WO2017068843A1 - 光路変換素子、光インターフェース装置、光伝送システム - Google Patents

光路変換素子、光インターフェース装置、光伝送システム Download PDF

Info

Publication number
WO2017068843A1
WO2017068843A1 PCT/JP2016/074078 JP2016074078W WO2017068843A1 WO 2017068843 A1 WO2017068843 A1 WO 2017068843A1 JP 2016074078 W JP2016074078 W JP 2016074078W WO 2017068843 A1 WO2017068843 A1 WO 2017068843A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
path conversion
conversion element
optical path
light
Prior art date
Application number
PCT/JP2016/074078
Other languages
English (en)
French (fr)
Inventor
雄介 尾山
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/764,418 priority Critical patent/US10481349B2/en
Priority to CN201680059800.8A priority patent/CN108139554A/zh
Priority to JP2017546434A priority patent/JP6747448B2/ja
Priority to DE112016004782.7T priority patent/DE112016004782T5/de
Publication of WO2017068843A1 publication Critical patent/WO2017068843A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/426Details of housings mounting, engaging or coupling of the package to a board, a frame or a panel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • This technology relates to an optical path conversion element, an optical interface device, and an optical transmission system.
  • an optical interface device provided with a light emitting element such as a laser or a light receiving element such as a photodiode has been used for optical communication using an optical fiber (see, for example, Patent Documents 1 to 4).
  • a plurality of optical elements such as a light emitting element and a light receiving element are arranged in an array, and a plurality of optical fibers assigned to each optical element are also arranged in an array.
  • the arrangement pitch of the plurality of optical fibers is generally 250 ⁇ m.
  • the arrangement pitch of the plurality of optical elements is generally wider than 250 ⁇ m due to restrictions in mounting each optical element. Therefore, the arrangement pitch of the plurality of optical fibers and the arrangement pitch of the plurality of optical elements often differ from each other.
  • the measures described in Patent Documents 1 to 3 have a problem that the structure is complicated and the cost becomes high.
  • An optical path conversion element is arranged in a line or zigzag at a different arrangement pitch from a plurality of optical elements arranged in a line or zigzag, and a plurality of optical elements. It is arranged between a plurality of optical fibers.
  • This optical path conversion element includes a light refracting surface for pitch conversion.
  • a light refracting surface for pitch conversion is provided. As described above, in the present technology, pitch conversion is performed with a very simple configuration.
  • An optical interface device includes a plurality of optical elements arranged in a line or zigzag, and an optical path conversion element having a first light refracting surface inclined in the arrangement direction of the plurality of optical elements. It has.
  • a first light refracting surface that is inclined in the arrangement direction of the plurality of optical elements.
  • the first light refracting surface includes, for example, a plurality of optical elements arranged in a line or zigzag, and a plurality of lights arranged in a line or zigzag at an arrangement pitch different from the arrangement pitch of the plurality of optical elements.
  • pitch conversion When arranged between the fibers, it functions as pitch conversion. As described above, in the present technology, pitch conversion is performed with a very simple configuration.
  • An optical transmission system includes a plurality of optical elements arranged in a line or zigzag, and an optical path conversion element having a first light refracting surface inclined in the arrangement direction of the plurality of optical elements. And an optical fiber array including a plurality of optical fibers arranged in a line or zigzag in a direction corresponding to the arrangement direction of the plurality of optical elements.
  • the optical transmission system further includes an insertion port through which the tip of the optical fiber array is inserted, and a housing that houses the plurality of optical elements and the optical path conversion elements.
  • a first light refracting surface inclined in the arrangement direction of the plurality of optical elements is provided.
  • the first light refraction surface exhibits a function as pitch conversion.
  • pitch conversion is performed with a very simple configuration.
  • the first light refracting surface that is inclined in the arrangement direction of the plurality of optical elements is provided. Pitch conversion can be performed.
  • the effect of this technique is not necessarily limited to the effect described here, Any effect described in this specification may be sufficient.
  • FIG. 1 is a cross-sectional view illustrating an example of an optical transmission system according to an embodiment of the present technology. It is the schematic showing an example of the optical fiber module of FIG. It is the schematic showing an example of the photoelectric conversion part of FIG. It is the schematic showing an example of the optical path changing element of FIG. It is the schematic showing the example of a design of the optical path change element of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. FIG.
  • FIG. 10 is a relationship diagram illustrating an example of the relationship between the inclination angle of the light incident / exit surface of the optical path conversion element of FIG. 9 and the intensity of return light. It is the schematic showing the example of a design of the optical path change element of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission system of FIG. It is sectional drawing showing the modification of the optical transmission
  • Embodiment (FIGS. 1 to 5) An example in which a photorefractive surface for pitch conversion is provided. Modified examples (FIGS. 6 to 21) ⁇ An example in which a plurality of convex lens portions are provided on the light reflecting surface (FIG. 6) ⁇ Example where the light refracting surface and light reflecting surface are composed of a plurality of flat surfaces (FIG. 7) ⁇ An example in which a plurality of convex lenses are provided on the light transmitting surface (FIG. 8) ⁇ Example where the light transmission surface is inclined (Figs.
  • Example 9 to 11) ⁇ Example in which optical elements are arranged obliquely with respect to the light transmission surface (FIGS. 12 and 13) ⁇ Example with an eccentric lens (Fig. 14) ⁇ An example in which an inclined portion having an inclined surface is provided on an optical element (FIG. 15) ⁇ An example in which a plurality of lenses on an optical element are arranged obliquely (FIG. 16) ⁇ Example of optical fiber module positioning mechanism (Fig. 17) ⁇ Example in which no light reflecting surface is provided (FIG. 18) ⁇ Example in which the photorefractive surface is the boundary between two block-shaped optical elements (FIG. 19) ⁇ Example in which a step is provided at the tip of an optical fiber module (FIGS. 20 and 21) An example in which a plurality of optical elements and a plurality of optical fibers are respectively arranged in a zigzag manner (FIGS. 22A and 22B)
  • FIG. 1 illustrates an example of a cross-sectional configuration of an optical transmission system 5 according to an embodiment of the present technology.
  • the optical transmission system 5 a plurality of optical elements arranged in a line and a plurality of optical fibers arranged in a line at an arrangement pitch different from the arrangement pitch of the plurality of optical elements are optically coupled in a one-to-one relationship. It has been done.
  • the optical transmission system 5 is an optical interface device 1 and an optical fiber module 3 that are optically coupled.
  • the optical fiber module 3 is for transmitting light generated outside to the optical interface device 1 or transmitting light generated by the optical interface device 1 to the outside.
  • FIG. 2 illustrates an example of a schematic configuration of the optical fiber module 3.
  • the optical fiber module 3 includes an optical fiber array 31, a holding member 32, and a plug lens 33.
  • the optical fiber array 31 is composed of a plurality of optical fibers 31A arranged in a line in a direction corresponding to an arrangement direction of a plurality of optical elements 12a described later.
  • the “direction corresponding to the arrangement direction of the plurality of optical elements 12a” refers to a direction in which the plurality of optical fibers 31A and the plurality of optical elements 12a are optically coupled to each other via an optical path conversion element 22 described later.
  • the plurality of optical fibers 31A are arranged in a line at an arrangement pitch (d2) different from the arrangement pitch (d1) of a plurality of optical elements 12a described later.
  • the arrangement pitch (d2) is narrower than the arrangement pitch (d1), for example, about several hundred ⁇ m.
  • it is assumed that the plurality of optical fibers 31A are arranged in a horizontal row at equal intervals.
  • a cylindrical ferrule is provided at the tip of each optical fiber 31A as necessary.
  • the holding member 32 is for holding the optical fiber array 31 and protecting the optical fiber array 31.
  • the plug lens 33 is connected to the tip of the optical fiber array 31.
  • the plug lens 33 has a plurality of convex lens portions 33 ⁇ / b> A at a position facing the tip of the optical fiber array 31.
  • the plurality of convex lens portions 33A is assigned to each optical fiber 31A, and specifically, one is provided at a location facing the tip of each optical fiber 31A.
  • the optical axis of each convex lens portion 33A matches or substantially matches the optical axis of each optical fiber 31A. Accordingly, the plurality of convex lens portions 33A are arranged in a line in a predetermined direction, like the plurality of optical fibers 31A.
  • the plug lens 33 has a mechanism that is detachably fixed to the insertion port 21A when inserted into an insertion port 21A described later.
  • the optical interface device 1 includes a substrate mounting type photoelectric conversion device 10 and an optical receptacle 20.
  • the photoelectric conversion device 10 includes a circuit board 11 and a photoelectric conversion unit 12.
  • the circuit board 11 is, for example, a board on which a control circuit for controlling the photoelectric conversion unit 12 is mounted.
  • the photoelectric conversion unit 12 performs photoelectric conversion by being controlled by the circuit board 11.
  • the photoelectric conversion unit 12 is electrically connected to, for example, an electrode pad provided on the upper surface of the circuit board 11.
  • the photoelectric conversion unit 12 is connected to the electrode pads of the circuit board 11 via, for example, solder bumps 12c described later.
  • FIG. 3 illustrates an example of a schematic configuration of the photoelectric conversion unit 12.
  • the photoelectric conversion unit 12 includes, for example, a plurality of optical elements 12a arranged in a line in a predetermined direction.
  • Each optical element 12a is, for example, a semiconductor light emitting element or a semiconductor light receiving element.
  • the semiconductor light emitting element outputs light on which predetermined information is superimposed based on control by the circuit board 11.
  • the semiconductor light emitting element is, for example, a semiconductor laser or a light emitting diode.
  • the semiconductor light receiving element detects light from the optical fiber module 3 based on control by the circuit board 11.
  • the semiconductor light receiving element is, for example, a photodiode.
  • each optical element 12a is a semiconductor light emitting element
  • the surface of each optical element 12a opposite to the circuit board 11 is a light emitting surface
  • the light from each optical element 12a is reflected on the light emitting surface.
  • the light is emitted in a vertical or substantially vertical direction.
  • each optical element 12a is a semiconductor light receiving element
  • the surface opposite to the circuit board 11 of each optical element 12a is a light incident surface
  • the light from the optical fiber module 3 is perpendicular to the light incident surface. Or it enters substantially perpendicularly.
  • Each optical element 12a has a chip shape.
  • the size of each optical element 12a is, for example, about several hundred ⁇ m.
  • the photoelectric conversion unit 12 further holds, for example, each optical element 12a, and a receptor lens 12b that functions as a lens for light emitted from each optical element 12a or light incident on each optical element 12a. have.
  • the photoelectric conversion unit 12 further includes, for example, a plurality of solder bumps 12c that are electrically connected to the plurality of optical elements 12a.
  • the receptor lens 12b and the plurality of solder bumps 12c may be omitted as necessary. When the receptor lens 12b and the plurality of solder bumps 12c are omitted, each optical element 12a is directly connected to the circuit board 11.
  • the receptor lens 12b has, for example, a wiring pattern on the back surface.
  • the plurality of optical elements 12a and the plurality of solder bumps 12c are electrically connected to each other through the wiring pattern.
  • the receptor lens 12b has, for example, a plurality of convex lens portions 12b-1 on the upper surface.
  • the plurality of convex lens portions 12b-1 are disposed between each optical element 12a and the surface of the optical path conversion element 22 that faces each optical element 12a (incident / exit surface 22A).
  • the plurality of convex lens portions 12b-1 is assigned to each optical element 12a, and specifically, one is provided at a location facing each optical element 12a.
  • each convex lens portion 12b-1 is coincident with or substantially coincides with the optical axis of each optical element 12a. Accordingly, the plurality of convex lens portions 12b-1 are arranged in a line in a predetermined direction, like the plurality of optical elements 12a. When the arrangement pitch of the plurality of optical elements 12a is d1, the arrangement pitch of the plurality of convex lens portions 12b-1 is also d1.
  • the receptor lens 12b has a chip shape. The size of the receptor lens 12b is, for example, about several mm.
  • the optical receptacle 20 is for optically connecting the optical fiber module 3 to the photoelectric conversion unit 12.
  • the optical receptacle 20 includes a housing 21 and an optical path conversion element 22.
  • the housing 21 houses the photoelectric conversion unit 12 (or a plurality of optical elements 12a) and the optical path conversion element 22, and holds the optical path conversion element 22 at a predetermined position.
  • the casing 21 is fixed at a predetermined position on the circuit board 11. By fixing the housing 21 at a predetermined position on the circuit board 11, the optical path conversion element 22 is fixed at a predetermined position with respect to the photoelectric conversion unit 12.
  • the housing 21 is provided with an insertion port 21A through which the tip of the optical fiber array 31 is inserted.
  • FIG. 4 illustrates an example of a schematic configuration of the optical path conversion element 22.
  • the optical path conversion element 22 includes a plurality of optical elements 12a arranged in a line and a plurality of lights arranged in a line at an arrangement pitch (d2) different from the arrangement pitch (d1) of the plurality of optical elements 12a. It arrange
  • the optical path conversion element 22 is a block-shaped optical element having optical transparency with respect to the light from the photoelectric conversion unit 12 or the light from the optical fiber module 3.
  • the optical path conversion element 22 is configured by, for example, a light-transmitting polyhedron having a higher refractive index than the space around the optical path conversion element 22.
  • the optical path conversion element 22 is configured by a polyhedron made of, for example, glass, crystal, or resin. The polyhedron can be formed by, for example, a mold or cutting.
  • the optical path conversion element 22 has an incident / exit surface 22A at a position facing each optical element 12a.
  • the incident / exit surface 22A faces each optical element 12a via a predetermined gap.
  • the entrance / exit surface 22A is in contact with air.
  • the incident / exit surface 22A is a flat surface and is disposed so as to intersect perpendicularly with the optical axis of each optical element 12a.
  • the optical path conversion element 22 also has an incident / exit surface 22C.
  • the incident / exit surface 22C corresponds to a specific example of “first light refraction surface” and “light refraction surface” of the present technology.
  • the entrance / exit surface 22C is a light refracting surface for pitch conversion, and is inclined with respect to the arrangement direction of the plurality of optical elements 12a and further to the arrangement direction of the plurality of optical fibers 31A.
  • the entrance / exit surfaces 22 ⁇ / b> A and 22 ⁇ / b> C are provided on the surface of a block-shaped optical element constituting the optical path conversion element 22.
  • the entrance / exit surface 22C is diagonally opposed to the insertion port 21A via a predetermined gap.
  • the entrance / exit surface 22C is arranged such that an angle formed by a line segment parallel to the optical axis of the insertion port 21A and the entrance / exit surface 22C is less than 45 degrees. This is for converting the light flux of each optical fiber 31A incident at a narrow pitch (array pitch (d2)) into a wide pitch (array pitch (d1)) on the entrance / exit surface 22C. This is because the light flux of each optical element 12a incident at a wide pitch (array pitch (d1)) is converted to a narrow pitch (array pitch (d2)) on the entrance / exit surface 22C.
  • the entrance / exit surface 22C is in contact with air.
  • the entrance / exit surface 22C is a flat surface, and is disposed so as to obliquely intersect the optical axis of each optical fiber 31A at an angle of less than 45 degrees.
  • the optical path conversion element 22 further has a reflection surface 22B on the optical path between the incident / exit surface 22A and the plurality of optical elements 12a.
  • the reflecting surface 22B corresponds to a specific example of “light reflecting surface” of the present technology.
  • the reflective surface 22B is disposed at a position opposite to the incident / exit surface 22A in the light-transmitting polyhedron constituting the optical path conversion element 22.
  • the reflection surface 22B is arranged such that an angle formed by a line segment parallel to the optical axis of the insertion port 21A and the reflection surface 22B is less than 45 degrees.
  • the reflective surface 22B is in contact with air.
  • the reflecting surface 22B is a flat surface, and is disposed so as to obliquely intersect the optical axis of each optical fiber 31A at an angle of less than 45 degrees.
  • the optical path conversion element 22 further has a fixed surface 22D on the upper surface.
  • the fixing surface 22D is a surface for fixing to the housing 21, and is fixed to the housing 21 via an adhesive, for example.
  • FIG. 5 shows a design example of the optical path conversion element 22.
  • the arrangement pitch (d1) of the plurality of optical elements 12a is 0.5 mm
  • the arrangement pitch (d2) of the plurality of optical fibers 31A is 0.24 mm.
  • the refractive index n1 of the optical path conversion element 22 is set to 1.5
  • the refractive index n2 of the environmental medium (air) is set to 1.0.
  • the angle ⁇ 1 is 38 degrees from the equation of FIG. 5
  • the angle ⁇ 2 is 68 degrees from the equation of FIG. Therefore, the inclination angle (angle ⁇ 3) of the incident / exit surface 22C is 23 degrees.
  • the angle ⁇ 4 is 28 degrees from the equation of FIG. 5
  • the inclination angle (angle ⁇ 5) of the reflecting surface 22B is 31 degrees from the equation of FIG.
  • an optical interface device including a light emitting element such as a laser or a light receiving element such as a photodiode is used for optical communication using an optical fiber.
  • a plurality of optical elements such as a light emitting element and a light receiving element are arranged in an array, and a plurality of optical fibers assigned to each optical element are also arranged in an array.
  • the arrangement pitch of the plurality of optical fibers is generally 250 ⁇ m.
  • the arrangement pitch of the plurality of optical elements is generally wider than 250 ⁇ m due to restrictions in mounting each optical element. Therefore, the arrangement pitch of the plurality of optical fibers and the arrangement pitch of the plurality of optical elements often differ from each other.
  • the measures described in Patent Documents 1 to 3 have a problem that the structure is complicated and the cost is increased.
  • the optical transmission system 5 is provided with an incident / exit surface 22C that functions as a light refracting surface inclined in the arrangement direction of the plurality of optical elements 12a.
  • the input / output surface 22C has a plurality of optical elements 12a arranged in a line and an arrangement pitch of the plurality of optical elements 12a. It is arranged between a plurality of optical fibers 31A arranged in a line at an arrangement pitch (d1) different from (d2). Therefore, the entrance / exit surface 22C exhibits a function as pitch conversion.
  • the pitch conversion is performed with a very simple configuration. Therefore, the optical transmission system 5 can perform pitch conversion with a simple configuration.
  • the incident / exit surface 22C is arranged such that the angle formed by the line segment parallel to the optical axis of the insertion port 21A and the incident / exit surface 22C is less than 45 degrees.
  • the incident / exit surface 22C the light fluxes of the respective optical fibers 31A incident at a narrow pitch (array pitch (d2)) can be converted into a wide pitch (array pitch (d1)).
  • the light beams of the respective optical elements 12a incident at a wide pitch (array pitch (d1)) can be converted into a narrow pitch (array pitch (d2)). Therefore, the optical transmission system 5 can perform pitch conversion with a simple configuration.
  • the incident / exit surface 22C is arranged such that an angle formed by a line segment parallel to the optical axis of the insertion opening 21A and the incident / exit surface 22C is less than 45 degrees, thereby making the optical path conversion element 22 thinner. Further, the position of the plug lens 33 can be lowered to make the optical transmission system 5 have a low-profile structure.
  • the refractive index difference (n1-n2) at the entrance / exit surface 22C can be increased.
  • the conversion range of pitch conversion can be taken large, it can respond to arrangement pitch (d1) of various sizes.
  • the reflection surface 22B is provided on the optical path between the incident / exit surface 22A and the plurality of optical elements 12a.
  • the optical path conversion element 22 can be made thinner, and the position of the plug lens 33 can be lowered to make the optical transmission system 5 have a low-profile structure. it can.
  • the reflection surface 22B is arranged such that an angle formed by a line segment parallel to the optical axis of the insertion port 21A and the reflection surface 22B is less than 45 degrees.
  • the reflection surface 22B is a flat surface, but may have a curved surface.
  • the reflecting surface 22B has a convex lens portion 22B-2 one by one at a location where light from each optical element 12a enters or a location where light from each optical fiber 31A enters. (Convex shape) may be provided, and the flat portion 22B-1 may be provided at other locations.
  • Each convex lens portion 22B-2 acts to convert diffused light into collimated light with respect to the light from each optical element 12a.
  • Each convex lens portion 22B-2 acts to convert collimated light into focused light for the light from each optical fiber 31A.
  • the above-described receptor lens 12b can be omitted.
  • the manufacturing cost due to the reduction in the number of parts can be reduced, and the optical transmission system 5 can be reduced in height by the amount of the receptor lens 12b described above.
  • each optical element 12a is mounted on an intermediate substrate. Part 13 may be used.
  • both the reflection surface 22B and the incident / exit surface 22C have only one flat surface.
  • the reflection surface 22B and the incident / exit surface 22C may have a plurality of flat surfaces.
  • the reflection surface 22B has two flat surfaces 22B-3 and 22B-4
  • the incident / exit surface 22C has two flat surfaces 22C-1 and 22C-2. It may be.
  • the two flat surfaces 22B-3 and 22B-4 correspond to a specific example of “a plurality of second flat surfaces” of the present technology.
  • the two flat surfaces 22C-1 and 22C-2 correspond to a specific example of “a plurality of first flat surfaces” of the present technology.
  • the two flat surfaces 22C-1 and 22C-2 are arranged so that the reflecting surface 22B is recessed.
  • the two flat surfaces 22C-1 and 22C-2 are arranged so that the reflecting surface 22B is recessed.
  • the two flat surfaces 22C-1 and 22C-2 are arranged so that the incident / exit surface 22C has a recessed shape.
  • the light beams refracted by the flat surfaces 22C-1 and 22C-2 can be collimated while being reflected at equal intervals.
  • the incident / exit surface 22A has a convex lens portion 22A ⁇ one by one at a location where light from each optical element 12a enters or a location where light from each optical fiber 31A enters. 1 (convex shape), and a flat portion 22A-2 may be provided at other locations.
  • Each convex lens portion 22A-1 acts to convert diffused light into collimated light with respect to the light from each optical element 12a.
  • Each convex lens portion 22A-1 acts to convert collimated light into focused light for the light from each optical fiber 31A.
  • the above-described receptor lens 12b can be omitted.
  • the manufacturing cost due to the reduction in the number of parts can be reduced, and the optical transmission system 5 can be reduced in height by the amount of the receptor lens 12b described above.
  • each optical element 12a is mounted on an intermediate substrate. Part 13 may be used.
  • the optical path conversion element 22 and each optical element 12a are arranged such that the incident / exit surface 22A is orthogonal or substantially orthogonal to the optical axis of each optical element 12a.
  • the optical path conversion element 22 and each optical element 12a may be arranged such that the incident / exit surface 22A obliquely intersects the optical axis of each optical element 12a. .
  • the entrance / exit surface 22A may be an inclined surface.
  • the inclination angle of the entrance / exit surface 22A is preferably large enough to reduce the intensity of the return light sufficiently.
  • FIG. 10 shows an example of the relationship between the inclination angle of the entrance / exit surface 22A of the optical path conversion element 22 of FIG. 9 and the intensity of the return light. From FIG. 10, the optical path conversion element 22 and each optical element 12a are such that the surface of the optical path conversion element 22 in FIG. 9 that faces each optical element 12a obliquely intersects the optical axis of each optical element 12a at an angle of 2 degrees or more. It is preferable that they are arranged.
  • FIG. 11 shows a design example of the optical path conversion element 22 of FIG.
  • the arrangement pitch (d1) of the plurality of optical elements 12a is 0.5 mm
  • the arrangement pitch (d2) of the plurality of optical fibers 31A is 0.24 mm.
  • the refractive index n1 of the optical path conversion element 22 is set to 1.5
  • the refractive index n2 of the environmental medium (air) is set to 1.0.
  • the angle ⁇ 1 is 38 degrees
  • the angle ⁇ 2 is 68 degrees
  • the inclination angle (angle ⁇ 3) of the incident / exit surface 22C is 23 degrees.
  • the angle ⁇ 4 is 28 degrees and the inclination angle (angle ⁇ 6) of the incident / exit surface 22A is 20 degrees
  • the inclination angle (angle ⁇ 5) of the reflection surface 22B is 27 degrees.
  • the circuit board 11 may be inclined so that the incident / exit surface 22A crosses the optical axis of each optical element 12a obliquely.
  • the incident / exit surface 22A may be crossed obliquely with the optical axis of each optical element 12a.
  • a conductive pedestal portion 14 is provided on the electrode pad of the circuit board 11, and one solder bump 12 c in the optical path conversion element 22 is connected to the pedestal section 14, thereby connecting the optical path conversion element 22 to the circuit board 11. Can be mounted with an inclination.
  • the photoelectric conversion unit 12 has a plurality of decentered lenses 12b-2 as shown in FIG. 14, for example, instead of the plurality of convex lens units 12b-1. May be.
  • the decentering lens 12b-2 is obtained by decentering the convex lens portion 12b-1.
  • the decentering lens 12b-2 acts to convert the light (diffused light) from each optical element 12a into collimated light traveling in a direction oblique to the optical axis of the decentering lens 12b-2. Thereby, it can reduce that the light (return light) which reflected and returned by 22 A of entrance / exit surfaces among the light emitted from each optical element 12a injects into each optical element 12a. As a result, “return light noise” included in the light from each optical element 12a can be reduced.
  • the photoelectric conversion unit 12 is provided between each convex lens unit 12b-1 and the surface of the optical path conversion element 22 that faces each optical element 12a (incident / exit surface 22A).
  • an inclined portion 12d including an inclined surface 12d-1 that obliquely intersects the optical axis of each optical element 12a may be provided.
  • the inclined surface 12d-1 corresponds to a specific example of “a second light refraction surface” of the present technology.
  • the photoelectric conversion unit 12 is provided between each convex lens unit 12b-1 and the surface of the optical path conversion element 22 that faces each optical element 12a (incident / exit surface 22A).
  • a plurality of convex lens portions 12e-1 instead of the plurality of convex lens portions 12b-1, a plurality of convex lens portions 12e-1 having an optical axis obliquely intersecting with the optical axis of each optical element 12a are provided. Also good.
  • the plurality of convex lens portions 12e-1 are provided, for example, on the upper surface of the receptor lens 12b. At this time, the upper surface of the receptor lens 12b is an inclined surface 12e.
  • the optical path conversion element 22 is, for example, as shown in FIG. 22E may further be included.
  • the positioning unit 22E has, for example, an abutting structure that suppresses a shift (two-dimensional shift) in the direction orthogonal to the optical axis direction of the optical fiber module 3 of the optical fiber module 3.
  • the positioning portion 22E may have, for example, an abutting structure that suppresses only the shift of the optical fiber module 3 in the optical axis direction of the optical fiber module 3.
  • the abutting structure may be a structure in which the flat surfaces are abutted with each other, or may be a structure in which the abutting structure is abutted with a V-shaped structure.
  • the incident / exit surface 22C of the optical path conversion element 22 may be disposed immediately above each optical element 12a as shown in FIG. 18, for example.
  • the reflection surface 22B is omitted in the optical path conversion element 22.
  • the pitch conversion can be performed with a simple configuration as in the above embodiment.
  • the optical receptacle 20 is fixed in contact with the optical path changing element 22 including the incident / exit surface 22C and the incident / exit surface 22C as shown in FIG. 19, for example.
  • the optical path conversion element 23 may be included.
  • the incident / exit surface 22C corresponds to a specific example of “first light refraction surface” of the present technology.
  • the optical path conversion element 22 corresponds to a specific example of “first optical block” of the present technology.
  • the optical path conversion element 23 corresponds to a specific example of “second optical block” of the present technology.
  • the optical path conversion element 23 is configured by, for example, a light-transmitting polyhedron having a higher refractive index than the space around the optical path conversion elements 22 and 23.
  • the optical path conversion element 23 is constituted by, for example, a polyhedron made of glass or quartz.
  • a surface on which light from the optical fiber array 31 is incident is a flat surface and is orthogonal or substantially orthogonal to the optical axis of the optical fiber array 31.
  • Other parts of the optical path conversion element 23 are not particularly limited. Therefore, for example, the optical path conversion element 23 may be mounted on the circuit board 11 so that the optical path conversion element 22 does not contact the housing 21. As described above, by providing the optical path conversion element 23, the degree of freedom of arrangement of the optical path conversion element 23 is increased.
  • the distal end portion of the plug lens 33 may have a staircase structure.
  • a plurality of convex lens portions 33 ⁇ / b> A may be provided, for example, for each step at the tip portion of the plug lens 33 as shown in FIG. 20.
  • the optical path length difference between each convex lens portion 33A and the incident / exit surface 22C can be reduced, and the difference in optical coupling efficiency can be reduced.
  • FIG. 20 shows that the optical path length difference between each convex lens portion 33A and the incident / exit surface 22C can be reduced, and the difference in optical coupling efficiency can be reduced.
  • the thickness of the plug lens 33 (the length of the portion where each optical fiber 31A is covered with the plug lens 33) is equal to or approximately equal to each optical fiber 31A.
  • the shapes of the convex lens portions 33A can be made equal to each other, so that the plug lens 33 can be manufactured more easily than in the case of FIG.
  • the plurality of optical elements 12a may be arranged in a zigzag manner as shown in FIG. 22A, for example.
  • the plurality of optical fibers 31A are arranged in a zigzag manner in a direction corresponding to the arrangement direction of the plurality of optical elements 12a as shown in FIG. 22B, for example.
  • the optical coupling efficiency between the plurality of optical elements and the plurality of optical fibers is improved.
  • the present technology has been described with the embodiment and its modifications.
  • the present technology is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the effect described in this specification is an illustration to the last.
  • the effect of this technique is not limited to the effect described in this specification.
  • the present technology may have effects other than those described in the present specification.
  • this technique can take the following composition.
  • a plurality of optical elements arranged in a line or zigzag An optical interface device comprising: an optical path conversion element having a first light refracting surface inclined in the arrangement direction of the plurality of optical elements.
  • An insertion port through which the tip of the optical fiber array is inserted is provided, and further includes a housing for accommodating the plurality of optical elements and the optical path conversion element, The optical interface device according to (1), wherein the first light refracting surface is obliquely opposed to the insertion port.
  • the optical path conversion element is A first optical block including the first light refracting surface on the surface;
  • optical interface device any one of (1) to (5), wherein the optical path conversion element has a light reflecting surface on an optical path between the first light refracting surface and the plurality of optical elements.
  • the light reflecting surface is disposed such that an angle formed by a line segment parallel to the optical axis of the insertion opening and the light reflecting surface is less than 45 degrees.
  • the optical path conversion element has a plurality of convex shapes on the light reflecting surface or a surface of the optical path conversion element that faces each of the optical elements.
  • the optical path conversion element has a flat surface on the light reflecting surface and a surface facing the optical elements among the optical path conversion elements
  • the optical interface device further includes a plurality of convex lenses between each of the optical elements and a surface of the optical path conversion element that faces the optical elements.
  • the first photorefractive surface has a plurality of first flat surfaces
  • the light reflecting surface has a plurality of second flat surfaces
  • the plurality of first flat surfaces are arranged so that the first light refracting surface has a recessed shape
  • the plurality of second flat surfaces are arranged such that the light reflecting surface has a recessed shape.
  • the optical interface device according to any one of (1) to (5), wherein the first light refraction surface is disposed immediately above each of the optical elements.
  • the optical path conversion element and the optical elements are arranged such that a surface of the optical path conversion element that faces the optical elements obliquely intersects with the optical axis of the optical elements (1) to (5)
  • the optical interface device according to any one of the above.
  • the optical path conversion element and the optical elements are arranged such that a surface of the optical path conversion element that faces the optical elements obliquely intersects the optical axis of the optical elements at an angle of 2 degrees or more.
  • the optical interface device according to (12).
  • the optical path conversion element has a flat surface on the light reflecting surface and a surface facing the optical elements among the optical path conversion elements,
  • the optical interface device further includes a plurality of decentering lenses between each of the optical elements and a surface of the optical path conversion element facing the optical element.
  • the optical path conversion element has a flat surface on the light reflecting surface and a surface facing the optical elements among the optical path conversion elements,
  • the optical interface device further includes a plurality of convex lenses between each of the optical elements and a surface of the optical path conversion element that faces the optical element, and includes the convex lens and the optical path conversion element.
  • the optical interface device according to (6) or (7), further comprising a second light refracting surface that obliquely intersects the optical axis of each of the light / BR> F children between the surfaces facing the optical elements.
  • the optical path conversion element has a flat surface on the light reflecting surface and a surface facing the optical elements among the optical path conversion elements
  • the optical interface device includes a plurality of convex lenses having an optical axis that obliquely intersects an optical axis of each optical element between each optical element and a surface of the optical path conversion element facing the optical element.
  • optical interface device according to any one of (1) to (5), wherein the optical path conversion element further includes a positioning portion that defines a position of a tip of the optical fiber array at a position facing the insertion port.
  • An optical transmission system comprising: an insertion port through which a tip of the optical fiber array is inserted, and a housing that houses the plurality of optical elements and the optical path conversion element.
  • the plurality of optical fibers are arranged in a line or zigzag at an arrangement pitch narrower than the arrangement pitch of the plurality of optical elements,
  • the first light refracting surface is obliquely opposed to the insertion port, and an angle formed by a line segment parallel to the optical axis of the insertion port and the first light refracting surface is less than 45 degrees.
  • the optical transmission system according to (18). (20) Optical path arranged between a plurality of optical elements arranged in a line or zigzag and a plurality of optical fibers arranged in a line or zigzag at an arrangement pitch different from the arrangement pitch of the plurality of optical elements A conversion element, An optical path conversion element having a light refracting surface for pitch conversion.
  • the optical path conversion element is a block-shaped optical element,
  • the photorefractive surface is provided on the surface of the block-shaped optical element,
  • the optical path conversion element according to (20) wherein the block-shaped optical element has a light reflection surface at a position opposite to the light refraction surface in the block-shaped optical element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本技術の一実施の形態にかかる光路変換素子は、一列もしくはジグザグに並んで配置された複数の光素子と、複数の光素子の配列ピッチとは異なる配列ピッチで一列もしくはジグザグに並んで配置された複数の光ファイバとの間に配置されるものである。この光路変換素子は、ピッチ変換用の光屈折面を備えている。

Description

光路変換素子、光インターフェース装置、光伝送システム
 本技術は、光路変換素子、光インターフェース装置および光伝送システムに関する。
 従来から、光ファイバを用いた光通信には、レーザ等の発光素子、または、フォトダイオード等の受光素子を備えた光インターフェース装置が用いられている(例えば、特許文献1~4参照)。
WO2004/104666号公報 特開平09-270751号公報 WO2002/073256号公報 特開2006-59867号公報
上記光インターフェース装置では、発光素子や受光素子などの複数の光素子がアレイ状に配置されており、各光素子に1つずつ割り当てられた複数の光ファイバもアレイ状に配置されている。ところで、複数の光ファイバの配列ピッチは、一般的に、250μmとなっている。一方で、複数の光素子の配置ピッチは、各光素子の実装上の制約から、一般的に、250μmよりも広くなっている。そのため、複数の光ファイバの配列ピッチと、複数の光素子の配置ピッチとが互いに異なってしまうことが多い。この問題に対しては、例えば、特許文献1~3に記載されているような種々の方策を用いて、ピッチ変換を行うことが可能である。しかし、特許文献1~3に記載の方策では、構造が複雑であり、コスト高になってしまうという問題があった。
 したがって、簡易な構成でピッチ変換を行うことの可能な光路変換素子、光インターフェース装置および光伝送システムを提供することが望ましい。
 本技術の一実施の形態にかかる光路変換素子は、一列もしくはジグザグに並んで配置された複数の光素子と、複数の光素子の配列ピッチとは異なる配列ピッチで一列もしくはジグザグに並んで配置された複数の光ファイバとの間に配置されるものである。この光路変換素子は、ピッチ変換用の光屈折面を備えている。
 本技術の一実施の形態にかかる光路変換素子では、ピッチ変換用の光屈折面が設けられている。このように、本技術では、非常に簡単な構成でピッチ変換がなされる。
 本技術の一実施の形態にかかる光インターフェース装置は、一列もしくはジグザグに並んで配置された複数の光素子と、複数の光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子とを備えている。
 本技術の一実施の形態にかかる光インターフェース装置では、複数の光素子の配列方向に傾斜した第1光屈折面が設けられている。この第1光屈折面は、例えば、一列もしくはジグザグに並んで配置された複数の光素子と、複数の光素子の配列ピッチとは異なる配列ピッチで一列もしくはジグザグに並んで配置された複数の光ファイバとの間に配置されたときに、ピッチ変換としての機能を発揮する。このように、本技術では、非常に簡単な構成でピッチ変換がなされる。
 本技術の一実施の形態にかかる光伝送システムは、一列もしくはジグザグに並んで配置された複数の光素子と、複数の光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子と、複数の光素子の配列方向と対応する方向に一列もしくはジグザグに並んで配置された複数の光ファイバを含む光ファイバアレイとを備えている。この光伝送システムは、さらに、光ファイバアレイの先端を挿通させる挿通口が設けられ、かつ、複数の前記光素子および前記光路変換素子を収容する筐体を備えている。
 本技術の一実施の形態にかかる光伝送システムでは、複数の光素子の配列方向に傾斜した第1光屈折面が設けられている。ここで、光ファイバアレイの先端が筺体の挿通口に挿通されたときに、第1光屈折面は、ピッチ変換としての機能を発揮する。このように、本技術では、非常に簡単な構成でピッチ変換がなされる。
本技術の一実施の形態にかかる光路変換素子、光インターフェース装置および光伝送システムによれば、複数の光素子の配列方向に傾斜した第1光屈折面を設けるようにしたので、簡易な構成でピッチ変換を行うことができる。なお、本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本技術の一実施の形態に係る光伝送システムの一例を表す断面図である。 図1の光ファイバモジュールの一例を表す概略図である。 図1の光電変換部の一例を表す概略図である。 図1の光路変換素子の一例を表す概略図である。 図4の光路変換素子の設計例を表す概略図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図9の光路変換素子の光入出射面の傾斜角と戻り光の強度との関係の一例を表す関係図である。 図10の光路変換素子の設計例を表す概略図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光伝送システムの一変形例を表す断面図である。 図1の光ファイバモジュールの一変形例を表す概略図である。 図1の光ファイバモジュールの一変形例を表す概略図である。 図3の複数の光素子の配列の一変形例を表す概略図である。 図2の複数の光ファイバの配列一変形例を表す概略図である。
 以下、発明を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 
  1.実施の形態(図1~図5)
  ○ピッチ変換用の光屈折面が設けられている例
  2.変形例(図6~図21)
  ○光反射面に複数の凸レンズ部が設けられている例(図6)
  ○光屈折面、光反射面が複数の平坦面で構成されている例(図7)
  ○光透過面に複数の凸レンズが設けられている例(図8)
  ○光透過面が傾斜面となっている例(図9~図11)
  ○光素子が光透過面に対して斜めに配置されている例(図12、図13)
  ○偏心レンズが設けられている例(図14)
  ○光素子上に、傾斜面を有する傾斜部が設けられている例(図15)
  ○光素子上の複数のレンズが斜めに配置されている例(図16)
  ○光ファイバモジュールの位置決め機構が設けられている例(図17)
  ○光反射面が設けられていない例(図18)
  ○光屈折面が2つのブロック状の光学素子の境界となっている例(図19)
  ○光ファイバモジュールの先端に段差が設けられている例(図20、図21)
  ○複数の光素子および複数の光ファイバがそれぞれ、ジグザグに配置されている例(図22A、図22B)
 
<1.実施の形態>
[構成]
 図1は、本技術の一実施の形態に係る光伝送システム5の断面構成の一例を表したものである。光伝送システム5は、一列に並んで配置された複数の光素子と、複数の光素子の配列ピッチとは異なる配列ピッチで一列に並んで配置された複数の光ファイバとが一対一で光結合されたものである。具体的には、光伝送システム5は、光インターフェース装置1と、光ファイバモジュール3とが光結合されたものである。
(光ファイバモジュール3)
 光ファイバモジュール3は、外部で生成された光を光インターフェース装置1に伝送するか、または、光インターフェース装置1で生成された光を外部に伝送するためのものである。図2は、光ファイバモジュール3の概略構成の一例を表したものである。光ファイバモジュール3は、光ファイバアレイ31と、保持部材32と、プラグレンズ33とを備えている。
 光ファイバアレイ31は、後述の複数の光素子12aの配列方向と対応する方向に一列に並んで配置された複数の光ファイバ31Aによって構成されている。「複数の光素子12aの配列方向と対応する方向」とは、複数の光ファイバ31Aと複数の光素子12aとが後述の光路変換素子22を介して互いに光結合する方向を指している。光路変換素子22において複数の光ファイバ31Aは、後述の複数の光素子12aの配列ピッチ(d1)とは異なる配列ピッチ(d2)で一列に並んで配置されている。配列ピッチ(d2)は、配列ピッチ(d1)よりも狭く、例えば、数百μm程度となっている。本実施の形態では、複数の光ファイバ31Aは、等間隔で横一列に並べられているものとする。各光ファイバ31Aの先端には、必要に応じて、円筒状のフェルールが設けられている。
 保持部材32は、光ファイバアレイ31を保持するとともに、光ファイバアレイ31を保護するためのものである。プラグレンズ33は、光ファイバアレイ31の先端に接続されている。プラグレンズ33は、光ファイバアレイ31の先端と対向する位置に複数の凸レンズ部33Aを有している。複数の凸レンズ部33Aは、光ファイバ31Aごとに1つずつ割り当てられており、具体的には、各光ファイバ31Aの先端と対向する箇所に1つずつ設けられている。各凸レンズ部33Aの光軸は、各光ファイバ31Aの光軸と一致もしくは略一致している。従って、複数の凸レンズ部33Aは、複数の光ファイバ31Aと同様、所定の方向に一列に並んで配置されている。複数の光ファイバ31Aの配列ピッチがd2となっているとき、複数の凸レンズ部33Aの配列ピッチもd2となっている。プラグレンズ33は、後述の挿通口21Aに挿通されたときに、挿通口21Aと着脱可能に固定される機構を有している。
(光インターフェース装置1)
 光インターフェース装置1は、基板実装型の光電変換装置10と、光レセプタクル20とを備えている。
(光電変換装置10)
 光電変換装置10は、回路基板11と、光電変換部12とを有している。回路基板11は、例えば、光電変換部12を制御するための制御回路等が基板に実装されたものである。光電変換部12は、回路基板11によって制御されることにより、光電変換を行うようになっている。光電変換部12は、例えば、回路基板11の上面に設けられた電極パッドに電気的に接続されている。光電変換部12は、例えば、後述の半田バンプ12cを介して、回路基板11の電極パッドに接続されている。
 図3は、光電変換部12の概略構成の一例を表したものである。光電変換部12は、例えば、所定の方向に一列に並んで配置された複数の光素子12aを有している。各光素子12aは、例えば、半導体発光素子、または、半導体受光素子である。半導体発光素子は、回路基板11による制御に基づいて、所定の情報が重畳された光を出力する。半導体発光素子は、例えば、半導体レーザ、または、発光ダイオードである。半導体受光素子は、回路基板11による制御に基づいて、光ファイバモジュール3からの光を検知する。半導体受光素子は、例えば、フォトダイオードである。各光素子12aが半導体発光素子である場合、各光素子12aのうち、回路基板11とは反対側の面が光出射面となっており、各光素子12aからの光は、光出射面に垂直もしくは略垂直な方向に出射される。各光素子12aが半導体受光素子である場合、各光素子12aのうち、回路基板11とは反対側の面が光入射面となっており、光ファイバモジュール3からの光が光入射面に垂直もしくは略垂直に入射する。各光素子12aは、チップ状となっている。各光素子12aのサイズは、例えば、数百μm程度となっている。
 光電変換部12は、さらに、例えば、各光素子12aを保持するとともに、各光素子12aから出射される光、もしくは、各光素子12aに入射する光に対して、レンズとして機能するレセプタレンズ12bを有している。光電変換部12は、さらに、例えば、複数の光素子12aと電気的に接続された複数の半田バンプ12cを有している。レセプタレンズ12bおよび複数の半田バンプ12cは、必要に応じて、省略され得る。レセプタレンズ12bおよび複数の半田バンプ12cが省略される場合には、各光素子12aが、回路基板11に直接、接続される。
 レセプタレンズ12bは、例えば、裏面に配線パターンを有している。複数の光素子12aと複数の半田バンプ12cとは、その配線パターンを介して、互いに電気的に接続されている。レセプタレンズ12bは、例えば、上面に複数の凸レンズ部12b-1を有している。複数の凸レンズ部12b-1は、各光素子12aと、光路変換素子22のうち各光素子12aと対向する面(入出射面22A)との間に配置されている。複数の凸レンズ部12b-1は、光素子12aごとに1つずつ割り当てられており、具体的には、各光素子12aと対向する箇所に1つずつ設けられている。各凸レンズ部12b-1の光軸は、各光素子12aの光軸と一致もしくは略一致している。従って、複数の凸レンズ部12b-1は、複数の光素子12aと同様、所定の方向に一列に並んで配置されている。複数の光素子12aの配列ピッチがd1となっているとき、複数の凸レンズ部12b-1の配列ピッチもd1となっている。レセプタレンズ12bは、チップ状となっている。レセプタレンズ12bのサイズは、例えば、数mm程度となっている。
(光レセプタクル20)
 光レセプタクル20は、光ファイバモジュール3を光電変換部12に光接続するためのものである。光レセプタクル20は、筐体21と、光路変換素子22とを有している。筐体21は、光電変換部12(もしくは、複数の光素子12a)および光路変換素子22を収容するとともに、光路変換素子22を所定の位置で保持する。筐体21は、回路基板11の所定の位置に固定されている。筐体21が回路基板11の所定の位置に固定されることにより、光路変換素子22が光電変換部12に対する所定の位置に固定される。筐体21には、光ファイバアレイ31の先端を挿通させる挿通口21Aが設けられている。
 図4は、光路変換素子22の概略構成の一例を表したものである。光路変換素子22は、一列に並んで配置された複数の光素子12aと、複数の光素子12aの配列ピッチ(d1)とは異なる配列ピッチ(d2)で一列に並んで配置された複数の光ファイバ31Aとの間に配置される。光路変換素子22は、光電変換部12からの光、または、光ファイバモジュール3からの光に対して光透過性を有するブロック状の光学素子である。光路変換素子22は、例えば、光路変換素子22の周囲の空間と比べて屈折率の高い光透過性の多面体によって構成されている。光路変換素子22は、例えば、ガラス、水晶、または樹脂などからなる多面体によって構成されている。多面体は、例えば、金型や切削などによって形成され得る。
 光路変換素子22は、各光素子12aと対向する位置に入出射面22Aを有している。入出射面22Aは、所定の空隙を介して、各光素子12aと対向している。入出射面22Aは、空気に接している。本実施の形態では、入出射面22Aは、平坦面となっており、各光素子12aの光軸と垂直に交わるように配置されている。光路変換素子22は、また、入出射面22Cを有している。入出射面22Cが、本技術の「第1光屈折面」「光屈折面」の一具体例に対応する。入出射面22Cが、ピッチ変換用の光屈折面であり、複数の光素子12aの配列方向、さらには、複数の光ファイバ31Aの配列方向に傾斜して配置されている。入出射面22A,22Cは、光路変換素子22を構成するブロック状の光学素子の表面に設けられている。入出射面22Cは、所定の空隙を介して、挿通口21Aに対して斜めに対向している。
 入出射面22Cは、挿通口21Aの光軸と並行な線分と入出射面22Cとのなす角が45度未満となるように配置されている。これは、入出射面22Cにおいて、狭ピッチ(配列ピッチ(d2))で入射する各光ファイバ31Aの光束を、広いピッチ(配列ピッチ(d1))に変換するためである。また、これは、入出射面22Cにおいて、広いピッチ(配列ピッチ(d1))で入射する各光素子12aの光束を、狭ピッチ(配列ピッチ(d2))に変換するためである。また、これは、光路変換素子22をより薄くする効果をもたらし、さらに、プラグレンズ33の位置を低くし光伝送システム5を低背構造化する効果ももたらす。入出射面22Cは、空気に接している。本実施の形態では、入出射面22Cは、平坦面となっており、各光ファイバ31Aの光軸と45度未満の角度で斜めに交わるように配置されている。
 光路変換素子22は、さらに、入出射面22Aと、複数の光素子12aとの間の光路上に反射面22Bを有している。反射面22Bが、本技術の「光反射面」の一具体例に対応する。反射面22Bは、光路変換素子22を構成する光透過性の多面体において、入出射面22Aとは反対側の位置に配置されている。反射面22Bは、挿通口21Aの光軸と並行な線分と反射面22Bとのなす角が45度未満となるように配置されている。これは、入出射面22Aから入射した光を反射面22Bで反射したときに、反射光を、光素子12aの光軸と平行または概ね平行に入射させることが容易となるからである。反射面22Bは、空気に接している。本実施の形態では、反射面22Bは、平坦面となっており、各光ファイバ31Aの光軸と45度未満の角度で斜めに交わるように配置されている。光路変換素子22は、さらに、上面に固定面22Dを有している。固定面22Dは、筐体21に固定するための面であり、例えば、接着剤を介して筐体21に固定されている。
 図5は、光路変換素子22の設計例を表したものである。複数の光素子12aの配列ピッチ(d1)を0.5mmとし、複数の光ファイバ31Aの配列ピッチ(d2)を0.24mmとする。また、光路変換素子22の屈折率n1を1.5とし、環境媒体(空気)の屈折率n2を1.0とする。このとき、角度θ1は、図5の式から、38度となり、角度θ2は、図5の式から、68度となる。従って、入出射面22Cの傾斜角(角度θ3)は、23度となる。このとき、角度θ4は、図5の式から、28度となるので、反射面22Bの傾斜角(角度θ5)は、図5の式から、31度となる。
[効果] 
 次に、光伝送システム5の効果について説明する。
 従来から、光ファイバを用いた光通信には、レーザ等の発光素子、または、フォトダイオード等の受光素子を備えた光インターフェース装置が用いられている。上記光インターフェース装置では、発光素子や受光素子などの複数の光素子がアレイ状に配置されており、各光素子に1つずつ割り当てられた複数の光ファイバもアレイ状に配置されている。ところで、複数の光ファイバの配列ピッチは、一般的に、250μmとなっている。一方で、複数の光素子の配置ピッチは、各光素子の実装上の制約から、一般的に、250μmよりも広くなっている。そのため、複数の光ファイバの配列ピッチと、複数の光素子の配置ピッチとが互いに異なってしまうことが多い。この問題に対しては、例えば、上記特許文献1~3に記載されているような種々の方策を用いて、ピッチ変換を行うことが可能である。しかし、上記特許文献1~3に記載の方策では、構造が複雑であり、コスト高になってしまうという問題があった。
 一方、光伝送システム5では、複数の光素子12aの配列方向に傾斜した光屈折面として機能する入出射面22Cが設けられている。この入出射面22Cは、光ファイバアレイ31の先端が筐体21の挿通口21Aに挿通されたときに、一列に並んで配置された複数の光素子12aと、複数の光素子12aの配列ピッチ(d2)とは異なる配列ピッチ(d1)で一列に並んで配置された複数の光ファイバ31Aとの間に配置されている。そのため、入出射面22Cは、ピッチ変換としての機能を発揮する。このように、光伝送システム5では、非常に簡単な構成でピッチ変換がなされる。従って、光伝送システム5では、簡易な構成でピッチ変換を行うことができる。
 また、光伝送システム5では、入出射面22Cは、挿通口21Aの光軸と並行な線分と入出射面22Cとのなす角が45度未満となるように配置されている。これにより、入出射面22Cにおいて、狭ピッチ(配列ピッチ(d2))で入射する各光ファイバ31Aの光束を、広いピッチ(配列ピッチ(d1))に変換することができる。また、入出射面22Cにおいて、広いピッチ(配列ピッチ(d1))で入射する各光素子12aの光束を、狭ピッチ(配列ピッチ(d2))に変換することができる。従って、光伝送システム5では、簡易な構成でピッチ変換を行うことができる。
 また、入出射面22Cは、挿通口21Aの光軸と並行な線分と入出射面22Cとのなす角が45度未満となるように配置されていることにより、光路変換素子22をより薄くすることができ、さらに、プラグレンズ33の位置を低くし光伝送システム5を低背構造化することもできる。
 また、光伝送システム5では、入出射面22Cが空気に接しているので、入出射面22Cにおける屈折率差(n1-n2)を大きくすることができる。これにより、ピッチ変換の変換レンジを大きくとることができるので、様々な大きさの配列ピッチ(d1)に対応することができる。
 また、光伝送システム5では、入出射面22Aと、複数の光素子12aとの間の光路上に反射面22Bが設けられている。これにより、反射面22Bが設けられてない場合と比べて、光路変換素子22をより薄くすることができ、さらに、プラグレンズ33の位置を低くし光伝送システム5を低背構造化することもできる。
 また、光伝送システム5では、反射面22Bは、挿通口21Aの光軸と並行な線分と反射面22Bとのなす角が45度未満となるように配置されている。これにより、入出射面22Aから入射した光を反射面22Bで反射したときに、反射光を、光素子12aの光軸と平行または概ね平行に入射させることが容易となる。その結果、反射光を、そのまま、各光素子12aに入射させたり、後述する戻り光を考慮した角度で各光素子12aに入射させたりすることができる。
<2.変形例>
 次に、上記実施の形態の変形例について説明する。なお、以下では、上記実施の形態と共通する構成要素に対しては、同一の符号が付与される。さらに、上記実施の形態と共通する構成要素についての説明は、適宜、省略されるものとする。
[変形例A]
 上記実施の形態では、反射面22Bが平坦面となっていたが、曲面を有していてもよい。反射面22Bは、例えば、図6に示したように、各光素子12aからの光が入射する箇所、または、各光ファイバ31Aからの光が入射する箇所に、1つずつ凸レンズ部22B-2(凸形状)を有し、それ以外の箇所に、平坦部22B-1を有していてもよい。各凸レンズ部22B-2は、各光素子12aからの光に対しては、拡散光をコリメート光に変換するように作用する。各凸レンズ部22B-2は、各光ファイバ31Aからの光に対しては、コリメート光を集束光に変換するように作用する。このように作用する各凸レンズ部22B-2を反射面22Bに設けることで、上述のレセプタレンズ12bを省略することができる。その結果、部品点数削減による製造コストを削減することができ、また、上述のレセプタレンズ12bの分だけ、光伝送システム5を低背構造化することができる。
 なお、本変形例において、上述のレセプタレンズ12bを省略した場合には、例えば、図6に示したように、光電変換部12の代わりに、各光素子12aが中間基板に実装された光電変換部13を用いてもよい。
[変形例B]
 上記実施の形態および変形例Aでは、反射面22Bおよび入出射面22Cは、ともに、1つの平坦面を有しているだけであった。しかし、反射面22Bおよび入出射面22Cは、複数の平坦面を有していてもよい。例えば、図7に示したように、反射面22Bは、2つの平坦面22B-3,22B-4を有し、入出射面22Cは、2つの平坦面22C-1,22C-2を有していてもよい。2つの平坦面22B-3,22B-4が、本技術の「複数の第2平坦面」の一具体例に対応する。2つの平坦面22C-1,22C-2が、本技術の「複数の第1平坦面」の一具体例に対応する。
 ここで、2つの平坦面22C-1,22C-2は、反射面22Bが窪んだ形状となるように配置されている。これにより、複数の光ファイバ31Aが、例えば、図7に示したように、配列ピッチ(d2)が相対的に広い箇所が存在する場合に、各光ファイバ31Aからの光を、配列ピッチ(d2)があたかも等間隔となっていたかのように、各平坦面22C-1,22C-2で屈折させることができる。
 さらに、2つの平坦面22C-1,22C-2は、入出射面22Cが窪んだ形状となるように配置されている。これにより、例えば、図7に示したように、各平坦面22C-1,22C-2で屈折された光束を等間隔で反射しつつ、平行光化することができる。
[変形例C]
 上記実施の形態および変形例Bでは、入出射面22Aが平坦面となっていたが、曲面を有していてもよい。入出射面22Aは、例えば、図8に示したように、各光素子12aからの光が入射する箇所、または、各光ファイバ31Aからの光が入射する箇所に、1つずつ凸レンズ部22A-1(凸形状)を有し、それ以外の箇所に、平坦部22A-2を有していてもよい。各凸レンズ部22A-1は、各光素子12aからの光に対しては、拡散光をコリメート光に変換するように作用する。各凸レンズ部22A-1は、各光ファイバ31Aからの光に対しては、コリメート光を集束光に変換するように作用する。このように作用する各凸レンズ部22A-1を入出射面22Aに設けることで、上述のレセプタレンズ12bを省略することができる。その結果、部品点数削減による製造コストを削減することができ、また、上述のレセプタレンズ12bの分だけ、光伝送システム5を低背構造化することができる。
 なお、本変形例において、上述のレセプタレンズ12bを省略した場合には、例えば、図6に示したように、光電変換部12の代わりに、各光素子12aが中間基板に実装された光電変換部13を用いてもよい。
[変形例D]
 上記実施の形態および変形例A~Cでは、光路変換素子22および各光素子12aは、入出射面22Aが各光素子12aの光軸と直交もしくは略直交するように配置されていた。しかし、上記実施の形態および変形例A~Cにおいて、光路変換素子22および各光素子12aは、入出射面22Aが各光素子12aの光軸と斜めに交差するように配置されていてもよい。これにより、各光素子12aから発せられた光のうち、入出射面22Aで反射して戻ってきた光(戻り光)が各光素子12aに入射するのを低減することができる。その結果、各光素子12aからの光に含まれる「戻り光雑音」を低減することができる。
 例えば、図9に示したように、入出射面22Aが傾斜面となっていてもよい。入出射面22Aの傾斜角は、戻り光の強度が十分に小さくなる程度の大きさとなっていることが好ましい。図10は、図9の光路変換素子22の入出射面22Aの傾斜角と戻り光の強度との関係の一例を表したものである。図10から、光路変換素子22および各光素子12aは、図9の光路変換素子22のうち各光素子12aと対向する面が各光素子12aの光軸と2度以上の角度で斜めに交差するように配置されていることが好ましい。
 図11は、図9の光路変換素子22の設計例を表したものである。複数の光素子12aの配列ピッチ(d1)を0.5mmとし、複数の光ファイバ31Aの配列ピッチ(d2)を0.24mmとする。また、光路変換素子22の屈折率n1を1.5とし、環境媒体(空気)の屈折率n2を1.0とする。このとき、角度θ1を、38度とし、角度θ2を68度とし、入出射面22Cの傾斜角(角度θ3)を、23度とする。このとき、角度θ4を28度とし、入出射面22Aの傾斜角(角度θ6)を、20度とすると、反射面22Bの傾斜角(角度θ5)は、27度となる。
 また、例えば、図12に示したように、回路基板11を傾斜させることにより、入出射面22Aを各光素子12aの光軸と斜めに交差させてもよい。また、例えば、図13に示したように、光路変換素子22を回路基板11に対して傾斜させて実装することにより、入出射面22Aを各光素子12aの光軸と斜めに交差させてもよい。例えば、回路基板11の電極パッド上に導電性の台座部14を設け、この台座部14上に、光路変換素子22における1つの半田バンプ12cを接続することにより、光路変換素子22を回路基板11に対して傾斜させて実装することができる。
[変形例E]
 上記実施の形態および変形例A~Dにおいて、光電変換部12は、複数の凸レンズ部12b-1の代わりに、例えば、図14に示したように、複数の偏心レンズ12b-2を有していてもよい。偏心レンズ12b-2は、凸レンズ部12b-1を偏心させたものである。偏心レンズ12b-2は、各光素子12aからの光(拡散光)を、偏心レンズ12b-2の光軸に対して斜めの方向に進行するコリメート光に変換するように作用する。これにより、各光素子12aから発せられた光のうち、入出射面22Aで反射して戻ってきた光(戻り光)が各光素子12aに入射するのを低減することができる。その結果、各光素子12aからの光に含まれる「戻り光雑音」を低減することができる。
[変形例F]
 上記実施の形態および変形例A~Dにおいて、光電変換部12は、各凸レンズ部12b-1と、光路変換素子22のうち各光素子12aと対向する面(入出射面22A)との間に、例えば、図15に示したように、各光素子12aの光軸と斜めに交差する傾斜面12d-1を含む傾斜部12dを有していてもよい。傾斜面12d-1が、本技術の「第2光屈折面」の一具体例に対応する。これにより、各光素子12aから発せられた光のうち、入出射面22Aで反射して戻ってきた光(戻り光)が各光素子12aに入射するのを低減することができる。その結果、各光素子12aからの光に含まれる「戻り光雑音」を低減することができる。
[変形例G]
 上記実施の形態および変形例A~Dにおいて、光電変換部12は、各凸レンズ部12b-1と、光路変換素子22のうち各光素子12aと対向する面(入出射面22A)との間に、例えば、図16に示したように、複数の凸レンズ部12b-1の代わりに、各光素子12aの光軸と斜めに交差する光軸を有する複数の凸レンズ部12e-1を有していてもよい。複数の凸レンズ部12e-1は、例えば、レセプタレンズ12bの上面に設けられている。このとき、レセプタレンズ12bの上面は、傾斜面12eとなっている。これにより、各光素子12aから発せられた光のうち、入出射面22Aで反射して戻ってきた光(戻り光)が各光素子12aに入射するのを低減することができる。その結果、各光素子12aからの光に含まれる「戻り光雑音」を低減することができる。
[変形例H]
 上記実施の形態および変形例A~Gにおいて、光路変換素子22は、例えば、図17に示したように、挿通口21Aと対向する位置に、光ファイバアレイ31の先端の位置を規定する位置決め部22Eをさらに有していてもよい。位置決め部22Eは、例えば、光ファイバモジュール3の、光ファイバモジュール3の光軸方向と直交する方向のずれ(2次元のずれ)を抑える突き当て構造である。なお、位置決め部22Eは、例えば、光ファイバモジュール3の、光ファイバモジュール3の光軸方向のずれだけを抑える突き当て構造であってもよい。突き当て構造は、平面同士を突き当てる構造であってもよいし、V字構造で突き当てる構造であってもよい。このように、光路変換素子22に位置決め部22Eを設けることにより、光ファイバモジュール3の位置ずれによる光結合効率の変動を小さくすることができる。
[変形例I]
 上記実施の形態および変形例C~Hにおいて、光路変換素子22の入出射面22Cは、例えば、図18に示したように、各光素子12aの直上に配置されていてもよい。この場合、光路変換素子22において、反射面22Bが省略されている。このようにした場合であっても、上記実施の形態と同様、簡易な構成でピッチ変換を行うことができる。
[変形例J]
 上記実施の形態および変形例A~Iにおいて、光レセプタクル20は、例えば、図19に示したように、入出射面22Cを表面に含む光路変換素子22と、入出射面22Cに接して固定された光路変換素子23とを有していてもよい。入出射面22Cは、本技術の「第1光屈折面」の一具体例に対応する。光路変換素子22は、本技術の「第1光学ブロック」の一具体例に対応する。光路変換素子23は、本技術の「第2光学ブロック」の一具体例に対応する。光路変換素子23は、例えば、光路変換素子22,23の周囲の空間と比べて屈折率の高い光透過性の多面体によって構成されている。光路変換素子23は、例えば、ガラスまたは水晶などからの多面体によって構成されている。光路変換素子23では、光ファイバアレイ31からの光が入射する面が平坦面となっており、かつ、光ファイバアレイ31の光軸と直交または略直交していることが好ましい。光路変換素子23のその他の部分については、特に制約がない。そこで、例えば、光路変換素子23を回路基板11に実装し、光路変換素子22の、筐体21への接触をなくしてもよい。このように、光路変換素子23を設けることにより、光路変換素子23の配置の自由度が上がる。
[変形例K]
 上記実施の形態および変形例A~Jにおいて、プラグレンズ33の先端部分が階段構造となっていてもよい。このとき、複数の凸レンズ部33Aが、例えば、図20に示したように、プラグレンズ33の先端部分における階段ごとに、1つずつ、設けられていてもよい。このようにした場合には、各凸レンズ部33Aと、入出射面22Cとの光路長差を低減することができ、光結合効率の差を低減することができる。ただし、例えば、図20に示したように、プラグレンズ33の厚さ(各光ファイバ31Aがプラグレンズ33で覆われている箇所の長さ)が光ファイバ31Aごとに異なっている場合には、各凸レンズ部33Aの焦点距離を、プラグレンズ33の厚さに応じて調整することが必要である。
 なお、図21に示したように、プラグレンズ33の厚さ(各光ファイバ31Aがプラグレンズ33で覆われている箇所の長さ)が光ファイバ31Aごとに等しいか、略等しくなっていてもよい。このようにした場合には、各凸レンズ部33Aの形状を互いに等しくすることができるので、プラグレンズ33を、図20の場合と比べて容易に製造することができる。
[変形例L]
 上記実施の形態および変形例A~Jにおいて、複数の光素子12aが、例えば図22Aに示したようにジグザグに並んで配置されていてもよい。ただし、その場合には、複数の光ファイバ31Aが、例えば図22Bに示したように複数の光素子12aの配列方向と対応する方向にジグザグに並んで配置されていることが好ましい。これにより、複数の光素子と複数の光ファイバとの光結合効率が向上する。
 以上、実施の形態およびその変形例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本技術の効果は、本明細書中に記載された効果に限定されるものではない。本技術が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本技術は以下のような構成を取ることができる。
(1)
 一列もしくはジグザグに並んで配置された複数の光素子と、
 複数の前記光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子と
 を備えた
 光インターフェース装置。
(2)
 光ファイバアレイの先端を挿通させる挿通口が設けられ、かつ、複数の前記光素子および前記光路変換素子を収容する筐体をさらに備え、
 前記第1光屈折面は、前記挿通口に対して斜めに対向している
(1)に記載の光インターフェース装置。
(3)
 前記第1光屈折面は、前記挿通口の光軸と並行な線分と前記第1光屈折面とのなす角が45度未満となるように配置されている
 (2)に記載の光インターフェース装置。
(4)
 前記第1光屈折面は、空気に接している
 (1)ないし(3)のいずれか1つに記載の光インターフェース装置。
(5)
 前記光路変換素子は、
 前記第1光屈折面を表面に含む第1光学ブロックと、
 前記第1光屈折面に接して固定された第2光学ブロックと
 を有する
 (1)ないし(3)のいずれか1つに記載の光インターフェース装置。
(6)
 前記光路変換素子は、前記第1光屈折面と、複数の前記光素子との間の光路上に光反射面を有する
 (1)ないし(5)のいずれか1つに記載の光インターフェース装置。
(7)
 前記光反射面は、前記挿通口の光軸と並行な線分と前記光反射面とのなす角が45度未満となるように配置されている
 (6)に記載の光インターフェース装置。
(8)
 前記光路変換素子は、前記光反射面、または、当該光路変換素子のうち各前記光素子と対向する面に、複数の凸形状を有する
 (6)または(7)に記載の光インターフェース装置。
(9)
 前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
 当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、複数の凸レンズをさらに備えた
 (6)または(7)に記載の光インターフェース装置。
(10)
 前記第1光屈折面は、複数の第1平坦面を有し、
 前記光反射面は、複数の第2平坦面を有し、
 複数の前記第1平坦面は、前記第1光屈折面が窪んだ形状となるように配置されており、
 複数の前記第2平坦面は、前記光反射面が窪んだ形状となるように配置されている
 (6)または(7)に記載の光インターフェース装置。
(11)
 前記第1光屈折面は、各前記光素子の直上に配置されている
 (1)ないし(5)のいずれか1つに記載の光インターフェース装置。
(12)
 前記光路変換素子および各前記光素子は、当該光路変換素子のうち各前記光素子と対向する面が各前記光素子の光軸と斜めに交差するように配置されている
 (1)ないし(5)のいずれか1つに記載の光インターフェース装置。
(13)
 前記光路変換素子および各前記光素子は、当該光路変換素子のうち各前記光素子と対向する面が各前記光素子の光軸と2度以上の角度で斜めに交差するように配置されている
 (12)に記載の光インターフェース装置。
(14)
 前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
 当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、複数の偏心レンズをさらに備えた
 (6)または(7)に記載の光インターフェース装置。
(15)
 前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
 当該光インターフェース装置は、さらに、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に複数の凸レンズを備えるとともに、各前記凸レンズと、前記光路変換素子のうち各前記光素子と対向する面との間に、各前記光・BR>F子の光軸と斜めに交差する第2光屈折面を備えた
 (6)または(7)に記載の光インターフェース装置。
(16)
 前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
 当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、各前記光素子の光軸と斜めに交差する光軸を有する複数の凸レンズをさらに備えた
 (6)または(7)に記載の光インターフェース装置。
(17)
 前記光路変換素子は、前記挿通口と対向する位置に、前記光ファイバアレイの先端の位置を規定する位置決め部をさらに有する
 (1)ないし(5)のいずれか1つに記載の光インターフェース装置。
(18)
 一列もしくはジグザグに並んで配置された複数の光素子と、
 複数の前記光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子と、
 複数の前記光素子の配列方向と対応する方向に一列もしくはジグザグに並んで配置された複数の光ファイバを含む光ファイバアレイと、
 前記光ファイバアレイの先端を挿通させる挿通口が設けられ、かつ、複数の前記光素子および前記光路変換素子を収容する筐体と
 を備えた
 光伝送システム。
(19)
 複数の前記光ファイバは、複数の前記光素子の配列ピッチよりも狭い配列ピッチで一列もしくはジグザグに並んで配置されており、
 前記第1光屈折面は、前記挿通口に対して斜めに対向しており、かつ、前記挿通口の光軸と並行な線分と前記第1光屈折面とのなす角が45度未満となるように配置されている
 (18)に記載の光伝送システム。
(20)
 一列もしくはジグザグに並んで配置された複数の光素子と、複数の前記光素子の配列ピッチとは異なる配列ピッチで一列もしくはジグザグに並んで配置された複数の光ファイバとの間に配置される光路変換素子であって、
 ピッチ変換用の光屈折面を備えた
 光路変換素子。
(21)
 当該光路変換素子は、ブロック状の光学素子であり、
 前記光屈折面は、前記ブロック状の光学素子の表面に設けられており、
 前記ブロック状の光学素子は、前記ブロック状の光学素子において、前記光屈折面とは反対側の位置に光反射面を有する
 (20)に記載の光路変換素子。
 本出願は、日本国特許庁において2015年10月20日に出願された日本特許出願番号第2015-206070号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (21)

  1.  一列もしくはジグザグに並んで配置された複数の光素子と、
     複数の前記光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子と
     を備えた
     光インターフェース装置。
  2.  光ファイバアレイの先端を挿通させる挿通口が設けられ、かつ、複数の前記光素子および前記光路変換素子を収容する筐体をさらに備え、
     前記第1光屈折面は、前記挿通口に対して斜めに対向している
     請求項1に記載の光インターフェース装置。
  3.  前記第1光屈折面は、前記挿通口の光軸と並行な線分と前記第1光屈折面とのなす角が45度未満となるように配置されている
     請求項2に記載の光インターフェース装置。
  4.  前記第1光屈折面は、空気に接している
     請求項3に記載の光インターフェース装置。
  5.  前記光路変換素子は、
     前記第1光屈折面を表面に含む第1光学ブロックと、
     前記第1光屈折面に接して固定された第2光学ブロックと
     を有する
     請求項3に記載の光インターフェース装置。
  6.  前記光路変換素子は、前記第1光屈折面と、複数の前記光素子との間の光路上に光反射面を有する
     請求項3に記載の光インターフェース装置。
  7.  前記光反射面は、前記挿通口の光軸と並行な線分と前記光反射面とのなす角が45度未満となるように配置されている
     請求項6に記載の光インターフェース装置。
  8.  前記光路変換素子は、前記光反射面、または、当該光路変換素子のうち各前記光素子と対向する面に、複数の凸形状を有する
     請求項6に記載の光インターフェース装置。
  9.  前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
     当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、複数の凸レンズをさらに備えた
     請求項6に記載の光インターフェース装置。
  10.  前記第1光屈折面は、複数の第1平坦面を有し、
     前記光反射面は、複数の第2平坦面を有し、
     複数の前記第1平坦面は、前記第1光屈折面が窪んだ形状となるように配置されており、
     複数の前記第2平坦面は、前記光反射面が窪んだ形状となるように配置されている
     請求項6に記載の光インターフェース装置。
  11.  前記第1光屈折面は、各前記光素子の直上に配置されている
     請求項3に記載の光インターフェース装置。
  12.  前記光路変換素子および各前記光素子は、当該光路変換素子のうち各前記光素子と対向する面が各前記光素子の光軸と斜めに交差するように配置されている
     請求項3に記載の光インターフェース装置。
  13.  前記光路変換素子および各前記光素子は、当該光路変換素子のうち各前記光素子と対向する面が各前記光素子の光軸と2度以上の角度で斜めに交差するように配置されている
     請求項12に記載の光インターフェース装置。
  14.  前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
     当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、複数の偏心レンズをさらに備えた
     請求項6に記載の光インターフェース装置。
  15.  前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
     当該光インターフェース装置は、さらに、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に複数の凸レンズを備えるとともに、各前記凸レンズと、前記光路変換素子のうち各前記光素子と対向する面との間に、各前記光素子の光軸と斜めに交差する第2光屈折面を備えた
     請求項6に記載の光インターフェース装置。
  16.  前記光路変換素子は、前記光反射面、および、当該光路変換素子のうち複数の前記光素子と対向する面に、平坦面を有し、
     当該光インターフェース装置は、各前記光素子と、前記光路変換素子のうち各前記光素子と対向する面との間に、各前記光素子の光軸と斜めに交差する光軸を有する複数の凸レンズをさらに備えた
     請求項6に記載の光インターフェース装置。
  17.  前記光路変換素子は、前記挿通口と対向する位置に、前記光ファイバアレイの先端の位置を規定する位置決め部をさらに有する
     請求項3に記載の光インターフェース装置。
  18.  一列もしくはジグザグに並んで配置された複数の光素子と、
     複数の前記光素子の配列方向に傾斜した第1光屈折面を有する光路変換素子と、
     複数の前記光素子の配列方向と対応する方向に一列もしくはジグザグに並んで配置された複数の光ファイバを含む光ファイバアレイと、
     前記光ファイバアレイの先端を挿通させる挿通口が設けられ、かつ、複数の前記光素子および前記光路変換素子を収容する筐体と
     を備えた
     光伝送システム。
  19.  複数の前記光ファイバは、複数の前記光素子の配列ピッチよりも狭い配列ピッチで一列もしくはジグザグに並んで配置されており、
     前記第1光屈折面は、前記挿通口に対して斜めに対向しており、かつ、前記挿通口の光軸と並行な線分と前記第1光屈折面とのなす角が45度未満となるように配置されている
     請求項18に記載の光伝送システム。
  20.  一列もしくはジグザグに並んで配置された複数の光素子と、複数の前記光素子の配列ピッチとは異なる配列ピッチで一列もしくはジグザグに並んで配置された複数の光ファイバとの間に配置される光路変換素子であって、
     ピッチ変換用の光屈折面を備えた
     光路変換素子。
  21.  当該光路変換素子は、ブロック状の光学素子であり、
     前記光屈折面は、前記ブロック状の光学素子の表面に設けられており、
     前記ブロック状の光学素子は、前記ブロック状の光学素子において、前記光屈折面とは反対側の位置に光反射面を有する
     請求項20に記載の光路変換素子。
PCT/JP2016/074078 2015-10-20 2016-08-18 光路変換素子、光インターフェース装置、光伝送システム WO2017068843A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/764,418 US10481349B2 (en) 2015-10-20 2016-08-18 Optical path conversion device, optical interface apparatus, and optical transmission system
CN201680059800.8A CN108139554A (zh) 2015-10-20 2016-08-18 光路转换元件、光学接口设备和光学传输***
JP2017546434A JP6747448B2 (ja) 2015-10-20 2016-08-18 光路変換素子、光インターフェース装置、光伝送システム
DE112016004782.7T DE112016004782T5 (de) 2015-10-20 2016-08-18 Strahlengangkonversionseinrichtung, optische Schnittstellenvorrichtung und optisches Übertragungssystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-206070 2015-10-20
JP2015206070 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017068843A1 true WO2017068843A1 (ja) 2017-04-27

Family

ID=58556869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074078 WO2017068843A1 (ja) 2015-10-20 2016-08-18 光路変換素子、光インターフェース装置、光伝送システム

Country Status (5)

Country Link
US (1) US10481349B2 (ja)
JP (1) JP6747448B2 (ja)
CN (1) CN108139554A (ja)
DE (1) DE112016004782T5 (ja)
WO (1) WO2017068843A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230638A1 (ja) * 2018-06-01 2019-12-05 株式会社エンプラス 光レセプタクル本体の支持部材用金型、支持部材及びその製造方法、光レセプタクル並びに光モジュール
JP2021012228A (ja) * 2019-07-03 2021-02-04 株式会社エンプラス 光レセプタクルおよび光モジュール
US10958039B2 (en) 2018-03-20 2021-03-23 Nichia Corporation Optical module
JP7178153B1 (ja) * 2022-08-18 2022-11-25 株式会社京都セミコンダクター 光給電コンバータ
WO2023286362A1 (ja) * 2021-07-13 2023-01-19 ソニーグループ株式会社 光源装置および電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019197137A (ja) * 2018-05-09 2019-11-14 富士通株式会社 光モジュール

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265012A (ja) * 1985-09-18 1987-03-24 Toshiba Corp 発光素子
US6457875B1 (en) * 1997-09-24 2002-10-01 Infineon Technologies Ag Electro-optical arrangement
JP2003511738A (ja) * 1999-10-14 2003-03-25 ディジタル・オプティックス・コーポレイション 光学的サブアセンブリ
JP2003262822A (ja) * 2002-03-12 2003-09-19 Nippon Telegr & Teleph Corp <Ntt> 二次元配列された光ビームの配列間隔変換光学系
JP2003344803A (ja) * 2002-03-19 2003-12-03 Toyoda Mach Works Ltd レンズアレイ、光整列器及びレーザ集光装置
JP2004246279A (ja) * 2003-02-17 2004-09-02 Seiko Epson Corp 光モジュール及びその製造方法、光通信装置、光電気混載集積回路、回路基板、電子機器
JP2005037659A (ja) * 2003-07-14 2005-02-10 Omron Corp モニタリング装置
JP2006227043A (ja) * 2005-02-15 2006-08-31 Seiko Epson Corp 光モジュール、電子機器
JP2008015224A (ja) * 2006-07-06 2008-01-24 Namiki Precision Jewel Co Ltd 光接続装置と実装方法
JP2009251375A (ja) * 2008-04-08 2009-10-29 Hitachi Cable Ltd 光伝送モジュール及び光伝送システム
US20140153881A1 (en) * 2011-12-29 2014-06-05 Shawna Liff Two-dimensional, high-density optical connector
JP2015031818A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 レンズ部品、光モジュール

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0152858B1 (ko) * 1995-02-09 1998-12-15 구자홍 광폭조절장치
JP3500843B2 (ja) 1996-04-01 2004-02-23 富士ゼロックス株式会社 光バス及び情報処理装置
JP3991220B2 (ja) 2001-02-28 2007-10-17 日本電気株式会社 光学回路素子の製造方法
JP3961530B2 (ja) * 2003-05-23 2007-08-22 富士通株式会社 光学素子、光伝送ユニット及び光伝送システム
JP4351965B2 (ja) 2004-08-17 2009-10-28 株式会社東芝 光電変換ヘッダー及び光配線システム
JP2009174454A (ja) 2008-01-25 2009-08-06 Yamaha Motor Co Ltd エンジン制御装置およびそれを備えた車両
EP2553839A1 (en) * 2010-03-31 2013-02-06 Corning Cable Systems LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
CN203117537U (zh) * 2012-12-19 2013-08-07 中国科学院光电研究院 基于等腰直角三角棱镜的激光线宽压窄扩束装置
JP6258113B2 (ja) 2014-04-18 2018-01-10 株式会社神戸製鋼所 抗菌性チタン合金材の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265012A (ja) * 1985-09-18 1987-03-24 Toshiba Corp 発光素子
US6457875B1 (en) * 1997-09-24 2002-10-01 Infineon Technologies Ag Electro-optical arrangement
JP2003511738A (ja) * 1999-10-14 2003-03-25 ディジタル・オプティックス・コーポレイション 光学的サブアセンブリ
JP2003262822A (ja) * 2002-03-12 2003-09-19 Nippon Telegr & Teleph Corp <Ntt> 二次元配列された光ビームの配列間隔変換光学系
JP2003344803A (ja) * 2002-03-19 2003-12-03 Toyoda Mach Works Ltd レンズアレイ、光整列器及びレーザ集光装置
JP2004246279A (ja) * 2003-02-17 2004-09-02 Seiko Epson Corp 光モジュール及びその製造方法、光通信装置、光電気混載集積回路、回路基板、電子機器
JP2005037659A (ja) * 2003-07-14 2005-02-10 Omron Corp モニタリング装置
JP2006227043A (ja) * 2005-02-15 2006-08-31 Seiko Epson Corp 光モジュール、電子機器
JP2008015224A (ja) * 2006-07-06 2008-01-24 Namiki Precision Jewel Co Ltd 光接続装置と実装方法
JP2009251375A (ja) * 2008-04-08 2009-10-29 Hitachi Cable Ltd 光伝送モジュール及び光伝送システム
US20140153881A1 (en) * 2011-12-29 2014-06-05 Shawna Liff Two-dimensional, high-density optical connector
JP2015031818A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 レンズ部品、光モジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958039B2 (en) 2018-03-20 2021-03-23 Nichia Corporation Optical module
WO2019230638A1 (ja) * 2018-06-01 2019-12-05 株式会社エンプラス 光レセプタクル本体の支持部材用金型、支持部材及びその製造方法、光レセプタクル並びに光モジュール
JP2021012228A (ja) * 2019-07-03 2021-02-04 株式会社エンプラス 光レセプタクルおよび光モジュール
JP7197435B2 (ja) 2019-07-03 2022-12-27 株式会社エンプラス 光レセプタクルおよび光モジュール
WO2023286362A1 (ja) * 2021-07-13 2023-01-19 ソニーグループ株式会社 光源装置および電子機器
JP7178153B1 (ja) * 2022-08-18 2022-11-25 株式会社京都セミコンダクター 光給電コンバータ
WO2024038546A1 (ja) * 2022-08-18 2024-02-22 株式会社京都セミコンダクター 光給電コンバータ

Also Published As

Publication number Publication date
CN108139554A (zh) 2018-06-08
JPWO2017068843A1 (ja) 2018-08-09
DE112016004782T5 (de) 2018-07-19
JP6747448B2 (ja) 2020-08-26
US20180284367A1 (en) 2018-10-04
US10481349B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2017068843A1 (ja) 光路変換素子、光インターフェース装置、光伝送システム
JP5025695B2 (ja) 光モジュール
TWI601992B (zh) 光插座以及光模組
JP5198353B2 (ja) レンズアレイおよびこれを備えた光モジュール
JP6134934B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
TWI511477B (zh) 光收發裝置
TWI611230B (zh) 光插座以及光模組
TWI497142B (zh) 光纖連接器
TWI287302B (en) Optical module, optical transceiver, and optical joint sleeve
JP5758658B2 (ja) レンズアレイおよびこれを備えた光モジュール
US20150036985A1 (en) Lens array and optical module including the same
WO2013140922A1 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP2007171427A (ja) 光モジュール及びこれを備えた光コネクタ
WO2019013313A1 (ja) 光レセプタクルおよび光モジュール
WO2018079091A1 (ja) 光結合素子及び光通信システム
JP6359848B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
JP5550353B2 (ja) レンズアレイおよびこれを備えた光モジュール
CN108490556B (zh) 光模块
JP2017049613A (ja) レンズアレイおよびこれを備えた光モジュール
TW201331657A (zh) 光學次組裝模組及中間光學機構
JP7197435B2 (ja) 光レセプタクルおよび光モジュール
CN108700720B (zh) 光插座及光模块
JP6681751B2 (ja) 光レセプタクルおよび光モジュール
TWI608263B (zh) Optical socket and light module with it
JP5749578B2 (ja) レンズアレイおよびこれを備えた光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546434

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15764418

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112016004782

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857161

Country of ref document: EP

Kind code of ref document: A1