WO2017057576A1 - インホイールモータ駆動装置 - Google Patents

インホイールモータ駆動装置 Download PDF

Info

Publication number
WO2017057576A1
WO2017057576A1 PCT/JP2016/078826 JP2016078826W WO2017057576A1 WO 2017057576 A1 WO2017057576 A1 WO 2017057576A1 JP 2016078826 W JP2016078826 W JP 2016078826W WO 2017057576 A1 WO2017057576 A1 WO 2017057576A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
outer ring
oil pump
drive device
motor drive
Prior art date
Application number
PCT/JP2016/078826
Other languages
English (en)
French (fr)
Inventor
佐藤 勝則
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016188289A external-priority patent/JP2017065671A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201680043458.2A priority Critical patent/CN107848398A/zh
Priority to US15/763,494 priority patent/US20180294692A1/en
Priority to EP16851747.2A priority patent/EP3357731A4/en
Publication of WO2017057576A1 publication Critical patent/WO2017057576A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes

Definitions

  • the present invention relates to an oil pump for an in-wheel motor drive device.
  • An in-wheel motor requires an oil pump that supplies oil for lubrication and cooling to motors, bearings, and gears that are component parts, and the oil pump is an It is desirable to be incorporated inside the casing.
  • the reduction ratio is 10
  • the rotation speed of the wheel is 1500 rpm
  • the rotation speed of the motor reaches 15000 rpm.
  • Patent Document 1 the one described in Japanese Patent No. 4501911 (Patent Document 1) is known in order to solve such a problem.
  • the in-wheel motor structure described in Patent Literature 1 includes a motor, a wheel wheel, a counter gear, and an oil pump disposed concentrically inside the counter gear, and the rotation shaft of the oil pump and the rotation of the counter gear.
  • the shaft is integrally connected. Since the counter gear decelerates the rotation of the motor and transmits it to the wheel, the counter gear rotates at a lower speed than when the oil pump is directly driven by the motor, which is advantageous from the viewpoint of vibration and durability.
  • the in-wheel motor is attached to the vehicle suspension device, the unsprung load of the vehicle increases when the weight of the in-wheel motor increases. Since an increase in the unsprung load deteriorates the ride comfort of the vehicle, it is desirable to reduce the weight of the in-wheel motor. In order to prevent the in-wheel motor from interfering with the vehicle body and the suspension device when attached to the vehicle, it is desirable to reduce the axial dimension of the in-wheel motor.
  • an object of the present invention is to provide a structure capable of reducing the rotation speed of an oil pump and further reducing the size and weight of an in-wheel motor.
  • an in-wheel motor drive device includes a rotating wheel that rotates integrally with a wheel, a fixed wheel that is arranged coaxially with the rotating wheel, and a plurality of rolling wheels that are arranged in an annular gap between the rotating wheel and the fixed wheel.
  • a wheel hub bearing portion having a moving body, a motor portion for driving the rotating wheel, an output shaft coupled coaxially with the rotating wheel, and an input gear coupled to the motor rotating shaft of the motor portion to reduce the rotation of the motor rotating shaft.
  • a reduction gear that transmits to the rotating wheel, and an oil pump that is arranged coaxially with the wheel hub bearing and driven by the output shaft.
  • the oil pump since the oil pump is disposed coaxially with the wheel hub bearing portion and driven by the output shaft, the oil pump can be driven at the same rotational speed as the wheels. Therefore, the oil pump is rotated at a low speed, and there is no problem of vibration, and durability is improved.
  • the rotating wheel and the fixed wheel correspond to the outer ring and the inner ring of the rolling bearing.
  • the oil pump only needs to be able to input the rotation speed of the output shaft, and the rotation transmission from the output shaft to the oil pump may be direct or indirect, and is not particularly limited.
  • the oil pump may be coupled to the end of the output shaft, may be engaged with the outer peripheral surface of the output shaft, or may be coupled or engaged with the rotating wheel. There may be.
  • the rotating wheel is an outer ring
  • the fixed wheel is an inner ring disposed in the center hole of the outer ring
  • the oil pump is provided on the outer periphery of the outer ring.
  • the axial direction position of the oil pump can be placed on the wheel hub bearing portion. Therefore, the axial dimension of the wheel hub bearing portion is not increased, and the entire wheel hub bearing portion can be accommodated in the inner space of the wheel.
  • the speed reduction part and the motor can be arranged offset from the axis of the wheel hub bearing part. As a result, it is possible to increase the number of stages of the reduction unit, increase the reduction ratio, and reduce the size and weight of the motor.
  • the outer ring has a coupling portion for coupling with the wheel on one side in the axial direction, and the oil pump is disposed between the coupling portion and the output gear. According to this embodiment, since the oil pump is disposed between the coupling portion and the output gear, the space between the coupling portion and the output gear can be used effectively.
  • the outer ring may have a coupling portion for coupling with the wheel on one side in the axial direction, and the oil pump may be disposed on the other side in the axial direction that is opposite to the coupling portion when viewed from the output gear.
  • the space defined between the outer periphery of the other end portion in the axial direction of the outer ring and the speed reduction portion can be used effectively.
  • the axial direction position of the speed reduction part can be overlapped with the oil pump, and the axial direction dimension of the in-wheel motor drive device can be reduced.
  • the oil pump includes an inner rotor and an outer rotor, and the inner peripheral surface of the inner rotor engages with the outer peripheral surface of the outer ring.
  • a trochoid pump, a cycloid pump, or an involute gear pump can be used as the oil pump.
  • the oil pump may be another type of pump.
  • an annular recess is formed coaxially on the end face of the output gear, and an oil pump is provided in this recess. According to this embodiment, even if an oil pump is provided in the wheel hub bearing portion, the axial dimension of the wheel hub bearing portion can be reduced.
  • an annular recess is formed in the radial intermediate portion of the output gear by projecting the outer peripheral portion of the output gear to one axial direction rather than the radial intermediate portion and reducing the thickness of the radial intermediate portion. And it is good to provide an oil pump in the recessed part of an output gearwheel.
  • a spline groove having a constant outer diameter is provided on the outer peripheral surface of the outer ring from one side to the other in the axial direction, and the inner peripheral surface of the output gear and the inner peripheral surface of the inner rotor are fitted with the spline groove.
  • an annular step is not provided on the outer periphery of the outer ring, and the output gear and the inner rotor can be fitted to the outer ring using a common spline groove, so that assembly efficiency is improved.
  • the fixed ring is an outer ring
  • the rotating ring is an inner ring disposed in the center hole of the outer ring.
  • the present invention can be realized by the above-described wheel hub bearing portion for rotating the outer ring and fixing the inner ring, or the wheel hub bearing portion for rotating the inner ring and fixing the outer ring.
  • the inner ring is not limited to an annular shape.
  • the inner ring may be a solid shaft.
  • the oil pump is engaged or coupled with the output shaft.
  • the oil pump can be disposed adjacent to the elongated output shaft, and the degree of freedom in the layout of the oil pump is improved.
  • the vibration of the oil pump is less than in the conventional case, and the durability is improved.
  • the in-wheel motor can be reduced in size and weight.
  • FIG. 1 is a longitudinal sectional view showing an in-wheel motor drive device according to an embodiment of the present invention.
  • FIG. 2 is a side view schematically showing the embodiment, and shows a state in the axial direction of the in-wheel motor drive device.
  • the left side of the paper surface is the outside in the vehicle width direction
  • the right side of the paper surface is the inside in the vehicle width direction.
  • the upper side of the page is the upper side of the vehicle
  • the lower side of the page is the lower side of the vehicle.
  • the in-wheel motor drive device 10 includes a wheel hub bearing portion 11 provided at the center of a wheel (not shown), a motor portion 21 that drives the wheel, and a speed reduction portion that decelerates the rotation of the motor portion and transmits it to the wheel hub bearing portion 11. 31 is provided.
  • the motor unit 21 and the speed reduction unit 31 are arranged offset from the axis O of the wheel hub bearing unit 11.
  • the axis O extends in the vehicle width direction.
  • the wheel hub bearing portion 11 is a rotating outer ring / fixed inner ring, and includes an outer ring 12 as a wheel hub coupled to a wheel wheel (not shown), and an inner fixing member 13 disposed on the inner periphery of the outer ring 12. And a plurality of rolling elements 14 disposed in an annular gap between the outer ring 12 and the inner fixing member 13.
  • the inner fixing member 13 includes a non-rotating fixing shaft 15, an inner race 16, and a retaining nut 17.
  • the fixed shaft 15 extends along the axis O direction, is formed with a small diameter on one side in the axis O direction, and is formed with a large diameter on the other side in the axis O direction.
  • the other side of the fixed shaft 15 in the axis O direction is attached to the carrier 101 so as to be directed inward in the vehicle width direction.
  • One of the fixed shafts 15 in the direction of the axis O is directed outward in the vehicle width direction, and an annular inner race 16 is fitted to the outer periphery.
  • a retaining nut 17 is screwed to one end of the fixed shaft 15 in the axis O direction, and the inner race 16 is prevented from coming off.
  • one side in the axis O direction means the outside in the vehicle width direction
  • the other in the axis O direction means the inside in the vehicle width direction.
  • the carrier 101 is connected to the suspension member 116.
  • the rolling elements 14 are arranged in double rows with a separation in the direction of the axis O.
  • the outer diameter surface of the inner race 16 constitutes an inner raceway surface of the rolling elements 14 in the first row and faces one inner diameter surface of the outer ring 12 in the axis O direction.
  • the outer periphery of the central portion in the direction of the axis O of the fixed shaft 15 constitutes the inner raceway surface of the rolling elements 14 in the second row and faces the other inner diameter surface of the outer ring 12 in the direction of the axis O.
  • a connecting portion 12 f is formed at one end of the outer ring 12 in the axis O direction.
  • the coupling portion 12f is a flange and constitutes a coupling portion for coupling coaxially with the brake rotor 102 and a wheel (not shown).
  • the outer ring 12 is coupled to the wheel at the coupling portion 12f and rotates integrally with the wheel.
  • the motor unit 21 includes a motor rotating shaft 22, a rotor 23, a stator 24, and a motor casing 25, and is sequentially arranged from the axis M of the motor unit 21 to the outer diameter side in this order.
  • the motor unit 21 is an inner rotor, outer stator type radial gap motor, but may be of other types.
  • the motor unit 21 may be an axial gap.
  • the axis M that is the rotation center of the motor rotation shaft 22 and the rotor 23 extends in parallel with the axis O of the wheel hub bearing portion 11. That is, the motor unit 21 is disposed offset from the axis O of the wheel hub bearing unit 11. Moreover, the axial direction position of the motor part 21 overlaps with the inner side fixing member 13 of the wheel hub bearing part 11 as shown in FIG. Thereby, the axial direction dimension of the in-wheel motor drive device 10 can be shortened.
  • Both ends of the motor rotating shaft 22 are rotatably supported by the motor casing 25 via rolling bearings 27 and 28.
  • the motor casing 25 has a substantially cylindrical shape, is integrally coupled with the main body casing 38 at one end in the axis M direction, and is sealed at the other end in the axis M direction.
  • the motor unit 21 drives the outer ring 12.
  • the speed reduction unit 31 is a three-axis parallel shaft gear reducer, and includes an output gear 36 provided coaxially on the outer peripheral surface of the outer ring 12, an input gear 32 connected coaxially with the motor rotation shaft 22 of the motor unit 21, A plurality of intermediate gears 33, 35 that transmit rotation from the input gear 32 to the output gear 36, and a main body casing 38 that accommodates these gears.
  • the input gear 32 is a small-diameter external gear, and is a large number of teeth formed on the outer periphery of one end portion in the axial direction of the shaft portion 32 s arranged along the axis M.
  • the outer periphery of the other end portion in the axial direction of the shaft portion 32 s is inserted into a center hole formed at one end portion in the axial direction of the motor rotation shaft 22 and is fitted so as not to be relatively rotatable.
  • the shaft portion 32 s is rotatably supported by the main body casing 38 via rolling bearings 32 m and 32 n on both ends of the input gear 32.
  • the main body casing 38 covers the speed reduction part 31 and the wheel hub bearing part 11 so as to surround the axes O, M, and R extending in parallel with each other, and covers both sides of the speed reduction part 31 in the axial direction.
  • the shaft portion 32 s constitutes an input shaft of the speed reduction portion 31.
  • One end surface in the axial direction of the main body casing 38 faces the brake rotor 102.
  • the other end surface in the axial direction of the main body casing 38 is coupled to the motor casing 25.
  • the motor casing 25 is attached to the main body casing 38 and protrudes from the main body casing 38 to the other side in the axial direction.
  • the main casing 38 accommodates all the rotating elements (shafts and gears) of the speed reducing unit 31.
  • the main body casing 38 is connected to the suspension member 115 above the carrier 101. That is, the in-wheel motor drive device 10 is attached to the suspension device of the electric vehicle at two locations, the main body casing 38 and the carrier 101.
  • the small-diameter input gear 32 meshes with the first intermediate gear 33 that becomes a large-diameter external gear.
  • the intermediate gear 33 is coupled coaxially with a second intermediate gear 35 that becomes a small-diameter external gear by an intermediate shaft 34.
  • Both end portions of the intermediate shaft 34 are rotatably supported by the main body casing 38 via rolling bearings 34m and 34n.
  • the first intermediate gear 33 and the second intermediate gear 35 are disposed between the rolling bearing 34m and the rolling bearing 34n, and are adjacent to each other.
  • the first intermediate gear 33 and the intermediate shaft 34 are integrally formed, and the second intermediate gear 35 is fitted on the outer periphery of the intermediate shaft 34 so as not to be relatively rotatable.
  • the speed reduction part 31 is a parallel triaxial gear speed reducer having axes O, R, and M extending in parallel with each other.
  • the output gear 36 is an external gear, and the outer ring 12 is fitted in the center hole of the output gear 36 so as not to be relatively rotatable. Such fitting is spline fitting or serration fitting.
  • the tooth tip and the tooth bottom of the output gear 36 have a larger diameter than the outer peripheral surface of the outer ring 12.
  • a cylindrical portion 36 c is formed at the center of the output gear 36. Both end portions of the cylindrical portion 36c protrude from both end surfaces of the output gear 36, and are rotatably supported by the main body casing 38 via rolling bearings 36m and 36n.
  • the cylindrical portion 36 c fitted with the outer ring 12 constitutes the output shaft of the speed reducing portion 31.
  • wheel 12 to penetrate is formed in the axial direction both ends of the main body casing 38, respectively. Sealing materials 37c and 37d for sealing an annular gap with the outer ring 12 are provided in each opening. For this reason, the outer ring 12 serving as a rotating body is covered with the main body casing 38 except for one end in the axis O direction. In other words, the wheel hub bearing portion 11 is accommodated in the main body casing 38 except for both ends.
  • the main casing 38 is installed across three axes O, R, and M that are parallel to each other.
  • the first intermediate gear 33, the second intermediate gear 35, and the intermediate shaft 34 are arranged on the outer diameter side of the outer ring 12.
  • the first intermediate gear 33, the second intermediate gear 35, and the intermediate shaft 34 are arranged so as to overlap with the position of the outer ring 12 in the axis O direction.
  • the entire first intermediate gear 33 and the entire second intermediate gear 35 are disposed on the outer diameter side with respect to the outer ring 12.
  • the intermediate shaft 34 is elongated to separate the large-diameter first intermediate gear 33 from the small-diameter second intermediate gear 35, and the outer periphery of the first intermediate gear 33 is connected to the outer ring 12 in the direction of the axis O. You may arrange
  • the output gear 36 is located closest to the axis O in the other direction from the axial position of the center of the rolling elements 14 arranged in the row on the one side in the axis O most. It arrange
  • the outer ring 12 is stably supported by the double-row rolling elements 14 and 14 while the wheels are being driven.
  • the wheel hub bearing portion 11 and the speed reduction portion 31 are disposed in a circle 103c having a diameter equal to the rim inner diameter of the wheel wheel coupled to the outer ring 12.
  • the output gear 36 is disposed in the circle 103c.
  • the motor unit 21 is disposed on the inner side in the vehicle width direction than the wheel and avoids interference with the wheel 104.
  • the wheel 104 is a well-known one having a wheel wheel 105 and a tire 106 fitted to the outer periphery of the wheel wheel 105.
  • the wheel 104 is coaxially coupled to the wheel hub bearing 11 and has a common axis O.
  • the axis R of the deceleration unit 31 is disposed above the axis O.
  • the axis M of the motor unit 21 is disposed above the axis R. Thereby, it becomes easy to ensure the clearance from the road surface to the speed reduction part 31 and the clearance from the road surface to the motor part 21.
  • an oil reservoir 51 a suction oil passage 52, an oil pump 53, a discharge oil passage 54, an input shaft oil passage 55, a rotor oil passage 56, a through hole 57, and an intermediate shaft oil passage 58 are used as lubricating oil passages. And connect in this order.
  • the oil reservoir 51 is an internal space of the main body casing 38 and occupies the lower part of the in-wheel motor drive device 10. The lubricating oil accumulated in the oil reservoir 51 scrapes and lubricates the outer periphery of the output gear 36.
  • FIG. 3 is a view showing a state in which the oil pump 53 is taken out and viewed in the axial direction.
  • the oil pump 53 is a trochoid pump having an outer rotor 53j and an inner rotor 53k.
  • the outer rotor 53j is accommodated in a circular chamber 53h formed in the main body casing 38.
  • the outer ring 12 (FIG. 1) is inserted into the center hole 53l of the inner rotor 53k, the inner peripheral surface of the inner rotor 53k engages with the outer peripheral surface of the outer ring 12, and both rotate integrally.
  • the oil pump 53 is disposed between the coupling portion 12f and the output gear 36.
  • the output gear 36 has an outer peripheral portion having a tooth tip and a tooth bottom formed thick in the direction of the axis O, and a radial intermediate portion connecting the central portion and the outer peripheral portion is formed thin in the direction of the axis O. And it forms so that an outer peripheral part may protrude to an axis line O direction rather than a radial direction intermediate part. Therefore, an annular recess 36d is formed on one end surface of the output gear 36 in the axis O direction.
  • the oil pump 53 is provided in the recess 36d.
  • the dimension of the wheel hub bearing 11 in the direction of the axis O does not increase.
  • the inner rotor of the oil pump 53 is fitted to the center of the output gear 36, the inner rotor may be fitted to the outer periphery of the outer ring 12 as a modification (not shown).
  • a suction oil passage 52 and a discharge oil passage 54 are formed inside the wall thickness on one side in the axial direction of the main body casing 38.
  • the suction oil passage 52 extends in the vertical direction, is connected to the oil reservoir 51 at the lower end, and is connected to the suction port of the oil pump 53 at the upper end.
  • the discharge oil passage 54 extends in the vertical direction and is connected to the discharge port of the oil pump 53 at the lower end, and the upper end is connected to one end in the axial direction of the input shaft oil passage 55.
  • the input shaft oil passage 55 is a central hole of the shaft portion 32s and extends along the axis M.
  • the other axial end of the input shaft oil passage 55 is connected to the inner diameter side end of the rotor oil passage 56.
  • the rotor oil passage 56 extends in the outer diameter direction from the inside of the motor rotating shaft 22 to the rotor 23.
  • the outer diameter side end of the rotor oil passage 56 faces the stator coil 24 c of the stator 24.
  • the through-hole 57 is provided in the lower part of the motor unit 21 and penetrates the partition wall 25w that partitions the internal space of the motor casing 25 and the internal space of the main body casing 38.
  • One of the through holes 57 is connected at the same height as the bottom surface inside the motor casing 25.
  • the other of the through holes 57 faces the end of the intermediate shaft oil passage 58.
  • the intermediate shaft oil passage 58 is formed in the intermediate shaft 34 and extends along the axis R.
  • the lubricating oil is drawn into the oil pump 53 from the oil reservoir 51 through the suction oil passage 52.
  • the lubricating oil is discharged from the oil pump 53 and supplied to the motor unit 21 through the discharge oil passage 54 and the input shaft oil passage 55.
  • the lubricating oil accumulated in the oil reservoir 51 and the lubricating oil flowing through the suction oil passage 52 and the discharge oil passage 54 are cooled by the main body casing 38.
  • the lubricating oil flows through the rotor oil passage 56 and is injected into the stator coil 24 c to cool the motor unit 21.
  • the lubricating oil falls along the inner peripheral surface of the motor casing 25, is supplied to the speed reduction unit 31 through the through hole 57, lubricates each rotating element (shaft, gear, and rolling bearing), and The oil is stored in the lower part, that is, in the oil reservoir 51.
  • the lubricating oil flows through the intermediate shaft oil passage 58 from the through hole 57, and then lubricates each rotating element (shaft, gear, and rolling bearing) and stores it in the oil reservoir 51.
  • the lubricating oil is again sucked into the oil pump 53 and circulates inside the in-wheel motor drive device 10.
  • the oil pump 53 since the oil pump 53 is arranged coaxially with the outer ring 12 and driven by the outer ring 12, the oil pump 53 can be driven at the same rotational speed (1500 rpm or less) as the wheels. Therefore, the oil pump 53 is rotated at a low speed, there is no problem of vibration, and durability is improved.
  • the output gear 36 is provided coaxially on the outer peripheral surface of the outer ring 12, so that the speed reduction part 31 is arranged offset from the wheel hub bearing part 11 to provide a multistage multi-axis parallel shaft type gear reduction gear. can do. Therefore, the motor unit 21 can be increased in speed and reduced in size and weight, and the in-wheel motor drive device 10 can be reduced in size and weight.
  • the oil pump 53 since the oil pump 53 is attached to the outer periphery of the outer ring 12, the axial direction position of the oil pump 53 can be disposed so as to overlap the wheel hub bearing portion 11. Accordingly, the axial dimension of the wheel hub bearing portion 11 does not increase, and the entire wheel hub bearing portion 11 can be accommodated in the inner space of the wheel.
  • the outer ring 12 has the coupling portion 12f for coupling with the wheel on one side in the axis O direction, and the oil pump 53 is disposed between the coupling portion 12f and the output gear 36.
  • the space between the coupling portion 12f and the output gear 36 can be used effectively.
  • the oil pump 53 includes the outer rotor 53j and the inner rotor 53k (FIG. 3), and the inner peripheral surface of the center hole 53l of the inner rotor 53k is engaged with the outer peripheral surface of the outer ring 12. Accordingly, a trochoid pump, a cycloid pump, or an involute gear pump can be used as the oil pump 53.
  • the annular recess 36d is formed coaxially on the end face on the one side in the axis O direction of the output gear 36, and the oil pump 53 is provided in the recess 36d. Even if the oil pump 53 is provided, the dimension of the wheel hub bearing 11 in the direction of the axis O does not increase.
  • FIG. 4 is a longitudinal sectional view showing another embodiment of the present invention.
  • the same reference numerals are given to the configurations common to the above-described embodiments, and the description thereof will be omitted, and different configurations will be described below.
  • the oil pump 53 is disposed on the other side in the axis O direction that is opposite to the coupling portion 12 f when viewed from the output gear 36. Since the first intermediate gear 33 is disposed on the outer diameter side of the outer ring 12 and overlaps with the axial position of the outer ring 12, a space is defined between the first intermediate gear 33 and the outer ring 12. An oil pump 53 is disposed in this space.
  • a spline groove 12s having a constant outer diameter is formed from one side in the axial direction to the other side.
  • the spline groove 12s is fitted with a spline groove formed on the inner peripheral surface of the output gear 36 on one side in the axial direction, and a spline groove formed on the inner peripheral surface of the center hole 53l of the inner rotor 53k on the other side in the axial direction. Mating.
  • the lubricating oil circuit of another embodiment has a stator oil passage 59 instead of the rotor oil passage described above.
  • the stator oil passage 59 is a pipe line installed in the motor casing 25 and extending annularly along the end surface of the stator 24.
  • the stator oil passage 59 is connected to the upper end of the discharge oil passage 54.
  • a plurality of nozzles 59n directed to the end face of the stator 24 are provided at intervals.
  • Lubricating oil supplied to the motor unit 21 from the discharge oil passage 54 is injected from the nozzle 59 n to the stator 24 to cool the stator 24.
  • the lubricating oil falls along the inner peripheral surface of the motor casing 25, is discharged from the through hole 57, and is supplied from the motor unit 21 to the speed reduction unit 31.
  • a protrusion 22p is formed at one end of the motor rotating shaft 22 in the axis O direction.
  • the protrusion 22p extends along the axis M and is inserted into the center hole of the shaft 32s.
  • the input gear 32 is coupled coaxially with the motor rotation shaft 22.
  • the outer ring 12 has a coupling portion 12f for coupling to the wheel on one side in the axis O direction
  • the oil pump 53 is an axis O that is opposite to the coupling portion 12f when viewed from the output gear 36. It is arranged on the other side in the direction.
  • the space between the first intermediate gear 33 and the outer ring 12 can be used effectively.
  • the axial position of the first intermediate gear 33 can be overlapped with the oil pump 53, and the axial dimension of the in-wheel motor drive device 20 can be reduced.
  • an annular step is not provided on the outer periphery of the outer ring 12, and the output gear 36 and the inner rotor 53k can be fitted to the outer ring 12 using the common spline groove 12s, so that the assembly efficiency is improved. To do. Further, since the inner rotor 53k is fitted to the outer ring 12, it is not necessary to make the outer ring 12 thin and have a small diameter, and the strength of the outer ring 12 can be prevented from being lowered.
  • FIG. 5 is a longitudinal sectional view showing an in-wheel motor drive device 30 according to still another embodiment of the present invention. Further, regarding the other embodiments, the same reference numerals are given to configurations common to the above-described embodiments, description thereof is omitted, and different configurations will be described below.
  • the oil pump 53 is attached to the outer wall surface of the main body casing 38.
  • the wheel hub bearing portion 11 is a rotating inner ring / fixed outer ring
  • the reduction portion 31 is a four-axis parallel shaft gear reducer further having an intermediate shaft 42. is there.
  • the wheel hub bearing portion 11 includes an inner ring 46 that is a rotating element, an outer ring 47 that is a fixed element, and a plurality of rolling elements 48 that are arranged in an annular gap between the inner and outer rings.
  • a flange is erected on the outer peripheral surface of the outer ring 47.
  • a through hole is formed in the outer ring flange with a gap in the circumferential direction.
  • Each through-hole extends in parallel with the axis O, and a bolt 47b is passed from one side in the direction of the axis O.
  • the shaft portion of each bolt 47 b is screwed into a female screw hole formed in the front portion 38 f of the main body casing 38.
  • the outer ring 47 is connected and fixed to the front portion 38f.
  • the front portion 38 f is a casing wall portion that covers one end of the speed reduction portion 31 in the axis O direction.
  • the back surface portion 38 b is a casing wall portion that covers the other end of the speed reduction portion 31 in the axis O direction.
  • the inner ring 46 is a cylindrical body longer than the outer ring 47, and is passed through the center hole of the outer ring 47.
  • a coupling portion 46f is formed at one end of the inner ring 46 protruding from the outer ring 47 to the outside of the in-wheel motor drive device 30 in the axis O direction.
  • the coupling portion 46f is a flange, and constitutes a coupling portion for coupling coaxially with a brake rotor and a wheel (not shown).
  • the inner ring 46 is coupled to the wheel at the coupling portion 46f and rotates integrally with the wheel.
  • a plurality of rows of rolling elements 48 are arranged in the annular gap between the inner ring 46 and the outer ring 47.
  • One outer peripheral surface of the inner ring 46 in the direction of the axis O constitutes an inner race of the rolling elements 48 in the first row.
  • An inner raceway 46r is fitted to the outer circumference of the other end of the inner ring 46 in the axis O direction, and the outer circumferential surface of the inner raceway 46r constitutes the inner raceway of the rolling elements 48 in the second row.
  • a seal material 49 is further interposed in the annular gap between the inner ring 46 and the outer ring 47. The sealing material 49 seals both ends of the annular gap to prevent entry of dust and foreign matter.
  • the output shaft 45 of the speed reduction part 31 is inserted into the center hole at the other end in the axis O direction of the inner ring 46 and is splined.
  • the intermediate shaft 42 of the speed reduction portion 31 extends in parallel with the axis O, and both ends of the intermediate shaft 42 are rotatably supported by the front portion 38f and the back portion 38b of the main body casing 38 via bearings 42m and 42n.
  • a third intermediate gear 41 and a fourth intermediate gear 43 are provided coaxially at the center of the intermediate shaft 42.
  • the third intermediate gear 41 and the fourth intermediate gear 43 are external helical gears, and the diameter of the third intermediate gear 41 is larger than the diameter of the fourth intermediate gear 43.
  • the relatively small-diameter second intermediate gear 35 meshes with the relatively large-diameter third intermediate gear 41.
  • the relatively small fourth intermediate gear 43 meshes with the relatively large diameter output gear 44.
  • the output gear 44 is an external gear provided coaxially with the output shaft 45, and is a helical gear.
  • the output shaft 45 is rotatably supported by the front portion 38f of the main body casing 38 via the rolling bearing 45m on the one side in the axis O direction than the output gear 44. Further, the output shaft 45 is rotatably supported on the back surface portion 38b of the main body casing 38 via a rolling bearing 45n on the other side in the axis O direction than the output gear 44.
  • the other end of the output shaft 45 in the direction of the axis O extends through the back surface portion 38 b and is coupled to the oil pump 53.
  • the oil pump 53 is attached to the outer wall surface of the back surface portion 38b and protrudes from the outer wall surface of the back surface portion 38b.
  • the oil pump 53 is arranged coaxially with the axis O of the wheel hub bearing 11 and is driven by the output shaft 45. In the embodiment shown in FIG. Thereby, the oil pump 53 can be driven at the same rotational speed as the wheels. Therefore, the oil pump 53 is rotated at a low speed, there is no problem of vibration, and durability is improved.
  • the fixed wheel is the outer ring 47
  • the rotating wheel is the inner ring 46 disposed in the center hole of the outer ring 47.
  • the present invention can also be realized by the wheel hub bearing portion 11 of the outer ring rotation / inner ring fixing shown in FIGS. 1 and 4 or the wheel hub bearing portion 11 of the inner ring rotation / outer ring fixing shown in FIG.
  • the oil pump 53 is coupled to the end of the output shaft 45.
  • the oil pump 53 can be disposed adjacent to the elongated output shaft 45. Therefore, the degree of freedom in the layout of the oil pump 53 is improved, and for example, the oil pump 53 can be provided so as to protrude from the back surface portion 38 b of the casing 38.
  • the outer diameter dimension of the oil pump 53 can be made closer to the outer diameter dimension of the output shaft 45 so that it can be made smaller than the conventional one.
  • the oil pump may be engaged with the outer peripheral surface of the output shaft 45 as a modification (not shown).
  • the in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

インホイールモータ駆動装置(10)は、車輪と一体回転する回転輪(12)、回転輪と同軸に配置される固定輪(13)、および回転輪と固定輪との環状隙間に配置される複数の転動体(14)を有する車輪ハブ軸受部(11)と、回転輪を駆動するモータ部(21)と、回転輪と同軸に結合する出力軸(36c)と、モータ部のモータ回転軸(22)と結合する入力歯車(32)とを含み、モータ回転軸(22)の回転を減速して回転輪に伝達する減速部(31)と、車輪ハブ軸受部と同軸に配置されて出力軸に駆動されるオイルポンプ(53)とを備える。

Description

インホイールモータ駆動装置
 本発明はインホイールモータ駆動装置のオイルポンプに関する。
 インホイールモータには、構成部品であるモータ、軸受、歯車に、潤滑および冷却を目的とする油を供給するオイルポンプが必要であり、油路のシール性の観点からオイルポンプはインホイールモータのケーシング内部に組み込まれることが望ましい。
 モータ回転を高減速比の減速機で減速して車輪を駆動する場合、減速比10とし車輪の回転数を1500rpmとして、モータ回転数は15000rpmの高回転に達する。かかる高回転のモータ回転軸でオイルポンプを駆動すると、振動の原因となり、オイルポンプの耐久性が悪化する。
 かかる問題を解消するため従来、例えば、特許第4501911号公報(特許文献1)に記載のものが知られている。特許文献1に記載のインホイールモータ構造は、モータと、車輪ホイールと、カウンターギヤと、カウンターギヤの内部に同心状に配置されるオイルポンプとを備え、オイルポンプの回転軸とカウンターギヤの回転軸とが一体に連結される。カウンターギヤはモータの回転を減速して車輪ホイールに伝達するので、オイルポンプをモータで直接駆動する場合と比較して低速回転となり、振動および耐久性の観点から有利になるというものである。
特許4501911号公報
 特許文献1のインホイールモータにあっては、カウンターギヤの回転数が充分に減速されてなく、オイルポンプの低速回転という観点から改善の余地があった。
 またインホイールモータは、車両のサスペンション装置に取り付けられるため、インホイールモータの重量が増加すると車両のばね下荷重が増加してしまう。ばね下荷重の増加は車両の乗り心地を悪化させるため、インホイールモータの軽量化が望ましい。また、車両に取り付けた状態でインホイールモータが車体やサスペンション装置と干渉しないようにするために、インホイールモータの軸線方向寸法を小さくすることが望ましい。
 本発明は、上述の実情に鑑み、オイルポンプの回転数を低速化させ、さらにはインホイールモータの小型軽量化を図ることができる構造を提供することを目的とする。
 この目的のため本発明によるインホイールモータ駆動装置は、車輪と一体回転する回転輪、回転輪と同軸に配置される固定輪、および回転輪と固定輪との環状隙間に配置される複数の転動体を有する車輪ハブ軸受部と、回転輪を駆動するモータ部と、回転輪と同軸に結合する出力軸とモータ部のモータ回転軸と結合する入力歯車とを含みモータ回転軸の回転を減速して回転輪に伝達する減速部と、車輪ハブ軸受部と同軸に配置されて出力軸に駆動されるオイルポンプとを備える。
 かかる本発明によれば、オイルポンプが車輪ハブ軸受部と同軸に配置されて、出力軸に駆動されることから、車輪と同じ回転数でオイルポンプを駆動することができる。したがってオイルポンプは低速で回転され、振動の問題が生じることがなく、耐久性が向上する。なお回転輪および固定輪は、転がり軸受の外輪および内輪に相当する。オイルポンプは出力軸の回転数を入力されるものであればよく、出力軸からオイルポンプへの回転伝達は直接でもよく、あるいは間接でもよく、特に限定されない。例えばオイルポンプは、出力軸の端部と結合するものであってもよいし、あるいは出力軸の外周面と係合するものであってもよいし、あるいは回転輪と結合ないし係合するものであってもよい。
 本発明の一実施形態として、回転輪は外輪であり、固定輪は外輪の中心孔に配置される内輪であり、オイルポンプは外輪の外周に設けられる。かかる実施形態によれば、オイルポンプは外輪の外周に附設されることから、オイルポンプの軸線方向位置を車輪ハブ軸受部に重ねて配置することができる。したがって車輪ハブ軸受部の軸線方向寸法が大きくならず、車輪ハブ軸受部全体を車輪ホイールの内空領域に収容することができる。また車輪ハブ軸受部の構成要素になる外輪および内輪のうち、外輪を回転させることから、減速部およびモータを車輪ハブ軸受部の軸線からオフセットして配置することができる。これにより減速部の多段化および高減速比化とモータの小型軽量化を図り、ひいてはインホイールモータ駆動装置の小型軽量化を図ることができる。
 本発明の好ましい実施形態として外輪は軸線方向一方側に車輪と結合するための結合部を有し、オイルポンプは結合部と出力歯車の間に配置される。かかる実施形態によれば、オイルポンプは結合部と出力歯車の間に配置されることから、結合部と出力歯車の間の空間を有効に利用することができる。
 他の実施形態として外輪は軸線方向一方側に車輪と結合するための結合部を有し、オイルポンプは出力歯車からみて結合部と反対側になる軸線方向他方側に配置されてもよい。かかる実施形態によれば、外輪の軸線方向他方端部の外周と減速部の間に画成される空間を有効に利用することができる。また減速部の軸線方向位置をオイルポンプと重ねることができ、インホイールモータ駆動装置の軸線方向寸法を小さくすることができる。
 本発明の一実施形態としてオイルポンプはインナロータおよびアウタロータを含み、インナロータの内周面が外輪の外周面と係合する。かかる実施形態によれば、オイルポンプとして、トロコイドポンプや、サイクロイドポンプや、インボリュートギヤポンプを使用することができる。あるいは他の実施形態としてオイルポンプは他の方式のポンプであってもよい。
 本発明の一実施形態として出力歯車の端面には環状の凹部が同軸に形成され、この凹部にオイルポンプが設けられる。かかる実施形態によれば、車輪ハブ軸受部にオイルポンプを設けても車輪ハブ軸受部の軸線方向寸法を小さくすることができる。一例として出力歯車の外周部を半径方向中間部よりも軸線方向一方へ突出させ、半径方向中間部の厚みを小さくすることで、出力歯車の半径方向中間部に環状の凹部を形成する。そしてオイルポンプを出力歯車の凹部に設けるとよい。
 本発明の一実施形態として、外輪の外周面には軸線方向一方側から他方側まで外径一定のスプライン溝が設けられ、出力歯車の内周面およびインナロータの内周面はスプライン溝と嵌合する。かかる実施形態によれば、外輪外周に環状の段差を設けず、共通するスプライン溝を利用して出力歯車およびインナロータを外輪に嵌合させることができ組立効率が向上する。またインナロータを外輪に嵌合するために外輪を薄肉かつ小径にする必要がなくなり、外輪の強度低下を防止することができる。
 本発明の他の実施形態として、固定輪は外輪であり、回転輪は外輪の中心孔に配置される内輪である。このように本発明は、前述した外輪回転・内輪固定の車輪ハブ軸受部でも、あるいは内輪回転・外輪固定の車輪ハブ軸受部でも実現可能である。なお内輪は環状に限定されない。内輪は中実の軸体であってもよい。
 一実施形態としてオイルポンプは、出力軸と係合または結合する。かかる実施形態によれば、オイルポンプを細長い出力軸に隣接配置することができ、オイルポンプのレイアウトの自由度が向上する。
 このように本発明によれば、充分に減速された回転でオイルポンプを駆動することから、オイルポンプの振動が従来よりも少なく耐久性が向上する。またインホイールモータの小型軽量化を図ることができる。
本発明の一実施形態になるインホイールモータ駆動装置を示す縦断面図である。 同実施形態を模式的に示す側面図である。 オイルポンプを取り出して示す模式図である。 本発明の他の実施形態になるインホイールモータ駆動装置を示す縦断面図である。 本発明のさらに他の実施形態になるインホイールモータ駆動装置を示す縦断面図である。
 以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になるインホイールモータ駆動装置を示す縦断面図である。図2は、同実施形態を模式的に示す側面図であり、インホイールモータ駆動装置の軸線方向にみた状態を表す。図1では、紙面左側を車幅方向外側とし、紙面右側を車幅方向内側とする。図1および図2では、紙面上側を車両上方とし、紙面下側を車両下方とする。インホイールモータ駆動装置10は、図示しない車輪の中心に設けられる車輪ハブ軸受部11と、車輪を駆動するモータ部21と、モータ部の回転を減速して車輪ハブ軸受部11に伝達する減速部31を備える。モータ部21および減速部31は、車輪ハブ軸受部11の軸線Oからオフセットして配置される。軸線Oは車幅方向に延びる。
 図1に示すように車輪ハブ軸受部11は、回転外輪・固定内輪とされ、図示しない車輪ホイールと結合する車輪ハブとしての外輪12と、外輪12の内周に配置される内側固定部材13と、外輪12と内側固定部材13との環状隙間に配置される複数の転動体14を有する。内側固定部材13は、非回転の固定軸15と、インナレース16と、抜け止めナット17を含む。固定軸15は軸線O方向に沿って延び、軸線O方向一方で小径に形成され、軸線O方向他方で大径に形成される。そして固定軸15の軸線O方向他方は、車幅方向内側を指向してキャリア101に取り付けられる。また固定軸15の軸線O方向一方は、車幅方向外側を指向し、外周には環状のインナレース16が嵌合される。さらに固定軸15の軸線O方向一方端には、抜け止めナット17が螺合し、インナレース16が抜け止めされる。以下の説明において、軸線O方向一方とは車幅方向外側を意味し、軸線O方向他方とは車幅方向内側を意味する。キャリア101は、サスペンション部材116に連結される。
 転動体14は、軸線O方向に離隔して複列に配置される。インナレース16の外径面は、第1列の転動体14の内側軌道面を構成し、外輪12の軸線O方向一方の内径面と対面する。これに対し固定軸15の軸線O方向中央部の外周は、第2列の転動体14の内側軌道面を構成し、外輪12の軸線O方向他方の内径面と対面する。
 外輪12の軸線O方向一方端には結合部12fが形成される。結合部12fはフランジであり、ブレーキロータ102および図示しない車輪と同軸に結合するための結合部を構成する。外輪12は結合部12fで車輪と結合して、車輪と一体回転する。
 モータ部21は、モータ回転軸22、ロータ23、ステータ24、およびモータケーシング25を有し、この順序でモータ部21の軸線Mから外径側へ順次配置される。モータ部21は、インナロータ、アウターステータ形式のラジアルギャップモータであるが、他の形式であってもよい。例えば図示しなかったがモータ部21はアキシャルギャップであってもよい。
 モータ回転軸22およびロータ23の回転中心になる軸線Mは、車輪ハブ軸受部11の軸線Oと平行に延びる。つまりモータ部21は、車輪ハブ軸受部11の軸線Oから離れるようオフセットして配置される。またモータ部21の軸線方向位置は、図1に示すように車輪ハブ軸受部11の内側固定部材13と重なり合う。これによりインホイールモータ駆動装置10の軸線方向寸法を短くすることができる。モータ回転軸22の両端部は、転がり軸受27,28を介して、モータケーシング25に回転自在に支持される。モータケーシング25は略円筒形状であり、軸線M方向一方端で本体ケーシング38と一体に結合し、軸線M方向他方端で封止される。モータ部21は外輪12を駆動する。
 減速部31は、3軸の平行軸歯車減速機であって、外輪12の外周面に同軸に設けられる出力歯車36と、モータ部21のモータ回転軸22と同軸に結合する入力歯車32と、入力歯車32から出力歯車36へ回転を伝達する複数の中間歯車33,35と、これら歯車を収容する本体ケーシング38を有する。
 入力歯車32は小径の外歯歯車であり、軸線Mに沿って配置される軸部32sの軸線方向一方端部外周に形成される多数の歯である。軸部32sの軸線方向他方端部外周は、モータ回転軸22の軸線方向一方端部に形成される中心孔に差し込まれて相対回転不可能に嵌合する。軸部32sは入力歯車32の両端側で、転がり軸受32m,32nを介して、本体ケーシング38に回転自在に支持される。本体ケーシング38は、互いに平行に延びる軸線O、M、Rを取り囲むように減速部31および車輪ハブ軸受部11を覆うとともに、減速部31の軸線方向両側を覆う。軸部32sは減速部31の入力軸を構成する。本体ケーシング38の軸線方向一方端面は、ブレーキロータ102と対向する。本体ケーシング38の軸線方向他方端面は、モータケーシング25と結合する。モータケーシング25は本体ケーシング38に附設されて、本体ケーシング38から軸線方向他方側へ突出する。本体ケーシング38は減速部31の全ての回転要素(軸および歯車)を収容する。
 本体ケーシング38は、キャリア101よりも上側で、サスペンション部材115に連結される。つまりインホイールモータ駆動装置10は、本体ケーシング38およびキャリア101の2箇所で、電動車両のサスペンション装置に取り付けられる。
 小径の入力歯車32は、大径の外歯歯車になる第1中間歯車33と噛合する。中間歯車33は中間軸34によって小径の外歯歯車になる第2中間歯車35と同軸に結合する。中間軸34の両端部は、転がり軸受34m,34nを介して、本体ケーシング38に回転自在に支持される。第1中間歯車33および第2中間歯車35は、転がり軸受34mと転がり軸受34nとの間に配置され、互いに隣接する。本実施形態では、第1中間歯車33と中間軸34が一体に形成され、第2中間歯車35が中間軸34の外周に相対回転不可能に嵌合する。中間軸34の中心を通る軸線Rは、車輪ハブ軸受部11の軸線Oと平行に延びる。これにより減速部31は、車輪ハブ軸受部11からオフセットして配置される。小径の第2中間歯車35は大径の出力歯車36と噛合する。軸線O,R,Mの位置関係は図2に示すとおりである。減速部31は、互いに平行に延びる軸線O,R,Mを有する平行3軸式歯車減速機である。
 出力歯車36は外歯歯車であり、出力歯車36の中心孔に外輪12が相対回転不可能に嵌合する。かかる嵌合は、スプライン嵌合あるいはセレーション嵌合である。出力歯車36の歯先および歯底は、外輪12の外周面よりも大径である。そして軸線O方向にみて、出力歯車36の外周部と第1中間歯車33の外周部が重なり合う。出力歯車36の中心には筒部36cが形成される。筒部36cの両端部は出力歯車36の両端面から突出し、転がり軸受36m,36nを介して、本体ケーシング38に回転自在にそれぞれ支持される。外輪12と嵌合する筒部36cは減速部31の出力軸を構成する。
 本体ケーシング38の軸線方向両端には、外輪12が貫通するための開口がそれぞれ形成される。各開口には、外輪12との環状隙間を封止するシール材37c,37dが設けられる。このため回転体になる外輪12は、軸線O方向一方端を除き、本体ケーシング38に覆われる。換言すると車輪ハブ軸受部11は、両端部を除いて本体ケーシング38に収容される。また本体ケーシング38は、互いに平行な3本の軸線O,R,Mに跨って設置される。
 図1に示すように第1中間歯車33、第2中間歯車35、および中間軸34は、外輪12よりも外径側に配置される。また第1中間歯車33、第2中間歯車35、および中間軸34は、外輪12の軸線O方向位置と重なるよう配置される。入力歯車32および出力歯車36も同様である。本実施形態では、第1中間歯車33全体および第2中間歯車35全体が、外輪12よりも外径側に配置される。あるいは図示しない変形例として、中間軸34を長く伸ばして大径の第1中間歯車33を小径の第2中間歯車35から離隔させ、軸線O方向にみて第1中間歯車33の外周を外輪12と重なるよう配置してもよい。
 説明を本実施形態に戻すと、図1に示すように出力歯車36は、最も軸線O方向一方側の列に配置される転動体14の中心の軸線方向位置から、最も軸線O方向他方側の列に配置される転動体14の中心の軸線方向位置までの間の軸線方向領域に配置される。これにより外輪12は、車輪の駆動中において複列の転動体14,14に安定して支持される。
 図2に示すように、車輪ハブ軸受部11および減速部31は、外輪12と結合する車輪ホイールのリム内径と等しい径を有する円103cの中に配置される。具体的には出力歯車36が円103cの中に配置される。これにより、車輪ハブ軸受部11、減速部31、およびモータ部21を、車輪ホイールの中に全て収納可能である。
 ただしモータ部21は、車輪ホイールよりも車幅方向内側に配置されて、車輪104との干渉を回避する。車輪104は、車輪ホイール105と、車輪ホイール105の外周に嵌合するタイヤ106を有する周知のものである。車輪104は、車輪ハブ軸受部11と同軸に結合し、共通する軸線Oを有する。
 減速部31の軸線Rは、軸線Oよりも上方に配置される。モータ部21の軸線Mは軸線Rよりも上方に配置される。これにより路面から減速部31までのクリアランスと、路面からモータ部21までのクリアランスとを確保し易くなる。
 次にインホイールモータ駆動装置の潤滑油路につき説明する。
 本実施形態では、潤滑油路として、オイル溜まり51、吸入油路52、オイルポンプ53、吐出油路54、入力軸油路55、ロータ油路56、貫通孔57、および中間軸油路58を有し、この順序で接続する。オイル溜まり51は本体ケーシング38の内部空間であり、インホイールモータ駆動装置10の下部を占める。オイル溜まり51に溜まった潤滑油は、出力歯車36の外周を掻き上げ潤滑する。
 オイルポンプ53は、外輪12の外周に同軸に配置される。図3はオイルポンプ53を取り出して軸線方向にみた状態を示す図である。オイルポンプ53はアウタロータ53jおよびインナロータ53kを有するトロコイドポンプである。アウタロータ53jは本体ケーシング38に形成された円形の室53hに収納される。インナロータ53kの中心孔53lには外輪12(図1)が差し込まれ、インナロータ53kの内周面が外輪12の外周面と係合し、両者は一体回転する。
 図1に示すようにオイルポンプ53は、結合部12fと出力歯車36の間に配置される。出力歯車36は、歯先および歯底を有する外周部が軸線O方向に厚く形成され、中心部と外周部を結合する半径方向中間部が軸線O方向に薄く形成される。そして外周部が半径方向中間部よりも軸線O方向一方へ突出するように形成される。このため出力歯車36の軸線O方向一方端面には環状の凹部36dが形成される。オイルポンプ53は、凹部36dに設けられる。これによりオイルポンプ53を外輪12に附設しても、車輪ハブ軸受部11の軸線O方向寸法が大きくならない。なおオイルポンプ53のインナロータは、出力歯車36の中心部と嵌合するが、図示しない変形例としてインナロータは外輪12の外周と嵌合してもよい。
 本体ケーシング38の軸線方向一方側の壁厚内部には、吸入油路52および吐出油路54が形成される。吸入油路52は上下方向に延び、下端でオイル溜まり51と接続し、上端でオイルポンプ53の吸入口と接続する。吐出油路54は上下方向に延び下端でオイルポンプ53の吐出口と接続し、上端が入力軸油路55の軸線方向一方端と接続する。
 入力軸油路55は軸部32sの中心孔であり軸線Mに沿って延びる。入力軸油路55の軸線方向他方端は、ロータ油路56の内径側端と接続する。ロータ油路56はモータ回転軸22の内部からロータ23まで外径方向に延びる。ロータ油路56の外径側端はステータ24のステータコイル24cと対面する。
 貫通孔57は、モータ部21の下部に設けられ、モータケーシング25の内部空間と本体ケーシング38の内部空間を仕切る仕切壁25wを貫通する。貫通孔57の一方は、モータケーシング25内部の底面と同じ高さで接続する。貫通孔57の他方は、中間軸油路58の端部と対面する。中間軸油路58は中間軸34に形成されて軸線Rに沿って延びる。
 潤滑油路の作用につき説明する。
 外輪12が回転することによりオイルポンプ53が駆動される間、潤滑油はオイル溜まり51から吸入油路52を通ってオイルポンプ53に吸入される。次に潤滑油はオイルポンプ53から吐出され、吐出油路54、入力軸油路55を通ってモータ部21へ供給される。なおオイル溜まり51に溜まる潤滑油と、吸入油路52および吐出油路54を流れる潤滑油は本体ケーシング38で冷却される。
 次に潤滑油はロータ油路56を流れて、ステータコイル24cに噴射され、モータ部21を冷却する。次に潤滑油はモータケーシング25の内周面に沿って落ち、貫通孔57を通って減速部31に供給され、各回転要素(軸、歯車、および転がり軸受)を潤滑し、本体ケーシング38の下部、すなわちオイル溜まり51に貯留する。あるいは潤滑油は貫通孔57から中間軸油路58を流れ、次に各回転要素(軸、歯車、および転がり軸受)を潤滑し、オイル溜まり51に貯留する。次に潤滑油は再びオイルポンプ53に吸入され、インホイールモータ駆動装置10の内部を循環する。
 本実施形態によればオイルポンプ53が外輪12と同軸に配置されて、外輪12に駆動されることから、車輪と同じ回転数(1500rpm以下)でオイルポンプ53を駆動することができる。したがってオイルポンプ53は低速で回転され、振動の問題が生じることがなく、耐久性が向上する。
 また本実施形態によれば出力歯車36を外輪12の外周面に同軸に設けることから、減速部31を車輪ハブ軸受部11からオフセットして配置し、多段多軸の平行軸式歯車減速機にすることができる。したがってモータ部21の高回転化および小型軽量化を図り、ひいてはインホイールモータ駆動装置10の小型軽量化を図ることができる。
 また本実施形態によれば、オイルポンプ53は外輪12の外周に附設されることから、オイルポンプ53の軸線方向位置を車輪ハブ軸受部11に重ねて配置することができる。したがって車輪ハブ軸受部11の軸線方向寸法が大きくならず、車輪ハブ軸受部11全体を車輪ホイールの内空領域に収容することができる。
 また本実施形態によれば、外輪12は軸線O方向一方側に車輪と結合するための結合部12fを有し、オイルポンプ53は結合部12fと出力歯車36の間に配置されることから、結合部12fと出力歯車36の間の空間を有効に利用することができる。
 また本実施形態によれば、オイルポンプ53は、アウタロータ53jおよびインナロータ53kを含み(図3)、インナロータ53kの中心孔53lの内周面が外輪12の外周面と係合する。これによりオイルポンプ53として、トロコイドポンプや、サイクロイドポンプや、インボリュートギヤポンプを使用することができる。
 また本実施形態によれば、出力歯車36の軸線O方向一方側の端面には、環状の凹部36dが同軸に形成され、オイルポンプ53は凹部36dに設けられることから、車輪ハブ軸受部11にオイルポンプ53を設けても車輪ハブ軸受部11の軸線O方向寸法が大きくならない。
 次に本発明の他の実施形態を説明する。図4は本発明の他の実施形態を示す縦断面図である。他の実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。他の実施形態では、オイルポンプ53が、出力歯車36からみて結合部12fと反対側になる軸線O方向他方側に配置される。第1中間歯車33は、外輪12よりも外径側で、外輪12の軸線方向位置と重なるように配置されることから、第1中間歯車33と外輪12の間に空間が画成される。かかる空間にオイルポンプ53が配置される。
 外輪12の外周には、軸線方向一方側から他方側まで外径一定のスプライン溝12sが形成される。スプライン溝12sは、軸線方向一方側で出力歯車36の内周面に形成されるスプライン溝と嵌合し、軸線方向他方側でインナロータ53kの中心孔53lの内周面に形成されるスプライン溝と嵌合する。
 他の実施形態の潤滑油回路は、前述したロータ油路に代えてステータ油路59を有する。ステータ油路59は、モータケーシング25の内部に設置され、ステータ24の端面に沿って環状に延びる管路である。ステータ油路59は、吐出油路54の上端と接続する。ステータ油路59には、ステータ24の端面に指向するノズル59nが間隔を空けて複数設けられる。吐出油路54からモータ部21に供給される潤滑油は、ノズル59nからステータ24に噴射され、ステータ24を冷却する。次に潤滑油は、モータケーシング25の内周面に沿って落下し、貫通孔57から排出されて、モータ部21から減速部31に供給される。
 モータ回転軸22の軸線O方向一方端には、突出部22pが形成される。突出部22pは軸線Mに沿って延び、軸部32sの中心孔に差し込まれる。これにより入力歯車32はモータ回転軸22と同軸に結合する。
 他の実施形態によれば、外輪12は軸線O方向一方側に車輪と結合するための結合部12fを有し、オイルポンプ53は出力歯車36から見て結合部12fと反対側になる軸線O方向他方側に配置される。これにより、第1中間歯車33と外輪12の間の空間を有効に利用することができる。また第1中間歯車33の軸線方向位置をオイルポンプ53と重ねることができ、インホイールモータ駆動装置20の軸線方向寸法を小さくすることができる。
 また他の実施形態によれば、外輪12の外周に環状の段差を設けず、共通するスプライン溝12sを利用して出力歯車36およびインナロータ53kを外輪12に嵌合させることができ組立効率が向上する。またインナロータ53kを外輪12に嵌合するために外輪12を薄肉かつ小径にする必要がなくなり、外輪12の強度低下を防止することができる。
 次に本発明のさらに他の実施形態を説明する。図5は本発明のさらに他の実施形態になるインホイールモータ駆動装置30を示す縦断面図である。さらに他の実施形態につき、前述した実施形態と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。さらに他の実施形態では、オイルポンプ53が、本体ケーシング38の外壁面に附設される。
 図5の実施形態と上述した実施形態の相違点につき説明すると、車輪ハブ軸受部11は回転内輪・固定外輪とされ、減速部31は中間軸42をさらに有する4軸の平行軸歯車減速機である。
 図5に示すように車輪ハブ軸受部11は、回転要素である内輪46と、固定要素である外輪47と、これら内外輪間の環状隙間に配置される複数の転動体48を有する。外輪47の外周面にはフランジが立設される。外輪フランジには周方向に間隔を空けて貫通孔が穿設される。各貫通孔は軸線Oと平行に延び、軸線O方向一方側からボルト47bが通される。各ボルト47bの軸部は、本体ケーシング38の正面部分38fに穿設される雌ねじ孔と螺合する。これにより外輪47は正面部分38fに連結固定される。なお正面部分38fは減速部31の軸線O方向一方端を覆うケーシング壁部である。また背面部分38bは減速部31の軸線O方向他方端を覆うケーシング壁部である。
 内輪46は、外輪47よりも長い筒状体であり、外輪47の中心孔に通される。外輪47からインホイールモータ駆動装置30の外部へ突出する内輪46の軸線O方向一方端部には、結合部46fが形成される。結合部46fはフランジであり、図示しないブレーキロータおよび車輪と同軸に結合するための結合部を構成する。内輪46は結合部46fで車輪と結合して、車輪と一体回転する。
 内輪46および外輪47間の環状隙間には、複数列の転動体48が配置される。内輪46の軸線O方向一方の外周面は、第1列の転動体48の内側軌道輪を構成する。内輪46の軸線O方向他方端部外周には内側軌道輪46rが嵌合し、内側軌道輪46rの外周面は、第2列の転動体48の内側軌道輪を構成する。内輪46および外輪47間の環状隙間には、シール材49がさらに介在する。シール材49は環状隙間の両端を封止して、塵埃および異物の侵入を阻止する。内輪46の軸線O方向他方端の中心孔には減速部31の出力軸45が差し込まれてスプライン嵌合する。
 減速部31の中間軸42は軸線Oと平行に延び、中間軸42の両端は、軸受42m,42nを介して、本体ケーシング38の正面部分38fおよび背面部分38bに回転自在に支持される。中間軸42の中央部には第3中間歯車41および第4中間歯車43が同軸に設けられる。第3中間歯車41および第4中間歯車43は、外歯のはすば歯車であり、第3中間歯車41の径が第4中間歯車43の径よりも大きい。
 相対的に小径の第2中間歯車35は相対的に大径の第3中間歯車41と噛合する。相対的に小径の第4中間歯車43は相対的に大径の出力歯車44と噛合する。出力歯車44は出力軸45に同軸に設けられる外歯歯車であり、はすば歯車である。出力軸45は、出力歯車44よりも軸線O方向一方で、転がり軸受45mを介して本体ケーシング38の正面部分38fに回転自在に支持される。また出力軸45は、出力歯車44よりも軸線O方向他方で、転がり軸受45nを介して本体ケーシング38の背面部分38bに回転自在に支持される。
 出力軸45の軸線O方向他方端部は、背面部分38bを貫通して延び、オイルポンプ53と結合する。オイルポンプ53は、背面部分38bの外側壁面に取り付けられ、背面部分38bの外側壁面から突出する。
 図5に示す実施形態によればオイルポンプ53が、車輪ハブ軸受部11の軸線Oと同軸に配置されて、出力軸45に駆動される。これにより車輪と同じ回転数でオイルポンプ53を駆動することができる。したがってオイルポンプ53は低速で回転され、振動の問題が生じることがなく、耐久性が向上する。
 また図5に示す実施形態によれば、固定輪は外輪47であり、回転輪は外輪47の中心孔に配置される内輪46である。このように本発明は、図1および図4に示す外輪回転・内輪固定の車輪ハブ軸受部11でも、あるいは図5に示す内輪回転・外輪固定の車輪ハブ軸受部11でも実現可能である。
 また図5に示す実施形態によればオイルポンプ53が出力軸45の端部と結合する。これによりオイルポンプ53を細長い出力軸45に隣接配置することができる。したがってオイルポンプ53のレイアウトの自由度が向上し、例えばオイルポンプ53をケーシング38の背面部分38bから突出して附設することができる。またオイルポンプ53の外径寸法を出力軸45の外径寸法に近づけるようにして、従来よりも小さくすることができる。あるいは図示しない変形例としてオイルポンプは出力軸45の外周面と係合してもよい。
 以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
 この発明になるインホイールモータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。
 10,20,30 インホイールモータ駆動装置、11 車輪ハブ軸受部、12 外輪、 12f 結合部、12s スプライン溝、13 内側固定部材、14 転動体、15 固定軸、16 インナレース、21 モータ部、22 モータ回転軸、23 ロータ、24 ステータ、24c ステータコイル、25 モータケーシング、25w 仕切壁、31 減速部、32 入力歯車、32s 軸部、33 第1中間歯車、34 中間軸、35 第2中間歯車、36 出力歯車、36c 筒部、36d 凹部、38 本体ケーシング、51 オイル溜まり、52 吸入油路、53 オイルポンプ、53h 室、53j アウタロータ、53k インナロータ、53l 中心孔、54 吐出油路、55 入力軸油路、56 ロータ油路、57 貫通孔、58 中間軸油路、59 ステータ油路、59n ノズル、101 キャリア、102 ブレーキロータ、103c 円、104 車輪、105 車輪ホイール、106 タイヤ、115,116 サスペンション部材、O,R,M 軸線。

Claims (9)

  1.  車輪と一体回転する回転輪、前記回転輪と同軸に配置される固定輪、および前記回転輪と前記固定輪との環状隙間に配置される複数の転動体を有する車輪ハブ軸受部と、
     前記回転輪を駆動するモータ部と、
     前記回転輪と同軸に結合する出力軸と、前記モータ部のモータ回転軸と結合する入力歯車とを含み、前記モータ回転軸の回転を減速して前記回転輪に伝達する減速部と、
     前記車輪ハブ軸受部と同軸に配置されて、前記出力軸に駆動されるオイルポンプとを備える、インホイールモータ駆動装置。
  2.  前記回転輪は外輪であり、前記固定輪は前記外輪の中心孔に配置される内輪であり、
     前記オイルポンプは、前記外輪の外周に設けられる、請求項1に記載のインホイールモータ駆動装置。
  3.  前記外輪は、軸線方向一方側に車輪と結合するための結合部を有し、
     前記オイルポンプは、前記結合部と出力歯車の間に配置される、請求項2に記載のインホイールモータ駆動装置。
  4.  前記外輪は、軸線方向一方側に車輪と結合するための結合部を有し、
     前記オイルポンプは、前記出力歯車から見て前記結合部と反対側になる軸線方向他方側に配置される、請求項2に記載のインホイールモータ駆動装置。
  5.  前記オイルポンプは、インナロータおよびアウタロータを含み、
     前記インナロータの内周面が前記外輪の外周面と係合する、請求項2~4のいずれかに記載のインホイールモータ駆動装置。
  6.  前記出力歯車の端面には、環状の凹部が同軸に形成され、
     前記オイルポンプは前記凹部に設けられる、請求項2~5のいずれかに記載のインホイールモータ駆動装置。
  7.  前記外輪の外周面には軸線方向一方側から他方側まで外径一定のスプライン溝が設けられ、
     前記出力歯車の内周面および前記インナロータの内周面は前記スプライン溝と嵌合する、請求項5に記載のインホイールモータ駆動装置。
  8.  前記固定輪は外輪であり、前記回転輪は前記外輪の中心孔に配置される内輪である、請求項1に記載のインホイールモータ駆動装置。
  9.  前記オイルポンプは、前記出力軸と係合または結合する、請求項1または8に記載のインホイールモータ駆動装置。
PCT/JP2016/078826 2015-09-30 2016-09-29 インホイールモータ駆動装置 WO2017057576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680043458.2A CN107848398A (zh) 2015-09-30 2016-09-29 轮内电动机驱动装置
US15/763,494 US20180294692A1 (en) 2015-09-30 2016-09-29 In-wheel motor driving device
EP16851747.2A EP3357731A4 (en) 2015-09-30 2016-09-29 MOTOR-WHEEL DRIVE DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015193386 2015-09-30
JP2015-193386 2015-09-30
JP2016188289A JP2017065671A (ja) 2015-09-30 2016-09-27 インホイールモータ駆動装置
JP2016-188289 2016-09-27

Publications (1)

Publication Number Publication Date
WO2017057576A1 true WO2017057576A1 (ja) 2017-04-06

Family

ID=58423592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078826 WO2017057576A1 (ja) 2015-09-30 2016-09-29 インホイールモータ駆動装置

Country Status (1)

Country Link
WO (1) WO2017057576A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226973A (ja) * 2008-03-19 2009-10-08 Aisin Seiki Co Ltd インホイールモータシステム
JP2010111362A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp インホイールモータ冷却構造
JP2013181645A (ja) * 2012-03-05 2013-09-12 Ntn Corp 電気自動車用駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226973A (ja) * 2008-03-19 2009-10-08 Aisin Seiki Co Ltd インホイールモータシステム
JP2010111362A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp インホイールモータ冷却構造
JP2013181645A (ja) * 2012-03-05 2013-09-12 Ntn Corp 電気自動車用駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357731A4 *

Similar Documents

Publication Publication Date Title
JP2017065671A (ja) インホイールモータ駆動装置
US8245803B2 (en) Wheel assembly with in-wheel motor
US8932166B2 (en) Drive device for electric vehicle
US9333843B2 (en) Drive device for electric vehicle
US9705378B2 (en) Drive device for electric vehicle
JP5066925B2 (ja) 車輪駆動装置
WO2012111412A1 (ja) インホイールモータ駆動装置
JP2009012523A (ja) 車輪駆動装置
US9735648B2 (en) Drive device for electric vehicle
JP6508148B2 (ja) インホイールモータユニット
JP2013181645A (ja) 電気自動車用駆動装置
WO2018073976A1 (ja) インホイールモータ駆動装置
JP2012034481A (ja) 車両用モータ駆動装置
JP6826378B2 (ja) インホイールモータ駆動装置
JP2018154286A (ja) インホイールモータユニット
WO2021095678A1 (ja) インホイールモータ駆動装置
JP2017159883A (ja) インホイールモータ駆動装置
WO2017057576A1 (ja) インホイールモータ駆動装置
JP2017165267A (ja) インホイールモータ駆動装置
WO2015060135A1 (ja) インホイールモータ駆動装置
JP6843511B2 (ja) インホイールモータ駆動装置
JP2016151321A (ja) インホイールモータ駆動装置
WO2019172255A1 (ja) 車両駆動装置
JP6800670B2 (ja) インホイールモータ駆動装置
US20190176610A1 (en) In-wheel motor drive device for steered wheel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851747

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE