WO2017063558A1 - 催化氢解反应之复合材料及其制备方法与用途 - Google Patents

催化氢解反应之复合材料及其制备方法与用途 Download PDF

Info

Publication number
WO2017063558A1
WO2017063558A1 PCT/CN2016/101896 CN2016101896W WO2017063558A1 WO 2017063558 A1 WO2017063558 A1 WO 2017063558A1 CN 2016101896 W CN2016101896 W CN 2016101896W WO 2017063558 A1 WO2017063558 A1 WO 2017063558A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
composite material
hydrogen
hydrogenolysis
Prior art date
Application number
PCT/CN2016/101896
Other languages
English (en)
French (fr)
Inventor
吴倍任
瞿港华
廖威胜
蓝源宾
谢翔
Original Assignee
吴倍任
瞿港华
廖威胜
蓝源宾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴倍任, 瞿港华, 廖威胜, 蓝源宾 filed Critical 吴倍任
Publication of WO2017063558A1 publication Critical patent/WO2017063558A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/06Decomposition, e.g. elimination of carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a composite material and a preparation method and application thereof, in particular to a composite material for accelerating the hydrogenolysis reaction and hydrogenation reaction of a compound, a preparation method thereof and a use thereof.
  • the bond energy between the intermolecular carbon-carbon bond and the carbon-oxygen bond in a compound is very high, for example, the bond of a carbon-carbon bond of a linear alkane compound has a bond energy of about 350 KJ/mol, and an aromatic hydrocarbon compound.
  • the carbon-oxygen bond and carbon-carbon bond energy are also as high as 332KJ/mol and 478KJ/mol, respectively.
  • the lignin is mainly derived from the lignin in the plant, which is composed of oxygenated tetrapropyl phenol monomer.
  • a monomer is a polymer which is a large aromatic compound by an ether bond, a carbon-oxygen bond and a carbon-carbon bond. That is to say, the lignin is the only raw material that can obtain renewable aromatic compounds from natural resources, and is also the natural organic matter stored on the earth after cellulose and chitin, which is the third largest in storage.
  • lignin 150 billion tons of lignin can be produced by plant growth, but because of its strong and stable ether bond, carbon-oxygen bond and carbon-carbon bond, nearly 90% of lignin is used as wood hydrolysis industry and papermaking. Industrial by-products, as black liquor is discharged into the river, there is no economical and effective way to break down lignin. Therefore, the effective utilization value of the lignin is extremely limited (mostly can only be effectively applied to metallurgy, dyes, cement, concrete and polymer materials, etc.), and most of them are directly and simply applied to their physical properties.
  • the current methods for degrading polymer molecules are mainly the following: thermal cracking, catalytic oxidation, electrochemical degradation, biodegradation, and hydrocracking.
  • the heat cracking method requires an extremely high reaction temperature, and even if a catalyst is added, it is necessary to use a high temperature of four or more degrees Celsius to participate in the reaction.
  • the biodegradation has high requirements on the culture conditions of the strains, and also has the problem of poor reproducibility.
  • the reaction conditions of this electrochemical method are very harsh.
  • the catalyst used in the catalytic oxidation process has a serious problem of deactivation. Therefore, in comparison with these methods, the hydrocracking method is currently the most industrially promising method for preparing small molecule compounds.
  • the current direct hydrocracking process is a gas/liquid/solid three-phase reaction involving high temperatures.
  • the solid-liquid catalytic hydrogenation reaction under pressure is dangerous and unsuitable for continuous reaction, so it is difficult to achieve large-scale industrial application.
  • the present invention provides a composite material which combines metal particles and laminated graphene to carry out a catalytic hydrogenolysis reaction under a low energy consumption condition.
  • the composite material can be used as a heterogeneous catalyst for the hydrogenolysis reaction of a reactant/compound containing a cyclic structure in an aqueous phase, an organic phase, or a supercritical fluid phase; that is, The composite material can cleave a polymer composed of a cyclic compound (that is, a polycyclic compound) into a single cyclic compound or a ruthenium compound having a smaller molecular weight, that is, the present invention provides petrochemical and non-chemical A new approach to the large-scale preparation of petrochemical-derived aromatic hydrocarbons and naphthenic compounds.
  • One aspect of the present invention provides a method for catalyzing a hydrogenolysis reaction of a compound, comprising the steps of: providing a composite material, wherein the composite material comprises a layer of graphene having an interfacial interface and exhibiting a specific distribution ratio And a plurality of metal nanoparticles attached to the boundary surface; and in the presence of the composite material and an influence factor, the hydrogen in the influence factor can be obtained by the plurality of metal nanoparticles on the boundary surface Atoms are transferred to the composite to drive the hydrogenolysis reaction of the compound.
  • Another aspect of the present invention provides a method for preparing a composite material for catalytic hydrogenolysis, the method comprising the steps of: providing a first mixture comprising a layer of graphene having a side interface and a metal precursor And by introducing a first gas to The first mixture reduces the metal precursor to a plurality of metal nanoparticles attached to the boundary surface and in a specific distribution ratio to form the composite.
  • a further aspect of the present invention provides a composite material for catalytic hydrogenolysis reaction comprising: a layer of graphene having a side interface; and a plurality of metal nanoparticles having a specific distribution ratio and attached to the boundary surface .
  • Still another aspect of the present invention provides a use of a composite material wherein the composite material is a hydrogenolysis reaction capable of breaking a bond in a water phase, an organic phase, or a supercritical fluid phase.
  • Phase catalyst is a hydrogenolysis reaction capable of breaking a bond in a water phase, an organic phase, or a supercritical fluid phase.
  • Figure 1 (A) is a detailed schematic view of the composite material of the present invention.
  • Figure 1 (B) is a partial schematic view of the composite of the present invention.
  • 2(A) is a transmission electron microscope (TEM) diagram of a composite material having a first particle size range according to an embodiment of the present invention.
  • TEM transmission electron microscope
  • 2(B) is a TEM image of a composite material having a second particle size range according to another embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for preparing a composite material of the present invention.
  • Figure 4 is a schematic flow diagram of the use of the composite of the present invention.
  • Fig. 5(A) is a graph showing the results of hydrogenolysis of a compound 5C1 catalyzed by a composite material WC2 according to an embodiment of the present invention.
  • Fig. 5(B) is a view showing the results of hydrogenolysis of a compound 5C1 catalyzed by the composite WC2 according to an embodiment of the present invention.
  • Fig. 6(A) is a circuit diagram showing the hydrogenolysis reaction and hydrogenation reaction of a compound 6C1 by a composite material WC1 according to another embodiment of the present invention.
  • Fig. 6(B) is a view showing the results of hydrogenolysis of a compound 6C1 catalyzed by the composite WC1 according to another embodiment of the present invention.
  • 7(A) and 7(B) are diagrams showing the results of hydrogenolysis of a compound 7C1 at a different temperature of the composite WC1 according to still another embodiment of the present invention.
  • 8(A) and 8(B) are diagrams showing the results of hydrogenolysis of a compound by a composite WC1 at a different temperature according to still another embodiment of the present invention.
  • the "hydrogenolysis reaction” in the present invention refers to a chemical reaction in which a compound has a carbon-carbon or carbon-hetero atom (eg, oxygen, sulfur, nitrogen). The bond is broken to produce a pair of unbonded ends, and the two ends of the unbonded bond are respectively connected to a hydrogen atom.
  • a compound has a carbon-carbon or carbon-hetero atom (eg, oxygen, sulfur, nitrogen). The bond is broken to produce a pair of unbonded ends, and the two ends of the unbonded bond are respectively connected to a hydrogen atom.
  • the "hydrogenation reaction” as used in the present invention refers to a hydrogenation reaction of an unsaturated bond carried out by hydrogen or some hydrogen-containing reducing reagent as a hydrogen source in a chemical reaction.
  • catalytic refers to a technique for affecting the activation energy of a reaction in a manner that changes the reaction pathway, thereby increasing the chemical reaction.
  • the catalyst itself is not consumed in the chemical reaction, but the catalyst changes the rate of the chemical reaction.
  • the composite material prepared by the invention is used as a catalyst, which can cause a hydrogenation reaction of a reactant, a decrease of activation energy and a rapid reaction rate in the hydrogenation reaction.
  • heterophase catalyst refers to a catalyst which can be mixed with a reaction system of a solid, liquid, gas or supercritical fluid phase to carry out a catalytic reaction.
  • hydrogen storage means a hydrogen source shifting phenomenon, which is roughly divided into three stages. First, a plurality of hydrogen atoms in the hydrogen source are transferred to the composite material. Then, the plurality of hydrogen atoms migrate to the periphery by way of surface diffusion, and are finally retained in the laminated graphene in the composite.
  • “Cleavage” as used in the present invention refers to the conversion of a relatively large molecular weight compound to a plurality of smaller molecular weight compounds under conditions of energy (e.g., thermal energy, high pressure or catalyst).
  • “Decomposition” refers to a chemical reaction in which two or more simple compounds or elements are produced from one compound.
  • “Degradation” refers to a chemical reaction in which a polymer segment is converted into a smaller segment or monomer.
  • “Single substance” means a pure substance composed of the same element, such as H 2 .
  • the stacked graphene of the present invention refers to a material which is formed by a plurality of graphene layers, wherein the laminated graphene comprises graphite (Graphite or Graphene Platelets), laminated graphene nanofibers. (Stacked Graphene Platelet Nanofiber), Stacked Grapheme Nanoribbons, and the like.
  • the composite material of the present invention is a plurality of metal nanoparticles (Metallic)
  • the nanoparticles are embedded in the Edge Plane of the Stacked Graphene, which includes a Zig-Zag face and an Armchair face.
  • the catalytic hydrogenolysis reaction composite material 100 of the present invention comprises a laminate of graphene 101 and a plurality of metal nanoparticles 1031 to 1036, wherein the laminate graphene 101 has a side interface 102, and The plurality of metal nanoparticles 1031 to 1036 are in a specific distribution ratio and are attached to the boundary surface 102.
  • the composite material 100 includes at least a first graphene layer 104B, a second graphene layer 104A, a third graphene layer 104C, and a first graphene layer 104B.
  • the number of layers of the olefin layer is at least two layers, and the maximum number of layers is not particularly limited.
  • the first graphene layer 104B includes at least a first edge 1051, and a second edge 1052 and a third edge 1053 adjacent to the first edge 1051, adjacent to the first edge. a fourth edge 1054 of the third edge 1053, a first base surface (Basal Plane) 104B1, and a second base surface 104B2 opposite to the first base surface 104B1; the second graphene layer 104A includes a fifth An edge 1055, and a sixth edge 1056 adjacent to the fifth edge 1055 are disposed on the first base surface 104B1; and the third graphene layer 104C is disposed on the second base surface 104B2.
  • first metal nanoparticle 1031 is at least partially disposed on the first edge Between 1051 and the second edge 1052 and between the fifth edge 1055 and the sixth edge 1056; and the second metal nanoparticle 1032 is at least partially disposed at the third edge 1053 and the fourth edge 1054 between.
  • the boundary surface 102 of the composite material 100 is composed of a plurality of edges 1051 to 1056 of the plurality of graphene layers 104A to 104C, and the plurality of metal nano particles 1031 to 1036 are coated on the edges or Covering between the edges, for example, the first edge 1051 and the second edge 1052, the third edge 1053 and the fourth edge 1054, and the fifth edge 1055 and the sixth edge 1056 to form the specific distribution ratio.
  • the hydrogenolysis reaction of the present invention refers to the use of the composite material 100 as a catalyst to hydrogenate a compound, wherein the composite material 100 having the specific distribution ratio will have a plurality of hydrogen sources in the hydrogenolysis reaction process.
  • a hydrogen atom is transferred to the composite to drive the hydrogenolysis reaction of the compound.
  • the hydrogen source may be hydrogen, a primary alcohol, a secondary alcohol, a silane, an unsaturated aliphatic compound, formic acid and formate, water, and combinations thereof, wherein the primary alcohol comprises methanol, ethanol or the like.
  • the secondary alcohol comprises isopropanol or the like, and the unsaturated aliphatic compound comprises cyclohexene, cyclohexadiene or the like.
  • the composite material 100 of the present invention is also an excellent hydrogen storage material, and hydrogen molecules and hydrogen atoms can be stored in the composite material 100 in advance.
  • the “specific distribution ratio” as used in the present invention means 100% by weight of the composite metal nanoparticles which are successfully reduced in the composite material (that is, “the metal nanoparticles on the boundary surface” and the "metal naphthalene between the layers”.
  • the weight percentage of the total weight W1" of the rice particles WT1 about 80 to 99.9% by weight of the plurality of metal nanoparticles are attached to the boundary surface of the laminated graphene (that is, “the metal on the boundary surface”
  • the weight percentage of nano particles is WT2" approximately equal to "the gold on the boundary surface”
  • the weight of the nanoparticle is W2" divided by "the total weight W1” and multiplied by 100), and about 0.1 to 20% by weight of the plurality of metal nanoparticles are intercalated between the plurality of graphene layers in the laminated graphene ( That is, the "weight ratio WT3 of the metal nanoparticle between the layers” is approximately equal to a distribution of "the weight W3 of the metal nano
  • the composite material 100 of the present invention has a first weight value, and the first weight value includes the weight of the laminated graphene 101, the metal nanoparticle on the boundary surface, and the metal nanoparticle between the layers, wherein the side
  • the metal nanoparticles on the interface e.g., the plurality of metal nanoparticles 1031 to 1036
  • the weight percentage of the second weight value relative to the first weight value is between 5 and 30 (ie, 5 to 30 wt%).
  • An average of one of the complex particle size sizes of all of the plurality of metal nanoparticles 1031 to 1036 is used to determine the product of the compound to be hydrogenolyzed, wherein the average comprises a first particle size range and a second particle. Range of diameters.
  • the first particle size range is from 1 to 10 nm
  • the second particle size range is from 10 to 40 nm.
  • the composite material in the first particle size range is named WC1, and the bond-bonding hydrogenolysis reaction and the dehalogenation hydrogenation reaction of the carbon-carbon bond and the carbon-oxygen bond between the cyclic compounds can be performed;
  • the composite material in the diameter range is named WC2, and can perform a bond-bonding hydrogenolysis reaction and a dehalogenation hydrogenation reaction of a carbon-oxygen bond between cyclic compounds.
  • the material of the plurality of metal nanoparticles of the present invention means any metal particle, alloy, metal oxide, or any group thereof capable of performing a conventional hydrogenation reaction or hydrogenolysis reaction. Mixture.
  • the material of the plurality of metal nanoparticles is selected from the group consisting of a Group 1B metal, a Group 8B metal, an alloy, a Group 1B metal oxide, a Group 8B metal oxide, and a mixture of any combination thereof, Wherein the alloy is selected from any combination of Group 1B metals and Group 8B metals.
  • the material of the metal nanoparticles is selected from the group consisting of ruthenium (Re), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium.
  • ruthenium Re
  • iron Fe
  • cobalt Co
  • nickel Ni
  • ruthenium Ru
  • rhodium Rh
  • palladium palladium.
  • Pd
  • Os
  • Ir platinum
  • the material of the metal nanoparticles is palladium (Pd).
  • the compound capable of hydrogenolysis of the composite material 100 provided by the present invention comprises a hydrocarbon compound, a cyclic hydrocarbon compound, a heterocyclic compound, a polycyclic hydrocarbon compound, an aromatic hydrocarbon compound, and a polycyclic aromatic hydrocarbon compound. And one of the alicyclic hydrocarbon compounds.
  • the compound further comprises polystyrene, lignin, cellulose, alkylcyclohexane, alkylbenzene, biphenyl, polybrominated biphenyl, polychlorinated biphenyl, diphenyl ether benzene, polybrominated diphenyl ether benzene. And one of triphenylmethane.
  • FIG. 3 is a flow chart of a method for preparing a composite material 300 having different particle size ranges of the present invention.
  • the method comprises the steps of: providing a first mixture 301 comprising a layer of graphene 302 having an interfacial interface and a metal precursor 304; and introducing a first gas 305 to the first mixture 301
  • the metal precursor 304 is reduced to a plurality of metal nanoparticles attached to the boundary surface and present in a specific distribution ratio to form the composite material 300.
  • the gold of the plurality of metal nanoparticles attached to the boundary surface The valence price is zero.
  • the material of the metal precursor 304 is any compound containing a metal of 1B or 8B, such as Palladium Hexafluoroacetacetonate (Pd(hfa) 2 ) or Nickel Hexafluoroacetylacetonate Hydrate.
  • a metal of 1B or 8B such as Palladium Hexafluoroacetacetonate (Pd(hfa) 2 ) or Nickel Hexafluoroacetylacetonate Hydrate.
  • the step of forming the first mixture 301 comprises the following sub-step S1: providing a solvent 303; adding the laminated graphene 302 to the solvent 303; dispersing the laminated graphene 302 by using an ultrasonic oscillator A to The solvent 303 is formed to form a second mixture 306; the metal precursor 304 is added to the second mixture 306 in a reactor 307; and the second mixture 306 and the metal precursor 304 are formed by stirring the second mixture 306 and the metal precursor 304.
  • the first mixture 301 is provided a solvent 303; adding the laminated graphene 302 to the solvent 303; dispersing the laminated graphene 302 by using an ultrasonic oscillator A to The solvent 303 is formed to form a second mixture 306; the metal precursor 304 is added to the second mixture 306 in a reactor 307; and the second mixture 306 and the metal precursor 304 are formed by stirring the second mixture 306 and the metal precursor 304.
  • the reactor 307 is a high pressure chamber.
  • the solvent 303 comprises methanol
  • the first gas 305 comprises hydrogen and carbon dioxide gas, wherein a partial pressure ratio of the hydrogen to the carbon dioxide gas is between 1/8 and 1/2
  • the metal precursor is reduced under the three reaction conditions B to E;
  • the third reaction conditions B to E include a weight ratio of the laminated graphene 302 to the metal precursor 304, a reaction temperature, a reaction rotation speed, a gas pressure of the first gas 305 and a reaction time; and the weight ratio is 0.2 to 5, the reaction temperature is 50 to 150 ° C, the reaction rotation speed is 50 to 500 rpm/min, and the reaction time is 1 to 24 hours.
  • the gas pressure is 70 to 200/2.
  • the partial pressure ratio is 1/4
  • the third reaction condition B means the weight ratio is 0.5
  • the third reaction condition C refers to the reaction temperature in the reactor 307.
  • the reaction speed was 75 ° C and 240 rpm / min, respectively
  • the third reaction condition D means that the gas pressure was 100 / 2
  • the third reaction condition E means that the reaction time was 2 hours.
  • the step of forming the composite material 300 includes sub-step S2: in a first reaction strip Forming a first compound 308, 309 under F1 and F2; and cleaning and drying the first compound 308, 309 under a second reaction condition G to form the stack to which the plurality of metal nanoparticles are attached Layer graphene.
  • the first reaction conditions F1, F2 are referred to as a pressure relief rate, wherein the pressure relief rate is between 3 and 15 ml/min, wherein 5 ml/min or 10 ml/min is preferred;
  • the second reaction condition G means the use of at least two solvents, wherein the at least two solvents comprise water and methanol.
  • the step of forming the composite material 300 comprises the substep S2: forming a first compound 308 at the pressure relief rate of 5 ml/min (ie, F1); and using in water and methanol
  • the first compound 308 is repeatedly washed and dried to form the laminated graphene (i.e., the composite material 300 of the present invention) to which the plurality of metal nanoparticles are attached, wherein the composite material 300 is such
  • a first particle size of the plurality of metal nanoparticles is in the range of 3 to 5 nm, as shown in Fig. 2(A), and hereinafter, the composite material having the particle size range is also named WC1.
  • the step of forming the composite material 300 comprises the substep S2: forming a first compound 309 at a pressure relief rate of 10 ml/min (ie, F2); use in water and methanol (i.e., G), cleaning and drying the first compound 309 to form the laminated graphene to which the plurality of metal nanoparticles are attached; and then, attaching the plurality of metal nanoparticles to the stack
  • the layer of graphene is re-introduced into the reactor 307, and in a fourth reaction condition I, H, the first gas 305 is introduced into the reactor 307 for reaction, and then the pressure relief rate is 10 ml/min ( That is, under F2), the composite material 300 of the present invention is formed, wherein a second particle diameter of the plurality of metal nanoparticles in the composite material 300 ranges from 10 to 20 nm, as shown in FIG. 2(B), and hereinafter The composite material having this particle size range is also named WC2.
  • the fourth reaction condition H includes a reaction temperature and a reaction time
  • the fourth reaction condition I includes a gas partial pressure of the first gas 305 and a total gas pressure, wherein the reaction time is 1 to 24 hours, and the reaction time is 1 to 24 hours.
  • the reaction temperature is 70 to 150 ° C
  • the partial pressure of the gas is 1/2 to 1/8
  • the total gas pressure is 70 to 200/2.
  • the fourth reaction condition H means a reaction temperature of 115 ° C and a reaction time of 24 hours
  • the four reaction conditions I means a gas partial pressure of the first gas 305 and a The total gas pressure is 1/2 and 75/2, respectively.
  • the present invention when the metal precursor is successfully reduced and adhered to the boundary surface of the laminated graphene, the present invention is compared with 100 wt% of the reduced plurality of metal nanoparticles.
  • the plurality of metal nanoparticles attached to the boundary surface of the laminated graphene in the composite material accounts for about 80-99.9 wt%, and the plurality of metal nanoparticles intercalated between the plurality of graphenes in the laminated graphene It accounts for 0.1 to 20% by weight.
  • the composite materials WC1 and WC2 prepared exhibit different catalytic activities, the selectivity of molecular hydrogenolysis of a compound in the hydrogenolysis reaction can be manipulated (and the type of product can be determined), wherein the composite material WC1 can perform a hydrogenolysis reaction on a carbon-oxygen and a carbon-carbon bond between a cyclic compound and a dehalogenation-hydrogenation reaction, and the composite WC2 can be used as a cyclic compound.
  • Carbon-oxygen undergoes a hydrogenolysis reaction of a bond breaking and a rapid dehalogenation hydrogenation reaction, which will be described in detail below.
  • the composite material proposed by the present invention can selectively be used in a petroleum, a biomass (Bio-mass), an environmental pollutant (POPs), or a waste polymer (Waste Polymer) under relatively low temperature conditions.
  • One of the larger molecular weight compounds is cleaved into a plurality of smaller molecular weight compounds to facilitate fuel and chemical applications.
  • the composite material of the present invention can crack polycyclic aromatic hydrocarbons in crude oil into benzene and toluene, and can take cellulose (Cellulose), hemicellulose (Semi-Cellulose), lignin (Lignin) in biomass.
  • Or chitin is cracked into toluene, benzene, cyclohexane and heterocyclic compounds to cleave environmental pollutants such as biphenyl, polybrominated biphenyl, polychlorinated biphenyl or polybrominated diphenyl ether into toluene, benzene, cyclohexane
  • waste polymers such as polystyrene and phenol methane can be cracked into toluene, benzene, cyclohexane and C5-C9 aliphatic hydrocarbon compounds.
  • a method for catalyzing a hydrogenolysis reaction of a compound 403 by using a composite material 401 of the present invention wherein the plurality of metal nanoparticles in the composite material 401 have hydrogen storage properties. Therefore, when the composite material 401 is pre-disposed in a reactor 405 and passed through a first hydrogen source 402 (for example, hydrogen, primary alcohol, secondary alcohol, silane, unsaturated aliphatic compound, formic acid, formic acid) a salt, water, a combination thereof or the like to provide a plurality of hydrogen molecules, wherein the primary alcohol comprises methanol, ethanol, the secondary alcohol comprises isopropanol, and the unsaturated aliphatic compound comprises cyclohexene or cyclohexadiene
  • the plurality of metal nanoparticles first transfer the plurality of hydrogen atoms in the first hydrogen source 402 to the composite material in the reactor 405, and then diffuse and transfer to the plurality of graphite layers in the laminated graphene.
  • the graphene layer itself has characteristics such as large specific surface area and high conductivity, it is advantageous that the complex hydrogen molecules are decomposed into a plurality of hydrogen atoms and stored in the layers to form a hydrogen storage composite material 406. Therefore, when a compound 403 is subjected to a hydrogenolysis reaction and a hydrogenation reaction, the source of the hydrogen atom may be derived from the composite material 406 having a hydrogen storage atom in addition to the second hydrogen source added. Furthermore, the high conductivity of the graphene layer The property contributes to the transfer of electrons, facilitates the progress of the cleavage reaction of the compound 403, and accelerates participation in the hydrogenolysis reaction and the hydrogenation reaction.
  • the second hydrogen source may include hydrogen, a primary alcohol, a secondary alcohol, a silane, an unsaturated aliphatic compound, formic acid, formate, water, or a combination thereof to provide a plurality of hydrogen molecules, wherein the primary alcohol includes, for example, Methanol, ethanol, the secondary alcohol includes, for example, isopropanol, and the unsaturated aliphatic compound includes, for example, cyclohexene or cyclohexadiene.
  • the composite material 401 of the present invention can be pre-configured into the hydrogen storage composite material 406 as the catalyst in the hydrogenolysis reaction and the hydrogenation reaction through the above steps, and the composite material 401 can also be directly used.
  • the catalyst in the hydrogenolysis reaction and the hydrogenation reaction As the catalyst in the hydrogenolysis reaction and the hydrogenation reaction.
  • the content of hydrogen atoms stored in the hydrogen storage composite 406 during the preparation of the composite 401 has been due to the plurality of metals on the boundary surface of the graphene layer.
  • the nanoparticles are reacted with a source of hydrogen in the preparation process (for example, hydrogen, primary or secondary alcohols, silanes, unsaturated aliphatic compounds, formic acid and formate, water, combinations thereof, etc.), but have a small amount Hydrogen atoms are between the layers.
  • a source of hydrogen in the preparation process for example, hydrogen, primary or secondary alcohols, silanes, unsaturated aliphatic compounds, formic acid and formate, water, combinations thereof, etc.
  • a compound 403 needs to be partially or completely dissolved in a solvent 404 (step S3), and then disposed in the reactor 405.
  • the composite material 401 or the composite material 406 reacts, and the hydrogenolysis reaction and the hydrogenation reaction are performed on the composite material 401 or the composite material 406 by an influence factor J, thereby catalyzing the hydrogenolysis reaction and the hydrogenation reaction, and A complex product 407 is generated.
  • the reactor 405 contains a high pressure chamber.
  • the hydrogenolysis reaction is carried out in an aqueous phase, an organic phase, or a supercritical fluid phase and is used to hydrogenolyze the compound 403, and the selection of the phases is in turn dependent on the choice of the solvent 404, wherein the solvent 404 comprises Water, an organic solvent, a supercritical fluid, or a combination thereof, wherein The organic solvent includes, for example, methanol, ethanol or isopropanol or the like, and the supercritical fluid includes, for example, supercritical carbon dioxide or the like.
  • the compound 403 includes, for example, one of a hydrocarbon compound, a monocyclic hydrocarbon compound, a polycyclic hydrocarbon compound, a heterocyclic compound, an aromatic hydrocarbon compound, a polycyclic aromatic hydrocarbon compound, and an alicyclic hydrocarbon compound.
  • the compound 403 further includes polystyrene, lignin, cellulose, alkylcyclohexane, alkylbenzene, biphenyl, polybrominated biphenyl, polychlorinated biphenyl, diphenyl ether benzene, polybrominated diphenyl ether benzene, and triphenylmethane.
  • the source of the lignin includes a natural lignin (not water-soluble), a lignin obtained by a pulp mill waste liquid (which is water-soluble) or a standard of alkali lignin (the water-soluble system of the standard) From the natural lignin first obtained through a base process, such that it has OH groups obtained).
  • the hydrogenolysis reaction is performed under an influence factor J, which may include, for example, a second hydrogen source, a concentration of the second hydrogen source, a pressure of the second hydrogen source, a gas, The pressure of the gas, a reaction pressure, a reaction temperature, and combinations thereof.
  • an influence factor J may include, for example, a second hydrogen source, a concentration of the second hydrogen source, a pressure of the second hydrogen source, a gas, The pressure of the gas, a reaction pressure, a reaction temperature, and combinations thereof.
  • the second source of hydrogen comprises one of hydrogen, primary or secondary alcohol, silane, unsaturated aliphatic compound, formic acid and formate, water, and combinations thereof.
  • the gas comprises one of hydrogen, carbon dioxide gas, and combinations thereof.
  • concentration of the second hydrogen source should be greater than 10 -7 volume molar concentration (M), wherein if the second hydrogen source is hydrogen, the pressure of the gas is between 0 and 20/2. When the gas system is carbon dioxide gas, the pressure of the gas is between 70 and 200/2.
  • the reaction time is between 1 and 24 hours.
  • the reaction pressure is between 1 and 250/2.
  • the reaction temperature is between 15 and 150 °C.
  • the second source of hydrogen is hydrogen.
  • the pressure of the second hydrogen source is 20/2.
  • the gas system is carbon dioxide.
  • the pressure of this gas is 75/2.
  • the reaction time was 1 hour.
  • the reaction pressure was 200/2.
  • the reaction temperature is between 30 and 115 °C.
  • reaction temperature is 75 °C.
  • an average value of the complex particle size of the plurality of metal nanoparticles in the composite material 401 or the composite material 406, the reaction temperature, and the pressure of the second hydrogen source may be used to determine the hydrogenolysis.
  • a product of a compound, wherein the average value can include, for example, a first particle size range and a second particle size range.
  • the first particle size range is from 1 to 10 nm
  • the second particle size range is from 10 to 40 nm.
  • the average value of the complex particle size of the plurality of metal nanoparticles on the boundary surface prepared by the invention is between 1 and 40 nm, which makes the composite material of the invention
  • a compound is subjected to a hydrogenolysis reaction and a hydrogenation reaction of a molecular carbon-carbon bond and a carbon-oxygen bond at a relatively low temperature (i.e., 15 to 150 ° C).
  • the composition is such that the composite material WC2 in the high-pressure chamber can undergo a hydrogenolysis reaction and a hydrogenation reaction of the compound 5C1 through a carbon-oxygen bond through an influence factor.
  • the influence factor is when the second hydrogen source is hydrogen, the pressure of the hydrogen is between 0 and 20/2, the gas system is carbon dioxide, the pressure of the gas is 75/2, and the reaction time is 1 Hour, and the reaction temperature is between 30 and 120 °C.
  • FIG. 5(A) and FIG. 5(B) are graphs showing the product yield results of the hydrogenolysis reaction of a compound 5C1 by the composite WC2 of the present invention under different influence factors.
  • the influence factor when the second hydrogen source is hydrogen gas, the second hydrogen source has a pressure system of 20/2, the gas system is carbon dioxide, and the gas pressure system is 75/2, the reaction time is 1 hour, and the reaction temperature is between 30 and 120 ° C, it can be observed that different reaction temperatures can cleave the compound 5C1 into different products, wherein the product can include For example, cyclohexyl ether 5C2 Cyclohexanol 5C3 Cyclohexanone 5C4 5C5 cyclohexane And so on, and the order of its cleavage is 5C1 ⁇ 5C2 ⁇ 5C3 ⁇ 5C4 ⁇ 5C5.
  • the second hydrogen source is hydrogen gas
  • the gas system is carbon dioxide
  • the gas pressure system is 75/2
  • the reaction time is 1 hour.
  • the reaction temperature is 115 ° C and the pressure of the hydrogen is between 0 and 20 /2
  • different pressures can be observed to cleave the compound 5C1 into a different product.
  • the pressure is 5/2
  • the yield of the product 5C3 produced by the hydrogenolysis reaction of the compound 5C1 can reach 83%
  • the pressure is 15/2
  • the compound The yield of the product 5C5 produced by the hydrogenolysis reaction of 5C1 can reach 94%. From this result, it is understood that different pressures of the hydrogen can determine the degree of cracking of the compound 5C1. That is, the hydrogenolysis reaction can be made product selective by the reaction temperature or the change in the pressure of the hydrogen.
  • the composite material WC2 is hydrogen gas in the second hydrogen source, the pressure of the hydrogen gas is 15/2, the gas system is carbon dioxide, and the pressure of the gas is 75/2.
  • the reaction time is 1 hour, and the reaction temperature is 115 ° C, and the compound 5C1 can be efficiently subjected to a hydrogenolysis reaction (carbon-oxygen bond breaking reaction) and a hydrogenation reaction.
  • the composite material WC2 is used to carry out hydrogenolysis reaction of aromatic hydrocarbons and naphthenic compounds connected by carbon-oxygen bonds of different structural types, mainly for wood. These compounds, which are composed of different monomers and lignin monomers, are connected to each other for hydrogenolysis reaction.
  • the compounds A to E which are composed of the different monomers of lignin and the carbon-oxygen bonds between the lignin monomers.
  • the compounds A to C are each a lignin monomer
  • the compounds D to E are each a compound composed of lignin monomers.
  • the main products of the compounds A to C after the hydrogenolysis reaction are products of cleavage by carbon-oxygen bonds, wherein the products of the products which are cleaved by carbon-oxygen bonds are produced.
  • the rate can be above 80%, which shows excellent product selectivity of the composite WC2.
  • the bond WC2 is also effective for hydrogenolysis of the bond between the compound D and the carbon-oxygen of the aromatic hydrocarbon compound in the compound E, wherein the carbon-oxygen
  • the yield of the products of the cleavage of the bond can be more than 70%.
  • the compound to be hydrogenolyzed cannot effectively contact the composite of the present invention.
  • the material may cause a difference in the yield of the product of the hydrogenolysis.
  • the composite material of the present invention has a very good selectivity for the -OH and -OCH 3 groups on the aromatic ring in the aromatic hydrocarbon compound, and can remove the oxygen-containing functional group to promote oxygenation on the aromatic ring.
  • the functional group produces a cleavage (ie, a bond of a carbon-oxygen bond).
  • the main product of the lignin monomer which is cracked by the composite material of the invention is a branched C 6 -C 9 cyclic compound, which can directly replace the traditional fossil fuel. Energy and chemical raw materials.
  • the carbon-carbon bond is composed of a carbon-carbon bond hydrogenolysis reaction and a hydrogenation reaction of the composite material WC1 in the high-pressure chamber by an influence factor.
  • the influence factor is when the second hydrogen source is hydrogen, the pressure of the hydrogen is 20/2, the gas system is carbon dioxide, the pressure of the gas is 200/2, and the reaction time is 1 hour. And the reaction temperature is between 50 and 90 °C.
  • FIG. 6(A) is a schematic diagram of the hydrogenolysis reaction and hydrogenation reaction of a compound 6C1 by the composite material WC1 of the present invention, wherein the product in the reaction may include, for example, cyclohexene 6C2.
  • Cyclohexane 6C3 Cyclohexane 6C4 A benzene ring compound 6C5 containing an R group and a cyclohexane compound 6C6 or the like having an R group, wherein the R group may be -CH 3 or -CH 2 CH 3 .
  • the compound 6C1 is subjected to a hydrogenation reaction R2 to form the compound 6C2.
  • the compound 6C1 undergoes a hydrogenolysis reaction R1 to form the compound 6C5, and the compound 6C2 forms the compound via the hydrogenation reaction R2.
  • 6C3 the compound 6C2 forms the compound 6C5 via the hydrogenolysis reaction R1, and the compound 6C5 forms the compound 6C6 via the hydrogenation reaction R2, and the compound 6C3 forms the compound 6C6 via the hydrogenolysis reaction R1, and the compound 6C6
  • This compound 6C4 is formed by the hydrogenolysis reaction R1.
  • FIG. 6(B) is a graph showing the product yield results of the hydrogenolysis reaction of a compound 6C1 by the composite WC1 of the present invention at different reaction temperatures (55° C., 65° C., 75° C., and 85° C.).
  • This result image was measured by gas chromatography mass spectrometry (GC-MS).
  • GC-MS gas chromatography mass spectrometry
  • the hydrogenated composite WC1 of the present invention is a compound 4C1 (ie, biphenyl) without additional hydrogen addition.
  • the effect of the hydrogenolysis reaction of the carbon-carbon bond is first placed in a high-pressure chamber by the composite material WC1, and at a reaction temperature of 75 ° C, a gas pressure of a mixed gas of carbon dioxide and hydrogen is 100 / 2, the hydrogen source (hydrogen) pressure is 20/2, and the reaction time is 2 hours, etc., to carry out the hydrogen storage reaction of the composite WC1, after the completion of the reaction, a hydrogen storage composite WC1 It was placed in an oven and baked at a temperature of 60 ° C for 12 hours.
  • the hydrogen storage composite WC1 is disposed in a high pressure chamber, and the compound 4C1 is dissolved in a solvent (ie, supercritical carbon dioxide) and disposed in the high pressure chamber.
  • the composite material WC1 in the high pressure chamber can undergo a hydrogenolysis reaction and a hydrogenation reaction of the compound 4C1 through a carbon-carbon bond by an influence factor.
  • the influence factor is when the gas system is carbon dioxide, the pressure of the gas is 200/2, the reaction time is 2 hours, and the reaction temperature is between 75 °C.
  • the path of the cleavage reaction of the hydrogenolysis reaction of the hydrogen storage composite WC1 is as follows under:
  • the compound 4C1 is cleaved into a first compound 4C2 (toluene) and a second compound 4C3 (benzene).
  • the hydrogen storage composite WC1 is subjected to the hydrogenolysis reaction of the compound 4C1 and the yield of the first compound 4C2 is as high as 95%, and when the reaction time is extended by another 8 At the hour, the first compound 4C2 is cleaved to the second compound 4C3, at which time the yield of the second compound 4C3 is almost 100%.
  • the filled and packaged filling tubular string is configured.
  • the high pressure chamber and when a certain amount of the compound 4C1 (ie, biphenyl) is completely dissolved in a solvent (ie, supercritical carbon dioxide) and forms a solution, the solution is allowed to flow through the packed column.
  • the partial pressure of the hydrogen in the high pressure chamber is 20/2
  • the total pressure of the carbon dioxide gas is 200/2
  • the reaction time is 5 minutes
  • the reaction temperature is between 90 and 120. Between °C).
  • the compound 4C1 When the solution flows through the packed column, the compound 4C1 is forcibly contacted with the composite WC1 in the packed column, and the experimental design substantially shortens the contact of the compound 4C1 to the composite WC1. time. Since one of the structures of the compound 4C1 is composed of a carbon-carbon bond on the biphenyl ring, the hydrogenolysis reaction and hydrogenation of the carbon-carbon bond are carried out after the reaction of the compound 4C1 flowing through the composite WC1. reaction. According to the results of this experimental design, It is found that the compound 4C1 is almost hydrogenated to the first compound 4C2 (ie, toluene) under a very short reaction time, and the yield thereof is over 90%. Therefore, the above results prove that the experimental design can be fast and The compound 4C1 is selectively converted to the first compound 4C2.
  • the composite material WC1 can effectively carry out the carbon-carbon bond cleavage reaction and hydrogenation reaction when the hydrogenation reaction is carried out on one of the cyclic compounds in the supercritical fluid, and the final product is cyclohexane.
  • the hydrogenation reaction of the same cyclic compound is carried out only by the hydrogen atom in the composite WC1 which has been hydrogen-storing without providing a hydrogen source, the carbon-carbon bond cleavage reaction can be effectively carried out.
  • products such as toluene and benzene can be obtained separately.
  • the composite material WC1 is used for hydrogenolysis reaction of aromatic hydrocarbons and naphthenic compounds connected by carbon-oxygen bonds of different structural types, respectively, mainly for lignin
  • these compounds which are composed of different monomers (such as resins, coatings, etc.) and carbon-carbon bonds between lignin monomers, are discussed as hydrogenolysis reactions.
  • Table 2 is the result of hydrogenolysis of the compounds B1 to B7 which are composed of the different monomers of lignin and the carbon-carbon bonds between the lignin monomers by the composite WC1.
  • the compounds B1 to B4 are each a lignin monomer
  • the compounds B5 to B7 are each a compound composed of lignin monomers.
  • the composite material WC1 of the present invention can cut off the functional group of the aromatic hydrocarbon compound, regardless of the carbon-carbon bond or the carbon-oxygen bond, and finally breaks the bond after the hydrogenolysis reaction, and then The product is produced by hydrogenation (i.e., cyclohexane), and the yield of the product is more than 90%.
  • This result has successfully demonstrated the high feasibility of using the composite of the present invention to convert lignin to cyclohexane at a relatively low temperature (i.e., 15 to 150 ° C), while cyclohexane is very useful in industrial applications. Important value.
  • the composite of the present invention has excellent bond-breaking selectivity.
  • the composite material WC1 of the present invention can perform a hydrogenolysis reaction and a rapid dehalogenation hydrogenation reaction of the carbon-oxygen and carbon-carbon bonds between the cyclic compounds
  • the composite material WC2 of the present invention can The carbon-oxygen bond between the cyclic compounds undergoes a hydrogenolysis reaction of a bond breaking and a rapid dehalogenation hydrogenation reaction.
  • the composite material WC1 of the present invention is disposed in an aqueous solution containing a compound 7C1 (biphenyl) at a reaction pressure of 1/2, the reaction temperature is 25 ° C and 75 ° C, respectively, and the rotation speed of the reaction is 1000 rpm.
  • the catalytic hydrogenolysis reaction is carried out under conditions such as /min. Further, since the compound 7C1 is insoluble in water, the compound 7C1 must be brought into contact with the composite WC1 by vigorous stirring.
  • FIG. 7(A) and FIG. 7(B) are diagrams showing the results of hydrogenolysis of a compound 7C1 by the composite WC1 of the present invention at a reaction temperature of 25 ° C and 75 ° C, respectively.
  • the compound 7C1 is cleaved into a first compound 7C2 (toluene) and a second Compound 7C3 (benzene).
  • one of the third compounds 7C4 contained in Fig. 7(A) and Fig. 7(B) is cyclohexane.
  • the compound 7C1 when the reaction temperature is 25 ° C, the compound 7C1 can perform the bond of the carbon-carbon bond between the aromatic hydrocarbons under the action of the composite WC1.
  • the composite material WC1 since no hydrogen source is added to the aqueous solution in this reaction, the composite material WC1 can only carry out the hydrogenolysis reaction by using a trace amount of hydrogen atoms remaining in itself and a trace amount of hydrogen ions dissociated in the aqueous solution.
  • the composite material WC1 itself contains a small amount of hydrogen atoms, when the reaction pressure is 1/2 and the reaction temperature is 25 ° C, the composite material WC1 can selectively convert the compound 7C1 into the First compound 7C2. When the reaction pressure is 1/2 and the reaction temperature is 75 ° C, in addition to the reaction rate becoming faster, the composite WC1 can continue the hydrogenolysis reaction, so that the first compound 7C2 is hydrogenolyzed into the first
  • the second compound 7C3 is such that the composite WC1 of the present invention can undergo a selective cleavage reaction by a change in the reaction temperature.
  • the hydrogen storage composite WC1 of the present invention is disposed in an aqueous solution containing a compound 7C1 (biphenyl) at a reaction pressure of 1/2, the reaction temperature is 25 ° C and 75 ° C, respectively, and the reaction The catalytic hydrogenolysis reaction is carried out under the conditions of a rotation speed of 1000 rpm/min. At this time, whether the reaction temperature is 25 ° C or 75 ° C, the hydrogen storage composite WC1 can carry out the compound 7C1 and the product thereof. Hydrogenolysis reaction and hydrogenation reaction, since the hydrogen source is derived from the hydrogen storage composite WC1 itself, so that the reaction rate is extremely high, and when the reaction time is about 2 hours, the compound 7C1 system completely reacts as a product. 7C4 (cyclohexane), and its yield is more Up to 99%.
  • 7C4 cyclohexane
  • the composite material WC1 of the present invention is disposed in an aqueous solution containing a first compound (lignin) at a reaction pressure of 1/2, the reaction temperature is 25 ° C and 75 ° C, respectively, and the reaction speed is The catalytic hydrogenolysis reaction was carried out under conditions of 1000 rpm/min.
  • the lignin used in the present invention contains alkali lignin and sodium lignosulfonate.
  • FIG. 8(A) and FIG. 8(B) are diagrams showing the results of hydrogenolysis of a first compound by the composite WC1 of the present invention at a reaction temperature of 25 ° C and 75 ° C, respectively.
  • the composite material WC1 can perform hydrogenolysis reaction and hydrogenation reaction on the first compound and the cracked product thereof regardless of the reaction temperature of 25 ° C or 75 ° C. Therefore, the first compound can perform the bond breaking of the carbon-carbon bond between the aromatic hydrocarbons under the action of the composite material WC1.
  • the composite material WC1 can only carry out the hydrogenolysis reaction by using a trace amount of hydrogen atoms remaining in itself and a trace amount of hydrogen ions dissociated in the aqueous solution.
  • the main product to be cleaved is a second compound 8C1 (toluene), and the yield thereof can reach 35-40%, but the hydrogen source is insufficient. Since the hydrogenolysis reaction can only proceed to the toluene, the cracking reaction can no longer occur. Therefore, it can be said that the composite material WC1 has a good product selectivity for the hydrogenolysis reaction of the first compound 8C1. For the reaction temperature of 75 ° C, the reaction rate is faster, and the reaction time of about 2 hours can reach 40%. Further, one of the third compound 8C2 and the fourth compound 8C3 contained in Fig. 8(A) and Fig. 8(B) are benzene and cyclohexane, respectively.
  • the hydrogen storage composite WC1 of the present invention is disposed in an aqueous solution containing a first compound (lignin) at a reaction pressure of 1/2, the reaction temperatures are 25 ° C and 75 ° C, respectively, and The catalytic hydrogenolysis reaction and the hydrogenation reaction were carried out under the conditions of a rotation speed of the reaction of 1000 rpm/min.
  • the hydrogen storage composite WC1 can perform the hydrogenolysis reaction and the hydrogenation reaction on the first compound and the product thereof, regardless of whether the reaction temperature is 25 ° C or 75 ° C.
  • the first compound can perform the bond of the carbon-carbon bond between the aromatic hydrocarbons under the action of the composite material WC1, because the hydrogen source is derived from the hydrogen storage composite WC1 itself, so that the reaction rate thereof Very high, it can reach equilibrium after 2 hours of reaction, the products of the cracking are all cyclohexane, wherein the yield of the product can reach 70% at the reaction temperature of 25 ° C, and in the reaction At a temperature of 75 ° C, the yield of the product can reach 78%.
  • the present invention provides a composite material which can carry out a catalytic hydrogenolysis reaction and a hydrogenation reaction on a carbon-carbon bond and a carbon-oxygen bond in a compound under relatively low temperature and mild reaction environment conditions.
  • the technology of the invention has the advantages of simple operation, fast reaction rate, catalytic hydrogenolysis reaction of carbon-carbon and carbon-oxygen bonds in the absence of liquid acid and relatively low temperature, and is an excellent green chemical technology.
  • This technology can provide a liquid fuel and chemical base material from petrochemical or non-petrochemical sources (such as lignin). Any polymer with aromatic hydrocarbon and naphthenic structure can be hydrogenated into monomer molecules after using this technology. structure. Accordingly, the scope of application of the present invention also includes a hydrocracking process in the petrochemical industry, conversion of biomass into fuel and chemical base materials, degradation of environmental pollutants, and recycling of waste plastics and resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种催化氢解反应之复合材料,其中该复合材料包含具有一边界面的迭层石墨烯及呈一特定比例分布并附着于该边界面上之复数金属奈米粒子。

Description

催化氢解反应之复合材料及其制备方法与用途 【技术领域】
本发明系关于一种复合材料及其制备方法与用途,尤指一种用于加速参与一化合物之氢解反应及氢化反应的复合材料及其制备方法与用途。
【先前技术】
随着经济快速起飞,塑胶、树脂与化学纤维等需求大幅成长,因而大规模扩建能制备芳香烃衍生物的下游相关工厂,然而这也面临到对于芳香烃衍生物之原料来源之大量需求的问题。由于芳香烃衍生物之原料来源都是来自于原油中具有碳六~碳九(C6~C9)成份的化合物,而目前已知从原油中馏份增产碳六~碳九的化合物的幅度无法跟上芳香烃衍生物成长的需求。
由于一化合物中之分子间的碳-碳键及碳-氧键的键能非常高,举例来说,直链烷烃化合物之结构之碳-碳键的键能约350KJ/mol,而芳香烃化合物间的碳-氧键及碳-碳的键能也分别高达332KJ/mol及478KJ/mol,使得目前石化原料的裂解程序,常需要经过输入相当大的能源/能量才能将其转化成有用化学物质,包括所使用之热裂解温度常达到摄氏700度以上,而即使使用催化剂于热裂解反应中也仍需使用约高达400度以上的 高温。
由于已知植物体中约有1/3的成分为芳香族聚合物,其主要来自于植物体中的木质素,该木质素是由加氧的四丙基苯酚单体所组合而成的,其中单体分子间是以醚键、碳-氧键和碳-碳键结合成巨大的芳香族化合物的聚合物。也就是说,该木质素是能从天然资源中获得可再生芳香族化合物的唯一原料,同时也是地球上排在纤维素、甲壳素之后,储存量为第三位的天然有机物,估计每年全世界由植物生长可产生1,500亿吨木质素,但也因其具有强且稳固的醚键、碳-氧键和碳-碳键的键结,将近有九成以上的木质素作为木材水解工业及造纸工业的副产物,随着黑液排入河体,而无一经济且有效的方法能分解木质素。是以,该木质素的有效利用价值也极其有限(大多仅能有效地应用于冶金、染料、水泥、混凝土及高分子材料等方面),且多属直接简单应用其物理性质。而将该木质素转化成液体燃料的难处,在于该木质素极度复杂而且多样的结构,以及苯基醚具有难以氢化的性质。因此,不論利用生物或化学方式,都很难将该木质素分解。
然而,目前用以降解聚合物分子的方法主要有下列几种:加热裂解、催化氧化、电化学降解、生物降解、以及加氢裂解。然而,该加热裂解法需极高的反应温度,且即使加入催化剂也仍需使用摄氏四百度以上的高温来参与反应。该生物降解对菌种培养条件的要求较高,且还具有重复性差的问题。该电化学法的反应条件则是非常苛刻。而该催化氧化法中所使用的催化剂具有严重的失活问题。是以,在该等方法相比之下,所述之加氢裂解的方法是目前制备小分子化合物最具工业化前景的方法。然而,目前直接加氢裂解的方法是一种气/液/固的三相反应,此涉及高温高 压下的固液催化加氢反应,此反应危险性大且不宜连续化,因而难以实现大规模工业化应用。
爰是之故,申请人有鉴于习知技术之缺失,发明出本案「一种复合材料及其制备方法与用途」,用以改善上述缺失。
【发明内容】
本发明系提供一种结合金属粒子和迭层石墨烯的复合材料可以在一低能耗的条件下进行催化氢解反应。此复合材料可作为一异相催化剂,而在一水相、一有机相、或一超临界流体相中来对含有一环状结构的反应物/化合物进行断键的氢解反应;也就是说,该复合材料可将一环状化合物所组成的一聚合物(亦即一多环化合物)裂解成单一的环状化合物或是具有更小分子量之ㄧ化合物,亦即本发明提供了石化及非石化来源的芳香烃及环烷烃化合物之大量制备的新途径。
本发明之一面向系提供一种用于催化一化合物之氢解反应的方法,包含下列步骤:提供一复合材料,其中该复合材料包含具有一边界面的一迭层石墨烯及呈一特定分布比例并附着于该边界面上之复数金属奈米粒子;以及在该复合材料及一影响因子之存在下,可藉由该边界面上的该等复数金属奈米粒子而将该影响因子中之氢原子转移至该复合材料上,以驱使参与该化合物之该氢解反应。
本发明之另一面向系提供一种催化氢解反应之复合材料的制备方法,该方法包含下列步骤:提供一第一混合物,该混合物包含具有一边界面的一迭层石墨烯和一金属前驱物;以及藉由将一第一气体导入至 该第一混合物,将该金属前驱物还原成附着于该边界面上并呈一特定分布比例之复数金属奈米粒子,以形成该复合材料。
本发明之又一面向系提供一种催化氢解反应之复合材料,包含:一迭层石墨烯,具有一边界面;以及复数金属奈米粒子,呈一特定分布比例,且附着于该边界面上。
本发明之再一面向系提供一种复合材料的用途,其中该复合材料系为可在一水相、一有机相或一超临界流体相中对一化合物进行断键之氢解反应的一异相催化剂。
【图式简单说明】
本案得藉由下列图式之详细说明,俾得更深入之了解︰
图1(A)系为本发明之复合材料的详细示意图。
图1(B)系为本发明之复合材料的局部示意图。
图2(A)系为本发明之一实施例之具第一粒径范围的复合材料之穿透式电子显微镜(Transmission Electron Microscope,TEM)图。
图2(B)系为本发明之另一实施例之具第二粒径范围的复合材料之TEM图。
图3系为本发明之复合材料的制备方法之概略流程图。
图4系为本发明之复合材料的用途之概略流程图。
图5(A)系为本发明之一实施例之复合材料WC2催化一化合物5C1之氢解反应之结果图。
图5(B)系为本发明之一实施例之复合材料WC2催化一化合物5C1之氢解反应之结果图。
图6(A)系为本发明之另一实施例之复合材料WC1催化一化合物6C1之氢解反应及氢化反应的路径图。
图6(B)系为本发明之另一实施例之复合材料WC1催化一化合物6C1之氢解反应之结果图。
图7(A)与图7(B)系为本发明之又一实施例之复合材料WC1在不同温度下催化一化合物7C1之氢解反应之结果图。
图8(A)与图8(B)系为本发明之再一实施例之复合材料WC1在不同温度下催化一化合物之氢解反应之结果图。
【实施方式】
本发明将可由下列实施例说明而得到充分了解,使熟习本技艺之人士可以据以完成之,然本发明之实施并非可由下列实施例而被限制其实施型态。
首先,本发明所述之「氢解反应」(Hydrogenolysis Reaction)系指一种化学反应,在此化学反应中,一化合物之碳-碳或碳-杂原子(如,氧、硫、氮)单键断裂而产生一未成键之两端,进而使此未成键之两端分别接上氢原子的反应。
本发明所述之「氢化反应」(Hydrogenation Reaction)系指在一化学反应中,以氢气或是一些含氢的还原试剂为一氢源来进行的不饱和键的加氢反应。
本发明所述之「催化」系指一种以改变反应途径的方式来影响反应活化能,藉以增快化学反应的技术。该催化剂本身在该化学反应中不会被消耗,但该催化剂会改变该化学反应的速率。本发明所制备之复合材料系作为一种催化剂,其可造成一反应物进行氢解反应、氢化反应时活化能降低及反应速率变快。
本发明所述之「异相催化剂」系指能与固、液、气或超临界流体相的反应系混合进行催化反应的一种催化剂。
本发明所述之「储氢」于该复合材料中系指一种氢源移转(spillover)现象,大致分成三个阶段,首先,将该氢源中之复数氢原子转移至该复合材料上,再透过表面扩散(surface diffusion)的方式使得该等复数氢原子向四周迁移,并最后被保留在该复合材料中之迭层石墨烯中。
本发明所述之「裂解」系指在一能量(如热能、高压或催化剂)条件下,把分子量较大的一化合物转化为数种分子量较小的化合物。「分解」则是指由一种化合物产生两种或两种以上较简单化合物或单质的化学反应。「降解」多指高分子链段转化为较小的链段或单体的化学反应。「单质」系指同种元素所组成之纯净物,例如H2
本发明所述之迭层石墨烯(stacked graphene)系指由复数石墨烯层所推迭成的材料,其中所述迭层石墨烯包含石墨(Graphite or Graphene Platelets)、迭层石墨烯奈米纤维(Stacked Graphene Platelet Nanofiber)、迭层石墨烯奈米缎带(Stacked Grapheme Nanoribbons)等等。
复合材料
本发明之复合材料系以复数金属奈米粒子(Metallic  nanoparticles)镶嵌于「迭层石墨烯」(Stacked Graphene)的一边界面(Edge Plane)上所组成的,其中该边界面系包含锯齿面(Zig-Zag face)及椅面(Armchair face)。
请参阅图1(A)以及图1(B),其分别为本发明之复合材料100的详细示意图与局部示意图。如图1(A)所示,本发明之催化氢解反应之复合材料100包含一迭层石墨烯101以及复数金属奈米粒子1031~1036,其中该迭层石墨烯101具有一边界面102,而该等复数金属奈米粒子1031~1036系呈一特定分布比例,并附着于该边界面102上。
更具体地,如图1(A)以及图1(B)所示,该复合材料100至少包含一第一石墨烯层104B、一第二石墨烯层104A、一第三石墨烯层104C、一第一金属奈米粒子1031、以及一第二金属奈米粒子1032,其中该等复数石墨烯层104A、104B、104C可被堆迭以形成该迭层石墨烯101,其中所堆迭的复数石墨烯层之层数至少为两层,且最大层数并没有特别地被限定。
如图1(B)所示,该第一石墨烯层104B至少包含一第一边缘1051、和相邻于该第一边缘1051的一第二边缘1052、一第三边缘1053、相邻于该第三边缘1053的一第四边缘1054、一第一基面(Basal Plane)104B1、和相对于该第一基面104B1的一第二基面104B2;该第二石墨烯层104A包含一第五边缘1055、和相邻于该第五边缘1055的一第六边缘1056,并设置于该第一基面104B1上;以及该第三石墨烯层104C系设置在该第二基面104B2上。
而该第一金属奈米粒子1031至少部分地设置于该第一边缘 1051和该第二边缘1052之间和该第五边缘1055和该第六边缘1056之间;以及该第二金属奈米粒子1032至少部分地设置于该第三边缘1053和该第四边缘1054之间。
此外,该复合材料100中之该边界面102系由复数石墨烯层104A~104C之复数边缘1051~1056所构成,且该等复数金属奈米粒子1031~1036系覆着于该等边缘上或覆着于该等边缘之间,举例来说,该第一边缘1051和该第二边缘1052、该第三边缘1053和该第四边缘1054之间、以及该第五边缘1055和该第六边缘1056,以形成该特定分布比例。
本发明之该氢解反应系指利用该复合材料100作为一催化剂来氢解一化合物,其中在该氢解反应过程中,具有该特定分布比例之该复合材料100会将一氢源中之复数氢原子转移至该复合材料上,以驱使参与该化合物之该氢解反应。而所述氢源可以为氢气、一级醇、二级醇、硅烷、不饱和脂肪族化合物、甲酸及甲酸盐、水、及其组合,其中该一级醇包含甲醇、乙醇或诸如此类者,该二级醇包含异丙醇或诸如此类者,以及该不饱和脂肪族化合物包含环己烯、环己二烯或诸如此类者。
本发明之复合材料100亦为极佳之储氢材料,可预先将氢分子及氢原子储存于复合材料100中。
本发明所述之「特定分布比例」系指相对于该复合材料中100wt%之成功还原的复数金属奈米粒子(亦即「『边界面上之金属奈米粒子』与『层间之金属奈米粒子』之一总重W1」的重量百分比WT1)中,约有80~99.9wt%的复数金属奈米粒子附着于该迭层石墨烯之该边界面上(亦即「边界面上之金属奈米粒子的重量百分比WT2」约等于「边界面上之金 属奈米粒子的重量W2」除以「该总重量W1」再乘以100),以及约有0.1~20wt%之复数金属奈米粒子插层于该迭层石墨烯中复数石墨烯层间(亦即「层间之金属奈米粒子的重量百分比WT3」约等于「层间之金属奈米粒子的重量W3」除以「该总重量W1」再乘以100)的一分布,其中该等复数金属奈米粒子之该等粒径尺寸系介于1~40nm之间。
本发明之复合材料100具有一第一重量值,而该第一重量值系包括该迭层石墨烯101、边界面上之金属奈米粒子、以及层间之金属奈米粒子的重量,其中边界面上之金属奈米粒子(例如该等复数金属奈米粒子1031~1036)具有一第二重量值。
在一较佳实施例中,该第二重量值相对于该第一重量值之重量百分比介于5和30之间(亦即5~30wt%)。
所有的该等复数金属奈米粒子1031~1036的复数粒径尺寸之一平均值用以决定被氢解之该化合物之产物,其中该平均值系包括一第一粒径范围以及一第二粒径范围。
在一较佳实施例中,该第一粒径范围系为1~10nm,而该第二粒径范围系为10~40nm。
其中,在第一粒径范围的该复合材料系命名为WC1,可以进行环状化合物间碳-碳键与碳-氧键的断键氢解反应及脱卤加氢反应;而在第二粒径范围的该复合材料系命名为WC2,可以进行环状化合物间碳-氧键的断键氢解反应及脱卤加氢反应。
本发明之该等复数金属奈米粒子的材料系指任何可以进行传统的氢化反应或氢解反应之金属粒子、合金、金属氧化物、或其任意组 合之混合物。
在一实施例中,该等复数金属奈米粒子的材料系选自1B族金属、8B族金属、合金、1B族金属氧化物、8B族金属氧化物以及其任意组合之混合物其中之一者,其中该合金系选自由1B族金属及8B族金属之任意组合。
在一较佳实施例中,该等金属奈米粒子的材料系选自铼(Re)、铁(Fe)、钴(Co)、镍(Ni)、钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)、以及铂(Pt)其中之一。
在一最佳实施例中,该等金属奈米粒子的材料系为钯(Pd)。
在一实施例中,本发明所提供之复合材料100所能氢解的该化合物包括一烃化合物、一环烃化合物、杂环化合物、一多环烃化合物、芳香烃化合物、多环芳香烃化合物、以及脂环烃化合物其中之一。
在一较佳实施例中,该化合物还包括聚苯乙烯、木质素、纤维素、烷基环己烷、烷基苯、联苯、多溴联苯、多氯联苯、联苯醚苯、多溴联苯醚苯以及三苯甲烷其中之一。
复合材料之制备方法
请参阅图3,其系本发明之具有不同粒径范围之复合材料300的制备方法之流程图。该方法包含下列步骤:提供一第一混合物301,该混合物301包含具有一边界面的一迭层石墨烯302和一金属前驱物304;以及藉由将一第一气体305导入至该第一混合物301,并将该金属前驱物304还原成附着于该边界面上并呈一特定分布比例之复数金属奈米粒子,以形成该复合材料300。此时,所附着于该边界面上之该等复数金属奈米粒子的金 属价数均为零价。
该金属前驱物304之材料系为任何含有1B或8B金属之一化合物,如六氟乙酰丙酮钯(Palladium Hexafluoroacetylacetonate,Pd(hfa)2)或六氟乙酰丙酮镍水合物(Nickel Hexafluoroacetylacetonate Hydrate)。
形成该第一混合物301的步骤包含下列子步骤S1:提供一溶剂303;将该迭层石墨烯302添加至该溶剂303;藉由使用超音波振荡器A来将该迭层石墨烯302分散至该溶剂303中,以形成一第二混合物306;在一反应器307中将该金属前驱物304添加至该第二混合物306;以及藉由搅拌该第二混合物306和该金属前驱物304来形成该第一混合物301。
该反应器307系为一高压腔体。
在一实施例中,该溶剂303包含甲醇;该第一气体305包含氢气以及二氧化碳气体,其中该氢气对该二氧化碳气体的一分压比介于1/8和1/2之间;在一第三反应条件B~E下,该金属前驱物被还原;该第三反应条件B~E包括该迭层石墨烯302相对于该金属前驱物304之一重量比值、一反应温度、一反应转速、该第一气体305之气体压力、及一反应时间;以及该重量比值为0.2~5、该反应温度为50~150℃、该反应转速为50~500rpm/min、该反应时间为1~24小时、而该气体压力为70~200/2。
在一较佳实施例中,该分压比系为1/4,且该第三反应条件B系指该重量比值为0.5,该第三反应条件C系指该反应器307中之该反应温度与该反应转速分别为75℃与240rpm/min,该第三反应条件D系指该气体压力为100/2,而该第三反应条件E系指该反应时间为2小时。
形成该复合材料300的步骤包含子步骤S2:在一第一反应条 件F1、F2下,形成一第一化合物308、309;以及在一第二反应条件G下,清洗及干燥该第一化合物308、309,以形成附着有该等复数金属奈米粒子的该迭层石墨烯。
在一实施例中,该第一反应条件F1、F2系指一泄压速度,其中该泄压速度系介于3~15ml/min之间,其中以5ml/min或10ml/min为较佳;以及该第二反应条件G系指至少二溶剂之使用,其中该至少二溶剂包含水及甲醇。
在一较佳实施例中,形成该复合材料300的步骤包含子步骤S2:在该泄压速度为5ml/min(亦即F1)下,形成一第一化合物308;以及在水及甲醇之使用下,反复地清洗及干燥该第一化合物308,以形成附着有该等复数金属奈米粒子的该迭层石墨烯(亦即本发明之复合材料300),其中该复合材料300中之该等复数金属奈米粒子的一第一粒径范围为3~5nm,如图2(A)所示,且在下文中,具有该粒径范围之复合材料又命名为WC1。
在另一较佳实施例中,形成该复合材料300的步骤包含子步骤S2:在该泄压速度为10ml/min(亦即F2)下,形成一第一化合物309;在水及甲醇之使用(亦即G)下,清洗及干燥该第一化合物309,以形成附着有该等复数金属奈米粒子的该迭层石墨烯;接着,将该附着有该等复数金属奈米粒子的该迭层石墨烯再置入该反应器307中,并在一第四反应条件I、H中,将该第一气体305导入该反应器307进行反应后,再以该泄压速度为10ml/min(亦即F2)下,形成本发明之复合材料300,其中该复合材料300中之复数金属奈米粒子的一第二粒径范围为10~20nm,如图2(B)所示,且在下文中,具有该粒径范围之复合材料又命名为WC2。
该第四反应条件H包含一反应温度及一反应时间,而该第四反应条件I包含该第一气体305之一气体分压及一总气体压力,其中该反应时间为1~24小时、该反应温度为70~150℃、该气体分压为1/2~1/8、及该总气体压力为70~200/2。
在一较佳实施例中,该第四反应条件H系指一反应温度为115℃以及一反应时间为24小时,而该四反应条件I系指该第一气体305之一气体分压与一总气体压力分别为1/2以及75/2。
此外,根据本发明之实验结果可知,当该金属前驱物被成功还原并附着于该迭层石墨烯之该边界面上时,相对于100wt%之所还原的复数金属奈米粒子,本发明之复合材料中附着于该迭层石墨烯之该边界面上的复数金属奈米粒子约占80~99.9wt%,而插层于该迭层石墨烯中复数石墨烯间之复数金属奈米粒子约占0.1~20wt%。
再者,由于所制备之该复合材料WC1、WC2显示出不同催化活性,因此可以操控该氢解反应中一化合物之分子氢解的选择性(亦即可决定产物之种类),其中该复合材料WC1可对一环状化合物间之碳-氧及碳-碳键进行断键的氢解反应以及快速地脱卤氢化反应(Dehalogenation-HydrogenationReaction),而该复合材料WC2可做一环状化合物间之碳-氧进行断键的氢解反应以及快速地脱卤氢化反应,此将于下文中详述之。
复合材料之应用
由先前技术可知,现今所使用于裂解一化合物之技术,多需有高能量(高温、高压)或符合严苛复杂的实验条件才能达成。而本发 明所提出之复合材料可在相对低温的条件下,选择性地将一原油(Petroleum)、一生物质(Bio-mass)、一环境污染物(POPs)、或一废弃聚合物(Waste Polymer)中较大分子量之一化合物裂解成复数较小分子量之化合物,以利于燃料与化学品之应用。举例来说,本发明之复合材料可将原油中的多环芳香烃裂解成苯及甲苯,可将生物质中的纤维素(Cellulose)、半纤维素(Semi-Cellulose)、木质素(Lignin)或几丁质(Chitin)裂解成甲苯、苯、环己烷及杂环化合物,可将如联苯、多溴联苯、多氯联苯、或多溴联苯醚等环境污染物裂解成甲苯、苯、环己烷,并可将如聚苯乙烯、酚甲烷等废弃聚合物裂解甲苯、苯、环己烷及C5-C9脂肪烃化合物。
请参阅图4,其系藉由使用本发明之一复合材料401催化一化合物403之氢解反应的方法,其中因该等复合材料401中之该等复数金属奈米粒子具有储氢的特性,是以,当将该复合材料401预先配置于一反应器405中并通入一第一氢源402(例如氢气、一级醇、二级醇、硅烷、不饱和脂肪族化合物、甲酸、甲酸盐、水、或其组合等等,以提供复数氢分子,其中该一级醇包括甲醇、乙醇、该二级醇包括异丙醇、该不饱和脂肪族化合物包括环己烯或环己二烯)时,该等复数金属奈米粒子会先将该反应器405中之将该第一氢源402中之复数氢原子转移至该复合材料上,再扩散转移至该迭层石墨烯中复数石墨烯层层间。此外,因石墨烯层本身具有大的比表面积及高导电性等特性,故有助于复数氢分子分解为复数氢原子后储存在其层间,形成一已储氢的复合材料406。因此,当对一化合物403进行一氢解反应及一氢化反应时,氢原子的来源除了来自所添加的一第二氢源外,亦可来自于已储氢原子之复合材料406。再者,该石墨烯层的高导电性 特性有助于电子的转移,有利于该化合物403之裂解反应的进行,进而加速参与该氢解反应及该氢化反应。该第二氢源可以包括氢气、一级醇、二级醇、硅烷、不饱和脂肪族化合物、甲酸、甲酸盐、水、或其组合,以提供复数氢分子,其中该一级醇例如包括甲醇、乙醇、该二级醇例如包括异丙醇、该不饱和脂肪族化合物例如包括环己烯或环己二烯。
由上述内容可知,本发明之复合材料401可经由上述步骤而预配置成该已储氢的复合材料406来作为该氢解反应及该氢化反应中之催化剂,亦可直接使用该复合材料401来作为该氢解反应及该氢化反应中之催化剂。然而,需了解相较于该已储氢的复合材料406所储存的氢原子的含量,在该复合材料401的制备过程中,其石墨烯层层间已因该边界面上之该等复数金属奈米粒子与该制备过程中之氢源(例如氢气、一级或二级醇、硅烷、不饱和脂肪族化合物、甲酸及甲酸盐、水、及其组合等等)反应,而已具有少量的氢原子于层间。
如图4所示,不论是使用该复合材料401或该复合材料406,一化合物403需先部分地或完全地溶于一溶剂404中(步骤S3),再配置于该反应器405中与该复合材料401或该复合材料406反应,并藉由一影响因子J来对该复合材料401或该复合材料406进行该氢解反应及该氢化反应,进而催化该氢解反应及该氢化反应,并生成复数产物407。
该反应器405包含一高压腔体。
该氢解反应在一水相、一有机相、或一超临界流体相中进行,并用于氢解该化合物403,而该等相之选择又取决于该溶剂404的选择,其中该溶剂404包含水、一有机溶剂、一超临界流体、或其组合,其中该有 机溶剂例如包括甲醇、乙醇或异丙醇或诸如此类者,以及该超临界流体例如包括超临界二氧化碳或诸如此类者。该化合物403例如包括一烃化合物、一环烃化合物、一多环烃化合物、杂环化合物、芳香烃化合物、多环芳香烃化合物、以及脂环烃化合物其中之一。
而该化合物403还包括聚苯乙烯、木质素、纤维素、烷基环己烷、烷基苯、联苯、多溴联苯、多氯联苯、联苯醚苯、多溴联苯醚苯以及三苯甲烷其中之一,其中所述木质素之来源包括天然木质素(非为水溶性)、纸浆厂废液所获得之木质素(系为水溶性)或碱木素的标准品(此标准品之水溶性系来自于先将天然木质素经一碱制程,使得其上有OH基所获得的)。
如图4所示,该氢解反应在一影响因子J下进行,该影响因子J可包括例如一第二氢源、该第二氢源之浓度、该第二氢源之压力、一气体、该气体之压力、一反应压力、一反应温度、及其组合。
在一实施例中,该第二氢源包含氢气、一级或二级醇、硅烷、不饱和脂肪族化合物、甲酸及甲酸盐、水、及其组合其中之一。该气体包含氢气、二氧化碳气体、及其组合其中之一。该第二氢源之浓度应大于10-7体积莫耳浓度(M),其中若该第二氢源为氢气,其气体之压力系介于0~20/2。而当该气体系为二氧化碳气体,其中该气体之压力系介于70~200/2。该反应时间系介于1~24小时。该反应压力系介于1~250/2。该反应温度系介于15~150℃之间。
在一较佳实施例中,该第二氢源系为一氢气。该第二氢源之压力系为20/2。该气体系为二氧化碳。该气体之压力系为75/2。 该反应时间系为1小时。该反应压力系为200/2。该反应温度系介于30~115℃之间。
在一最佳实施例中,该反应温度系为75℃。
此外,该复合材料401或该复合材料406中之该等复数金属奈米粒子的复数粒径尺寸之一平均值、该反应温度、及该第二氢源之压力可用以决定被氢解之该化合物之产物,其中该平均值系可包括例如一第一粒径范围以及一第二粒径范围。该第一粒径范围系为1~10nm,而该第二粒径范围系为10~40nm。
从上述内容可得知,本发明所制备之该边界面上的该等复数金属奈米粒子之复数粒径尺寸的一平均值系介于1和40nm之间,此使得本发明之复合材料可在一相对低温(亦即15~150℃)的环境下来对一化合物进行分子间之碳-碳键、碳-氧键的断键之氢解反应与氢化反应。
实施例一
将该复合材料WC2配置于一高压腔体中,并将一化合物5C1(即,对联苯醚
Figure PCTCN2016101896-appb-000001
)溶于一溶剂(亦即超临界二氧化碳)后亦配置于该高压腔体中,其中一定量之该化合物5C1可溶于该溶剂中系因该化合物5C1之一结构系由氧联结两苯环所组成的,是以,在该高压腔体中之该复合材料WC2可通过一影响因子来对该化合物5C1进行碳-氧键的氢解反应及氢化反应。该影响因子是当该第二氢源系为一氢气、该氢气之压力系介于0~20/2、该气体系为二氧化碳、该气体之压力系为75/2、该反应时间系为1小时、及该反应温度系介于30~120℃之间时。
请参阅图5(A)及照图5(B),其系分别为本发明之复合材料WC2在不同影响因子下催化一化合物5C1之氢解反应之产物产率结果图。如图5(A)所示,在该影响因子中当该第二氢源系为一氢气、该第二氢源之压力系为20/2、该气体系为二氧化碳、该气体之压力系为75/2、该反应时间系为1小时、及该反应温度系介于30~120℃之间时,可观察到不同的反应温度能使该化合物5C1裂解成不同的产物,其中此产物可包括例如环已醚5C2环已醇5C3
Figure PCTCN2016101896-appb-000003
环已酮5C4
Figure PCTCN2016101896-appb-000004
5C5环已烷
Figure PCTCN2016101896-appb-000005
及等等,且其裂解顺序依序为5C1→5C2→5C3→5C4→5C5。由图5(A)图可知,在该反应温度为75℃时,该化合物5C1经氢解反应所生成之该产物5C3的产率可达82%,而当该反应温度为115℃时,该化合物5C1经氢解反应所生成之该产物5C5的产率可达96%。此结果证实了不同的反应温度能决定该化合物5C1的裂解程度。
如图5(B)所示,在该影响因子中当该第二氢源系为一氢气、该气体系为二氧化碳、该气体之压力系为75/2、该反应时间系为1小时、该反应温度系为115℃、及该氢气之压力介于0~20/2之间时,可观察到不同的压力能使该化合物5C1裂解成不同的产物。由图5(B)可知,当该压力为5/2时,该化合物5C1经氢解反应所生成之该产物5C3的产率可达83%,而当该压力为15/2时,该化合物5C1经氢解反应所生成之该产物5C5的产率可达94%。由此结果可知,不同的该氢气之压力能决定该化合物5C1之裂解程度。也就是说,藉由该反应温度或该氢气之压力的变化,能使该氢解反应具有产物选择性。
实施例二
根据实施例一的结果可得知,该复合材料WC2在该第二氢源系为一氢气、该氢气之压力15/2、该气体系为二氧化碳、该气体之压力系为75/2、该反应时间系为1小时、及该反应温度系为115℃的条件下,可以有效地对该化合物5C1进行氢解反应(碳-氧键之断键反应)及氢化反应。
据此,我们根据实施例一的实验条件下,利用该复合材料WC2分别对不同结构型态之碳-氧键所相连之芳香烃及环烷烃化合物进行氢解反应的研究,其中主要是针对木质素之不同单体及木质素单体间的碳-氧键所相连组成之该等化合物做氢解反应的探讨。
请参阅表一,其系藉由该复合材料WC2对木质素之不同单体及木质素单体间的碳-氧键所相连组成之该等化合物A~E做氢解反应的结果,其中该等化合物A~C系分别为一种木质素单体,而该等化合物D~E系分别为木质素单体间所组成之化合物。
由表一的结果可观察到,该等化合物A~C经该氢解反应后之主要产物均为经碳-氧键的裂解之产物,其中经碳-氧键的裂解之该等产物之产率均可达80%以上,此显示了该复合材料WC2的极佳的产物选择性。而关于该化合物D及该化合物E,可以发现该复合材料WC2对该化合物D及该化合物E中芳香烃化合物间之碳-氧所相连的键结也可有效地氢解,其中经碳-氧键的裂解之该等产物之产率均可达70%以上。
此外,由于不同的芳香烃化合物在超临界二氧化碳***中溶解度会有所不同,使得待氢解之化合物无法有效地接触到本发明之复合 材料,而可能导致在所氢解之产物的产率上的差异。
据此,可证实本发明之复合材料对于芳香烃化合物中芳香环上之-OH及-OCH3基,有非常好的选择性,可将其含氧官能基去除,促使芳香环上之含氧官能基产生裂解作用(亦即碳-氧键之断键)。且由表一亦可得知,利用本发明之复合材料所裂解之木质素单体之主要产物为含支链的C6-C9环状化合物,此种产物可直接成为替代传统的石化燃料能源及化学原物料。
表一
Figure PCTCN2016101896-appb-000006
实施例三
将该复合材料WC1配置于一高压腔体中,并将一化合物6C1 (亦即联苯
Figure PCTCN2016101896-appb-000007
)溶于一溶剂(亦即超临界二氧化碳)后亦配置于该高压腔体中,其中一定量之该化合物6C1可溶于该溶剂中系因该化合物6C1之一结构系由两苯环上之碳-碳键所组成的,是以,在该高压腔体中之该复合材料WC1可通过一影响因子来对该化合物6C1进行碳-碳键的氢解反应及氢化反应。该影响因子是当该第二氢源系为一氢气、该氢气之压力系介于20/2、该气体系为二氧化碳、该气体之压力系为200/2、该反应时间系为1小时、以及该反应温度系介于50~90℃之间时。
请参阅图6(A),其系本发明之复合材料WC1催化一化合物6C1之氢解反应及氢化反应的路径图,其中此反应中之产物可包括例如环已苯6C2
Figure PCTCN2016101896-appb-000008
联环己烷6C3
Figure PCTCN2016101896-appb-000009
环已烷6C4
Figure PCTCN2016101896-appb-000010
含有R基之苯环化合物6C5及含有R基之环己烷化合物6C6等等,其中R基可以为-CH3或-CH2CH3
如图6(A)所示,该化合物6C1会经一氢化反应R2形成该化合物6C2,该化合物6C1会经一氢解反应R1形成该化合物6C5,该化合物6C2会经该氢化反应R2形成该化合物6C3,该化合物6C2会经该氢解反应R1形成该化合物6C5,该化合物6C5会经该氢化反应R2形成该化合物6C6,该化合物6C3会经该氢解反应R1形成该化合物6C6,而该化合物6C6会经该氢解反应R1形成该化合物6C4。
请参阅图6(B),其系本发明之复合材料WC1在不同的反应温度(55℃、65℃、75℃及85℃)下催化一化合物6C1之氢解反应之产物产率结果图,此结果图系由气相层析质谱仪(GC-MS)所测得。由图 6(B)可知,不同的反应温度对于该化合物6C1之氢化反应并无明显的影响,但对于该化合物6C1之氢解反应(碳-碳键之裂解)有显著的差异,其中当该反应温度为55℃时,该化合物6C4的产率可达54%,当该反应温度提高为65℃时,该化合物6C4的产率可达88%,而当该反应温度分别提升到75°C及85℃时,两者之间的产率并无明显的差别,均为95%。此结果证实了不同的反应温度能决定该化合物6C1的裂解程度。
实施例四
为了了解在不额外添加氢气的条件下,本发明之已储氢的该复合材料WC1对一化合物4C1(亦即联苯
Figure PCTCN2016101896-appb-000011
)中碳-碳键的氢解反应的影响,先藉由将该复合材料WC1配置于一高压腔体中,并在该反应温度为75℃、二氧化碳与氢气混合气体之一气体压力为100/2下、该氢源(氢气)之压力为20/2、及该反应时间为2小时等条件下,来进行该复合材料WC1之储氢反应,反应完成后将一已储氢的复合材料WC1置入一烘箱,以60℃的温度烘烤12小时备用。
接着,再将该已储氢的复合材料WC1配置于一高压腔体中,并将该化合物4C1溶于一溶剂(亦即超临界二氧化碳)后亦配置于该高压腔体中,是以,在该高压腔体中之该复合材料WC1可通过一影响因子来对该化合物4C1进行碳-碳键的氢解反应及氢化反应。该影响因子是当该气体系为二氧化碳、该气体之压力系为200/2、该反应时间系为2小时、及该反应温度系为75℃之间时。
该已储氢的复合材料WC1之氢解反应的裂解反应之路径如 下:
Figure PCTCN2016101896-appb-000012
亦即由该化合物4C1裂解成一第一化合物4C2(甲苯)以及一第二化合物4C3(苯)。
由其结果可得知,该已储氢的复合材料WC1对该化合物4C1进行该氢解反应后所裂解成该第一化合物4C2的产率高达95%,而当将该反应时间再延长8个小时时,该第一化合物4C2会裂解成该第二化合物4C3,此时,该第二化合物4C3之产率几乎为100%。
实施例五
在将本发明之该复合材料WC1填充于15公分长的一不锈钢填充管柱中并接着以石英棉塞住该填充管柱之两端后,将所填满及封装好之该填充管柱配置于该高压腔体中;以及在待一定量之化合物4C1(亦即联苯)完全溶于一溶剂(亦即超临界二氧化碳)中并形成一溶液时,使含该溶液流过该填充管柱(此时,该高压腔体中之该氢气之分压系为20/2、该二氧化碳气体之总压力系为200/2、反应时间系为5分钟、以及该反应温度系介于90~120℃之间)。
而当该溶液流过该填充管柱时,会使该化合物4C1与该填充管柱中之该复合材料WC1强制接触,此实验设计大幅缩短了该化合物4C1迁移至该复合材料WC1上接触所需的时间。而由于该化合物4C1之一结构系由两苯环上之碳-碳键所组成的,是以,流经该复合材料WC1的该化合物4C1反应后会进行碳-碳键的氢解反应及氢化反应。根据此实验设计的结果,可 得知在极短的反应时间下,该化合物4C1几乎氢解为该第一化合物4C2(亦即甲苯),且其产率可达90%以上,因此,上述结果佐证了此实验设计可以快速且有选择性将该化合物4C1转换成该第一化合物4C2。
综上所述,当在该反应温度为75℃、超临界二氧化碳之压力为200/2、该反应时间为1小时、提供大量的氢源、以及氢气之压力为20/2等条件下,利用该复合材料WC1对在超临界流体中之一环状化合物进行该氢解反应时,可以有效的进行碳-碳键之裂解反应及氢化反应,而其最终产物为环己烷。而若在不提供一氢源的情况下,仅利用已储氢的该复合材料WC1中的氢原子对相同的环状化合物进行该氢解反应时,可以有效的进行碳-碳键之裂解反应,且随着该反应时间的变化,可以分别得到甲苯及苯等产物。
实施例六
根据实施例三的实验条件(该第二氢源系为一氢气、该氢气之压力20/2、该气体系为二氧化碳、该气体之压力系为200/2、该反应时间系为1小时、及该反应温度系为75℃等条件),利用该复合材料WC1分别对不同结构型态之碳-氧键所相连之芳香烃及环烷烃化合物进行氢解反应的研究,其中主要是针对木质素之不同单体(如树脂、涂料等)及木质素单体间的碳-碳键所相连组成之该等化合物做氢解反应的探讨。
请参阅表二,其系藉由该复合材料WC1对木质素之不同单体及木质素单体间的碳-碳键所相连组成之该等化合物B1~B7做氢解反应的结果,其中该等化合物B1~B4系分别为一种木质素单体,而该等化合物B5~B7系分别为木质素单体间所组成之化合物。
表二
Figure PCTCN2016101896-appb-000013
Figure PCTCN2016101896-appb-000014
由表二之结果可得知,本发明之复合材料WC1能将芳香烃化合物的官能基切断,不论碳-碳键或是碳-氧键,最终都会经该氢解反应后断键,并再经氢化反应产生出产物(亦即环己烷),且该产物之产率均有90%以上。此结果已成功地显示了使用本发明之复合材料在一相对低温(亦即15~150℃)下木质素之降解转化成环己烷之高度可行性,而环己烷在工业应用中具有非常重要的价值。
综上所述,本发明之复合材料具有优异的断键之选择性。举例来说,本发明之复合材料WC1可对该环状化合物间之碳-氧及碳-碳键进行断键的氢解反应及快速脱卤氢化反应,而本发明之复合材料WC2可对该环状化合物间之碳-氧键进行断键的氢解反应及快速脱卤氢化反应。
实施例七
将本发明之复合材料WC1配置于含一化合物7C1(联苯)的一水溶液中,并在该反应压力为1/2,该反应温度分别为25℃及75℃,以及该反应之转速为1000rpm/min等条件下进行催化氢解反应。此外,由于该化合物7C1不溶于水,因此必须靠剧烈的搅拌使该化合物7C1与该复合材料WC1接触。
请参阅图7(A)与图7(B),其系分别为本发明之复合材料WC1在该反应温度为25℃及75℃下催化一化合物7C1之氢解反应之结果图。该化合物7C1经反应后会裂解成一第一化合物7C2(甲苯)以及一第二 化合物7C3(苯)。此外,图7(A)与图7(B)中所载之一第三化合物7C4系为环己烷。
由图7(A)可以发现,当该反应温度为25℃时,该化合物7C1可在该复合材料WC1之作用下进行芳香烃之间之碳-碳键的断键。然而,因为在此反应中并未添加任何氢源到该水溶液中,该复合材料WC1仅能利用自身残留微量的氢原子及水溶液中所解离的微量氢离子进行该氢解反应。
而又因为该复合材料WC1本身所含的氢原子含量少,因此当该反应压力为1/2以及该反应温度为25℃时,该复合材料WC1可以使该化合物7C1有选择性地转换成该第一化合物7C2。而当该反应压力为1/2以及该反应温度为75℃时,除了反应速率变快之外,该复合材料WC1还可以继续进行该氢解反应,使得该第一化合物7C2氢解为该第二化合物7C3,是以,本发明之该复合材料WC1可藉由该反应温度之变化来进行有选择性的裂解反应。
实施例八
将本发明之已储氢的复合材料WC1配置于含一化合物7C1(联苯)的一水溶液中,并在该反应压力为1/2,该反应温度分别为25℃以及75℃,以及该反应之转速为1000rpm/min等条件下进行催化氢解反应,此时,无论该反应温度是25℃还是75℃,已储氢的复合材料WC1均可将该化合物7C1及其所裂解之产物来进行氢解反应及氢化反应,此系因该氢源来自于该已储氢的复合材料WC1本身,使得其反应速率极高,且当该反应时间约2小时后,该化合物7C1系完全反应为产物7C4(环己烷),且其产率更 高达99%。
实施例九
将本发明之复合材料WC1配置于含一第一化合物(木质素)的一水溶液中,并在该反应压力为1/2,该反应温度分别为25℃及75℃,以及该反应之转速为1000rpm/min等条件下进行催化氢解反应。本发明中所使用之木质素包含碱木素及木质素磺酸钠。
请参阅图8(A)与图8(B),其系分别为本发明之复合材料WC1在该反应温度为25℃以及75℃下催化一第一化合物之氢解反应之结果图。由图8(A)与图8(B)可知,无论该反应温度为25℃或75℃,该复合材料WC1均可将该第一化合物及其所裂解之产物来进行氢解反应及氢化反应,因此该第一化合物就可以在该复合材料WC1之作用下进行芳香烃之间之碳-碳键的断键。然而,因为此反应中并未添加任何氢源到该水溶液中,故该复合材料WC1仅能利用自身残留的微量氢原子及水溶液中所解离的微量氢离子进行该氢解反应。
此外,由图8(A)与图8(B)可知,所裂解的主要产物为一第二化合物8C1(甲苯),且其产率可达35-40%,但由于氢源不足的情况下,此氢解反应只能进行到甲苯就无法再有裂解反应的发生,因此也可以说该复合材料WC1使得该第一化合物8C1之氢解反应具有很好的产物选择性。而对于在该反应温度为75℃的条件下,其反应速率较快,仅约2小时的反应时间,即可达到40%的产率。此外,图8(A)与图8(B)中所载之一第三化合物8C2以及一第四化合物8C3系分别为苯以及环己烷。
实施例十
将本发明之已储氢的复合材料WC1配置于含一第一化合物(木质素)的一水溶液中,并在该反应压力为1/2,该反应温度分别为25℃及75℃,以及该反应之转速为1000rpm/min等条件下进行催化氢解反应及氢化反应。
由其实验结果可得知,无论该反应温度是25℃还是75℃,该已储氢的复合材料WC1均可将该第一化合物及其所裂解之产物来进行氢解反应及氢化反应,因此该第一化合物就可以在该复合材料WC1之作用下进行芳香烃之间之碳-碳键的断键,此系因该氢源来自于该已储氢的复合材料WC1本身,使得其反应速率极高,其在反应2小时后即可达平衡,所裂解之产物均为环己烷,其中在该反应温度为25℃之条件下,其产物之产率可达70%,而在该反应温度为75℃之条件下,其产物之产率可达78%。
综上所述,本发明提供一种复合材料,其可在相对低温及缓和反应环境条件下对一化合物中之碳-碳键及碳-氧键进行催化氢解反应以及氢化反应。本发明之技术有着操作简便、反应速率快、且可以在无液态酸及相对低温的环境下进行碳-碳及碳-氧键的催化氢解反应等优点,是一极佳的绿色化学技术。此技术可以提供一由石化或非石化来源(如木质素)的液体燃料及化学基础原物料,凡具有芳香烃及环烷烃结构之聚合物经使用此技术后,均可氢解成单体分子结构。据此,本发明之应用范围还包含了石油化学业加氢裂解过程,生物质转变为燃料及化学基础原物料,环境污染物的降解,以及废弃塑胶及树脂的回收处理等。
本案虽以较佳实施例揭露如上,然其并非用以限定本案的范围,任何熟习此项技艺者,在不脱离本案之精神和范围内所作之变动与 修饰,皆应属本案之涵盖范围。
【符号说明】
100、WC1、WC2、300、401、406 复合材料
101、302 迭层石墨烯
102 边界面
1031~1036 金属奈米粒子
104A~104C 石墨烯层
104B1、104B2 基面
1051~1056 边缘
301、306 混合物
303、404 溶剂
304 金属前驱物
305 气体
307、405 反应器
308、309、403、5C1、6C1~6C6、7C1~7C4、8C1~8C3 化合物
S1、S2、S3 步骤
B~E、F1、F2、G、H、I 反应条件
402 氢源
407、5C2~5C5 产物
J 影响因子
R1 氢解反应
R2 氢化反应

Claims (12)

  1. 一种用于一化合物之催化氢解反应的方法,包含下列步骤:
    提供一复合材料,其中该复合材料包含具有一边界面的一迭层石墨烯及呈一特定比例分布并附着于该边界面上之复数金属奈米粒子;以及
    在该复合材料及一影响因子之存在下,可藉由该边界面上的该等复数金属奈米粒子而将该影响因子中之氢原子转移至该复合材料上,以驱使参与该化合物之该氢解反应。
  2. 如申请专利范围第1项所述的方法,其中:
    该子步骤还包含下列步骤:
    将该复合材料预先配置于具有一第一氢源之一环境中,以使得该复合材料之该边界面上之该特定分布比例的该等复数金属奈米粒子将该第一氢源中之氢原子转移至该复合材料上,形成一已储氢之复合材料;
    将该化合物系预溶于一溶剂中,其中该溶剂包含水、一有机溶剂、或一超临界流体,其中该超临界流体包含超临界二氧化碳;以及
    在该已储氢之复合材料与已溶之该化合物之存在下,提供该影响因子中之一第二氢源,其中该第二氢源可以为氢气、一级醇、二级醇、硅烷、不饱和脂肪族化合物、甲酸及甲酸盐、水、及其组合,以提供氢原子来加速参与该化合物之该氢解反应,其中该一级醇包含甲醇或乙醇、该二级醇包含异丙醇、以及该不饱和脂肪族化合物包含环己烯或环己二烯。
  3. 如申请专利范围第1项所述的方法,其中:
    该步骤还包含下列子步骤:
    将该化合物系预溶于一溶剂中,其中该溶剂包含水、一有机溶剂、或一超临界流体,其中该超临界流体包含超临界二氧化碳;以及
    在该复合材料与已溶之该化合物之存在下,提供该影响因子中之一第二氢源,其中该第二氢源可以为氢气、一级醇、二级醇、硅烷、不饱和脂肪族化合物、甲酸及甲酸盐、水、及其组合,以提供氢原子来加速参与该化合物之该氢解反应,其中该一级醇包含甲醇或乙醇、该二级醇包含异丙醇、以及该不饱和脂肪族化合物包含环己烯或环己二烯;
    该氢解反应在一水相、一有机相、或一超临界流体相中进行,并用于氢解该化合物;以及
    该化合物包括一烃化合物、一环烃化合物、一多环烃化合物、杂环化合物、芳香烃化合物、多环芳香烃化合物、以及脂环烃化合物其中之一。
  4. 如申请专利范围第2或3项中之任一项所述的方法,其中:
    在该影响因子下,该氢解反应被进行;
    该影响因子包括该第二氢源之浓度、该第二氢源之压力、一气体、该气体之浓度、该气体之压力、一反应时间、一反应压力、一反应温度及其组合;
    该第二氢源之浓度至少为10-7M;
    该第二氢源之压力至少为0.1/2
    该反应时间至少为5分钟;
    该反应压力与该气体压力各自介于1~250/2;以及
    该反应温度系介于15~150℃之间。
  5. 如申请专利范围第4项所述的方法,其中:
    该等复数金属奈米粒子的复数粒径尺寸之一平均值、该反应温度及该所导入的氢气之压力用以决定被氢解之该化合物之产物,其中该平均值系包括一第一粒径范围以及一第二粒径范围;以及
    该第一粒径范围系为1~10nm,而该第二粒径范围系为10~40nm。
  6. 一种催化氢解反应之复合材料的制备方法,该方法包含下列步骤:
    提供一第一混合物,该混合物包含具有一边界面的一迭层石墨烯和一金属前驱物;以及
    藉由将一第一气体导入至该第一混合物,将该金属前驱物还原成附着于该边界面上并呈一特定分布比例之复数金属奈米粒子,以形成该复合材料。
  7. 如申请专利范围第6项所述的方法,其中:
    提供该第一混合物的步骤包含下列子步骤:
    提供一第一溶剂;
    将该迭层石墨烯添加至该溶剂;
    藉由使用超音波振荡器来将该迭层石墨烯分散至该溶剂中,以形成一第二混合物;
    将该金属前驱物添加至该第二混合物;以及
    藉由搅拌该第二混合物和该金属前驱物来形成该第一混合物;以及
    形成该复合材料的步骤包含下列子步骤:
    在一第一反应条件下,形成一第一化合物;以及
    在一第二反应条件下,清洗及干燥该第一化合物,以形成附着有该等复数金属奈米粒子的该迭层石墨烯。
  8. 如申请专利范围第7项所述的方法,其中该复合材料被使用于催化一化合物之氢解反应,其中:
    该第一溶剂包含甲醇;
    该第一反应条件包含一泄压速度,而该泄压速度系介于3~15ml/min之间;
    该第二反应条件包含至少两溶剂之使用,其中该溶剂包含水及甲醇;
    该第一气体包含氢气以及二氧化碳气体,其中该氢气对该二氧化碳气体的一分压比介于1/8和1/2之间;
    在一第三反应条件下,该金属前驱物被还原;
    该第三反应条件包括该迭层石墨烯相对于该金属前驱物之一重量比值、一反应温度、一反应转速、一反应时间、及该第一气体之气体压力;以及
    该重量比值为0.2~5、该反应温度为50~150℃、该反应转速为50~500rpm/min、该反应时间为1~24小时、而该气体压力为70~200/2,其中在该复合材料形成之过程中,该等复数金属奈米粒子将该制备方法中之复数氢分子分解为复数氢原子,且该复数氢原子通过该迭层石墨烯参与该化合物之氢解反应。
  9. 一种催化氢解反应之复合材料,包含:
    一迭层石墨烯,具有一边界面;以及
    复数金属奈米粒子,呈一特定分布比例,且附着于该边界面上。
  10. 如申请专利范围第9项所述的复合材料,其中:
    该催化氢解反应系用于催化氢解一化合物以形成复数产物,其中该化合物具一第一分子量,而该等复数产物各自具有小于该第一分子量之分子量;
    在该氢解反应过程中,该特定分布比例将该氢解反应中之一氢源分解为复数氢原子,且在该复合材料之存在下,该等复数氢原子加速参与该化合物之该氢解反应;
    该迭层石墨烯包含具有复数边缘之堆迭的复数石墨烯层;
    该等复数金属奈米粒子系附着于该等复数边缘上或该等复数边缘之间, 以形成该特定分布比例;以及
    该等金属奈米粒子的材料系选自1B族金属、8B族金属、合金、1B族金属氧化物、8B族金属氧化物以及其任意组合之混合物其中之一,其中该合金系选自由1B族金属及8B族金属之任意组合。
  11. 如申请专利范围第10项所述的复合材料,其中:
    该复合材料具有一第一重量值,该等复数金属奈米粒子具有一第二重量值,其中而该第二重量值相对于该第一重量值之重量百分比系介于5和30之间;
    该等复数金属奈米粒子的复数粒径尺寸之一平均值用以决定被氢解之该化合物之产物,其中该平均值系包括一第一粒径范围以及一第二粒径范围;
    该第一粒径范围系为1~10nm,而该第二粒径范围系为10~40nm;
    该化合物包括一烃化合物、一环烃化合物、一多环烃化合物、杂环化合物、芳香烃化合物、多环芳香烃化合物、以及脂环烃化合物其中之一;以及
    该化合物还包括聚苯乙烯、木质素、纤维素、烷基环己烷、烷基苯、联苯、多溴联苯、多氯联苯、联苯醚苯、多溴联苯醚苯以及三苯甲烷其中之一。
  12. 一种如申请专利范围第9项所述的复合材料的用途,其中该复合材料系为可在一水相、一有机相或一超临界流体相中对一化合物进行断键之氢解反应的一异相催化剂。
PCT/CN2016/101896 2015-10-13 2016-10-12 催化氢解反应之复合材料及其制备方法与用途 WO2017063558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510658010.9A CN106565393A (zh) 2015-10-13 2015-10-13 催化氢解反应之复合材料及其制备方法与用途
CN201510658010.9 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017063558A1 true WO2017063558A1 (zh) 2017-04-20

Family

ID=58508473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101896 WO2017063558A1 (zh) 2015-10-13 2016-10-12 催化氢解反应之复合材料及其制备方法与用途

Country Status (2)

Country Link
CN (1) CN106565393A (zh)
WO (1) WO2017063558A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111696619A (zh) * 2019-03-13 2020-09-22 赣南师范大学 一种预测反应环境对反应活化能影响程度的方法
CN112658278A (zh) * 2020-12-18 2021-04-16 潍坊科技学院 钯铁双金属纳米材料的绿色制备方法及其应用
US11242301B2 (en) * 2017-07-20 2022-02-08 IFP Energies Nouvelles Method of hydrogenolysis for improved production of paraxylene

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109167076B (zh) * 2018-09-01 2021-05-18 河北世昌汽车部件有限公司 一种用于制备燃料电池用氢的电解水催化膜材及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768052A (zh) * 2008-12-26 2010-07-07 中国科学院大连化学物理研究所 一种木质素催化加氢裂解制备芳香族化合物的方法
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法
WO2013150305A2 (en) * 2012-04-04 2013-10-10 Isis Innovation Limited Alcohol production process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301841B (zh) * 2012-03-15 2015-06-17 北京化工大学 一种石墨烯负载高分散纳米Ni催化剂及其制备方法和应用
CN102757041A (zh) * 2012-07-30 2012-10-31 哈尔滨工业大学 一种石墨烯/金属氧化物纳米复合材料粉体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768052A (zh) * 2008-12-26 2010-07-07 中国科学院大连化学物理研究所 一种木质素催化加氢裂解制备芳香族化合物的方法
WO2013150305A2 (en) * 2012-04-04 2013-10-10 Isis Innovation Limited Alcohol production process
CN103263921A (zh) * 2013-06-04 2013-08-28 中国科学院山西煤炭化学研究所 一种金属/石墨烯催化剂及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242301B2 (en) * 2017-07-20 2022-02-08 IFP Energies Nouvelles Method of hydrogenolysis for improved production of paraxylene
CN111696619A (zh) * 2019-03-13 2020-09-22 赣南师范大学 一种预测反应环境对反应活化能影响程度的方法
CN112658278A (zh) * 2020-12-18 2021-04-16 潍坊科技学院 钯铁双金属纳米材料的绿色制备方法及其应用

Also Published As

Publication number Publication date
CN106565393A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2017063558A1 (zh) 催化氢解反应之复合材料及其制备方法与用途
Cui et al. Atomically dispersed Pt–N3C1 sites enabling efficient and selective electrocatalytic C–C bond cleavage in lignin models under ambient conditions
Zaera The surface chemistry of metal-based hydrogenation catalysis
Yang et al. Metal–organic framework-derived IrO2/CuO catalyst for selective oxidation of methane to methanol
Hu et al. Metal-free graphene-based catalyst—Insight into the catalytic activity: A short review
Song et al. Selective hydrogenolysis of lignin-derived aryl ethers over Co/C@ N catalysts
Shao et al. Gold supported on graphene oxide: An active and selective catalyst for phenylacetylene hydrogenations at low temperatures
Vaidya et al. Review of hydrogen production by catalytic aqueous‐phase reforming
CN105129790B (zh) 一种在超临界水条件下制备氧化石墨烯的方法
Jin et al. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals
Albero et al. Doped graphenes in catalysis
CN103459031A (zh) 催化剂、催化剂的制备方法、脱氧的方法以及用于燃料制造的***
AT502478B1 (de) Verwendung eines verfahrens zur wasserstoffproduktion
Sharma et al. Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons
Zhang et al. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene
Song et al. Oxidative strong metal–support interactions between metals and inert boron nitride
FR2914634A1 (fr) Procede de fabrication de nanotubes de carbone a partir de matieres premieres renouvelables
Sun et al. Cobalt Nanoparticles Embedded in N‐Doped Porous Carbon Derived from Bimetallic Zeolitic Imidazolate Frameworks for One‐Pot Selective Oxidative Depolymerization of Lignin
Xie et al. Selective cleavage of the diphenyl ether C–O bond over a Ni catalyst supported on AC with different pore structures and hydrophilicities
Li et al. Impact of nitrogen species and content on the catalytic activity to C–O bond cleavage of lignin over N-doped carbon supported Ru-based catalyst
Ning et al. Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions
Rahman et al. A review on reduction of acetone to isopropanol with Ni nano superactive, heterogeneous catalysts as an environmentally benevolent approach
Wang et al. Liquid phase in-situ hydrodeoxygenation of bio-derived phenol over Raney Ni and Nafion/SiO2
Doroodmand et al. Sulfonated multiwalled carbon nanotubes (MWCNTs) as a new, efficient, and recyclable heterogeneous nanocatalyst for the synthesis of amines
Wang et al. One-step synthesis of Pd nanoparticles functionalized crystalline nanoporous CeO2 and their application for solvent-free and aerobic oxidation of alcohols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16854935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16854935

Country of ref document: EP

Kind code of ref document: A1