WO2017060635A1 - Démarreur pour moteur thermique de véhicule dont le relais est muni de deux noyaux magnétiques mobiles - Google Patents

Démarreur pour moteur thermique de véhicule dont le relais est muni de deux noyaux magnétiques mobiles Download PDF

Info

Publication number
WO2017060635A1
WO2017060635A1 PCT/FR2016/052576 FR2016052576W WO2017060635A1 WO 2017060635 A1 WO2017060635 A1 WO 2017060635A1 FR 2016052576 W FR2016052576 W FR 2016052576W WO 2017060635 A1 WO2017060635 A1 WO 2017060635A1
Authority
WO
WIPO (PCT)
Prior art keywords
pinion
contact
core
movable core
contact plate
Prior art date
Application number
PCT/FR2016/052576
Other languages
English (en)
Inventor
Tristan GUESNEY
José Sanchez
Benoit AUBOURG
Bertrand RIOU
Benoît BALEYDIER
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Publication of WO2017060635A1 publication Critical patent/WO2017060635A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/087Details of the switching means in starting circuits, e.g. relays or electronic switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • H01H51/065Relays having a pair of normally open contacts rigidly fixed to a magnetic core movable along the axis of a solenoid, e.g. relays for starting automobiles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/20Interlocking, locking, or latching mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/062Starter drives
    • F02N15/063Starter drives with resilient shock absorbers

Definitions

  • the present invention relates to a starter for a motor vehicle.
  • the invention finds a particularly advantageous application in the field of restarters for a motor vehicle.
  • Motor vehicles comprising a heat engine also include a starting means of this engine, called starter.
  • the starter is connected to a power source from which an electric motor of the starter drives via a pinion a ring of the engine in a certain direction of rotation, called positive in the following description and thus causes its startup which implies that in particular said ring continues its rotation in the positive direction of rotation.
  • a starter of the starter allows the translation of the pinion until the pinion is supported on the ring so that the teeth of the pinion meshing the ring during the rotation of the electric motor.
  • the translation of the pinion of the crown involves the rotation of the pinion by the electric motor so that the pinion drives the ring in the positive direction.
  • the crown which continues to rotate in the positive direction does not cause the starter gear. Indeed, a free wheel is interposed between the pinion and a shaft of the electric motor and the crown rotates faster than the starter gear.
  • the heat engine goes through a phase well known to those skilled in the art called rocking in which its ring rotates in an opposite direction said negative opposite to said direction of positive rotation.
  • restarters also called also restarter according to a well-known Anglo-Saxon term of those skilled in the art are also intended to restart the engine in this swinging phase.
  • This restart is performed by driving the motor ring in the positive direction of rotation.
  • the pinion engrains the crown.
  • this meshing is complicated by the fact that the crown can rotate in the negative direction of rotation. Indeed, when the ring rotates in this direction of negative rotation the freewheel is inoperative and the starter gear is instead driven by the crown of the engine.
  • a first subassembly comprising the free wheel mounted on a launcher shaft and the pinion body, said freewheel being interposed between the pinion body and the launcher shaft.
  • a second subassembly comprising the pinion which is mounted in translation on said pinion body by means of an elastic thrust device adapted to push the pinion relative to the pinion body against the ring gear.
  • This elastic thrust device comprises, for example a spring.
  • a restart which comprises a launcher comprising two subassemblies as described above as well as a first and a second activation system.
  • the first activation system is linked to the movement of the pinion while the second activation system is linked to the power supply of the electric motor.
  • Such a restarter equipped with the so-called “tandem” system is described in the patent US8302497B2 published in its version issued on November 6, 2012.
  • a so-called "split solenoid” activation system comprising two interacting and linked mobile nuclei. respectively to the displacement of the pinion and the power supply of the electric motor. But this system may have problems of durability because the wear of the pinion is very important.
  • a launcher comprising a first subassembly mounted on said drive shaft comprising a gear body movable in translation relative to the drive shaft between a start position and an end position and a second subassembly comprising a pinion; mounted in translation on said pinion body so that the pinion is movable in translation relative to the drive shaft between a rest position and an engaged position;
  • a mechanical connection element called a fork to move the pinion body between its starting position and its end position
  • a contactor provided with a protective casing comprising: a first movable core in translation in said protective casing, said first movable core being linked to the movement of the pinion via said mechanical connecting element (15),
  • a first excitation assembly able to move and hold said first movable core in a position in which, via the mechanical connection element, the pinion body takes up said end position
  • one of the two contact terminals being able to be electrically connected to a power source, the other being electrically connected to the electric motor
  • the contactor further comprises: a contact plate situated inside said housing able to be moved between a deactivated position in which said contact plate is moved away from the contact terminals and an activated position in which said contact plate is in contact with the two contact terminals for supplying said electric motor, a second core movable in translation in said protective casing which interferes with the movement between the activated and deactivated positions of the contact plate;
  • a second excitation assembly able to hold the second mobile core so that it can block the movement of the deactivated position towards the activated position of the contact plate.
  • a starter is thus obtained which, for a negative rotational speed of the pinion with respect to the ring of the given thermal engine, greatly reduces the impact torque on engagement.
  • We obtain a starter whose noise is reduced.
  • the launcher further comprises resilient means interposed between the pinion and the pinion body, said resilient means being compressed when the pinion is in the rest position and the body of the pinion is in the start position.
  • the spring is dimensioned, so that during their decompression, the elastic means push the pinion to said engaged position. This results in a translation of the pinion relative to the effective pinion body with increased acceleration.
  • the elastic means comprise a crushing spring. It is a simple embodiment, robust and affordable.
  • the pinion comprises a stop for coming into contact with the pinion body during the compression of the spring of said elastic means before the turns of said spring are joined. This improves the durability of the spring.
  • the launcher further comprises a freewheel device interposed between the shaft and the first subassembly comprising the pinion body.
  • the freewheel device makes it possible to avoid driving the electric motor when the pinion is meshing with the ring gear.
  • the second movable core is movable in translation between a locking position and a contact position, the contact plate being adapted to move from the deactivated position to the activated position only if the second movable core is in the contact position.
  • the second excitation unit is able to hold the second mobile core so as to block its displacement.
  • the second mobile core is linked to the displacement of the contact plate.
  • the second mobile core comprises a portion of reduced section on which the plate is mounted.
  • the second mobile core is of generally cylindrical shape.
  • the starter further comprises a fixed core mechanically linked to said housing, the first movable core is adapted to move in translation relative to said housing between a rest position and a magnetized position in which it comes into contact with said fixed core.
  • the first movable core reaches the magnetized position when in contact with the fixed core.
  • the magnetized position according to which the first movable core comes into contact with said fixed core corresponds to the position of the first movable core according to which, via the mechanical connecting element, the pinion body takes said end position.
  • the starter further comprises a said control rod movably connected to said plate and in that said first movable core drives the rod so that it pushes the contact plate.
  • a control rod allows a simple movement of the contact plate.
  • said first movable core drives the rod so that it pushes the contact plate towards the contact terminals when the first movable core moves from the rest position to the magnetized position.
  • the contact plate is pushed by the rod and reaches the contact position only if the second excitation unit does not maintain the second movable core, said second movable core preventing the passage of the deactivated position to the activated position of the plate contact when maintained.
  • said second core moves in translation along an axis parallel to the axis passing through one of said two contact terminals.
  • the plate thus comprises a first and second zone to be in contact with the first and second terminals respectively and another zone in contact with the second mobile core. This makes it possible to further improve the reliability of the solenoid split system by dissociating the terminal portion of the second core for reasons of wear.
  • the plate can not reach the two contact terminals when the second mobile core is in the blocking position.
  • said second core moves in translation along an axis parallel to one of the terminals or the axis.
  • One of the terminals is either located between the other terminal and said second core or said second core is located between the two terminals.
  • Said second core being shifted relative to a plane passing through the center of the two terminals.
  • the plate thus comprises a first and second zone to be in contact with the first and second terminals respectively and another zone in contact with the second mobile core. This makes it possible to further improve the reliability of the solenoid split system by dissociating the terminal portion of the second core for reasons of wear.
  • the plate can not reach the two contact terminals when the second mobile core is in the blocking position.
  • the wafer comprises on its edge an open hole on the U-shaped edge to insert an end of the second core.
  • the starter further comprises a carcass in which rotates the drive shaft, said pinion in its engaged position being located inside said carcass.
  • the starter further comprises a carcass in which the shaft rotates drive, said pinion in its engaged position being located outside said carcass.
  • Figure 1 is a longitudinal sectional view of the starter according to one embodiment of the present invention
  • Figure 2 is a view of an idle curve of a heat engine
  • FIG. 3 is a view of a curve of the torques at the engagement of the pinion.
  • Figure 4 is a longitudinal sectional view of the starter according to another embodiment of the present invention. Identical, similar or similar elements retain the same reference from one figure to another. An axial forward-to-back orientation corresponding to a left-to-right orientation according to FIG. 1 will be used.
  • FIG. 1 represents a diagram of a starter 1, for example a restarter.
  • the starter 1 comprises a launcher 3 on which is mounted a pinion 5 intended to engage a ring gear of a motor to be started, said ring gear 13.
  • the pinion 5 is rotated by an electric motor 7 arranged in a cylinder head 9.
  • the electric motor 7 comprises a shaft 10.
  • the driving of the launcher 3 is achieved via a reducing ring 11 disposed at the end of the cylinder head 9.
  • An axis X is defined as the axis of rotation of the electric motor 7. According to an example embodiment, this axis also corresponds to the axis in which is moved the pinion by the launcher.
  • the forward and reverse directions in the remainder of the description are defined with respect to the direction of this axis.
  • the front of the starter is located when one follows the X axis to the left of the starter according to Figures 1 and 4 while the rear of the starter is located when one follows the X axis to the right of the starter according to Figures 1 and 4.
  • the X axis is also called the axis of the electric motor.
  • the starter 1 also comprises a contactor 100 able to act on the launcher 3 via a fork or pivoting lever 15.
  • This contactor 100 is provided with a mobile core 17, a fixed core 19 and a metal tank 21 in which an excitation assembly 16 is arranged.
  • This excitation assembly 16 comprises a call coil 25 and a holding coil 23.
  • the call coil 25 and the holding coil 23 are mounted on an insulating annular support 27.
  • This support 27 and the rear end of the tank 21 are centrally provided with a passage for the mobile core 17.
  • An axis Y is defined as the axis in which the movable core 17 moves under the action of the excitation assembly 16.
  • the axis Y is also called the axis of the contactor 100.
  • One end of the movable core 17 is connected to the pivoting fork or lever 15.
  • the other end of the movable core 17 is intended to act on a front end of a control rod 29 by pushing through a central hole 31 of the fixed core 19 in which the front portion of the control rod 29 is slidably mounted.
  • the control rod 29 carries a contact plate 33.
  • the contact plate 33 extends transversely with respect to the rod 29 to cooperate with two electrical terminals 35a, 35b of an electrical power circuit and establish an electrical contact therebetween. when the contact plate is in an activated position.
  • One of the terminals 35a is intended to be connected to a positive terminal of the battery, the other terminal 35b being intended to be connected via a cable to the brushes of the electric motor 7 of positive polarity.
  • the two terminals 35a, 35b are fixed and carried by a cover 39 of electrically insulating material ensuring the closing of the rear of the tank 21.
  • the cover 39 with the tank 21 form a protective casing of the contactor 100.
  • the attachment of the cover 39 is made by folding the material of the free end of the tank 21 on the cover 39.
  • the plate 33 is adapted to translating relative to the cover 39 along the Y axis between an activated position in which it is in contact with the two electrical terminals 35a, 35b and a deactivated position in which said contact plate 33 is remote from contact terminals 35a, 35b.
  • the two electrical terminals 35a 35b are also called contact terminals because they allow electrical contact with the contact plate 33 for the supply of the electric motor 7.
  • the control rod 29 also carries a crushing spring 37 according to the invention. Y axis arranged between a shoulder 41 of the control rod 29 and a face of the contact plate 33.
  • the contactor 100 also comprises a return spring 43 arranged between the cover 39 and a stop of the control rod 29.
  • the launcher 3 comprises a first subassembly mounted on a drive shaft 45 connected in rotation with the shaft 10 of the rotor of the electric motor 7.
  • This first subassembly comprises a pinion body 47 movable in translation relative to the shaft drive 45 between a start position and an end position.
  • the launcher 3 also comprises a second subassembly comprising the pinion 5 mounted in translation on said pinion body 47 so that the pinion 5 is movable in translation relative to the drive shaft 45 between a rest position and a position meshed. In the engaged position the pinion 5 is moved sufficiently towards the front of the starter as indicated by the arrow 49 to come to the level of the crown 13 and thus intermesh therein.
  • the launcher 3 may comprise a freewheel device 51 interposed between the drive shaft 45 and the first subassembly comprising the body of the pinion.
  • the freewheel 51 comprises a bell 53, a roller 55 and a track (not referenced in FIG. 1).
  • the bell 53 and the roller 55 are rotatably connected to the drive shaft 45, while the track is rotatably connected to the body 47 of the pinion.
  • the fork 15 comprises a first end 15a attached to the movable core 17 of the contactor 100.
  • the connection between the fork 15 and the movable core 17 can be done by any suitable means to transmit the force between the fork 15 and the movable core 17 as per example a hitch pin.
  • the second end 15c of the fork 15 comes into contact with the launcher 3 to allow the axial displacement of the pinion 5.
  • the contact is made for example at the bell of the freewheel device 51 of the launcher 3 configured to receive the end 15c of the fork 15 over the entire displacement of the launcher 3. Indeed, the point of contact between the end 15c of the fork 15 and the bell 53 of the freewheel device 51 varies during the tilting of the fork 15 causing the axial displacement of the launcher 3.
  • the fork 15 also comprises a central portion 15b comprising a pivot point 57 intended to come against a support element 59.
  • the support element 59 is for example fixed to the cylinder head 9 of the starter 1 or on the reduction gear 11.
  • a return spring 61 constrains the mobile core 17 in a rest position in which the gap 63, that is to say the distance between the fixed part 19 of the magnetic core and the mobile core 17 is maximum.
  • the mobile core 17 is initially in a so-called rest position, in which the core 17 is remote from the fixed core 19.
  • the plate 33 is then in a deactivated position in which the plate 33 is remote from the contact terminals 35a, 35b.
  • the fork 15 In the rest position of the movable core 17, the fork 15 is generally not in contact with the support element 59.
  • the fork 15 is for example made of rigid plastic such as a thermoplastic (PA66 GF30).
  • the coils 25 and 23 of the first excitation element 16 are electrically activated and then create a magnetic field.
  • This magnetic field allows the axial displacement of the mobile core 17 towards the fixed core 19, as shown in Figure 1 by the arrow 65.
  • the supply of the first excitation element 16 of the contactor 100 causes the moving core 17 to move in the gap 63 as indicated by the arrow 65.
  • the rear end of the movable core 17 comes into contact with the front end of the control rod 29 and then axially moves the rod 29 through the hole 31 towards the rear of the switch 100 until said movable core 17 bears against the fixed core 19 in a so-called magnetized position.
  • the mobile core 17 acts on the fork by via a connecting rod 69 so that the fork 15 moves in a first step to contact with the bearing element 59 which corresponds to the beginning of the engagement of the fork 15 with the element 59. It is advantageous that until the engagement of the fork with the support element 59 and especially during the transition from the rest position to the magnetized position the movable core 17 accelerates without resistance since the launcher 3 remained motionless.
  • the end 15c of the fork acts on the bell 53 of the freewheel, which causes the pinion body to move relative to the drive shaft 45.
  • the pinion body 47 is moves in translation relative to the drive shaft 45 from a start position to a fine position in which it comes closer to the pinion 5 to cause its displacement.
  • the connection between the pinion body and the drive shaft is a slide connection.
  • Elastic means 71 are interposed between the pinion 5 and the pinion body 47.
  • the elastic means act on the pinion 5 to cause its displacement.
  • the elastic means are compressed. They therefore exert an axial force on the pinion which is moved relative to the drive shaft 45 from its rest position to its engaged position and this as soon as a firing window is present.
  • the pinion can have two positions relative to the pinion body, an uncompressed position and a compressed position.
  • the pinion 5 In the initial state, relative to the drive shaft 45, the pinion 5 is in the rest position and the pinion body is in the start position. The pinion is then in an uncompressed position relative to the pinion body.
  • the intermediate state compared to the drive shaft pinion 5 is in the rest position and the pinion body is in the end position. The pinion is then in a compressed position relative to the pinion body.
  • the pinion 5 is in the engaged position and the pinion body is in the end position. The pinion is then in an uncompressed position relative to the pinion body.
  • the intermediate state is a transient state that corresponds to the position of the pinion relative to the pinion body before the action of the elastic means.
  • the elastic means 71 comprise a crushing spring. This spring can be oriented along the X axis. In the case of a ring 13 which has a positive or negative rotational speed, the pinion will be able to be inserted as soon as a firing window arises.
  • connection between the pinion body 47 and the drive shaft 45 is a helical connection which allows the translation while causing a rotation of the body of the pinion 47 relative to the drive shaft 45
  • a zero ring gear 13 due to this rotation of the pinion body 47 caused by the helical linkage, it is possible to insert into the engaged position without the electric motor 7 being in rotation.
  • a tooth-tooth spring 67 is mounted on the connecting rod 69, said spring acting between the movable core 17 and said connecting rod 69.
  • the support element 59 is a flexible element, that is to say an element whose modulus of elasticity is lower than the modulus of elasticity of the spring tooth-tooth 67, for example a modulus of elasticity in compression less than 1000 MPa.
  • the flexible element 59 also has a modulus of elasticity lower than that of the fork.
  • said tooth tooth spring 67 may also have a modulus of elasticity lower than that of the fork. The spring 67 tooth tooth is compressed so before deformation of the fork 15.
  • the flexible element is for example made of elastomer or rubber or in a mixture of elastomer and rubber. Indeed, the use of a flexible support element that will compress before the compression of the tooth-tooth spring 67 can change the angle of the fork 15 and reduce the stroke of the movable core 17 during the tooth contact against tooth between the pinion 5 and the motor ring 13. It should be noted that instead of using a support element 59 which is flexible, it is also possible to place the flexible element at the pivot point 57 the fork 15 or an intermediate element disposed between the fork 15 and the support element 59.
  • the support element 59 is integral with the cylinder head 9 or an element attached to the cylinder head 9, for example a carcass 87 of the starter 1 or the reducing ring 11.
  • the contact plate 33 is shown in its deactivated position.
  • the displacement of the rod 29 has the effect of moving as shown in Figure 1 by an arrow 85, the plate 33 to a position, called pre-engagement.
  • the plate 33 In this position the plate 33 is in contact with the terminal 35b but is kept at a distance from the other terminal 35a.
  • the pinion 5 via the launcher 3 and the fork 15 can be in the engaged position.
  • the electric motor 7 is not running yet. Indeed, the rotation of the motor is consecutive to its supply that occurs when the plate 33 is in contact with the two contact terminals 35a and 35b. In other words, to allow contact between the two contact terminals 35a and 35b via the contact plate 33 and thus allow the motor to start, it is not only the mobile core 17, the control rod 29 and the plate 33 which intervene.
  • a micro-solenoid 72 is integrated in one of the terminals, for example the terminal 35a.
  • micrO-solenoid is meant a solenoid smaller than that of the main solenoid allowing with its movable core to move the pinion.
  • the micro-solenoid 72 is connected in parallel with the terminal 35b, between a wall of the cover and the contact area of the terminal 35a.
  • the contact zone is located between the terminal 35b and the second core of the micro-solenoide in the same plane.
  • the terminal 35a comprises a remote portion to be in contact with the wafer and a cylindrical portion to be connected to the electric motor of the starter.
  • This micro-solenoid 72 comprises a second excitation unit for example, a coil 73 fixed relative to the cover 39 and a second core 75 movable in translation relative to the cover 39.
  • the core 75 is positioned in the opening delimited by the coil 73.
  • the core 75 is movable between a locking position in which one end of the core 75 protrudes from the terminal 35a so as to prevent electrical contact between the plate 33 and the terminal 35a; and a contact position in which the core 75 allows electrical contact between the plate 33 and the terminal 35a.
  • An axis Z is defined as the axis in which the movable core 75 moves under the action of the excitation assembly 73.
  • the second mobile core 75 is movable relative to the cover 39 in translation.
  • the contact plate 33 being adapted to move from the deactivated position to the activated position only if the second movable core 75 is in the contact position.
  • the contact plate 33 is attached to the core 75 so that when moving the contact plate 33 from the activated position to the deactivated position in which the plate 33 is moved away from the contact terminals 35a, 35b, the contact plate 33 drives the core 75 to its blocking position.
  • the plate 33 is mounted via an opening on a portion 77 of reduced section of the core 75. This portion is delimited axially by a head 78 of the core 75 located on the core side. fixed 19 and an intermediate shoulder 79 located between the two end heads 78, 81 of the core 75.
  • the plate 33 has an opening having a diameter substantially equal to the diameter of the portion of reduced section 77, but less than the diameter of the end head 78 and the intermediate shoulder 79. This shoulder 79 is defined by a diameter difference of the core 75.
  • the manufacture can for example be made by inserting the portion 79 still lacking of the head 78 in the opening of the contact plate 33, then the end of the portion 79 is deformed by crushing forming the head 78.
  • the head 78 and the opening of the plate are formed so as to be mounted by bayonet.
  • the head 78 is for example rectangular and the opening is also rectangular so as to be able to mount the head then the portion 79 of the core 75 in the plate through the opening and then turned at 90 ° the core 75 by 90 ° to the plate so that the rectangle-shaped head can not pass through the rectangle-shaped opening.
  • the head 78 is a washer attached to the portion 79, for example by tight fitting, welding bonding.
  • the wafer comprises on its edge an open hole on the U-shaped wafer to insert the reduced section 77 of the second core located.
  • the editing is simpler.
  • the movable core 75 is held in the blocking position by the contact plate 33 which pulls on the head 78 of the core 75 while the opposite head 81 bears against one end of the coil 73.
  • the contactor 100 further comprises a magnet 83 positioned at the bottom of the cover 39 to ensure retention of the core 75 of the micro-solenoid 72 when the latter is in the contact position, in order to minimize the risk of rebounds of the core 75.
  • the force of the return spring 43 is strong enough to detach the core 75 from the magnet 83 when powering down the call coils and holding the element 16.
  • the core 75 can finish its course by being attracted by the magnet 83 or by means of the plate that pushes it or a compressed elastic element in the initial position of the core.
  • the micro-solenoid 72 has been pre-fed, so that the core 75 can withstand the force applied by the plate 33 bears against the intermediate shoulder 79.
  • the core 75 is held in the locking position and its displacement towards its contact position is prevented .
  • the return spring 43 and the crushing spring 37 are otherwise compressed.
  • the supply of the micro-solenoid 72 is cut off, so that the core 75 no longer resists the force applied by the plate 33 and then goes into the contact position.
  • the contact plate 33 can switch to the activated position and then makes contact with the two terminals 35a, 35b, which provides power to the electric motor of the starter.
  • the mobile core 17 When the coils 25 and 23 are de-energized, the mobile core 17 is no longer attracted towards the fixed core 19, which causes the mobile core 17 to return to the so-called rest position via the action of the return spring. 61 positioned between the tank 21 and an end of the movable core 17.
  • the axial compression spring 37 and the return spring 43 are decompressed by pushing on the control rod 29, which has the effect of moving the contact plate away 33 of the terminals 35a, 35b.
  • the core 75 then separates from the magnet 83 and is driven by the contact plate 33 to its blocking position. The displacement of the core 75 is limited by the head 81 which abuts against the coil 73.
  • the contact plate 33 then moves from the activated position to the deactivated position.
  • FIG. 2 shows the idle curve of a heat engine.
  • Curve 210 is that of the rotational speed of the crown of the engine as a function of time.
  • This curve is represented in an orthonormal coordinate system comprising an abscissa axis 202 and an ordinate axis 201.
  • the unit of the axis 202 is the seconds, while that of the axis 201 is expressed in revolutions per minute. Note that this idle curve can be divided into several sequences represented by the terminals 205, 206 and 207 on the axis 202.
  • the sequence is that of a motor idle. This sequence is characterized by an idle speed represented by the terminal 208 on the axis 201 around which the speed of rotation of the motor ring oscillates. Between the terminal 205 and the terminal 206, this oscillation continues, but at the same time the average rotational speed falls sharply. This is a slowdown sequence of the engine.
  • the curve 210 passes through two thresholds represented by the lines 203 and 204.
  • the threshold 203 corresponds to the most negative speed addressable with a monobloc gear while the threshold 204 corresponds to the most negative speed addressable with a sprocket in two parts also called "active engagement" according to an Anglo-Saxon term well known to those skilled in the art.
  • the threshold 203 corresponds to -100 rpm, while the threshold 204 corresponds to -200 rpm.
  • FIG. 3 illustrates several points representing the shock torque at the engagement of the pinion 5 in the ring 13 as a function of the negative rotation speed of the ring gear.
  • the points are represented in an orthonormal coordinate system, each point corresponding to an engagement occurrence.
  • the orthonormal coordinate system comprises an abscissa axis 402 expressed in revolutions per minute and an ordinate axis 401 expressed in N. meters.
  • 5 groups of points 403, 404, 405, 406 and 407 are represented therein.
  • the 3 groups 403, 404 and 405 correspond to couples of shocks with a conventional starter or a restarter while the groups 406 and 407 correspond to pairs of shocks with restarter according to the invention illustrated in FIG.
  • the groups 404 and 405 are addressable with a one-piece gear or with a two-part gear.
  • the 403 group with a speed of -150 rpm can only be reached with a two-part gear.
  • the two-part gear does not reduce the shock torque on engagement, on the contrary, it increases even as the negative speeds addressable are more important.
  • Groups 406 and 407 correspond to those obtained with a starter according to the invention provided with a contactor 100. It appears for the same speed of rotation negative the shock torque at the engagement of the pinion 5 in the ring 13 is greatly reduced as can be seen when comparing the groups 404 and 407.
  • FIG. 4 illustrates a starter according to one embodiment of the invention.
  • the starter of FIG. 4 differs from that of FIG. 1 from the positioning of the carcass 87 with respect to the pinion 5. More precisely in FIG. Figure 1, the pinion is in its engaged position located inside the carcass 87 in which rotates the drive shaft. On the contrary, in Figure 4 the pinion is in its engaged position located outside of the carcass 87 in which rotates the drive shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Un démarreur (1) est muni d'un lanceur comprenant un corps de pignon (47) mobile en translation par rapport à l'arbre d'entraînement et un pignon est monté en translation sur ledit corps de pignon (47) de sorte que le pignon est mobile en translation par rapport à l'arbre d'entraînement entre une position de repos et une position engrenée. Le contacteur du démarreur comprend un contacteur ayant une plaque de contact (33) apte à être entre une position désactivée dans laquelle ladite plaque de contact (33) est éloignée des bornes de contact (35a, 35b) et une position activée dans laquelle ladite plaque de contact (33) est en contact avec les deux bornes de contact (35a, 35b) pour alimenter un moteur électrique (7). Le contacteur comprend en outre un deuxième noyau (75) mobile en translation dans ledit carter de protection (21, 39) qui interfère avec le déplacement entre les positions activée et désactivée de la plaque de contact (33) et un deuxième ensemble d'excitation (73) apte à maintenir le deuxième noyau mobile (75) pour qu'il puisse bloquer le déplacement de la position désactivée vers la position activée de la plaque de contact.

Description

DÉMARREUR POUR MOTEUR THERMIQUE DE VÉHICULE DONT LE RELAIS
EST MUNI DE DEUX NOYAUX MAGNÉTIQUES MOBILES
DOMAINE TECHNIQUE DE L'INVENTION La présente invention porte sur un démarreur pour véhicule automobile.
L'invention trouve une application particulièrement avantageuse dans le domaine des redémarreurs pour véhicule automobile.
ARRIERE PLAN TECHNOLOGIQUE
Les véhicules automobiles comportant un moteur thermique comportent également un moyen de démarrage de ce moteur thermique, appelé démarreur. Le démarreur est relié à une source d'alimentation électrique à partir de laquelle un moteur électrique du démarreur entraîne via un pignon une couronne du moteur thermique dans un certain sens de rotation, appelé positif dans la suite de la description et provoque ainsi son démarrage qui implique que notamment ladite couronne poursuit sa rotation dans le sens de rotation positif. Lors de ce démarrage, un lanceur du démarreur permet la translation du pignon jusqu'à ce que le pignon soit en appui sur la couronne de telle sorte que les dents du pignon engrènent la couronne lors de la rotation du moteur électrique. Dans les démarreurs, la translation du pignon de la couronne implique la mise en rotation du pignon par le moteur électrique de manière à ce que le pignon entraine la couronne dans le sens positif. Par ailleurs, après le démarrage du moteur thermique, la couronne qui poursuit sa rotation dans le sens positif n'entraine pas le pignon du démarreur. En effet, une roue libre est interposée entre le pignon et un arbre du moteur électrique et la couronne tourne plus vite que le pignon du démarreur. Lors de l'arrêt du moteur thermique, le moteur thermique passe par une phase bien connue de l'homme de métier appelée balancement selon laquelle sa couronne tourne dans un sens opposé dit négatif opposé audit sens de rotation positif.
Par rapport aux démarreurs conventionnels décrits ci-dessus, les redémarreurs également appelés aussi restarter selon un terme anglo-saxon bien connu de l'homme du métier ont en outre pour but notamment de redémarrer le moteur dans cette phase de balancement. Ce redémarrage est réalisé en entraînant la couronne du moteur dans le sens de rotation positif. Pour obtenir cet entraînement il faut que le pignon engraine la couronne. Cela étant, cet engrènement est rendu complexe du fait que la couronne peut tourner dans le sens de rotation négatif. En effet, lorsque la couronne tourne dans ce sens de rotation négatif la roue libre est inopérante et le pignon du démarreur est au contraire entraîné par la couronne du moteur thermique.
Afin, d'améliorer cet engrènement il est connu d'utiliser des systèmes dit « d'activé engagement » selon lesquels pour faciliter l'engrènement du pignon dans la couronne, le lanceur comprenant le pignon est divisé en deux sous ensembles.
Un premier sous ensemble comprenant la roue libre montée sur un arbre du lanceur et le corps de pignon, ladite roue libre étant interposée entre le corps de pignon et l'arbre du lanceur. Un deuxième sous ensemble comprenant le pignon qui monté en translation sur ledit corps de pignon par l'intermédiaire d'un dispositif de poussée élastique apte à pousser le pignon par rapport au corps de pignon contre la couronne. Ce dispositif de poussée élastique comprend, par exemple un ressort.
Selon ces types de lanceur, lorsque la face avant du pignon est en position dent dent contre la couronne, seul le deuxième ensemble est translaté pour venir s'engrener dans la couronne. Ainsi, lorsque le pignon entre dans la couronne, la masse déplacée pour l'engrènement est plus faible que lorsque le pignon est solidaire du premier sous ensemble. Ainsi, il y a une accélération plus importante du pignon entrant dans la couronne ce qui permet au pignon de pénétrer dans la couronne plus facilement que lorsque le pignon est solidaire du premier sous ensemble. Ainsi la vitesse de déplacement en translation du pignon est augmentée et il engrène la couronne plus rapidement. En effet, on évite que le pignon ressorte de la couronne lorsqu'il n'a pas assez pénétrer dans la couronne. En effet, lorsque le pignon est solidaire du premier sous ensemble, si la première dent pénétrant dans la couronne n'a pas pénétrer suffisamment et est uniquement en contact contre une surface de la dent de la couronne risque du fait de la grande vitesse de rotation de la couronne par rapport à celle du pignon être éjecter de la couronne provoquant une détérioration de la dent du pignon ou de la couronne.
Du fait de la pénétration accélérée du pignon dans la couronne, il est ainsi possible d'adresser des vitesses de rotation négative de la couronne bien plus importantes. Cela étant, du fait des hautes vitesses de rotation négatives adressées, un fort couple est appliqué lors de l'engrènement pignon de sorte qu'un fraisage du pignon est possible. Ce fraisage est notamment dû à la vitesse relative du pignon par rapport à celle de la couronne alors que le dispositif de roue libre est inopérant.
Il existe donc un besoin pour améliorer les redémarreurs muni d'activé d'engagement et pour améliorer leur durabilité notamment en diminuant les occurrences de fraisage.
Par ailleurs, il est connu d'utiliser un redémarreur qui comprend un lanceur comprenant deux sous ensembles tel que décrit ci-dessus ainsi qu'un premier et un deuxième systèmes d'activation. Le premier système d'activation est lié au déplacement du pignon tandis que le deuxième système d'activation est lié à l'alimentation du moteur électrique. Il n'y a pas d'interaction entre ces deux systèmes d'activation qui sont indépendants fonctionnellement et organiquement. Un tel redémarreur muni du système dit « tandem » est décrit dans le brevet US8302497B2 publié dans sa version délivrée le 6 novembre 2012. II est également connu d'utiliser un système d'activation dit « split solénoïde » comprenant deux noyaux mobiles interagissant et liés respectivement au déplacement du pignon et à l'alimentation du moteur électrique. Mais ce système peut présenter des problèmes de durabilité car l'usure du pignon y est très importante. Ces deux systèmes « split solénoïde » et « tandem » bien que visant le même objectifs, sont radicalement différents tant sur le point de l'architecture que des moyens mis en place.
Il existe donc un besoin pour un démarreur présentant des caractéristiques, de coûts et durabilité optimisées. OBJET DE L'INVENTION
L'invention vise à remédier efficacement à ces inconvénients en proposant un démarreur pour moteur à combustion interne comportant:
-un moteur électrique; -un arbre d'entraînement entraîné en rotation par ledit moteur électrique ;
-un lanceur comprenant un premier sous ensemble monté sur ledit arbre d'entraînement comprenant un corps de pignon mobile en translation par rapport à l'arbre d'entraînement entre une position de début et une position de fin et un deuxième sous ensemble comprenant un pignon monté en translation sur ledit corps de pignon de sorte que le pignon est mobile en translation par rapport à l'arbre d'entraînement entre une position de repos et une position engrenée;
-un élément de liaison mécanique, dite fourchette pour déplacer le corps de pignon entre sa position de début et sa position de fin; et
-un contacteur muni d'un carter de protection comprenant : - un premier noyau mobile en translation dans ledit carter de protection, ledit premier noyau mobile étant lié au déplacement du pignon par l'intermédiaire dudit élément de liaison mécanique (15),
-un premier ensemble d'excitation apte à déplacer et à maintenir ledit premier noyau mobile dans une position selon laquelle par l'intermédiaire de l'élément de liaison mécanique le corps de pignon prend ladite position de fin,
-au moins deux bornes de contact, une des deux bornes de contact étant apte à être reliée électriquement à une source d'alimentation, l'autre étant reliée électriquement au moteur électrique
Selon une caractéristique générale, le contacteur comprend en outre : -une plaque de contact située à l'intérieur dudit carter apte à être déplacée entre une position désactivée dans laquelle ladite plaque de contact est éloignée des bornes de contact et une position activée dans laquelle ladite plaque de contact est en contact avec les deux bornes de contact pour alimenter ledit moteur électrique, -un deuxième noyau mobile en translation dans ledit carter de protection qui interfère avec le déplacement entre les positions activée et désactivée de la plaque de contact;
-un deuxième ensemble d'excitation apte à maintenir le deuxième noyau mo- bile pour qu'il puisse bloquer le déplacement de la position désactivée vers la position activée de la plaque de contact.
On bloque ainsi le déplacement du deuxième noyau et donc le déplacement de la plaque et ainsi l'alimentation du moteur électrique.
On obtient ainsi un démarreur qui pour une vitesse de rotation négative du pi- gnon par rapport à la couronne du moteur thermique donnée réduit fortement le couple de choc à l'engagement. On obtient un démarreur dont le bruit est donc réduit.
Selon d'autres caractéristiques prises individuellement ou en combinaison :
- le lanceur comprend en outre des moyens élastiques interposés entre le pignon et le corps de pignon, lesdits moyens élastiques étant montés compressés lorsque le pignon est en position de repos et le corps du pignon est en position de début.
En outre, lorsque le pignon est en position de dent dent par rapport à l'arbre d'entraînement, et que le corps du pignon est entre une position de début de dent dent et une position de fin, le ressort est dimensionné, de sorte que lors de leur décompression, les moyens élastiques poussent le pignon vers ladite position engrenée. On obtient ainsi une translation du pignon par rapport au corps de pignon efficace avec une accélération augmentée.
- les moyens élastiques comprennent un ressort d'écrasement. C'est un mode de réalisation simple, robuste et d'un cout accessible. - le pignon comprend une butée pour entrer en contact avec le corps de pignon lors de la compression du ressort desdits moyens élastiques avant que les spires dudit ressort ne soient jointives. Cela permet d'améliorer la durabilité du ressort.
- le lanceur comprend en outre un dispositif de roue libre interposé entre l'arbre d'entrainement et le premier sous ensemble comprenant le corps du pignon. Le dispositif de roue libre permet d'éviter l'entraînement du moteur électrique lorsque le pignon est engréné avec la couronne.
- le deuxième noyau mobile est mobile en translation entre une position de blocage et une position de contact, la plaque de contact étant apte à passer de la position désactivée vers la position activée seulement si le deuxième noyau mobile est en position de contact.
- le deuxième ensemble d'excitation est apte à maintenir le deuxième noyau mobile de sorte à bloquer son déplacement. - le deuxième noyau mobile est lié au déplacement de la plaque de contact.
- le deuxième noyau mobile comprend une portion de section réduite sur laquelle est montée la plaque.
- le deuxième noyau mobile est de forme globalement cylindrique.
- le démarreur comprend en outre un noyau fixe lié mécaniquement audit carter, le premier noyau mobile est apte à se déplacer en translation par rapport audit carter entre une position de repos et une position aimantée selon laquelle il entre en contacte avec ledit noyau fixe. Ainsi, le premier noyau mobile atteint la position aimantée lorsqu'il est en contact avec le noyau fixe.
- la position aimantée selon laquelle le premier noyau mobile entre en contacte avec ledit noyau fixe correspond à la position du premier noyau mobile selon laquelle par l'intermédiaire de l'élément de liaison mécanique, le corps de pignon prend ladite position de fin.
- le démarreur comprend en outre une tige dite de commande liée en déplacement à ladite plaque et en ce que ledit premier noyau mobile entraine la tige de sorte que celle-ci pousse la plaque de contact. L'utilisation d'une tige de commande permet un déplacement simple de la plaque de contact.
- ledit premier noyau mobile entraine la tige de sorte que celle-ci pousse la plaque de contact en direction des bornes de contact lorsque le premier noyau mobile passe de la position de repos à la position aimantée. - la plaque de contact est poussée par la tige et atteint la position de contact seulement si le deuxième ensemble d'excitation ne maintient pas le deuxième noyau mobile, ledit deuxième noyau mobile empêchant le passage de la position désactivée vers la position activée de la plaque de contact lorsqu'il est maintenu. - ledit deuxième noyau se déplace en translation suivant un axe parallèle à l'axe passant par une desdites deux bornes de contact. La plaque comprend donc une première et deuxième zone pour être en contact avec respectivement la première et deuxième borne et une autre zone en contact avec le deuxième noyau mobile. Cela permet d'améliorer encore la fiabilité du système du split solénoïde en dissociant la partie borne du deuxième noyau pour des raisons d'usures. La plaque ne peut pas atteindre les deux bornes de contact lors que le deuxième noyau mobile est en position de blocage.
- selon un autre exemple du paragraphe précédent, ledit deuxième noyau se déplace en translation suivant un axe parallèle à une des bornes ou de l'axe. L'une des bornes est soit localisé entre l'autre borne et ledit deuxième noyau soit ledit deuxième noyau est localisé entre les deux bornes. Ledit deuxième noyau pouvant être décalé par rapport à un plan passant par le centre des deux bornes. La plaque comprend donc une première et deuxième zone pour être en contact avec respectivement la première et deuxième borne et une autre zone en contact avec le deuxième noyau mobile. Cela permet d'améliorer encore la fiabilité du système du split solénoïde en dissociant la partie borne du deuxième noyau pour des raisons d'usures. La plaque ne peut pas atteindre les deux bornes de contact lors que le deuxième noyau mobile est en position de blocage.
Selon un mode de réalisation, la plaquette comprend sur son bord un trou ouvert sur la tranche en forme de U pour y insérer une extrémité du deuxième noyau.
- le démarreur comprend en outre une carcasse au sein de laquelle tourne l'arbre d'entraînement, ledit pignon dans sa position engrenée étant situé à l'intérieur de ladite carcasse. - le démarreur comprend en outre une carcasse au sein de laquelle tourne l'arbre d'entrainement, ledit pignon dans sa position engrenée étant situé à l'extérieur de ladite carcasse. La solution proposée peut être appliquée à un démarreur avec un pignon sortant ou un démarreur ayant un pignon non sortant.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
BREVE DESCRIPTION DES FIGURES
La figure 1 est une vue en coupe longitudinale du démarreur selon un mode de réalisation de la présente invention; La figure 2 est une vue d'une courbe de ralenti d'un moteur thermique;
La figure 3 est une vue d'une courbe des couples de choc à l'engagement du pignon; et
La figure 4 est une vue en coupe longitudinale du démarreur selon un autre mode de réalisation de la présente invention. Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre. On utilisera une orientation axiale d'avant en arrière correspondant à une orientation de gauche à droite conformément à la figure 1 .
DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION
La figure 1 représente un schéma d'un démarreur 1 par exemple un redémarreur. Le démarreur 1 comprend un lanceur 3 sur lequel est monté un pignon 5 destiné à engrener une couronne d'un moteur à démarrer, dite couronne moteur 13. Le pignon 5 est entraîné en rotation par un moteur électrique 7 disposé dans une culasse 9. Le moteur électrique 7 comprend un arbre 10. L'entraînement du lanceur 3 est réalisé via une couronne réductrice 11 disposée à l'extrémité de la culasse 9. On définit un axe X comme l'axe de rotation du moteur électrique 7. Selon un exemple de réalisation, cet axe correspond également à l'axe selon lequel est translaté le pignon par le lanceur. Les directions avant et arrière dans la suite de la description sont définies par rapport à la direction de cet axe. Plus précisément, l'avant du démarreur se situe lorsque l'on suit l'axe X vers la gauche du démarreur selon les figures 1 et 4 tandis que l'arrière du démarreur se situe lorsque l'on suit l'axe X vers la droite du démarreur selon les figures 1 et 4. L'axe X est également appelé l'axe du moteur électrique.
Le démarreur 1 comprend également un contacteur 100 apte à agir sur le lanceur 3 par l'intermédiaire d'une fourchette ou levier pivotant 15.
Ce contacteur 100 est doté d'un noyau mobile 17, d'un noyau fixe 19 et d'une cuve 21 métallique dans laquelle est agencée un ensemble d'excitation 16. Cet ensemble d'excitation 16 comprend une bobine d'appel 25 et une bobine de maintien 23. La bobine d'appel 25 et la bobine de maintien 23 sont montées sur un support 27 annulaire isolant. Ce support 27 et l'extrémité arrière de la cuve 21 sont dotés centralement d'un passage pour le noyau 17 mobile. On définit un axe Y comme l'axe selon lequel se déplace le noyau mobile 17 sous l'action de l'ensemble d'excitation 16. L'axe Y est également appelé l'axe du contacteur 100.
Une extrémité du noyau mobile 17 est reliée à la fourchette ou levier pivotant 15. L'autre extrémité du noyau mobile 17 est destinée à agir sur une extrémité avant d'une tige de commande 29 par poussée à travers un trou central 31 du noyau fixe 19 dans lequel la partie avant de la tige de commande 29 est montée coulissante.
La tige de commande 29 porte une plaque de contact 33. La plaque de contact 33 s'étend transversalement par rapport à la tige 29 pour coopérer avec deux bornes électriques 35a, 35b d'un circuit électrique de puissance et établir entre elles un contact électrique lorsque la plaque de contact est dans une position activée. L'une des bornes 35a est destinée à être reliée à une borne positive de la batterie, l'autre borne 35b étant destinée à être reliée par l'intermédiaire d'un câble à des balais du moteur électrique 7 de polarité positive. Les deux bornes 35a, 35b sont fixes et portées par un capot 39 en matière électriquement isolante assurant la fermeture de l'arrière de la cuve 21 . Ainsi, le capot 39 avec la cuve 21 forment un carter de protection du contacteur 100. La fixation du capot 39 est réalisée par rabattement de matière de l'extrémité libre de la cuve 21 sur le capot 39. La plaque 33 est apte à se translater par rapport au capot 39 suivant l'axe Y entre une position activée selon laquelle elle est en contact avec les deux bornes électriques 35a, 35b et une position désactivée dans laquelle ladite plaque de contact 33 est éloignée des bornes de contact 35a, 35b. Les deux bornes électriques 35a 35b sont également appelées bornes de contact car elles permettent le contact électrique avec la plaque de contact 33 pour l'alimentation du moteur électrique 7. La tige de commande 29 porte en outre un ressort 37 d'écrasement selon l'axe Y agencé entre un épaulement 41 de la tige de commande 29 et une face de la plaque de contact 33. Le contacteur 100 comporte également un ressort de rappel 43 agencé entre le capot 39 et une butée de la tige de commande 29.
Le lanceur 3 comprend un premier sous ensemble monté sur un arbre d'entraînement 45 lié en rotation avec l'arbre 10 du rotor du moteur électrique 7. Ce premier sous ensemble comprend un corps de pignon 47 mobile en translation par rapport à l'arbre d'entraînement 45 entre une position de début et une position de fin. Le lanceur 3 comprend également un deuxième sous ensemble comprenant le pignon 5 monté en translation sur ledit corps de pignon 47 de sorte que le pignon 5 est mobile en translation par rapport à l'arbre d'entraînement 45 entre une position de repos et une position engrenée. Dans la position engrenée le pignon 5 est déplacé suffisamment vers l'avant du démarreur comme indiquée par la flèche 49 pour venir au niveau de la couronne 13 et ainsi s'y engrené.
Par ailleurs, le lanceur 3 peut comprendre un dispositif de roue libre 51 interposé entre l'arbre d'entraînement 45 et le premier sous ensemble comprenant le corps du pignon. Par exemple, la roue libre 51 comprend une cloche 53, un rouleau 55 et une piste (non référencée sur la figure 1 ). La cloche 53 et le rouleau 55 sont liées en rotation à l'arbre d'entraînement 45, tandis que la piste est liée en rotation au corps 47 du pignon. La fourchette 15 comprend une première extrémité 15a rattachée au noyau mobile 17 du contacteur 100. La liaison entre la fourchette 15 et le noyau mobile 17 peut se faire par tout moyen adéquat pour transmettre la force entre la fourchette 15 et le noyau mobile 17 comme par exemple un axe d'attelage.
La deuxième extrémité 15c de la fourchette 15 vient en contact avec le lanceur 3 pour permettre le déplacement axial du pignon 5. Le contact se fait par exemple au niveau de la cloche du dispositif roue libre 51 du lanceur 3 configurée pour recevoir l'extrémité 15c de la fourchette 15 sur tout le déplacement du lanceur 3. En effet, le point de contact entre l'extrémité 15c de la fourchette 15 et la cloche 53 du dispositif de roue libre 51 varie lors du basculement de la fourchette 15 provoquant le déplacement axial du lanceur 3. La fourchette 15 comprend également une partie centrale 15b comprenant un point de pivot 57 destiné à venir contre un élément d'appui 59. L'élément d'appui 59 est par exemple fixé sur la culasse 9 du démarreur 1 ou sur la couronne réductrice 11 . En l'absence d'alimentation du contacteur 100, un ressort de rappel 61 contraint le noyau mobile 17 dans une position de repos dans laquelle l'entrefer 63, c'est-à-dire la distance entre la partie fixe 19 du noyau magnétique et le noyau mobile 17, est maximale.
Comme cela est montré à la figure 1 , le noyau 17 mobile est initialement dans une position dite de repos, dans laquelle le noyau 17 est éloigné du noyau 19 fixe. La plaque 33 se trouve alors dans une position désactivée dans laquelle la plaque 33 est éloignée des bornes de contact 35a, 35b.
Dans la position de repos du noyau mobile 17, la fourchette 15 n'est généralement pas en contact avec l'élément d'appui 59. La fourchette 15 est par exemple réalisée en plastique rigide comme par exemple un thermoplastique (PA66 GF30).
Suite à une demande du calculateur moteur (non représenté), les bobines 25 et 23 du premier élément d'excitation 16 sont activées électriquement et créent alors un champ magnétique. Ce champ magnétique permet le déplacement axial du noyau mobile 17 en direction du noyau fixe 19, comme cela est montré à la figure 1 par la flèche 65. En d'autres termes, l'alimentation du premier élément d'excitation 16 du contacteur 100 provoque le déplacement du noyau mobile 17 dans l'entrefer 63 comme indiqué par la flèche 65.
Puis, l'extrémité arrière du noyau mobile 17 entre alors en contact avec l'extrémité avant de la tige de commande 29 puis déplace axialement la tige 29 à travers le trou 31 en direction de l'arrière du contacteur 100 jusqu'à ce que ledit noyau mobile 17 vienne en appui contre le noyau fixe 19 dans une position dite aimantée. Dans la position dite aimantée, le noyau mobile 17 agit sur la fourchette par l'intermédiaire d'une tige de liaison 69 de sorte que la fourchette 15 se déplace dans un premier temps jusqu'au contact avec l'élément d'appui 59 qui correspond au début de l'engagement de la fourchette 15 avec l'élément d'appui 59. Il est avantageux que jusqu'à l'engagement de la fourchette avec l'élément d'appui 59 et notamment lors du passage de la position de repos à la position aimantée le noyau mobile 17 accélère sans résistance puisque que le lanceur 3 est resté immobile.
Dans un deuxième temps, le point de pivot 57 de la fourchette vient en contact avec l'élément d'appui 59 ce qui provoque le basculement de la fourchette 15 autour du point de pivot 57 et vient déplacer le lanceur 3 axialement selon l'axe X comme indiqué par la flèche 49. Ce déplacement axial du lanceur 3 provoque le déplacement du pignon 5 vers la couronne 13 du moteur à démarrer.
Plus précisément, l'extrémité 15c de la fourchette agit sur la cloche 53 de la roue libre, ce qui provoque le déplacement du corps de pignon par rapport à l'arbre d'entraînement 45. De la sorte, le corps de pignon 47 se déplace en translation par rapport à l'arbre d'entraînement 45 d'une position début à une position fin dans laquelle il vient se rapprocher du pignon 5 pour provoquer son déplacement. A cet effet par exemple, la liaison entre le corps de pignon et l'arbre d'entraînement est une liaison glissière.
Des moyens élastiques 71 sont interposés entre le pignon 5 et le corps de pignon 47. Les moyens élastiques agissent sur le pignon 5 pour provoquer son déplacement. Quand le corps de pignon 47 atteint la position de fin alors que le pignon 5 est encore en position de repos, par exemple si le pignon 5 vient en contact dent contre dent avec la couronne moteur 13, alors les moyens élastiques se compriment. Ils exercent donc une force axiale sur le pignon qui est déplacé par rapport à l'arbre d'entraînement 45 de sa position de repos vers sa position engrenée et ce dès qu'une fenêtre de tir se présente.
En d'autres termes, le pignon peut avoir deux positions par rapport au corps de pignon, une position non comprimée et une position comprimée. A l'état initial, par rapport à l'arbre d'entraînement 45, le pignon 5 est en position de repos et le corps de pignon est en position de début. Le pignon est alors dans une position non comprimée par rapport au corps de pignon. A l'état intermédiaire, par rapport à l'arbre d'entrainement le pignon 5 est en position de repos et le corps de pignon est en position de fin. Le pignon est alors dans une position comprimée par rapport au corps de pignon. A l'état final, par rapport à l'arbre d'entrainement 45, le pignon 5 est en position engrenée et le corps de pignon est en position de fin. Le pignon est alors dans une position non comprimée par rapport au corps de pignon. L'état intermédiaire est un état transitoire qui correspond à la position du pignon par rapport au corps de pignon avant l'action des moyens élastiques. Par exemple, les moyens élastiques 71 comportent un ressort d'écrasement. Ce ressort peut être orienté suivant l'axe X. Dans le cas d'une couronne 13 qui présente une vitesse de rotation positive ou négative, le pignon va pouvoir s'insérer dès qu'une fenêtre de tir se présente.
Selon un mode de réalisation, la liaison entre le corps de pignon 47 et l'arbre d'entrainement 45 est une liaison hélicoïdale qui permet la translation tout en provoquant une rotation du corps du pignon 47 par rapport à l'arbre d'entrainement 45. Ainsi, dans le cas d'une vitesse de couronne 13 nulle, du fait de cette rotation du corps de pignon 47 provoquée par la liaison hélicoïdale, on peut s'insérer en position engrenée sans que le moteur électrique 7 soit en rotation.
Selon un mode de réalisation, un ressort dent-dent 67 est monté sur la tige de liaison 69, ledit ressort agissant entre le noyau mobile 17 et ladite tige de liaison 69. Le cas échéant, lorsque le pignon 5 vient en contact dent contre dent avec la couronne moteur 13 cela provoque également la compression du ressort dent-dent 67. On voit ainsi que le ressort dents contre dents 67 est apte à être comprimé en cas de non pénétration directe du pignon 5 du lanceur dans la couronne du moteur thermique 13. Afin de limiter la puissance du premier élément d'excitation 16, l'élément d'appui 59 est un élément souple, c'est-à-dire un élément dont le module d'élasticité est inférieur au module d'élasticité du ressort dent-dent 67, par exemple un module d'élasticité en compression inférieur à 1000 Mpa.
Selon un mode de réalisation, l'élément souple 59 a également un module d'élasticité inférieur à celui de la fourchette. Par ailleurs, dans le cas où il y a un ressort 67 dent dent, ledit ressort dent dent 67 peut également présenter un module d'élasticité inférieur à celui de la fourchette. Le ressort 67 dent dent se comprime donc avant déformation de la fourchette 15.
L'élément souple est par exemple réalisé en élastomère ou en caoutchouc voire dans un mélange d'élastomère et de caoutchouc. En effet, l'utilisation d'un élément d'appui souple qui va se comprimer avant la compression du ressort dent-dent 67 permet de modifier l'angle de la fourchette 15 et de réduire la course du noyau mobile 17 lors du contact dent contre dent entre le pignon 5 et la couronne moteur 13. II est à noter qu'au lieu d'utiliser un élément d'appui 59 qui soit souple, il est également possible de placer l'élément souple au niveau du point de pivot 57 de la fourchette 15 ou d'un élément intermédiaire disposé entre la fourchette 15 et l'élément d'appui 59. L'élément d'appui 59 est solidaire de la culasse 9 ou d'un élément fixé à la culasse 9 comme par exemple une carcasse 87 du démarreur 1 ou la couronne réductrice 11 .
Selon la figure 1 , la plaque de contact 33 est montrée dans sa position désactivée. Le déplacement de la tige 29 a pour effet de déplacer comme cela est montré à la figure 1 par une flèche 85, la plaque 33 vers une position, dite de pré-engagement. Dans cette position la plaque 33 est en contact avec la borne 35b mais est maintenue à distance de l'autre borne 35a. Dans cette position de pré-engagement, le pignon 5 par l'intermédiaire du lanceur 3 et de la fourchette 15 peut être en position engrenée. Toutefois, le moteur électrique 7 ne tourne pas encore. En effet, la rotation du moteur est consécutive à son alimentation qui se produit lorsque la plaque 33 est en contact avec les deux bornes de contact 35a et 35b. En d'autres termes, pour permettre le contact entre les deux bornes de contact 35a et 35b par l'intermédiaire de la plaque de contact 33 et ainsi permettre le démarrage du moteur, il n'y a pas que le noyau mobile 17, la tige de commande 29 et la plaque 33 qui interviennent.
Selon l'invention un micro-solénoïde 72 est intégré à une des bornes, par exemple la borne 35a. Par micrO-solenoide, on entend un solénoïde plus petit que celui de le solénoïde principale permettant avec son noyau mobile de déplacer le pignon. Selon un autre mode de réalisation, le micro-solénoïde 72 est monté en parallèle avec la borne 35b, entre une paroi du capot et la zone de contact de la borne 35a. En particulier, la zone de contact se situe entre la borne 35b et le second noyau du micro-solenoide dans un même plan. En outre la borne 35a comprend une portion déportée pour être en contact avec la plaquette et une portion cylindrique pour être raccordée au moteur électrique du démarreur. Ce micro-solénoïde 72 comporte un deuxième ensemble d'excitation par exemple, une bobine 73 fixe par rapport au capot 39 et un deuxième noyau 75 mobile en translation par rapport au capot 39. Le noyau 75 est positionné dans l'ouverture délimité par la bobine 73. Le noyau 75 est mobile entre une position de blocage dans laquelle une extrémité du noyau 75 fait saillie par rapport à la borne 35a de manière à empêcher un contact électrique entre la plaque 33 et la borne 35a; et une position de contact dans laquelle le noyau 75 autorise un contact électrique entre la plaque 33 et la borne 35a. On définit un axe Z comme l'axe selon lequel se déplace le noyau mobile 75 sous l'action de l'ensemble d'excitation 73. En d'autres termes, le deuxième noyau mobile 75 est mobile par rapport au capot 39 en translation entre une position de blocage et une position de contact, la plaque de contact 33 étant apte à passer de la position désactivée vers la position activée seulement si le deuxième noyau mobile 75 est en position de contact. La plaque de contact 33 est attachée au noyau 75 de telle manière que lors du déplacement de la plaque de contact 33 de la position activée à la position désactivée dans laquelle la plaque 33 est éloignée des bornes de contact 35a, 35b, la plaque de contact 33 entraîne le noyau 75 vers sa position de blocage.
A cet effet, comme cela est bien visible sur la figure 1 , la plaque 33 est montée via une ouverture sur une portion 77 de section réduite du noyau 75. Cette portion est délimitée axialement par une tête 78 du noyau 75 située du côté du noyau fixe 19 ainsi qu'un épaulement intermédiaire 79 situé entre les deux têtes d'extrémité 78, 81 du noyau 75. La plaque 33 présente une ouverture ayant un diamètre sensiblement égal au diamètre de la portion de section réduite 77, mais inférieur au diamètre de la tête d'extrémité 78 et de l'épaulement intermédiaire 79. Cet épaulement 79 est défini par une différence de diamètre du noyau 75.
La fabrication peut par exemple être faite en insérant la portion 79 dépourvue encore de la tête 78 dans l'ouverture de la plaque de contact 33, puis on déforme l'extrémité de la portion 79 par écrasement formant la tête 78.
Selon un autre mode de réalisation, la tête 78 et l'ouverture de la plaque sont formés de façon à pouvoir être monté par baïonnette. Autrement dit, la tête 78 est par exemple rectangulaire et l'ouverture est aussi rectangulaire de manière à pouvoir lors du montage insérer la tête puis la portion 79 du noyau 75 dans la plaque par l'ouverture puis tournée à 90° le noyau 75 par rapport à la plaque de 90° de manière à ce que la tête en forme de rectangle ne puisse plus passer au travers de l'ouverture en forme de rectangle. Selon un autre mode de réalisation de fabrication, la tête 78 est une rondelle fixée sur la portion 79, par exemple par montage serré, collage soudage.
Selon un autre mode de réalisation, la plaquette comprend sur son bord un trou ouvert sur la tranche en forme de U pour y insérer la section réduite 77 du deuxième noyau située. Ainsi le montage est plus simple. Lorsque le micro-solénoïde 72 n'est pas alimenté. Le noyau mobile 75 est maintenu en position de blocage par la plaque de contact 33 qui tire sur la tête 78 du noyau 75 alors que la tête opposée 81 est en appui contre une extrémité de la bobine 73.
Le contacteur 100 comporte en outre un aimant 83 positionné en fond du capot 39 pour assurer une retenue du noyau 75 du micro-solénoïde 72 lorsque ce dernier se trouve en position de contact, afin de limiter au maximum les risques de rebonds du noyau 75. La force du ressort de rappel 43 est suffisamment forte pour décoller le noyau 75 par rapport à l'aimant 83 lors d'une mise hors tension des bobines d'appel et de maintien de l'élément 16.
Lorsque la plaque de contact 33 pousse le noyau 75 en direction de sa position de contact et que la bobine du micro solénoïde 72 est désactivée le noyau 75 se déplace de sa position de blocage vers sa position de contact. Le noyau 75 peut finir sa course en étant attiré par l'aimant 83 ou par le biais de la plaquette qui le pousse ou d'un élément élastique comprimé en position initiale du noyau.
Pour maintenir la plaque à distance de l'autre borne 35a, le micro-solénoïde 72 a été préalablement alimenté, en sorte que le noyau 75 peut résister à l'effort appliqué par la plaque 33 en appui contre l'épaulement intermédiaire 79. Ainsi, grâce au deuxième ensemble d'excitation et malgré l'effort appliqué par la plaque, le noyau 75 est maintenu en position de blocage et son déplacement vers sa position de contact est empêché. Le ressort de rappel 43 et le ressort d'écrasement 37 sont par ailleurs comprimés.
Lorsqu'une demande de démarrage est sollicitée par le calculateur moteur, l'alimentation du micro-solénoïde 72 est coupée, en sorte que le noyau 75 ne résiste plus à l'effort appliqué par la plaque 33 et passe alors en position de contact. La plaque de contact 33 peut passer en position activée et établit alors un contact avec les deux bornes 35a, 35b, ce qui permet d'alimenter le moteur électrique du démarreur.
On note qu'il existe de préférence un jeu entre la tête 78 du noyau 75 tournée du côté du noyau fixe 19 et une face de la plaque 33 lorsque le noyau 75 est en position de contact. Cela permet d'éviter que la tête 78 du noyau entre en contact avec la plaque 33 lorsque le noyau 75 est en position de contact.
Il existe également un jeu entre l'épaulement intermédiaire 79 du noyau 75 du micro- solénoïde 72 et une face de la plaque de contact 33 tournées vers ledit épaulement intermédiaire 79. Cela permet d'éviter qu'un éventuel rebond du noyau 75 lorsque ce dernier passe de la position de blocage à la position de contact entraîne un choc entre la plaque 33 et l'épaulement intermédiaire 79.
Lors de la mise hors tension des bobines 25 et 23, le noyau mobile 17 n'est plus attiré vers le noyau fixe 19, ce qui provoque un retour du noyau mobile 17 dans la position dite de repos via l'action du ressort de rappel 61 positionné entre la cuve 21 et une extrémité du noyau mobile 17. Le ressort 37 axial d'écrasement puis le ressort de rappel 43 se décompriment en poussant sur la tige de commande 29, ce qui a pour effet d'éloigner la plaque de contact 33 des bornes 35a, 35b. Le noyau 75 se décolle alors de l'aimant 83 et est entraîné par la plaque de contact 33 vers sa position de blocage. Le déplacement du noyau 75 est limité par la tête 81 qui vient en butée contre la bobine 73. La plaque de contact 33 passe alors de la position activée à la position désactivée.
La figure 2 représente la courbe de ralenti d'un moteur thermique. La courbe 210 est celle de la vitesse de rotation de la couronne du moteur thermique en fonction du temps. Cette courbe est représentée dans un repère orthonormé comprenant un axe des abscisses 202 et un axe des ordonnées 201 . L'unité de l'axe 202 est les secondes, tandis que celui de l'axe 201 est exprimé en tour par minutes. On note que cette courbe de ralenti peut être divisée en plusieurs séquences représentées par les bornes 205, 206 et 207 sur l'axe 202.
Avant la borne 205, la séquence est celle d'un ralenti moteur. Cette séquence est caractérisée par une vitesse de ralenti représentée par la borne 208 sur l'axe 201 autour de laquelle la vitesse de rotation de la couronne du moteur oscille. Entre la borne 205 et la borne 206, cette oscillation se poursuit, mais conjointement la vitesse de rotation moyenne chute fortement. Il s'agit d'une séquence de ralentissement du moteur.
Entre la borne 206 et la borne 207, on atteint la séquence de balancement. Au cours de cette séquence la vitesse de rotation du moteur devient négative. Jusqu'à présent la vitesse de rotation du moteur était positive, cela correspondait à une rotation de la couronne dans le sens positif mentionné ci-dessus. Une vitesse de rotation négative correspond à une rotation du moteur dans le sens négatif opposé au sens positif. On voit donc qu'au cours de cette séquence de balancement la vitesse de rotation de la couronne du moteur thermique change de signe plusieurs fois, elle devient négative puis redevient positive et enfin négative.
Au cours du premier passage en vitesse négative de la séquence de balancement, on voit que la courbe 210 traverse deux seuils représentés par les lignes 203 et 204. Le seuil 203 correspond à la vitesse la plus négative adressable avec un pignon monobloc tandis que le seuil 204 correspond à la vitesse la plus négative adressable avec un pignon en deux parties appelé aussi « active engagement » selon un terme anglo saxon bien connu de l'homme du métier. Par exemple le seuil 203 correspond à - 100 tr/min, tandis que le seuil 204 correspond à -200 tr/min.
A partir de la borne 207, le moteur est arrêté et la vitesse de rotation du moteur thermique est nulle. Dans la position aimantée du noyau mobile 17, on peut notamment, dans le cas d'une vitesse de rotation nulle, positive ou négative qui correspond aux séquences 205, 206 ou 207 décrites dans la figure 2, engrainer la couronne 13 sans que le moteur électrique 7 ne soit actionné à l'aide du dispositif illustré en figure 1 .
La figure 3 illustre plusieurs points représentant le couple de choc à l'engagement du pignon 5 dans la couronne 13 en fonction de la vitesse de rotation négative de la couronne. Les points sont représentés dans un repère orthonormé, chaque point correspondant à une occurrence d'engagement. Le repère orthonormé comprend un axe d'abscisse 402 exprimé en tour par minute et un axe d'ordonnée 401 exprimé en N. mètres. 5 groupes de points 403, 404, 405, 406 et 407 y sont représentés. Les 3 groupes 403, 404 et 405 correspondent à des couples de chocs avec un démarreur classique ou un redémarreur tandis que les groupes 406 et 407 correspondent à des couples de chocs avec redémarreur selon l'invention illustré à la figure 1 .
Comme on peut le voir sur la figure 3, dans le groupe 405 les occurrences d'engagement se déroulent toutes à la vitesse de rotation négative de la couronne de -75 tour/minute. Celles du groupe 404 se déroulent à la vitesse de rotation négative de la couronne de -100 tr/min. Enfin celles du groupe 403 se déroulent à la vitesse de rotation négative de -150 tr/min. Comme on peut le voir dans les groupes 403, 404 et 405, plus la vitesse de rotation négative est importante (en valeur absolue) plus la valeur moyenne de couple de choc à l'engagement augmente. Cela devient critique avec les occurrences pour lesquelles le couple de choc à l'engagement devient trop important ce qui impacte fortement la durabilité du démarreur, en effet le choc se propage du pignon au moteur électrique, pouvant détériorer les pièces différentes entre ces deux éléments, en particulier la roue libre et le réducteur.
Par ailleurs, étant donné le seuil 203, il apparaît que les groupes 404 et 405 sont adressables avec un pignon monobloc ou avec un pignon en deux parties. Par contre, le groupe 403 avec une vitesse de -150 tr/min n'est atteignable qu'avec un pignon en deux parties. On remarque que le pignon en deux parties ne permet pas de réduire le couple de choc à l'engagement, au contraire, il l'augmente même étant donné que les vitesses négatives adressables sont plus importantes. Les groupes 406 et 407 correspondent à celles obtenues avec un démarreur selon l'invention muni d'un contacteur 100. Il apparaît pour une même vitesse de rotation négative le couple de choc à l'engagement du pignon 5 dans la couronne 13 est fortement réduit comme on peut le voir lorsque l'on compare les groupes 404 et 407.
Il apparaît pour un même couple de choc à l'engagement du pignon 5 dans la couronne 13 moyen maximum, on peut fortement augmenter (doubler) la vitesse de rotation négative adressable comme on peut le voir lorsque l'on compare les groupes 404 et 406. On peut même obtenir un couple de choc à l'engagement du pignon 5 dans la couronne 13 moins important avec une vitesse de rotation négative adressée plus importante (en valeur absolue) comme on peut le voir en comparant les groupes 403 et 406. Cela est possible de part le principe du contacteur 100 qui permet de découpler l'engrènement de la couronne 13 de la mise en action du moteur électrique 7 en combinaison avec l'active engagement comme illustré sur la figure 1 .
La figure 4 illustre un démarreur selon un mode de réalisation de l'invention. Chacune des références de la figure 1 sont reprises et correspondent au même élément dans la figure 4. Le démarreur de la figure 4 diffère de celui de la figure 1 de la part le positionnement de la carcasse 87 par rapport au pignon 5. Plus précisément dans la figure 1 , le pignon est dans sa position engrenée situé à l'intérieur de la carcasse 87 au sein de laquelle tourne l'arbre d'entraînement. Au contraire, dans la figure 4 le pignon est dans sa position engrenée situé à l'extérieur de la carcasse 87 au sein de laquelle tourne l'arbre d'entraînement.

Claims

REVENDICATIONS
1 . Démarreur (1 ) pour moteur à combustion interne, lequel démarreur comporte : -un moteur (7) électrique;
-un arbre d'entraînement (45) entraîné en rotation par ledit moteur électrique (7) ;
-un lanceur comprenant un premier sous ensemble monté sur ledit arbre d'entraînement (45) comprenant un corps de pignon (47) mobile en translation par rapport à l'arbre d'entraînement entre une position de début et une position de fin et un deuxième sous ensemble comprenant un pignon monté en translation sur ledit corps de pignon (47) de sorte que le pignon est mobile en translation par rapport à l'arbre d'entraînement entre une position de repos et une position engrenée;
-un élément de liaison mécanique, dite fourchette (15) pour déplacer le corps de pignon entre sa position de début et sa position de fin; et -un contacteur (100) muni d'un carter de protection (21 , 39) comprenant :
- un premier noyau mobile (17) en translation dans ledit carter de protection (21 , 39), ledit premier noyau mobile étant lié au déplacement du pignon (5) par l'intermédiaire dudit élément de liaison mécanique (15),
-un premier ensemble d'excitation (16) apte à déplacer et à maintenir ledit premier noyau mobile (17) dans une position selon laquelle par l'intermédiaire de l'élément de liaison mécanique le corps de pignon prend ladite position de fin,
-au moins deux bornes de contact (35a, 35b), une des deux bornes de contact étant apte à être reliée électriquement à une source d'alimentation, l'autre étant reliée électriquement au moteur électrique (7), caractérisé en ce que le contacteur (100) comprend en outre :
-une plaque de contact (33) située à l'intérieur dudit carter (21 , 39) apte à être déplacée entre une position désactivée dans laquelle ladite plaque de contact (33) est éloignée des bornes de contact (35a, 35b) et une position activée dans laquelle ladite plaque de contact (33) est en contact avec les deux bornes de contact (35a, 35b) pour alimenter ledit moteur électrique (7),
-un deuxième noyau (75) mobile en translation dans ledit carter de protection (21 , 39) qui interfère avec le déplacement entre les positions activée et désactivée de la plaque de contact (33);
-un deuxième ensemble d'excitation (73) apte à maintenir le deuxième noyau mobile (75) pour qu'il puisse bloquer le déplacement de la position désactivée vers la position activée de la plaque de contact.
2. Démarreur selon la revendication 1 , caractérisé en ce que le lanceur comprend en outre des moyens élastiques interposés entre le pignon et le corps de pignon, lesdits moyens élastiques étant compressés lorsque le pignon est en position de repos et le corps du pignon est en position de fin, de sorte que lors de leur décompression les moyens élastiques poussent le pignon vers ladite position engre- née.
3. Démarreur selon la revendication 2, caractérisé en ce que les moyens élastiques comprennent un ressort d'écrasement.
4. Démarreur selon la revendication 2, caractérisé en ce que le pignon comprend une butée pour entrer en contact avec le corps de pignon lors de la compres- sion du ressort desdits moyens élastiques avant que les spires dudit ressort ne soient jointives.
5. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce que le lanceur comprend en outre un dispositif de roue libre (51 ) interposé entre l'arbre d'entraînement (45) et le premier sous ensemble comprenant le corps du pignon.
6. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième noyau mobile (75) est mobile en translation entre une position de blocage et une position de contact, la plaque de contact (33) étant apte à passer de la position désactivée vers la position activée seulement si le deuxième noyau mobile (75) est en position de contact.
7. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième ensemble d'excitation (73) est apte à maintenir le deuxième noyau mobile (75) de sorte à bloquer son déplacement.
8. Démarreur selon l'une quelconque des revendications précédentes, carac- térisé en ce que le deuxième noyau mobile (75) est lié au déplacement de la plaque de contact (33).
9. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième noyau mobile (75) comprend une portion de section réduite sur laquelle est montée la plaque (33).
10. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce que le deuxième noyau mobile (75) est de forme globalement cylindrique.
1 1 . Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre un noyau fixe (19) lié mécaniquement audit carter (21 , 39), le premier noyau mobile (17) est apte à se déplacer en translation par rapport audit carter entre une position de repos et une position aimantée selon laquelle il entre en contacte avec ledit noyau fixe (19).
12. Démarreur selon la revendication précédente, caractérisé en ce que la position aimantée selon laquelle le premier noyau mobile (17) entre en contacte avec ledit noyau fixe correspond à la position du premier noyau mobile (17) selon laquelle par l'intermédiaire de l'élément de liaison mécanique (15), le corps de pignon prend ladite position de fin.
13. Démarreur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre une tige (29) dite de commande liée en dépla- cernent à ladite plaque (33) et en ce que ledit premier noyau mobile entraine la tige (29) de sorte que celle-ci pousse la plaque de contact (33).
14. Démarreur selon la revendication 13 quand dépendante de la revendication 12, caractérisé en ce ledit premier noyau mobile (17) entraine la tige (29) de sorte que celle-ci pousse la plaque de contact (33) en direction des bornes de con- tact (35a, 35b) lorsque le premier noyau mobile (17) passe de la position de repos à la position aimantée.
15. Démarreur selon la revendication 13 ou 14, caractérisé en ce que la plaque de contact est poussée par la tige (29) et atteint la position de contact seulement si le deuxième ensemble d'excitation (73) ne maintient pas le deuxième noyau mobile (75), ledit deuxième noyau mobile (75) empêchant le passage de la position désactivée vers la position activée de la plaque de contact (33) lorsqu'il est maintenu.
PCT/FR2016/052576 2015-10-09 2016-10-06 Démarreur pour moteur thermique de véhicule dont le relais est muni de deux noyaux magnétiques mobiles WO2017060635A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1559633A FR3042326B1 (fr) 2015-10-09 2015-10-09 Machine electrique tournante muni d'un rotor comprenant des poles en forme de griffe
FR1559633 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017060635A1 true WO2017060635A1 (fr) 2017-04-13

Family

ID=55589931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052576 WO2017060635A1 (fr) 2015-10-09 2016-10-06 Démarreur pour moteur thermique de véhicule dont le relais est muni de deux noyaux magnétiques mobiles

Country Status (2)

Country Link
FR (1) FR3042326B1 (fr)
WO (1) WO2017060635A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003307A1 (fr) * 2013-03-13 2014-09-19 Valeo Equip Electr Moteur Demarreur a lanceur muni d'un embrayage a friction a double leviers de commande
FR3004222A1 (fr) * 2013-04-08 2014-10-10 Valeo Equip Electr Moteur Ensemble porte-pignon perfectionne, lanceur, et demarreur pour vehicule automobile correspondants
WO2014167254A2 (fr) * 2013-04-10 2014-10-16 Valeo Equipements Electriques Moteur Démarreur a lanceur muni d'un élément intermédiaire de réduction de frottement entre un levier de commande et un entraîneur
FR3017991A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017992A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017989A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017990A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003307A1 (fr) * 2013-03-13 2014-09-19 Valeo Equip Electr Moteur Demarreur a lanceur muni d'un embrayage a friction a double leviers de commande
FR3004222A1 (fr) * 2013-04-08 2014-10-10 Valeo Equip Electr Moteur Ensemble porte-pignon perfectionne, lanceur, et demarreur pour vehicule automobile correspondants
WO2014167254A2 (fr) * 2013-04-10 2014-10-16 Valeo Equipements Electriques Moteur Démarreur a lanceur muni d'un élément intermédiaire de réduction de frottement entre un levier de commande et un entraîneur
FR3017991A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017992A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017989A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant
FR3017990A1 (fr) * 2014-02-27 2015-08-28 Valeo Equip Electr Moteur Contacteur a micro-solenoide perfectionne pour demarreur de vehicule automobile et demarreur correspondant

Also Published As

Publication number Publication date
FR3042326B1 (fr) 2017-11-03
FR3042326A1 (fr) 2017-04-14

Similar Documents

Publication Publication Date Title
FR2944066B1 (fr) Systeme de demarrage de moteur minimisant le bruit ou l'impact mecanique.
EP2385538B1 (fr) Contacteur électromagnétique à double contact et démarreur pour moteur thermique l'incorporant
FR2944565B1 (fr) Appareil destine au demarrage d'un moteur monte sur un vehicule
EP2385539B1 (fr) Démarreur pour moteur thermique équipé d'un dispositif de commande électronique
FR2944325A1 (fr) Demarreur avec structure de reduction de bruit.
FR2944833A1 (fr) Demarreur pour vehicules
EP1404968A1 (fr) Demarreur pour vehicule automobile
FR2944069A1 (fr) Demarreur adapte pour l'absorption de l'oscillation d'un moteur
EP1769154B1 (fr) Demarreur, notamment de vehicule automobile, equipe d"un lanceur a roue libre par friction
FR2799800A1 (fr) Demarreur
WO2017060635A1 (fr) Démarreur pour moteur thermique de véhicule dont le relais est muni de deux noyaux magnétiques mobiles
EP1478844B1 (fr) Demarreur, notamment pour vehicule automobile, equipe d'un lanceur accumulateur de couple
WO2006000667A1 (fr) Demarreur equipe d’un lanceur a roue libre par friction
EP0012046B1 (fr) Démarreur électrique pour moteurs à combustion interne, notamment de véhicules automobiles
FR2747836A1 (fr) Contacteur de demarreur notamment pour vehicule automobile et demarreur equipe d'un tel contacteur
EP3325798B1 (fr) Lanceur de démarreur de véhicule automobile
FR2942521A1 (fr) Demarreur pour vehicules
FR2820171A1 (fr) Demarreur de vehicule automobile comportant un pignon de lanceur a denture helicoidale
FR3076335A1 (fr) Ensemble poulie a limitation de choc a frottement ameliore
FR3076332A1 (fr) Ensemble poulie avec butee a limitation de compression de ressort de tension amelioree
FR3076334A1 (fr) Ensemble poulie a embrayage a limitation de choc ameliore
FR3076333A1 (fr) Ensemble poulie a embrayage a limitation de choc ameliore
FR2969221A1 (fr) Demarreur a engrenement permanent equipe d'un systeme d'accouplement de la roue d'entrainement au rotor du moteur du demarreur
FR2897901A1 (fr) Demarreur de moteur equipe d'un embrayage unidirectionnel
WO2016198773A1 (fr) Démarreur de véhicule automobile muni d'un moteur à combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16788176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16788176

Country of ref document: EP

Kind code of ref document: A1