicon compound by applying a coating liquid containing a silicon compound and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C.
  • a method for producing a gas barrier film comprising forming an inorganic layer on a surface of the silica layer by vapor deposition or sputtering. [9] The method for producing a gas barrier film according to [8], wherein the inorganic layer is formed by a chemical vapor deposition method. [10] The method for producing a gas barrier film according to [8] or [9], wherein the silicon compound is perhydropolysilazane.
  • a gas barrier film having a high barrier property even under high temperature and high humidity and a method for producing the same are provided.
  • the gas barrier film of the present invention includes a film base, a silica layer, and an inorganic layer in direct contact with the silica layer in this order.
  • the gas barrier film of the present invention may contain other layers. For example, it is also preferable to further include an organic layer.
  • the gas barrier film of the present invention may include two or more silica layers, or may include two or more inorganic layers, or two or more silica layers and two or more inorganic layers. May be laminated alternately.
  • Film substrate silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer, silica layer; film substrate, inorganic layer, silica layer, inorganic Layer; film substrate, silica layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, inorganic layer, silica layer, inorganic layer, Silica layer; film substrate, organic layer, silica layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer, silica layer, inorganic layer, silica layer; film substrate, organic layer , Inorganic layer, organic layer, silica layer, inorganic layer, silica layer; film substrate, organic layer
  • Film base organic layer, silica layer, inorganic layer
  • film base organic layer, silica layer, inorganic layer, silica layer
  • film base organic layer, silica layer, inorganic layer, silica layer, inorganic layer
  • film base organic layer, silica layer, inorganic layer, silica layer, inorganic layer
  • film base organic layer, silica layer, inorganic layer, silica layer, inorganic layer
  • film base Organic layer, silica layer, inorganic layer, silica layer, inorganic layer, silica layer
  • film substrate organic layer, inorganic layer, silica layer, inorganic layer
  • film substrate organic layer, inorganic layer, silica layer, inorganic layer
  • the number of layers constituting the gas barrier film is not particularly limited, but typically 3 to 10 layers are preferable, and 4 to 7 layers are more preferable.
  • the gas barrier film of this invention may have functional layers other than a film base material, an organic layer, an inorganic layer, and a silica layer.
  • the functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627.
  • Examples of functional layers other than these include matting agent layers, solvent-resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers, and antifouling layers.
  • the film thickness of the gas barrier film is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m.
  • the gas barrier film of the present invention is a gas barrier film having a high barrier property even under high temperature and high humidity.
  • the water vapor permeability [g / m 2 ⁇ day] before and after the wet heat test in which the gas barrier film is allowed to stand for 500 hours at 85 ° C. and 85% RH preferably satisfies the following formula (A).
  • WVTR (0) Water vapor transmission rate immediately after production (before wet heat test)
  • WVTR (1) Water vapor transmission rate after wet heat test It is more preferable that WVTR (0) / WVTR (1) ⁇ 0.2.
  • the film substrate may be a plastic film.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a laminate including a silica layer and an inorganic layer provided thereon, and can be appropriately selected according to the purpose of use.
  • Specific examples of plastic films include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, and fluorination.
  • Polyimide resin polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, Heat such as cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modified polycarbonate resin, fluorene ring modified polyester resin, acryloyl compound, etc.
  • a plastic resin is mentioned.
  • a polyester resin can be particularly preferably used as the film substrate.
  • the film thickness of the film substrate is preferably 8 ⁇ m to 200 ⁇ m, and more preferably 18 ⁇ m to 150 ⁇ m.
  • the silica layer is a layer containing a silica polymer containing at least a covalent bond between a silicon atom and an oxygen atom.
  • the silica layer is a layer that is distinguished from the inorganic layer described later, and has a lighter color than the inorganic layer when the cross section of the gas barrier film is photographed with a transmission electron image (TE image) with a scanning transmission electron microscope (STEM). It is a layer that can be confirmed as a layer. The reason why the color is observed light is thought to be due to the smaller density of atoms.
  • the silica layer may be a glassy layer.
  • a silica layer is a layer formed from the layer which apply
  • Si: O: N 1: 0.1 to 0.5: 0.8 to 1.4.
  • the atomic ratio of silicon, oxygen, and nitrogen is a value measured by XPS method (X-ray photoelectron spectroscopy).
  • the XPS surface analyzer is not particularly limited, and for example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used.
  • the silica layer may contain carbon atoms, but is preferably substantially free of carbon atoms. Specifically, the silica layer is preferably a layer in which no carbon atom is detected in the XPS method.
  • the silica polymer is a product obtained from a silicon compound as a raw material by irradiating the coating layer with ultraviolet rays, and includes at least a covalent bond between a silicon atom and an oxygen atom.
  • the silica polymer may contain a covalent bond between silicon atoms, or may contain a covalent bond between a silicon atom and an oxygen atom.
  • the silica polymer is more preferably silicon oxide or silicon oxynitride.
  • the silica polymer in the silica layer is three-dimensionally cross-linked by a covalent bond between atoms to form a polymer. Therefore, for example, even if the inorganic layer described later is coincident with silicon oxide or silicon oxynitride, the steric structures of the compounds in the layer are considered to be different from each other.
  • the silicon compound used as a raw material is a compound containing a silicon atom, and preferably contains a silicon atom and a nitrogen atom, or a silicon atom, a nitrogen atom, and an oxygen atom.
  • the silicon compound may be an organic compound containing a carbon atom.
  • the silicon compound is preferably an inorganic silicon compound.
  • the silicon compound may be a polymer or may be crosslinked.
  • the silicon compound is preferably a polymer containing at least a covalent bond between a silicon atom and a nitrogen atom.
  • Examples of the silicon compound include compounds such as polysilazane, siloxane, and polysiloxane. Specific examples thereof include compounds described in paragraphs 0128 to 0129 of JP-A No. 2015-147952.
  • As the silicon compound perhydropolysilazane is particularly preferable.
  • the silica layer is formed from a coating solution containing an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more as a catalyst together with the silicon compound.
  • the silica layer of the gas barrier film of the present invention contains the amine.
  • the present inventors use an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more as a catalyst, whereby the barrier property of the gas barrier film in which the inorganic layer is formed on the surface of the silica layer is lowered even at high temperature and high humidity. I found something difficult to do.
  • amines having a molecular weight of 200 or more and a boiling point of 230 ° C. or more enable the formation of a dense silica layer as a catalyst, and the formed silica layer has a high temperature and high humidity. This is probably because bleed-out is difficult even under conditions. Depending on the bleed-out, the density of the silica layer may be reduced and the barrier property may be lowered. In particular, when an inorganic layer is formed on the surface, the presence of a bleed-out catalyst at the interface may cause a decrease in interlayer adhesion and a breakdown of the inorganic layer, resulting in a decrease in barrier properties. In the gas barrier film of the present invention, since the silica layer is formed using the coating liquid containing the specific amine, the barrier property is not easily lowered even under high temperature and high humidity conditions.
  • Examples of amines having a molecular weight of 200 or more and a boiling point of 230 ° C. or more include trihexylamine (molecular weight: 269.5, boiling point: 265 ° C.), trioctylamine (molecular weight: 353.7, boiling point: 367 ° C.). , Dioctylamine (molecular weight: 241.5, boiling point: 298 ° C.), and triphenylamine (molecular weight: 245.3, boiling point: 347 ° C.). Of these, trihexylamine, trioctylamine, or dioctylamine is preferred.
  • the film thickness of the silica layer is preferably 50 to 1000 nm, more preferably 100 to 500 nm, and further preferably 150 to 350 nm.
  • the content of the silicon compound in the coating solution containing the silicon compound and the amine is 94.0% by mass to 99.9% by mass with respect to the total mass (mass excluding the solvent) of the solid content of the coating solution. It is preferably 96.0% by mass to 99.7% by mass.
  • the content of the amine in the coating solution is preferably 0.1% by mass to 5% by mass, and preferably 0.3% by mass to the total mass (mass excluding the solvent) of the solid content of the coating solution. It is more preferable that it is 3.0 mass%.
  • the coating solution may contain an additive other than the silicon compound and the amine.
  • the solvent for the coating solution include hydrocarbon solvents such as pentane, hexane, cyclohexane, toluene and xylene; halogen hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; acetone and methyl ethyl ketone Ketones such as dibutyl ether, dioxane, tetrahydrofuran, tetrahydrofuran, dibutyl ether and the like; aromatic hydrocarbon solvents such as Solvesso (SOLVESSO (registered trademark), manufactured by ExxonMobil). Of these, dibutyl ether, xylene, and solvesso are preferred.
  • the coating solution for forming the silica layer containing the silicon compound and the amine may be applied on the film substrate.
  • it can apply
  • Application methods include spray coating, spin coating, ink jet, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, die coating, and method. Examples thereof include a cast film forming method, a bar coating method, and a gravure printing method. Of these, spin coating, wire bar coating, gravure coating, and die coating are preferred. When the coating solution contains a solvent, it may be dried after the coating and before the ultraviolet irradiation.
  • the silica layer is obtained by applying a coating solution containing a silicon compound and an amine to form a coating layer containing a silicon compound, and irradiating the coating layer containing the silicon compound with vacuum ultraviolet rays. Irradiation with vacuum ultraviolet rays modifies the coating layer, and a denser layer is formed.
  • the vacuum ultraviolet irradiation process may be an excimer irradiation process.
  • the wavelength of the vacuum ultraviolet ray is preferably 100 to 200 nm, more preferably 100 to 180 nm.
  • the illuminance of the vacuum ultraviolet rays is preferably 30 to 280 mW / cm 2 , more preferably 60 to 180 mW / cm 2 . Cumulative exposure amount of vacuum ultraviolet rays, preferably from 10 ⁇ 10000mJ / cm 2, more preferably 100 ⁇ 8000mJ / cm 2, further preferably 200 ⁇ 6000mJ / cm 2.
  • the irradiation with vacuum ultraviolet rays is preferably performed in a state where the oxygen concentration and the water vapor concentration are low, and more preferably in an inert gas atmosphere such as nitrogen gas.
  • the irradiation with vacuum ultraviolet rays may be performed under a temperature condition higher than normal temperature such as 60 ° C. to 140 ° C., or may be performed at normal temperature.
  • normal temperature such as 60 ° C. to 140 ° C.
  • the inorganic layer is a thin film layer made of a metal compound.
  • the component contained in the inorganic layer is not particularly limited as long as it satisfies the gas barrier performance.
  • it is a metal oxide, metal nitride, metal carbide, metal oxynitride, or metal oxycarbide, and Si, Al,
  • An oxide, nitride, carbide, oxynitride, oxycarbide, or the like containing at least one metal selected from Sn, Zn, Ti, Cu, Ce, or Ta can be preferably used.
  • the metal compound is an oxide containing Si or an oxynitride containing Si
  • the metal compound is a compound different from the silica polymer.
  • the three-dimensional structure of the compound in the inorganic layer is different from the three-dimensional structure of the compound in the silica layer.
  • a metal oxide, nitride, or oxynitride selected from Si, Al, In, Sn, Zn, Ti is preferable, and in particular, an Si oxide, Si nitride, or Si oxynitride, or Al oxide, Al nitride or Al oxynitride is preferred. These may contain other atoms as secondary components.
  • an inorganic layer containing Si (silicon) is most preferable. This is because it has higher transparency and better gas barrier properties.
  • an inorganic layer made of silicon oxynitride or silicon nitride is particularly preferable.
  • a metal oxide, nitride, or oxynitride may contain hydrogen, but the hydrogen concentration in forward Rutherford scattering is preferably 30% or less.
  • the smoothness of the inorganic layer is preferably less than 3 nm, more preferably 1 nm or less, as an average roughness (Ra value) of a 1 ⁇ m square (a square having 1 ⁇ m on one side).
  • the thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 1000 nm, preferably 20 to 500 nm, more preferably 50 to 300 nm per layer.
  • the single inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition.
  • each inorganic layer may be the same or different in composition, formation method, film thickness, and the like.
  • Each inorganic layer is preferably the same in composition, and more preferably the same in composition and formation method.
  • the inorganic layer is preferably a vapor deposition layer. That is, the inorganic layer is preferably formed by vapor deposition or sputtering. Examples of the vapor deposition method include physical vapor deposition methods (PVD) such as an ion plating method and various chemical vapor deposition methods (CVD). The inorganic layer is preferably formed by chemical vapor deposition (CVD).
  • PVD physical vapor deposition methods
  • CVD chemical vapor deposition methods
  • CVD chemical vapor deposition
  • Examples of the chemical vapor deposition method include, for example, a plasma CVD method described in paragraphs 0023 to 0044 of JP2012-097291A.
  • the applied power in the chemical vapor deposition method is preferably 0.1 to 10 kW, and the AC frequency is preferably 0.05 to 500 kHz.
  • the degree of vacuum in the vacuum chamber is preferably 0.5 to 100 Pa depending on the type of source gas. See, for example, the descriptions in paragraphs 0110 to 0119 of JP-A-2015-147952 for the source gas used in the case of using an organosilicon compound and the type and amount of gas required for the chemical vapor deposition method. Can do.
  • the source gas is preferably hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, and the gas required for chemical vapor deposition is preferably oxygen gas, ozone gas, nitrogen gas, or ammonia gas.
  • the gas barrier film of the present invention may contain an organic layer.
  • the organic layer should just be contained between the film base material and the silica layer.
  • the gas barrier film of the present invention may contain two or more organic layers, and the composition of the two or more organic layers may be the same or different.
  • the organic layer can be formed by curing the composition for forming an organic layer.
  • the composition for forming an organic layer contains a polymerizable compound, and may further contain a polymerization initiator, a silane coupling agent, inorganic fine particles, and the like.
  • the polymerizable compound is preferably a compound having an ethylenically unsaturated bond at the terminal or side chain and / or a compound having epoxy or oxetane at the terminal or side chain.
  • a compound having an ethylenically unsaturated bond at a terminal or a side chain is particularly preferable.
  • Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, maleic anhydride, etc., (meth) acrylate compounds are preferred, and acrylate compounds are particularly preferred. Is preferred.
  • (meth) acrylate compound As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
  • Specific examples of the (meth) acrylate compound include compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A.
  • a polyfunctional acrylic monomer having a fluorene skeleton described in WO2013 / 047524 can also be used.
  • the polymerizable compound is preferably contained in an amount of 90% by mass or more, and more preferably 99% by mass or more, based on the solid content of the polymerizable composition (residue after the volatile matter is volatilized). .
  • Two or more kinds of polymerizable compounds may be contained in the composition for forming an organic layer.
  • the composition for forming an organic layer may contain a polymerization initiator.
  • a polymerization initiator When a polymerization initiator is used, its content is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of compounds involved in the polymerization. By setting it as such a composition, the polymerization reaction via an active component production
  • the photopolymerization initiator examples include Irgacure series (for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, etc.) and Darocur, which are commercially available from BASF. (Darocure) series (eg Darocur TPO, Darocur 1173, etc.) Quantacure PDO, Ezacure series (for example, Ezacure TZM, Ezacure TZT, Ezacure KTO 46, etc.) commercially available from Lamberti.
  • the content of the polymerization initiator in the composition for forming an organic layer is preferably 0.1 mol% or more, more preferably 0.5 to 2.0 mol% of the total amount of the polymerizable compounds.
  • the composition for forming an organic layer may contain a silane coupling agent.
  • Silane coupling agents include reactive groups such as methoxy, ethoxy, and acetoxy groups that bond to silicon, as well as epoxy groups, vinyl groups, amino groups, halogen groups, mercapto groups, and (meth) acryloyl groups. Those having a substituent having one or more reactive groups selected from as a substituent bonded to the same silicon are preferable. It is particularly preferable that the silane coupling agent has a (meth) acryloyl group.
  • silane coupling agent examples include a silane coupling agent represented by the general formula (1) described in WO2013 / 146069 and a silane coupling agent represented by the general formula (I) described in WO2013 / 027786. Is mentioned.
  • the proportion of the silane coupling agent in the total solid content of the organic layer forming composition is preferably 0.1 to 30% by mass, preferably 1.0 to 20% by mass. Is more preferable.
  • the composition for forming an organic layer may contain inorganic fine particles.
  • inorganic fine particles silicon oxide such as silica, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid
  • examples thereof include fine particles composed of one or more selected from the group consisting of calcium, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate.
  • silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
  • the proportion of the inorganic fine particles in the total solid content of the organic layer forming composition is preferably 0.1 to 70% by mass, more preferably 1.0 to 50% by mass. preferable.
  • the composition for forming an organic layer may contain a solvent.
  • the solvent include ketones such as methyl ethyl ketone (MEK), ester solvents: 2-butanone, propylene glycol monoethyl ether acetate (PGMEA), cyclohexanone, or a mixed solvent of any two or more of these solvents. . Of these, methyl ethyl ketone is preferred.
  • the content of the solvent in the organic layer forming composition is preferably 60 to 97% by mass and more preferably 70 to 95% by mass with respect to the total amount of the organic layer forming composition.
  • the organic layer forming composition is first layered.
  • a composition for forming an organic layer may be applied on a film substrate.
  • Application may be performed on the surface of the film substrate or the surface of the inorganic layer.
  • a coating method a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a hopper described in US Pat. No. 2,681,294 is used.
  • Extrusion coating methods also called die coating methods
  • the composition for forming an organic layer may be dried as a coating film after the above coating.
  • the composition for forming an organic layer may be cured with light (for example, ultraviolet rays), an electron beam, or a heat ray, and is preferably cured with light.
  • the organic layer forming composition is preferably cured while being heated at a temperature of 25 ° C. or higher (eg, 30 to 130 ° C.). By heating, the free movement of the composition for forming an organic layer is promoted so that the film can be effectively cured, and the film can be formed without damaging the film substrate or the like.
  • the light to be irradiated may be ultraviolet rays from a high pressure mercury lamp or a low pressure mercury lamp.
  • the radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable.
  • the polymerizable compound is subject to polymerization inhibition by oxygen in the air, it is preferable to reduce the oxygen concentration or oxygen partial pressure during polymerization.
  • the oxygen concentration is preferably 2% or less, and more preferably 0.5% or less.
  • the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less.
  • the polymerization rate of the polymerizable compound in the composition for forming an organic layer after curing is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more.
  • the polymerization rate here means the ratio of the reacted polymerizable group among all the polymerizable groups (for example, acryloyl group and methacryloyl group) in the monomer mixture.
  • the polymerization rate can be quantified by an infrared absorption method.
  • the organic layer is preferably smooth and has a high film hardness.
  • the smoothness of the organic layer is preferably less than 3 nm, more preferably less than 1 nm, as an average roughness (Ra value) of 1 ⁇ m square.
  • the thickness of the organic layer is not particularly limited, but is preferably 50 nm to 5000 nm, and more preferably 200 nm to 3500 nm from the viewpoint of brittleness and light transmittance.
  • the gas barrier film of the present invention can be preferably used for a device or an optical member whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air.
  • electronic devices such as an organic EL element, a liquid crystal display element, a thin-film transistor, a touch panel, electronic paper, a solar cell, can be mentioned, for example, It uses preferably for an organic EL element.
  • the gas barrier film of the present invention can be used for device membrane sealing.
  • the gas barrier film of the present invention can also be used as a device substrate or a film for sealing using a solid sealing method.
  • the solid sealing method is a method in which after forming a protective layer on the device, an adhesive layer and a gas barrier film are stacked and cured.
  • Organic EL device Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
  • the reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom.
  • the gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode.
  • the transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a ⁇ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarization It has the structure which consists of a film
  • substrate containing the barriering laminated body or gas barrier film of this invention of this invention can be used as said upper transparent electrode and upper board
  • the type of the liquid crystal cell is not particularly limited, but more preferably TN type (Twisted Nematic), STN type (Super Twisted Nematic), HAN type (Hybrid Aligned Nematic), VA type (Vertically Alignment), ECB type (Electrically Controlled Birefringence) OCB type (Optically Compensated Bend), CPA type (Continuous Pinwheel Alignment), and IPS type (In Plane Switching) are preferable.
  • TN type Transmission Nematic
  • STN type Super Twisted Nematic
  • HAN type Hybrid Aligned Nematic
  • VA type Very Alignment
  • ECB type Electro Mechanical Controlled Birefringence
  • OCB type Optically Compensated Bend
  • CPA type Continuous Pinwheel Alignment
  • IPS type In Plane Switching
  • the thin film transistor described in JP-T-10-512104 As other application examples, the thin film transistor described in JP-T-10-512104, the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper, solar cells described in JP-A-9-018042, and the like.
  • optical member examples include a circularly polarizing plate.
  • a circularly polarizing plate can be produced by laminating a ⁇ / 4 plate and a polarizing plate using the gas barrier film of the present invention as a substrate. In this case, the lamination is performed so that the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizing plate are 45 °.
  • a polarizing plate one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used.
  • MD longitudinal direction
  • those described in JP-A-2002-865554 can be suitably used. .
  • the polymerizable composition after drying is cured by irradiating with an ultraviolet ray using a high pressure mercury lamp (irradiation amount: 0.5 J / cm 2 ) in a nitrogen atmosphere having an oxygen content of 100 ppm or less, and an organic layer having a thickness of 4 ⁇ m. A layer was made.
  • inorganic layer On condition B, an inorganic layer having a thickness of 250 nm was provided on the surface of the silica layer to obtain a laminate.
  • PEN Polyethylene naphthalate
  • Teonex Q65FA Polyethylene naphthalate
  • An inorganic layer was provided on the surface of the silica layer using the apparatus shown in FIG. 1 of JP2012-97291A under the following film forming conditions.
  • Gas barrier films 202 to 203 were prepared in the same procedure as the gas barrier film 201 except that the trihexylamine in the amine solution was changed to the amine shown in Table 1.
  • the gas barrier film 204 was prepared in the same procedure as the gas barrier film 201 except that the polymerizable compound (TMPTA) in the organic layer was changed to Aronix M-303 (triacrylate ratio: 40 to 60%) manufactured by Toagosei Co., Ltd. did.
  • a gas barrier film 205 was produced in the same procedure as the production of the gas barrier film 202 except that the polymerizable compound in the organic layer was changed to Aronix M-400 (pentaacrylate ratio: 40 to 50%) manufactured by Toagosei Co., Ltd.
  • the polymerizable composition was photopolymerized with a polymerizable compound (manufactured by Toagosei Co., Ltd., M-240) and silica particles (manufactured by Nissan Chemical Co., Ltd., MEK-ST-40, particle size 10-15 nm, solid content concentration 40% by mass).
  • Gas barrier films 211 to 215 were produced in the same procedure as the production of the gas barrier film 201 except that the trihexylamine in the amine solution was changed to the amine shown in Table 1. Similarly to the gas barrier films 201 to 206, the water vapor permeability of the gas barrier films 211 to 215 and the atomic ratio of the silica layer were measured. The results are shown in Table 1.

Abstract

Provided are a gas barrier film having high barrier properties even at high temperatures and high humidity, and a method for producing this gas barrier film. This gas barrier film includes a film base material, a silica layer, and an inorganic layer directly connected to the silica layer, formed in the stated order. The silica layer contains a silica polymer including at least covalent bonds between silicon atoms and oxygen atoms, and an amine having a molecular weight of 200 or higher and a boiling point of 230°C or higher. This method for producing a gas barrier film comprises applying an application liquid that contains a silicon compound and an amine having a molecular weight of 200 or higher and a boiling point of 230°C or higher to a film base material in order to form an application layer that contains the silicon compound, irradiating the application layer that contains the silicon compound with vacuum ultraviolet rays in order to form a silica layer that contains a silica polymer including at least covalent bonds between silicon atoms and oxygen atoms, and forming an inorganic layer on the surface of the silica layer by vapor deposition or sputtering.

Description

ガスバリアフィルムおよびガスバリアフィルムの製造方法Gas barrier film and method for producing gas barrier film
 本発明は、ガスバリアフィルムおよびガスバリアフィルムの製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the gas barrier film.
 ガスバリアフィルムとしては、従来から、プラスチックフィルムの表面に無機層を形成したフィルムが知られている。近年は、さらに、無機薄膜の表面にガラスコーティング剤として知られるポリシラザン溶液を塗布し、得られる塗布膜を真空紫外線照射を用いた改質処理を行った構成のガスバリアフィルムも開発されている。(特許文献1) Conventionally known as a gas barrier film is a film in which an inorganic layer is formed on the surface of a plastic film. In recent years, a gas barrier film having a structure in which a polysilazane solution known as a glass coating agent is applied to the surface of an inorganic thin film and the resulting coating film is subjected to a modification treatment using vacuum ultraviolet irradiation has been developed. (Patent Document 1)
特開2014-201032号公報JP 2014-201032 A
 本発明の課題は、高温高湿度下でもバリア性の高いガスバリアフィルムおよびその製造方法を提供することである。 An object of the present invention is to provide a gas barrier film having a high barrier property even under high temperature and high humidity, and a method for producing the same.
 本発明者らは、上記課題の解決のため、ポリシラザンを用いて形成した層の表面に、よりバリア性の高い無機層を蒸着法などにより形成することに着眼した。しかし、実際にそのような構成のガスバリアフィルムを作製してみたところ、それぞれの層の機能から期待できるバリア性を有するガスバリアフィルムが得られなかった。本発明者らは、さらに検討を重ね、得られるガスバリアフィルムの性能が、ポリシラザン溶液に添加されるアミン触媒の種類に依存することを見いだし、本発明の完成に至った。 In order to solve the above problems, the present inventors have focused on forming an inorganic layer having a higher barrier property on the surface of a layer formed using polysilazane by a vapor deposition method or the like. However, when a gas barrier film having such a configuration was actually produced, a gas barrier film having a barrier property expected from the function of each layer was not obtained. The present inventors have further studied and found that the performance of the obtained gas barrier film depends on the kind of amine catalyst added to the polysilazane solution, and has completed the present invention.
 すなわち、本発明は以下の[1]~[13]を提供するものである。
[1]フィルム基材と、シリカ層と、前記シリカ層と直接接する無機層と、をこの順で含み、
上記シリカ層は、ケイ素原子と酸素原子との共有結合を少なくとも含むシリカ高分子と、分子量が200以上であり沸点が230℃以上であるアミンと、を含む、
ガスバリアフィルム。
[2]上記シリカ層が、上記シリカ層の総質量に対し、0.1~5質量%の上記アミンを含む[1]に記載のガスバリアフィルム。
[3]上記アミンが、トリヘキシルアミン、トリオクチルアミン、またはジオクチルアミンである[1]または[2]に記載のガスバリアフィルム。
[4]上記シリカ層の膜厚が、50~1000nmである[1]~[3]のいずれか一つに記載のガスバリアフィルム。
[5]上記シリカ層の原子数比が、Si:O:N=1:0.1~1.2:0.5~1.5である[1]~[4]のいずれか一つに記載のガスバリアフィルム。
[6]上記無機層が、蒸着層である[1]~[5]のいずれか一つに記載のガスバリアフィルム。
That is, the present invention provides the following [1] to [13].
[1] A film substrate, a silica layer, and an inorganic layer in direct contact with the silica layer are included in this order,
The silica layer includes a silica polymer containing at least a covalent bond between a silicon atom and an oxygen atom, and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more.
Gas barrier film.
[2] The gas barrier film according to [1], wherein the silica layer contains 0.1 to 5% by mass of the amine based on the total mass of the silica layer.
[3] The gas barrier film according to [1] or [2], wherein the amine is trihexylamine, trioctylamine, or dioctylamine.
[4] The gas barrier film according to any one of [1] to [3], wherein the silica layer has a thickness of 50 to 1000 nm.
[5] In any one of [1] to [4], the atomic ratio of the silica layer is Si: O: N = 1: 0.1 to 1.2: 0.5 to 1.5. The gas barrier film as described.
[6] The gas barrier film according to any one of [1] to [5], wherein the inorganic layer is a vapor deposition layer.
[7]さらに、有機層を含み、
上記フィルム基材、上記有機層、および上記シリカ層をこの順で含む[1]~[6]のいずれか一つに記載のガスバリアフィルム。
[8]フィルム基材上に、ケイ素化合物と、分子量が200以上であり沸点が230℃以上であるアミンと、を含む塗布液を塗布してケイ素化合物を含む塗布層を形成すること、
上記ケイ素化合物を含む塗布層に真空紫外線を照射して、ケイ素原子と酸素原子との共有結合を少なくとも有するシリカ高分子を含むシリカ層を形成すること、
上記シリカ層の表面に蒸着法またはスパッタリング法によって無機層を形成することを含むガスバリアフィルムの製造方法。
[9]上記無機層を化学的気相蒸着法によって形成する[8]に記載のガスバリアフィルムの製造方法。
[10]上記ケイ素化合物が、パーヒドロポリシラザンである[8]または[9]に記載のガスバリアフィルムの製造方法。
[11]上記塗布液が、上記塗布液の固形分総質量に対し、0.1~5質量%の上記アミンを含む[8]~[10]のいずれか一つに記載のガスバリアフィルムの製造方法。
[12]上記アミンが、トリヘキシルアミン、トリオクチルアミン、またはジオクチルアミンである[8]~[11]に記載のガスバリアフィルムの製造方法。
[13]上記塗布層を形成することが、上記フィルム基材上に形成された有機層の表面に上記塗布液を塗布することである[8]~[12]のいずれか一つに記載のガスバリアフィルムの製造方法。
[7] Furthermore, an organic layer is included,
The gas barrier film according to any one of [1] to [6], comprising the film substrate, the organic layer, and the silica layer in this order.
[8] Forming a coating layer containing a silicon compound by applying a coating liquid containing a silicon compound and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more on a film substrate;
Irradiating the coating layer containing the silicon compound with vacuum ultraviolet rays to form a silica layer containing a silica polymer having at least a covalent bond between a silicon atom and an oxygen atom;
A method for producing a gas barrier film, comprising forming an inorganic layer on a surface of the silica layer by vapor deposition or sputtering.
[9] The method for producing a gas barrier film according to [8], wherein the inorganic layer is formed by a chemical vapor deposition method.
[10] The method for producing a gas barrier film according to [8] or [9], wherein the silicon compound is perhydropolysilazane.
[11] The production of the gas barrier film according to any one of [8] to [10], wherein the coating solution contains 0.1 to 5% by mass of the amine based on the total solid content of the coating solution. Method.
[12] The method for producing a gas barrier film according to [8] to [11], wherein the amine is trihexylamine, trioctylamine, or dioctylamine.
[13] The coating layer according to any one of [8] to [12], wherein the coating layer is formed by coating the coating solution on the surface of the organic layer formed on the film substrate. A method for producing a gas barrier film.
 本発明により、高温高湿度下でもバリア性の高いガスバリアフィルムおよびその製造方法が提供される。 According to the present invention, a gas barrier film having a high barrier property even under high temperature and high humidity and a method for producing the same are provided.
 以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。本明細書において、「(メタ)アクリレート」との記載は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味を表す。「(メタ)アクリロイル基」等も同様である。 Hereinafter, the contents of the present invention will be described in detail. In the present specification, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value. In the present specification, the description of “(meth) acrylate” represents the meaning of “any one or both of acrylate and methacrylate”. The same applies to “(meth) acryloyl group” and the like.
<ガスバリアフィルム>
 本発明のガスバリアフィルムは、フィルム基材と、シリカ層と、シリカ層と直接接する無機層とをこの順に含む。本発明のガスバリアフィルムは、他の層を含んでいてもよい。例えば、有機層をさらに含むことも好ましい。本発明のガスバリアフィルムは、2層以上のシリカ層を含むものであっても、2層以上の無機層を含むものであってもよく、2層以上のシリカ層と2層以上の無機層とが交互に積層しているものであってもよい。
<Gas barrier film>
The gas barrier film of the present invention includes a film base, a silica layer, and an inorganic layer in direct contact with the silica layer in this order. The gas barrier film of the present invention may contain other layers. For example, it is also preferable to further include an organic layer. The gas barrier film of the present invention may include two or more silica layers, or may include two or more inorganic layers, or two or more silica layers and two or more inorganic layers. May be laminated alternately.
 ガスバリアフィルムの層構成の好ましい例としては、以下が挙げられる。なお、記載順に積層されているものとする。
フィルム基材、シリカ層、無機層;フィルム基材、有機層、シリカ層、無機層;フィルム基材、有機層、シリカ層、無機層、シリカ層;フィルム基材、無機層、シリカ層、無機層;フィルム基材、シリカ層、無機層、シリカ層、無機層;フィルム基材、有機層、無機層、シリカ層、無機層;フィルム基材、有機層、無機層、シリカ層、無機層、シリカ層;フィルム基材、有機層、シリカ層、無機層、シリカ層、無機層;フィルム基材、有機層、シリカ層、無機層、シリカ層、無機層、シリカ層;フィルム基材、有機層、無機層、有機層、シリカ層、無機層。
The following are mentioned as a preferable example of the layer structure of a gas barrier film. In addition, it shall be laminated | stacked in order of description.
Film substrate, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer, silica layer; film substrate, inorganic layer, silica layer, inorganic Layer; film substrate, silica layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, inorganic layer, silica layer, inorganic layer, Silica layer; film substrate, organic layer, silica layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, silica layer, inorganic layer, silica layer, inorganic layer, silica layer; film substrate, organic layer , Inorganic layer, organic layer, silica layer, inorganic layer.
 これらのうち、
フィルム基材、有機層、シリカ層、無機層;フィルム基材、有機層、シリカ層、無機層、シリカ層;フィルム基材、有機層、シリカ層、無機層、シリカ層、無機層;フィルム基材、有機層、シリカ層、無機層、シリカ層、無機層、シリカ層;フィルム基材、有機層、無機層、シリカ層、無機層;フィルム基材、有機層、無機層、シリカ層、無機層、シリカ層の構成が特に好ましい。
Of these,
Film base, organic layer, silica layer, inorganic layer; film base, organic layer, silica layer, inorganic layer, silica layer; film base, organic layer, silica layer, inorganic layer, silica layer, inorganic layer; film base Material, organic layer, silica layer, inorganic layer, silica layer, inorganic layer, silica layer; film substrate, organic layer, inorganic layer, silica layer, inorganic layer; film substrate, organic layer, inorganic layer, silica layer, inorganic The structure of a layer and a silica layer is particularly preferable.
 ガスバリアフィルムを構成する層数に関しては特に制限はないが、典型的には3層~10層が好ましく、4~7層がより好ましい。本発明のガスバリアフィルムは、フィルム基材、有機層、無機層、およびシリカ層以外の機能層を有していてもよい。機能層については、特開2006-289627号公報の段落番号0036~0038に詳しく記載されている。これら以外の機能層の例としてはマット剤層、耐溶媒層、帯電防止層、平滑化層、密着改良層、遮光層、反射防止層、ハードコート層、応力緩和層、防曇層、防汚層、被印刷層等が挙げられる。
 ガスバリアフィルムの膜厚は10μm~200μmであることが好ましく、20μm~150μmであることがより好ましい。
The number of layers constituting the gas barrier film is not particularly limited, but typically 3 to 10 layers are preferable, and 4 to 7 layers are more preferable. The gas barrier film of this invention may have functional layers other than a film base material, an organic layer, an inorganic layer, and a silica layer. The functional layer is described in detail in paragraph numbers 0036 to 0038 of JP-A-2006-289627. Examples of functional layers other than these include matting agent layers, solvent-resistant layers, antistatic layers, smoothing layers, adhesion improving layers, light shielding layers, antireflection layers, hard coat layers, stress relaxation layers, antifogging layers, and antifouling layers. A layer, a printing layer, and the like.
The film thickness of the gas barrier film is preferably 10 μm to 200 μm, more preferably 20 μm to 150 μm.
 本発明のガスバリアフィルムは、高温高湿度下でもバリア性の高いガスバリアフィルムである。本発明のガスバリアフィルムは、85℃85%RHの条件下で500時間放置する湿熱試験の前後の水蒸気透過率[g/m2・day]が以下式(A)を満たすことが好ましい。
   WVTR(0)/WVTR(1)≧0.1 ・・・(A)
   WVTR(0):作製直後(湿熱試験前)の水蒸気透過率
   WVTR(1):湿熱試験後の水蒸気透過率
 WVTR(0)/WVTR(1)≧0.2であることがより好ましい。
The gas barrier film of the present invention is a gas barrier film having a high barrier property even under high temperature and high humidity. In the gas barrier film of the present invention, the water vapor permeability [g / m 2 · day] before and after the wet heat test in which the gas barrier film is allowed to stand for 500 hours at 85 ° C. and 85% RH preferably satisfies the following formula (A).
WVTR (0) / WVTR (1) ≧ 0.1 (A)
WVTR (0): Water vapor transmission rate immediately after production (before wet heat test) WVTR (1): Water vapor transmission rate after wet heat test It is more preferable that WVTR (0) / WVTR (1) ≧ 0.2.
[フィルム基材]
 フィルム基材はプラスチックフィルムであればよい。用いられるプラスチックフィルムは、その上に設けられるシリカ層および無機層を含む積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。プラスチックフィルムとしては、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN) などのポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。フィルム基材としては特にポリエステル樹脂を好ましく用いることができる。
 フィルム基材の膜厚は8μm~200μmであることが好ましく、18μm~150μmであることがより好ましい。
[Film substrate]
The film substrate may be a plastic film. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a laminate including a silica layer and an inorganic layer provided thereon, and can be appropriately selected according to the purpose of use. Specific examples of plastic films include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, and fluorination. Polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, Heat such as cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modified polycarbonate resin, fluorene ring modified polyester resin, acryloyl compound, etc. A plastic resin is mentioned. As the film substrate, a polyester resin can be particularly preferably used.
The film thickness of the film substrate is preferably 8 μm to 200 μm, and more preferably 18 μm to 150 μm.
[シリカ層]
 シリカ層は、ケイ素原子と酸素原子との共有結合を少なくとも含むシリカ高分子を含む層である。シリカ層は、後述の無機層とは区別される層であり、走査型透過電子顕微鏡(STEM)でガスバリアフィルムの断面を透過電子像(TE像)で撮影した際に、無機層よりも薄い色の層として確認することができる層である。色が薄く観測されるのは、原子の密度がより小さいためと考えられる。シリカ層はガラス状の層であればよい。シリカ層は、上記シリカ高分子の原料を含む塗布液を塗布した層から形成される層である。
[Silica layer]
The silica layer is a layer containing a silica polymer containing at least a covalent bond between a silicon atom and an oxygen atom. The silica layer is a layer that is distinguished from the inorganic layer described later, and has a lighter color than the inorganic layer when the cross section of the gas barrier film is photographed with a transmission electron image (TE image) with a scanning transmission electron microscope (STEM). It is a layer that can be confirmed as a layer. The reason why the color is observed light is thought to be due to the smaller density of atoms. The silica layer may be a glassy layer. A silica layer is a layer formed from the layer which apply | coated the coating liquid containing the raw material of the said silica polymer.
 シリカ層のケイ素原子(Si)、酸素原子(O)、窒素原子(N)の原子数比は、Si:O:N=1:0.1~1.2:0.5~1.5であることが好ましく、Si:O:N=1:0.1~0.5:0.8~1.4であることがさらに好ましい。ケイ素、酸素、窒素の原子数比は、XPS法(X線光電子分光法)により測定した値である。XPS表面分析装置としては、特に限定はなく、例えば、VGサイエンティフィックス社製ESCALAB-200Rを用いることができる。
 シリカ層は、炭素原子を含んでいてもよいが、実質的に含まないことが好ましい。具体的には、シリカ層はXPS法において炭素原子が検出されない層であることが好ましい。
The atomic ratio of silicon atoms (Si), oxygen atoms (O), and nitrogen atoms (N) in the silica layer is Si: O: N = 1: 0.1 to 1.2: 0.5 to 1.5. Preferably, Si: O: N = 1: 0.1 to 0.5: 0.8 to 1.4. The atomic ratio of silicon, oxygen, and nitrogen is a value measured by XPS method (X-ray photoelectron spectroscopy). The XPS surface analyzer is not particularly limited, and for example, ESCALAB-200R manufactured by VG Scientific, Inc. can be used.
The silica layer may contain carbon atoms, but is preferably substantially free of carbon atoms. Specifically, the silica layer is preferably a layer in which no carbon atom is detected in the XPS method.
 シリカ高分子は、塗布層に紫外線が照射されることによって、原料であるケイ素化合物から得られる生成物であり、ケイ素原子と酸素原子との共有結合を少なくとも含む。シリカ高分子はケイ素原子同士の共有結合を含んでいてもよく、ケイ素原子と酸素原子との共有結合を含んでいてもよい。シリカ高分子は、酸化ケイ素または酸化窒化ケイ素であることがより好ましい。シリカ層中のシリカ高分子は、原子間の共有結合によって3次元的に架橋して高分子を形成している。そのため、例えば、後述の無機層と、酸化ケイ素または酸化窒化ケイ素であるという点で一致している場合であっても、層中の化合物の立体構造は互いに異なっていると考えられる。 The silica polymer is a product obtained from a silicon compound as a raw material by irradiating the coating layer with ultraviolet rays, and includes at least a covalent bond between a silicon atom and an oxygen atom. The silica polymer may contain a covalent bond between silicon atoms, or may contain a covalent bond between a silicon atom and an oxygen atom. The silica polymer is more preferably silicon oxide or silicon oxynitride. The silica polymer in the silica layer is three-dimensionally cross-linked by a covalent bond between atoms to form a polymer. Therefore, for example, even if the inorganic layer described later is coincident with silicon oxide or silicon oxynitride, the steric structures of the compounds in the layer are considered to be different from each other.
 原料となるケイ素化合物は、ケイ素原子を含む化合物であり、好ましくはケイ素原子および窒素原子、またはケイ素原子、窒素原子、および酸素原子を含む。ケイ素化合物は炭素原子を含む有機化合物であってもよい。ケイ素化合物は、無機ケイ素化合物であることが好ましい。また、ケイ素化合物は、高分子であってもよく、架橋していてもよい。ケイ素化合物は、ケイ素原子と窒素原子との共有結合を少なくとも含む高分子であることが好ましい。ケイ素化合物の例としては、ポリシラザン、シロキサン、ポリシロキサン等の化合物が挙げられる。具体例としては、特開2015-147952号公報の段落0128~0129に記載の化合物などが挙げられる。
 ケイ素化合物としては特にパーヒドロポリシラザンが好ましい。
The silicon compound used as a raw material is a compound containing a silicon atom, and preferably contains a silicon atom and a nitrogen atom, or a silicon atom, a nitrogen atom, and an oxygen atom. The silicon compound may be an organic compound containing a carbon atom. The silicon compound is preferably an inorganic silicon compound. The silicon compound may be a polymer or may be crosslinked. The silicon compound is preferably a polymer containing at least a covalent bond between a silicon atom and a nitrogen atom. Examples of the silicon compound include compounds such as polysilazane, siloxane, and polysiloxane. Specific examples thereof include compounds described in paragraphs 0128 to 0129 of JP-A No. 2015-147952.
As the silicon compound, perhydropolysilazane is particularly preferable.
 シリカ層は、上記ケイ素化合物とともに、触媒として分子量が200以上であり沸点が230℃以上であるアミンを含む塗布液より形成される。その結果、本発明のガスバリアフィルムのシリカ層は上記アミンを含む。本発明者らは分子量が200以上であり沸点が230℃以上であるアミンを触媒として用いることによって、シリカ層の表面に無機層が形成されるガスバリアフィルムのバリア性が高温、高湿度下でも低下しにくいことを見いだした。特定の理論に拘泥するものではないが、分子量が200以上であり沸点が230℃以上であるアミンは、触媒として緻密なシリカ層の形成を可能とするとともに、形成されたシリカ層が高温高湿条件下におかれても、ブリードアウトしにくいためと考えられる。ブリードアウトによってはシリカ層の緻密さが低減してバリア性が低下する可能性がある。また、特に無機層がその表面に形成されている場合、ブリードアウトした触媒が界面に存在することで層間密着の低下や無機層の破壊を引き起こしバリア性の低下がもたらされる可能性がある。本発明のガスバリアフィルムではシリカ層が上記の特定のアミンを含む塗布液を使用して形成されることにより、高温高湿条件下におかれてもバリア性が低下しにくい。 The silica layer is formed from a coating solution containing an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more as a catalyst together with the silicon compound. As a result, the silica layer of the gas barrier film of the present invention contains the amine. The present inventors use an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more as a catalyst, whereby the barrier property of the gas barrier film in which the inorganic layer is formed on the surface of the silica layer is lowered even at high temperature and high humidity. I found something difficult to do. Although not bound by any particular theory, amines having a molecular weight of 200 or more and a boiling point of 230 ° C. or more enable the formation of a dense silica layer as a catalyst, and the formed silica layer has a high temperature and high humidity. This is probably because bleed-out is difficult even under conditions. Depending on the bleed-out, the density of the silica layer may be reduced and the barrier property may be lowered. In particular, when an inorganic layer is formed on the surface, the presence of a bleed-out catalyst at the interface may cause a decrease in interlayer adhesion and a breakdown of the inorganic layer, resulting in a decrease in barrier properties. In the gas barrier film of the present invention, since the silica layer is formed using the coating liquid containing the specific amine, the barrier property is not easily lowered even under high temperature and high humidity conditions.
 分子量が200以上であり沸点が230℃以上であるアミンの例としては、トリヘキシルアミン(分子量:269.5、沸点:265℃)、トリオクチルアミン(分子量:353.7、沸点:367℃)、ジオクチルアミン(分子量:241.5、沸点:298℃)、およびトリフェニルアミン(分子量:245.3、沸点:347℃)などが挙げられる。これらのうち、トリヘキシルアミン、トリオクチルアミン、またはジオクチルアミンが好ましい。 Examples of amines having a molecular weight of 200 or more and a boiling point of 230 ° C. or more include trihexylamine (molecular weight: 269.5, boiling point: 265 ° C.), trioctylamine (molecular weight: 353.7, boiling point: 367 ° C.). , Dioctylamine (molecular weight: 241.5, boiling point: 298 ° C.), and triphenylamine (molecular weight: 245.3, boiling point: 347 ° C.). Of these, trihexylamine, trioctylamine, or dioctylamine is preferred.
 シリカ層の膜厚は50~1000nmであることが好ましく、100~500nmであることがより好ましく、150~350nmであることがさらに好ましい。
 ケイ素化合物および上記アミンを含む塗布液中の上記ケイ素化合物の含有量は、塗布液の固形分の総質量(溶媒を除いた質量)に対し、94.0質量%~99.9質量%であることが好ましく、96.0質量%~99.7質量%であることがより好ましい。
 塗布液中の上記アミンの含有量は、塗布液の固形分の総質量(溶媒を除いた質量)に対し、0.1質量%~5質量%であることが好ましく、0.3質量%~3.0質量%であることがより好ましい。
The film thickness of the silica layer is preferably 50 to 1000 nm, more preferably 100 to 500 nm, and further preferably 150 to 350 nm.
The content of the silicon compound in the coating solution containing the silicon compound and the amine is 94.0% by mass to 99.9% by mass with respect to the total mass (mass excluding the solvent) of the solid content of the coating solution. It is preferably 96.0% by mass to 99.7% by mass.
The content of the amine in the coating solution is preferably 0.1% by mass to 5% by mass, and preferably 0.3% by mass to the total mass (mass excluding the solvent) of the solid content of the coating solution. It is more preferable that it is 3.0 mass%.
 塗布液は、上記ケイ素化合物および上記アミン以外の他の添加剤を含んでいてもよい。
 また、塗布液の溶媒としては、例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン、テトラヒドロフラン、ジブチルエーテル等のエーテル類;ソルベッソ(SOLVESSO(登録商標)、エクソンモービル社製)等の芳香族炭化水素溶媒を挙げることができる。これらのうち、ジブチルエーテル、キシレン、ソルベッソが好ましい。
The coating solution may contain an additive other than the silicon compound and the amine.
Examples of the solvent for the coating solution include hydrocarbon solvents such as pentane, hexane, cyclohexane, toluene and xylene; halogen hydrocarbon solvents such as methylene chloride and trichloroethane; esters such as ethyl acetate and butyl acetate; acetone and methyl ethyl ketone Ketones such as dibutyl ether, dioxane, tetrahydrofuran, tetrahydrofuran, dibutyl ether and the like; aromatic hydrocarbon solvents such as Solvesso (SOLVESSO (registered trademark), manufactured by ExxonMobil). Of these, dibutyl ether, xylene, and solvesso are preferred.
 上記ケイ素化合物と上記アミンとを含むシリカ層形成のための塗布液は、フィルム基材上に塗布されればよい。例えば、フィルム基材上に形成された有機層の表面、またはフィルム基材上に形成された無機層の表面に塗布することができる。上記塗布液は、フィルム基材上に形成された有機層の表面に塗布されることが好ましい。 The coating solution for forming the silica layer containing the silicon compound and the amine may be applied on the film substrate. For example, it can apply | coat to the surface of the organic layer formed on the film base material, or the surface of the inorganic layer formed on the film base material. It is preferable that the said coating liquid is apply | coated to the surface of the organic layer formed on the film base material.
 塗布方法としては、スプレーコート法、スピンコート法、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、ダイコート法、法流延成膜法、バーコート法、グラビア印刷法等が例示される。これらのうち、スピンコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法が好ましい。
 塗布液が溶媒を含む場合においては塗布後、紫外線照射の前に乾燥されてもよい。
Application methods include spray coating, spin coating, ink jet, dip coating, air knife coating, curtain coating, roller coating, wire bar coating, gravure coating, slide coating, die coating, and method. Examples thereof include a cast film forming method, a bar coating method, and a gravure printing method. Of these, spin coating, wire bar coating, gravure coating, and die coating are preferred.
When the coating solution contains a solvent, it may be dried after the coating and before the ultraviolet irradiation.
 シリカ層は、ケイ素化合物とアミンとを含む塗布液を塗布してケイ素化合物を含む塗布層を形成し、ケイ素化合物を含む塗布層に真空紫外線を照射することにより得られる。真空紫外線を照射することにより塗布層が改質し、より緻密な層が形成される。真空紫外線の照射処理はエキシマ照射処理であればよい。真空紫外線の波長は、100~200nm、好ましくは100~180nmの波長であることが好ましい。また、真空紫外線の照度は30~280mW/cm2であることが好ましく、60~180mW/cm2であることがより好ましい。真空紫外線の露光積算量は、10~10000mJ/cm2であることが好ましく、100~8000mJ/cm2であることがより好ましく、200~6000mJ/cm2であることがさらに好ましい。 The silica layer is obtained by applying a coating solution containing a silicon compound and an amine to form a coating layer containing a silicon compound, and irradiating the coating layer containing the silicon compound with vacuum ultraviolet rays. Irradiation with vacuum ultraviolet rays modifies the coating layer, and a denser layer is formed. The vacuum ultraviolet irradiation process may be an excimer irradiation process. The wavelength of the vacuum ultraviolet ray is preferably 100 to 200 nm, more preferably 100 to 180 nm. The illuminance of the vacuum ultraviolet rays is preferably 30 to 280 mW / cm 2 , more preferably 60 to 180 mW / cm 2 . Cumulative exposure amount of vacuum ultraviolet rays, preferably from 10 ~ 10000mJ / cm 2, more preferably 100 ~ 8000mJ / cm 2, further preferably 200 ~ 6000mJ / cm 2.
 真空紫外線の照射は、酸素濃度および水蒸気濃度の低い状態で行うことが好ましく、窒素ガスなどの不活性ガス雰囲気下で行うことがより好ましい。真空紫外線の照射は、60℃~140℃などの常温より高い温度条件下で行ってもよく、常温で行ってもよい。
 シリカ層の形成方法の詳細については、特開2014-201032号公報の段落0149~0208の記載を参照することができる。
The irradiation with vacuum ultraviolet rays is preferably performed in a state where the oxygen concentration and the water vapor concentration are low, and more preferably in an inert gas atmosphere such as nitrogen gas. The irradiation with vacuum ultraviolet rays may be performed under a temperature condition higher than normal temperature such as 60 ° C. to 140 ° C., or may be performed at normal temperature.
For details of the method for forming the silica layer, reference can be made to the descriptions in paragraphs 0149 to 0208 of JP-A No. 2014-201032.
[無機層]
 無機層は、金属化合物からなる薄膜の層である。
 無機層に含まれる成分は、ガスバリア性能を満たすものであれば特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸化窒化物または金属酸化炭化物であり、Si、Al、In、Sn、Zn、Ti、Cu、Ce、またはTaから選ばれる1種以上の金属を含む酸化物、窒化物、炭化物、酸化窒化物、酸化炭化物などを好ましく用いることができる。ただし、金属化合物が、Siを含む酸化物又はSiを含む酸化窒化物である場合、金属化合物はシリカ高分子とは異なる化合物である。したがって、無機層中の化合物の立体構造は、シリカ層中の化合物の立体構造とは互いに異なる。これらの中でも、Si、Al、In、Sn、Zn、Tiから選ばれる金属の酸化物、窒化物もしくは酸化窒化物が好ましく、特にSiの酸化物、Siの窒化物もしくはSiの酸化窒化物、またはAlの酸化物、Alの窒化物もしくはAlの酸化窒化物が好ましい。これらは、副次的な成分として他の原子を含有していてもよい。
 無機層としては、Si(ケイ素)を含む無機層が最も好ましい。より透明性が高く、かつ、より優れたガスバリア性を有しているからである。その中でも特に、酸化窒化ケイ素または窒化ケイ素からなる無機層が好ましい。
[Inorganic layer]
The inorganic layer is a thin film layer made of a metal compound.
The component contained in the inorganic layer is not particularly limited as long as it satisfies the gas barrier performance. For example, it is a metal oxide, metal nitride, metal carbide, metal oxynitride, or metal oxycarbide, and Si, Al, In An oxide, nitride, carbide, oxynitride, oxycarbide, or the like containing at least one metal selected from Sn, Zn, Ti, Cu, Ce, or Ta can be preferably used. However, when the metal compound is an oxide containing Si or an oxynitride containing Si, the metal compound is a compound different from the silica polymer. Therefore, the three-dimensional structure of the compound in the inorganic layer is different from the three-dimensional structure of the compound in the silica layer. Among these, a metal oxide, nitride, or oxynitride selected from Si, Al, In, Sn, Zn, Ti is preferable, and in particular, an Si oxide, Si nitride, or Si oxynitride, or Al oxide, Al nitride or Al oxynitride is preferred. These may contain other atoms as secondary components.
As the inorganic layer, an inorganic layer containing Si (silicon) is most preferable. This is because it has higher transparency and better gas barrier properties. Among these, an inorganic layer made of silicon oxynitride or silicon nitride is particularly preferable.
 無機層は、例えば、金属の酸化物、窒化物もしくは酸窒化物が、水素を含んでいてもよいが、前方ラザフォード散乱における水素濃度が30%以下であることが好ましい。
 無機層の平滑性は、1μm角(1辺が1μmの正方形)の平均粗さ(Ra値)として3nm未満であることが好ましく、1nm以下がより好ましい。
In the inorganic layer, for example, a metal oxide, nitride, or oxynitride may contain hydrogen, but the hydrogen concentration in forward Rutherford scattering is preferably 30% or less.
The smoothness of the inorganic layer is preferably less than 3 nm, more preferably 1 nm or less, as an average roughness (Ra value) of a 1 μm square (a square having 1 μm on one side).
 無機層の厚みに関しては特に限定されないが、1層につき、通常、5~1000nmの範囲内であり、好ましくは20~500nm、さらに好ましくは50~300nmである。1層の無機層は複数のサブレイヤーを有して構成される積層構造であってもよい。この場合、各サブレイヤーが同じ組成であっても異なる組成であってもよい。
 本発明のガスバリアフィルムが、2層以上の無機層を含むとき、各無機層はその組成、形成方法、膜厚等において、同一であっても異なっていてもよい。各無機層はその組成において同一であることが好ましく、組成および形成方法において、同一であることがより好ましい。
The thickness of the inorganic layer is not particularly limited, but is usually in the range of 5 to 1000 nm, preferably 20 to 500 nm, more preferably 50 to 300 nm per layer. The single inorganic layer may have a laminated structure including a plurality of sublayers. In this case, each sublayer may have the same composition or a different composition.
When the gas barrier film of the present invention includes two or more inorganic layers, each inorganic layer may be the same or different in composition, formation method, film thickness, and the like. Each inorganic layer is preferably the same in composition, and more preferably the same in composition and formation method.
 無機層は、蒸着層であることが好ましい。すなわち、無機層は蒸着法またはスパッタリング法で形成することが好ましい。蒸着法としては、イオンプレーティング法等の物理的気相成長法(PVD)および種々の化学的気相蒸着法(CVD)が挙げられる。無機層は化学的気相蒸着法(CVD)で形成することが好ましい。 The inorganic layer is preferably a vapor deposition layer. That is, the inorganic layer is preferably formed by vapor deposition or sputtering. Examples of the vapor deposition method include physical vapor deposition methods (PVD) such as an ion plating method and various chemical vapor deposition methods (CVD). The inorganic layer is preferably formed by chemical vapor deposition (CVD).
 化学的気相成長法の例としては、例えば、特開2012-097291号公報の段落0023~0044に記載のプラズマCVD法を挙げることができる。化学的気相蒸着法の際の印加電力は0.1~10kWであり、かつ交流の周波数が0.05~500kHzであることが好ましい。真空チャンバー内の真空度は、原料ガスの種類等に応じて、0.5~100Paとすることが好ましい。有機ケイ素化合物を用いる場合の原料ガスやそのたの化学的気相蒸着法に必要なガスの種類やその量については例えば、特開2015-147952号公報の段落0110~0119の記載を参照することができる。原料ガスはヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、化学的気相蒸着法に必要なガスは、酸素ガス、オゾンガス、窒素ガス、アンモニアガスが好ましい。 Examples of the chemical vapor deposition method include, for example, a plasma CVD method described in paragraphs 0023 to 0044 of JP2012-097291A. The applied power in the chemical vapor deposition method is preferably 0.1 to 10 kW, and the AC frequency is preferably 0.05 to 500 kHz. The degree of vacuum in the vacuum chamber is preferably 0.5 to 100 Pa depending on the type of source gas. See, for example, the descriptions in paragraphs 0110 to 0119 of JP-A-2015-147952 for the source gas used in the case of using an organosilicon compound and the type and amount of gas required for the chemical vapor deposition method. Can do. The source gas is preferably hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, and the gas required for chemical vapor deposition is preferably oxygen gas, ozone gas, nitrogen gas, or ammonia gas.
[有機層]
 本発明のガスバリアフィルムは、有機層を含んでいてもよい。有機層は、フィルム基材とシリカ層との間に含まれていればよい。本発明のガスバリアフィルムは、2層以上の有機層を含んでいてもよく、2層以上の有機層の組成は同一であっても、異なっていてもよい。
 有機層は、有機層形成用組成物の硬化により形成することができる。有機層形成用組成物は重合性化合物を含み、その他、重合開始剤、シランカップリング剤、無機微粒子等を含んでいてもよい。
[Organic layer]
The gas barrier film of the present invention may contain an organic layer. The organic layer should just be contained between the film base material and the silica layer. The gas barrier film of the present invention may contain two or more organic layers, and the composition of the two or more organic layers may be the same or different.
The organic layer can be formed by curing the composition for forming an organic layer. The composition for forming an organic layer contains a polymerizable compound, and may further contain a polymerization initiator, a silane coupling agent, inorganic fine particles, and the like.
(重合性化合物)
 上記重合性化合物は、エチレン性不飽和結合を末端または側鎖に有する化合物、および/または、エポキシまたはオキセタンを末端または側鎖に有する化合物であることが好ましい。重合性化合物としては、エチレン性不飽和結合を末端または側鎖に有する化合物が特に好ましい。エチレン性不飽和結合を末端または側鎖に有する化合物の例としては、(メタ)アクリレート系化合物、アクリルアミド系化合物、無水マレイン酸等が挙げられ、(メタ)アクリレート系化合物が好ましく、特にアクリレート系化合物が好ましい。
(Polymerizable compound)
The polymerizable compound is preferably a compound having an ethylenically unsaturated bond at the terminal or side chain and / or a compound having epoxy or oxetane at the terminal or side chain. As the polymerizable compound, a compound having an ethylenically unsaturated bond at a terminal or a side chain is particularly preferable. Examples of compounds having an ethylenically unsaturated bond at the terminal or side chain include (meth) acrylate compounds, acrylamide compounds, maleic anhydride, etc., (meth) acrylate compounds are preferred, and acrylate compounds are particularly preferred. Is preferred.
 (メタ)アクリレート系化合物としては、(メタ)アクリレート、ウレタン(メタ)アクリレートやポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート等が好ましい。
 (メタ)アクリレート系化合物として具体的には、例えば特開2013-43382号公報の段落0024~0036または特開2013-43384号公報の段落0036~0048に記載の化合物を用いることができる。また、WO2013/047524に記載のフルオレン骨格を有する多官能アクリルモノマーを用いることもできる。
As the (meth) acrylate compound, (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate and the like are preferable.
Specific examples of the (meth) acrylate compound include compounds described in paragraphs 0024 to 0036 of JP2013-43382A or paragraphs 0036 to 0048 of JP2013-43384A. Further, a polyfunctional acrylic monomer having a fluorene skeleton described in WO2013 / 047524 can also be used.
 重合性化合物は、重合性組成物の固形分(揮発分が揮発した後の残分)に対し、90質量%以上含まれていることが好ましく、99質量%以上含まれていることがより好ましい。
 有機層形成用組成物において重合性化合物は2種類以上含まれていてもよい。
The polymerizable compound is preferably contained in an amount of 90% by mass or more, and more preferably 99% by mass or more, based on the solid content of the polymerizable composition (residue after the volatile matter is volatilized). .
Two or more kinds of polymerizable compounds may be contained in the composition for forming an organic layer.
(重合開始剤)
 有機層形成用組成物は、重合開始剤を含んでいてもよい。重合開始剤を用いる場合、その含量は、重合に関与する化合物の合計量の0.1モル%以上であることが好ましく、0.5~5モル%であることがより好ましい。このような組成とすることにより、活性成分生成反応を経由する重合反応を適切に制御することができる。光重合開始剤の例としてはBASF社から市販されているイルガキュア(Irgacure)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocure)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)
、クオンタキュア(Quantacure)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。
 有機層形成用組成物中の重合開始剤の含量は、重合性化合物の合計量の0.1モル%以上であることが好ましく、0.5~2.0モル%であることがより好ましい。
(Polymerization initiator)
The composition for forming an organic layer may contain a polymerization initiator. When a polymerization initiator is used, its content is preferably 0.1 mol% or more, more preferably 0.5 to 5 mol% of the total amount of compounds involved in the polymerization. By setting it as such a composition, the polymerization reaction via an active component production | generation reaction can be controlled appropriately. Examples of the photopolymerization initiator include Irgacure series (for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure 369, Irgacure 379, Irgacure 819, etc.) and Darocur, which are commercially available from BASF. (Darocure) series (eg Darocur TPO, Darocur 1173, etc.)
Quantacure PDO, Ezacure series (for example, Ezacure TZM, Ezacure TZT, Ezacure KTO 46, etc.) commercially available from Lamberti.
The content of the polymerization initiator in the composition for forming an organic layer is preferably 0.1 mol% or more, more preferably 0.5 to 2.0 mol% of the total amount of the polymerizable compounds.
(シランカップリング剤)
 有機層形成用組成物は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては、ケイ素に結合するメトキシ基、エトキシ基、アセトキシ基等の加水分解可能な反応性基とともに、エポキシ基、ビニル基、アミノ基、ハロゲン基、メルカプト基、(メタ)アクリロイル基から選択される1つ以上の反応性基を有する置換基を同じケイ素に結合する置換基として有するものが好ましい。シランカップリング剤は、(メタ)アクリロイル基を有していること特に好ましい。シランカップリング剤の具体例としては、WO2013/146069に記載の一般式(1)で表されるシランカップリング剤およびWO2013/027786に記載の一般式(I)で表されるシランカップリング剤などが挙げられる。
 シランカップリング剤の、有機層形成用組成物の全固形分(揮発分が揮発した後の残分)中に占める割合は、0.1~30質量%が好ましく、1.0~20質量%がより好ましい。
(Silane coupling agent)
The composition for forming an organic layer may contain a silane coupling agent. Silane coupling agents include reactive groups such as methoxy, ethoxy, and acetoxy groups that bond to silicon, as well as epoxy groups, vinyl groups, amino groups, halogen groups, mercapto groups, and (meth) acryloyl groups. Those having a substituent having one or more reactive groups selected from as a substituent bonded to the same silicon are preferable. It is particularly preferable that the silane coupling agent has a (meth) acryloyl group. Specific examples of the silane coupling agent include a silane coupling agent represented by the general formula (1) described in WO2013 / 146069 and a silane coupling agent represented by the general formula (I) described in WO2013 / 027786. Is mentioned.
The proportion of the silane coupling agent in the total solid content of the organic layer forming composition (residue after the volatile matter has been volatilized) is preferably 0.1 to 30% by mass, preferably 1.0 to 20% by mass. Is more preferable.
(無機微粒子)
 有機層形成用組成物は、無機微粒子を含んでいてもよい。無機微粒子としては、シリカなどの酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムからなる群より選択されるいずれか1つ以上からなる微粒子を挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。
 無機微粒子の、有機層形成用組成物の全固形分(揮発分が揮発した後の残分)中に占める割合は、0.1~70質量%が好ましく、1.0~50質量%がより好ましい。
(Inorganic fine particles)
The composition for forming an organic layer may contain inorganic fine particles. As inorganic fine particles, silicon oxide such as silica, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined silicic acid Examples thereof include fine particles composed of one or more selected from the group consisting of calcium, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.
The proportion of the inorganic fine particles in the total solid content of the organic layer forming composition (residue after the volatile matter is volatilized) is preferably 0.1 to 70% by mass, more preferably 1.0 to 50% by mass. preferable.
(溶媒)
 有機層形成用組成物は溶媒を含んでいてもよい。溶媒の例としては、メチルエチルケトン(MEK)などのケトン、エステル系の溶媒:2-ブタノン、プロピレングリコールモノエチルエーテルアセテート(PGMEA)、シクロヘキサノン、またはこれら溶媒のいずれか2つ以上の混合溶媒が挙げられる。これらのうち、メチルエチルケトンが好ましい。
 有機層形成用組成物の上記溶媒の含量は、有機層形成用組成物全量に対し、60~97質量%が好ましく、70~95質量%がより好ましい。
(solvent)
The composition for forming an organic layer may contain a solvent. Examples of the solvent include ketones such as methyl ethyl ketone (MEK), ester solvents: 2-butanone, propylene glycol monoethyl ether acetate (PGMEA), cyclohexanone, or a mixed solvent of any two or more of these solvents. . Of these, methyl ethyl ketone is preferred.
The content of the solvent in the organic layer forming composition is preferably 60 to 97% by mass and more preferably 70 to 95% by mass with respect to the total amount of the organic layer forming composition.
(有機層の作製方法)
 有機層の作製のため、有機層形成用組成物はまず、層状とされる。層状にするためには、フィルム基材上に、有機層形成用組成物を塗布すればよい。塗布は、フィルム基材表面や無機層表面に行えばよい。塗布方法としては、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法、或いは、米国特許第2681294号明細書に記載のホッパ-を使用するエクストル-ジョンコート法(ダイコート法とも呼ばれる)が例示され、この中でもエクストル-ジョンコート法が好ましく採用できる。
 有機層形成用組成物は上記の塗布後、塗布膜として乾燥されてもよい。
(Method for producing organic layer)
In order to produce the organic layer, the organic layer forming composition is first layered. In order to form a layer, a composition for forming an organic layer may be applied on a film substrate. Application may be performed on the surface of the film substrate or the surface of the inorganic layer. As a coating method, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a slide coating method, or a hopper described in US Pat. No. 2,681,294 is used. Extrusion coating methods (also called die coating methods) to be used are exemplified, and among these, the extrusion coating method can be preferably employed.
The composition for forming an organic layer may be dried as a coating film after the above coating.
 有機層形成用組成物は、光(例えば、紫外線)、電子線、または熱線にて、硬化させればよく、光によって硬化させることが好ましい。特に、有機層形成用組成物を25℃以上の温度(例えば、30~130℃)をかけて加熱しながら、硬化させることが好ましい。加熱により、有機層形成用組成物の自由運動を促進させることで効果的に硬化させ、かつ、フィルム基材等にダメージを与えずに成膜することができる。 The composition for forming an organic layer may be cured with light (for example, ultraviolet rays), an electron beam, or a heat ray, and is preferably cured with light. In particular, the organic layer forming composition is preferably cured while being heated at a temperature of 25 ° C. or higher (eg, 30 to 130 ° C.). By heating, the free movement of the composition for forming an organic layer is promoted so that the film can be effectively cured, and the film can be formed without damaging the film substrate or the like.
 照射する光は、高圧水銀灯もしくは低圧水銀灯からの紫外線であればよい。照射エネルギーは0.1J/cm2以上が好ましく、0.5J/cm2以上がより好ましい。 The light to be irradiated may be ultraviolet rays from a high pressure mercury lamp or a low pressure mercury lamp. The radiation energy is preferably 0.1 J / cm 2 or more, 0.5 J / cm 2 or more is more preferable.
 重合性化合物は空気中の酸素によって重合阻害を受けるため、重合時の酸素濃度もしくは酸素分圧を低くすることが好ましい。窒素置換法によって重合時の酸素濃度を低下させる場合、酸素濃度は2%以下が好ましく、0.5%以下がより好ましい。減圧法により重合時の酸素分圧を低下させる場合、全圧が1000Pa以下であることが好ましく、100Pa以下であることがより好ましい。 Since the polymerizable compound is subject to polymerization inhibition by oxygen in the air, it is preferable to reduce the oxygen concentration or oxygen partial pressure during polymerization. When the oxygen concentration during polymerization is lowered by the nitrogen substitution method, the oxygen concentration is preferably 2% or less, and more preferably 0.5% or less. When the oxygen partial pressure during polymerization is reduced by the decompression method, the total pressure is preferably 1000 Pa or less, and more preferably 100 Pa or less.
 硬化後の有機層形成用組成物における重合性化合物の重合率は20質量%以上であることが好ましく、30質量%以上がより好ましく、50質量%以上が特に好ましい。ここでいう重合率とはモノマー混合物中の全ての重合性基(例えば、アクリロイル基およびメタクリロイル基)のうち、反応した重合性基の比率を意味する。重合率は赤外線吸収法によって定量することができる。 The polymerization rate of the polymerizable compound in the composition for forming an organic layer after curing is preferably 20% by mass or more, more preferably 30% by mass or more, and particularly preferably 50% by mass or more. The polymerization rate here means the ratio of the reacted polymerizable group among all the polymerizable groups (for example, acryloyl group and methacryloyl group) in the monomer mixture. The polymerization rate can be quantified by an infrared absorption method.
 有機層は、平滑で、膜硬度が高いことが好ましい。有機層の平滑性は1μm角の平均粗さ(Ra値)として3nm未満であることが好ましく、1nm未満であることがより好ましい。
 有機層の膜厚は特に制限はないが、脆性や光透過率の観点から、50nm~5000nmが好ましく、200nm~3500nmがより好ましい。
The organic layer is preferably smooth and has a high film hardness. The smoothness of the organic layer is preferably less than 3 nm, more preferably less than 1 nm, as an average roughness (Ra value) of 1 μm square.
The thickness of the organic layer is not particularly limited, but is preferably 50 nm to 5000 nm, and more preferably 200 nm to 3500 nm from the viewpoint of brittleness and light transmittance.
[ガスバリアフィルムの用途]
 本発明のガスバリアフィルムは空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスまたは光学部材に好ましく用いることができる。上記デバイスの例としては、例えば、有機EL素子、液晶表示素子、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池等の電子デバイスを挙げることができ有機EL素子に好ましく用いられる。
[Use of gas barrier film]
The gas barrier film of the present invention can be preferably used for a device or an optical member whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. As an example of the said device, electronic devices, such as an organic EL element, a liquid crystal display element, a thin-film transistor, a touch panel, electronic paper, a solar cell, can be mentioned, for example, It uses preferably for an organic EL element.
 本発明のガスバリアフィルムは、デバイスの膜封止に用いることができる。また、本発明のガスバリアフィルムは、デバイスの基板、または固体封止法を用いた封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリアフィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。 The gas barrier film of the present invention can be used for device membrane sealing. The gas barrier film of the present invention can also be used as a device substrate or a film for sealing using a solid sealing method. The solid sealing method is a method in which after forming a protective layer on the device, an adhesive layer and a gas barrier film are stacked and cured. Although there is no restriction | limiting in particular in an adhesive agent, A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
(有機EL素子)
 ガスバリアフィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。
(Organic EL device)
Examples of organic EL elements using a gas barrier film are described in detail in JP-A-2007-30387.
(液晶表示素子)
 反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリアフィルムは、上記透明電極基板および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を反射電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。透過型液晶表示装置は、下から順に、バックライト、偏光板、λ/4板、下透明電極、下配向膜、液晶層、上配向膜、上透明電極、上基板、λ/4板および偏光膜からなる構成を有する。このうち本発明の本発明のバリア性積層体またはガスバリアフィルムを含む基板は、上記上透明電極および上基板として使用することができる。カラー表示の場合には、さらにカラーフィルター層を下透明電極と下配向膜との間、または上配向膜と透明電極との間に設けることが好ましい。液晶セルの種類は特に限定されないが、より好ましくはTN型(Twisted Nematic)、STN型(Super Twisted Nematic)またはHAN型(Hybrid Aligned Nematic)、VA型(Vertically Alignment)、ECB型(Electrically Controlled Birefringence)、OCB型(Optically Compensated Bend)、CPA型(Continuous Pinwheel Alignment)、IPS型(In Plane Switching)であることが好ましい。
(Liquid crystal display element)
The reflective liquid crystal display device has a configuration including a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a λ / 4 plate, and a polarizing film in order from the bottom. The gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate. In the case of color display, it is preferable to further provide a color filter layer between the reflective electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The transmissive liquid crystal display device includes, in order from the bottom, a backlight, a polarizing plate, a λ / 4 plate, a lower transparent electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, an upper transparent electrode, an upper substrate, a λ / 4 plate, and a polarization It has the structure which consists of a film | membrane. Among these, the board | substrate containing the barriering laminated body or gas barrier film of this invention of this invention can be used as said upper transparent electrode and upper board | substrate. In the case of color display, it is preferable to further provide a color filter layer between the lower transparent electrode and the lower alignment film, or between the upper alignment film and the transparent electrode. The type of the liquid crystal cell is not particularly limited, but more preferably TN type (Twisted Nematic), STN type (Super Twisted Nematic), HAN type (Hybrid Aligned Nematic), VA type (Vertically Alignment), ECB type (Electrically Controlled Birefringence) OCB type (Optically Compensated Bend), CPA type (Continuous Pinwheel Alignment), and IPS type (In Plane Switching) are preferable.
(その他)
 その他の適用例としては、特表平10-512104号公報に記載の薄膜トランジスタ、特開平5-127822号公報、特開2002-48913号公報等に記載のタッチパネル、特開2000-98326号公報に記載の電子ペーパー、特開平9-018042号公報に記載の太陽電池等が挙げられる。
(Other)
As other application examples, the thin film transistor described in JP-T-10-512104, the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper, solar cells described in JP-A-9-018042, and the like.
(光学部材)
 本発明のガスバリアフィルムを用いる光学部材の例としては円偏光板等が挙げられる。
 本発明ガスバリアフィルムを基板としλ/4板と偏光板とを積層し、円偏光板を作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とが45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002-865554号公報に記載のものを好適に用いることができる。
(Optical member)
Examples of the optical member using the gas barrier film of the present invention include a circularly polarizing plate.
A circularly polarizing plate can be produced by laminating a λ / 4 plate and a polarizing plate using the gas barrier film of the present invention as a substrate. In this case, the lamination is performed so that the slow axis of the λ / 4 plate and the absorption axis of the polarizing plate are 45 °. As such a polarizing plate, one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used. For example, those described in JP-A-2002-865554 can be suitably used. .
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<ガスバリアフィルム201の作製>
[有機層の形成]
 ポリエチレンナフタレート(PEN、帝人デュポン社製、テオネックスQ65FA、厚み:100μm)上に、重合性化合物(ダイセル・オルネクス社製、TMPTA:トリメチロールプロパントリアクリレート)と光重合開始剤(BASF社製、IRGACURE819)と、2-ブタノンとを含む重合性組成物(質量比でTMPTA:IRGACURE819:2-ブタノン=19.4:0.6:80とした)をワイヤーバーで塗布し、80℃で、3分間乾燥させた。次いで、乾燥後の重合性組成物に、酸素含有量100ppm以下の窒素雰囲気下で高圧水銀ランプを使用して紫外線を照射して(照射量0.5J/cm2)硬化させ、厚み4μmの有機層を作製した。
<Preparation of gas barrier film 201>
[Formation of organic layer]
On polyethylene naphthalate (PEN, Teijin DuPont, Teonex Q65FA, thickness: 100 μm), polymerizable compound (Daicel Ornex, TMPTA: trimethylolpropane triacrylate) and photopolymerization initiator (BASF, IRGACURE 819) ) And 2-butanone (mass ratio TMPTA: IRGACURE819: 2-butanone = 19.4: 0.6: 80) was applied with a wire bar, and the mixture was applied at 80 ° C. for 3 minutes. Dried. Next, the polymerizable composition after drying is cured by irradiating with an ultraviolet ray using a high pressure mercury lamp (irradiation amount: 0.5 J / cm 2 ) in a nitrogen atmosphere having an oxygen content of 100 ppm or less, and an organic layer having a thickness of 4 μm. A layer was made.
[シリカ層の形成]
 上記有機層の表面に塗布液Aをスピンコート法により塗布後、塗布層を80℃で1分間乾燥した。乾燥後の塗布層に条件Aの照射処理を行い、厚さ250nmのシリカ層を設けた積層体を得た。
(塗布液A)
 パーヒドロポリシラザン(PHPS)溶液(PHPS 20質量%、ジブチルエーテル80%)とアミン溶液(トリヘキシルアミン 5質量%、ジブチルエーテル95%)を混合し、パーヒドロポリシラザンとトリヘキシルアミンの質量比が100:1となるように調製したのち、塗布液Aの質量%が10質量%となるようにジブチルエーテルで希釈し塗布液Aを得た。
[Formation of silica layer]
After coating the coating solution A on the surface of the organic layer by spin coating, the coating layer was dried at 80 ° C. for 1 minute. The dried coating layer was subjected to irradiation treatment under Condition A to obtain a laminate provided with a 250 nm thick silica layer.
(Coating liquid A)
A perhydropolysilazane (PHPS) solution (PHPS 20% by mass, dibutyl ether 80%) and an amine solution (trihexylamine 5% by mass, dibutyl ether 95%) are mixed, and the mass ratio of perhydropolysilazane to trihexylamine is 100. After being prepared to be 1: 1, the coating liquid A was obtained by diluting with a dibutyl ether so that the mass% of the coating liquid A was 10 mass%.
(条件A)
 ステージ可動型キセノンエキシマ照射装置(エム・ディ・エキシマ社製 MECL-M-1-200)を使用し、下記条件にて照射処理を行った。また、酸素濃度の調整は、照射庫内に導入する窒素ガス、及び酸素ガスの流量をフローメーターを用いて測定し、庫内に導入するガスの窒素ガス/酸素ガス流量比により行った。
   照度:140mW/cm2(メインピーク発光波長172nm)
   ステージ温度:100℃
   試料と光源の距離 1mm
   処理環境:ドライ窒素ガス雰囲気下
   処理環境の酸素濃度:0.1体積%
   ステージ可動速度:10mm/秒
   エキシマ光露光積算量:6500mJ/cm2
(Condition A)
Using a stage movable xenon excimer irradiation device (MECL-M-1-200 manufactured by MDI Excimer), irradiation treatment was performed under the following conditions. The oxygen concentration was adjusted by measuring the flow rates of nitrogen gas and oxygen gas introduced into the irradiation chamber using a flow meter, and using the nitrogen gas / oxygen gas flow ratio of the gas introduced into the chamber.
Illuminance: 140 mW / cm 2 (main peak emission wavelength 172 nm)
Stage temperature: 100 ° C
1mm distance between sample and light source
Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume
Stage movable speed: 10 mm / sec. Excimer light exposure integrated amount: 6500 mJ / cm 2
[無機層の作製]
 上記シリカ層の表面に条件Bにて、厚さ250nmの無機層を設けて、積層体を得た。(条件B)
 積層体の前後方向にポリエチレンナフタレート(PEN、帝人デュポン社製、テオネックスQ65FA)を接合しロールを作製した。特開2012-97291号公報の図1に記載の装置を用いて下記成膜条件でシリカ層表面に無機層を設けた。
(成膜条件)
   原料ガス(HMDSO:ヘキサメチルジシロキサン)の供給量:25ml/min
   酸素ガス(O2)の供給量:500ml/min
   真空チャンバー内の真空度:2Pa
   プラズマ発生用電源からの印加電力:1.2kW
   プラズマ発生用電源の周波数:80kHz
   フィルムの搬送速度:0.5m/min
[Preparation of inorganic layer]
On condition B, an inorganic layer having a thickness of 250 nm was provided on the surface of the silica layer to obtain a laminate. (Condition B)
Polyethylene naphthalate (PEN, manufactured by Teijin DuPont, Teonex Q65FA) was joined in the front-rear direction of the laminate to produce a roll. An inorganic layer was provided on the surface of the silica layer using the apparatus shown in FIG. 1 of JP2012-97291A under the following film forming conditions.
(Deposition conditions)
Feed rate of raw material gas (HMDSO: hexamethyldisiloxane): 25 ml / min
Supply amount of oxygen gas (O 2 ): 500 ml / min
Degree of vacuum in the vacuum chamber: 2Pa
Applied power from the power source for plasma generation: 1.2 kW
Frequency of power source for plasma generation: 80 kHz
Film transport speed: 0.5 m / min
<ガスバリアフィルム202~203の作製>
 アミン溶液のトリヘキシルアミンを、表1に示すアミンに変更した以外はガスバリアフィルム201の作製と同様の手順でガスバリアフィルム202~203を作製した。
<ガスバリアフィルム204の作製>
 有機層の重合性化合物(TMPTA)を、東亞合成社製、アロニックスM-303(トリアクリレート比率:40~60%)に変更した以外はガスバリアフィルム201の作製と同様の手順でガスバリアフィルム204を作製した。
<ガスバリアフィルム205の作製>
 有機層の重合性化合物を、東亞合成社製、アロニックスM-400(ペンタアクリレート比率:40~50%)に変更した以外はガスバリアフィルム202の作製と同様の手順でガスバリアフィルム205を作製した。
<Production of gas barrier films 202 to 203>
Gas barrier films 202 to 203 were prepared in the same procedure as the gas barrier film 201 except that the trihexylamine in the amine solution was changed to the amine shown in Table 1.
<Preparation of gas barrier film 204>
The gas barrier film 204 was prepared in the same procedure as the gas barrier film 201 except that the polymerizable compound (TMPTA) in the organic layer was changed to Aronix M-303 (triacrylate ratio: 40 to 60%) manufactured by Toagosei Co., Ltd. did.
<Preparation of gas barrier film 205>
A gas barrier film 205 was produced in the same procedure as the production of the gas barrier film 202 except that the polymerizable compound in the organic layer was changed to Aronix M-400 (pentaacrylate ratio: 40 to 50%) manufactured by Toagosei Co., Ltd.
<ガスバリアフィルム206の作製>
 重合性組成物を、重合性化合物(東亞合成社製、M-240)とシリカ粒子(日産化学社製、MEK-ST-40、粒子径10~15nm、固形分濃度40質量%)と光重合開始剤(BASF社製、IRGACURE819)と2-ブタノンとを含む重合性組成物(質量比でM-240:MEK-ST-40:IRGACURE819:2-ブタノン=15.5:9.8:0.6:74.1とした)に変更した以外はガスバリアフィルム202の作製と同様の手順でガスバリアフィルム206を作製した。
<Preparation of gas barrier film 206>
The polymerizable composition was photopolymerized with a polymerizable compound (manufactured by Toagosei Co., Ltd., M-240) and silica particles (manufactured by Nissan Chemical Co., Ltd., MEK-ST-40, particle size 10-15 nm, solid content concentration 40% by mass). A polymerizable composition containing an initiator (manufactured by BASF, IRGACURE 819) and 2-butanone (by mass ratio: M-240: MEK-ST-40: IRGACURE 819: 2-butanone = 15.5: 9.8: 0. 6: 74.1), the gas barrier film 206 was produced in the same procedure as the production of the gas barrier film 202.
<ガスバリアフィルムの評価>
(水蒸気透過率測定)
 ガスバリアフィルム201~206の水蒸気透過率[g/(m2・day)]を、カルシウム腐食法(特開2005-283561号公報に記載される方法)によって、測定した。作製直後の水蒸気透過率をWVTR(0)、85℃85%RHで500時間放置後の水蒸気透過率をWVTR(1)とした。結果を表1に示す。
(シリカ層の原子数比(Si:O:N)の測定)
 上記の無機層形成前のシリカ層表面を用いてXPS法にてシリカ層の原子数比を測定した。XPSにはVGサイエンティフィックス社製ESCALAB-200Rを用いた。X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。結果を表1に示す。
<Evaluation of gas barrier film>
(Water vapor transmission rate measurement)
The water vapor permeability [g / (m 2 · day)] of the gas barrier films 201 to 206 was measured by a calcium corrosion method (a method described in JP-A-2005-283561). The water vapor transmission rate immediately after production was WVTR (0), and the water vapor transmission rate after standing at 85 ° C. and 85% RH for 500 hours was WVTR (1). The results are shown in Table 1.
(Measurement of atomic ratio of silica layer (Si: O: N))
The atomic ratio of the silica layer was measured by the XPS method using the surface of the silica layer before forming the inorganic layer. For XPS, ESCALAB-200R manufactured by VG Scientific Fix was used. Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The results are shown in Table 1.
<ガスバリアフィルム211~215の作製>
 アミン溶液のトリヘキシルアミンを、表1に示すアミンに変更した以外はガスバリアフィルム201の作製と同様の手順でガスバリアフィルム211~215を作製した。また、ガスバリアフィルム201~206と同様にガスバリアフィルム211~215の水蒸気透過率およびシリカ層の原子数比を測定した。結果を表1に示す。
<Production of gas barrier films 211 to 215>
Gas barrier films 211 to 215 were produced in the same procedure as the production of the gas barrier film 201 except that the trihexylamine in the amine solution was changed to the amine shown in Table 1. Similarly to the gas barrier films 201 to 206, the water vapor permeability of the gas barrier films 211 to 215 and the atomic ratio of the silica layer were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果からわかるように、分子量が200以上であり沸点が230℃以上であるアミンを含むシリカ層を形成した実施例のガスバリアフィルムでは、85℃85%RHで500時間放置した後でも水蒸気透過率が低く保たれていた。 As can be seen from the results shown in Table 1, in the gas barrier film of the example in which a silica layer containing an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more was formed, even after being left at 85 ° C. and 85% RH for 500 hours. The water vapor transmission rate was kept low.

Claims (13)

  1. フィルム基材と、
    シリカ層と、
    前記シリカ層と直接接する無機層と、をこの順で含み、
    前記シリカ層は、ケイ素原子と酸素原子との共有結合を少なくとも含むシリカ高分子と、分子量が200以上であり沸点が230℃以上であるアミンと、を含む、
    ガスバリアフィルム。
    A film substrate;
    A silica layer;
    An inorganic layer in direct contact with the silica layer, in this order,
    The silica layer includes a silica polymer containing at least a covalent bond between a silicon atom and an oxygen atom, and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more.
    Gas barrier film.
  2. 前記シリカ層が、前記シリカ層の総質量に対し、0.1~5質量%の前記アミンを含む請求項1に記載のガスバリアフィルム。 The gas barrier film according to claim 1, wherein the silica layer contains 0.1 to 5% by mass of the amine based on the total mass of the silica layer.
  3. 前記アミンが、トリヘキシルアミン、トリオクチルアミン、またはジオクチルアミンである請求項1または2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein the amine is trihexylamine, trioctylamine, or dioctylamine.
  4. 前記シリカ層の膜厚が、50~1000nmである請求項1~3のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 3, wherein the silica layer has a thickness of 50 to 1000 nm.
  5. 前記シリカ層の原子数比が、Si:O:N=1:0.1~1.2:0.5~1.5である請求項1~4のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 4, wherein an atomic ratio of the silica layer is Si: O: N = 1: 0.1 to 1.2: 0.5 to 1.5.
  6. 前記無機層が、蒸着層である請求項1~5のいずれか一項に記載のガスバリアフィルム。 The gas barrier film according to any one of claims 1 to 5, wherein the inorganic layer is a vapor deposition layer.
  7. さらに、有機層を含み、
    前記フィルム基材、前記有機層、および前記シリカ層をこの順で含む請求項1~6のいずれか一項に記載のガスバリアフィルム。
    In addition, including an organic layer,
    The gas barrier film according to any one of claims 1 to 6, comprising the film substrate, the organic layer, and the silica layer in this order.
  8. フィルム基材上に、ケイ素化合物と、分子量が200以上であり沸点が230℃以上であるアミンと、を含む塗布液を塗布してケイ素化合物を含む塗布層を形成すること、
    前記ケイ素化合物を含む塗布層に真空紫外線を照射して、ケイ素原子と酸素原子との共有結合を少なくとも有するシリカ高分子を含むシリカ層を形成すること、
    前記シリカ層の表面に蒸着法またはスパッタリング法によって無機層を形成することを含む
    ガスバリアフィルムの製造方法。
    On the film substrate, a coating solution containing a silicon compound and an amine having a molecular weight of 200 or more and a boiling point of 230 ° C. or more is applied to form a coating layer containing a silicon compound,
    Irradiating the coating layer containing the silicon compound with vacuum ultraviolet rays to form a silica layer containing a silica polymer having at least a covalent bond between a silicon atom and an oxygen atom;
    A method for producing a gas barrier film, comprising forming an inorganic layer on a surface of the silica layer by vapor deposition or sputtering.
  9. 前記無機層を化学的気相蒸着法によって形成する請求項8に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to claim 8, wherein the inorganic layer is formed by a chemical vapor deposition method.
  10. 前記ケイ素化合物が、パーヒドロポリシラザンである請求項8または9に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to claim 8 or 9, wherein the silicon compound is perhydropolysilazane.
  11. 前記塗布液が、前記塗布液の固形分総質量に対し、0.1~5質量%の前記アミンを含む請求項8~10のいずれか一項に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 8 to 10, wherein the coating solution contains 0.1 to 5% by mass of the amine with respect to the total solid mass of the coating solution.
  12. 前記アミンが、トリヘキシルアミン、トリオクチルアミン、またはジオクチルアミンである請求項8~11に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 8 to 11, wherein the amine is trihexylamine, trioctylamine, or dioctylamine.
  13. 前記塗布層を形成することが、前記フィルム基材上に形成された有機層の表面に前記塗布液を塗布することである請求項8~12のいずれか一項に記載のガスバリアフィルムの製造方法。 The method for producing a gas barrier film according to any one of claims 8 to 12, wherein forming the coating layer is applying the coating solution to a surface of an organic layer formed on the film substrate. .
PCT/JP2016/079195 2015-10-22 2016-10-03 Gas barrier film and method for producing gas barrier film WO2017068938A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680061324.3A CN108136728A (en) 2015-10-22 2016-10-03 The manufacturing method of gas barrier film and gas barrier film
US15/958,209 US20180237908A1 (en) 2015-10-22 2018-04-20 Gas barrier film and method of producing gas barrier film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-208327 2015-10-22
JP2015208327 2015-10-22
JP2016-033868 2016-02-25
JP2016033868A JP2017081143A (en) 2015-10-22 2016-02-25 Gas barrier film and method for producing gas barrier film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/958,209 Continuation US20180237908A1 (en) 2015-10-22 2018-04-20 Gas barrier film and method of producing gas barrier film

Publications (1)

Publication Number Publication Date
WO2017068938A1 true WO2017068938A1 (en) 2017-04-27

Family

ID=58557364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079195 WO2017068938A1 (en) 2015-10-22 2016-10-03 Gas barrier film and method for producing gas barrier film

Country Status (1)

Country Link
WO (1) WO2017068938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381109A1 (en) * 2018-10-26 2021-12-09 Lg Chem, Ltd. Barrier film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279362A (en) * 1997-03-31 1998-10-20 Tonen Corp Formation of sio2 ceramic film
WO2011074363A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Barrier film, process for production thereof, and organic photoelectric conversion element
JP2012000599A (en) * 2010-06-21 2012-01-05 Konica Minolta Holdings Inc Barrier film and method of manufacturing the same, organic electronic device, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279362A (en) * 1997-03-31 1998-10-20 Tonen Corp Formation of sio2 ceramic film
WO2011074363A1 (en) * 2009-12-14 2011-06-23 コニカミノルタホールディングス株式会社 Barrier film, process for production thereof, and organic photoelectric conversion element
JP2012000599A (en) * 2010-06-21 2012-01-05 Konica Minolta Holdings Inc Barrier film and method of manufacturing the same, organic electronic device, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210381109A1 (en) * 2018-10-26 2021-12-09 Lg Chem, Ltd. Barrier film

Similar Documents

Publication Publication Date Title
KR101495482B1 (en) Gas barrier film and method for producing same
JP5847743B2 (en) Barrier laminate and gas barrier film
JP5934544B2 (en) Gas barrier film
JP5090197B2 (en) LAMINATE MANUFACTURING METHOD, BARRIER FILM SUBSTRATE, DEVICE, AND OPTICAL MEMBER
CN108602309B (en) Barrier composite
TW201348002A (en) Gas barrier film and manufacturing method thereof
US20180237908A1 (en) Gas barrier film and method of producing gas barrier film
JP2011143550A (en) Gas-barrier film
JP2009196318A (en) Manufacturing method for laminated body and barrier type film board, barrier material, device, and optical member
JP2017136827A (en) Gas barrier film and production method of gas barrier film
JP2023073287A (en) Optical diffusive barrier film
TWI772514B (en) Gas barrier films and flexible electronic components
US20210043859A1 (en) Laminate film
WO2017104332A1 (en) Gas barrier film
WO2017068938A1 (en) Gas barrier film and method for producing gas barrier film
WO2014157963A1 (en) Resin composition for polarizer protecting film, polarizer protecting film, polarizing plate comprising same, and method for manufacturing polarizing plate
WO2017130568A1 (en) Gas barrier film and method for producing gas barrier film
TWI712507B (en) Barrier film, electrical element and electronic element
TWI748269B (en) Barrier film, and electrical or electronic element comprising the same
JP6354302B2 (en) Gas barrier film
WO2014125877A1 (en) Gas barrier film
JP2009285643A (en) Method for manufacturing laminate and barrier film substrate, device, and optical member
WO2021106736A1 (en) Laminated film
JP7171123B2 (en) optical laminate
JP6179211B2 (en) Laminated film for transparent substrate and display panel using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857254

Country of ref document: EP

Kind code of ref document: A1