WO2017057235A1 - 除湿方法及び除湿装置 - Google Patents

除湿方法及び除湿装置 Download PDF

Info

Publication number
WO2017057235A1
WO2017057235A1 PCT/JP2016/078185 JP2016078185W WO2017057235A1 WO 2017057235 A1 WO2017057235 A1 WO 2017057235A1 JP 2016078185 W JP2016078185 W JP 2016078185W WO 2017057235 A1 WO2017057235 A1 WO 2017057235A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
treated
regeneration
temperature
chamber
Prior art date
Application number
PCT/JP2016/078185
Other languages
English (en)
French (fr)
Inventor
富士夫 小松
山口 雅弘
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to US15/763,445 priority Critical patent/US20180299146A1/en
Priority to MX2018003909A priority patent/MX2018003909A/es
Priority to CN201680056076.3A priority patent/CN108027155A/zh
Priority to EP16851406.5A priority patent/EP3343117B1/en
Publication of WO2017057235A1 publication Critical patent/WO2017057235A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present disclosure relates to a dehumidifying method and a dehumidifying device that include a desiccant rotor and a heat pump device and supply dehumidified air to an air-conditioned room.
  • a desiccant rotor having an adsorption surface or a hydrophilic adsorption surface carrying an adsorbent on a disk-like rotor surface is used.
  • the desiccant rotor can adsorb water vapor from the air to be treated onto the adsorption surface, and can reduce the relative humidity of the air to be treated. Thereafter, the rotor is rotated halfway, the adsorption surface is exposed to low-humidity regeneration air, and a regeneration process is performed to release water vapor adsorbed from the adsorption surface.
  • the rotor is rotated, and the adsorption surface of the rotor is alternately exposed to the air flow path to be treated and the regeneration air flow path, and adsorption and regeneration are alternately performed.
  • Patent Document 3 when a dehumidifying device having a desiccant rotor and a heat pump device is used as the regenerated air, a sensible for preheating the regenerated air with the return air of the air-conditioned room dehumidified by the desiccant rotor.
  • a configuration provided with a heat heat exchanger is disclosed.
  • Patent Document 3 discloses dew prevention control means for preventing condensation of the sensible heat exchanger when the dehumidifying device is ventilated.
  • the air to be treated that has been heated by the exothermic reaction is cooled by the air cooler of the heat pump device.
  • a conventional dehumidifier equipped with a desiccant rotor is mainly used to supply a relatively low temperature of 3 to 10 ° C. to-be-processed air to a meat factory or a refrigerated warehouse.
  • the air to be treated is used for another purpose, for example, for drying, it is necessary to increase the temperature of the air to be treated to lower the relative humidity.
  • Patent Documents 1 to 3 do not disclose means for solving such a problem.
  • At least one embodiment of the present invention enables supply of air to be treated having a low relative humidity to a demand destination by a simple and low-cost means without reducing the thermal efficiency of the dehumidifying device. Objective.
  • a dehumidification method includes: Using a desiccant rotor in which the adsorption surface can alternately enter the air chamber to be processed and the regeneration air chamber arranged adjacent to each other, A dehumidification method of adsorbing water vapor in the air to be treated flowing through the air chamber to be treated to the adsorption surface and desorbing water vapor adsorbed on the adsorption surface by the regenerated air flowing through the regeneration air chamber, A dehumidifying step in which the air to be treated is brought into contact with the adsorption surface of a desiccant rotor, and water vapor in the air to be treated is adsorbed on the desiccant rotor; A cooling step of cooling the air to be treated dehumidified in the dehumidifying step with an air cooler constituting a part of a heat pump device; A first temperature raising step for raising the temperature of the air to be treated cooled in the cooling step with a temperature raising medium to
  • the temperature raising medium and the air to be treated are subjected to heat exchange, the temperature of the air to be treated is raised, and thereby the air to be treated whose relative humidity is reduced is demanded. It can be supplied to the air conditioning room. Since the first temperature raising step does not affect the operation of the heat pump device, the COP (coefficient of performance) of the heat pump device is not reduced. Further, in the first temperature raising step, the air flow to be processed formed in the air chamber to be processed can be directly led to the outside of the air chamber to be processed and heat exchanged with the temperature raising medium, so that the air flow to be processed is formed. There is no need to newly install a blower or the like. Therefore, the cost and power are not increased, and the thermal efficiency of the dehumidifier is not reduced. From the above, it is possible to maintain high thermal efficiency as a whole dehumidifier by simple and low-cost means.
  • the method further includes a precooling step of precooling the air to be treated with a precooler to increase the relative humidity of the air to be treated.
  • a precooling step of precooling the air to be treated with a precooler to increase the relative humidity of the air to be treated.
  • the heating medium is at least a part of the regeneration air after water vapor is desorbed from the desiccant rotor in the desorption step.
  • the regenerated air of 50 to 60 ° C., which has been heated by the air heater and used for water vapor desorption, is used as the heating medium in the first heating step, the temperature is newly increased. There is no need to prepare a medium, and operation without reducing the thermal efficiency of the entire dehumidifying device is possible.
  • the temperature raising medium is outside air or return air exhausted from the air conditioning room
  • the outside air or the return air after raising the temperature of the air to be treated in the first temperature raising step is used as the air to be treated for each step from the precooling step or the dehumidifying step to the supplying step.
  • the retained heat can be effectively used by using relatively high temperature outside air (for example, summer outside air) or return air as the temperature raising medium in the first temperature raising step.
  • the cooling load in the pre-cooling step as the pretreatment of the dehumidification step can be reduced by using the outside air or the return air that has been subjected to the first temperature raising step and whose temperature has been lowered as the air to be treated.
  • the heating medium is the return air discharged from the outside air or the air-conditioned room
  • the outside air or the return air after raising the temperature of the air to be treated in the first temperature raising step is used as the regeneration air for the second temperature raising step and the desorption step.
  • the relatively high temperature outside air for example, summer outdoor air
  • the return air from the air-conditioned room maintained at a relatively high temperature as the temperature raising medium in the first temperature raising step. The amount of heat held by outside air or return air can be used.
  • the temperature raising device that performs the first temperature raising step is arranged in the air chamber to be processed in the vicinity of the outlet of the air flow to be processed, the piping that constitutes the air passage to be treated and the piping that constitutes the regeneration air passage can be shortened. The cost can be reduced and the pressure loss of the air flowing through these pipes can be reduced.
  • the air conditioning room is a drying room. According to the said method (6), a drying effect can be improved by using the to-be-processed air which heated up by the said 1st temperature rising step and the relative humidity fell for drying to-be-dried material in the said drying chamber.
  • a dehumidifying device includes: A to-be-treated air chamber and a regeneration air chamber arranged adjacent to each other; A first blower which is provided in the air chamber to be treated and forms a flow of air to be treated in the air chamber to be treated; A second blower provided in the regeneration air chamber and forming a regeneration air flow in the regeneration chamber; A desiccant rotor arranged such that an adsorption surface straddles the treated air chamber and the regeneration air chamber; An air cooler for cooling the air flow to be treated which is provided in the air to be treated and dehumidified by the desiccant rotor, and an air heater which is provided in the regeneration air chamber and raises the temperature of the regenerated air flow upstream of the desiccant rotor.
  • a heat pump device having A temperature raising device for exchanging heat between the air to be treated cooled by the air cooler and a temperature raising medium.
  • the temperature increasing medium and the air to be processed are heat-exchanged by the temperature raising device, and the air to be processed is heated to supply the air to be processed having a reduced relative humidity to the customer. it can.
  • the heat exchange between the heating medium and the air to be processed in the heating device does not affect the operation of the heat pump device, and therefore does not lower the COP (coefficient of performance) of the heat pump device.
  • the air flow to be processed formed in the air chamber to be processed and the air flow to be regenerated in the regeneration air chamber may be introduced as they are into the temperature raising device, and thereby the air flow to be treated and the air to be regenerated in the temperature raising device. There is no need to newly install a blower or the like for forming a flow.
  • a precooler for precooling the air to be treated introduced into the air chamber to be treated is further provided.
  • the precooler by providing the precooler, it is possible to increase the relative humidity of the air to be processed to be sent to the desiccant rotor, thereby improving the dehumidifying effect by the desiccant rotor.
  • a regeneration air passage is provided for sending at least a part of the regeneration air discharged from the regeneration chamber to the temperature raising device as the temperature raising medium.
  • a heating medium path for sending the heating medium to the heating device;
  • a relative hygrometer that detects the relative humidity of the air to be treated heat-exchanged with the heating medium in the heating device;
  • a flow rate adjusting valve provided in the heating medium path;
  • a control unit for controlling the opening of the flow control valve to control at least one of the temperature or relative humidity of the air to be treated to a set value; Is further provided.
  • the relative humidity of the to-be-processed air supplied to a customer can be controlled to desired relative humidity according to a use.
  • the temperature raising medium path is a regeneration air path for sending at least a part of the regeneration air discharged from the regeneration chamber as the temperature raising medium to the temperature raising device.
  • the configuration (11) since the regenerated air of 50 to 60 ° C., which has been heated by the air heater and used for regeneration of the desiccant rotor, is supplied as a heating medium to the heating device, the temperature is newly increased. There is no need to prepare a medium, whereby the thermal efficiency of the dehumidifier can be maintained high.
  • the relative humidity of the to-be-processed air supplied to a demand destination can be controlled to desired relative humidity according to a use.
  • to-be-processed air having a low relative humidity can be supplied to a demand destination by a simple and low-cost means without reducing the thermal efficiency of the dehumidifier.
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • Dehumidifiers 10A to 10D are shown in FIGS.
  • the air chamber 12 to be treated and the regeneration air chamber 14 are arranged adjacent to each other.
  • the processing air chamber 12 is provided with a processing fan (first blower) 16 for forming the processing air flow SA inside the processing air chamber 12, and the regeneration air chamber 14 includes the regeneration air chamber 14.
  • a desiccant rotor 20 is provided in which the adsorption surface 20 a is disposed across the air chamber 12 to be processed and the regeneration air chamber 14. The desiccant rotor 20 rotates about the rotation shaft 20b and rotates, so that the adsorption surface 20a alternately enters the air chamber 12 to be treated and the regeneration air chamber 14.
  • the processing air introduced into the processing air chamber 12 by the processing fan 16 is pre-cooled by a precooler 22 provided on the upstream side of the processing air chamber 12.
  • the precooler 22 is not essential, and the precooler 22 can be omitted.
  • a heat pump device 24 is provided in the dehumidifying devices 10A to 10D.
  • a compressor 28 an air heater (condenser) 30, an expansion valve 32, and an air cooler (evaporator) 34 are provided in the refrigerant circuit 26 as devices constituting a heat pump cycle.
  • a temperature riser 36 is provided on the downstream side of the air cooler 34 to raise the temperature by subjecting the air to be treated cooled by the air cooler 34 to heat exchange with the temperature raising medium.
  • the temperature raising device 36 is manufactured separately from the air chamber 12 and the regeneration air chamber 14.
  • water vapor included in the air flow SA to be processed formed in the air chamber 12 to be processed is adsorbed on the adsorption surface 20 a of the desiccant rotor 20.
  • the adsorption surface 20 a on which the water vapor is adsorbed moves to the regeneration air chamber 14.
  • the water vapor adsorbed on the adsorption surface 20a is desorbed by the regeneration air flow DA formed in the regeneration air chamber 14.
  • the desiccant rotor 20 is made easier to adsorb water vapor contained in the air to be treated by lowering the temperature of the air to be treated and increasing the relative humidity.
  • the pre-cooling step S10 is not essential and can be eliminated.
  • the dehumidifying step S12 the air to be treated precooled in the precooling step S10 is brought into contact with the adsorption surface 20a of the desiccant rotor 20, water vapor contained in the air to be treated is adsorbed on the adsorption surface 20a, and the air to be treated is dehumidified. To do.
  • the air to be treated dehumidified in the dehumidifying step S12 is cooled by the air cooler 34 (cooling step S14). Further, the temperature of the cooled air to be treated is increased by exchanging heat with the temperature increasing medium by the temperature increasing device 36, thereby lowering the relative humidity (first temperature increasing step S16). Next, the air to be treated whose temperature has been raised and the relative humidity has been reduced is supplied to the air-conditioning chamber 38 which is a demand destination (supply step S18). On the other hand, the regeneration air flow DA formed in the regeneration air chamber 14 is heated by the air heater 30 and heated to decrease the relative humidity (second heating step S20).
  • the adsorption surface 20 a that has adsorbed water vapor contained in the air to be treated in the air to be treated 12 moves to the regeneration air chamber 14 by the rotation of the desiccant rotor 20.
  • the regenerated air stream DA which has been heated by the air heater 30 and has a reduced relative humidity, comes into contact with the adsorption surface 20a, and desorbs the water vapor adsorbed on the adsorption surface 20a (desorption step S22).
  • the desiccant rotor 20 is manufactured in a honeycomb shape, for example, by forming a suction surface 20a by coating a special sheet having a surface impregnated with a suction material.
  • the desiccant rotor 20 is rotated at a low speed of several tens of revolutions per hour by a driving device (not shown) such as a motor, and alternately enters the processing target air chamber 12 and the regeneration air chamber 14 to continuously perform adsorption and regeneration. Repeat alternately.
  • adsorbent for example, an inorganic adsorbent such as silica gel or zeolite, or a polymer adsorbent is used.
  • CO 2 that is supercritical in a high pressure region and has a high temperature is used as the refrigerant.
  • the regeneration air can be raised to a high temperature of 80 ° C. or more by the air heater 30.
  • a regeneration air passage 40 is provided for sending at least a part of the regeneration air discharged from the regeneration air chamber 14 to the temperature riser 36 as a temperature raising medium.
  • the regeneration air passage 40 is a branch passage that branches off from the regeneration air discharge passage 42 provided in the regeneration air chamber 14 and is led to the temperature raising device 36.
  • the air to be treated is heated by the regeneration air of 50 to 60 ° C. discharged from the regeneration air chamber 14, the temperature is raised to lower the relative humidity, and the air to be treated having the lowered relative humidity is reduced to the air conditioning chamber. 38.
  • the regeneration air after being subjected to the temperature rise of the air to be treated is exhausted.
  • the heating medium used for the heating device 36 is the return air RA discharged from the outside air OA or the air conditioning chamber 38.
  • the outside air OA or the return air RA which is supplied to the temperature increasing device 36 as a temperature raising medium and has raised the temperature of the air to be treated in the temperature raising step S16, is used as the air to be treated in the precooling step S10, the dehumidifying step S12, and the cooling step S14.
  • the temperature increase step S16 and the supply step S18 are used.
  • the relatively high temperature outside air OA for example, summer outside air
  • the return air RA having a relatively high temperature is used as the temperature raising medium.
  • the heat medium used for the temperature raising device 36 is the return air RA exhausted from the outside air OA or the air conditioning chamber 38.
  • the outside air OA or the return air RA that has been supplied to the temperature increasing device 36 as a temperature increasing medium and raised the temperature of the air to be treated in the temperature increasing step S16 is supplied to the temperature increasing step S20 and the desorption step S22 as regeneration air.
  • the relatively high temperature outside air (for example, summer outdoor air) or the return air RA maintained at a relatively high temperature is used as the temperature raising medium in the first temperature raising step S16, and then the regeneration air chamber 14 is used as the regeneration air.
  • the following configuration is further added to the configuration of the embodiment shown in FIG.
  • a relative hygrometer 46 that detects the relative humidity of the air to be treated heat-exchanged with the heating medium by the heater 36
  • a flow rate adjustment valve 48 provided in the regeneration air passage 40
  • a control unit 50 for controlling the relative humidity of the air to be treated at the outlet of the heater to a set value.
  • the relative hygrometer 46 is provided in the discharge path 44 through which the air to be treated is discharged from the heater 36.
  • the air-conditioning chamber 38 is a drying chamber and dries an object to be dried stored in the drying chamber.
  • the drying chamber is supplied with the air to be processed having a low relative humidity, which has been heated by the heater 36 and is heated, and is used for drying the object to be dried.
  • the air chamber 12 and the regeneration air chamber 14 extend along the flow direction of the air flow SA and the regeneration air DA. Further, the air chamber 12 to be treated and the regeneration air chamber 14 are partitioned by a partition wall 52, and the rotating shaft 20 b of the desiccant rotor 20 is provided in the partition wall 52.
  • the to-be-treated air flow SA formed in the to-be-treated air chamber 12 and the regenerated air flow DA formed in the regenerating air chamber 14 are mutually exchanged, that is, It is configured to flow in opposite directions.
  • the air heater 30 disposed on the downstream side of the desiccant rotor 20 in the air to be treated 12 and the air heater 30 disposed on the upstream side of the desiccant rotor 20 in the regeneration air chamber 14 can be disposed close to each other. Therefore, the refrigerant circulation path 26 can be shortened and the cost can be reduced.
  • the return air RA discharged from the outside air OA or the air conditioning chamber 38 is used as the air to be processed.
  • a refrigerator 54 for supplying a refrigerant to the precooler 22 is provided.
  • outside air OA is used as the regeneration air supplied to the regeneration air chamber 14.
  • the outdoor air OA is preferably hot summer outdoor air.
  • the regeneration air after being subjected to regeneration of the desiccant rotor 20 is exhausted. 1 to 4 show an example of temperature / relative humidity at each part.
  • FIG. 6 shows a warmer 36 according to one embodiment.
  • the flow path a of the air stream SA to be processed and the flow path b of the heating medium HA formed in the heating device 36 are formed in directions that intersect each other (in the direction orthogonal to each other in the drawing).
  • the flow paths a and b are alternately formed in multiple stages.
  • the partition wall of the heater 36 is made of a material having good heat conductivity (for example, metal or resin) and may have heat resistance of 50 ° C. or less. Then, the sensible heat exchange is performed between the air flow SA to be processed and the heating medium HA, and moisture is prevented from moving between the air flow SA to be processed and the heating medium HA. .
  • the air to be treated whose temperature is raised in the first temperature raising step S16 and the relative humidity is lowered can be supplied to the air conditioning chamber 38 that is a supply destination.
  • the air flow SA to be processed and the flow of the heating medium introduced into the temperature raising device 36 are formed by the processing fan 16 provided in the air chamber 12 to be processed and the regeneration fan 18 provided in the regeneration air chamber 14. Therefore, no new flow forming means is required, and cost and power are not increased.
  • the relative humidity of the air to be processed sent to the desiccant rotor 20 can be increased, and thereby the dehumidifying effect by the desiccant rotor 20 can be improved. From the above, it is possible to maintain high thermal efficiency as a whole dehumidifier by simple and low-cost means.
  • the dehumidifying devices 10A and 10D can be operated without lowering the thermal efficiency of the entire device. Moreover, useless heat radiation outside the dehumidifying device can be suppressed, and the thermal efficiency of the dehumidifying devices 10A and 10D can be maintained high.
  • This method of using regenerated air of 50 to 60 ° C. is effective when it is necessary to operate the dehumidifier for one year because there is almost no temperature change throughout the year.
  • the dehumidifying devices 10 ⁇ / b> A and 10 ⁇ / b> D can supply the air to be treated to the air-conditioning chamber 38 at a temperature of 30 ° C. or higher and a low relative humidity.
  • the cooling load in the precooling step S10 can be reduced by using the outside air OA or the return air RA whose temperature has been lowered in the first temperature raising step S16 as the air to be treated.
  • the dehumidifiers 10 ⁇ / b> B and 10 ⁇ / b> C can supply the air to be treated to the air-conditioning chamber 38 at a temperature of 20 ° C. or higher and a low relative humidity.
  • the relative humidity of the air to be processed supplied to the air-conditioning room 38 (destination) by the control unit 50 can be controlled to a desired relative humidity according to the application.
  • the temperature raising device 36 is arranged in the vicinity of the outlet of the air flow SA to be treated in the air to be treated 12, the piping and the regeneration air passage 58 constituting the air passage 56 to be treated. Can be shortened and the cost can be reduced, and the pressure loss of the air flowing through these pipes can be reduced.
  • the relative humidity of the air flow SA to be treated can be greatly reduced. Further, by manufacturing the temperature raising device 36 separately from the air chamber 12 to be processed and the regeneration air chamber 14, installation, removal, inspection, and repair of the temperature raising device 36 are facilitated.
  • the relative hygrometer 46, the flow rate adjustment valve 48, and the control unit 50 provided in the embodiment shown in FIG. 4 can also be provided in the dehumidifying device 10B shown in FIG. 2 or the dehumidifying device 10C shown in FIG. That is, a flow rate adjusting valve 48 is provided in a flow path for sending outside air OA to the temperature riser 36 or a flow path for sending the return air RA from the air conditioning chamber 38 to the temperature riser 36, and a relative hygrometer 46 is provided in the discharge path 44. Then, the opening of the flow rate adjustment valve 48 is controlled by the control unit 50 to adjust the relative humidity of the air flow SA to be processed in the discharge path 44.
  • to-be-processed air having a low relative humidity can be supplied to a customer by a simple and low-cost means without reducing the thermal efficiency of the dehumidifier.
  • Air chamber to be processed 14 Regenerating air chamber 16 Processing fan (first blower) 18 Regenerative fan (second blower) DESCRIPTION OF SYMBOLS 20 Desiccant rotor 20a Adsorption surface 20b Rotating shaft 22 Precooler 24 Heat pump apparatus 26 Refrigerant circulation path 28 Compressor 30 Air heater 32 Expansion valve 34 Air cooler 36 Heating device 38 Air-conditioning room 40, 58 Regeneration air path 42, 44 Exhaust path 46 Relative hygrometer 48 Flow Control Valve 50 Control Unit 52 Partition Wall 54 Refrigerator 56 Processed Air Path DA Regenerated Air Flow HA Heating Medium OA Outside Air RA Return Air SA Processed Air Flow a, b Channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】除湿装置の熱効率を低下させずに、かつ簡易かつ低コストな手段で、相対湿度が低い被処理空気を需要先に供給可能にする。 【解決方法】本発明の除湿方法は、前記被処理空気に含まれる水蒸気をデシカントロータの吸着面に吸着させる除湿ステップと、この除湿された前記被処理空気をヒートポンプ装置の一部を構成するエアクーラで冷却する冷却ステップと、この冷却された前記被処理空気を昇温媒体で昇温させて相対湿度を低下させる第1昇温ステップと、この相対湿度が低下した前記被処理空気を空調室に供給する供給ステップと、前記再生空気を前記ヒートポンプ装置の一部を構成するエアヒータで昇温して相対湿度を低下させる第2昇温ステップと、この昇温された前記再生空気で前記吸着面に吸着された水蒸気を脱離させる脱離ステップと、を含む。

Description

除湿方法及び除湿装置
 本開示は、デシカントロータとヒートポンプ装置とを備え、空調室に除湿された空気を供給する除湿方法及び除湿装置に関する。
 空調室に供給される空気の除湿手段として、円盤状のロータ表面に吸着材を担持した吸着面又は親水性吸着面をもつデシカントロータが用いられている。このデシカントロータは、被処理空気から上記吸着面に水蒸気を吸着し、被処理空気の相対湿度を低下させることができる。その後、ロータを半回転させ、該吸着面を低湿度の再生空気に晒し、該吸着面から吸着した水蒸気を放出させる再生処理を行う。このように、ロータを回転させ、ロータの吸着面を被処理空気流路と再生空気流路とに交互に晒し、吸着と再生とを交互に行っている。
 吸着工程では発熱反応が起って吸着熱が発生し、被処理空気が昇温するため、吸着工程の後で処理空気を冷却することが行われる。また、再生工程では前段階で再生空気を予熱し、再生空気の相対湿度を低下させることが行われる。
 そのため、特許文献1及び特許文献2に開示されているように、デシカントロータと共に、吸着工程後の除湿された処理空気を冷却するエアクーラと、再生空気を予熱するエアヒータとを有するヒートポンプ装置を備えた除湿装置が用いられている。
 また、特許文献3には、デシカントロータ及びヒートポンプ装置を備えた除湿装置において、外気を再生空気として用いる際に、該再生空気をデシカントロータで除湿された空調室の還気で予熱するための顕熱熱交換器を設けた構成が開示されている。特許文献3には、この除湿装置を換気運転する際に、上記顕熱熱交換器の結露を防止するための防露制御手段が開示されている。
特許第4870843号公報 特開2014-016090号公報 特開2008-151460号公報
 上記除湿装置では、デシカントロータで水蒸気が吸着される際に、発熱反応によって昇温した被処理空気をヒートポンプ装置のエアクーラで冷却している。
 従来のデシカントロータを備えた除湿装置は、主として、3~10℃の比較的低温の被処理空気を食肉工場や冷蔵用倉庫等に供給するために用いられている。
 被処理空気を別な用途に、例えば乾燥用として用いる場合、被処理空気の温度を高めてもっと相対湿度を低下させる必要がある。この場合、デシカントロータの出口側で被処理空気をエアクーラで冷却すると逆に相対湿度が高まるため、エアクーラによる冷却工程は必要ではない。
 しかし、ヒートポンプサイクルでは、エアクーラによる冷却行程は必須のものであり、これをなくすことはできない。従って、この除湿装置のみで低相対湿度の空気を供給することは非常に難しい。
 特許文献1~3にはかかる問題を解決する手段は開示されていない。
 本発明の少なくとも一実施形態は、上記課題に鑑み、除湿装置の熱効率を低下させずに、かつ簡易かつ低コストな手段で、相対湿度が低い被処理空気を需要先に供給可能にすることを目的とする。
 (1)本発明の少なくとも一実施形態に係る除湿方法は、
 互いに隣接して配置された被処理空気室及び再生空気室に吸着面が交互に進入可能なデシカントロータを用い、
 前記被処理空気室を流れる被処理空気中の水蒸気を前記吸着面に吸着すると共に、前記再生空気室を流れる再生空気によって前記吸着面に吸着した水蒸気を脱離させる除湿方法であって、
 前記被処理空気をデシカントロータの前記吸着面に接触させ、該被処理空気中の水蒸気を前記デシカントロータに吸着させる除湿ステップと、
 前記除湿ステップで除湿された前記被処理空気をヒートポンプ装置の一部を構成するエアクーラで冷却する冷却ステップと、
 前記冷却ステップで冷却された前記被処理空気を昇温媒体で昇温させて相対湿度を低下させる第1昇温ステップと、
 前記第1昇温ステップで相対湿度が低下した前記被処理空気を空調室に供給する供給ステップと、
 前記再生空気を前記ヒートポンプ装置の一部を構成するエアヒータで昇温して相対湿度を低下させる第2昇温ステップと、
 前記第2昇温ステップで昇温された前記再生空気を前記吸着面に接触させ、該吸着面に吸着された水蒸気を前記吸着面から脱離させる脱離ステップと、
 を含む。
 上記方法(1)によれば、上記第1昇温ステップで昇温媒体と被処理空気とを熱交換させ、被処理空気を昇温させ、これによって、相対湿度が低下した被処理空気を需要先である上記空調室に供給できる。上記第1昇温ステップはヒートポンプ装置の運転に影響を与えないため、ヒートポンプ装置のCOP(成績係数)を低下させることはない。
 また、上記第1昇温ステップでは、被処理空気室に形成された被処理空気流をそのまま被処理空気室外に導いて昇温媒体と熱交換させることができるため、被処理空気流を形成するための送風機などを新たに設置する必要がない。そのため、コスト増及び動力増とならず、除湿装置の熱効率を低下させない。
 以上から、簡易かつ低コストな手段で除湿装置全体としての熱効率を高く維持できる。
 (2)幾つかの実施形態では、前記方法(1)において、
 前記除湿ステップの前処理として前記被処理空気をプレクーラで予冷して該被処理空気の相対湿度を増加させる予冷ステップをさらに含む。
 上記方法(2)によれば、上記除湿ステップの前段階で上記予冷ステップをもうけることで、デシカントロータに送る被処理空気の相対湿度を高めることができ、これによって、デシカントロータによる除湿効果を向上できる。
 (3)幾つかの実施形態では、前記方法(1)又は(2)において、
 前記昇温媒体が前記脱離ステップで前記デシカントロータから水蒸気を脱離させた後の前記再生空気の少なくとも一部である。
 上記方法(3)によれば、上記エアヒータで昇温し、水蒸気脱離に利用した後の50~60℃の再生空気を上記第1昇温ステップにおける昇温媒体として用いるので、新たに昇温媒体を用意する必要がなくなり、除湿装置全体の熱効率を低下させない運転が可能になる。
 (4)幾つかの実施形態では、前記方法(1)又は(2)において、
 前記昇温媒体が外気又は前記空調室から排出された還気であり、
 前記第1昇温ステップで前記被処理空気を昇温させた後の前記外気又は前記還気を、前記被処理空気として前記予冷ステップ又は前記除湿ステップから前記供給ステップまでの各ステップに供する。
 上記方法(4)によれば、比較的高温の外気(例えば夏場の外気)又は還気を、上記第1昇温ステップで昇温媒体として利用することで、これらの保有熱を有効利用できる。また、上記第1昇温ステップに供され温度低下した外気又は還気を被処理空気として用いることで、上記除湿ステップの前処理としての予冷ステップでの冷却負荷を低減できる。
 (5)幾つかの実施形態では、前記方法(1)又は(2)において、
 前記昇温媒体が外気又は前記被空調室から排出された還気であり、
 前記第1昇温ステップで前記被処理空気を昇温させた後の前記外気又は前記還気を前記再生空気として前記第2昇温ステップ及び前記脱離ステップに供する。
 上記方法(5)によれば、比較的高温の外気(例えば夏場の外気)又は比較的高温に維持された空調室からの還気を上記第1昇温ステップで昇温媒体として用いることで、外気又は還気が保有する熱量を利用できる。また、第1昇温ステップを行う昇温器を被処理空気室において被処理空気流の出口近傍に配置すれば、被処理空気路を構成する配管及び再生空気路を構成する配管を短縮でき低コスト化できると共に、これら配管を流れる空気の圧力損失を低減できる。
 (6)幾つかの実施形態では、前記方法(1)~(5)の何れかにおいて、
 前記空調室が乾燥室である。
 上記方法(6)によれば、上記第1昇温ステップで昇温され相対湿度が低下した被処理空気を上記乾燥室で被乾燥物の乾燥用として用いることで、乾燥効果を向上できる。
 (7)本発明の少なくとも一実施形態に係る除湿装置は、
 互いに隣接配置された被処理空気室及び再生空気室と、
 前記被処理空気室に設けられ前記被処理空気室内に被処理空気流を形成する第1の送風機と、
 前記再生空気室に設けられ前記再生室内に再生空気流を形成する第2の送風機と、
 吸着面が前記被処理空気室及び前記再生空気室に跨るように配置されたデシカントロータと、
 前記被処理空気室に設けられ前記デシカントロータで除湿された前記被処理空気流を冷却するためのエアクーラ、及び前記再生空気室に設けられ前記デシカントロータの上流で前記再生空気流を昇温するエアヒータを有するヒートポンプ装置と、
 前記エアクーラによって冷却された前記被処理空気を昇温媒体と熱交換させるための昇温器と、を備える。
 上記構成(7)によれば、上記昇温器で昇温媒体と被処理空気とを熱交換させ、被処理空気を昇温させることで、相対湿度が低下した被処理空気を需要先に供給できる。上記昇温器における昇温媒体と被処理空気との熱交換は、ヒートポンプ装置の運転に影響を与えないため、ヒートポンプ装置のCOP(成績係数)を低下させることはない。
 また、被処理空気室に形成された被処理空気流と再生空気室に形成された再生空気流をそのまま昇温器に導入すればよく、これによって、昇温器では被処理空気流及び再生空気流を形成するための送風機などを新たに設置する必要がない。従って、昇温器を設けるだけでよいため、コスト増及び動力増とならず、除湿装置の熱効率を低下させない。
 以上から、簡易かつ低コストな手段で除湿装置全体としての熱効率を高く維持できる。
 (8)幾つかの実施形態では、前記構成(7)において、
 前記被処理空気室に導入される前記被処理空気を予冷するプレクーラをさらに備える。
 上記構成(8)によれば、また、上記プレクーラを設けることで、デシカントロータに送る被処理空気の相対湿度を高めることができ、これによって、デシカントロータによる除湿効果を向上できる。
 (9)幾つかの実施形態では、前記構成(7)又は(8)において、
 前記再生室から排出された再生空気の少なくとも一部を前記昇温媒体として前記昇温器に送るための再生空気路を備える。
 上記構成(9)によれば、上記エアヒータで昇温されデシカントロータの再生に供された後の50~60℃の再生空気を上記昇温器に昇温媒体として供給するので、新たに昇温媒体を用意する必要がなくなり、これによって、除湿装置の熱効率を高く維持できる。50~60℃の再生空気を利用するこの方式は、1年を通じてほとんど温度変化がないため、除湿装置を1年間稼働させる必要がある場合には有効である。
 (10)幾つかの実施形態では、前記構成(7)又は(8)において、
 前記昇温媒体を前記昇温器に送るための昇温媒体路と、
 前記昇温器で前記昇温媒体と熱交換された前記被処理空気の相対湿度を検出する相対湿度計と、
 前記昇温媒体路に設けられた流量調整弁と、
 前記流量調整弁の開度を制御して前記被処理空気の温度又は相対湿度の少なくとも一方を設定値に制御するための制御部と、
 をさらに備える。
 上記構成(10)によれば、需要先に供給する被処理空気の相対湿度を用途に応じて所望の相対湿度に制御できる。
 (11)幾つかの実施形態では、前記構成(10)において、
 前記昇温媒体路が前記再生室から排出された再生空気の少なくとも一部を前記昇温媒体として前記昇温器に送るための再生空気路である。
 上記構成(11)によれば、上記エアヒータで昇温されデシカントロータの再生に供された後の50~60℃の再生空気を上記昇温器に昇温媒体として供給するので、新たに昇温媒体を用意する必要がなくなり、これによって、除湿装置の熱効率を高く維持できる。
 また、需要先に供給する被処理空気の相対湿度を用途に応じて所望の相対湿度に制御できる。
 本発明の少なくとも一実施形態によれば、除湿装置の熱効率を低下させることなく、簡易かつ低コストな手段で、相対湿度が低い被処理空気を需要先に供給できる。
一実施形態に係る除湿装置の構成図である。 一実施形態に係る除湿装置の構成図である。 一実施形態に係る除湿装置の構成図である。 一実施形態に係る除湿装置の構成図である。 一実施形態に係る除湿方法のフロー図である。 一実施形態に係る昇温器の斜視図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 本発明の幾つかの実施形態に係る除湿装置10A~10Dを図1~図6に示す。
 除湿装置10A~10Dは、図1~図4に示すように、被処理空気室12と再生空気室14とが互いに隣接配置されている。被処理空気室12には、被処理空気室12の内部に被処理空気流SAを形成するための処理ファン(第1の送風機)16が設けられ、再生空気室14には、再生空気室14の内部に再生空気流DAを形成するための再生ファン(第2の送風機)18が設けられる。
 また、吸着面20aが被処理空気室12及び再生空気室14に跨って配置されたデシカントロータ20が設けられる。デシカントロータ20は回転軸20bを中心に回転し、回転することで、吸着面20aは被処理空気室12及び再生空気室14に交互に進入する。
 処理ファン16によって被処理空気室12に導入される被処理空気は、被処理空気室12の上流側に設けられたプレクーラ22で予冷される。なお、プレクーラ22は必須のものではなく、プレクーラ22の設置をなくすこともできる。
 除湿装置10A~10Dには、ヒートポンプ装置24が設けられる。ヒートポンプ装置24は、冷媒循環路26に、ヒートポンプサイクルを構成する機器として、圧縮機28と、エアヒータ(凝縮器)30と、膨張弁32と、エアクーラ(蒸発器)34とが設けられる。
 また、エアクーラ34の下流側にエアクーラ34で冷却された被処理空気を昇温媒体と熱交換して昇温させる昇温器36が設けられる。
 図示された実施形態では、図1~図4に示すように、昇温器36は被処理空気室12及び再生空気室14とは別個に製造される。
 かかる構成において、被処理空気室12に形成される被処理空気流SAに含まれる水蒸気はデシカントロータ20の吸着面20aに吸着される。デシカントロータ20が回転することで、該水蒸気が吸着した吸着面20aは再生空気室14に移動する。吸着面20aに吸着した水蒸気は、再生空気室14に形成される再生空気流DAによって脱離する。
 かかる除湿工程を図5によって説明する。
 図5において、予冷ステップS10では、被処理空気をプレクーラ22で予冷する。これによって、被処理空気の温度を下げ相対湿度を上昇させることで、被処理空気に含まれる水蒸気をデシカントロータ20に吸着させやすくする。なお、予冷ステップS10は必須のものではなく、なくすこともできる。
 次に、除湿ステップS12では、予冷ステップS10で予冷された被処理空気をデシカントロータ20の吸着面20aに接触させ、被処理空気に含まれる水蒸気を吸着面20aに吸着させ、被処理空気を除湿する。
 その後、除湿ステップS12で除湿された被処理空気をエアクーラ34で冷却する(冷却ステップS14)。さらに、冷却された被処理空気を昇温器36で昇温媒体と熱交換させることで昇温させ相対湿度を低下させる(第1昇温ステップS16)。
 次に、昇温し相対湿度が低下した被処理空気を需要先である空調室38に供給する(供給ステップS18)。
 他方、再生空気室14に形成された再生空気流DAはエアヒータ30で昇温され昇温して相対湿度が低下する(第2昇温ステップS20)。被処理空気室12で被処理空気に含まれる水蒸気を吸着した吸着面20aは、デシカントロータ20の回転により再生空気室14に移動する。エアヒータ30で昇温されて相対湿度が低下した再生空気流DAは吸着面20aに接触し、吸着面20aに吸着されている水蒸気を脱離させる(脱離ステップS22)。
 例示的な実施形態では、デシカントロータ20は、例えば、表面に吸着材を含浸させた特殊シートを被覆して吸着面20aを形成し、ハニカム状に製作される。デシカントロータ20はモータなどの駆動装置(不図示)により1時間に数十回転という低速で回転し、被処理空気室12及び再生空気室14に交互に進入し、連続的に吸着と再生とを交互に繰り返す。吸着材は、例えばシリカゲルやゼオライト等の無機系吸着材や高分子吸着材が用いられる。
 例示的な実施形態では、冷媒として高圧領域で超臨界状態となり高温となるCOを用いる。COを用いることで、エアヒータ30により再生空気を80℃以上の高温に昇温できる。
 例示的な実施形態では、図1に示すように、再生空気室14から排出された再生空気の少なくとも一部を昇温媒体として昇温器36に送るための再生空気路40を備える。
 図1に示す実施形態では、再生空気路40は、再生空気室14に設けられた再生空気の排出路42から分岐し、昇温器36に導設される分岐路である。
 この実施形態では、再生空気室14から排出される50~60℃の再生空気によって被処理空気を昇温し昇温させて相対湿度を低下させ、この相対湿度が低下した被処理空気を空調室38に供給する。被処理空気の昇温に供した後の再生空気は排気される。
 例示的な実施形態では、図2に示すように、昇温器36に用いられる昇温媒体が外気OA又は空調室38から排出された還気RAである。
 昇温器36に昇温媒体として供給され、昇温ステップS16で被処理空気を昇温させた後の外気OA又は還気RAは、被処理空気として予冷ステップS10、除湿ステップS12、冷却ステップS14、昇温ステップS16及び供給ステップS18に供される。
 この実施形態では、比較的高温の外気OA(例えば夏場の外気)又は比較的高温となった還気RAを昇温媒体として用いる。
 例示的な実施形態では、図3に示すように、昇温器36に用いられる熱媒体が外気OA又は空調室38から排出された還気RAである。
 昇温器36に昇温媒体として供給され、昇温ステップS16で被処理空気を昇温させた後の外気OA又は還気RAは、再生空気として昇温ステップS20及び脱離ステップS22に供される。
 この実施形態では、比較的高温の外気(例えば夏場の外気)又は比較的高温に維持された還気RAを第1昇温ステップS16で昇温媒体として利用し、その後再生空気として再生空気室14に導入する。
 例示的な実施形態では、図4に示すように、図1に示す実施形態の構成に、さらに次の構成が付加される。
 図4において、昇温器36で昇温媒体と熱交換された被処理空気の相対湿度を検出する相対湿度計46と、再生空気路40に設けられた流量調整弁48と、流量調整弁48の開度を制御して昇温器出口の被処理空気の相対湿度を設定値に制御するための制御部50とをさらに備える。
 図示した構成では、相対湿度計46は昇温器36から被処理空気を排出する排出路44に設けられる。
 例示的な実施形態では、空調室38は乾燥室であり、該乾燥室の内部に収納された被乾燥物を乾燥させるものである。この乾燥室には、昇温器36で昇温され昇温した相対湿度の低い被処理空気が供給され、被乾燥物の乾燥に供される。
 図示した実施形態では、被処理空気室12及び再生空気室14は、被処理空気流SA及び再生空気流DAの流れ方向に沿って延設される。また、被処理空気室12及び再生空気室14は仕切り壁52によって仕切られ、デシカントロータ20の回転軸20bは仕切り壁52内に設けられる。
 図示した実施形態では、図1~図4に示すように、被処理空気室12に形成される被処理空気流SAと再生空気室14に形成される再生空気流DAとは互いに交流に、即ち互いに逆方向に流れるように構成される。
 これによって、被処理空気室12でデシカントロータ20の下流側に配置されるエアヒータ30と、再生空気室14でデシカントロータ20の上流側に配置されるエアヒータ30とを近接配置できる。そのため、冷媒循環路26を短縮でき低コスト化できる。
 例示的な実施形態では、図1、図3及び図4に示すように、被処理空気として外気OA又は空調室38から排出された還気RAが用いられる。
 図示した実施形態では、図1~図4に示すように、プレクーラ22に冷媒を供給するための冷凍機54を備える。
 図1及び図2に示す実施形態では、再生空気室14に供給する再生空気として外気OAを用いる。この外気OAは高温の夏場の外気が好適である。
 図2及び図3に示す実施形態では、デシカントロータ20の再生に供された後の再生空気は排気される。
 なお、図1~図4中に付記した数値は各部位における温度/相対湿度の一例を示している。
 図6は、一実施形態に係る昇温器36を示す。
 図6において、昇温器36に形成される被処理空気流SAの流路a及び昇温媒体HAの流路bは、互いに交差する方向(図示では直交する方向)に形成される。また、図示した構成では、流路aと流路bとは、交互に夫々多段に形成される。
 昇温器36の隔壁は伝熱性が良い材質(例えば金属又は樹脂)で構成され、50℃以下の耐熱性があればよい。そして、被処理空気流SAと昇温媒体HAとを顕熱熱交換するものであって、かつ被処理空気流SAと昇温媒体HAとの間で湿分が移動しないようにしたものである。
 幾つかの実施形態によれば、第1昇温ステップS16で昇温し相対湿度が低下した被処理空気を供給先である空調室38に供給でき、例えば、空調室38を内部に被乾燥物を収容した乾燥室として使用できる。第1昇温ステップS16はヒートポンプ装置24の運転に影響を与えないため、ヒートポンプ装置24のCOP(成績係数)を低下させることはない。
 また、昇温器36に導入される被処理空気流SA及び昇温媒体の流れは、被処理空気室12に設けられた処理ファン16及び再生空気室14に設けられた再生ファン18によって形成されるため、新たな流れ形成手段を必要とせず、コスト増及び動力増とならない。
 また、予冷ステップS10をもうけることで、デシカントロータ20に送る被処理空気の相対湿度を高めることができ、これによって、デシカントロータ20による除湿効果を向上できる。
 以上から、簡易かつ低コストな手段で除湿装置全体としての熱効率を高く維持できる。
 また、図1及び図4に示す実施形態によれば、昇温ステップS16に用いる昇温媒体として、再生空気室14から排出された比較的高温(50~60℃)の再生空気を用いるため、新たに昇温媒体を用意する必要がなく、これによって、装置全体の熱効率を低下させずに除湿装置10A及び10Dを運転できる。また、除湿装置外への無駄な放熱を抑制でき、除湿装置10A及び10Dの熱効率を高く維持できる。
 50~60℃の再生空気を利用するこの方式は、1年を通じてほとんど温度変化がないため、除湿装置を1年間稼働させる必要がある場合には有効である。
 図1及び図4に示すように、除湿装置10A及び10Dでは、30℃以上で相対湿度が低い被処理空気を空調室38に供給できる。
 また、図2及び図3に示す実施形態によれば、昇温ステップS16に用いる昇温媒体として、外気OA(特に夏場の外気)又は空調室38から排出された還気RAを用いることで、これらの保有熱を有効利用できる。また、図2に示す実施形態によれば、第1昇温ステップS16で温度低下した外気OA又は還気RAを被処理空気として利用することで、予冷ステップS10での冷却負荷を低減できる。
 図2及び図3に示すように、除湿装置10B及び10Cでは、20℃以上で相対湿度が低い被処理空気を空調室38に供給できる。
 また、図4に示す実施形態によれば、制御部50によって空調室38(需要先)に供給する被処理空気の相対湿度を用途に応じて所望の相対湿度に制御できる。
 また、図3に示す実施形態によれば、昇温器36を被処理空気室12において被処理空気流SAの出口近傍に配置すれば、被処理空気路56を構成する配管及び再生空気路58を構成する配管を短縮でき低コスト化できると共に、これら配管を流れる空気の圧力損失を低減できる。
 また、図6に示す簡易な構成の昇温器36を用いることで、低コストで熱交換効率の良い顕熱熱交換が可能になる。また、被処理空気流SAと昇温媒体HAとの間で湿分が移動しないので、被処理空気流SAの相対湿度を大きく低下できる。また、昇温器36を被処理空気室12及び再生空気室14と別体に製造することで、昇温器36の設置、取外し及び点検、修理が容易になる。
 なお、図4に示す実施形態に設けられた相対湿度計46、流量調整弁48及び制御部50は図2に示す除湿装置10B又は図3に示す除湿装置10Cに設けることもできる。
 即ち、外気OAを昇温器36に送る流路又は空調室38から還気RAを昇温器36に送る流路に流量調整弁48を設け、排出路44に相対湿度計46を設ける。そして、制御部50によって流量調整弁48の開度を制御し、排出路44の被処理空気流SAの相対湿度を調整する。
 本発明の少なくとも一実施形態によれば、除湿装置の熱効率を低下させずに、簡易かつ低コストな手段で、相対湿度が低い被処理空気を需要先に供給できる。
 10A、10B、10C、10D  除湿装置
 12    被処理空気室
 14    再生空気室
 16    処理ファン(第1の送風機)
 18    再生ファン(第2の送風機)
 20    デシカントロータ
  20a  吸着面
  20b  回転軸
 22    プレクーラ
 24    ヒートポンプ装置
 26    冷媒循環路
 28    圧縮機
 30    エアヒータ
 32    膨張弁
 34    エアクーラ
 36    昇温器
 38    空調室
 40、58  再生空気路
 42、44  排出路
 46    相対湿度計
 48    流量調整弁
 50    制御部
 52    仕切り壁
 54    冷凍機
 56    被処理空気路
 DA    再生空気流
 HA    昇温媒体
 OA    外気
 RA    還気
 SA    被処理空気流
 a、b   流路

Claims (11)

  1.  互いに隣接して配置された被処理空気室及び再生空気室に吸着面が交互に進入可能なデシカントロータを用い、
     前記被処理空気室を流れる被処理空気中の水蒸気を前記吸着面に吸着すると共に、前記再生空気室を流れる再生空気によって前記吸着面に吸着した水蒸気を脱離させる除湿方法であって、
     前記被処理空気をデシカントロータの前記吸着面に接触させ、該被処理空気中の水蒸気を前記デシカントロータに吸着させる除湿ステップと、
     前記除湿ステップで除湿された前記被処理空気をヒートポンプ装置の一部を構成するエアクーラで冷却する冷却ステップと、
     前記冷却ステップで冷却された前記被処理空気を昇温媒体で昇温させて相対湿度を低下させる第1昇温ステップと、
     前記第1昇温ステップで相対湿度が低下した前記被処理空気を空調室に供給する供給ステップと、
     前記再生空気を前記ヒートポンプ装置の一部を構成するエアヒータで昇温して相対湿度を低下させる第2昇温ステップと、
     前記第2昇温ステップで昇温された前記再生空気を前記吸着面に接触させ、該吸着面に吸着された水蒸気を前記吸着面から脱離させる脱離ステップと、
     を含むことを特徴とする除湿方法。
  2.  前記除湿ステップの前処理として、前記被処理空気をプレクーラで予冷して該被処理空気の相対湿度を増加させる予冷ステップをさらに含むことを特徴とする請求項1に記載の除湿方法。
  3.  前記昇温媒体が前記脱離ステップで前記デシカントロータから水蒸気を脱離させた後の前記再生空気の少なくとも一部であることを特徴とする請求項1又は2に記載の除湿方法。
  4.  前記昇温媒体が外気又は前記空調室から排出された還気であり、
     前記第1昇温ステップで前記被処理空気を昇温させた後の前記外気又は前記還気を、前記被処理空気として前記予冷ステップ又は前記除湿ステップから前記供給ステップまでの各ステップに供することを特徴とする請求項1又は2に記載の除湿方法。
  5.  前記昇温媒体が外気又は前記被空調室から排出された還気であり、
     前記第1昇温ステップで前記被処理空気を昇温させた後の前記外気又は前記還気を前記再生空気として前記第2昇温ステップ及び前記脱離ステップに供することを特徴とする請求項1又は2に記載の除湿方法。
  6.  前記空調室が乾燥室であることを特徴とする請求項1乃至5の何れか一項に記載の除湿方法。
  7.  互いに隣接配置された被処理空気室及び再生空気室と、
     前記被処理空気室に設けられ前記被処理空気室内に被処理空気流を形成する第1の送風機と、
     前記再生空気室に設けられ前記再生室内に再生空気流を形成する第2の送風機と、
     吸着面が前記被処理空気室及び前記再生空気室に跨って配置されたデシカントロータと、
     前記被処理空気室に設けられ前記デシカントロータで除湿された前記被処理空気流を冷却するためのエアクーラ、及び前記再生空気室に設けられ前記デシカントロータの上流で前記再生空気流を昇温するエアヒータを有するヒートポンプ装置と、
     前記エアクーラで冷却された前記被処理空気を昇温媒体と熱交換させるための昇温器と、
     を備えることを特徴とする除湿装置。
  8.  前記被処理空気室に導入される前記被処理空気を予冷するプレクーラをさらに備えることを特徴とする請求項7に記載の除湿装置。
  9.  前記再生室から排出された再生空気の少なくとも一部を前記昇温媒体として前記昇温器に送るための再生空気路を備えることを特徴とする請求項7又は8に記載の除湿装置。
  10.  前記昇温媒体を前記昇温器に送るための昇温媒体路と、
     前記昇温器で前記昇温媒体と熱交換された前記被処理空気の相対湿度を検出する相対湿度計と、
     前記昇温媒体路に設けられた流量調整弁と、
     前記流量調整弁の開度を制御して前記被処理空気の温度又は相対湿度の少なくとも一方を設定値に制御するための制御部と、
     をさらに備えることを特徴とする請求項7又は8に記載の除湿装置。
  11.  前記昇温媒体路が前記再生室から排出された再生空気の少なくとも一部を前記昇温媒体として前記昇温器に送るための再生空気路であることを特徴とする請求項10に記載の除湿装置。
     
PCT/JP2016/078185 2015-09-30 2016-09-26 除湿方法及び除湿装置 WO2017057235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/763,445 US20180299146A1 (en) 2015-09-30 2016-09-26 Dehumidifying method and dehumidifying device
MX2018003909A MX2018003909A (es) 2015-09-30 2016-09-26 Metodo de deshumidificacion y dispositivo deshumidificador.
CN201680056076.3A CN108027155A (zh) 2015-09-30 2016-09-26 除湿方法以及除湿装置
EP16851406.5A EP3343117B1 (en) 2015-09-30 2016-09-26 Dehumidifying method and dehumidifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193739A JP6612575B2 (ja) 2015-09-30 2015-09-30 除湿方法及び除湿装置
JP2015-193739 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057235A1 true WO2017057235A1 (ja) 2017-04-06

Family

ID=58423442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078185 WO2017057235A1 (ja) 2015-09-30 2016-09-26 除湿方法及び除湿装置

Country Status (6)

Country Link
US (1) US20180299146A1 (ja)
EP (1) EP3343117B1 (ja)
JP (1) JP6612575B2 (ja)
CN (1) CN108027155A (ja)
MX (1) MX2018003909A (ja)
WO (1) WO2017057235A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105918431A (zh) * 2016-04-25 2016-09-07 唐玉敏 一种异聚态热利用烘干房及其运行方法
CN109812913B (zh) * 2019-01-25 2020-03-31 重庆大学 间接蒸发内冷型溶液新风除湿装置
CN109798624B (zh) * 2019-01-25 2020-03-31 重庆大学 间接蒸发内冷型热泵式溶液新风除湿装置
CN110186122B (zh) * 2019-05-16 2020-09-25 中国科学院广州能源研究所 叉流式恒温除湿装置
SE544844C2 (en) * 2019-08-26 2022-12-13 Reddo Floor Solutions Ab Dehumidifier apparatus
CN118056051A (zh) * 2021-08-09 2024-05-17 瓦特捷恩有限公司 从空气产生饮用水的方法和***
GB2624409A (en) * 2022-11-16 2024-05-22 Univ Of Northumbria At Newcastle Atmospheric water generator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263764A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 調湿システム
JP2004278943A (ja) * 2003-03-17 2004-10-07 Gas & Power:Kk ドライエアを用いる作業装置
JP2006308236A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2007024467A (ja) * 2005-07-21 2007-02-01 Mayekawa Mfg Co Ltd ドレンレス空調システム
JP2012117683A (ja) * 2010-11-29 2012-06-21 Yamatake Corp デシカント空調システムおよびその運転方法
JP2012167843A (ja) * 2011-02-10 2012-09-06 Mayekawa Mfg Co Ltd デシカントロータを用いた空調方法及び空調装置
JP2012525954A (ja) * 2009-05-04 2012-10-25 ブライ エアー(アジア)プライベート リミティド 乾燥剤ユニット制御システム及び方法
JP2013210129A (ja) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd 除湿システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448895A (en) * 1993-01-08 1995-09-12 Engelhard/Icc Hybrid heat pump and desiccant space conditioning system and control method
KR100487381B1 (ko) * 2002-12-26 2005-05-03 엘지전자 주식회사 환기겸용 공기조화시스템
KR100504503B1 (ko) * 2003-01-14 2005-08-01 엘지전자 주식회사 공기조화시스템
TWI295359B (en) * 2004-12-17 2008-04-01 Foxconn Tech Co Ltd Total heat exchanger
JP2012026700A (ja) * 2010-07-27 2012-02-09 Mitsubishi Heavy Ind Ltd デシカント空調システム
CN201752623U (zh) * 2010-08-19 2011-03-02 东莞信易电热机械有限公司 一种节能除湿机
CN102261701B (zh) * 2011-05-11 2013-06-19 湖南科技大学 多级热回收复合除湿新风空气处理机
CN103827589B (zh) * 2011-09-29 2016-10-19 大金工业株式会社 除湿***
JP2013231556A (ja) * 2012-04-27 2013-11-14 Takenaka Komuten Co Ltd 空調システム
CN202719696U (zh) * 2012-06-08 2013-02-06 吕智 一种热泵驱动转轮除湿和再生型空气处理机组
US20140190037A1 (en) * 2013-01-09 2014-07-10 Venmar Ces, Inc. System and method for providing conditioned air to an enclosed structure
JP5991698B2 (ja) * 2014-06-03 2016-09-14 株式会社西部技研 除湿装置
CN104165514A (zh) * 2014-08-27 2014-11-26 信易电热机械有限公司 一种节能型除湿干燥送料组合及除湿干燥方法
CN104390288B (zh) * 2014-10-22 2018-11-27 北京科技大学 全热回收转轮和除湿转轮结合的双转轮新风处理机组
CN104566689A (zh) * 2015-01-16 2015-04-29 深圳市优利美科技有限公司 烘箱式高温低湿转轮除湿机及其除湿方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263764A (ja) * 2000-03-24 2001-09-26 Daikin Ind Ltd 調湿システム
JP2004278943A (ja) * 2003-03-17 2004-10-07 Gas & Power:Kk ドライエアを用いる作業装置
JP2006308236A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 空気調和装置
JP2007024467A (ja) * 2005-07-21 2007-02-01 Mayekawa Mfg Co Ltd ドレンレス空調システム
JP2012525954A (ja) * 2009-05-04 2012-10-25 ブライ エアー(アジア)プライベート リミティド 乾燥剤ユニット制御システム及び方法
JP2012117683A (ja) * 2010-11-29 2012-06-21 Yamatake Corp デシカント空調システムおよびその運転方法
JP2012167843A (ja) * 2011-02-10 2012-09-06 Mayekawa Mfg Co Ltd デシカントロータを用いた空調方法及び空調装置
JP2013210129A (ja) * 2012-03-30 2013-10-10 Osaka Gas Co Ltd 除湿システム

Also Published As

Publication number Publication date
EP3343117B1 (en) 2019-09-04
EP3343117A1 (en) 2018-07-04
JP6612575B2 (ja) 2019-11-27
EP3343117A4 (en) 2018-09-19
US20180299146A1 (en) 2018-10-18
CN108027155A (zh) 2018-05-11
MX2018003909A (es) 2018-05-23
JP2017067374A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6612575B2 (ja) 除湿方法及び除湿装置
JP4169747B2 (ja) 空気調和機
US8850840B2 (en) Desiccant air conditioner
JP4857901B2 (ja) デシカント空調システム
JP3992051B2 (ja) 空調システム
JP2009275955A (ja) デシカント空調装置
US9303885B1 (en) Desiccant dehumidification system and method
WO2015163304A1 (ja) 除湿空調方法及び装置
JP2010091130A (ja) 超低露点温度の乾燥空気を供給するデシカント空調機
US20130036913A1 (en) Desiccant air conditioner
WO2014103216A1 (ja) 除湿システム
JP2011089665A (ja) 調湿装置
JP2006326504A (ja) 除湿装置
JP2011033302A (ja) 調湿換気装置
JP4296187B2 (ja) デシカント空調機
WO2011090438A1 (en) A dehumidifier and a method of dehumidification
JP5686311B2 (ja) ガス除去システム
JP5355501B2 (ja) 空調システム
JP2009121698A (ja) デシカント空調装置
JP4659775B2 (ja) 空気調和装置および空気調和装置の制御方法
JP7442984B2 (ja) 除湿装置
JP2001174074A (ja) 除湿装置
WO2020217341A1 (ja) 空気調和装置
JP2005164220A (ja) 空気調和装置
JP2007071501A (ja) 除湿空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763445

Country of ref document: US

Ref document number: 2016851406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003909

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE