WO2017057195A1 - Conductive fabric and manufacturing method therefor - Google Patents

Conductive fabric and manufacturing method therefor Download PDF

Info

Publication number
WO2017057195A1
WO2017057195A1 PCT/JP2016/078072 JP2016078072W WO2017057195A1 WO 2017057195 A1 WO2017057195 A1 WO 2017057195A1 JP 2016078072 W JP2016078072 W JP 2016078072W WO 2017057195 A1 WO2017057195 A1 WO 2017057195A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
fabric
fiber structure
layer
pattern
Prior art date
Application number
PCT/JP2016/078072
Other languages
French (fr)
Japanese (ja)
Inventor
耕佑 川戸
友子 羽根
和人 御宿
圭作 木村
勝正 鴻野
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015189825A external-priority patent/JP6168568B2/en
Priority claimed from JP2016164190A external-priority patent/JP6168506B1/en
Priority claimed from JP2016164196A external-priority patent/JP6168507B1/en
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Publication of WO2017057195A1 publication Critical patent/WO2017057195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment

Definitions

  • the present invention relates to a conductive fabric and a method for producing the same.
  • electrode-equipped clothing that is used when collecting data such as electrocardiograms and electromyograms, or performing electrical therapy or electromagnetic wave therapy on a subject is known (for example, see Patent Document 1).
  • an electrode is formed by weaving conductive yarn into a cloth, so that an external device can detect an electrocardiogram signal or myoelectric signal via the electrode, or an electric current or the like via the electrode. Can be given to the target person.
  • a humidity sensing fabric made of cloth fabric (see, for example, Patent Document 2).
  • the humidity sensing fabric is formed by knitting a conductive yarn and a poorly conductive yarn so that the poorly conductive yarn is placed between the conductive yarns.
  • Such a humidity sensing fabric changes its electrical resistance when the humidity changes. Therefore, if the electrical conductivity between the conductive yarns is monitored via an external device, it can be detected that moisture has occurred in the fabric. For example, it is applied to bed mats and bed sheets in hospitals and care facilities, and is used to check the sweating status of patients who are hospitalized.
  • a cloth heater configured to form a conductive portion by weaving conductive yarn into a cloth fabric, and connect the power source as an external device to the conductive portion and apply a voltage to the conductive portion to generate heat. It is known (see, for example, Patent Document 3).
  • connection structure between them is not greatly devised, and the structure in which the conductive part and the connection terminal in the external device are simply connected via a conductive adhesive, or the connection terminal in the external device is configured in a clip shape.
  • the actual situation is that only a conventional connection structure such as a structure in which a conductive portion is connected to the conductive fabric is used. In such a connection structure, the conductive fabric is continuously used or washed. There has been a problem that the conductor portion at the connection point tends to deteriorate.
  • a connection structure between the conductive cloth and the external device has not yet been obtained with a structure that does not impair the texture of the cloth while having sufficient strength.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a conductive fabric capable of suppressing deterioration of a conductor at a connection point with a connection terminal in an external device. It is another object of the present invention to provide a conductive fabric having a connection portion structure with an external device and a method for manufacturing the same, which has sufficient strength and does not impair the texture of the fabric.
  • One of the above objects of the present invention is a conductive cloth on which conductive adherends are fixed in an overlapping manner, and is formed of a conductive fiber structure, and is a conductive portion that can be electrically connected to the adherend. And a resin adhesive that is impregnated in at least a part of a region where the conductive portion is disposed and that connects and fixes the adherend in direct contact with the conductive portion. Achieved by dough.
  • the conductive portion has a knitted fabric structure made of the conductive fiber structure.
  • the cross-sectional shape of the portion that contacts the adherend is such that the dimension along the direction perpendicular to the overlay direction of the adherend is in the overlap direction.
  • a flat shape that is larger than the dimension along is preferable.
  • the conductive fiber structure is preferably an aggregate of a plurality of single fibers.
  • the resin adhesive preferably contains a modified polyolefin elastomer.
  • Another object of the present invention is to provide a fibrous structure having a conductive portion including a conductive yarn, a patterned conductive layer including a conductive material and a resin, and thermoplastic that is in contact with at least one surface of the patterned conductive layer.
  • a resin layer, at least a part of the thermoplastic resin layer is impregnated in the fiber structure, and the pattern conductive layer is disposed along an exposed surface of the fiber structure, and the conductive portion It is achieved by the conductive cloth according to the second embodiment, which is electrically connected to the second embodiment.
  • the fiber structure includes a fabric body provided with the conductive portion and a partially protruding fabric piece, and the thermoplastic resin layer and the pattern conductive material. You may comprise so that at least one part of a layer may be arrange
  • the fabric piece may be configured to protrude outward from the surface of the fabric body.
  • a reinforcing member may be arranged on the surface opposite to the surface on which the pattern conductive layer is arranged.
  • thermoplastic resin layer may be configured to be provided on the fiber structure side with respect to the pattern conductive layer.
  • the conductive portion may be configured to be exposed on the surface of the fibrous structure opposite to the surface on which the pattern conductive layer is provided.
  • the fiber structure may be configured to have a knitted fabric structure.
  • thermoplastic resin layer can be composed of a resin containing polyurethane.
  • thermoplastic resin layer may be configured to be present inside a surface opposite to the exposed surface of the conductive fabric.
  • Another object of the present invention is a method for producing a conductive fabric, comprising a fiber structure forming step for forming a fiber structure having a conductive portion including conductive yarn, a conductive material, and a resin.
  • one of the above objects of the present invention is provided with a fabric body having a terminal portion and wiring provided in the fabric body, and at least the terminal portion includes a pattern conductive layer containing a conductive material and a resin, A thermoplastic resin layer in contact with at least one surface of the patterned conductive layer, wherein at least a part of the thermoplastic resin layer is impregnated in the fabric body, and the patterned conductive layer is an exposed surface of the fabric body.
  • the conductive cloth according to the third embodiment characterized in that the conductive cloth according to the third embodiment is electrically connected to the wiring.
  • the wiring and the terminal portion include a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer.
  • a part of the thermoplastic resin layer may be impregnated in the fabric body, and the pattern conductive layer may be arranged along the exposed surface of the fabric body.
  • the wiring includes a first wiring portion and a second wiring portion, and the terminal portion and the first wiring portion include at least one of a patterned conductive layer containing a conductive material and a resin, and the patterned conductive layer.
  • the first wiring part and the second wiring part may be electrically connected.
  • the fabric body may include a partially protruding fabric piece, and the terminal portion may be arranged on the fabric piece.
  • the fabric piece may be configured to protrude outward from the surface of the fabric body.
  • At least the tip portion of the terminal portion may be configured such that the reinforcing member is disposed on the surface opposite to the surface on which the pattern conductive layer is disposed.
  • the fabric body may be configured to include at least one of a heat fusion yarn and a heat fusion yarn.
  • thermoplastic resin layer may be provided on the fabric body side with respect to the pattern conductive layer.
  • thermoplastic resin layer can be made of a resin containing polyurethane.
  • Another object of the present invention is to provide a third embodiment in which a fabric body having a terminal portion and wiring provided on the fabric body are provided, and the terminal portion can be connected to a flat cable connector. This is achieved by such a conductive fabric.
  • a conductive fabric capable of suppressing deterioration of a conductor at a connection point with a connection terminal in an external device.
  • a conductive fabric having a connection portion structure with an external device and a method for manufacturing the same which has sufficient strength and does not impair the texture of the fabric.
  • FIG. 8 is an enlarged view of a main part in a BB cross section of the conductive cloth shown in FIG. It is a block diagram for demonstrating the manufacturing method of the electroconductive cloth
  • (A) is an image relating to a conductive fabric constituted by the method according to the present invention
  • (b) is an image relating to a conductive fabric obtained by printing directly on a fiber structure to form a patterned conductive layer.
  • FIG. 1 It is a principal part enlarged view in CC cross section of the electroconductive cloth shown in FIG. It is a block diagram for demonstrating the manufacturing method of the electroconductive cloth which concerns on 3rd Embodiment. It is a schematic structure sectional view showing the printed electrode object used when manufacturing the conductive cloth concerning a 3rd embodiment. It is explanatory drawing which shows the middle stage of manufacture of the electroconductive cloth which concerns on 3rd Embodiment.
  • (A) is an image relating to a conductive fabric constituted by the method according to the present invention
  • (b) is an image relating to a conductive fabric obtained by printing directly on a fiber structure to form a patterned conductive layer.
  • the conductive fabric 10 according to the present invention can be used as one of its constituent elements when, for example, manufacturing a conductive part as shown in FIG.
  • the conductive fabric 10 (conductive parts) is formed in a flat and long shape (band shape), and is configured such that the conductive portions 12 and the nonconductive portions 13 are alternately arranged in the width direction.
  • data collection such as an electrocardiogram or electromyogram, or electrical treatment or electromagnetic wave treatment is performed on the subject, it is configured to be wound around the subject's arm, leg, trunk, etc.
  • the conductive cloth 10 is formed so as to have a long shape, but it is not particularly limited to such a form.
  • a tubular shape straight shape or tapered shape
  • a rectangular shape in a plan view a circular shape in a plan view, or a clothing shape (such as a shirt shape or a trouser shape).
  • each conductive portion 12 is formed in a strip shape along the longitudinal direction of the conductive fabric 10 (conductive part), and each non-conductive portion 13 is similarly formed in a strip shape along the longitudinal direction of the conductive part.
  • the conductive portion 12 and the non-conductive portion 13 are configured so as to have various shapes according to the purpose of use of the conductive fabric 10 or the mounting location. Can do. Further, the numbers of the conductive portions 12 and the non-conductive portions 13 are not particularly limited, and can be changed as appropriate.
  • Such a conductive fabric 10 uses a conductive yarn 121 (conductive fiber structure) for forming the conductive portion 12 and a nonconductive ground yarn 131 for forming the nonconductive portion 13. It can be formed by various methods. For example, it can be formed by knitting using the conductive yarn 121 and the ground yarn 131.
  • the knitted fabric structure formed by knitting is not particularly limited, for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their changing structure (for example, Milan rib or cardboard knit), tricot knitting, raschel knitting, Various knitted fabric structures such as Miranese knitting can be adopted.
  • the conductive yarn 121 (conductive fiber structure) for forming the conductive portion 12 has resin fiber, natural fiber, metal wire or the like as a core, and wet or dry coating, plating, It is preferable to use a metal deposition wire (plating wire) on which a metal component is deposited by vacuum deposition or other appropriate deposition method.
  • a metal deposition wire plating wire
  • monofilaments for the core multifilaments and spun yarns, which are aggregates of a plurality of single fibers, are preferable to monofilaments, and further, wooly processed yarns and covering yarns such as SCY and DCY. Further, bulky processed yarn such as fluffed yarn is more preferable.
  • metal components to be deposited on the core include pure metals such as aluminum, nickel, copper, titanium, magnesium, tin, zinc, iron, silver, gold, platinum, vanadium, molybdenum, tungsten, cobalt, alloys thereof, stainless steel Brass, etc. can be used.
  • an elastic yarn may be mixed with the conductive yarn 121.
  • polyurethane or rubber-based elastomer material may be used alone, or covering yarn using polyurethane or rubber-based elastomer material for “core” and nylon or polyester for “cover” can do.
  • the non-conductive ground yarn 131 for forming the non-conductive portion 13 is made of synthetic fiber (for example, polyester fiber or nylon fiber), natural fiber, a material mixed with synthetic fiber and elastic yarn, or the like. can do.
  • synthetic fiber for example, polyester fiber or nylon fiber
  • natural fiber for example, polyester fiber or nylon fiber
  • the elastic yarn for example, a polyurethane or rubber-based elastomer material may be used alone, or a covering yarn using polyurethane or rubber-based elastomer material for the “core” and nylon or polyester for the “cover”. Can be adopted.
  • a monofilament can be adopted as the non-conductive ground yarn 131, but a multifilament or a spun yarn, which is an aggregate of a plurality of single fibers, can be preferably used rather than a monofilament.
  • connection terminal Z (conductive adherend) led from an external device is set as a connection portion 14 which is fixed by being overlapped.
  • the connection portion 14 is set so as to include at least a part of a region where each conductive portion 12 is disposed in the conductive fabric 10, and each of the conductive portions 12 has a connection terminal Z (conductive) led from an external device.
  • Each conductive wire formed on the conductive adherend is electrically connected.
  • the connecting terminal Z (conductive adherend) led from the external device is shown.
  • the conductive portion 12 is connected and fixed via a resin adhesive 15 impregnated in the conductive fabric 10. Further, the adherend Z and the conductive portion 12 are connected and fixed in a state of being in direct contact with each other.
  • the portion impregnated with the resin adhesive is a portion set as the connection portion 14 and is set to include at least a part of a region where each conductive portion 12 is disposed.
  • a hot melt type resin adhesive containing a modified polyolefin elastomer can be preferably used.
  • a modified polyolefin-based elastomer moisture that degrades the conductivity of the conductive material can be made difficult to approach the conductive fiber structure (conductive yarn 121), which is preferable.
  • the modified polyolefin elastomer comprises (a) a peroxide-crosslinked olefin copolymer rubber, (b) an olefin plastic, (c) an ⁇ , ⁇ -unsaturated carboxylic acid or derivative thereof, or an unsaturated epoxy monomer.
  • a peroxide non-crosslinked rubbery substance and (e) a mineral oil-based softening agent may be included in the blend.
  • a small amount of other polymer for example, polyamide may be mixed.
  • the peroxide-crosslinked olefin copolymer rubber (a) is an amorphous material mainly composed of olefin, such as ethylene / propylene / non-conjugated diene copolymer rubber and ethylene / butadiene copolymer rubber.
  • An elastic copolymer which is a rubber that is mixed with an organic peroxide and kneaded under heating to crosslink and decrease fluidity or not flow.
  • the non-conjugated diene include dicyclopentadiene, 1,4-hexadiene, dicyclooctadiene, methylene-norbornene, and ethylidene-norbornene.
  • the molar ratio of ethylene component units to propylene component units is 50/50 to 90/10, particularly 55.
  • An ethylene / propylene copolymer rubber and an ethylene / propylene / non-conjugated diene copolymer rubber in the range of / 45 to 85/15 are preferably used.
  • ethylene / propylene / non-conjugated diene copolymer rubber particularly ethylene / propylene / ethylidene norbornene copolymer rubber is preferable in that it can provide a thermoplastic elastomer excellent in heat resistance, tensile strength characteristics and impact resilience.
  • the olefin plastic (b) is composed of a crystalline high molecular weight solid product obtained by polymerizing one or more monoolefins by either the high pressure method or the low pressure method.
  • resins include isotactic or syndiotactic monoolefin polymer resins.
  • suitable raw material olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl-1-propene, 3-methyl-1-pentene, 4-methyl-1- Examples include pentene, 5-methyl-1-hexene, 1-octene, 1-decene, and mixed olefins of two or more thereof. If a resinous product can be obtained by homopolymerization or copolymerization thereof, Any polymerization mode may be adopted.
  • a preferred olefin plastic is a peroxide-decomposable olefin plastic.
  • Peroxide-decomposable olefinic plastics are olefinic plastics that are mixed with peroxides and kneaded under heating to reduce the molecular weight and increase the fluidity of the resin, for example, isotactic polypropylene; Copolymers of propylene and other small amounts of ⁇ - olefins such as propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene A copolymer etc. are mentioned.
  • ⁇ , ⁇ - unsaturated carboxylic acid or derivative thereof, or the unsaturated epoxy monomer (c) is used as a graft modifier, and ⁇ , ⁇ - unsaturated carboxylic acid or derivative thereof is Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, and bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid.
  • unsaturated carboxylic acids such as saturated carboxylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride
  • Anhydride methyl acrylate, methyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, tetrahydro Dimethyl phthalate, etc.
  • maleic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid or anhydrides thereof are preferable.
  • unsaturated epoxy monomer examples include glycidyl ester of unsaturated monocarboxylic acid such as glycidyl acrylate, glycidyl methacrylate, glycidyl p-styrylcarboxylate, maleic acid, itaconic acid, citraconic acid, butenetricarboxylic acid.
  • unsaturated monocarboxylic acid such as glycidyl acrylate, glycidyl methacrylate, glycidyl p-styrylcarboxylate, maleic acid, itaconic acid, citraconic acid, butenetricarboxylic acid.
  • the peroxide non-crosslinked rubber-like substance (d) is mixed with a peroxide and heated, for example, polyisobutylene, butyl rubber, propylene-polyethylene copolymer rubber having a propylene content of 70 mol% or more, atactic polypropylene and the like.
  • a peroxide for example, polyisobutylene, butyl rubber, propylene-polyethylene copolymer rubber having a propylene content of 70 mol% or more, atactic polypropylene and the like.
  • mineral oil softener (e) usually reduces the intermolecular action force of rubber during roll processing, facilitates processing, and disperses carbon black, white carbon, etc. blended as a filler.
  • It is a high-boiling petroleum fraction used for the purpose of increasing the flexibility and elasticity by reducing the hardness of vulcanized rubber, and is classified into paraffinic, naphthenic, aromatic and the like.
  • Various methods can be adopted as a method of impregnating a predetermined portion (a portion corresponding to the connecting portion 14) of the conductive fabric 10 with the resin adhesive as described above.
  • the resin adhesive composition formed into a sheet is placed in a region corresponding to the connection portion 14 in the conductive fabric 10, and the connection terminal in the external device is placed on the sheeted resin adhesive.
  • Z conductive adherend
  • Z can be placed and heat-pressed from above the connection terminal Z (adherence Z).
  • the resin adhesive formed into a sheet may be configured in a film shape, it is preferable to configure it in a non-woven fabric shape from the viewpoint of maintaining stretchability at the connection portion 14 of the conductive fabric 10.
  • the sheet-like resin adhesive interposed between the conductive fabric 10 and the adherend Z dissolves and flows toward the inside of the conductive fabric 10.
  • the conductive fabric 10 and the adherend Z are connected and fixed by the adhesive action of the resin adhesive 15 impregnated in the knitted fabric structure in the conductive portion 12 and the nonconductive portion 13.
  • the resin adhesive impregnated in the conductive fabric 10 is not only in the knitted fabric structure in the conductive portion 12 and the non-conductive portion 13, but also between the ground yarn 131 and the ground yarn 131, between the ground yarn 131 and the conductive yarn 121.
  • the conductive yarn 121 and the conductive yarn 121 and when the ground yarn 131 and the conductive yarn 121 are configured as an aggregate of single fibers such as multifilaments, they are present between the short fibers. Will be.
  • FIG. 3 to FIG. As shown in the schematic cross-sectional view of FIG. 3, the sheet-like resin adhesive 15 before melting, which is disposed above the top of the conductive yarn 121 (FIG. 3), is melted by heating with a heat press and indicated by an arrow. Thus, while flowing downward, the adherend Z is pushed from the vicinity of the top of the conductive yarn 121 by the movement of the adherend Z by pressurization (FIG. 4) and arranged on the exposed surface side (the adherend Z side). The electrically conductive yarn 121 and the adherend Z are in direct contact with each other and are connected and fixed to each other, so that an electrically connected state can be obtained (FIG. 5).
  • the pressing force, heating temperature, pressurizing time, and heating time at the time of heat press may be set as appropriate.
  • the cross-sectional shape of the conductive yarn 121 constituting the conductive portion 12 and at least the portion in contact with the adherend Z is a flat shape compressed in the pressing direction, that is, Regarding the cross-sectional shape of the conductive yarn 121 portion in contact with the adherend Z, the dimension along the direction perpendicular to the overlay direction of the adherend Z (the dimension in the left-right direction in FIG. 6) is the dimension along the overlay direction. It is preferable to have a flat shape that is larger than (the vertical dimension in FIG.
  • the heating temperature is lowered and the resin adhesive is cured, so that the conductive yarn 121 has a predetermined shape depending on the shape retention of the cured resin adhesive.
  • the cross-sectional shape in the portion maintains the above-described flat shape.
  • the conductive adherend Z is brought into direct contact with the conductive portion 12 in at least a part of the region where the conductive portion 12 is disposed. It has a structure that is impregnated with a resin adhesive that is connected and fixed in a state. Therefore, the conductive adherend Z and the conductive portion 12 in the conductive fabric 10 can be conducted with an adhesive having no conductivity without using a conductive adhesive as in the prior art. The selectivity with respect to the kind of the agent is widened, and it becomes very versatile.
  • the impregnated resin adhesive 15 functions as a member that coats the conductive yarn 121 around the conductive yarn 121 constituting the conductive portion 12 in the connection portion 14 with the adherend Z, and adheres to the adherend Z. A strong adhesive action with the body Z is also exhibited. Therefore, it is possible to effectively prevent the conductive yarn 121 at the connecting portion between the adherend Z and the conductive portion 12 from being oxidized and the metal film of the conductive yarn 121 from falling off, and suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the adherend Z and the conductive portion 12.
  • the conductive fabric 10 according to the first embodiment of the present invention has a resin adhesive separately when the adherend Z is installed again after the adherend Z is removed and washed, for example. There is no need to prepare, and it becomes possible to reuse and fix the resin adhesive 15 impregnated in the conductive fabric 10. That is, after the adherend Z is superimposed on the connection portion 14, the resin adhesive 15 already impregnated in the conductive fabric 10 is dissolved again by applying heat press to the overlap portion, and the adherend Z Can be fixed to the conductive fabric 10.
  • the conductive portion 12 of the conductive fabric 10 according to the present invention has a knitted fabric structure made of conductive yarn 121, and the non-conductive portion 13 similarly has a knitted fabric structure made of ground yarn 131. It is configured.
  • the dissolved resin adhesive is easily impregnated in the interior of the fabric, and the impregnated resin adhesive 15 can be satisfactorily held, and the dissolved resin adhesive is adhered to the adherend Z. It is possible to suppress a large movement to the side opposite to the side on which is provided.
  • the dimension along the direction perpendicular to the overlay direction of the adherend Z (the dimension in the left-right direction in FIG. 6) is By configuring the flat shape to be larger than the dimension along the overlapping direction (the vertical dimension in FIG. 6), the contact area between the conductive portion 12 and the adherend Z is increased, and the conductive portion 12 is formed. It is possible to maintain an even better electrical connection state between and the adherend Z.
  • the contact interface between the conductive portion 12 and the adherend Z has a relatively flat shape, for example, when the adherend Z is once removed from the conductive portion 12, the conductive portion exposed to the outside. The area of 12 can be increased. Therefore, when the adherend Z is attached to the conductive portion 12 by placing the adherend Z on the conductive portion 12 and performing heat pressing again, there is also an advantage that it is easy to obtain a good conduction state. Become.
  • the conductive fabric 10 according to the first embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment.
  • the conductive cloth 10 has the structure provided with the electroconductive part 12 and the non-conductive part 13, you may comprise the electroconductive cloth 10 only with the electroconductive part 12, for example.
  • the electroconductive part 12 is knitted and comprised using the electroconductive thread
  • yarn 121 which is a metal deposition wire (plating wire) as an electroconductive fiber structure
  • yarn 121 which is a metal deposition wire (plating wire) as an electroconductive fiber structure
  • the structure is not particularly limited.
  • the predetermined region of the fabric body knitted using the non-conductive ground yarn 131 is subjected to printing of conductive resin, metal plating, or the like to make the predetermined region conductive. It is good also as a fiber structure and it is good also considering the said part as the electroconductive part 12.
  • the predetermined region May be configured as a conductive fiber structure, and the portion may be the conductive portion 12.
  • the resin adhesive 15 impregnated in the conductive fabric 10 has been described in the above embodiment as being preferably used as a hot-melt type resin adhesive containing a modified polyolefin elastomer. It is not particularly limited to the hot melt type resin adhesive, but can be impregnated into the conductive fabric 10 and can be connected and fixed to the connection portion Z (conductive adherend) guided from an external device and the conductive portion 12. Any agent can be used. For example, various resin adhesives such as a moisture curable type, an energy ray curable type, and a rewet type can be employed.
  • a sheet adhesive is used as the resin adhesive, and the sheet-like resin adhesive is heated and dissolved to impregnate the conductive fabric 10.
  • the form of the resin adhesive is not limited to a sheet shape.
  • a powdery or granular resin adhesive may be applied to the region corresponding to the connection portion 14 in the conductive fabric 10 and the connection terminal Z (conductive) of the external device.
  • the conductive fabric 10 may be impregnated so as to be subjected to heat press.
  • a hot melt type resin adhesive formed in a liquid state by heating in advance, or a liquid adhesive such as a moisture curable type, an energy ray curable type, or a rewet type is used for the connection portion 14 in the conductive fabric 10.
  • the conductive fabric 10 is impregnated with the resin adhesive by pressing the resin adhesive applied by the plate body or the like after being applied on the surface facing the connecting terminal Z to be connected. May be.
  • connection in the conductive fabric 10 is performed.
  • the method of heat-pressing by interposing the resin adhesive between the area
  • connection portion 14 in the conductive fabric 10 For example, after overlapping one surface of the region corresponding to the connection portion 14 in the conductive fabric 10 and one surface of the connection terminal Z (conductive adherend) of the external device, the connection portion 14 in the conductive fabric 10 On the other side of the corresponding area, a hot-melt type resin adhesive such as a sheet, powder or granule is placed and pressed while heating the resin adhesive.
  • the cloth 10 may be impregnated to connect the conductive cloth 10 and the connection terminal Z.
  • connection portion 14 in the conductive fabric 10 After overlapping one surface of the region corresponding to the connection portion 14 in the conductive fabric 10 and one surface of the connection terminal Z (conductive adherend) of the external device, the connection portion 14 in the conductive fabric 10 After applying a hot-melt type resin adhesive that has been preheated and formed into a liquid state, or a liquid moisture-curing type, energy-ray-curing type, or rewet-type resin adhesive on the other side of the corresponding region The conductive fabric 10 is impregnated into the conductive fabric 10 by pressing, and if necessary, the resin fabric is cured by applying moisture or irradiating energy rays. May be connected.
  • connection terminal Z of an external device is comprised with the conductive cloth cloth
  • connection terminal Z on the other surface of the connection terminal Z piled up on the connection part 14 in the conductive cloth 10, sheet form or powder
  • a hot-melt resin adhesive that is in a liquid state is placed by placing a hot-melt resin adhesive in the form of particles or granules and pressing the resin adhesive while heating,
  • a resin adhesive such as a moisture curable type, an energy ray curable type, and a rewet type, and then pressing, a liquid resin adhesive is impregnated into the conductive fabric 10 through the connection terminals Z.
  • the conductive fabric 10 and the connection terminal Z can also be connected.
  • connection terminal Z in an external device was taken as an example and demonstrated as the electroconductive to-be-adhered body Z piled up and fixed to the electroconductive cloth
  • the adherend Z to be applied is not limited to the connection terminal Z of the external device, and needless to say, various conductive members can be used as the adherend Z.
  • the conductive fabric 20 according to the present invention can be used as one of the components when manufacturing a conductive part as shown in FIG. 7, for example.
  • the conductive fabric 20 (conductive part) is formed in a flat and long shape (band shape), and is configured such that conductive portions 22 and non-conductive portions 23 including conductive yarns are alternately arranged in the width direction.
  • the conductive portion 22 functions as an electrode or a wiring.
  • the fiber structure 21 is formed so as to have a long shape.
  • the fiber structure 21 is not particularly limited to such a form.
  • a tubular shape straight shape or tapered shape
  • a rectangular shape in a plan view a circular shape in a plan view
  • clothing a shirt, pants, trousers, a belt, socks, gloves, a hat, etc.
  • each conductive portion 22 is formed in a narrow strip shape along the longitudinal direction of the fiber structure 21, and each non-conductive portion 23 is also formed in a narrow strip shape along the longitudinal direction of the fiber structure 21.
  • the conductive portion 22 and the non-conductive portion 23 can be configured so as to have various shapes according to the purpose of use of the conductive fabric 20 or the mounting location.
  • the numbers of the conductive portions 22 and the nonconductive portions 23 are not particularly limited, and can be changed as appropriate.
  • Such a fiber structure 21 is formed by various methods using the conductive yarn 221 for forming the conductive portion 22 and the nonconductive ground yarn 231 for forming the nonconductive portion 23. Can do.
  • a fabric including a knitted fabric or a woven fabric having an opening, a nonwoven fabric, and other fabrics can be used.
  • the knitted fabric structure is not particularly limited, and for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their knitting
  • Various knitted fabric structures such as a change organization (for example, Milan rib or cardboard knit), a tricot knitting, a raschel knitting, and a miranese knitting can be employed.
  • the part comprised by the nonelectroconductive ground yarn 231 comprises the fabric main body in the fiber structure 21.
  • the manufacturing method of the fiber structure 21 is not limited to the above method. For example, after the fabric body is first formed with the non-conductive ground yarn 231, the conductive yarn 221 is knitted into a predetermined portion and embroidered. The conductive portion 22 can also be formed and manufactured.
  • the conductive yarn 221 for forming the conductive portion 22 is made of resin fiber, natural fiber, metal wire, or the like as a core, and wet or dry coating, plating, vacuum film formation, or other appropriate on the core. It is preferable to use a metal coated wire (plated wire) on which a metal component is deposited by performing a deposition method.
  • a metal coated wire plated wire
  • monofilaments for the core multifilaments and spun yarns, which are aggregates of a plurality of single fibers, are preferable to monofilaments, and further, wooly processed yarns and covering yarns such as SCY and DCY. Further, bulky processed yarn such as fluffed yarn is more preferable.
  • metal components to be deposited on the core include pure metals such as aluminum, nickel, copper, titanium, magnesium, tin, zinc, iron, silver, gold, platinum, vanadium, molybdenum, tungsten, cobalt, alloys thereof, stainless steel Brass, etc. can be used.
  • an elastic yarn may be mixed with the conductive yarn 221.
  • polyurethane or rubber-based elastomer material may be used alone, or covering yarn using polyurethane or rubber-based elastomer material for “core” and nylon or polyester for “cover” can do.
  • the non-conductive ground yarn 231 for forming the non-conductive portion 23 is made of synthetic fiber (for example, polyester fiber or nylon fiber), natural fiber, or a material mixed with synthetic fiber and elastic yarn. can do.
  • synthetic fiber for example, polyester fiber or nylon fiber
  • natural fiber for example, polyester fiber or nylon fiber
  • a material mixed with synthetic fiber and elastic yarn for example, a polyurethane or rubber-based elastomer material may be used alone, or a covering yarn using polyurethane or rubber-based elastomer material for the “core” and nylon or polyester for the “cover”.
  • a monofilament can be adopted as the non-conductive ground yarn 231.
  • a multifilament or a spun yarn which is an aggregate of a plurality of single fibers, can be preferably used rather than a monofilament.
  • the conductive fabric 20 includes a conductive material and a conductive material as shown in FIG. 7 which is a plan view of FIG. 7 and an enlarged view of a main part in the BB cross section of FIG.
  • a patterned conductive layer 25 containing a resin is provided.
  • the pattern conductive layer 25 has a function as an electrode or a wiring, and is used as a connection terminal which is a connection structure for connecting to an external device such as a device for measuring electrocardiogram or myoelectricity. It is configured to be placed and fixed on a part of the conductive portion 22 so as to be electrically connected to the conductive portion 22 in the fiber structure 21.
  • the thickness of the pattern conductive layer 25 is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the pattern conductive layer 25 is disposed along the exposed surface of the fiber structure 21 formed by knitting and knitting using the conductive yarn 221 and the ground yarn 231, for example.
  • the surface of the fiber structure 21 has unevenness formed by the conductive yarn 221 and the ground yarn 231 to be knitted.
  • the pattern conductive layer 25 is arranged in a state along the upper surface (exposed surface) of the unevenness formed by the knitted conductive yarn 221 and the ground yarn 231 and has a cross-sectional wave shape as shown in FIG. It is comprised so that it may become.
  • the pattern conductive layer 25 is made of, for example, a binder (at least one selected from polyester, polypropylene, polyethylene, polyether, polyurethane, methacrylic resin, epoxy resin, vinyl chloride, vinyl acetate, vinyl chloride, vinyl acetate copolymer, etc.). Resin) is formed by mixing a conductive material containing at least one kind of fine particles selected from silver, silver chloride, titanium, nickel, platinum, aluminum, stainless steel and the like. Other conductive materials include carbon fine particles, carbon nanowires, carbon nanofibers, ultrafine conductive carbon fibers such as graphite fibrils, and conductive polymers (conductive polymers) such as PEDOT: poly (3,4-ethylenedioxythiophene). May be mixed.
  • a binder at least one selected from polyester, polypropylene, polyethylene, polyether, polyurethane, methacrylic resin, epoxy resin, vinyl chloride, vinyl acetate, vinyl chloride, vinyl acetate copolymer, etc.
  • Resin is formed by
  • the material of the pattern conductive layer 25 preferably includes an elastomer material such as acrylic rubber, butadiene rubber, silicone rubber, or nitrile rubber. By including the elastomer material, the pattern conductive layer 25 can follow the expansion and contraction of the fiber structure 21, so that cracks and poor conduction can be prevented.
  • an elastomer material such as acrylic rubber, butadiene rubber, silicone rubber, or nitrile rubber.
  • the conductive fabric 20 of the second embodiment according to the present invention includes a thermoplastic resin layer 26.
  • the thermoplastic resin layer 26 is provided on the fiber structure 21 side with respect to the pattern conductive layer 25, and is impregnated in the fiber structure 21 while being in contact with one surface of the pattern conductive layer 25. ing.
  • the patterned conductive layer 25 is firmly fixed on the fiber structure 21 by the adhesive action of the thermoplastic resin layer 26.
  • the region where the fiber structure 21 is impregnated with the thermoplastic resin layer 26 is indicated by a one-dot chain line in FIG.
  • thermoplastic resin layer 26 impregnated in the fiber structure 21 is not only in the knitted fabric structure in the conductive portion 22 and the non-conductive portion 23, but also between the ground yarn 231 and the ground yarn 231, and between the ground yarn 231 and the conductive yarn. 221, between the conductive yarn 221 and the conductive yarn 221, and when the ground yarn 231 and the conductive yarn 221 are configured as an aggregate of single fibers such as multifilaments, between each short fiber, etc. Will exist.
  • thermoplastic resin layer 26 examples include polyolefins such as polyurethane, polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, polyamides (eg, nylon 6, nylon 46, nylon 66, nylon 610, Nylon 612, Nylon 11, Nylon 12, Nylon 6-12, Nylon 6-66), thermoplastic polyimide, aromatic polyester and other liquid crystal polymers, polyphenylene oxide, polyphenylene sulfide, polycarbonate, polymethyl methacrylate, polyether, polyether ether Ketone, polyetherimide, polyacetal, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, Examples include various types of thermoplastic elastomers such as polyisoprene, fluorine, fluororubber, and chlorinated polyethylene, or copolymers, blends, and polymer alloys mainly composed of these.
  • the method for manufacturing the conductive fabric 20 includes a fiber structure forming step S1, a placing step S2, and a heating / pressing step S3.
  • the fiber structure forming step S1 is a process of forming a fiber structure 21 including the above-described fabric body and the conductive portion 22 formed at a predetermined position of the fabric body.
  • the specific formation method of the fiber structure 21 is not specifically limited,
  • the electroconductive thread 221 for comprising the electroconductive part 22, and the nonelectroconductive ground yarn 231 for comprising the nonelectroconductive part 23 A predetermined shape (for example, long shape (band shape), cylindrical shape, rectangular shape in plan view, circular shape in plan view), clothing (shirt, pants, trousers, belt, socks, gloves, hat, etc.) and their members
  • the method of knitting the fiber structure 21 having the shape of can be exemplified.
  • a printed electrode body 27 composed of a patterned conductive layer 25 containing a conductive material and a resin and a thermoplastic resin layer 26 disposed on at least one surface side of the patterned conductive layer 25 has a fiber structure. This is a step of placing on at least a part of the conductive portion 22 in the body 21.
  • the printed electrode body 27 will be described. As shown in the sectional view of FIG. 10, the printed electrode body 27 is formed by forming a patterned conductive layer 25 on a release film 271 by a printing technique, and then forming a thermoplastic resin layer 26 on the patterned conductive layer 25. What is comprised and arrange
  • positioned can be illustrated.
  • the printing technique is not particularly limited, and well-known printing methods such as screen printing, gravure printing, relief printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used.
  • a resin containing polyurethane is used as the adhesive as the thermoplastic resin layer 26, the adhesive can be applied onto the pattern conductive layer 25.
  • the thickness of the thermoplastic resin layer 26 disposed on the pattern conductive layer 25 is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the thermoplastic resin layer 26 (adhesive) is less than 1 ⁇ m, there is a problem in the adhesive strength.
  • it is thicker than 50 ⁇ m it is difficult to form by printing.
  • such a printed electrode body 27 is placed by placing the printed electrode body 27 on the thermoplastic resin layer 26 side on at least a part of the conductive portion 22 in the fiber structure 21. Step S2 is completed.
  • the heating / pressurizing step S3 the printed electrode body 27 placed at a predetermined position on the fiber structure 21 is heated and pressed to melt the thermoplastic resin layer 26 of the printed electrode body 27, thereby causing the fiber structure.
  • the patterned conductive layer 25 of the printed electrode body 27 is arranged along the surface irregularities of the fiber structure 21 and is electrically connected to the conductive portion 22 while being impregnated by flowing into the inner side of 21. .
  • the unmelted thermoplastic resin layer 26 disposed above the top of the conductive yarn 221 is melted by heating by the heat press and flows downward, and is pressurized.
  • the pattern conductive layer 25 is pushed downward from the vicinity of the top of the conductive yarn 221 by the movement of the conductive yarn 221, and the conductive yarn 221 disposed on the exposed surface side and the pattern conductive layer 25 are in direct contact with each other,
  • the ground yarn 231 and the pattern conductive layer 25 are connected and fixed in a state of being in direct contact with each other.
  • the release film 271 in the printed electrode body 27 is removed, thereby forming the conductive fabric 20 according to the present invention shown in the cross-sectional view of FIG.
  • the conductive cloth 20 of the second embodiment according to the present invention is a structure in which a connection portion structure between the conductive cloth 20 and an external device is formed by a pattern conductive layer 25 formed by a printing technique.
  • the patterned conductive layer 25 is in a state along the exposed surface (surface uneven shape) of the fiber structure 21 formed by knitting using the conductive yarn 221 and the ground yarn 231. Since it is arranged so as to have a cross-sectional wave shape, the adhesion between the pattern conductive layer 25 and the fiber structure 21 is increased, and it is possible to effectively prevent disconnection, peeling, and the like of the pattern conductive layer 25. Become.
  • the contact area between the conductive portion 22 and the pattern conductive layer 25 is increased, the contact resistance is reduced.
  • the pattern conductive layer 25 is neatly formed along the exposed surface of the fiber structure 21 without disconnection or the like. Thus, it can be seen that the occurrence of defective resistance and poor conduction is prevented.
  • the pattern conductive layer 25 is formed by printing directly on the fiber structure 21, since the conductive paste made of a conductive material and a resin is in a liquid state, as shown in the image of FIG.
  • the conductive paste falls into the gaps between the ground yarns 231, the gaps between the conductive yarns 221, or the gaps between the ground yarns 231 and the conductive yarns 221, and breakage and poor resistance are likely to occur.
  • the conductive fabric 20 in FIG. 12A is formed on the release film 271 as a printed electrode body 27 with respect to a fabric having a thickness of 300 ⁇ m knitted with a mixed yarn of nylon 40% and polyester 60%.
  • a patterned conductive layer 25 (silver paste) having a thickness of 10 ⁇ m is formed, and a polyurethane adhesive (thermoplastic resin layer 26) having a thickness of 10 ⁇ m is disposed on the patterned conductive layer 25 by the above method. Is formed.
  • the conductive fabric in FIG. 12B is set so that the thickness of the silver paste is 10 ⁇ m directly on the fabric of 300 ⁇ m thickness knitted with a mixed yarn of 40% nylon and 60% polyester. Printed.
  • the pattern conductive layer 25 and the conductive portion 22 in the fiber structure 21 are configured to be integrated, an effect of high electrical bonding strength is also exhibited.
  • the pattern conductive layer 25 is provided along the exposed surface of the fiber structure 21 as shown in FIG. 8, the contact area with the conductive yarn 221 and the ground yarn 231 constituting the fiber structure 21. There is a feature that is large. Thereby, it becomes possible to prevent effectively that the pattern conductive layer 25 peels from the surface of the fiber structure 21.
  • the thermoplastic resin layer 26 is exposed on the opposite side of the fiber structure 21 (exposed surface on which the pattern conductive layer 25 is disposed). It is preferable that the surface does not ooze out on the opposite surface. By setting it as this structure, since the thermoplastic resin layer 26 exists inside the exposed surface of the other side of the electroconductive fabric 20, the texture and touch of the other side of the fiber structure 21 are not impaired.
  • the conductive fabric 20 of the second embodiment according to the present invention can be made smaller in pattern width and pitch than the conductive portion 22 in the fiber structure 21.
  • the pattern of the conductive portion 22 has a minimum width defined by its knitting structure and yarn diameter, and it is difficult to reduce the pitch with the adjacent pattern due to problems such as a short circuit caused by fuzz of the conductive yarn.
  • the pattern conductive layer 25 is formed by a printing technique, the line width and the pitch between lines can be reduced.
  • the pattern conductive layer 25 is suitable for forming a connection portion structure between the conductive fabric 20 and the external device, and the inter-electrode distance in the connection portion structure between the conductive fabric 20 and the external device is set. It becomes possible to form narrowly.
  • each wiring interval can be converted to a narrow pitch of about 0.2 to 1 mm, It can be directly inserted into a general connector (general-purpose flat cable connector) used for a cable (FFC or FPC).
  • a general connector general-purpose flat cable connector
  • FFC or FPC cable
  • thermoplastic resin layer 26 impregnated in the fiber structure 21 is a member that coats the conductive yarn 221 around the conductive yarn 221 that constitutes the conductive portion 22 that is electrically connected to the pattern conductive layer 25. As a result, a strong adhesive action with the pattern conductive layer 25 is also exhibited. Therefore, it is possible to effectively prevent the conductive yarn 221 at the connecting portion between the pattern conductive layer 25 and the conductive portion 22 from being oxidized and the metal film of the conductive yarn 221 from falling off, and suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the pattern conductive layer 25 and the conductive portion 22.
  • the fiber structure 21 of the second embodiment according to the present invention has a knitted fabric structure.
  • the melted thermoplastic resin is easily impregnated into the inside from the opening of the conductive fabric 20, and the impregnated thermoplastic resin can be favorably retained.
  • it can suppress that the melt
  • the pattern conductive layer 25 having a wiring 251 constituting the wiring pattern. Is formed on the release film 271.
  • a printed electrode body 27 is formed on the patterned conductive layer 25 by covering the wirings with a thermoplastic resin layer 26 (for example, a resin adhesive containing polyurethane) so as not to cover the wirings.
  • the conductive fabric 20 is configured by placing the printed electrode body 27 at a predetermined position on the fiber structure 21 and heating and pressing it. In such a conductive fabric 20, as shown in FIG.
  • thermoplastic resin layer 26 to be impregnated exists in the lower region of each wiring 251 and does not exist between the wirings 251. Therefore, the influence on the air permeability and flexibility of the fiber structure 21 can be reduced.
  • the conductive fabric 20 is formed by forming the printed electrode body 27 so as to cover the space between the wirings 251 with the thermoplastic resin layer 26 as shown in FIG. It is possible to ensure high pattern accuracy.
  • the conductive fabric 20 according to the second embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment.
  • the coating covering the exposed surface of the pattern conductive layer 25 You may comprise so that the body 28 may be provided.
  • the surface of the patterned conductive layer 25 can be protected, and the strength of the patterned conductive layer 25 which is a connection structure between the conductive fabric 20 and the external device. Can be improved.
  • the pattern conductive layer 25 is partially removed by partially removing the covering 28 on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25. Is configured to be exposed.
  • the covering body 28 various things, such as a knitted fabric structure formed from the ground yarn 231 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example.
  • the method for disposing the covering 28 on the pattern conductive layer 25 is not particularly limited.
  • the covering 28 is heat-sealed and disposed via the same resin material as the thermoplastic resin forming the thermoplastic resin layer 26. be able to.
  • the transfer film demonstrated by the method of manufacturing the above-mentioned conductive fabric 20 can also be utilized as the covering 28.
  • a coating layer made of a resin can be used as the covering 28.
  • the thermoplastic resin layer 26 is configured to be provided on the fiber structure 21 side with respect to the pattern conductive layer 25, but is not particularly limited to such a form. As shown in the schematic cross-sectional views of FIGS. 15 and 16, a configuration in which a part of the thermoplastic resin layer 26 is provided on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25 is adopted. You can also. In such a configuration, in consideration of electrical connection with an external device, a part of the thermoplastic resin layer 26 on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25 is partially removed. Then, the pattern conductive layer 25 is configured to be exposed. In the case of the configuration shown in FIGS. 15 and 16, the exposed surface of the pattern conductive layer 25 is covered with the thermoplastic resin layer 26, so that the surface of the pattern conductive layer 25 can be protected.
  • the fiber structure 21 is comprised so that it may be provided with the fabric main body in which the electroconductive part 22 is provided, and the fabric piece 29 which protrudes partially, and, You may comprise so that at least one part of the thermoplastic resin layer 26 and the pattern conductive layer 25 may be arrange
  • FIG. The fabric piece 29 can be formed from a non-conductive ground yarn 231.
  • a reinforcing member 291 may be provided on the dough piece 29 as shown in FIG. It is preferable that the reinforcing member 291 is disposed on the front end portion of the fabric piece 29 on the opposite side of the surface on which the pattern conductive layer 25 is disposed on the fabric piece 29. Note that the reinforcing member 291 may be provided on the exposed surface of the patterned conductive layer 25. In such a case, in consideration of electrical connection with an external device, a part of the reinforcing member 291 is partially removed so that the pattern conductive layer 25 is exposed.
  • the reinforcing member 29 various things, such as a knitted fabric structure formed from the ground yarn 231 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example. Further, a resin coating layer can be used as the reinforcing member 291. By providing such a reinforcing member 291, the rigidity on the distal end side of the fabric piece 29 can be increased, so that the effect of facilitating the insertion of the fabric piece 29 into the electrical signal acquisition connector 100 in the external device is obtained. Can do.
  • the fabric piece 29 inserted into the connector 100 It is possible to prevent the tip portion from floating in the insertion hole and fix it firmly.
  • the fabric piece 29 may be formed so as to protrude outward from the surface of the fabric body (fiber structure 21).
  • the degree of freedom in design is increased, and the external device It is possible to effectively suppress the fabric piece 29 having the connecting portion structure from becoming an obstacle to the wearer.
  • Such an effect is not limited to the case where the fiber structure 21 is formed in a clothing shape (such as a shirt shape or a trouser shape), but the conductive fabric 20 is configured in a long shape as shown in FIG.
  • data such as an electrocardiogram or electromyogram, or performing electrical treatment or electromagnetic wave treatment on the subject, even if it is wrapped around the subject's arm, leg, trunk, etc. It is the same.
  • the conductive portion 22 in the fiber structure 21 is opposite to the surface on which the pattern conductive layer 25 is provided in the fiber structure 21 as shown in the schematic cross-sectional view of FIG. You may comprise so that it may be exposed to the surface.
  • the conductive portion 22 exposed on the opposite surface functions as an electrode.
  • the conductive fabric 20 is wrapped around the subject's arm, leg, torso or the like, the conductive fabric 22 is brought into close contact with the surface of the subject's body while the conductive fabric 20 is mounted on the outer surface side.
  • the pattern conductive layer 25 which is a connection portion structure with an external device is exposed, it is possible to reliably acquire a biological signal while ensuring ease of use.
  • the manufacturing method according to the conductive fabric 20 of the second embodiment described above forms the conductive fabric 20 by transferring the thermoplastic resin layer 26 and the pattern conductive layer 25 in the printed electrode body 27 to the fiber structure 21.
  • the conductive fabric 20 can be formed by the following method. That is, as shown in FIG. 21, a printed electrode body 27 is formed by forming a patterned conductive layer 25 on a film-like thermoplastic resin layer 26 by a printing technique, and at least the conductive portions 22 in the fiber structure 21 are formed.
  • the printed electrode body 27 is placed with the thermoplastic resin layer 26 side facing (placement step S2), and then the process in the heating / pressurizing step S3 is performed, thereby forming a film-like thermoplasticity.
  • the pattern conductive layer 25 may be provided on the surface of the fiber structure 21 while the resin layer 26 is melted and impregnated in the fiber structure 21.
  • the thickness of the film-like thermoplastic resin layer 26 is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m or less. When the thickness of the film-like thermoplastic resin layer 26 is less than 10 ⁇ m, there is a problem in strength and handleability. If it is thicker than 100 ⁇ m, the cost increases, and if the conductive fabric 20 does not have a sufficient thickness, the thermoplastic resin may ooze out to the back surface.
  • the film-like thermoplastic resin layer 26 can be formed from the resin constituting the thermoplastic resin layer 26 described above, and it is particularly preferable to employ a polyurethane resin film as the thermoplastic resin layer 26.
  • a polyurethane resin film As the thermoplastic resin layer 26.
  • the thickness (amount) of the polyurethane resin film impregnated in the fiber structure 21 is increased, the impregnation region in the fiber structure 21 is slightly hardened, so that the conductive fabric 20 portion where the pattern conductive layer 25 is formed is formed.
  • Strength can be improved.
  • the pattern conductive layer 25 is formed so that the connection part structure between the conductive cloth 20 and an external device may be comprised, it is not specifically limited to such a structure.
  • the pattern conductive layer 25 can be used as a connection portion structure for electrically connecting the conductive portions 22 to each other.
  • the fiber structure 21 has a knitted fabric structure and the conductive portion 22 of the conductive fabric 20 is formed by weaving the conductive yarn 221, forming a wiring pattern of the conductive portion 22 that is long in the knitting direction is Easy to manufacture.
  • the thermoplastic resin is formed on the pattern conductive layer 25.
  • a printed electrode body 27 configured by disposing the layer 26 is used, and the pattern conductive layer 25 and the thermoplastic resin layer 26 in the printed electrode body 27 are transferred to the fiber structure 21.
  • the pattern conductive layer 25 is formed on the release film 271 by a printing technique to form the printed electrode body 27.
  • a sheet-like, liquid, powdery, or granular thermoplastic resin is used as a fiber structure.
  • the printed electrode body 27 After applying or arranging on at least a part of the conductive portion 22 in the body 21, the printed electrode body 27 is placed, and heating by the heating / pressurizing step S3 is performed.
  • the pattern conductive layer 25 is provided on the surface of the fiber structure 21 while melting the sheet-like, liquid, powdery, or granular thermoplastic resin and impregnating the fiber structure 21. May be.
  • dough is not impaired by making heat press into the heating and pressurization conditions which the pattern conductive layer 25 closely_contact
  • the conductive dough 30 according to the present invention can be used as one of the components when manufacturing a conductive part as shown in FIG. 23, for example.
  • This conductive fabric 30 (conductive part) is formed in a flat and long shape (band shape), and a fiber structure 31 configured such that wirings 32 and non-conductive portions 33 are alternately arranged in the width direction.
  • This conductive fabric 30 (conductive part) is formed in a flat and long shape (band shape), and a fiber structure 31 configured such that wirings 32 and non-conductive portions 33 are alternately arranged in the width direction.
  • it can be worn around the subject's arm, leg, trunk, etc. It is configured.
  • the fiber structure 31 is formed so as to have a long shape.
  • the fiber structure 31 is not particularly limited to such a form.
  • a tubular shape straight or tapered
  • a rectangular shape in plan view or a circular shape in plan view.
  • each wiring 32 is formed in a narrow strip shape along the longitudinal direction of the fiber structure 31, and each non-conductive portion 33 is also formed in a narrow strip shape along the longitudinal direction of the fiber structure 31.
  • the wiring 32 and the non-conductive portion 33 can be configured to have various shapes according to the purpose of use of the conductive fabric 30 or the mounting location. Further, the numbers of the wirings 32 and the non-conductive portions 33 are not particularly limited, and can be changed as appropriate.
  • Such a fiber structure 31 can be formed by various methods using the conductive yarn 321 for forming the wiring 32 and the nonconductive ground yarn 331 for forming the nonconductive portion 33. It can.
  • a fabric including a knitted fabric or a woven fabric having an opening, a nonwoven fabric, and other fabrics can be used.
  • the knitted fabric structure is not particularly limited, and for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their knitting
  • Various knitted fabric structures such as a change organization (for example, Milan rib or cardboard knit), a tricot knitting, a raschel knitting, and a miranese knitting can be employed.
  • the part comprised by the nonelectroconductive ground yarn 331 comprises the fabric main body in the fiber structure 31.
  • the manufacturing method of the fiber structure 31 is not limited to the above method. For example, after the fabric main body is first formed with the non-conductive ground yarn 331, the conductive yarn 321 is knitted into a predetermined portion and embroidered.
  • the wiring 32 can also be formed and manufactured.
  • the conductive yarn 321 for constituting the wiring 32 the same conductive yarn as the conductive yarn 221 in the second embodiment can be adopted.
  • the non-conductive ground yarn 331 for constituting the non-conductive portion 33 the same ground yarn as the ground yarn 231 in the second embodiment can be adopted.
  • the fiber structure 31 (fabric main body) includes a terminal portion 34 as shown in the plan view of FIG.
  • the terminal portion 34 is a connection terminal that is directly inserted into and connected to the connector of the external device circuit, and is set at one end of the long fiber structure 31 (fabric main body).
  • the type of the connector of the external device circuit is not particularly limited as long as it is connected by inserting the terminal portion 34 of the fiber structure 31, and is a slide lock type, a front flip lock type, a back flip block type.
  • a general connector general-purpose flat cable connector used for a flat cable (FFC or FPC) such as a connector can be exemplified.
  • the terminal portion 34 includes a pattern conductive layer 35 containing a conductive material and a resin, as shown in FIG. 24, which is a plan view of FIG. .
  • the pattern conductive layer 35 has a function as an electrode or a wiring, and one end thereof is configured to be electrically connectable to a connector of an external device circuit included in the external device. The other end is configured to be placed and fixed on a part of the wiring 32 so as to be electrically connected to the wiring 32 in the fiber structure 31.
  • the thickness of the pattern conductive layer 35 is preferably 1 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the pattern conductive layer 35 is disposed along the exposed surface of the fabric main body 2 formed by the wiring 32 formed by the conductive thread 321 or the ground thread 331, for example.
  • the surface of the fiber structure 31 has irregularities formed by the conductive yarn 321 and the ground yarn 331 to be knitted.
  • the pattern conductive layer 35 is arranged in a state along the upper surface (exposed surface) of the unevenness formed by the knitted conductive yarn 321 and the ground yarn 331, and as shown in FIG. It is comprised so that it may become.
  • the patterned conductive layer 35 can be formed using the same material as the material (binder, conductive material, and elastomer material) used when forming the patterned conductive layer 25 in the second embodiment.
  • the terminal portion 34 in the conductive fabric 30 of the third embodiment according to the present invention includes a thermoplastic resin layer 36.
  • the thermoplastic resin layer 36 is provided on the fiber structure 31 side with respect to the pattern conductive layer 35, and is in contact with one surface of the pattern conductive layer 35 while being in contact with the fiber structure 31 (wiring 32). Or the fabric body).
  • the patterned conductive layer 35 is firmly fixed on the fiber structure 31 by the adhesive action of the thermoplastic resin layer 36.
  • a region where the thermoplastic resin layer 36 is impregnated in the fiber structure 31 is indicated by a one-dot chain line in FIG.
  • thermoplastic resin layer 36 impregnated in the fiber structure 31 is not only in the knitted fabric structure (or in the woven structure) in the wiring 32 and the non-conductive portion 33, but also between the ground yarn 331 and the ground yarn 331.
  • the yarn 331 and the conductive yarn 321, between the conductive yarn 321 and the conductive yarn 321, and the ground yarn 331 and the conductive yarn 321 are configured as an aggregate of single fibers such as multifilaments, It exists between short fibers.
  • thermoplastic resin layer 36 As the resin constituting the thermoplastic resin layer 36, the same material as the thermoplastic resin layer 26 in the second embodiment can be adopted.
  • the method for manufacturing the conductive fabric 30 includes a fiber structure forming step S1, a placing step S2, and a heating / pressing step S3.
  • the fiber structure forming step S1 is a process of forming a fiber structure 31 including the above-described fabric body and the wiring 32 formed at a predetermined position of the fabric body.
  • the specific formation method of the fiber structure 31 is not specifically limited,
  • the conductive thread 321 for configuring the wiring 32 and the non-conductive ground thread 331 for configuring the non-conductive portion 33 are included.
  • a method of knitting the shaped fiber structure 31 can be mentioned.
  • the placing step S2 includes a printed electrode body 37 comprising a patterned conductive layer 35 containing a conductive material and a resin and a thermoplastic resin layer 36 disposed on at least one surface side of the patterned conductive layer 35.
  • the pattern conductive layer 35 is placed on at least a part of the wiring 32 in the fiber structure 31 at a position corresponding to 34.
  • the printed electrode body 37 will be described. As shown in the cross-sectional view of FIG. 26, the printed electrode body 37 is formed by forming a patterned conductive layer 35 on a release film 371 by a printing technique, and then forming a thermoplastic resin layer 36 on the patterned conductive layer 35. What is comprised and arrange
  • positioned can be illustrated.
  • the printing technique is not particularly limited, and well-known printing methods such as screen printing, gravure printing, relief printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used.
  • a resin containing polyurethane is used as the adhesive as the thermoplastic resin layer 36, the adhesive can be applied to the pattern conductive layer 35.
  • the thickness of the thermoplastic resin layer 36 disposed on the pattern conductive layer 35 is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the thermoplastic resin layer 36 (adhesive) is less than 1 ⁇ m, there is a problem in the adhesive strength.
  • it is thicker than 50 ⁇ m it is difficult to form by printing.
  • such a printed electrode body 37 is placed on at least a part of the wiring 32 in the fiber structure 31 by placing the printed electrode body 37 facing the thermoplastic resin layer 36 side. S2 is completed.
  • the heating / pressurizing step S3 heats and pressurizes the printed electrode body 37 placed at a predetermined position (position where the terminal portion 34 is formed) on the fiber structure 31, thereby the thermoplastic resin of the printed electrode body 37.
  • the pattern conductive layer 35 of the printed electrode body 37 is arranged along the surface irregularities of the fiber structure 31 while being melted and flown and impregnated inside the fiber structure 31 to the wiring 32. This is an electrical connection process.
  • the unmelted thermoplastic resin layer 36 disposed above the top of the conductive yarn 321 is melted by heating by a heat press and flows downward, and is pressurized.
  • the pattern conductive layer 35 is pushed downward from the vicinity of the top of the conductive thread 321 by the movement of the conductive thread 321, and the conductive thread 321 disposed on the exposed surface side and the pattern conductive layer 35 are in direct contact with each other,
  • the ground yarn 331 and the pattern conductive layer 35 are connected and fixed in a state of being in direct contact with each other.
  • the conductive fabric 30 according to the third embodiment of the present invention has a terminal portion 34 that can be directly inserted into a general connector (general-purpose flat cable connector) used in a flat cable (FFC or FPC). Since it is provided, it can be directly connected to the connector of the external device circuit of the external device. That is, it is possible to input / output an electric signal to / from an external device circuit via the terminal portion 34 without separately providing connection wiring such as FPC on the conductive fabric 30.
  • a general connector general-purpose flat cable connector
  • FFC or FPC flat cable
  • the conductive cloth 30 of the third embodiment according to the present invention is formed by forming a connection portion structure between the conductive cloth 30 and the external device by the pattern conductive layer 35 formed by a printing technique.
  • the pattern conductive layer 35 is in a state along the exposed surface (surface uneven shape) of the fiber structure 31 formed by knitting and knitting using the conductive yarn 321 and the ground yarn 331. Since the arrangement is such that the cross-sectional view is wave-like, the adhesion between the pattern conductive layer 35 and the fiber structure 31 is increased, and it is possible to effectively prevent disconnection, peeling, and the like of the pattern conductive layer 35. Become.
  • the contact area between the wiring 32 and the pattern conductive layer 35 is increased, the contact resistance is decreased.
  • the patterned conductive layer 35 is clean along the exposed surface of the fiber structure 31 without causing disconnection or the like. It can be seen that the resistance value failure and the conduction failure are prevented from occurring.
  • the pattern conductive layer 35 is formed by printing directly on the fiber structure 31, since the conductive paste made of the conductive material and the resin is liquid, as shown in the image of FIG.
  • the conductive paste falls into the gaps between the ground yarns 331, the gaps between the conductive yarns 321 or the gaps between the ground yarns 331 and the conductive yarns 321), and disconnection and resistance value defects are likely to occur.
  • the conductive fabric 30 in FIG. 28A is formed on a release film 371 as a printed electrode body 37 with respect to a fabric having a thickness of 300 ⁇ m knitted with a mixed yarn of nylon 40% and polyester 60%.
  • a patterned conductive layer 35 (silver paste) having a thickness of 10 ⁇ m is formed, and a polyurethane adhesive (thermoplastic resin layer 36) having a thickness of 10 ⁇ m is disposed on the patterned conductive layer 35 by the above method. Is formed.
  • the conductive fabric in FIG. 28B is set so that the thickness of the silver paste is 10 ⁇ m directly on the fabric of 300 ⁇ m thickness knitted with a mixed yarn of 40% nylon and 60% polyester. Printed.
  • the pattern conductive layer 35 and the wiring 32 in the fiber structure 31 are integrated, the effect of high electrical bonding strength is also exhibited.
  • the pattern conductive layer 35 is provided along the exposed surface of the fiber structure 31, as shown in FIG. 24, the contact area with the conductive yarn 321 and the ground yarn 331 which comprise the fiber structure 31 is provided. There is a feature that is large. Thereby, it becomes possible to prevent effectively that the pattern conductive layer 35 peels from the surface of the fiber structure 31.
  • the thermoplastic resin layer 36 is exposed on the opposite side of the fiber structure 31 (the exposed surface on which the pattern conductive layer 35 is disposed). It is preferable that the surface does not ooze out on the opposite surface. By setting it as this structure, since the thermoplastic resin layer 36 exists inside the exposed surface of the other side of the electroconductive fabric 30, the texture and touch of the other side of the fiber structure 31 are not impaired.
  • the conductive cloth 30 of the third embodiment according to the present invention has a pattern width and pitch of the pattern conductive layer 35 smaller than the pattern width and pitch of the wiring 32 formed of the conductive yarn 321 in the fiber structure 31. can do.
  • the pattern of the wiring 32 has a minimum width defined by its knitting structure and yarn diameter, and it is difficult to reduce the pitch with the adjacent pattern due to problems such as a short circuit caused by fuzz of conductive yarns.
  • the pattern conductive layer 35 is formed by a printing technique, the line width and the line pitch can be reduced.
  • the pattern conductive layer 35 is suitable for forming a connection portion structure between the conductive fabric 30 and the external device, and the inter-electrode distance in the connection portion structure between the conductive fabric 30 and the external device is reduced. It becomes possible to form narrowly.
  • each wiring interval can be converted to a narrow pitch of about 0.2 to 1 mm. It can be directly inserted into a general connector (general-purpose flat cable connector) used in (FFC or FPC).
  • a general connector general-purpose flat cable connector
  • FFC or FPC general-purpose flat cable connector
  • thermoplastic resin layer 36 impregnated in the fiber structure 31 is a member that coats the conductive yarn 321 around the conductive yarn 321 constituting the wiring 32 that is electrically connected to the pattern conductive layer 35. While functioning, a strong adhesive action with the pattern conductive layer 35 is also exhibited. Therefore, it is possible to effectively prevent the conductive thread 321 at the connection portion between the pattern conductive layer 35 and the wiring 32 from being oxidized and the metal film of the conductive thread 321 from dropping, and to suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the pattern conductive layer 35 and the wiring 32.
  • the fiber structure 31 of the third embodiment according to the present invention preferably has a knitted fabric structure.
  • the melted thermoplastic resin is easily impregnated into the inside from the opening of the conductive fabric 30, and the impregnated thermoplastic resin can be favorably retained. Moreover, it can suppress that the melt
  • the pattern conductive layer 35 When a wiring pattern in which a plurality of patterns are arranged in parallel is adopted as the pattern conductive layer 35, for example, as shown in FIG. 29A, the pattern conductive layer 35 having a wiring 351 constituting the wiring pattern. Is formed on the release film 371.
  • a printed electrode body 37 is formed on the patterned conductive layer 35 by covering the wiring with a thermoplastic resin layer 36 (for example, a resin adhesive containing polyurethane) so as not to cover the wiring.
  • the conductive cloth 30 is configured by placing the printed electrode body 37 at a predetermined position on the fiber structure 31 and heating and pressing it. In such a conductive fabric 30, as shown in FIG.
  • thermoplastic resin layer 36 to be impregnated exists in the lower region of each wiring 351 and does not exist between the wirings 351. Since it is formed, the influence on the air permeability and flexibility of the fiber structure 31 can be reduced.
  • the conductive cloth 30 is formed by forming the printed electrode body 37 so as to cover the wiring 351 with the thermoplastic resin layer 36 as shown in FIG. 29 (c), the durability of the wiring pattern, It is possible to ensure high pattern accuracy.
  • the conductive fabric 30 according to the third embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment.
  • a terminal surface treatment may be performed in order to increase the reliability of insertion / removal with the connector.
  • the terminal surface treatment include terminal plating of nickel or the like, conductive paste printing, and the like.
  • a nonelectroconductive ground thread may be formed on the fabric main body by printing a conductive resin on a predetermined region of the fabric main body knitted using 331.
  • a known printing method such as screen printing, gravure printing, letterpress printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used.
  • the conductive resin is, for example, a binder made of at least one selected from polyester, polypropylene, polyethylene, polyether, polyurethane, methacrylic resin, epoxy resin, vinyl chloride, vinyl acetate, vinyl chloride, vinyl acetate copolymer, and the like.
  • the (resin) can be formed by mixing a conductive material containing at least one kind of fine particles selected from silver, silver chloride, titanium, nickel, platinum, aluminum, stainless steel and the like.
  • the terminal part 34 is comprised so that the pattern conductive layer 35 and the thermoplastic resin layer 36 with which the fiber structure 31 (fabric main body) is impregnated, this is comprised.
  • both the wiring 32 and the terminal portion 34 may be configured to have the same structure as the terminal portion 34. That is, in addition to the terminal portion 34, the wiring 32 included in the fabric body includes a pattern conductive layer 35 containing a conductive material and a resin, and a thermoplastic resin layer 36 in contact with at least one surface of the pattern conductive layer 35.
  • At least a part of the thermoplastic resin layer 36 may be impregnated in the fabric body, and the pattern conductive layer 35 forming the wiring 32 may be arranged along the exposed surface of the fabric body.
  • the wiring 32 has the same structure as that of the terminal portion 34
  • a pattern corresponding to the wiring 32 and the terminal portion 34 is formed on the release film 371 as the printed electrode body 37 by a printing technique. What formed the conductive layer 35 may be used.
  • the conductive fabric 30 includes a plurality of wirings 32, all the wirings 32 may be configured to have the same structure as the terminal part 34, or only a part of the wirings 32 may have the terminals. You may comprise so that it may have the same structure as the part 34.
  • the specific configuration of the wiring 32 formed on the fabric body is not particularly limited.
  • the first wiring 32 is electrically connected to each other. You may comprise so that the wiring part 325 and the 2nd wiring part 326 may be provided.
  • the second wiring portion 326 is configured to be electrically connected to the functional unit 50 arranged at a predetermined interval on the fiber structure 31 (fabric main body).
  • the first wiring part 325 is configured to be electrically connected to the pattern conductive layer 35 in the terminal part 34.
  • the functional unit 50 include electrodes and members having functions such as various sensors such as touch sensors, light emitting elements, display devices, switches, heating elements, actuators, and the like.
  • the first wiring part 325 and the second wiring part 326 may be formed of the same material, or may be formed of different materials.
  • the second wiring part 326 is formed by knitting the conductive yarn 321, while the first wiring part 325 is formed to have the same structure as the terminal part 34. May be. That is, in addition to the terminal portion 34, the first wiring portion 325 includes a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer.
  • the fabric body may be impregnated at least in part, and the pattern conductive layer forming the first wiring part 325 may be arranged along the exposed surface of the fabric body.
  • the first wiring portion 325 and the terminal portion are formed on the release film 371 as the printed electrode body 37 by a printing technique, for example. What formed the pattern conductive layer 35 corresponding to 34 may be used.
  • the conductive fabric 30 includes a plurality of first wiring portions 325, all the first wiring portions 325 may be configured to have the same structure as the terminal portion 34, or a part of the first wiring portions 325 may be configured. Only the first wiring part 325 may be configured to have the same structure as the terminal part 34.
  • the conductive fabric 30 mainly when the subject is subjected to data collection such as an electrocardiogram or electromyogram, or electrical therapy, the subject's arms and legs, although it is described as being configured so as to be wound around the body or the like, it is not particularly limited to such a configuration.
  • it can also be used as a wiring member that electrically connects a device that exhibits various functions such as a touch panel, a display device, a light emitting device, and a heating element, and an external device or power supply device that controls the operation of the device. Can do.
  • the coating covering the exposed surface of the pattern conductive layer 35 You may comprise so that the body 38 may be provided.
  • the surface of the patterned conductive layer 35 can be protected, and the strength of the patterned conductive layer 35, which is a connection structure between the conductive fabric 30 and the external device, can be achieved. Can be improved.
  • the pattern conductive layer 35 is partially removed by partially removing the covering 38 on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35. Is configured to be exposed.
  • the covering body 38 various things, such as a knitted fabric structure formed from the ground yarn 331 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example.
  • the method of disposing the covering 38 on the pattern conductive layer 35 is not particularly limited.
  • the covering 38 is disposed by being thermally fused via the same resin material as the thermoplastic resin forming the thermoplastic resin layer 36. be able to.
  • the transfer film demonstrated by the method of manufacturing the above-mentioned conductive cloth 30 can also be utilized as the covering 38.
  • a coating layer made of resin can be used as the cover 38.
  • thermoplastic resin layer 36 may be provided in the fiber structure 31 side with respect to the pattern conductive layer 35
  • it is not specifically limited to such a form As shown in the schematic cross-sectional views of FIGS. 33 and 34, a configuration in which a part of the thermoplastic resin layer 36 is provided on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35 is adopted. You can also. In the case of such a configuration, a part of the thermoplastic resin layer 36 on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35 is partially removed in consideration of electrical connection with an external device. Then, the pattern conductive layer 35 is configured to be exposed. 33 and 34, the exposed surface of the pattern conductive layer 35 is covered with the thermoplastic resin layer 36, and the surface of the pattern conductive layer 35 can be protected.
  • the fabric body 3 provided with the wiring 32 includes a fabric piece 39 that partially protrudes, and the terminal portion 34 is disposed at the tip of the fabric piece 39.
  • the fabric piece 39 may be directly inserted and connected to a connector of an external device circuit included in the external device.
  • FIG. 36B is a schematic diagram corresponding to the cross section of FIG.
  • the fabric piece 39 can be formed from a non-conductive ground yarn 331.
  • the length of the fabric piece 39 (projection length from the fabric body 3) can be set as appropriate.
  • a reinforcing member 391 may be provided on the dough piece 39 as shown in FIG.
  • the reinforcing member 391 is preferably disposed on the tip of the fabric piece 39 on the opposite side of the surface on which the pattern conductive layer 35 is disposed on the fabric piece 39.
  • the reinforcing member 391 may be provided on the exposed surface of the pattern conductive layer 35. In such a case, in consideration of electrical connection with an external device, a part of the reinforcing member 391 is partially removed so that the pattern conductive layer 35 is exposed.
  • the reinforcing member 39 for example, various members such as a resin film, a nonwoven fabric, and a knitted fabric structure formed from the ground yarn 331 constituting the fabric main body can be adopted. Further, a coating layer made of resin can be used as the reinforcing member 391. By providing such a reinforcing member 391, the rigidity of the front end side of the fabric piece 39 can be increased, so that the effect of facilitating the insertion of the fabric piece 39 into the electrical signal acquisition connector 100 in the external device is obtained. Can do.
  • the fabric piece 39 inserted into the connector 100 It is possible to prevent the tip portion from floating in the insertion hole and fix it firmly.
  • the reinforcing member 391 is the tip portion of the terminal portion 34, and the pattern You may make it arrange
  • the fabric piece 39 when the fabric piece 39 is provided, as shown in the schematic cross-sectional view of FIG. 37, the fabric piece 39 may be formed so as to protrude outward from the surface of the fabric body (fiber structure 31).
  • the fiber structure 31 is formed as clothing (clothes such as shirts, pants, trousers, socks, gloves, hats, and members thereof), the design The degree of freedom of the sex is increased, and it is possible to effectively suppress the cloth piece 39 that is a connection portion structure with an external device from becoming an obstacle to the wearer.
  • Such an effect is not limited to the case where the fiber structure 31 is formed in a clothing shape (such as a shirt shape or a trouser shape), and the conductive fabric 30 is configured in a long shape as shown in FIG.
  • a clothing shape such as a shirt shape or a trouser shape
  • the conductive fabric 30 is configured in a long shape as shown in FIG.
  • the wiring 32 in the fiber structure 31 is on the opposite side to the surface in which the pattern conductive layer 35 is provided in the fiber structure 31.
  • You may comprise so that it may be exposed to a surface.
  • the wiring 32 exposed on the opposite surface functions as an electrode.
  • the conductive fabric 30 is wrapped around the subject's arm, leg, torso or the like, the wiring 32 is brought into close contact with the surface of the subject's body while the conductive fabric 30 is placed on the outer surface side of the worn conductive fabric 30. Since the pattern conductive layer 35 which is a connection portion structure with an external device is exposed, it is possible to reliably acquire a biological signal while ensuring ease of use.
  • the manufacturing method of the conductive cloth 30 of the present invention described above is a method of forming the conductive cloth 30 by transferring the thermoplastic resin layer 36 and the pattern conductive layer 35 in the printed electrode body 37 to the fiber structure 31.
  • the conductive cloth 30 can be formed by the following method. That is, as shown in FIG. 39, a printed electrode body 37 is formed by forming a patterned conductive layer 35 on a film-like thermoplastic resin layer 36 by a printing technique, and at least a part of the wiring 32 in the fiber structure 31 is formed.
  • the printed electrode body 37 is placed with the thermoplastic resin layer 36 side facing (placement step S2), and then the process in the heating / pressurizing step S3 is performed, thereby forming a film-like thermoplastic resin.
  • the pattern conductive layer 35 may be provided on the surface of the fiber structure 31 while the layer 36 is melted and impregnated in the fiber structure 31.
  • the thickness of the film-like thermoplastic resin layer 36 is preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 80 ⁇ m or less. When the thickness of the film-like thermoplastic resin layer 36 is less than 10 ⁇ m, there is a problem in strength and handleability. If it is thicker than 100 ⁇ m, the cost increases, and if the conductive fabric 30 does not have a sufficient thickness, the thermoplastic resin may ooze out to the back surface.
  • the film-like thermoplastic resin layer 36 can be formed from the resin constituting the thermoplastic resin layer 36 described above, and it is particularly preferable to employ a polyurethane resin film as the thermoplastic resin layer 36.
  • a polyurethane resin film As the thermoplastic resin layer 36.
  • the thickness (amount) of the polyurethane resin film impregnated in the fiber structure 31 is increased, the impregnation region in the fiber structure 31 is slightly hardened, so that the strength of the conductive fabric portion on which the pattern conductive layer 35 is formed is increased. Can be improved.
  • this structure when used as a connection portion with an external device, it is preferable to use this structure in order to ensure the width accuracy between terminals.
  • the thermoplastic resin is formed on the pattern conductive layer 35.
  • a printed electrode body 37 configured by arranging the layer 36 is used, and the pattern conductive layer 35 and the thermoplastic resin layer 36 in the printed electrode body 37 are transferred to the fiber structure 31.
  • the pattern conductive layer 35 is formed on the release film 371 by a printing technique to form the printed electrode body 37.
  • a sheet-like, liquid, powdery, or granular thermoplastic resin is used as a fiber structure.
  • the printed electrode body 37 After applying or disposing on at least a part of the wiring 32 in the body 31, the printed electrode body 37 is placed, and the heating / pressurizing step S3 is performed.
  • the pattern conductive layer 35 is provided on the surface of the fiber structure 31 while the sheet structure, liquid, powder, or granular thermoplastic resin is melted and impregnated in the fiber structure 31. May be. Note that the texture of the fabric is not impaired by setting the heat press to heating / pressurizing conditions in which the pattern conductive layer 35 is in close contact with the exposed surface of the fiber structure 31 while maintaining the shape of the fiber structure 31.
  • At least one of a heat fusion yarn and a heat fusion yarn is mixed with the ground yarn 331 or the conductive yarn 321, and the fiber structure 31 (fabric main body) is subjected to a fraying prevention treatment.
  • the fraying prevention process is a process of fixing a portion where the ground yarn 331 and the conductive yarn 321 used for forming the fiber structure 31 intersect in a structure such as a knitted fabric, and this fraying prevention process is performed.
  • the yarn ends of the ground yarn 331 and the conductive yarn 321 are prevented from floating.
  • the fraying prevention treatment method at least one of a thermal fusing yarn and a thermal fusing yarn is mixed with the ground yarn 331 and the conductive yarn 321 used for forming the fibrous structure 31, and then the fibrous structure 31 is manufactured. Knitting and heat setting after knitting.
  • the conductive fabric 30 is cut into a predetermined shape, the cut edge of the conductive fabric 30 is not frayed by applying such a fraying prevention process to at least the outer edge portion of the shape.
  • the fraying prevention process is performed on the terminal portion 34 (fabric piece 39), so that it can be reliably connected to the connector of the external device circuit.
  • the difference between the heat-bonded yarn and the heat-bonded yarn may be distinguished by the strength of the bonding force generated by cooling from the semi-molten state.
  • the one having a weaker binding force (bonding) than this is a heat-bonding yarn.
  • this distinction is not clear and includes an ambiguous portion, in the present invention, what is necessary is that the intersection of the ground yarn 331 and the conductive yarn 321 can be combined by heat setting. Accordingly, a material that has excellent stretchability (elasticity), is heat-sealed by heating, and retains high stretchability (elasticity) without losing stretchability (elasticity) at the heat-sealed portion. be able to.
  • a low melting point polyurethane As a material constituting the heat fusion yarn or the heat fusion yarn, a low melting point polyurethane can be given as a representative example.
  • condensation polymers such as polyethylene, nylon (6 and 66), polypropylene, polyvinyl chloride, vinyl polymers, polyamides, and the like can be used.
  • low melting point polyamide fiber yarns low melting point polyester fiber yarns (low melting point polyester copolymer fiber yarns, low melting point aliphatic polyester fiber yarns) and the like. Of these, low melting point polyester fiber yarns are preferred.
  • Preferred copolymer components of the low melting point polyester copolymer constituting the low melting point polyester copolymer fiber yarn include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid.
  • hydroxycarboxylic acids such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol, etc.
  • Examples of the low melting point aliphatic polyester constituting the low melting point aliphatic polyester fiber yarn include polylactic acid, polyglycolic acid, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, and poly-3. -Hydroxybutyrate butylate, polycaprolactone and the like.
  • heat-bonding yarns include low-melting polyamide fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Flor (manufactured by Unitika), Elder ( Toray Co., Ltd.), Joiner (Fujibo Co., Ltd.), etc. can be used.
  • low-melting polyester fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Sophit (Kuraray), Melty (Unitika), Solstar (Mitsubishi Rayon), Bel combi (manufactured by Kanebo Co., Ltd.), estenaal (manufactured by Toyobo Co., Ltd.), etc. may be used.
  • the ground yarn 331 or the conductive yarn 321 is used as a “core”, and the heat fusion yarn or the heat fusion yarn is used.
  • a method of using a covering yarn (which may be SCY or DCY) with the attached yarn as a “cover”, or a heat-bonded yarn or a heat-bonded yarn are aligned with the ground yarn 331 or the conductive yarn 321 (not as a plating knitting) There is a method).
  • Conductive fabric (conductive parts) DESCRIPTION OF SYMBOLS 12 Conductive part 121 Conductive thread 13 Non-conductive part 132 Ground thread 14 Connection part 15 Resin adhesive Z Connection terminal (conductive adherend) led from an external device 20
  • Conductive fabric (conductive parts) 21 Fiber structure 22 Conductive part 221 Conductive thread 23 Non-conductive part 231 Ground thread 25 Pattern conductive layer 26
  • Thermoplastic resin layer 27
  • Printed electrode body 28 Cover body 29 Fabric piece 291 Reinforcement member
  • Conductive fabric (conductive part) 30 Fiber structure 32 Wiring 321 Conductive thread 33 Non-conductive part 331 Ground thread 34 Terminal part 35 Pattern conductive layer 36
  • Thermoplastic resin layer 37
  • Printed electrode body 38 Cover body 39 Fabric piece 391 Reinforcing member

Abstract

The objective of the present invention is to provide a conductive fabric that can suppress the deterioration of a conductor in the connection site of a connection terminal to an external device. The objective is also to provide a conductive fabric having a connection structure with external devices that provides sufficient strength without diminishing the texture of the fabric, and a manufacturing method for the conductive fabric. This conductive fabric (10) has a conductive adherend (Z) layered and fixed thereto, and is provided with: a conducting portion (12) that is formed from a conductive fiber structure and is electrically connected to the adherend (Z); and a resin adhesive (15) that is filled into at least a portion of the region in which the conducting portion (12) is disposed, and connects and fixes the adherend (Z) to the conducting portion (12) in a state of direct contact.

Description

導電性生地及びその製造方法Conductive fabric and method for producing the same
 本発明は、導電性生地及びその製造方法に関する。 The present invention relates to a conductive fabric and a method for producing the same.
 従来から、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に使用する電極付き着衣が知られている(例えば、特許文献1参照)。このような着衣は、布生地に導電性糸を編み込むことにより電極を形成し、当該電極を介して心電信号や筋電信号を外部装置が検出できるように、或いは、電極を介して電流等を対象者に付与できるように構成されている。 2. Description of the Related Art Conventionally, electrode-equipped clothing that is used when collecting data such as electrocardiograms and electromyograms, or performing electrical therapy or electromagnetic wave therapy on a subject is known (for example, see Patent Document 1). In such clothes, an electrode is formed by weaving conductive yarn into a cloth, so that an external device can detect an electrocardiogram signal or myoelectric signal via the electrode, or an electric current or the like via the electrode. Can be given to the target person.
 また、布生地から構成される湿度感知生地も知られている(例えば、特許文献2参照)。湿度感知生地は、導電性に乏しい糸が導電性の糸の間に置かれるようにして、導電性の糸と導電性に乏しい糸とが編製されて構成されている。このような湿度感知生地は、湿度が変化すると電気抵抗が変化するため、導電性の糸の間の電気伝導度を外部装置を介して監視すれば、生地内に湿気が発生したことを検知できるというものであり、例えば、病院や介護施設におけるベッドマットやベッドシーツに適用され、入院等する患者の発汗状況等の確認に用いられている。 Also known is a humidity sensing fabric made of cloth fabric (see, for example, Patent Document 2). The humidity sensing fabric is formed by knitting a conductive yarn and a poorly conductive yarn so that the poorly conductive yarn is placed between the conductive yarns. Such a humidity sensing fabric changes its electrical resistance when the humidity changes. Therefore, if the electrical conductivity between the conductive yarns is monitored via an external device, it can be detected that moisture has occurred in the fabric. For example, it is applied to bed mats and bed sheets in hospitals and care facilities, and is used to check the sweating status of patients who are hospitalized.
 また、布生地に導電性糸を編み込むことにより導電部を形成し、当該導電部に外部装置である電源を接続して電圧を印加することにより導電部が発熱できるように構成された布ヒータも知られている(例えば、特許文献3参照)。 Also, there is a cloth heater configured to form a conductive portion by weaving conductive yarn into a cloth fabric, and connect the power source as an external device to the conductive portion and apply a voltage to the conductive portion to generate heat. It is known (see, for example, Patent Document 3).
特許第4609923号公報Japanese Patent No. 4609923 特開2011-106084号公報JP 2011-106084 A 特開2014‐157824号公報JP 2014-157824 A
 上記のように、多種多様な機能を発揮させるべく、例えば電極や配線が設けられた布生地(導電性生地)自体の開発については盛んに行われているが、導電性生地と外部装置との間の接続構造については、大きな工夫がなされておらず、単に導電性接着剤を介して導電部と外部装置における接続端子とを接続する構造や、外部装置における接続端子をクリップ状に構成して導電性生地における導電部を挟んで接続する構造といった従来からある接続構造が採用されているに過ぎないのが実情であり、このような接続構造の場合、導電性生地の継続使用や洗濯等によって、接続箇所における導体部分が劣化しやすいという問題があった。また、導電性生地と外部装置との間の接続部構造について、十分な強度を持たせつつ、生地の風合いを損なわない構造を得るには至っていない。 As described above, in order to exert a wide variety of functions, for example, development of a cloth fabric (conductive fabric) itself provided with electrodes and wiring has been actively performed. The connection structure between them is not greatly devised, and the structure in which the conductive part and the connection terminal in the external device are simply connected via a conductive adhesive, or the connection terminal in the external device is configured in a clip shape. The actual situation is that only a conventional connection structure such as a structure in which a conductive portion is connected to the conductive fabric is used. In such a connection structure, the conductive fabric is continuously used or washed. There has been a problem that the conductor portion at the connection point tends to deteriorate. In addition, a connection structure between the conductive cloth and the external device has not yet been obtained with a structure that does not impair the texture of the cloth while having sufficient strength.
 本発明は、このような問題を解決するためになされたものであった、外部装置における接続端子との接続箇所において導体の劣化を抑制することができる導電性生地を提供することを目的とする。また、十分な強度を持たせつつ、生地の風合いを損なうことのない、外部装置との接続部構造を有する導電性生地及びその製造方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a conductive fabric capable of suppressing deterioration of a conductor at a connection point with a connection terminal in an external device. . It is another object of the present invention to provide a conductive fabric having a connection portion structure with an external device and a method for manufacturing the same, which has sufficient strength and does not impair the texture of the fabric.
 本発明の上記目的の一は、導電性の被着体を重ねて固定される導電性生地であって、導電性繊維構造体により構成され、前記被着体と電気的に接続可能な導電部と、前記導電部が配設される領域の少なくとも一部分において含浸され、前記被着体を前記導電部に直接接触させた状態で接続固定する樹脂接着剤とを備える第1実施形態に係る導電性生地により達成される。 One of the above objects of the present invention is a conductive cloth on which conductive adherends are fixed in an overlapping manner, and is formed of a conductive fiber structure, and is a conductive portion that can be electrically connected to the adherend. And a resin adhesive that is impregnated in at least a part of a region where the conductive portion is disposed and that connects and fixes the adherend in direct contact with the conductive portion. Achieved by dough.
 この第1実施形態に係る導電性生地において、前記導電部は、前記導電性繊維構造体からなる編地構造を有することが好ましい。 In the conductive fabric according to the first embodiment, it is preferable that the conductive portion has a knitted fabric structure made of the conductive fiber structure.
 また、前記導電部を構成する前記導電性繊維構造体において前記被着体と接触する部分の断面形状は、前記被着体の重ね合わせ方向に垂直な方向に沿う寸法が、該重ね合わせ方向に沿う寸法よりも大となる扁平形状であることが好ましい。 In the conductive fiber structure constituting the conductive part, the cross-sectional shape of the portion that contacts the adherend is such that the dimension along the direction perpendicular to the overlay direction of the adherend is in the overlap direction. A flat shape that is larger than the dimension along is preferable.
 また、前記導電性繊維構造体は、複数の単繊維の集合体であることが好ましい。 The conductive fiber structure is preferably an aggregate of a plurality of single fibers.
 また、前記樹脂接着剤は、変性ポリオレフィン系エラストマーを含有することが好ましい。 The resin adhesive preferably contains a modified polyolefin elastomer.
 また、本発明の上記目的の一は、導電性糸を含む導電部を有する繊維構造体と、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、前記熱可塑性樹脂層の少なくとも一部分は、前記繊維構造体に含浸されており、前記パターン導電層は、前記繊維構造体の露出表面に沿って配置され、前記導電部と電気的に接続されていることを特徴とする第2実施形態に係る導電性生地により達成される。 Another object of the present invention is to provide a fibrous structure having a conductive portion including a conductive yarn, a patterned conductive layer including a conductive material and a resin, and thermoplastic that is in contact with at least one surface of the patterned conductive layer. A resin layer, at least a part of the thermoplastic resin layer is impregnated in the fiber structure, and the pattern conductive layer is disposed along an exposed surface of the fiber structure, and the conductive portion It is achieved by the conductive cloth according to the second embodiment, which is electrically connected to the second embodiment.
 この第2実施形態に係る導電性生地において、前記繊維構造体は、前記導電部が設けられる生地本体と、部分的に突出する生地片とを備えており、前記熱可塑性樹脂層及び前記パターン導電層の少なくとも一部分が、前記生地片に配置されるように構成してもよい。 In the conductive fabric according to the second embodiment, the fiber structure includes a fabric body provided with the conductive portion and a partially protruding fabric piece, and the thermoplastic resin layer and the pattern conductive material. You may comprise so that at least one part of a layer may be arrange | positioned at the said fabric piece.
 また、前記生地片は、前記生地本体の表面から外方に突出して形成されるように構成してもよい。 Further, the fabric piece may be configured to protrude outward from the surface of the fabric body.
 また、前記生地片において、前記パターン導電層が配置される面とは反対側の面に補強部材が配置されるように構成してもよい。 Further, in the cloth piece, a reinforcing member may be arranged on the surface opposite to the surface on which the pattern conductive layer is arranged.
 また、前記熱可塑性樹脂層は、前記パターン導電層に対して前記繊維構造体側に設けられるように構成してもよい。 Further, the thermoplastic resin layer may be configured to be provided on the fiber structure side with respect to the pattern conductive layer.
 また、前記導電部の少なくとも一部分は、前記繊維構造体において前記パターン導電層が設けられた面とは反対側の面に露出するように構成してもよい。 In addition, at least a part of the conductive portion may be configured to be exposed on the surface of the fibrous structure opposite to the surface on which the pattern conductive layer is provided.
 また、前記繊維構造体は、編地構造を有するように構成してもよい。 Further, the fiber structure may be configured to have a knitted fabric structure.
 また、前記熱可塑性樹脂層は、ポリウレタンを含有する樹脂によって構成することができる。 Further, the thermoplastic resin layer can be composed of a resin containing polyurethane.
 また、前記熱可塑性樹脂層が導電性生地の前記露出表面とは反対側の表面より内側に存在するように構成してもよい。 Further, the thermoplastic resin layer may be configured to be present inside a surface opposite to the exposed surface of the conductive fabric.
 また、本発明の上記目的の一は、導電性生地の製造方法であって、導電性糸を含む導電部を有する繊維構造体を形成する繊維構造体形成ステップと、導電性材料及び樹脂を含むパターン導電層と、該パターン導電層の少なくとも一方の面側に配置される熱可塑性樹脂層とを有するプリント電極体を、前記繊維構造体における導電部の少なくとも一部分上に載置する載置ステップと、前記繊維構造体上の前記プリント電極体を加熱及び加圧することにより、前記熱可塑性樹脂層を溶融させて前記繊維構造体に含浸させつつ、パターン導電層を前記繊維構造体の露出表面に沿って配置して前記導電部に電気的に接続する加熱・加圧ステップとを備える導電性生地の製造方法により達成される。 Another object of the present invention is a method for producing a conductive fabric, comprising a fiber structure forming step for forming a fiber structure having a conductive portion including conductive yarn, a conductive material, and a resin. A placing step of placing a printed electrode body having a pattern conductive layer and a thermoplastic resin layer disposed on at least one surface side of the pattern conductive layer on at least a part of the conductive portion in the fiber structure; By heating and pressurizing the printed electrode body on the fiber structure, the thermoplastic resin layer is melted and impregnated in the fiber structure, and the patterned conductive layer is placed along the exposed surface of the fiber structure. And a heating / pressurizing step for electrically connecting to the conductive part.
 また、本発明の上記目的の一は、端子部を有する生地本体と、該生地本体に設けられる配線とを備えており、少なくとも前記端子部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備え、前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、前記パターン導電層は、前記生地本体の露出表面に沿って配置され、前記配線と電気的に接続されていることを特徴とする第3実施形態に係る導電性生地により達成される。 In addition, one of the above objects of the present invention is provided with a fabric body having a terminal portion and wiring provided in the fabric body, and at least the terminal portion includes a pattern conductive layer containing a conductive material and a resin, A thermoplastic resin layer in contact with at least one surface of the patterned conductive layer, wherein at least a part of the thermoplastic resin layer is impregnated in the fabric body, and the patterned conductive layer is an exposed surface of the fabric body. This is achieved by the conductive cloth according to the third embodiment characterized in that the conductive cloth according to the third embodiment is electrically connected to the wiring.
 この第3実施形態に係る導電性生地において、前記配線および端子部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、前記パターン導電層は、前記生地本体の露出表面に沿って配置されるように構成してもよい。 In the conductive fabric according to the third embodiment, the wiring and the terminal portion include a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer. In addition, at least a part of the thermoplastic resin layer may be impregnated in the fabric body, and the pattern conductive layer may be arranged along the exposed surface of the fabric body.
 また、前記配線は、第1配線部と第2配線部とを備えており、前記端子部及び第1配線部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、前記パターン導電層は、前記生地本体の露出表面に沿って配置され、前記第1配線部と第2配線部とが電気的に接続されているように構成してもよい。 The wiring includes a first wiring portion and a second wiring portion, and the terminal portion and the first wiring portion include at least one of a patterned conductive layer containing a conductive material and a resin, and the patterned conductive layer. A thermoplastic resin layer in contact with the surface of the fabric body, at least a portion of the thermoplastic resin layer is impregnated in the fabric body, and the patterned conductive layer is disposed along the exposed surface of the fabric body. The first wiring part and the second wiring part may be electrically connected.
 また、前記生地本体は、部分的に突出する生地片を備えており、前記端子部が、前記生地片に配置されるように構成してもよい。 Further, the fabric body may include a partially protruding fabric piece, and the terminal portion may be arranged on the fabric piece.
 また、前記生地片は、前記生地本体の表面から外方に突出して形成されるように構成してもよい。 Further, the fabric piece may be configured to protrude outward from the surface of the fabric body.
 また、前記端子部の少なくとも先端部において、前記パターン導電層が配置される面とは反対側の面に補強部材が配置されるように構成してもよい。 Further, at least the tip portion of the terminal portion may be configured such that the reinforcing member is disposed on the surface opposite to the surface on which the pattern conductive layer is disposed.
 また、前記生地本体は、熱融着糸および熱合着糸の少なくとも一方を含むように構成してもよい。 Further, the fabric body may be configured to include at least one of a heat fusion yarn and a heat fusion yarn.
 また、前記熱可塑性樹脂層は、前記パターン導電層に対して前記生地本体側に設けるように構成してもよい。 Further, the thermoplastic resin layer may be provided on the fabric body side with respect to the pattern conductive layer.
 また、前記熱可塑性樹脂層は、ポリウレタンを含有する樹脂製によって構成することができる。 Further, the thermoplastic resin layer can be made of a resin containing polyurethane.
 また、本発明の上記目的の一は、端子部を有する生地本体と、該生地本体に設けられる配線とを備えており、前記端子部がフラットケーブル用コネクタと接続可能である第3実施形態に係る導電性生地により達成される。 Another object of the present invention is to provide a third embodiment in which a fabric body having a terminal portion and wiring provided on the fabric body are provided, and the terminal portion can be connected to a flat cable connector. This is achieved by such a conductive fabric.
 本発明によれば、外部装置における接続端子との接続箇所において導体の劣化を抑制することができる導電性生地を提供することができる。また、十分な強度を持たせつつ、生地の風合いを損なうことのない、外部装置との接続部構造を有する導電性生地及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a conductive fabric capable of suppressing deterioration of a conductor at a connection point with a connection terminal in an external device. In addition, it is possible to provide a conductive fabric having a connection portion structure with an external device and a method for manufacturing the same, which has sufficient strength and does not impair the texture of the fabric.
本発明に係る第1実施形態の導電性生地の使用例を模式的に示した平面図である。It is the top view which showed typically the usage example of the electroconductive cloth | dough of 1st Embodiment which concerns on this invention. 導電性の被着体と導電部との接続固定状態を模式的に示す断面図である。It is sectional drawing which shows typically the connection fixation state of an electroconductive to-be-adhered body and an electroconductive part. 第1実施形態の導電性生地に関して、樹脂接着剤の流動状態を説明するための断面図である。It is sectional drawing for demonstrating the flow state of a resin adhesive regarding the electroconductive cloth | dough of 1st Embodiment. 第1実施形態の導電性生地に関して、樹脂接着剤の流動状態を説明するための断面図である。It is sectional drawing for demonstrating the flow state of a resin adhesive regarding the electroconductive cloth | dough of 1st Embodiment. 第1実施形態の導電性生地に関して、樹脂接着剤の流動状態を説明するための断面図である。It is sectional drawing for demonstrating the flow state of a resin adhesive regarding the electroconductive cloth | dough of 1st Embodiment. 第1実施形態の導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electroconductive cloth | dough of 1st Embodiment. 本発明に係る第2実施形態の導電性生地を模式的に示した平面図である。It is the top view which showed typically the electroconductive cloth | fabric of 2nd Embodiment which concerns on this invention. 図7に示す導電性生地のB-B断面における要部拡大図である。FIG. 8 is an enlarged view of a main part in a BB cross section of the conductive cloth shown in FIG. 第2実施形態に係る導電性生地の製造方法を説明するためのブロック図である。It is a block diagram for demonstrating the manufacturing method of the electroconductive cloth | dough which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地を製造するに際して用いるプリント電極体を示す概略構成断面図である。It is schematic structure sectional drawing which shows the printed electrode body used when manufacturing the electrically conductive fabric which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の製造途中段階を示す説明図である。It is explanatory drawing which shows the middle stage of manufacture of the electroconductive cloth which concerns on 2nd Embodiment. (a)は、本発明に係る手法により構成した導電性生地に関する画像であり、(b)は、繊維構造体に直接印刷してパターン導電層を形成した導電性生地に関する画像である。(A) is an image relating to a conductive fabric constituted by the method according to the present invention, and (b) is an image relating to a conductive fabric obtained by printing directly on a fiber structure to form a patterned conductive layer. 第2実施形態に係る導電性生地の効果の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the effect of the conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 図17に示す導電性生地の使用例を説明するための説明図である。It is explanatory drawing for demonstrating the usage example of the electrically conductive cloth shown in FIG. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 第2実施形態に係る導電性生地を製造するに際して用いるプリント電極体の変形例を示す概略構成断面図である。It is a schematic structure sectional view showing the modification of the printed electrode body used when manufacturing conductive cloth concerning a 2nd embodiment. 第2実施形態に係る導電性生地の変形例を模式的に示した平面図である。It is the top view which showed typically the modification of the electrically conductive cloth which concerns on 2nd Embodiment. 本発明に係る第3実施形態の導電性生地を模式的に示した平面図である。It is the top view which showed typically the electroconductive cloth | fabric of 3rd Embodiment which concerns on this invention. 図23に示す導電性生地のC-C断面における要部拡大図である。It is a principal part enlarged view in CC cross section of the electroconductive cloth shown in FIG. 第3実施形態に係る導電性生地の製造方法を説明するためのブロック図である。It is a block diagram for demonstrating the manufacturing method of the electroconductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地を製造するに際して用いるプリント電極体を示す概略構成断面図である。It is a schematic structure sectional view showing the printed electrode object used when manufacturing the conductive cloth concerning a 3rd embodiment. 第3実施形態に係る導電性生地の製造途中段階を示す説明図である。It is explanatory drawing which shows the middle stage of manufacture of the electroconductive cloth which concerns on 3rd Embodiment. (a)は、本発明に係る手法により構成した導電性生地に関する画像であり、(b)は、繊維構造体に直接印刷してパターン導電層を形成した導電性生地に関する画像である。(A) is an image relating to a conductive fabric constituted by the method according to the present invention, and (b) is an image relating to a conductive fabric obtained by printing directly on a fiber structure to form a patterned conductive layer. 第3実施形態に係る導電性生地の効果の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the effect of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した概略平面図である。It is the schematic plan view which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した概略平面図である。It is the schematic plan view which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 図35に示す導電性生地の使用例を説明するための説明図である。It is explanatory drawing for demonstrating the usage example of the electrically conductive cloth shown in FIG. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地の変形例を模式的に示した断面図である。It is sectional drawing which showed typically the modification of the electrically conductive cloth which concerns on 3rd Embodiment. 第3実施形態に係る導電性生地を製造するに際して用いるプリント電極体の変形例を示す概略構成断面図である。It is a schematic structure sectional view showing the modification of the printed electrode body used when manufacturing conductive cloth concerning a 3rd embodiment.
 以下、本発明の第1実施形態にかかる導電性生地について、添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。本発明に係る導電性生地10は、例えば図1に示すような導電パーツを製造する際において、その構成要素の一つとして使用することができる。この導電性生地10(導電パーツ)は、偏平の長尺状(帯状)に形成され、幅方向に導電部12及び非導電部13が交互に配設されるように構成されており、例えば、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着できるように構成されている。 Hereinafter, the conductive fabric according to the first embodiment of the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced in order to facilitate understanding of the configuration. The conductive fabric 10 according to the present invention can be used as one of its constituent elements when, for example, manufacturing a conductive part as shown in FIG. The conductive fabric 10 (conductive parts) is formed in a flat and long shape (band shape), and is configured such that the conductive portions 12 and the nonconductive portions 13 are alternately arranged in the width direction. When data collection such as an electrocardiogram or electromyogram, or electrical treatment or electromagnetic wave treatment is performed on the subject, it is configured to be wound around the subject's arm, leg, trunk, etc.
 なお、図1に示す形態においては、長尺状の形状を有するように導電性生地10を形成しているが、このような形態に特に限定されず、例えば、筒形状(ストレート形やテーパ形、或いは瓢箪形など)や、平面視矩形状、平面視円形状、衣類形体状(シャツ形やズボン形など)としてもよい。また、図1においては、各導電部12が、導電性生地10(導電パーツ)の長手方向に沿う細帯状に形成され、各非導電部13も同様に導電パーツの長手方向に沿う細帯状に形成されているが、このような形態に特に限定されず、導電性生地10の使用目的や装着個所等に応じて、種々の形状となるように導電部12及び非導電部13を構成することができる。また、導電部12及び非導電部13の各個数についても特に限定されず、適宜変更することができる。 In the form shown in FIG. 1, the conductive cloth 10 is formed so as to have a long shape, but it is not particularly limited to such a form. For example, a tubular shape (straight shape or tapered shape) Or a rectangular shape in a plan view, a circular shape in a plan view, or a clothing shape (such as a shirt shape or a trouser shape). Further, in FIG. 1, each conductive portion 12 is formed in a strip shape along the longitudinal direction of the conductive fabric 10 (conductive part), and each non-conductive portion 13 is similarly formed in a strip shape along the longitudinal direction of the conductive part. Although it is formed, it is not particularly limited to such a form, and the conductive portion 12 and the non-conductive portion 13 are configured so as to have various shapes according to the purpose of use of the conductive fabric 10 or the mounting location. Can do. Further, the numbers of the conductive portions 12 and the non-conductive portions 13 are not particularly limited, and can be changed as appropriate.
 このような導電性生地10は、導電部12を構成するための導電性糸121(導電性繊維構造体)と、非導電部13を構成するための非導電性の地糸131とを用いて様々な方法により形成することができる。例えば、上記導電性糸121及び地糸131を用いて製編することにより形成することができる。製編により形成される編地構造は特に限定されず、例えば、平編、ゴム編、スムース編、パール編又はそれらの変化組織(例えば、ミラノリブや段ボールニットなど)や、トリコット編、ラッシェル編、ミラニーズ編等の各種編地構造を採用することができる。 Such a conductive fabric 10 uses a conductive yarn 121 (conductive fiber structure) for forming the conductive portion 12 and a nonconductive ground yarn 131 for forming the nonconductive portion 13. It can be formed by various methods. For example, it can be formed by knitting using the conductive yarn 121 and the ground yarn 131. The knitted fabric structure formed by knitting is not particularly limited, for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their changing structure (for example, Milan rib or cardboard knit), tricot knitting, raschel knitting, Various knitted fabric structures such as Miranese knitting can be adopted.
 ここで、導電部12を構成するための導電性糸121(導電性繊維構造体)には、樹脂繊維や天然繊維、或いは金属線等を芯として、この芯に湿式や乾式のコーティング、メッキ、真空成膜、その他の適宜被着法を行って金属成分を被着させた金属被着線(メッキ線)を使用するのが好適である。芯には、モノフィラメントを採用することも可能ではあるが、モノフィラメントよりも、複数の単繊維の集合体であるマルチフィラメントや紡績糸のほうが好ましく、更にはウーリー加工糸やSCY、DCYなどのカバリング糸、毛羽加工糸などの嵩高加工糸がより好ましい。 Here, the conductive yarn 121 (conductive fiber structure) for forming the conductive portion 12 has resin fiber, natural fiber, metal wire or the like as a core, and wet or dry coating, plating, It is preferable to use a metal deposition wire (plating wire) on which a metal component is deposited by vacuum deposition or other appropriate deposition method. Although it is possible to adopt monofilaments for the core, multifilaments and spun yarns, which are aggregates of a plurality of single fibers, are preferable to monofilaments, and further, wooly processed yarns and covering yarns such as SCY and DCY. Further, bulky processed yarn such as fluffed yarn is more preferable.
 芯に被着させる金属成分には、例えばアルミ、ニッケル、銅、チタン、マグネシウム、錫、亜鉛、鉄、銀、金、白金、バナジウム、モリブデン、タングステン、コバルト等の純金属やそれらの合金、ステンレス、真鍮等を使用することができる。 Examples of metal components to be deposited on the core include pure metals such as aluminum, nickel, copper, titanium, magnesium, tin, zinc, iron, silver, gold, platinum, vanadium, molybdenum, tungsten, cobalt, alloys thereof, stainless steel Brass, etc. can be used.
 なお、導電性糸121に弾性糸を混用してもよい。弾性糸には、ポリウレタンやゴム系のエラストマー材料を単独で用いてもよいし、「芯」にポリウレタンやゴム系のエラストマー材料を用い、「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。 Note that an elastic yarn may be mixed with the conductive yarn 121. For elastic yarn, polyurethane or rubber-based elastomer material may be used alone, or covering yarn using polyurethane or rubber-based elastomer material for “core” and nylon or polyester for “cover” can do.
 また、非導電部13を構成するための非導電性の地糸131には、合成繊維(例えば、ポリエステル繊維やナイロン繊維等)や天然繊維、合成繊維と弾性糸とを混用した素材等を使用することができる。弾性糸には、例えば、ポリウレタンやゴム系のエラストマー材料を単独で用いてもよいし、「芯」にポリウレタンやゴム系のエラストマー材料を用い、「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。また、非導電性の地糸131には、モノフィラメントを採用することも可能ではあるが、モノフィラメントよりも、複数の単繊維の集合体であるマルチフィラメントや紡績糸のほうを好ましく用いることができる。 Further, the non-conductive ground yarn 131 for forming the non-conductive portion 13 is made of synthetic fiber (for example, polyester fiber or nylon fiber), natural fiber, a material mixed with synthetic fiber and elastic yarn, or the like. can do. For the elastic yarn, for example, a polyurethane or rubber-based elastomer material may be used alone, or a covering yarn using polyurethane or rubber-based elastomer material for the “core” and nylon or polyester for the “cover”. Can be adopted. In addition, a monofilament can be adopted as the non-conductive ground yarn 131, but a multifilament or a spun yarn, which is an aggregate of a plurality of single fibers, can be preferably used rather than a monofilament.
 また、本発明に係る第1実施形態の導電性生地10は、例えば心電装置や筋電装置といった外部装置に接続されて使用されるものであるため、図1において一点鎖線で囲まれる領域を、外部装置から導かれる接続端子Z(導電性の被着体)が重ねられて固定される接続部14として設定されている。この接続部14は、導電性生地10において各導電部12が配設される領域の少なくとも一部分を含むように設定されており、導電部12のそれぞれに、外部装置から導かれる接続端子Z(導電性の被着体)に形成される各導電線が電気的に接続されるように構成されている。 In addition, since the conductive fabric 10 according to the first embodiment of the present invention is used by being connected to an external device such as an electrocardiogram device or a myoelectric device, the region surrounded by the alternate long and short dash line in FIG. The connection terminal Z (conductive adherend) led from an external device is set as a connection portion 14 which is fixed by being overlapped. The connection portion 14 is set so as to include at least a part of a region where each conductive portion 12 is disposed in the conductive fabric 10, and each of the conductive portions 12 has a connection terminal Z (conductive) led from an external device. Each conductive wire formed on the conductive adherend is electrically connected.
 上記接続部14においては、模式的に表した図2の断面図(図1のA-A断面位置に相当)に示すように、外部装置から導かれる接続端子Z(導電性の被着体)と導電部12とは、導電性生地10に含浸された樹脂接着剤15を介して接続固定されている。また、被着体Zと導電部12とは、互いに直接接触させた状態で接続固定されている。なお、樹脂接着剤が含浸される個所は、接続部14として設定される個所であり、各導電部12が配設される領域の少なくとも一部分を含むように設定されている。 In the connecting portion 14, as schematically shown in the sectional view of FIG. 2 (corresponding to the AA sectional position in FIG. 1), the connecting terminal Z (conductive adherend) led from the external device is shown. The conductive portion 12 is connected and fixed via a resin adhesive 15 impregnated in the conductive fabric 10. Further, the adherend Z and the conductive portion 12 are connected and fixed in a state of being in direct contact with each other. The portion impregnated with the resin adhesive is a portion set as the connection portion 14 and is set to include at least a part of a region where each conductive portion 12 is disposed.
 含浸される樹脂接着剤としては、種々の樹脂製接着剤を採用することができるが、例えば、変性ポリオレフィン系エラストマーを含有するホットメルト型の樹脂接着剤を好ましく採用することができる。変性ポリオレフィン系エラストマーを含有することによって、導電性材料の導電性を劣化させる水分を導電性繊維構造体(導電性糸121)に寄せ付けにくくすることができるため好ましい。変性ポリオレフィン系エラストマーは、(a)ペルオキシド架橋型オレフィン系共重合体ゴムと、(b)オレフィン系プラスチックと、(c)α,β-不飽和カルボン酸もしくはその誘導体、または不飽和エポキシ単量体とを含有するブレンド物が、有機ペルオキシドの存在下で動的に熱処理されて部分的に架橋されているグラフト変性ポリオレフィン系熱可塑性エラストマーである。なお、上記のブレンド物中に、(d)ペルオキシド非架橋型ゴム状物質、(e)鉱物油系軟化剤が含まれていてもよい。また、被着体Zとの相性を考慮して他のポリマー(例えばポリアミドなど)を少量混合してもよい。 As the resin adhesive to be impregnated, various resin adhesives can be used. For example, a hot melt type resin adhesive containing a modified polyolefin elastomer can be preferably used. By containing a modified polyolefin-based elastomer, moisture that degrades the conductivity of the conductive material can be made difficult to approach the conductive fiber structure (conductive yarn 121), which is preferable. The modified polyolefin elastomer comprises (a) a peroxide-crosslinked olefin copolymer rubber, (b) an olefin plastic, (c) an α, β-unsaturated carboxylic acid or derivative thereof, or an unsaturated epoxy monomer. Is a graft-modified polyolefin-based thermoplastic elastomer that is dynamically heat-treated in the presence of an organic peroxide and partially crosslinked. Note that (d) a peroxide non-crosslinked rubbery substance and (e) a mineral oil-based softening agent may be included in the blend. In consideration of compatibility with the adherend Z, a small amount of other polymer (for example, polyamide) may be mixed.
 ここで、ペルオキシド架橋型オレフィン系共重合体ゴム(a)は、たとえばエチレン・プロピレン・非共役ジエン共重合体ゴム、エチレン・ブタジエン共重合体ゴムのように、オレフィンを主成分とする無定形の弾性共重合体であって、有機ペルオキシドと混合して加熱下に混練することにより、架橋して流動性が低下するか、あるいは流動しなくなるようなゴムをいう。なお、上記の非共役ジエンとしては、具体的には、ジシクロペンタジエン、1,4-ヘキサジエン、ジシクロオクタジエン、メチレン-ノルボルネン、エチリデン-ノルボルネンなどが挙げられる。 Here, the peroxide-crosslinked olefin copolymer rubber (a) is an amorphous material mainly composed of olefin, such as ethylene / propylene / non-conjugated diene copolymer rubber and ethylene / butadiene copolymer rubber. An elastic copolymer, which is a rubber that is mixed with an organic peroxide and kneaded under heating to crosslink and decrease fluidity or not flow. Specific examples of the non-conjugated diene include dicyclopentadiene, 1,4-hexadiene, dicyclooctadiene, methylene-norbornene, and ethylidene-norbornene.
 また、ペルオキシド架橋型オレフィン系共重合体ゴム(a)の内でも、エチレン成分単位とプロピレン成分単位とのモル比(エチレン成分単位/プロピレン成分単位)が、50/50~90/10、特に55/45~85/15の範囲内にある、エチレン・プロピレン共重合体ゴムおよびエチレン・プロピレン・非共役ジエン共重合体ゴムが、好適に用いられる。中でも、エチレン・プロピレン・非共役ジエン共重合体ゴム、特にエチレン・プロピレン・エチリデンノルボルネン共重合体ゴムは、耐熱性、引張強度特性および反発弾性に優れた熱可塑性エラストマーを提供し得る点で好ましい。 In the peroxide-crosslinked olefin copolymer rubber (a), the molar ratio of ethylene component units to propylene component units (ethylene component units / propylene component units) is 50/50 to 90/10, particularly 55. An ethylene / propylene copolymer rubber and an ethylene / propylene / non-conjugated diene copolymer rubber in the range of / 45 to 85/15 are preferably used. Among them, ethylene / propylene / non-conjugated diene copolymer rubber, particularly ethylene / propylene / ethylidene norbornene copolymer rubber is preferable in that it can provide a thermoplastic elastomer excellent in heat resistance, tensile strength characteristics and impact resilience.
 また、オレフィン系プラスチック(b)は、高圧法または低圧法のいずれかによる1種以上のモノオレフィンを重合して得られる結晶性の高分子量固体生成物からなる。このような樹脂の例としては、アイソタクチックまたはシンジオタクチックのモノオレフィン重合体樹脂が挙げられる。 The olefin plastic (b) is composed of a crystalline high molecular weight solid product obtained by polymerizing one or more monoolefins by either the high pressure method or the low pressure method. Examples of such resins include isotactic or syndiotactic monoolefin polymer resins.
 適当な原料オレフィンの具体的な例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン、1-オクテン、1-デセンおよびこれらの2種以上の混合系オレフィンを挙げることができ、これらの単独重合でも、共重合でも、樹脂状物が得られれば、いずれの重合様式を採用してもよい。 Specific examples of suitable raw material olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl-1-propene, 3-methyl-1-pentene, 4-methyl-1- Examples include pentene, 5-methyl-1-hexene, 1-octene, 1-decene, and mixed olefins of two or more thereof. If a resinous product can be obtained by homopolymerization or copolymerization thereof, Any polymerization mode may be adopted.
 オレフィン系プラスチック(b)の中でも好ましいオレフィン系プラスチックは、ペルオキシド分解型オレフィン系プラスチックである。ペルオキシド分解型オレフィン系プラスチックとは、ペルオキシドと混合し、加熱下で混練することにより熱分解して分子量を減じ、樹脂の流動性が増加するオレフィン系のプラスチックをいい、たとえば、アイソタクチックポリプロピレン;プロピレンと他の少量のα- オレフィンとの共重合体、たとえばプロピレン-エチレン共重合体、プロピレン-1-ブテン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1-ペンテン共重合体などが挙げられる。 Among the olefin plastics (b), a preferred olefin plastic is a peroxide-decomposable olefin plastic. Peroxide-decomposable olefinic plastics are olefinic plastics that are mixed with peroxides and kneaded under heating to reduce the molecular weight and increase the fluidity of the resin, for example, isotactic polypropylene; Copolymers of propylene and other small amounts of α- olefins such as propylene-ethylene copolymer, propylene-1-butene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene A copolymer etc. are mentioned.
 また、α,β- 不飽和カルボン酸もしくはその誘導体、または不飽和エポキシ単量体(c)は、グラフト変性剤として用いられるものであり、α,β- 不飽和カルボン酸もしくはその誘導体としては、具体的には、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸、ビシクロ[2,2,1 ]ヘプト-2-エン-5,6-ジカルボン酸無水物等の不飽和カルボン酸の無水物、アクリル酸メチル、メタクリル酸メチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル等の不飽和カルボン酸のエステルなどが挙げられる。これらの中でも、マレイン酸、ビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸またはこれらの無水物が好ましい。 The α, β- unsaturated carboxylic acid or derivative thereof, or the unsaturated epoxy monomer (c) is used as a graft modifier, and α, β- unsaturated carboxylic acid or derivative thereof is Specific examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, and bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid. Of unsaturated carboxylic acids such as saturated carboxylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic anhydride Anhydride, methyl acrylate, methyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconate, diethyl citraconic acid, tetrahydro Dimethyl phthalate, etc. bicyclo [2,2,1] hept-2-ene-5,6-esters of unsaturated carboxylic acids dicarboxylic acid dimethyl, and the like. Among these, maleic acid, bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid or anhydrides thereof are preferable.
 上記の不飽和エポキシ単量体としては、具体的には、グリシジルアクリレート、グリシジルメタクリレート、p-スチリルカルボン酸グリシジル等の不飽和モノカルボン酸のグリシジルエステル、マレイン酸、イタコン酸、シトラコン酸、ブテントリカルボン酸、エンド-シス-ビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボン酸、エンド- シス- ビシクロ[2,2,1]ヘプト-5-エン-2-メチル-2,3- ジカルボン酸等の不飽和カルボン酸のモノグリシジルエステルあるいはポリグリシジルエステル、アルリルグリシジルエーテル、2-メチルアルリルグリシジルエーテル、o-アルリルフェノールのグリシジルエーテル、m-アルリルフェノールのグリシジルエーテル、p-アルリルフェノールのグリシジルエーテル、イソプロペニルフェノールのグリシジルエーテル、m-ビニルフェノールのグリシジルエーテル、p-ビニルフェノールのグリシジルエーテル等の不飽和グリシジルエーテル、2-(o-ビニルフェニル)エチレンオキシド、2-(p-ビニルフェニル)エチレンオキシド、2-(o-ビニルフェニル)プロピレンオキシド、2-(p-ビニルフェニル)プロピレンオキシド、2-(o-アルリルフェニル)エチレンオキシド、2-(p-アルリルフェニル)エチレンオキシド、2-(o-アルリルフェニル)プロピレンオキシド、2-(p-アルリルフェニル)プロピレンオキシド、p-グリシジルスチレン、3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1- ブテン、3,4-エポキシ-1-ペンテン、3,4-エポキシ-3- メチル-1-ペンテン、5,6-エポキシ-1-ヘキセン、ビニルシクロヘキセンモノオキシド、アルリル-2,3- エポキシシクロペンチルエーテルなどが好ましい。 Specific examples of the unsaturated epoxy monomer include glycidyl ester of unsaturated monocarboxylic acid such as glycidyl acrylate, glycidyl methacrylate, glycidyl p-styrylcarboxylate, maleic acid, itaconic acid, citraconic acid, butenetricarboxylic acid. Acid, endo-cis-bicyclo [2,2,1] hept-5-ene-2,3-dicarboxylic acid, endo-cis-bibicyclo [2,2,1] hept-5-en-2-methyl-2 Monoglycidyl ester or polyglycidyl ester of unsaturated carboxylic acid such as 1,3-dicarboxylic acid, allyl glycidyl ether, 2-methylallyl glycidyl ether, glycidyl ether of o-allylphenol, glycidyl ether of m-arlylphenol Glycidyl ether of p-arlylphenol, glycidyl ether of isopropenylphenol, Unsaturated glycidyl ethers such as glycidyl ether of m-vinylphenol, glycidyl ether of p-vinylphenol, 2- (o-vinylphenyl) ethylene oxide, 2- (p-vinylphenyl) ethylene oxide, 2- (o-vinylphenyl) Propylene oxide, 2- (p-vinylphenyl) propylene oxide, 2- (o-arlylphenyl) ethylene oxide, 2- (p-arrylphenyl) ethylene oxide, 2- (o-arlylphenyl) propylene oxide, 2- (P-allylphenyl) propylene oxide, p-glycidylstyrene, 3,4-epoxy-1-butene, 3,4-epoxy-3-methyl-1- butene, 3,4-epoxy-1-pentene, 3 2,4-epoxy-3- methyl-1-pentene, 5,6-epoxy-1-hexene, vinylcyclohexene monoxide, allyl-2,3- epoxycyclopentyl ether, etc. Arbitrariness.
 また、ペルオキシド非架橋型ゴム状物質(d)は、たとえばポリイソブチレン、ブチルゴム、プロピレン含量70モル%以上のプロピレン- エチレン共重合体ゴム、アタクチックポリプロピレンなどのように、ペルオキシドと混合し、加熱して混練しても架橋せず、流動性が低下しない炭化水素系のゴム状物質をいう。 Further, the peroxide non-crosslinked rubber-like substance (d) is mixed with a peroxide and heated, for example, polyisobutylene, butyl rubber, propylene-polyethylene copolymer rubber having a propylene content of 70 mol% or more, atactic polypropylene and the like. This means a hydrocarbon-based rubber-like substance that does not crosslink even when kneaded and does not decrease fluidity.
 また、鉱物油系軟化剤(e)は、通常、ゴムをロール加工する際に、ゴム分子間作用力を弱め、加工を容易にするとともに、充填剤として配合するカーボンブラック、ホワイトカーボンなどの分散を助け、あるいは加硫ゴムの硬さを低下せしめて柔軟性、弾性を増す目的で使用される高沸点の石油留分であり、パラフィン系、ナフテン系、芳香族系等に区別されている。 In addition, mineral oil softener (e) usually reduces the intermolecular action force of rubber during roll processing, facilitates processing, and disperses carbon black, white carbon, etc. blended as a filler. It is a high-boiling petroleum fraction used for the purpose of increasing the flexibility and elasticity by reducing the hardness of vulcanized rubber, and is classified into paraffinic, naphthenic, aromatic and the like.
 上記のような樹脂接着剤を導電性生地10の所定個所(接続部14に対応する箇所)に含浸させる方法は、種々の方法を採用することができる。例えば、上記の樹脂接着剤組成物をシート化したものを、導電性生地10における接続部14に対応する領域に載置すると共に、当該シート化された樹脂接着剤上に、外部装置における接続端子Z(導電性の被着体)を載置し、当該接続端子Z(被着体Z)の上からヒートプレスすることにより行うことができる。なお、シート化した樹脂接着剤は、フィルム状に構成してもよいが、不織布状に構成する方が導電性生地10の接続部14における伸縮性を維持するという観点から好ましい。 Various methods can be adopted as a method of impregnating a predetermined portion (a portion corresponding to the connecting portion 14) of the conductive fabric 10 with the resin adhesive as described above. For example, the resin adhesive composition formed into a sheet is placed in a region corresponding to the connection portion 14 in the conductive fabric 10, and the connection terminal in the external device is placed on the sheeted resin adhesive. Z (conductive adherend) can be placed and heat-pressed from above the connection terminal Z (adherence Z). In addition, although the resin adhesive formed into a sheet may be configured in a film shape, it is preferable to configure it in a non-woven fabric shape from the viewpoint of maintaining stretchability at the connection portion 14 of the conductive fabric 10.
 ヒートプレスを行うことにより、導電性生地10と被着体Zとの間に介在されるシート状の樹脂接着剤は、溶解して導電性生地10の内部側に流動していき導電性生地10に含浸されると共に、導電部12及び非導電部13における編地構造内に含浸された樹脂接着剤15の接着作用により導電性生地10と被着体Zとは接続固定されることとなる。ここで、導電性生地10に含浸される樹脂接着剤は、導電部12及び非導電部13における編地構造内の他、地糸131と地糸131の間、地糸131と導電性糸121との間、導電性糸121と導電性糸121との間、地糸131及び導電性糸121をマルチフィラメント等の単繊維の集合体として構成した場合には、各短繊維の間等に存在することとなる。 By performing the heat press, the sheet-like resin adhesive interposed between the conductive fabric 10 and the adherend Z dissolves and flows toward the inside of the conductive fabric 10. The conductive fabric 10 and the adherend Z are connected and fixed by the adhesive action of the resin adhesive 15 impregnated in the knitted fabric structure in the conductive portion 12 and the nonconductive portion 13. Here, the resin adhesive impregnated in the conductive fabric 10 is not only in the knitted fabric structure in the conductive portion 12 and the non-conductive portion 13, but also between the ground yarn 131 and the ground yarn 131, between the ground yarn 131 and the conductive yarn 121. Between the conductive yarn 121 and the conductive yarn 121, and when the ground yarn 131 and the conductive yarn 121 are configured as an aggregate of single fibers such as multifilaments, they are present between the short fibers. Will be.
 また、導電性生地10における導電部12を構成する導電性糸121であって、生地の露出面側(被着体Z側)に配置される導電性糸121に着目すると、図3~図5の模式断面図に示すように、当該導電性糸121の頂部よりも上方に配置される溶解前のシート状樹脂接着剤15は(図3)、ヒートプレスによる加熱により溶解して矢印にて示すように、下方に流動していくと共に、加圧による被着体Zの移動によって導電性糸121の頂部近傍から押し出されていき(図4)、露出面側(被着体Z側)に配置される導電性糸121と被着体Zとは互いに直接接触した状態で、両者が接続固定され、電気的な接続状態を得ることができる(図5)。 Further, when attention is paid to the conductive yarn 121 constituting the conductive portion 12 in the conductive fabric 10 and disposed on the exposed surface side (the adherend Z side) of the fabric, FIG. 3 to FIG. As shown in the schematic cross-sectional view of FIG. 3, the sheet-like resin adhesive 15 before melting, which is disposed above the top of the conductive yarn 121 (FIG. 3), is melted by heating with a heat press and indicated by an arrow. Thus, while flowing downward, the adherend Z is pushed from the vicinity of the top of the conductive yarn 121 by the movement of the adherend Z by pressurization (FIG. 4) and arranged on the exposed surface side (the adherend Z side). The electrically conductive yarn 121 and the adherend Z are in direct contact with each other and are connected and fixed to each other, so that an electrically connected state can be obtained (FIG. 5).
 また、ヒートプレス時における加圧力や加熱温度、加圧時間、加熱時間については、適宜設定すればよいが、例えば、比較的大きな加圧力を付与することにより、図6の模式断面図に示すように、導電部12を構成する導電性糸121であって、少なくとも被着体Zと接触する部分の断面形状が、加圧方向に圧縮された扁平形状となるようにすることが好ましい、つまり、被着体Zと接触する導電性糸121部分の断面形状に関し、被着体Zの重ね合わせ方向に垂直な方向に沿う寸法(図6における左右方向の寸法)が、該重ね合わせ方向に沿う寸法(図6における上下方向の寸法)よりも大となる扁平形状となるようにすることが好ましい。なお、このような扁平形状を得る程度の加圧力を付与したまま、加熱温度を低下させていき樹脂接着剤を硬化させることにより、硬化した樹脂接着剤の保形性によって導電性糸121の所定部分における断面形状は、上述の扁平形状を維持することとなる。 Further, the pressing force, heating temperature, pressurizing time, and heating time at the time of heat press may be set as appropriate. For example, by applying a relatively large pressing force, as shown in the schematic cross-sectional view of FIG. Furthermore, it is preferable that the cross-sectional shape of the conductive yarn 121 constituting the conductive portion 12 and at least the portion in contact with the adherend Z is a flat shape compressed in the pressing direction, that is, Regarding the cross-sectional shape of the conductive yarn 121 portion in contact with the adherend Z, the dimension along the direction perpendicular to the overlay direction of the adherend Z (the dimension in the left-right direction in FIG. 6) is the dimension along the overlay direction. It is preferable to have a flat shape that is larger than (the vertical dimension in FIG. 6). It should be noted that, by applying a pressure sufficient to obtain such a flat shape, the heating temperature is lowered and the resin adhesive is cured, so that the conductive yarn 121 has a predetermined shape depending on the shape retention of the cured resin adhesive. The cross-sectional shape in the portion maintains the above-described flat shape.
 本発明に係る第1実施形態の導電性生地10は、上述のように、導電部12が配設される領域の少なくとも一部分において、導電性の被着体Zを導電部12に直接接触させた状態で接続固定する樹脂接着剤が含浸される構造を有している。したがって、従来のように導電性接着剤を用いることなく、導電性を有しない接着剤を用いて導電性の被着体Zと導電性生地10における導電部12とを導通させることができ、接着剤の種類に関してその選択性が広がり、非常に汎用性に優れるものとなる。また、含浸された樹脂接着剤15は、被着体Zとの接続部14における導電部12を構成する導電性糸121の周りにおいて当該導電性糸121をコーティングする部材として機能しつつ、被着体Zとの強固な接着作用をも奏することとなる。したがって、被着体Zと導電部12との接続部分における導電性糸121が酸化することや当該導電性糸121の金属皮膜が脱落してしまうことを効果的に防止し、その劣化を抑制することが可能となり、被着体Zと導電部12との良好な導通状態を維持することが可能となる。 As described above, in the conductive fabric 10 according to the first embodiment of the present invention, the conductive adherend Z is brought into direct contact with the conductive portion 12 in at least a part of the region where the conductive portion 12 is disposed. It has a structure that is impregnated with a resin adhesive that is connected and fixed in a state. Therefore, the conductive adherend Z and the conductive portion 12 in the conductive fabric 10 can be conducted with an adhesive having no conductivity without using a conductive adhesive as in the prior art. The selectivity with respect to the kind of the agent is widened, and it becomes very versatile. Further, the impregnated resin adhesive 15 functions as a member that coats the conductive yarn 121 around the conductive yarn 121 constituting the conductive portion 12 in the connection portion 14 with the adherend Z, and adheres to the adherend Z. A strong adhesive action with the body Z is also exhibited. Therefore, it is possible to effectively prevent the conductive yarn 121 at the connecting portion between the adherend Z and the conductive portion 12 from being oxidized and the metal film of the conductive yarn 121 from falling off, and suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the adherend Z and the conductive portion 12.
 また、本発明に係る第1実施形態の導電性生地10は、例えば、被着体Zを一旦取り外して洗濯等を行った後、再度被着体Zを設置する場合において、樹脂接着剤を別途準備する必要が無く、導電性生地10に含浸された樹脂接着剤15を再利用して両者を接続固定することが可能となる。つまり、接続部14に被着体Zを重ね合わせた後、ヒートプレスを当該重ね合わせ部に施すことにより、既に導電性生地10に含浸された樹脂接着剤15が再度溶解し、被着体Zを導電性生地10に固定することができる。 In addition, the conductive fabric 10 according to the first embodiment of the present invention has a resin adhesive separately when the adherend Z is installed again after the adherend Z is removed and washed, for example. There is no need to prepare, and it becomes possible to reuse and fix the resin adhesive 15 impregnated in the conductive fabric 10. That is, after the adherend Z is superimposed on the connection portion 14, the resin adhesive 15 already impregnated in the conductive fabric 10 is dissolved again by applying heat press to the overlap portion, and the adherend Z Can be fixed to the conductive fabric 10.
 また、本発明に係る導電性生地10の導電部12は導電性糸121からなる編地構造を有しており、また、非導電部13も同様に地糸131からなる編地構造を有するように構成されている。このよう構造を採用することにより、溶解した樹脂接着剤が、生地の内部に含浸されやすく、また、含浸された樹脂接着剤15を良好に保持でき、溶解した樹脂接着剤が、被着体Zが設けられる側とは反対側に大きく移動することを抑制することができる。 The conductive portion 12 of the conductive fabric 10 according to the present invention has a knitted fabric structure made of conductive yarn 121, and the non-conductive portion 13 similarly has a knitted fabric structure made of ground yarn 131. It is configured. By adopting such a structure, the dissolved resin adhesive is easily impregnated in the interior of the fabric, and the impregnated resin adhesive 15 can be satisfactorily held, and the dissolved resin adhesive is adhered to the adherend Z. It is possible to suppress a large movement to the side opposite to the side on which is provided.
 また、上述のように、被着体Zと接触する導電性糸121部分の断面形状に関し、被着体Zの重ね合わせ方向に垂直な方向に沿う寸法(図6における左右方向の寸法)が、該重ね合わせ方向に沿う寸法(図6における上下方向の寸法)よりも大となる扁平形状となるように構成することにより、導電部12と被着体Zとの接触面積が増加し導電部12と被着体Zとのより一層良好な電気的な接続状態を維持することが可能となる。また、導電部12と被着体Zとの接触界面が、比較的フラットな形態となるため、例えば、一旦被着体Zを導電部12から取り外した場合に、外部に露出している導電部12の面積を大きくすることができる。したがって、再度、被着体Zを導電部12上に設置してヒートプレスを行うことにより被着体Zを導電部12に取り付ける際に、良好な導通状態を得やすくなるという利点も奏することとなる。 In addition, as described above, with respect to the cross-sectional shape of the conductive yarn 121 part in contact with the adherend Z, the dimension along the direction perpendicular to the overlay direction of the adherend Z (the dimension in the left-right direction in FIG. 6) is By configuring the flat shape to be larger than the dimension along the overlapping direction (the vertical dimension in FIG. 6), the contact area between the conductive portion 12 and the adherend Z is increased, and the conductive portion 12 is formed. It is possible to maintain an even better electrical connection state between and the adherend Z. In addition, since the contact interface between the conductive portion 12 and the adherend Z has a relatively flat shape, for example, when the adherend Z is once removed from the conductive portion 12, the conductive portion exposed to the outside. The area of 12 can be increased. Therefore, when the adherend Z is attached to the conductive portion 12 by placing the adherend Z on the conductive portion 12 and performing heat pressing again, there is also an advantage that it is easy to obtain a good conduction state. Become.
 以上、本発明に係る第1実施形態の導電性生地10について説明したが、具体的構成は、上記実施形態に限定されない。上記実施形態においては、導電性生地10が、導電部12及び非導電部13を備える構成を有しているが、例えば、導電部12のみによって導電性生地10を構成してもよい。 The conductive fabric 10 according to the first embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment. In the said embodiment, although the conductive cloth 10 has the structure provided with the electroconductive part 12 and the non-conductive part 13, you may comprise the electroconductive cloth 10 only with the electroconductive part 12, for example.
 また、上記第1実施形態においては、金属被着線(メッキ線)である導電性糸121を導電性繊維構造体として用いて導電部12を製編して構成しているが、このような構成に特に限定されず、例えば、非導電性の地糸131を用いて製編した生地本体の所定領域に対して導電性樹脂の印刷や金属めっき等を施すことにより、当該所定領域を導電性繊維構造体として構成し、当該部分を導電部12としてもよい。また、非導電性の地糸131を用いて製編した生地本体の所定領域に対して、金属線や金属被着線(メッキ線)等の導電性糸121を刺繍することにより、当該所定領域を導電性繊維構造体として構成し、当該部分を導電部12としてもよい。 Moreover, in the said 1st Embodiment, although the electroconductive part 12 is knitted and comprised using the electroconductive thread | yarn 121 which is a metal deposition wire (plating wire) as an electroconductive fiber structure, such a thing is comprised. The structure is not particularly limited. For example, the predetermined region of the fabric body knitted using the non-conductive ground yarn 131 is subjected to printing of conductive resin, metal plating, or the like to make the predetermined region conductive. It is good also as a fiber structure and it is good also considering the said part as the electroconductive part 12. FIG. Further, by embroidering a conductive thread 121 such as a metal wire or a metal adherend (plated wire) on a predetermined region of the fabric body knitted using the non-conductive ground yarn 131, the predetermined region May be configured as a conductive fiber structure, and the portion may be the conductive portion 12.
 また、導電性生地10に含浸される樹脂接着剤15としては、変性ポリオレフィン系エラストマーを含有するホットメルト型の樹脂接着剤を好ましく採用することができる旨を上記実施形態において説明したが、このようなホットメルト型の樹脂接着剤に特に限定されず、導電性生地10に含浸可能であり、外部装置から導かれる接続端子Z(導電性の被着体)と導電部12とを接続固定できる接着剤であれば採用することができる。例えば、湿気硬化型やエネルギー線硬化型、再湿型等の各種樹脂接着剤を採用することができる。 In the above-described embodiment, the resin adhesive 15 impregnated in the conductive fabric 10 has been described in the above embodiment as being preferably used as a hot-melt type resin adhesive containing a modified polyolefin elastomer. It is not particularly limited to the hot melt type resin adhesive, but can be impregnated into the conductive fabric 10 and can be connected and fixed to the connection portion Z (conductive adherend) guided from an external device and the conductive portion 12. Any agent can be used. For example, various resin adhesives such as a moisture curable type, an energy ray curable type, and a rewet type can be employed.
 また、上記第1実施形態においては、樹脂接着剤として、その形態がシート状のものを採用し、当該シート状の樹脂接着剤を加熱溶解させて導電性生地10に含浸させるように構成しているが、樹脂接着剤の形態はシート状に限定されず、例えば、粉状、粒状の樹脂接着剤を、導電性生地10における接続部14に対応する領域と外部装置の接続端子Z(導電性の被着体)との間に介在させてヒートプレスを行うようにして導電性生地10に含浸させてもよい。また、予め加熱することにより液状に形成されたホットメルト型の樹脂接着剤や、液状の湿気硬化型やエネルギー線硬化型、再湿型等の樹脂接着剤を、導電性生地10における接続部14に対応する領域であって、接続される接続端子Zに対向する面上に塗布した後、プレート体等によって塗布された樹脂接着剤を押し付けることにより樹脂接着剤を導電性生地10中に含浸させてもよい。 In the first embodiment, a sheet adhesive is used as the resin adhesive, and the sheet-like resin adhesive is heated and dissolved to impregnate the conductive fabric 10. However, the form of the resin adhesive is not limited to a sheet shape. For example, a powdery or granular resin adhesive may be applied to the region corresponding to the connection portion 14 in the conductive fabric 10 and the connection terminal Z (conductive) of the external device. The conductive fabric 10 may be impregnated so as to be subjected to heat press. In addition, a hot melt type resin adhesive formed in a liquid state by heating in advance, or a liquid adhesive such as a moisture curable type, an energy ray curable type, or a rewet type is used for the connection portion 14 in the conductive fabric 10. The conductive fabric 10 is impregnated with the resin adhesive by pressing the resin adhesive applied by the plate body or the like after being applied on the surface facing the connecting terminal Z to be connected. May be.
 また、導電性生地10における接続部14に対応する領域と、外部装置の接続端子Z(導電性の被着体)とを接続固定する方法としては、上述のように、導電性生地10における接続部14に対応する領域と外部装置の接続端子Z(導電性の被着体)との間に樹脂接着剤を介在させてヒートプレスを行う方法について例示したが、このような方法に特に限定されない。例えば、導電性生地10における接続部14に対応する領域の一方面と外部装置の接続端子Z(導電性の被着体)の一方面とを重ねた後、導電性生地10における接続部14に対応する領域の他方面上に、シート状や粉状、粒状等のホットメルト型の樹脂接着剤を載置し、当該樹脂接着剤を加熱しながら押し付けることにより、溶解した樹脂接着剤を導電性生地10中に含浸させていき、導電性生地10と接続端子Zとを接続するようにしてもよい。また、導電性生地10における接続部14に対応する領域の一方面と外部装置の接続端子Z(導電性の被着体)の一方面とを重ねた後、導電性生地10における接続部14に対応する領域の他方面上に、予め加熱されて液状に構成されたホットメルト型の樹脂接着剤や、液状の湿気硬化型やエネルギー線硬化型、再湿型等の樹脂接着剤を塗布した後押し付けることにより導電性生地10中に樹脂接着剤を含浸させていき、必要に応じて湿気を付与したりエネルギー線を照射することによって樹脂接着剤を硬化させて、導電性生地10と接続端子Zとを接続するようにしてもよい。なお、外部装置の接続端子Zが、導電性の布生地により構成されているような場合には、導電性生地10における接続部14に重ねられる接続端子Zの他方面上に、シート状や粉状、粒状等のホットメルト型の樹脂接着剤を載置し、当該樹脂接着剤を加熱しながら押し付けることにより、或いは、予め加熱されて液状に構成されたホットメルト型の樹脂接着剤や、液状の湿気硬化型やエネルギー線硬化型、再湿型等の樹脂接着剤を塗布した後押し付けることにより、液状の樹脂接着剤を、接続端子Zを介して導電性生地10中に含浸させていき、導電性生地10と接続端子Zとを接続することもできる。 In addition, as a method of connecting and fixing the region corresponding to the connection portion 14 in the conductive fabric 10 and the connection terminal Z (conductive adherend) of the external device, as described above, the connection in the conductive fabric 10 is performed. Although illustrated about the method of heat-pressing by interposing the resin adhesive between the area | region corresponding to the part 14, and the connection terminal Z (conductive to-be-adhered body) of an external apparatus, it does not specifically limit to such a method. . For example, after overlapping one surface of the region corresponding to the connection portion 14 in the conductive fabric 10 and one surface of the connection terminal Z (conductive adherend) of the external device, the connection portion 14 in the conductive fabric 10 On the other side of the corresponding area, a hot-melt type resin adhesive such as a sheet, powder or granule is placed and pressed while heating the resin adhesive. The cloth 10 may be impregnated to connect the conductive cloth 10 and the connection terminal Z. In addition, after overlapping one surface of the region corresponding to the connection portion 14 in the conductive fabric 10 and one surface of the connection terminal Z (conductive adherend) of the external device, the connection portion 14 in the conductive fabric 10 After applying a hot-melt type resin adhesive that has been preheated and formed into a liquid state, or a liquid moisture-curing type, energy-ray-curing type, or rewet-type resin adhesive on the other side of the corresponding region The conductive fabric 10 is impregnated into the conductive fabric 10 by pressing, and if necessary, the resin fabric is cured by applying moisture or irradiating energy rays. May be connected. In addition, when the connection terminal Z of an external device is comprised with the conductive cloth cloth, on the other surface of the connection terminal Z piled up on the connection part 14 in the conductive cloth 10, sheet form or powder A hot-melt resin adhesive that is in a liquid state is placed by placing a hot-melt resin adhesive in the form of particles or granules and pressing the resin adhesive while heating, By applying a resin adhesive such as a moisture curable type, an energy ray curable type, and a rewet type, and then pressing, a liquid resin adhesive is impregnated into the conductive fabric 10 through the connection terminals Z. The conductive fabric 10 and the connection terminal Z can also be connected.
 また、上記第1実施形態において、導電性生地10に重ねて固定される導電性の被着体Zとして、外部装置における接続端子Zを例に採り説明したが、導電性生地10に重ねて固定される被着体Zは、外部装置の接続端子Zに限定されるものでは無く、様々な導電性の部材を被着体Zとすることができることはいうまでもない。 Moreover, in the said 1st Embodiment, although the connection terminal Z in an external device was taken as an example and demonstrated as the electroconductive to-be-adhered body Z piled up and fixed to the electroconductive cloth | dough 10, it piled up and fixed to the electroconductive cloth | dough 10. The adherend Z to be applied is not limited to the connection terminal Z of the external device, and needless to say, various conductive members can be used as the adherend Z.
 以下、本発明の第2実施形態にかかる導電性生地について、添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。本発明に係る導電性生地20は、例えば図7に示すような導電パーツを製造する際において、その構成要素の一つとして使用することができる。この導電性生地20(導電パーツ)は、偏平の長尺状(帯状)に形成され、幅方向に導電性糸を含む導電部22及び非導電部23が交互に配設されるように構成される繊維構造体21を備えており、例えば、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着できるように構成されている。なお、導電部22は、電極や配線としての機能を有する。 Hereinafter, the conductive fabric according to the second embodiment of the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced in order to facilitate understanding of the configuration. The conductive fabric 20 according to the present invention can be used as one of the components when manufacturing a conductive part as shown in FIG. 7, for example. The conductive fabric 20 (conductive part) is formed in a flat and long shape (band shape), and is configured such that conductive portions 22 and non-conductive portions 23 including conductive yarns are alternately arranged in the width direction. For example, when collecting data such as an electrocardiogram or electromyogram or performing electrical treatment or electromagnetic wave treatment on the subject, the subject's arms, legs, torso, etc. It is configured so that it can be wrapped and mounted. The conductive portion 22 functions as an electrode or a wiring.
 なお、図7に示す形態においては、長尺状の形状を有するように繊維構造体21を形成しているが、このような形態に特に限定されず、例えば、筒形状(ストレート形やテーパ形、或いは瓢箪形など)や、平面視矩形状、平面視円形状、衣類(シャツ、パンツ、ズボン、ベルト、靴下、手袋、帽子など)およびそれらの部材の形状としてもよい。また、図7においては、各導電部22が、繊維構造体21の長手方向に沿う細帯状に形成され、各非導電部23も同様に繊維構造体21の長手方向に沿う細帯状に形成されているが、このような形態に特に限定されず、導電性生地20の使用目的や装着個所等に応じて、種々の形状となるように導電部22及び非導電部23を構成することができる。また、導電部22及び非導電部23の各個数についても特に限定されず、適宜変更することができる。 In addition, in the form shown in FIG. 7, the fiber structure 21 is formed so as to have a long shape. However, the fiber structure 21 is not particularly limited to such a form. For example, a tubular shape (straight shape or tapered shape) Or a rectangular shape in a plan view, a circular shape in a plan view, clothing (a shirt, pants, trousers, a belt, socks, gloves, a hat, etc.) and a shape thereof. In FIG. 7, each conductive portion 22 is formed in a narrow strip shape along the longitudinal direction of the fiber structure 21, and each non-conductive portion 23 is also formed in a narrow strip shape along the longitudinal direction of the fiber structure 21. However, it is not particularly limited to such a form, and the conductive portion 22 and the non-conductive portion 23 can be configured so as to have various shapes according to the purpose of use of the conductive fabric 20 or the mounting location. . Further, the numbers of the conductive portions 22 and the nonconductive portions 23 are not particularly limited, and can be changed as appropriate.
 このような繊維構造体21は、導電部22を構成するための導電性糸221と、非導電部23を構成するための非導電性の地糸231とを用いて様々な方法により形成することができる。繊維構造体21としては開口を有する編地または織地を含む布帛、不織布、その他生地が使用可能である。例えば、上記導電性糸221及び地糸231を用いて製編することにより形成される場合、その編地構造は特に限定されず、例えば、平編、ゴム編、スムース編、パール編又はそれらの変化組織(例えば、ミラノリブや段ボールニットなど)や、トリコット編、ラッシェル編、ミラニーズ編等の各種編地構造を採用することができる。また織地構造の場合は、平織、綾織、朱子織等の織り方を例示できる。なお、非導電性の地糸231により構成される部分が、繊維構造体21のおける生地本体を構成する。また、繊維構造体21の製造方法は、上記方法に限定されず、例えば、非導電性の地糸231によってまず生地本体を形成した後、所定部分に導電性糸221を編み込み、刺繍等して導電部22を形成し製造することもできる。 Such a fiber structure 21 is formed by various methods using the conductive yarn 221 for forming the conductive portion 22 and the nonconductive ground yarn 231 for forming the nonconductive portion 23. Can do. As the fiber structure 21, a fabric including a knitted fabric or a woven fabric having an opening, a nonwoven fabric, and other fabrics can be used. For example, when formed by knitting using the conductive yarn 221 and the ground yarn 231, the knitted fabric structure is not particularly limited, and for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their knitting Various knitted fabric structures such as a change organization (for example, Milan rib or cardboard knit), a tricot knitting, a raschel knitting, and a miranese knitting can be employed. In the case of a woven structure, examples of weaving methods such as plain weave, twill weave and satin weave can be given. In addition, the part comprised by the nonelectroconductive ground yarn 231 comprises the fabric main body in the fiber structure 21. Further, the manufacturing method of the fiber structure 21 is not limited to the above method. For example, after the fabric body is first formed with the non-conductive ground yarn 231, the conductive yarn 221 is knitted into a predetermined portion and embroidered. The conductive portion 22 can also be formed and manufactured.
 ここで、導電部22を構成するための導電性糸221には、樹脂繊維や天然繊維、或いは金属線等を芯として、この芯に湿式や乾式のコーティング、メッキ、真空成膜、その他の適宜被着法を行って金属成分を被着させた金属被着線(メッキ線)を使用するのが好適である。芯には、モノフィラメントを採用することも可能ではあるが、モノフィラメントよりも、複数の単繊維の集合体であるマルチフィラメントや紡績糸のほうが好ましく、更にはウーリー加工糸やSCY、DCYなどのカバリング糸、毛羽加工糸などの嵩高加工糸がより好ましい。 Here, the conductive yarn 221 for forming the conductive portion 22 is made of resin fiber, natural fiber, metal wire, or the like as a core, and wet or dry coating, plating, vacuum film formation, or other appropriate on the core. It is preferable to use a metal coated wire (plated wire) on which a metal component is deposited by performing a deposition method. Although it is possible to adopt monofilaments for the core, multifilaments and spun yarns, which are aggregates of a plurality of single fibers, are preferable to monofilaments, and further, wooly processed yarns and covering yarns such as SCY and DCY. Further, bulky processed yarn such as fluffed yarn is more preferable.
 芯に被着させる金属成分には、例えばアルミ、ニッケル、銅、チタン、マグネシウム、錫、亜鉛、鉄、銀、金、白金、バナジウム、モリブデン、タングステン、コバルト等の純金属やそれらの合金、ステンレス、真鍮等を使用することができる。 Examples of metal components to be deposited on the core include pure metals such as aluminum, nickel, copper, titanium, magnesium, tin, zinc, iron, silver, gold, platinum, vanadium, molybdenum, tungsten, cobalt, alloys thereof, stainless steel Brass, etc. can be used.
 なお、導電性糸221に弾性糸を混用してもよい。弾性糸には、ポリウレタンやゴム系のエラストマー材料を単独で用いてもよいし、「芯」にポリウレタンやゴム系のエラストマー材料を用い、「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。 Note that an elastic yarn may be mixed with the conductive yarn 221. For elastic yarn, polyurethane or rubber-based elastomer material may be used alone, or covering yarn using polyurethane or rubber-based elastomer material for “core” and nylon or polyester for “cover” can do.
 また、非導電部23を構成するための非導電性の地糸231には、合成繊維(例えば、ポリエステル繊維やナイロン繊維等)や天然繊維、合成繊維と弾性糸とを混用した素材等を使用することができる。弾性糸には、例えば、ポリウレタンやゴム系のエラストマー材料を単独で用いてもよいし、「芯」にポリウレタンやゴム系のエラストマー材料を用い、「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。また、非導電性の地糸231には、モノフィラメントを採用することも可能ではあるが、モノフィラメントよりも、複数の単繊維の集合体であるマルチフィラメントや紡績糸のほうを好ましく用いることができる。 The non-conductive ground yarn 231 for forming the non-conductive portion 23 is made of synthetic fiber (for example, polyester fiber or nylon fiber), natural fiber, or a material mixed with synthetic fiber and elastic yarn. can do. For the elastic yarn, for example, a polyurethane or rubber-based elastomer material may be used alone, or a covering yarn using polyurethane or rubber-based elastomer material for the “core” and nylon or polyester for the “cover”. Can be adopted. In addition, a monofilament can be adopted as the non-conductive ground yarn 231. However, a multifilament or a spun yarn, which is an aggregate of a plurality of single fibers, can be preferably used rather than a monofilament.
 また、本発明に係る第2実施形態の導電性生地20は、図7の平面図や、この図7のB-B断面における要部拡大図である図8に示すように、導電性材料及び樹脂を含むパターン導電層25を備えている。このパターン導電層25は、電極や配線としての機能を有するものであり、また、例えば心電や筋電を測定する装置といった外部装置に接続するための接続部構造である接続端子として使用されるものであり、繊維構造体21における導電部22と電気的に接続されるように、当該導電部22の一部分上に載置固定される形態で構成されている。パターン導電層25の厚みは、1μm以上30μm以下であることが好ましく、特に、5μm以上20μm以下であることがより好ましい。パターン導電層25は、例えば、導電性糸221及び地糸231を用いて製編されて形成される繊維構造体21の露出表面に沿って配置されている。繊維構造体21の表面には、製編される導電性糸221及び地糸231によって形成される凹凸がある。パターン導電層25は、これら製編された導電性糸221及び地糸231によって形成される凹凸の上側の表面(露出表面)に沿った状態で配置され、図8に示すように断面視波状となるように構成されている。 Further, the conductive fabric 20 according to the second embodiment of the present invention includes a conductive material and a conductive material as shown in FIG. 7 which is a plan view of FIG. 7 and an enlarged view of a main part in the BB cross section of FIG. A patterned conductive layer 25 containing a resin is provided. The pattern conductive layer 25 has a function as an electrode or a wiring, and is used as a connection terminal which is a connection structure for connecting to an external device such as a device for measuring electrocardiogram or myoelectricity. It is configured to be placed and fixed on a part of the conductive portion 22 so as to be electrically connected to the conductive portion 22 in the fiber structure 21. The thickness of the pattern conductive layer 25 is preferably 1 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less. The pattern conductive layer 25 is disposed along the exposed surface of the fiber structure 21 formed by knitting and knitting using the conductive yarn 221 and the ground yarn 231, for example. The surface of the fiber structure 21 has unevenness formed by the conductive yarn 221 and the ground yarn 231 to be knitted. The pattern conductive layer 25 is arranged in a state along the upper surface (exposed surface) of the unevenness formed by the knitted conductive yarn 221 and the ground yarn 231 and has a cross-sectional wave shape as shown in FIG. It is comprised so that it may become.
 パターン導電層25は、例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリエーテル、ポリウレタン、メタクリル樹脂、エポキシ樹脂、塩化ビニル、酢酸ビニル、塩化ビニル、酢酸ビニル共重合体等から選ばれた少なくとも一種よりなるバインダ(樹脂)中に、銀、塩化銀、チタン、ニッケル、白金、アルミニウム、ステンレス等から選ばれた少なくとも一種の微細粒子を含む導電性材料を混合して形成されている。その他、導電性の材料として、カーボン微粒子や、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細導電炭素繊維や、PEDOT:poly(3,4-ethylenedioxythiophene)などの導電性ポリマー(導電性高分子)を混合してもよい。またパターン導電層25の材料として、アクリルゴム、ブタジエンゴム、シリコーンゴム、ニトリルゴム等のエラストマー材料を含むことが好ましい。エラストマー材料を含むことで、繊維構造体21の伸縮に対して、パターン導電層25が追従できるため、クラックや導通不良を防ぐことができる。 The pattern conductive layer 25 is made of, for example, a binder (at least one selected from polyester, polypropylene, polyethylene, polyether, polyurethane, methacrylic resin, epoxy resin, vinyl chloride, vinyl acetate, vinyl chloride, vinyl acetate copolymer, etc.). Resin) is formed by mixing a conductive material containing at least one kind of fine particles selected from silver, silver chloride, titanium, nickel, platinum, aluminum, stainless steel and the like. Other conductive materials include carbon fine particles, carbon nanowires, carbon nanofibers, ultrafine conductive carbon fibers such as graphite fibrils, and conductive polymers (conductive polymers) such as PEDOT: poly (3,4-ethylenedioxythiophene). May be mixed. The material of the pattern conductive layer 25 preferably includes an elastomer material such as acrylic rubber, butadiene rubber, silicone rubber, or nitrile rubber. By including the elastomer material, the pattern conductive layer 25 can follow the expansion and contraction of the fiber structure 21, so that cracks and poor conduction can be prevented.
 また、本発明に係る第2実施形態の導電性生地20は、熱可塑性樹脂層26を備えている。熱可塑性樹脂層26は、図8に示すように、上記パターン導電層25に対して繊維構造体21側に設けられ、パターン導電層25の一方の面に接しつつ、繊維構造体21に含浸されている。この熱可塑性樹脂層26の接着作用によって、パターン導電層25が、繊維構造体21上に強固に固定されている。なお、本実施形態においては、熱可塑性樹脂層26が繊維構造体21に含浸される領域を、図7において一点鎖線で示している。また、繊維構造体21に含浸される熱可塑性樹脂層26は、導電部22及び非導電部23における編地構造内の他、地糸231と地糸231の間、地糸231と導電性糸221との間、導電性糸221と導電性糸221との間、地糸231及び導電性糸221をマルチフィラメント等の単繊維の集合体として構成した場合には、各短繊維の間等に存在することとなる。 In addition, the conductive fabric 20 of the second embodiment according to the present invention includes a thermoplastic resin layer 26. As shown in FIG. 8, the thermoplastic resin layer 26 is provided on the fiber structure 21 side with respect to the pattern conductive layer 25, and is impregnated in the fiber structure 21 while being in contact with one surface of the pattern conductive layer 25. ing. The patterned conductive layer 25 is firmly fixed on the fiber structure 21 by the adhesive action of the thermoplastic resin layer 26. In the present embodiment, the region where the fiber structure 21 is impregnated with the thermoplastic resin layer 26 is indicated by a one-dot chain line in FIG. Further, the thermoplastic resin layer 26 impregnated in the fiber structure 21 is not only in the knitted fabric structure in the conductive portion 22 and the non-conductive portion 23, but also between the ground yarn 231 and the ground yarn 231, and between the ground yarn 231 and the conductive yarn. 221, between the conductive yarn 221 and the conductive yarn 221, and when the ground yarn 231 and the conductive yarn 221 are configured as an aggregate of single fibers such as multifilaments, between each short fiber, etc. Will exist.
 熱可塑性樹脂層26を構成する樹脂としては、例えば、ポリウレタン、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体等のポリオレフィン、変性ポリオレフィン、ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6-12、ナイロン6-66)、熱可塑性ポリイミド、芳香族ポリエステル等の液晶ポリマー、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリカーボネート、ポリメチルメタクリレート、ポリエーテル、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタールや、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。特に、柔軟性、加工性及び価格面から、ポリウレタンを含有する樹脂(ポリウレタン樹脂)が好ましく用いられる。 Examples of the resin constituting the thermoplastic resin layer 26 include polyolefins such as polyurethane, polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, modified polyolefins, polyamides (eg, nylon 6, nylon 46, nylon 66, nylon 610, Nylon 612, Nylon 11, Nylon 12, Nylon 6-12, Nylon 6-66), thermoplastic polyimide, aromatic polyester and other liquid crystal polymers, polyphenylene oxide, polyphenylene sulfide, polycarbonate, polymethyl methacrylate, polyether, polyether ether Ketone, polyetherimide, polyacetal, styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, Examples include various types of thermoplastic elastomers such as polyisoprene, fluorine, fluororubber, and chlorinated polyethylene, or copolymers, blends, and polymer alloys mainly composed of these. One of these Or 2 or more types can be mixed and used. In particular, a resin containing polyurethane (polyurethane resin) is preferably used from the viewpoint of flexibility, processability, and price.
 次に、上記本発明に係る第2実施形態の導電性生地20の製造方法について説明する。この導電性生地20の製造方法は、図9のブロック図に示すように、繊維構造体形成ステップS1と、載置ステップS2と、加熱・加圧ステップS3とを備えている。 Next, a method for manufacturing the conductive fabric 20 according to the second embodiment of the present invention will be described. As shown in the block diagram of FIG. 9, the method for manufacturing the conductive fabric 20 includes a fiber structure forming step S1, a placing step S2, and a heating / pressing step S3.
 繊維構造体形成ステップS1は、上述の生地本体と当該生地本体の所定位置に形成された導電部22とを備える繊維構造体21を形成する工程である。繊維構造体21の具体的な形成方法は、特に限定されないが、例えば、導電部22を構成するための導電性糸221と、非導電部23を構成するための非導電性の地糸231とを用いて、所定形状(例えば、長尺状(帯状)、筒形状、平面視矩形状、平面視円形状、衣類(シャツ、パンツ、ズボン、ベルト、靴下、手袋、帽子など)およびそれらの部材の形状の繊維構造体21を製編する方法を挙げることができる。 The fiber structure forming step S1 is a process of forming a fiber structure 21 including the above-described fabric body and the conductive portion 22 formed at a predetermined position of the fabric body. Although the specific formation method of the fiber structure 21 is not specifically limited, For example, the electroconductive thread 221 for comprising the electroconductive part 22, and the nonelectroconductive ground yarn 231 for comprising the nonelectroconductive part 23, A predetermined shape (for example, long shape (band shape), cylindrical shape, rectangular shape in plan view, circular shape in plan view), clothing (shirt, pants, trousers, belt, socks, gloves, hat, etc.) and their members The method of knitting the fiber structure 21 having the shape of can be exemplified.
 載置ステップS2は、導電性材料及び樹脂を含むパターン導電層25と、該パターン導電層25の少なくとも一方の面側に配置される熱可塑性樹脂層26とからなるプリント電極体27を、繊維構造体21における導電部22の少なくとも一部分上に載置する工程である。 In the placing step S2, a printed electrode body 27 composed of a patterned conductive layer 25 containing a conductive material and a resin and a thermoplastic resin layer 26 disposed on at least one surface side of the patterned conductive layer 25 has a fiber structure. This is a step of placing on at least a part of the conductive portion 22 in the body 21.
 ここで、上記プリント電極体27について説明する。このプリント電極体27としては、図10の断面図に示すように、離型フィルム271上に、印刷技術によりパターン導電層25を形成した後、当該パターン導電層25上に、熱可塑性樹脂層26を配設して構成されるものを例示することができる。印刷技術としては特に限定されず、スクリーン印刷、グラビア印刷、凸版印刷、凹版印刷、グラビアオフセット印刷、インクジェット印刷や、フォトリソグラフィ等の細線パターニングなど、周知の印刷方法を用いることができる。熱可塑性樹脂層26として、例えば、ポリウレタンを含有する樹脂を接着剤として採用する場合には、当該接着剤をパターン導電層25上に塗布して構成することができる。また、パターン導電層25上に配設される熱可塑性樹脂層26の厚みは、1μm以上50μm以下であることが好ましく、特に、5μm以上30μm以下であることがより好ましい。熱可塑性樹脂層26(接着剤)の厚みが1μm未満の場合、接着強度に問題がある。50μmより厚い場合、印刷で形成することが難しい。 Here, the printed electrode body 27 will be described. As shown in the sectional view of FIG. 10, the printed electrode body 27 is formed by forming a patterned conductive layer 25 on a release film 271 by a printing technique, and then forming a thermoplastic resin layer 26 on the patterned conductive layer 25. What is comprised and arrange | positioned can be illustrated. The printing technique is not particularly limited, and well-known printing methods such as screen printing, gravure printing, relief printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used. For example, when a resin containing polyurethane is used as the adhesive as the thermoplastic resin layer 26, the adhesive can be applied onto the pattern conductive layer 25. Further, the thickness of the thermoplastic resin layer 26 disposed on the pattern conductive layer 25 is preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 30 μm or less. When the thickness of the thermoplastic resin layer 26 (adhesive) is less than 1 μm, there is a problem in the adhesive strength. When it is thicker than 50 μm, it is difficult to form by printing.
 このようなプリント電極体27を図11に示すように、繊維構造体21における導電部22の少なくとも一部分上に、プリント電極体27の熱可塑性樹脂層26側を向けて載置することにより載置ステップS2は完了する。 As shown in FIG. 11, such a printed electrode body 27 is placed by placing the printed electrode body 27 on the thermoplastic resin layer 26 side on at least a part of the conductive portion 22 in the fiber structure 21. Step S2 is completed.
 加熱・加圧ステップS3は、繊維構造体21上の所定位置に載置されたプリント電極体27を加熱及び加圧することにより、プリント電極体27の熱可塑性樹脂層26を溶融させて繊維構造体21の内部側に流動させて含浸させつつ、プリント電極体27のパターン導電層25を繊維構造体21の表面凹凸形状に沿った状態で配置して導電部22に電気的に接続する工程である。この加熱・加圧ステップS3において、導電性糸221の頂部よりも上方に配置される溶解前の熱可塑性樹脂層26は、ヒートプレスによる加熱により溶解して下方に流動していくと共に、加圧によるパターン導電層25の移動によって導電性糸221の頂部近傍から下方に押し出されていき、露出面側に配置される導電性糸221とパターン導電層25とが互いに直接接触した状態で、また、地糸231とパターン導電層25とが互いに直接接触した状態で接続固定される。なお、この加熱・加圧ステップS3が終了した後、プリント電極体27における離型フィルム271を取り外すことにより、図8の断面図に示す本発明に係る導電性生地20が形成される。 In the heating / pressurizing step S3, the printed electrode body 27 placed at a predetermined position on the fiber structure 21 is heated and pressed to melt the thermoplastic resin layer 26 of the printed electrode body 27, thereby causing the fiber structure. In this step, the patterned conductive layer 25 of the printed electrode body 27 is arranged along the surface irregularities of the fiber structure 21 and is electrically connected to the conductive portion 22 while being impregnated by flowing into the inner side of 21. . In this heating / pressurizing step S3, the unmelted thermoplastic resin layer 26 disposed above the top of the conductive yarn 221 is melted by heating by the heat press and flows downward, and is pressurized. The pattern conductive layer 25 is pushed downward from the vicinity of the top of the conductive yarn 221 by the movement of the conductive yarn 221, and the conductive yarn 221 disposed on the exposed surface side and the pattern conductive layer 25 are in direct contact with each other, The ground yarn 231 and the pattern conductive layer 25 are connected and fixed in a state of being in direct contact with each other. After the heating / pressurizing step S3 is completed, the release film 271 in the printed electrode body 27 is removed, thereby forming the conductive fabric 20 according to the present invention shown in the cross-sectional view of FIG.
 本発明に係る第2実施形態の導電性生地20は、印刷技術により形成されるパターン導電層25によって、導電性生地20と外部装置との間の接続部構造を形成したものである。このパターン導電層25は、例えば図8に示すように、導電性糸221及び地糸231を用いて製編されて形成される繊維構造体21の露出表面(表面凹凸形状)に沿った状態で、断面視波状となるように配置されているため、パターン導電層25と繊維構造体21との密着性が高くなり、パターン導電層25の断線、剥離等を効果的に防止することが可能となる。また導電部22とパターン導電層25との接触面積が大きくなるため、接触抵抗が低くなる。なお、本発明に係る導電性生地20の場合、図12(a)の画像に示すように、繊維構造体21の露出表面に沿って、断線等を生じることなくパターン導電層25が綺麗に形成されており、抵抗値不良や導通不良が発生することが防止されていることが分かる。一方、繊維構造体21に直接印刷してパターン導電層25を形成した場合、導電性材料及び樹脂からなる導電性ペーストが液状のため、図12(b)の画像に示すように、開口部(地糸231同士の隙間、導電性糸221同士の隙間、或いは、地糸231と導電性糸221との隙間)に導電性ペーストが落ち込んでしまい、断線や抵抗値不良が発生しやすくなる。ここで、図12(a)における導電性生地20は、ナイロン40%及びポリエステル60%の混合糸で編成された厚みが300μmの生地に対して、プリント電極体27として、離型フィルム271上に厚み10μmのパターン導電層25(銀ペースト)を形成し、当該パターン導電層25上に、厚みが10μmのポリウレタン系接着剤(熱可塑性樹脂層26)を配設したものを使用して上記方法により形成されている。また、図12(b)における導電性生地は、ナイロン40%及びポリエステル60%の混合糸で編成された厚みが300μmの生地に対して、直接、銀ペーストをその厚みが10μmとなるように設定して印刷したものである。 The conductive cloth 20 of the second embodiment according to the present invention is a structure in which a connection portion structure between the conductive cloth 20 and an external device is formed by a pattern conductive layer 25 formed by a printing technique. For example, as shown in FIG. 8, the patterned conductive layer 25 is in a state along the exposed surface (surface uneven shape) of the fiber structure 21 formed by knitting using the conductive yarn 221 and the ground yarn 231. Since it is arranged so as to have a cross-sectional wave shape, the adhesion between the pattern conductive layer 25 and the fiber structure 21 is increased, and it is possible to effectively prevent disconnection, peeling, and the like of the pattern conductive layer 25. Become. Further, since the contact area between the conductive portion 22 and the pattern conductive layer 25 is increased, the contact resistance is reduced. In the case of the conductive fabric 20 according to the present invention, as shown in the image of FIG. 12A, the pattern conductive layer 25 is neatly formed along the exposed surface of the fiber structure 21 without disconnection or the like. Thus, it can be seen that the occurrence of defective resistance and poor conduction is prevented. On the other hand, when the pattern conductive layer 25 is formed by printing directly on the fiber structure 21, since the conductive paste made of a conductive material and a resin is in a liquid state, as shown in the image of FIG. The conductive paste falls into the gaps between the ground yarns 231, the gaps between the conductive yarns 221, or the gaps between the ground yarns 231 and the conductive yarns 221, and breakage and poor resistance are likely to occur. Here, the conductive fabric 20 in FIG. 12A is formed on the release film 271 as a printed electrode body 27 with respect to a fabric having a thickness of 300 μm knitted with a mixed yarn of nylon 40% and polyester 60%. A patterned conductive layer 25 (silver paste) having a thickness of 10 μm is formed, and a polyurethane adhesive (thermoplastic resin layer 26) having a thickness of 10 μm is disposed on the patterned conductive layer 25 by the above method. Is formed. In addition, the conductive fabric in FIG. 12B is set so that the thickness of the silver paste is 10 μm directly on the fabric of 300 μm thickness knitted with a mixed yarn of 40% nylon and 60% polyester. Printed.
 また、パターン導電層25と、繊維構造体21における導電部22とが一体化されて構成されるため、電気的な接合強度が強いという効果も発揮する。また、パターン導電層25は、図8に示すように、繊維構造体21の露出表面に沿って設けられているため、繊維構造体21を構成する導電性糸221や地糸231との接触面積が大きいという特徴がある。これにより、パターン導電層25が繊維構造体21の表面から剥離してしまうことを、効果的に防止することが可能となる。 In addition, since the pattern conductive layer 25 and the conductive portion 22 in the fiber structure 21 are configured to be integrated, an effect of high electrical bonding strength is also exhibited. Moreover, since the pattern conductive layer 25 is provided along the exposed surface of the fiber structure 21 as shown in FIG. 8, the contact area with the conductive yarn 221 and the ground yarn 231 constituting the fiber structure 21. There is a feature that is large. Thereby, it becomes possible to prevent effectively that the pattern conductive layer 25 peels from the surface of the fiber structure 21.
 また、パターン導電層25と繊維構造体21における導電部22とが一体化される際、熱可塑性樹脂層26が繊維構造体21の反対側の露出表面(パターン導電層25が配置される露出表面とは反対側の表面)ににじみ出ない構成とすることが好ましい。本構成とすることで、熱可塑性樹脂層26が導電性生地20の反対側の露出表面より内側に存在するため、繊維構造体21の反対側の風合いや肌触りを損なわない。 When the pattern conductive layer 25 and the conductive portion 22 in the fiber structure 21 are integrated, the thermoplastic resin layer 26 is exposed on the opposite side of the fiber structure 21 (exposed surface on which the pattern conductive layer 25 is disposed). It is preferable that the surface does not ooze out on the opposite surface. By setting it as this structure, since the thermoplastic resin layer 26 exists inside the exposed surface of the other side of the electroconductive fabric 20, the texture and touch of the other side of the fiber structure 21 are not impaired.
 また、本発明に係る第2実施形態の導電性生地20は、繊維構造体21における導電部22よりもパターン幅やピッチを小さくすることができる。導電部22のパターンは、その編成構造や糸径によって最小幅が規定されたり、導電糸の毛羽立ちによる短絡等の問題から隣接パターンとのピッチを小さくし難い。それに対し、パターン導電層25は印刷技術により形成される為、線幅や線間ピッチを小さくすることが可能になる。特に、パターン導電層25によって、導電性生地20と外部装置との間の接続部構造を形成する場合に好適であり、導電性生地20と外部装置との間の接続部構造における電極間距離を狭く形成することが可能となる。例えば、各配線間隔が3mmの導電部22に対し、本発明の構造でパターン導電層25を接続することで、各配線間隔を0.2~1mm程度の狭ピッチに変換することができ、フラットケーブル(FFCやFPC)に使用されるような一般的なコネクタ(汎用のフラットケーブル用コネクタ)に直接挿入することも可能となる。例えば、導電性生地20上に形成された心拍、心電あるいは筋電などの生体情報を測定する電極と、その測定データを処理する外部装置との間の接続が容易になる。 Further, the conductive fabric 20 of the second embodiment according to the present invention can be made smaller in pattern width and pitch than the conductive portion 22 in the fiber structure 21. The pattern of the conductive portion 22 has a minimum width defined by its knitting structure and yarn diameter, and it is difficult to reduce the pitch with the adjacent pattern due to problems such as a short circuit caused by fuzz of the conductive yarn. On the other hand, since the pattern conductive layer 25 is formed by a printing technique, the line width and the pitch between lines can be reduced. In particular, the pattern conductive layer 25 is suitable for forming a connection portion structure between the conductive fabric 20 and the external device, and the inter-electrode distance in the connection portion structure between the conductive fabric 20 and the external device is set. It becomes possible to form narrowly. For example, by connecting the pattern conductive layer 25 with the structure of the present invention to the conductive portion 22 with each wiring interval of 3 mm, each wiring interval can be converted to a narrow pitch of about 0.2 to 1 mm, It can be directly inserted into a general connector (general-purpose flat cable connector) used for a cable (FFC or FPC). For example, the connection between the electrode for measuring biological information such as heartbeat, electrocardiogram or myoelectricity formed on the conductive fabric 20 and the external device for processing the measurement data becomes easy.
 また、繊維構造体21に含浸されている熱可塑性樹脂層26は、パターン導電層25と電気的に接続する導電部22を構成する導電性糸221の周りにおいて当該導電性糸221をコーティングする部材として機能しつつ、パターン導電層25との強固な接着作用をも奏することとなる。したがって、パターン導電層25と導電部22との接続部分における導電性糸221が酸化することや当該導電性糸221の金属皮膜が脱落してしまうことを効果的に防止し、その劣化を抑制することが可能となり、パターン導電層25と導電部22との良好な導通状態を維持することが可能となる。 The thermoplastic resin layer 26 impregnated in the fiber structure 21 is a member that coats the conductive yarn 221 around the conductive yarn 221 that constitutes the conductive portion 22 that is electrically connected to the pattern conductive layer 25. As a result, a strong adhesive action with the pattern conductive layer 25 is also exhibited. Therefore, it is possible to effectively prevent the conductive yarn 221 at the connecting portion between the pattern conductive layer 25 and the conductive portion 22 from being oxidized and the metal film of the conductive yarn 221 from falling off, and suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the pattern conductive layer 25 and the conductive portion 22.
 また、本発明に係る第2実施形態の繊維構造体21は、編地構造を有することが好ましい。この構造を採用することにより、溶解した熱可塑性樹脂が、導電性生地20の開口から内部に含浸されやすく、また、含浸された熱可塑性樹脂を良好に保持できる。また、溶解した熱可塑性樹脂が、パターン導電層25が設けられる側とは反対側に大きく移動することを抑制することができる。 Moreover, it is preferable that the fiber structure 21 of the second embodiment according to the present invention has a knitted fabric structure. By adopting this structure, the melted thermoplastic resin is easily impregnated into the inside from the opening of the conductive fabric 20, and the impregnated thermoplastic resin can be favorably retained. Moreover, it can suppress that the melt | dissolved thermoplastic resin moves largely to the opposite side to the side in which the pattern conductive layer 25 is provided.
 また、パターン導電層25として、複数本が平行に配置された配線パターンを採用する場合に、例えば、図13(a)に示すように、当該配線パターンを構成する配線251を有するパターン導電層25を離型フィルム271上に形成する。このパターン導電層25上に、熱可塑性樹脂層26(例えば、ポリウレタンを含有する樹脂接着剤)をそれぞれの配線を覆うように(配線間は覆わないように)してプリント電極体27を形成し、当該プリント電極体27を繊維構造体21上の所定位置に載置して加熱及び加圧することにより、導電性生地20を構成する。このような導電性生地20は、図13(b)に示すように、含浸される熱可塑性樹脂層26が、各配線251の下方領域に存在し、配線251同士の間には存在しないように形成されるため、繊維構造体21の通気性や柔軟性への影響を少なくできる。一方、図13(c)に示すように配線251間も熱可塑性樹脂層26で覆うようにしてプリント電極体27を形成して、導電性生地20を構成した場合、配線パターンの耐久性や、高いパターン精度を確保することが可能となる。 Further, when a wiring pattern in which a plurality of patterns are arranged in parallel is adopted as the pattern conductive layer 25, for example, as shown in FIG. 13A, the pattern conductive layer 25 having a wiring 251 constituting the wiring pattern. Is formed on the release film 271. A printed electrode body 27 is formed on the patterned conductive layer 25 by covering the wirings with a thermoplastic resin layer 26 (for example, a resin adhesive containing polyurethane) so as not to cover the wirings. The conductive fabric 20 is configured by placing the printed electrode body 27 at a predetermined position on the fiber structure 21 and heating and pressing it. In such a conductive fabric 20, as shown in FIG. 13 (b), the thermoplastic resin layer 26 to be impregnated exists in the lower region of each wiring 251 and does not exist between the wirings 251. Therefore, the influence on the air permeability and flexibility of the fiber structure 21 can be reduced. On the other hand, when the conductive fabric 20 is formed by forming the printed electrode body 27 so as to cover the space between the wirings 251 with the thermoplastic resin layer 26 as shown in FIG. It is possible to ensure high pattern accuracy.
 以上、本発明に係る第2実施形態の導電性生地20について説明したが、具体的構成は、上記実施形態に限定されない。例えば、上記第2実施形態において、図14の模式断面図(図7に示す導電性生地20の長手方向に沿った断面に対応)に示すように、パターン導電層25の露出面を被覆する被覆体28を備えるように構成してもよい。このような被覆体28を設けるように構成することにより、パターン導電層25の表面保護を図ることができ、導電性生地20と外部装置との間の接続部構造であるパターン導電層25の強度を向上させることができる。なお、外部装置との電気的な接続を考慮して、パターン導電層25に対して繊維構造体21側とは反対側の被覆体28の一部を部分的に除去して、パターン導電層25が露出するように構成する。ここで、被覆体28として、例えば、樹脂フィルムや不織布、生地本体を構成する地糸231から形成した編地構造体等種々のものを採用することができる。被覆体28をパターン導電層25上に配設する手法は特に限定されず、例えば、上記熱可塑性樹脂層26を形成する熱可塑性樹脂と同一の樹脂材料を介して熱融着させて配設することができる。また、上述の導電性生地20を製造する方法で説明した転写フィルムを被覆体28として活用することもできる。更に、樹脂によるコーティング層を被覆体28とすることもできる。 The conductive fabric 20 according to the second embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment. For example, in the second embodiment, as shown in the schematic cross-sectional view of FIG. 14 (corresponding to the cross-section along the longitudinal direction of the conductive fabric 20 shown in FIG. 7), the coating covering the exposed surface of the pattern conductive layer 25 You may comprise so that the body 28 may be provided. By providing such a covering 28, the surface of the patterned conductive layer 25 can be protected, and the strength of the patterned conductive layer 25 which is a connection structure between the conductive fabric 20 and the external device. Can be improved. In consideration of electrical connection with an external device, the pattern conductive layer 25 is partially removed by partially removing the covering 28 on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25. Is configured to be exposed. Here, as the covering body 28, various things, such as a knitted fabric structure formed from the ground yarn 231 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example. The method for disposing the covering 28 on the pattern conductive layer 25 is not particularly limited. For example, the covering 28 is heat-sealed and disposed via the same resin material as the thermoplastic resin forming the thermoplastic resin layer 26. be able to. Moreover, the transfer film demonstrated by the method of manufacturing the above-mentioned conductive fabric 20 can also be utilized as the covering 28. Further, a coating layer made of a resin can be used as the covering 28.
 また、上記第2実施形態においては、熱可塑性樹脂層26が、パターン導電層25に対して繊維構造体21側に設けられるように構成しているが、このような形態に特に限定されず、図15や図16の模式断面図に示すように、パターン導電層25に対して、繊維構造体21側とは反対側に熱可塑性樹脂層26の一部が設けられるような構成を採用することもできる。このような構成の場合、外部装置との電気的な接続を考慮して、パターン導電層25に対して繊維構造体21側とは反対側の熱可塑性樹脂層26の一部を部分的に除去して、パターン導電層25が露出するように構成する。この図15や図16に示す構成の場合、パターン導電層25の露出面が熱可塑性樹脂層26によって被覆される形態となり、パターン導電層25の表面保護を図ることができる。 Further, in the second embodiment, the thermoplastic resin layer 26 is configured to be provided on the fiber structure 21 side with respect to the pattern conductive layer 25, but is not particularly limited to such a form, As shown in the schematic cross-sectional views of FIGS. 15 and 16, a configuration in which a part of the thermoplastic resin layer 26 is provided on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25 is adopted. You can also. In such a configuration, in consideration of electrical connection with an external device, a part of the thermoplastic resin layer 26 on the side opposite to the fiber structure 21 side with respect to the pattern conductive layer 25 is partially removed. Then, the pattern conductive layer 25 is configured to be exposed. In the case of the configuration shown in FIGS. 15 and 16, the exposed surface of the pattern conductive layer 25 is covered with the thermoplastic resin layer 26, so that the surface of the pattern conductive layer 25 can be protected.
 また、上記第2実施形態において、図17に示すように、繊維構造体21が、導電部22が設けられる生地本体と、部分的に突出する生地片29とを備えるように構成し、かつ、熱可塑性樹脂層26及びパターン導電層25の少なくとも一部分が、該生地片29に配置されるように構成してもよい。なお、この生地片29は、非導電性の地糸231から形成することができる。このような生地片29を設けることにより、図18(a)(b)の模式図に示すように、外部装置における電気信号取得用のコネクタ100に直接的に挿入して接続することが可能となる。なお、図18(b)は、図18(a)の断面に対応する模式図である。 Moreover, in the said 2nd Embodiment, as shown in FIG. 17, the fiber structure 21 is comprised so that it may be provided with the fabric main body in which the electroconductive part 22 is provided, and the fabric piece 29 which protrudes partially, and, You may comprise so that at least one part of the thermoplastic resin layer 26 and the pattern conductive layer 25 may be arrange | positioned at this fabric piece 29. FIG. The fabric piece 29 can be formed from a non-conductive ground yarn 231. By providing such a fabric piece 29, as shown in the schematic diagrams of FIGS. 18 (a) and 18 (b), it can be directly inserted and connected to the connector 100 for acquiring an electric signal in the external device. Become. FIG. 18B is a schematic diagram corresponding to the cross section of FIG.
 また、図17に示すように生地片29を設ける場合には、図18(b)に示すように、当該生地片29に補強部材291を設けるように構成してもよい。補強部材291は、生地片29上においてパターン導電層25が配置される面とは反対側の面であって、生地片29の先端部分に配置されることが好ましい。なお、補強部材291をパターン導電層25の露出面上に設けるようにしてもよい。このような場合、外部装置との電気的な接続を考慮して、補強部材291の一部を部分的に除去して、パターン導電層25が露出するように構成する。また、補強部材291としては、例えば、樹脂フィルムや不織布、生地本体を構成する地糸231から形成した編地構造体等種々のものを採用することができる。また、樹脂によるコーティング層を補強部材291とすることもできる。このような補強部材291を設けることにより、生地片29の先端側の剛性を高めることができるため、外部装置における電気信号取得用のコネクタ100に生地片29を挿入しやすくなるという効果を得ることができる。また、補強部材291の厚みを適宜設定して生地片の先端部分の厚み寸法を、コネクタ100における挿入孔の厚み方向寸法と同程度に構成することにより、コネクタ100に挿入された生地片29の先端部が、挿入孔内で浮いてしまうことを防止して、しっかりと固定させることが可能となる。 Further, when the dough piece 29 is provided as shown in FIG. 17, a reinforcing member 291 may be provided on the dough piece 29 as shown in FIG. It is preferable that the reinforcing member 291 is disposed on the front end portion of the fabric piece 29 on the opposite side of the surface on which the pattern conductive layer 25 is disposed on the fabric piece 29. Note that the reinforcing member 291 may be provided on the exposed surface of the patterned conductive layer 25. In such a case, in consideration of electrical connection with an external device, a part of the reinforcing member 291 is partially removed so that the pattern conductive layer 25 is exposed. Moreover, as the reinforcing member 291, various things, such as a knitted fabric structure formed from the ground yarn 231 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example. Further, a resin coating layer can be used as the reinforcing member 291. By providing such a reinforcing member 291, the rigidity on the distal end side of the fabric piece 29 can be increased, so that the effect of facilitating the insertion of the fabric piece 29 into the electrical signal acquisition connector 100 in the external device is obtained. Can do. Further, by setting the thickness of the reinforcing member 291 as appropriate and making the thickness dimension of the tip portion of the fabric piece approximately the same as the thickness direction dimension of the insertion hole in the connector 100, the fabric piece 29 inserted into the connector 100 It is possible to prevent the tip portion from floating in the insertion hole and fix it firmly.
 また、生地片29を設ける場合、図19の模式断面図に示すように、生地片29が、生地本体(繊維構造体21)の表面から外方に突出するように形成してもよい。このような形態を採用することにより、例えば、繊維構造体21を衣類形体状(シャツ形やズボン形など)に形成する場合であっても、そのデザイン性の自由度が高まり、また、外部装置との接続部構造である生地片29が着用者にとって邪魔になってしまうことを効果的に抑制することが可能となる。なお、このような効果は、繊維構造体21を衣類形体状(シャツ形やズボン形など)に形成する場合に限らず、図7に示すように長尺状に導電性生地20を構成し、例えば、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着する場合であっても同様である。 Further, when the fabric piece 29 is provided, as shown in the schematic cross-sectional view of FIG. 19, the fabric piece 29 may be formed so as to protrude outward from the surface of the fabric body (fiber structure 21). By adopting such a configuration, for example, even when the fiber structure 21 is formed in a clothing shape (such as a shirt shape or a trouser shape), the degree of freedom in design is increased, and the external device It is possible to effectively suppress the fabric piece 29 having the connecting portion structure from becoming an obstacle to the wearer. Such an effect is not limited to the case where the fiber structure 21 is formed in a clothing shape (such as a shirt shape or a trouser shape), but the conductive fabric 20 is configured in a long shape as shown in FIG. For example, when collecting data such as an electrocardiogram or electromyogram, or performing electrical treatment or electromagnetic wave treatment on the subject, even if it is wrapped around the subject's arm, leg, trunk, etc. It is the same.
 また、上記第2実施形態において、繊維構造体21における導電部22の少なくとも一部分が、図20の模式断面図に示すように、繊維構造体21においてパターン導電層25が設けられる面とは反対側の面に露出するように構成してもよい。このような形態を採用することにより、例えば、心電図や筋電図等のデータ採取、或いは電気治療などを行う場合に、反対側の面に露出した導電部22が電極として機能する。導電性生地20を対象者の腕や脚、胴部などに巻きつけて装着する場合に、対象者の身体の表面に導電部22を密着させつつ、装着された導電性生地20の外表面側に外部装置との接続部構造であるパターン導電層25が露出することになるため、使用上の簡便性を確保しつつ、確実に生体信号の取得等を行うことが可能となる。 In the second embodiment, at least a part of the conductive portion 22 in the fiber structure 21 is opposite to the surface on which the pattern conductive layer 25 is provided in the fiber structure 21 as shown in the schematic cross-sectional view of FIG. You may comprise so that it may be exposed to the surface. By adopting such a form, for example, when collecting data such as an electrocardiogram or an electromyogram, or performing electrotherapy, the conductive portion 22 exposed on the opposite surface functions as an electrode. When the conductive fabric 20 is wrapped around the subject's arm, leg, torso or the like, the conductive fabric 22 is brought into close contact with the surface of the subject's body while the conductive fabric 20 is mounted on the outer surface side. In addition, since the pattern conductive layer 25 which is a connection portion structure with an external device is exposed, it is possible to reliably acquire a biological signal while ensuring ease of use.
 また、上述した第2実施形態の導電性生地20に係る製造方法は、プリント電極体27における熱可塑性樹脂層26及びパターン導電層25を繊維構造体21に転写することにより導電性生地20を形成する方法であるが、このような転写技術を利用する他、以下のような方法によっても導電性生地20を形成することができる。すなわち、図21に示すように、フィルム状の熱可塑性樹脂層26上に、印刷技術によりパターン導電層25を形成することによりプリント電極体27を形成し、繊維構造体21における導電部22の少なくとも一部分上に、このプリント電極体27の熱可塑性樹脂層26側を向けて載置し(載置ステップS2)、その後、上記加熱・加圧ステップS3における工程を施すことにより、フィルム状の熱可塑性樹脂層26を溶融させて繊維構造体21に含浸させつつ、パターン導電層25を繊維構造体21の表面に設けるようにしてもよい。なお、フィルム状の熱可塑性樹脂層26の厚みは、10μm以上100μm以下であることが好ましく、特に、20μm以上80μm以下であることがより好ましい。フィルム状の熱可塑性樹脂層26の厚みが10μm未満の場合、強度や取扱い性に問題がある。100μmより厚い場合、コストが高くなり、また導電性生地20に十分な厚みがないと熱可塑性樹脂が裏面へにじみ出るおそれがある。 Moreover, the manufacturing method according to the conductive fabric 20 of the second embodiment described above forms the conductive fabric 20 by transferring the thermoplastic resin layer 26 and the pattern conductive layer 25 in the printed electrode body 27 to the fiber structure 21. However, in addition to using such a transfer technique, the conductive fabric 20 can be formed by the following method. That is, as shown in FIG. 21, a printed electrode body 27 is formed by forming a patterned conductive layer 25 on a film-like thermoplastic resin layer 26 by a printing technique, and at least the conductive portions 22 in the fiber structure 21 are formed. On the part, the printed electrode body 27 is placed with the thermoplastic resin layer 26 side facing (placement step S2), and then the process in the heating / pressurizing step S3 is performed, thereby forming a film-like thermoplasticity. The pattern conductive layer 25 may be provided on the surface of the fiber structure 21 while the resin layer 26 is melted and impregnated in the fiber structure 21. The thickness of the film-like thermoplastic resin layer 26 is preferably 10 μm or more and 100 μm or less, and more preferably 20 μm or more and 80 μm or less. When the thickness of the film-like thermoplastic resin layer 26 is less than 10 μm, there is a problem in strength and handleability. If it is thicker than 100 μm, the cost increases, and if the conductive fabric 20 does not have a sufficient thickness, the thermoplastic resin may ooze out to the back surface.
 上記フィルム状の熱可塑性樹脂層26は、上述した熱可塑性樹脂層26を構成する樹脂から形成することができるが、特にポリウレタン樹脂製のフィルムを熱可塑性樹脂層26として採用することが好ましい。繊維構造体21に含浸されたポリウレタン樹脂製のフィルムの厚み(量)が大きくなると、繊維構造体21における含浸領域が僅かに固くなるため、パターン導電層25が形成される導電性生地20部分の強度を向上させることが可能となる。例えば、外部装置との接続部として用いる場合、端子間の幅精度を確保するために本構造を用いることが好ましい。 The film-like thermoplastic resin layer 26 can be formed from the resin constituting the thermoplastic resin layer 26 described above, and it is particularly preferable to employ a polyurethane resin film as the thermoplastic resin layer 26. When the thickness (amount) of the polyurethane resin film impregnated in the fiber structure 21 is increased, the impregnation region in the fiber structure 21 is slightly hardened, so that the conductive fabric 20 portion where the pattern conductive layer 25 is formed is formed. Strength can be improved. For example, when used as a connection portion with an external device, it is preferable to use this structure in order to ensure the width accuracy between terminals.
 また、上記第2実施形態においては、パターン導電層25が、導電性生地20と外部装置との間の接続部構造を構成するように形成されているが、このような構成に特に限定されず、例えば、図22の平面図に示すように、導電部22同士を電気的に接続する接続部構造としてパターン導電層25を用いることもできる。例えば、繊維構造体21が編地構造を有し、導電性生地20の導電部22が導電性糸221を編み込んで形成される場合、編成方向に長い導電部22の配線パターンを形成することは製造上容易である。しかし、編成方向に対し垂直または斜め方向の導電部22の配線パターンを形成する場合は、編成ライン毎に導電性糸221と非導電性の地糸231の切替えが必要となり、煩雑な工程となる。そこで、上記のように、パターン導電層25で導電部22同士を接続する構成を採用することで、導電性生地20上の配線等のパターニングの自由度が向上する。 Moreover, in the said 2nd Embodiment, although the pattern conductive layer 25 is formed so that the connection part structure between the conductive cloth 20 and an external device may be comprised, it is not specifically limited to such a structure. For example, as shown in the plan view of FIG. 22, the pattern conductive layer 25 can be used as a connection portion structure for electrically connecting the conductive portions 22 to each other. For example, when the fiber structure 21 has a knitted fabric structure and the conductive portion 22 of the conductive fabric 20 is formed by weaving the conductive yarn 221, forming a wiring pattern of the conductive portion 22 that is long in the knitting direction is Easy to manufacture. However, when forming the wiring pattern of the conductive portion 22 perpendicular or oblique to the knitting direction, it is necessary to switch between the conductive yarn 221 and the non-conductive ground yarn 231 for each knitting line, which is a complicated process. . Therefore, by adopting a configuration in which the conductive portions 22 are connected to each other by the patterned conductive layer 25 as described above, the degree of freedom of patterning of the wiring and the like on the conductive fabric 20 is improved.
 また、上記第2実施形態において説明した導電性生地20の製造方法においては、離型フィルム271上に、印刷技術によりパターン導電層25を形成した後、当該パターン導電層25上に、熱可塑性樹脂層26を配設して構成されるプリント電極体27を用い、このプリント電極体27におけるパターン導電層25及び熱可塑性樹脂層26を繊維構造体21に転写するようにしているが、このような手法の他、離型フィルム271上に印刷技術によりパターン導電層25を形成してプリント電極体27を構成し、例えば、シート状、液状、粉状、或いは、粒状の熱可塑性樹脂を、繊維構造体21における導電部22の少なくとも一部分上に塗布又は配置した上で、当該プリント電極体27を載置し、加熱・加圧ステップS3によるヒートプレスを行うようにして、シート状、液状、粉状、或いは、粒状の熱可塑性樹脂を溶融させて繊維構造体21に含浸させつつ、パターン導電層25を繊維構造体21の表面に設けるようにしてもよい。なお、ヒートプレスを、繊維構造体21の形状を保ちつつ、繊維構造体21の露出表面にパターン導電層25が密着する加熱・加圧条件とすることで、生地の風合いを損なわない。 Further, in the method for manufacturing the conductive fabric 20 described in the second embodiment, after the pattern conductive layer 25 is formed on the release film 271 by a printing technique, the thermoplastic resin is formed on the pattern conductive layer 25. A printed electrode body 27 configured by disposing the layer 26 is used, and the pattern conductive layer 25 and the thermoplastic resin layer 26 in the printed electrode body 27 are transferred to the fiber structure 21. In addition to the method, the pattern conductive layer 25 is formed on the release film 271 by a printing technique to form the printed electrode body 27. For example, a sheet-like, liquid, powdery, or granular thermoplastic resin is used as a fiber structure. After applying or arranging on at least a part of the conductive portion 22 in the body 21, the printed electrode body 27 is placed, and heating by the heating / pressurizing step S3 is performed. The pattern conductive layer 25 is provided on the surface of the fiber structure 21 while melting the sheet-like, liquid, powdery, or granular thermoplastic resin and impregnating the fiber structure 21. May be. In addition, the texture of cloth | dough is not impaired by making heat press into the heating and pressurization conditions which the pattern conductive layer 25 closely_contact | adheres to the exposed surface of the fiber structure 21, maintaining the shape of the fiber structure 21. FIG.
 以下、本発明の第3実施形態にかかる導電性生地について、添付図面を参照して説明する。なお、各図は、構成の理解を容易ならしめるために部分的に拡大・縮小している。本発明に係る導電性生地30は、例えば図23に示すような導電パーツを製造する際において、その構成要素の一つとして使用することができる。この導電性生地30(導電パーツ)は、偏平の長尺状(帯状)に形成され、幅方向に配線32及び非導電部33が交互に配設されるように構成される繊維構造体31を備えており、例えば、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着できるように構成されている。 Hereinafter, the conductive cloth according to the third embodiment of the present invention will be described with reference to the accompanying drawings. Each figure is partially enlarged or reduced in order to facilitate understanding of the configuration. The conductive dough 30 according to the present invention can be used as one of the components when manufacturing a conductive part as shown in FIG. 23, for example. This conductive fabric 30 (conductive part) is formed in a flat and long shape (band shape), and a fiber structure 31 configured such that wirings 32 and non-conductive portions 33 are alternately arranged in the width direction. For example, when collecting data such as electrocardiograms or electromyograms, or performing electrical treatment or electromagnetic wave treatment on the subject, it can be worn around the subject's arm, leg, trunk, etc. It is configured.
 なお、図23に示す形態においては、長尺状の形状を有するように繊維構造体31を形成しているが、このような形態に特に限定されず、例えば、筒形状(ストレート形やテーパ形、或いは瓢箪形など)や、平面視矩形状、平面視円形状としてもよい。また、繊維構造体31をシャツ、パンツ、ズボン、靴下、手袋、帽子といった衣類として構成してもよい。なお、図23においては、各配線32が、繊維構造体31の長手方向に沿う細帯状に形成され、各非導電部33も同様に繊維構造体31の長手方向に沿う細帯状に形成されているが、このような形態に特に限定されず、導電性生地30の使用目的や装着個所等に応じて、種々の形状となるように配線32及び非導電部33を構成することができる。また、配線32及び非導電部33の各個数についても特に限定されず、適宜変更することができる。 In addition, in the form shown in FIG. 23, the fiber structure 31 is formed so as to have a long shape. However, the fiber structure 31 is not particularly limited to such a form. For example, a tubular shape (straight or tapered) Or a rectangular shape in plan view, or a circular shape in plan view. Moreover, you may comprise the fiber structure 31 as clothing, such as a shirt, pants, trousers, socks, gloves, and a hat. In FIG. 23, each wiring 32 is formed in a narrow strip shape along the longitudinal direction of the fiber structure 31, and each non-conductive portion 33 is also formed in a narrow strip shape along the longitudinal direction of the fiber structure 31. However, it is not particularly limited to such a form, and the wiring 32 and the non-conductive portion 33 can be configured to have various shapes according to the purpose of use of the conductive fabric 30 or the mounting location. Further, the numbers of the wirings 32 and the non-conductive portions 33 are not particularly limited, and can be changed as appropriate.
 このような繊維構造体31は、配線32を構成するための導電性糸321と、非導電部33を構成するための非導電性の地糸331とを用いて様々な方法により形成することができる。繊維構造体31としては開口を有する編地または織地を含む布帛、不織布、その他生地が使用可能である。例えば、上記導電性糸321及び地糸331を用いて製編することにより形成される場合、その編地構造は特に限定されず、例えば、平編、ゴム編、スムース編、パール編又はそれらの変化組織(例えば、ミラノリブや段ボールニットなど)や、トリコット編、ラッシェル編、ミラニーズ編等の各種編地構造を採用することができる。また織地構造の場合は、平織、綾織、朱子織等の織り方を例示できる。なお、非導電性の地糸331により構成される部分が、繊維構造体31のおける生地本体を構成する。また、繊維構造体31の製造方法は、上記方法に限定されず、例えば、非導電性の地糸331によってまず生地本体を形成した後、所定部分に導電性糸321を編み込み、刺繍等して配線32を形成し製造することもできる。 Such a fiber structure 31 can be formed by various methods using the conductive yarn 321 for forming the wiring 32 and the nonconductive ground yarn 331 for forming the nonconductive portion 33. it can. As the fiber structure 31, a fabric including a knitted fabric or a woven fabric having an opening, a nonwoven fabric, and other fabrics can be used. For example, when formed by knitting using the conductive yarn 321 and the ground yarn 331, the knitted fabric structure is not particularly limited, and for example, flat knitting, rubber knitting, smooth knitting, pearl knitting or their knitting Various knitted fabric structures such as a change organization (for example, Milan rib or cardboard knit), a tricot knitting, a raschel knitting, and a miranese knitting can be employed. In the case of a woven structure, examples of weaving methods such as plain weave, twill weave and satin weave can be given. In addition, the part comprised by the nonelectroconductive ground yarn 331 comprises the fabric main body in the fiber structure 31. Further, the manufacturing method of the fiber structure 31 is not limited to the above method. For example, after the fabric main body is first formed with the non-conductive ground yarn 331, the conductive yarn 321 is knitted into a predetermined portion and embroidered. The wiring 32 can also be formed and manufactured.
 ここで、配線32を構成するための導電性糸321としては、上記第2実施形態における導電性糸221と同一の導電性糸を採用することができる。また、非導電部33を構成するための非導電性の地糸331としては、上記第2実施形態における地糸231と同一の地糸を採用することができる。 Here, as the conductive yarn 321 for constituting the wiring 32, the same conductive yarn as the conductive yarn 221 in the second embodiment can be adopted. Further, as the non-conductive ground yarn 331 for constituting the non-conductive portion 33, the same ground yarn as the ground yarn 231 in the second embodiment can be adopted.
 また、繊維構造体31(生地本体)は、図23の平面図に示すように、端子部34を備えている。この端子部34は、外部デバイス回路のコネクタに直接挿入されて接続される接続端子であり、長尺状の繊維構造体31(生地本体)の一方の端部に設定されている。ここで、外部デバイス回路のコネクタは、繊維構造体31の端子部34を挿入して接続されるものであればその種類は特に限定されず、スライドロック式、フロントフリップロック式、バックフリップブロック式等のコネクタといったフラットケーブル(FFCやFPC)に使用されるような一般的なコネクタ(汎用のフラットケーブル用コネクタ)を例示することができる。 Further, the fiber structure 31 (fabric main body) includes a terminal portion 34 as shown in the plan view of FIG. The terminal portion 34 is a connection terminal that is directly inserted into and connected to the connector of the external device circuit, and is set at one end of the long fiber structure 31 (fabric main body). Here, the type of the connector of the external device circuit is not particularly limited as long as it is connected by inserting the terminal portion 34 of the fiber structure 31, and is a slide lock type, a front flip lock type, a back flip block type. A general connector (general-purpose flat cable connector) used for a flat cable (FFC or FPC) such as a connector can be exemplified.
 この端子部34は、図23の平面図や、この図23のC-C断面における要部拡大図である図24に示すように、導電性材料及び樹脂を含むパターン導電層35を備えている。このパターン導電層35は、電極や配線としての機能を有するものであり、その一方端が、外部装置が備える外部デバイス回路のコネクタに電気的に接続可能に構成され、また、パターン導電層35の他方端は、繊維構造体31における配線32と電気的に接続されるように、当該配線32の一部分上に載置固定される形態で構成されている。パターン導電層35の厚みは、1μm以上30μm以下であることが好ましく、特に、5μm以上20μm以下であることがより好ましい。パターン導電層35は、例えば、導電性糸321によって形成される配線32や地糸331によって形成される生地本体2の露出表面に沿って配置されている。繊維構造体31の表面には、製編される導電性糸321や地糸331によって形成される凹凸がある。パターン導電層35は、これら製編された導電性糸321や地糸331によって形成される凹凸の上側の表面(露出表面)に沿った状態で配置され、図24に示すように断面視波状となるように構成されている。 The terminal portion 34 includes a pattern conductive layer 35 containing a conductive material and a resin, as shown in FIG. 24, which is a plan view of FIG. . The pattern conductive layer 35 has a function as an electrode or a wiring, and one end thereof is configured to be electrically connectable to a connector of an external device circuit included in the external device. The other end is configured to be placed and fixed on a part of the wiring 32 so as to be electrically connected to the wiring 32 in the fiber structure 31. The thickness of the pattern conductive layer 35 is preferably 1 μm or more and 30 μm or less, and more preferably 5 μm or more and 20 μm or less. The pattern conductive layer 35 is disposed along the exposed surface of the fabric main body 2 formed by the wiring 32 formed by the conductive thread 321 or the ground thread 331, for example. The surface of the fiber structure 31 has irregularities formed by the conductive yarn 321 and the ground yarn 331 to be knitted. The pattern conductive layer 35 is arranged in a state along the upper surface (exposed surface) of the unevenness formed by the knitted conductive yarn 321 and the ground yarn 331, and as shown in FIG. It is comprised so that it may become.
 パターン導電層35は、上記第2実施形態におけるパターン導電層25を形成する際の材料(バインダ、導電性材料及びエラストマー材料)と同一の材料を用いて形成することができる。 The patterned conductive layer 35 can be formed using the same material as the material (binder, conductive material, and elastomer material) used when forming the patterned conductive layer 25 in the second embodiment.
 また、本発明に係る第3実施形態の導電性生地30における端子部34は、熱可塑性樹脂層36を備えている。熱可塑性樹脂層36は、図24に示すように、上記パターン導電層35に対して繊維構造体31側に設けられ、パターン導電層35の一方の面に接しつつ、繊維構造体31(配線32や生地本体)に含浸されている。この熱可塑性樹脂層36の接着作用によって、パターン導電層35が、繊維構造体31上に強固に固定されている。なお、本実施形態においては、熱可塑性樹脂層36が繊維構造体31に含浸される領域を、図23において一点鎖線で示している。また、繊維構造体31に含浸される熱可塑性樹脂層36は、配線32及び非導電部33における編地構造内(或いは、織地構造内)の他、地糸331と地糸331の間、地糸331と導電性糸321との間、導電性糸321と導電性糸321との間、地糸331及び導電性糸321をマルチフィラメント等の単繊維の集合体として構成した場合には、各短繊維の間等に存在することとなる。 Further, the terminal portion 34 in the conductive fabric 30 of the third embodiment according to the present invention includes a thermoplastic resin layer 36. As shown in FIG. 24, the thermoplastic resin layer 36 is provided on the fiber structure 31 side with respect to the pattern conductive layer 35, and is in contact with one surface of the pattern conductive layer 35 while being in contact with the fiber structure 31 (wiring 32). Or the fabric body). The patterned conductive layer 35 is firmly fixed on the fiber structure 31 by the adhesive action of the thermoplastic resin layer 36. In this embodiment, a region where the thermoplastic resin layer 36 is impregnated in the fiber structure 31 is indicated by a one-dot chain line in FIG. Further, the thermoplastic resin layer 36 impregnated in the fiber structure 31 is not only in the knitted fabric structure (or in the woven structure) in the wiring 32 and the non-conductive portion 33, but also between the ground yarn 331 and the ground yarn 331. When the yarn 331 and the conductive yarn 321, between the conductive yarn 321 and the conductive yarn 321, and the ground yarn 331 and the conductive yarn 321 are configured as an aggregate of single fibers such as multifilaments, It exists between short fibers.
 熱可塑性樹脂層36を構成する樹脂としては、上記第2実施形態における熱可塑性樹脂層26と同一の材料を採用することができる。 As the resin constituting the thermoplastic resin layer 36, the same material as the thermoplastic resin layer 26 in the second embodiment can be adopted.
 次に、上記本発明に係る第3実施形態の導電性生地30の製造方法について説明する。この導電性生地30の製造方法は、図25のブロック図に示すように、繊維構造体形成ステップS1と、載置ステップS2と、加熱・加圧ステップS3とを備えている。 Next, a method for manufacturing the conductive fabric 30 according to the third embodiment of the present invention will be described. As shown in the block diagram of FIG. 25, the method for manufacturing the conductive fabric 30 includes a fiber structure forming step S1, a placing step S2, and a heating / pressing step S3.
 繊維構造体形成ステップS1は、上述の生地本体と当該生地本体の所定位置に形成された配線32とを備える繊維構造体31を形成する工程である。繊維構造体31の具体的な形成方法は、特に限定されないが、例えば、配線32を構成するための導電性糸321と、非導電部33を構成するための非導電性の地糸331とを用いて、所定形状(例えば、長尺状(帯状)、筒形状、平面視矩形状、平面視円形状、衣類(シャツ、パンツ、ズボン、ベルト、靴下、手袋、帽子など)およびそれらの部材の形状の繊維構造体31を製編する方法を挙げることができる。 The fiber structure forming step S1 is a process of forming a fiber structure 31 including the above-described fabric body and the wiring 32 formed at a predetermined position of the fabric body. Although the specific formation method of the fiber structure 31 is not specifically limited, For example, the conductive thread 321 for configuring the wiring 32 and the non-conductive ground thread 331 for configuring the non-conductive portion 33 are included. Used, for example, long shape (band), cylindrical shape, rectangular shape in plan view, circular shape in plan view, clothing (shirt, pants, trousers, belt, socks, gloves, hat, etc.) and their members A method of knitting the shaped fiber structure 31 can be mentioned.
 載置ステップS2は、導電性材料及び樹脂を含むパターン導電層35と、該パターン導電層35の少なくとも一方の面側に配置される熱可塑性樹脂層36とからなるプリント電極体37を、端子部34に対応する位置において、繊維構造体31における配線32の少なくとも一部分上にパターン導電層35が重なるようにして載置する工程である。 The placing step S2 includes a printed electrode body 37 comprising a patterned conductive layer 35 containing a conductive material and a resin and a thermoplastic resin layer 36 disposed on at least one surface side of the patterned conductive layer 35. In this step, the pattern conductive layer 35 is placed on at least a part of the wiring 32 in the fiber structure 31 at a position corresponding to 34.
 ここで、上記プリント電極体37について説明する。このプリント電極体37としては、図26の断面図に示すように、離型フィルム371上に、印刷技術によりパターン導電層35を形成した後、当該パターン導電層35上に、熱可塑性樹脂層36を配設して構成されるものを例示することができる。印刷技術としては特に限定されず、スクリーン印刷、グラビア印刷、凸版印刷、凹版印刷、グラビアオフセット印刷、インクジェット印刷や、フォトリソグラフィ等の細線パターニングなど、周知の印刷方法を用いることができる。熱可塑性樹脂層36として、例えば、ポリウレタンを含有する樹脂を接着剤として採用する場合には、当該接着剤をパターン導電層35上に塗布して構成することができる。また、パターン導電層35上に配設される熱可塑性樹脂層36の厚みは、1μm以上50μm以下であることが好ましく、特に、5μm以上30μm以下であることがより好ましい。熱可塑性樹脂層36(接着剤)の厚みが1μm未満の場合、接着強度に問題がある。50μmより厚い場合、印刷で形成することが難しい。 Here, the printed electrode body 37 will be described. As shown in the cross-sectional view of FIG. 26, the printed electrode body 37 is formed by forming a patterned conductive layer 35 on a release film 371 by a printing technique, and then forming a thermoplastic resin layer 36 on the patterned conductive layer 35. What is comprised and arrange | positioned can be illustrated. The printing technique is not particularly limited, and well-known printing methods such as screen printing, gravure printing, relief printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used. For example, when a resin containing polyurethane is used as the adhesive as the thermoplastic resin layer 36, the adhesive can be applied to the pattern conductive layer 35. In addition, the thickness of the thermoplastic resin layer 36 disposed on the pattern conductive layer 35 is preferably 1 μm or more and 50 μm or less, and more preferably 5 μm or more and 30 μm or less. When the thickness of the thermoplastic resin layer 36 (adhesive) is less than 1 μm, there is a problem in the adhesive strength. When it is thicker than 50 μm, it is difficult to form by printing.
 このようなプリント電極体37を図27に示すように、繊維構造体31における配線32の少なくとも一部分上に、プリント電極体37の熱可塑性樹脂層36側を向けて載置することにより載置ステップS2は完了する。 As shown in FIG. 27, such a printed electrode body 37 is placed on at least a part of the wiring 32 in the fiber structure 31 by placing the printed electrode body 37 facing the thermoplastic resin layer 36 side. S2 is completed.
 加熱・加圧ステップS3は、繊維構造体31上の所定位置(端子部34を形成する位置)に載置されたプリント電極体37を加熱及び加圧することにより、プリント電極体37の熱可塑性樹脂層36を溶融させて繊維構造体31の内部側に流動させて含浸させつつ、プリント電極体37のパターン導電層35を繊維構造体31の表面凹凸形状に沿った状態で配置して配線32に電気的に接続する工程である。この加熱・加圧ステップS3において、導電性糸321の頂部よりも上方に配置される溶解前の熱可塑性樹脂層36は、ヒートプレスによる加熱により溶解して下方に流動していくと共に、加圧によるパターン導電層35の移動によって導電性糸321の頂部近傍から下方に押し出されていき、露出面側に配置される導電性糸321とパターン導電層35とが互いに直接接触した状態で、また、地糸331とパターン導電層35とが互いに直接接触した状態で接続固定される。なお、この加熱・加圧ステップS3が終了した後、プリント電極体37における離型フィルム371を取り外すことにより、図24の断面図に示す本発明に係る導電性生地30が形成される。 The heating / pressurizing step S3 heats and pressurizes the printed electrode body 37 placed at a predetermined position (position where the terminal portion 34 is formed) on the fiber structure 31, thereby the thermoplastic resin of the printed electrode body 37. The pattern conductive layer 35 of the printed electrode body 37 is arranged along the surface irregularities of the fiber structure 31 while being melted and flown and impregnated inside the fiber structure 31 to the wiring 32. This is an electrical connection process. In this heating / pressurizing step S3, the unmelted thermoplastic resin layer 36 disposed above the top of the conductive yarn 321 is melted by heating by a heat press and flows downward, and is pressurized. The pattern conductive layer 35 is pushed downward from the vicinity of the top of the conductive thread 321 by the movement of the conductive thread 321, and the conductive thread 321 disposed on the exposed surface side and the pattern conductive layer 35 are in direct contact with each other, The ground yarn 331 and the pattern conductive layer 35 are connected and fixed in a state of being in direct contact with each other. After the heating / pressurizing step S3 is completed, the release film 371 in the printed electrode body 37 is removed, thereby forming the conductive cloth 30 according to the present invention shown in the sectional view of FIG.
 本発明に係る第3実施形態の導電性生地30は、フラットケーブル(FFCやFPC)に使用される一般的なコネクタ(汎用のフラットケーブル用コネクタ)に直接挿入することが可能な端子部34を備えているため、外部装置の有する外部デバイス回路のコネクタと直接的に接続できる。つまり、導電性生地30にFPC等の接続配線を別途設けることなく、端子部34を介して、外部デバイス回路との電気信号の入出力が可能となる。 The conductive fabric 30 according to the third embodiment of the present invention has a terminal portion 34 that can be directly inserted into a general connector (general-purpose flat cable connector) used in a flat cable (FFC or FPC). Since it is provided, it can be directly connected to the connector of the external device circuit of the external device. That is, it is possible to input / output an electric signal to / from an external device circuit via the terminal portion 34 without separately providing connection wiring such as FPC on the conductive fabric 30.
 また、本発明に係る第3実施形態の導電性生地30は、印刷技術により形成されるパターン導電層35によって、導電性生地30と外部装置との間の接続部構造を形成したものである。このパターン導電層35は、例えば図24に示すように、導電性糸321及び地糸331を用いて製編されて形成される繊維構造体31の露出表面(表面凹凸形状)に沿った状態で、断面視波状となるように配置されているため、パターン導電層35と繊維構造体31との密着性が高くなり、パターン導電層35の断線、剥離等を効果的に防止することが可能となる。また配線32とパターン導電層35との接触面積が大きくなるため、接触抵抗が低くなる。なお、第3実施形態に係る導電性生地30の場合、図28(a)の画像に示すように、繊維構造体31の露出表面に沿って、断線等を生じることなくパターン導電層35が綺麗に形成されており、抵抗値不良や導通不良が発生することが防止されていることが分かる。一方、繊維構造体31に直接印刷してパターン導電層35を形成した場合、導電性材料及び樹脂からなる導電性ペーストが液状のため、図28(b)の画像に示すように、開口部(地糸331同士の隙間、導電性糸321同士の隙間、或いは、地糸331と導電性糸321との隙間)に導電性ペーストが落ち込んでしまい、断線や抵抗値不良が発生しやすくなる。ここで、図28(a)における導電性生地30は、ナイロン40%及びポリエステル60%の混合糸で編成された厚みが300μmの生地に対して、プリント電極体37として、離型フィルム371上に厚み10μmのパターン導電層35(銀ペースト)を形成し、当該パターン導電層35上に、厚みが10μmのポリウレタン系接着剤(熱可塑性樹脂層36)を配設したものを使用して上記方法により形成されている。また、図28(b)における導電性生地は、ナイロン40%及びポリエステル60%の混合糸で編成された厚みが300μmの生地に対して、直接、銀ペーストをその厚みが10μmとなるように設定して印刷したものである。 In addition, the conductive cloth 30 of the third embodiment according to the present invention is formed by forming a connection portion structure between the conductive cloth 30 and the external device by the pattern conductive layer 35 formed by a printing technique. For example, as shown in FIG. 24, the pattern conductive layer 35 is in a state along the exposed surface (surface uneven shape) of the fiber structure 31 formed by knitting and knitting using the conductive yarn 321 and the ground yarn 331. Since the arrangement is such that the cross-sectional view is wave-like, the adhesion between the pattern conductive layer 35 and the fiber structure 31 is increased, and it is possible to effectively prevent disconnection, peeling, and the like of the pattern conductive layer 35. Become. Further, since the contact area between the wiring 32 and the pattern conductive layer 35 is increased, the contact resistance is decreased. In the case of the conductive fabric 30 according to the third embodiment, as shown in the image of FIG. 28A, the patterned conductive layer 35 is clean along the exposed surface of the fiber structure 31 without causing disconnection or the like. It can be seen that the resistance value failure and the conduction failure are prevented from occurring. On the other hand, when the pattern conductive layer 35 is formed by printing directly on the fiber structure 31, since the conductive paste made of the conductive material and the resin is liquid, as shown in the image of FIG. The conductive paste falls into the gaps between the ground yarns 331, the gaps between the conductive yarns 321 or the gaps between the ground yarns 331 and the conductive yarns 321), and disconnection and resistance value defects are likely to occur. Here, the conductive fabric 30 in FIG. 28A is formed on a release film 371 as a printed electrode body 37 with respect to a fabric having a thickness of 300 μm knitted with a mixed yarn of nylon 40% and polyester 60%. A patterned conductive layer 35 (silver paste) having a thickness of 10 μm is formed, and a polyurethane adhesive (thermoplastic resin layer 36) having a thickness of 10 μm is disposed on the patterned conductive layer 35 by the above method. Is formed. In addition, the conductive fabric in FIG. 28B is set so that the thickness of the silver paste is 10 μm directly on the fabric of 300 μm thickness knitted with a mixed yarn of 40% nylon and 60% polyester. Printed.
 また、パターン導電層35と、繊維構造体31における配線32とが一体化されて構成されるため、電気的な接合強度が強いという効果も発揮する。また、パターン導電層35は、図24に示すように、繊維構造体31の露出表面に沿って設けられているため、繊維構造体31を構成する導電性糸321や地糸331との接触面積が大きいという特徴がある。これにより、パターン導電層35が繊維構造体31の表面から剥離してしまうことを、効果的に防止することが可能となる。 In addition, since the pattern conductive layer 35 and the wiring 32 in the fiber structure 31 are integrated, the effect of high electrical bonding strength is also exhibited. Moreover, since the pattern conductive layer 35 is provided along the exposed surface of the fiber structure 31, as shown in FIG. 24, the contact area with the conductive yarn 321 and the ground yarn 331 which comprise the fiber structure 31 is provided. There is a feature that is large. Thereby, it becomes possible to prevent effectively that the pattern conductive layer 35 peels from the surface of the fiber structure 31.
 また、パターン導電層35と繊維構造体31における配線32とが一体化される際、熱可塑性樹脂層36が繊維構造体31の反対側の露出表面(パターン導電層35が配置される露出表面とは反対側の表面)ににじみ出ない構成とすることが好ましい。本構成とすることで、熱可塑性樹脂層36が導電性生地30の反対側の露出表面より内側に存在するため、繊維構造体31の反対側の風合いや肌触りを損なわない。 Further, when the pattern conductive layer 35 and the wiring 32 in the fiber structure 31 are integrated, the thermoplastic resin layer 36 is exposed on the opposite side of the fiber structure 31 (the exposed surface on which the pattern conductive layer 35 is disposed). It is preferable that the surface does not ooze out on the opposite surface. By setting it as this structure, since the thermoplastic resin layer 36 exists inside the exposed surface of the other side of the electroconductive fabric 30, the texture and touch of the other side of the fiber structure 31 are not impaired.
 また、本発明に係る第3実施形態の導電性生地30は、繊維構造体31における導電性糸321で形成された配線32のパターン幅やピッチよりもパターン導電層35のパターン幅やピッチを小さくすることができる。配線32のパターンは、その編成構造や糸径によって最小幅が規定されたり、導電糸の毛羽立ちによる短絡等の問題から隣接パターンとのピッチを小さくし難い。それに対し、パターン導電層35は印刷技術により形成される為、線幅や線間ピッチを小さくすることが可能になる。特に、パターン導電層35によって、導電性生地30と外部装置との間の接続部構造を形成する場合に好適であり、導電性生地30と外部装置との間の接続部構造における電極間距離を狭く形成することが可能となる。例えば、各配線間隔が3mmの配線32に対し、本発明の構造でパターン導電層35を接続することで、各配線間隔を0.2~1mm程度の狭ピッチに変換することができ、フラットケーブル(FFCやFPC)に使用されるような一般的なコネクタ(汎用のフラットケーブル用コネクタ)に直接挿入することも可能となる。例えば、導電性生地30上に形成された心拍、心電あるいは筋電などの生体情報を測定する電極と、その測定データを処理する外部装置との間の接続が容易になる。 Moreover, the conductive cloth 30 of the third embodiment according to the present invention has a pattern width and pitch of the pattern conductive layer 35 smaller than the pattern width and pitch of the wiring 32 formed of the conductive yarn 321 in the fiber structure 31. can do. The pattern of the wiring 32 has a minimum width defined by its knitting structure and yarn diameter, and it is difficult to reduce the pitch with the adjacent pattern due to problems such as a short circuit caused by fuzz of conductive yarns. On the other hand, since the pattern conductive layer 35 is formed by a printing technique, the line width and the line pitch can be reduced. In particular, the pattern conductive layer 35 is suitable for forming a connection portion structure between the conductive fabric 30 and the external device, and the inter-electrode distance in the connection portion structure between the conductive fabric 30 and the external device is reduced. It becomes possible to form narrowly. For example, by connecting the pattern conductive layer 35 with the structure of the present invention to the wiring 32 having a wiring interval of 3 mm, each wiring interval can be converted to a narrow pitch of about 0.2 to 1 mm. It can be directly inserted into a general connector (general-purpose flat cable connector) used in (FFC or FPC). For example, connection between electrodes for measuring biological information such as heartbeat, electrocardiogram, or myoelectricity formed on the conductive fabric 30 and an external device for processing the measurement data is facilitated.
 また、繊維構造体31に含浸されている熱可塑性樹脂層36は、パターン導電層35と電気的に接続する配線32を構成する導電性糸321の周りにおいて当該導電性糸321をコーティングする部材として機能しつつ、パターン導電層35との強固な接着作用をも奏することとなる。したがって、パターン導電層35と配線32との接続部分における導電性糸321が酸化することや当該導電性糸321の金属皮膜が脱落してしまうことを効果的に防止し、その劣化を抑制することが可能となり、パターン導電層35と配線32との良好な導通状態を維持することが可能となる。 Further, the thermoplastic resin layer 36 impregnated in the fiber structure 31 is a member that coats the conductive yarn 321 around the conductive yarn 321 constituting the wiring 32 that is electrically connected to the pattern conductive layer 35. While functioning, a strong adhesive action with the pattern conductive layer 35 is also exhibited. Therefore, it is possible to effectively prevent the conductive thread 321 at the connection portion between the pattern conductive layer 35 and the wiring 32 from being oxidized and the metal film of the conductive thread 321 from dropping, and to suppress the deterioration. Therefore, it is possible to maintain a good conduction state between the pattern conductive layer 35 and the wiring 32.
 また、本発明に係る第3実施形態の繊維構造体31は、編地構造を有することが好ましい。この構造を採用することにより、溶解した熱可塑性樹脂が、導電性生地30の開口から内部に含浸されやすく、また、含浸された熱可塑性樹脂を良好に保持できる。また、溶解した熱可塑性樹脂が、パターン導電層35が設けられる側とは反対側に大きく移動することを抑制することができる。 Further, the fiber structure 31 of the third embodiment according to the present invention preferably has a knitted fabric structure. By adopting this structure, the melted thermoplastic resin is easily impregnated into the inside from the opening of the conductive fabric 30, and the impregnated thermoplastic resin can be favorably retained. Moreover, it can suppress that the melt | dissolved thermoplastic resin moves largely to the opposite side to the side in which the pattern conductive layer 35 is provided.
 また、パターン導電層35として、複数本が平行に配置された配線パターンを採用する場合に、例えば、図29(a)に示すように、当該配線パターンを構成する配線351を有するパターン導電層35を離型フィルム371上に形成する。このパターン導電層35上に、熱可塑性樹脂層36(例えば、ポリウレタンを含有する樹脂接着剤)をそれぞれの配線を覆うように(配線間は覆わないように)してプリント電極体37を形成し、当該プリント電極体37を繊維構造体31上の所定位置に載置して加熱及び加圧することにより、導電性生地30を構成する。このような導電性生地30は、図29(b)に示すように、含浸される熱可塑性樹脂層36が、各配線351の下方領域に存在し、配線351同士の間には存在しないように形成されるため、繊維構造体31の通気性や柔軟性への影響を少なくできる。一方、図29(c)に示すように配線351間も熱可塑性樹脂層36で覆うようにしてプリント電極体37を形成して、導電性生地30を構成した場合、配線パターンの耐久性や、高いパターン精度を確保することが可能となる。 When a wiring pattern in which a plurality of patterns are arranged in parallel is adopted as the pattern conductive layer 35, for example, as shown in FIG. 29A, the pattern conductive layer 35 having a wiring 351 constituting the wiring pattern. Is formed on the release film 371. A printed electrode body 37 is formed on the patterned conductive layer 35 by covering the wiring with a thermoplastic resin layer 36 (for example, a resin adhesive containing polyurethane) so as not to cover the wiring. The conductive cloth 30 is configured by placing the printed electrode body 37 at a predetermined position on the fiber structure 31 and heating and pressing it. In such a conductive fabric 30, as shown in FIG. 29 (b), the thermoplastic resin layer 36 to be impregnated exists in the lower region of each wiring 351 and does not exist between the wirings 351. Since it is formed, the influence on the air permeability and flexibility of the fiber structure 31 can be reduced. On the other hand, when the conductive cloth 30 is formed by forming the printed electrode body 37 so as to cover the wiring 351 with the thermoplastic resin layer 36 as shown in FIG. 29 (c), the durability of the wiring pattern, It is possible to ensure high pattern accuracy.
 以上、本発明に係る第3実施形態の導電性生地30について説明したが、具体的構成は、上記実施形態に限定されない。例えば、端子部34の接続端子(パターン導電層35で形成される)において、コネクタとの抜挿の信頼性を高めるために、端子表面処理をしてもよい。端子表面処理としては、ニッケル等の端子メッキや、導電ペースト印刷などが例示できる。 The conductive fabric 30 according to the third embodiment of the present invention has been described above, but the specific configuration is not limited to the above embodiment. For example, in the connection terminal (formed with the pattern conductive layer 35) of the terminal portion 34, a terminal surface treatment may be performed in order to increase the reliability of insertion / removal with the connector. Examples of the terminal surface treatment include terminal plating of nickel or the like, conductive paste printing, and the like.
 また、上記第3実施形態においては、導電性糸321を用いて配線32を製編して構成する例について説明したが、このような構成に特に限定されず、例えば、非導電性の地糸331を用いて製編した生地本体の所定領域に対して導電性樹脂を印刷することにより、所定形状の配線32を生地本体上に形成してもよい。導電性樹脂を印刷する方法としては、スクリーン印刷、グラビア印刷、凸版印刷、凹版印刷、グラビアオフセット印刷、インクジェット印刷や、フォトリソグラフィ等の細線パターニングなど、周知の印刷法を用いることができる。また、導電性樹脂は、例えば、ポリエステル、ポリプロピレン、ポリエチレン、ポリエーテル、ポリウレタン、メタクリル樹脂、エポキシ樹脂、塩化ビニル、酢酸ビニル、塩化ビニル、酢酸ビニル共重合体等から選ばれた少なくとも一種よりなるバインダ(樹脂)中に、銀、塩化銀、チタン、ニッケル、白金、アルミニウム、ステンレス等から選ばれた少なくとも一種の微細粒子を含む導電性材料を混合して形成することができる。 Moreover, in the said 3rd Embodiment, although the example which knitted and comprised the wiring 32 using the conductive thread | yarn 321 was demonstrated, it is not specifically limited to such a structure, For example, a nonelectroconductive ground thread The wiring 32 having a predetermined shape may be formed on the fabric main body by printing a conductive resin on a predetermined region of the fabric main body knitted using 331. As a method for printing the conductive resin, a known printing method such as screen printing, gravure printing, letterpress printing, intaglio printing, gravure offset printing, ink jet printing, and fine line patterning such as photolithography can be used. The conductive resin is, for example, a binder made of at least one selected from polyester, polypropylene, polyethylene, polyether, polyurethane, methacrylic resin, epoxy resin, vinyl chloride, vinyl acetate, vinyl chloride, vinyl acetate copolymer, and the like. The (resin) can be formed by mixing a conductive material containing at least one kind of fine particles selected from silver, silver chloride, titanium, nickel, platinum, aluminum, stainless steel and the like.
 また、上記第3実施形態においては、端子部34が、パターン導電層35と、繊維構造体31(生地本体)に含浸される熱可塑性樹脂層36とを備えるように構成しているが、このような構成に特に限定されず、例えば、図30の概略平面図に示すように、配線32および端子部34の両方について、上記端子部34と同様な構造を有するように構成してもよい。つまり、端子部34に加えて、生地本体が有する配線32が、導電性材料及び樹脂を含むパターン導電層35と、パターン導電層35の少なくとも一方の面に接する熱可塑性樹脂層36とを備え、熱可塑性樹脂層36の少なくとも一部分が、生地本体に含浸されており、配線32を形成するパターン導電層35が、生地本体の露出表面に沿って配置されるように構成してもよい。このように配線32についても上記端子部34と同様な構造を採用する場合、プリント電極体37として、例えば、離型フィルム371上に、印刷技術により、配線32と端子部34とに対応するパターン導電層35を形成したものを用いればよい。なお、導電性生地30が、配線32を複数備える場合、全ての配線32について、上記端子部34と同様な構造を有するように構成してもよく、或いは、一部の配線32についてのみ上記端子部34と同様な構造を有するように構成してもよい。 Moreover, in the said 3rd Embodiment, although the terminal part 34 is comprised so that the pattern conductive layer 35 and the thermoplastic resin layer 36 with which the fiber structure 31 (fabric main body) is impregnated, this is comprised. For example, as shown in the schematic plan view of FIG. 30, both the wiring 32 and the terminal portion 34 may be configured to have the same structure as the terminal portion 34. That is, in addition to the terminal portion 34, the wiring 32 included in the fabric body includes a pattern conductive layer 35 containing a conductive material and a resin, and a thermoplastic resin layer 36 in contact with at least one surface of the pattern conductive layer 35. At least a part of the thermoplastic resin layer 36 may be impregnated in the fabric body, and the pattern conductive layer 35 forming the wiring 32 may be arranged along the exposed surface of the fabric body. As described above, when the wiring 32 has the same structure as that of the terminal portion 34, a pattern corresponding to the wiring 32 and the terminal portion 34 is formed on the release film 371 as the printed electrode body 37 by a printing technique. What formed the conductive layer 35 may be used. When the conductive fabric 30 includes a plurality of wirings 32, all the wirings 32 may be configured to have the same structure as the terminal part 34, or only a part of the wirings 32 may have the terminals. You may comprise so that it may have the same structure as the part 34. FIG.
 また、上記第3実施形態においては、生地本体に形成される配線32の具体的構成は、特に限定されず、例えば、図31に示すように、配線32が互いに電気的に接続される第1配線部325と第2配線部326とを備えるように構成してもよい。この図31における構成においては、繊維構造体31(生地本体)上に所定間隔を空けて配置される機能部50に、第2配線部326が電気的に接続されるように構成されており、端子部34におけるパターン導電層35に第1配線部325が電気的に接続されるように構成されている。なお、機能部50としては、タッチセンサ等の各種センサ、発光素子、表示装置、スイッチ、発熱体、アクチュエータ、などの機能を有する電極や部材を例示することができる。 In the third embodiment, the specific configuration of the wiring 32 formed on the fabric body is not particularly limited. For example, as shown in FIG. 31, the first wiring 32 is electrically connected to each other. You may comprise so that the wiring part 325 and the 2nd wiring part 326 may be provided. In the configuration in FIG. 31, the second wiring portion 326 is configured to be electrically connected to the functional unit 50 arranged at a predetermined interval on the fiber structure 31 (fabric main body). The first wiring part 325 is configured to be electrically connected to the pattern conductive layer 35 in the terminal part 34. Examples of the functional unit 50 include electrodes and members having functions such as various sensors such as touch sensors, light emitting elements, display devices, switches, heating elements, actuators, and the like.
 ここで、第1配線部325及び第2配線部326は、それぞれ同一の材料によって形成してもよく、或いは、異なる材料によって形成してもよい。異なる材料によって形成する場合、例えば、導電性糸321を製編することにより第2配線部326を形成する一方、第1配線部325については、上記端子部34と同様な構造を有するように形成してもよい。つまり、端子部34に加えて、第1配線部325が、導電性材料及び樹脂を含むパターン導電層と、パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備え、熱可塑性樹脂層の少なくとも一部分が、生地本体に含浸されており、第1配線部325を形成するパターン導電層が、生地本体の露出表面に沿って配置されるように構成してもよい。このように第1配線部325についても上記端子部34と同様な構造を採用する場合、プリント電極体37として、例えば、離型フィルム371上に、印刷技術により、第1配線部325と端子部34とに対応するパターン導電層35を形成したものを用いればよい。なお、導電性生地30が、第1配線部325を複数備える場合、全ての第1配線部325について、上記端子部34と同様な構造を有するように構成してもよく、或いは、一部の第1配線部325についてのみ上記端子部34と同様な構造を有するように構成してもよい。 Here, the first wiring part 325 and the second wiring part 326 may be formed of the same material, or may be formed of different materials. In the case of forming with different materials, for example, the second wiring part 326 is formed by knitting the conductive yarn 321, while the first wiring part 325 is formed to have the same structure as the terminal part 34. May be. That is, in addition to the terminal portion 34, the first wiring portion 325 includes a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer. The fabric body may be impregnated at least in part, and the pattern conductive layer forming the first wiring part 325 may be arranged along the exposed surface of the fabric body. As described above, when the same structure as that of the terminal portion 34 is adopted for the first wiring portion 325 as well, the first wiring portion 325 and the terminal portion are formed on the release film 371 as the printed electrode body 37 by a printing technique, for example. What formed the pattern conductive layer 35 corresponding to 34 may be used. When the conductive fabric 30 includes a plurality of first wiring portions 325, all the first wiring portions 325 may be configured to have the same structure as the terminal portion 34, or a part of the first wiring portions 325 may be configured. Only the first wiring part 325 may be configured to have the same structure as the terminal part 34.
 また、上記第3実施形態に係る導電性生地30については、主に、心電図や筋電図等のデータ採取、或いは電気治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着できるように構成されるものとして説明しているが、このような構成に特に限定されない。例えば、タッチパネルや表示装置、発光装置、発熱体といった様々な機能を発揮する装置と、該装置の作動を制御等する外部装置や電源装置との間を電気的に接続する配線部材としても用いることができる。 In addition, for the conductive fabric 30 according to the third embodiment, mainly when the subject is subjected to data collection such as an electrocardiogram or electromyogram, or electrical therapy, the subject's arms and legs, Although it is described as being configured so as to be wound around the body or the like, it is not particularly limited to such a configuration. For example, it can also be used as a wiring member that electrically connects a device that exhibits various functions such as a touch panel, a display device, a light emitting device, and a heating element, and an external device or power supply device that controls the operation of the device. Can do.
 また、上記第3実施形態において、図32の模式断面図(図23に示す導電性生地30の長手方向に沿った断面に対応)に示すように、パターン導電層35の露出面を被覆する被覆体38を備えるように構成してもよい。このような被覆体38を設けるように構成することにより、パターン導電層35の表面保護を図ることができ、導電性生地30と外部装置との間の接続部構造であるパターン導電層35の強度を向上させることができる。なお、外部装置との電気的な接続を考慮して、パターン導電層35に対して繊維構造体31側とは反対側の被覆体38の一部を部分的に除去して、パターン導電層35が露出するように構成する。ここで、被覆体38として、例えば、樹脂フィルムや不織布、生地本体を構成する地糸331から形成した編地構造体等種々のものを採用することができる。被覆体38をパターン導電層35上に配設する手法は特に限定されず、例えば、上記熱可塑性樹脂層36を形成する熱可塑性樹脂と同一の樹脂材料を介して熱融着させて配設することができる。また、上述の導電性生地30を製造する方法で説明した転写フィルムを被覆体38として活用することもできる。更に、樹脂によるコーティング層を被覆体38とすることもできる。 Further, in the third embodiment, as shown in the schematic cross-sectional view of FIG. 32 (corresponding to the cross-section along the longitudinal direction of the conductive fabric 30 shown in FIG. 23), the coating covering the exposed surface of the pattern conductive layer 35 You may comprise so that the body 38 may be provided. By providing such a covering 38, the surface of the patterned conductive layer 35 can be protected, and the strength of the patterned conductive layer 35, which is a connection structure between the conductive fabric 30 and the external device, can be achieved. Can be improved. In consideration of electrical connection with an external device, the pattern conductive layer 35 is partially removed by partially removing the covering 38 on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35. Is configured to be exposed. Here, as the covering body 38, various things, such as a knitted fabric structure formed from the ground yarn 331 which comprises a resin film, a nonwoven fabric, and a fabric main body, are employable, for example. The method of disposing the covering 38 on the pattern conductive layer 35 is not particularly limited. For example, the covering 38 is disposed by being thermally fused via the same resin material as the thermoplastic resin forming the thermoplastic resin layer 36. be able to. Moreover, the transfer film demonstrated by the method of manufacturing the above-mentioned conductive cloth 30 can also be utilized as the covering 38. Further, a coating layer made of resin can be used as the cover 38.
 また、上記第3実施形態においては、熱可塑性樹脂層36が、パターン導電層35に対して繊維構造体31側に設けられるように構成しているが、このような形態に特に限定されず、図33や図34の模式断面図に示すように、パターン導電層35に対して、繊維構造体31側とは反対側に熱可塑性樹脂層36の一部が設けられるような構成を採用することもできる。このような構成の場合、外部装置との電気的な接続を考慮して、パターン導電層35に対して繊維構造体31側とは反対側の熱可塑性樹脂層36の一部を部分的に除去して、パターン導電層35が露出するように構成する。この図33や図34に示す構成の場合、パターン導電層35の露出面が熱可塑性樹脂層36によって被覆される形態となり、パターン導電層35の表面保護を図ることができる。 Moreover, in the said 3rd Embodiment, although it has comprised so that the thermoplastic resin layer 36 may be provided in the fiber structure 31 side with respect to the pattern conductive layer 35, it is not specifically limited to such a form, As shown in the schematic cross-sectional views of FIGS. 33 and 34, a configuration in which a part of the thermoplastic resin layer 36 is provided on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35 is adopted. You can also. In the case of such a configuration, a part of the thermoplastic resin layer 36 on the side opposite to the fiber structure 31 side with respect to the pattern conductive layer 35 is partially removed in consideration of electrical connection with an external device. Then, the pattern conductive layer 35 is configured to be exposed. 33 and 34, the exposed surface of the pattern conductive layer 35 is covered with the thermoplastic resin layer 36, and the surface of the pattern conductive layer 35 can be protected.
 また、上記第3実施形態において、図35に示すように、配線32が設けられる生地本体3が、部分的に突出する生地片39を備え、当該生地片39の先端部に端子部34を配置するように構成し、図36(a)(b)の模式図に示すように、当該生地片39を外部装置が備える外部デバイス回路のコネクタに直接的に挿入して接続するようにしてもよい。なお、図36(b)は、図36(a)の断面に対応する模式図である。このような構成を採用する場合、端子部34が備える熱可塑性樹脂層36及びパターン導電層35の少なくとも一部分が、該生地片39に配置されるように構成する。なお、この生地片39は、非導電性の地糸331から形成することができる。また、生地片39の長さ(生地本体3からの突出長さ)は、適宜設定することができる。 In the third embodiment, as shown in FIG. 35, the fabric body 3 provided with the wiring 32 includes a fabric piece 39 that partially protrudes, and the terminal portion 34 is disposed at the tip of the fabric piece 39. As shown in the schematic diagrams of FIGS. 36 (a) and 36 (b), the fabric piece 39 may be directly inserted and connected to a connector of an external device circuit included in the external device. . Note that FIG. 36B is a schematic diagram corresponding to the cross section of FIG. When such a configuration is adopted, at least a part of the thermoplastic resin layer 36 and the pattern conductive layer 35 included in the terminal portion 34 is configured to be disposed on the fabric piece 39. The fabric piece 39 can be formed from a non-conductive ground yarn 331. In addition, the length of the fabric piece 39 (projection length from the fabric body 3) can be set as appropriate.
 また、図35に示すように生地片39を設ける場合には、図36(b)に示すように、当該生地片39に補強部材391を設けるように構成してもよい。補強部材391は、生地片39上においてパターン導電層35が配置される面とは反対側の面であって、生地片39の先端部分に配置されることが好ましい。なお、補強部材391をパターン導電層35の露出面上に設けるようにしてもよい。このような場合、外部装置との電気的な接続を考慮して、補強部材391の一部を部分的に除去して、パターン導電層35が露出するように構成する。また、補強部材391としては、例えば、樹脂フィルムや不織布、生地本体を構成する地糸331から形成した編地構造体等種々のものを採用することができる。また、樹脂によるコーティング層を補強部材391とすることもできる。このような補強部材391を設けることにより、生地片39の先端側の剛性を高めることができるため、外部装置における電気信号取得用のコネクタ100に生地片39を挿入しやすくなるという効果を得ることができる。また、補強部材391の厚みを適宜設定して生地片の先端部分の厚み寸法を、コネクタ100における挿入孔の厚み方向寸法と同程度に構成することにより、コネクタ100に挿入された生地片39の先端部が、挿入孔内で浮いてしまうことを防止して、しっかりと固定させることが可能となる。なお、図23に示すように長尺状に導電性生地30を構成し、その一方端を端子部34とする場合においても、上記補強部材391を、端子部34の先端部であって、パターン導電層35が配置される面とは反対側の面に配置するようにしてもよい。 35, when the dough piece 39 is provided as shown in FIG. 35, a reinforcing member 391 may be provided on the dough piece 39 as shown in FIG. The reinforcing member 391 is preferably disposed on the tip of the fabric piece 39 on the opposite side of the surface on which the pattern conductive layer 35 is disposed on the fabric piece 39. The reinforcing member 391 may be provided on the exposed surface of the pattern conductive layer 35. In such a case, in consideration of electrical connection with an external device, a part of the reinforcing member 391 is partially removed so that the pattern conductive layer 35 is exposed. Moreover, as the reinforcing member 391, for example, various members such as a resin film, a nonwoven fabric, and a knitted fabric structure formed from the ground yarn 331 constituting the fabric main body can be adopted. Further, a coating layer made of resin can be used as the reinforcing member 391. By providing such a reinforcing member 391, the rigidity of the front end side of the fabric piece 39 can be increased, so that the effect of facilitating the insertion of the fabric piece 39 into the electrical signal acquisition connector 100 in the external device is obtained. Can do. Further, by setting the thickness of the reinforcing member 391 as appropriate and making the thickness dimension of the tip portion of the fabric piece approximately the same as the thickness direction dimension of the insertion hole in the connector 100, the fabric piece 39 inserted into the connector 100 It is possible to prevent the tip portion from floating in the insertion hole and fix it firmly. 23, when the conductive fabric 30 is formed in a long shape and one end thereof is used as the terminal portion 34, the reinforcing member 391 is the tip portion of the terminal portion 34, and the pattern You may make it arrange | position to the surface on the opposite side to the surface where the conductive layer 35 is arrange | positioned.
 また、生地片39を設ける場合、図37の模式断面図に示すように、生地片39が、生地本体(繊維構造体31)の表面から外方に突出するように形成してもよい。このような形態を採用することにより、例えば、繊維構造体31を衣類(シャツ、パンツ、ズボン、靴下、手袋、帽子等の衣服、およびそれらの部材)として形成する場合であっても、そのデザイン性の自由度が高まり、また、外部装置との接続部構造である生地片39が着用者にとって邪魔になってしまうことを効果的に抑制することが可能となる。なお、このような効果は、繊維構造体31を衣類形体状(シャツ形やズボン形など)に形成する場合に限らず、図23に示すように長尺状に導電性生地30を構成し、例えば、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などに巻きつけて装着する場合であっても同様である。 Further, when the fabric piece 39 is provided, as shown in the schematic cross-sectional view of FIG. 37, the fabric piece 39 may be formed so as to protrude outward from the surface of the fabric body (fiber structure 31). By adopting such a form, for example, even when the fiber structure 31 is formed as clothing (clothes such as shirts, pants, trousers, socks, gloves, hats, and members thereof), the design The degree of freedom of the sex is increased, and it is possible to effectively suppress the cloth piece 39 that is a connection portion structure with an external device from becoming an obstacle to the wearer. Such an effect is not limited to the case where the fiber structure 31 is formed in a clothing shape (such as a shirt shape or a trouser shape), and the conductive fabric 30 is configured in a long shape as shown in FIG. For example, when collecting data such as an electrocardiogram or electromyogram, or performing electrical treatment or electromagnetic wave treatment on the subject, even if it is wrapped around the subject's arm, leg, trunk, etc. It is the same.
 また、上記第3実施形態において、繊維構造体31における配線32の少なくとも一部分が、図38の模式断面図に示すように、繊維構造体31においてパターン導電層35が設けられる面とは反対側の面に露出するように構成してもよい。このような形態を採用することにより、例えば、心電図や筋電図等のデータ採取、或いは電気治療などを行う場合に、反対側の面に露出した配線32が電極として機能する。導電性生地30を対象者の腕や脚、胴部などに巻きつけて装着する場合に、対象者の身体の表面に配線32を密着させつつ、装着された導電性生地30の外表面側に外部装置との接続部構造であるパターン導電層35が露出することになるため、使用上の簡便性を確保しつつ、確実に生体信号の取得等を行うことが可能となる。 Moreover, in the said 3rd Embodiment, as shown in the schematic cross section of FIG. 38, at least one part of the wiring 32 in the fiber structure 31 is on the opposite side to the surface in which the pattern conductive layer 35 is provided in the fiber structure 31. You may comprise so that it may be exposed to a surface. By adopting such a form, for example, when performing data collection such as electrocardiogram or electromyogram or electrotherapy, the wiring 32 exposed on the opposite surface functions as an electrode. When the conductive fabric 30 is wrapped around the subject's arm, leg, torso or the like, the wiring 32 is brought into close contact with the surface of the subject's body while the conductive fabric 30 is placed on the outer surface side of the worn conductive fabric 30. Since the pattern conductive layer 35 which is a connection portion structure with an external device is exposed, it is possible to reliably acquire a biological signal while ensuring ease of use.
 また、上述した本発明の導電性生地30の製造方法は、プリント電極体37における熱可塑性樹脂層36及びパターン導電層35を繊維構造体31に転写することにより導電性生地30を形成する方法であるが、このような転写技術を利用する他、以下のような方法によっても導電性生地30を形成することができる。すなわち、図39に示すように、フィルム状の熱可塑性樹脂層36上に、印刷技術によりパターン導電層35を形成することによりプリント電極体37を形成し、繊維構造体31における配線32の少なくとも一部分上に、このプリント電極体37の熱可塑性樹脂層36側を向けて載置し(載置ステップS2)、その後、上記加熱・加圧ステップS3における工程を施すことにより、フィルム状の熱可塑性樹脂層36を溶融させて繊維構造体31に含浸させつつ、パターン導電層35を繊維構造体31の表面に設けるようにしてもよい。なお、フィルム状の熱可塑性樹脂層36の厚みは、10μm以上100μm以下であることが好ましく、特に、20μm以上80μm以下であることがより好ましい。フィルム状の熱可塑性樹脂層36の厚みが10μm未満の場合、強度や取扱い性に問題がある。100μmより厚い場合、コストが高くなり、また導電性生地30に十分な厚みがないと熱可塑性樹脂が裏面へにじみ出るおそれがある。 Moreover, the manufacturing method of the conductive cloth 30 of the present invention described above is a method of forming the conductive cloth 30 by transferring the thermoplastic resin layer 36 and the pattern conductive layer 35 in the printed electrode body 37 to the fiber structure 31. However, in addition to using such a transfer technique, the conductive cloth 30 can be formed by the following method. That is, as shown in FIG. 39, a printed electrode body 37 is formed by forming a patterned conductive layer 35 on a film-like thermoplastic resin layer 36 by a printing technique, and at least a part of the wiring 32 in the fiber structure 31 is formed. On top of this, the printed electrode body 37 is placed with the thermoplastic resin layer 36 side facing (placement step S2), and then the process in the heating / pressurizing step S3 is performed, thereby forming a film-like thermoplastic resin. The pattern conductive layer 35 may be provided on the surface of the fiber structure 31 while the layer 36 is melted and impregnated in the fiber structure 31. The thickness of the film-like thermoplastic resin layer 36 is preferably 10 μm or more and 100 μm or less, and more preferably 20 μm or more and 80 μm or less. When the thickness of the film-like thermoplastic resin layer 36 is less than 10 μm, there is a problem in strength and handleability. If it is thicker than 100 μm, the cost increases, and if the conductive fabric 30 does not have a sufficient thickness, the thermoplastic resin may ooze out to the back surface.
 上記フィルム状の熱可塑性樹脂層36は、上述した熱可塑性樹脂層36を構成する樹脂から形成することができるが、特にポリウレタン樹脂製のフィルムを熱可塑性樹脂層36として採用することが好ましい。繊維構造体31に含浸されたポリウレタン樹脂製のフィルムの厚み(量)が大きくなると、繊維構造体31における含浸領域が僅かに固くなるため、パターン導電層35が形成される導電性生地部分の強度を向上させることが可能となる。例えば、外部装置との接続部として用いる場合、端子間の幅精度を確保するために本構造を用いることが好ましい。 The film-like thermoplastic resin layer 36 can be formed from the resin constituting the thermoplastic resin layer 36 described above, and it is particularly preferable to employ a polyurethane resin film as the thermoplastic resin layer 36. When the thickness (amount) of the polyurethane resin film impregnated in the fiber structure 31 is increased, the impregnation region in the fiber structure 31 is slightly hardened, so that the strength of the conductive fabric portion on which the pattern conductive layer 35 is formed is increased. Can be improved. For example, when used as a connection portion with an external device, it is preferable to use this structure in order to ensure the width accuracy between terminals.
 また、上記第3実施形態において説明した導電性生地30の製造方法においては、離型フィルム371上に、印刷技術によりパターン導電層35を形成した後、当該パターン導電層35上に、熱可塑性樹脂層36を配設して構成されるプリント電極体37を用い、このプリント電極体37におけるパターン導電層35及び熱可塑性樹脂層36を繊維構造体31に転写するようにしているが、このような手法の他、離型フィルム371上に印刷技術によりパターン導電層35を形成してプリント電極体37を構成し、例えば、シート状、液状、粉状、或いは、粒状の熱可塑性樹脂を、繊維構造体31における配線32の少なくとも一部分上に塗布又は配置した上で、当該プリント電極体37を載置し、加熱・加圧ステップS3によるヒートプレスを行うようにして、シート状、液状、粉状、或いは、粒状の熱可塑性樹脂を溶融させて繊維構造体31に含浸させつつ、パターン導電層35を繊維構造体31の表面に設けるようにしてもよい。なお、ヒートプレスを、繊維構造体31の形状を保ちつつ、繊維構造体31の露出表面にパターン導電層35が密着する加熱・加圧条件とすることで、生地の風合いを損なわない。 In the method for manufacturing the conductive fabric 30 described in the third embodiment, after the pattern conductive layer 35 is formed on the release film 371 by a printing technique, the thermoplastic resin is formed on the pattern conductive layer 35. A printed electrode body 37 configured by arranging the layer 36 is used, and the pattern conductive layer 35 and the thermoplastic resin layer 36 in the printed electrode body 37 are transferred to the fiber structure 31. In addition to the method, the pattern conductive layer 35 is formed on the release film 371 by a printing technique to form the printed electrode body 37. For example, a sheet-like, liquid, powdery, or granular thermoplastic resin is used as a fiber structure. After applying or disposing on at least a part of the wiring 32 in the body 31, the printed electrode body 37 is placed, and the heating / pressurizing step S3 is performed. The pattern conductive layer 35 is provided on the surface of the fiber structure 31 while the sheet structure, liquid, powder, or granular thermoplastic resin is melted and impregnated in the fiber structure 31. May be. Note that the texture of the fabric is not impaired by setting the heat press to heating / pressurizing conditions in which the pattern conductive layer 35 is in close contact with the exposed surface of the fiber structure 31 while maintaining the shape of the fiber structure 31.
 また、上記第3実施形態において、地糸331又は導電性糸321に、熱融着糸および熱合着糸の少なくとも一方を混合して、繊維構造体31(生地本体)にほつれ止め処理を施してもよい。ほつれ止め処理は、繊維構造体31の形成に用いた地糸331や導電性糸321が編織等組織の中で交差している部分を固定させる処理であって、このほつれ止め処理を施すことで、地糸331や導電性糸321の糸端が浮遊状態となるのを阻止している。ほつれ止め処理の実施方法は、繊維構造体31の形成に用いる地糸331や導電性糸321に対し、熱融着糸および熱合着糸の少なくとも一方を混用させ、そのうえで繊維構造体31を製編し、製編後に熱セットを行うという手順とする。導電性生地30を所定形状に切断する場合に、少なくともその形状の外縁部に対しこのようなほつれ止め処理を施すことで、導電性生地30の切断端縁がほつれることがなくなる。特に、端子部34(生地片39)にほつれ止め処理を行うことで、外部デバイス回路のコネクタと確実に接続することができる。 In the third embodiment, at least one of a heat fusion yarn and a heat fusion yarn is mixed with the ground yarn 331 or the conductive yarn 321, and the fiber structure 31 (fabric main body) is subjected to a fraying prevention treatment. May be. The fraying prevention process is a process of fixing a portion where the ground yarn 331 and the conductive yarn 321 used for forming the fiber structure 31 intersect in a structure such as a knitted fabric, and this fraying prevention process is performed. The yarn ends of the ground yarn 331 and the conductive yarn 321 are prevented from floating. In the fraying prevention treatment method, at least one of a thermal fusing yarn and a thermal fusing yarn is mixed with the ground yarn 331 and the conductive yarn 321 used for forming the fibrous structure 31, and then the fibrous structure 31 is manufactured. Knitting and heat setting after knitting. When the conductive fabric 30 is cut into a predetermined shape, the cut edge of the conductive fabric 30 is not frayed by applying such a fraying prevention process to at least the outer edge portion of the shape. In particular, the fraying prevention process is performed on the terminal portion 34 (fabric piece 39), so that it can be reliably connected to the connector of the external device circuit.
 ここで、熱融着糸と熱合着糸との差異は、半溶融状態からの冷却により生じる結合力の強弱によって区別すればよく、結合力が強い(熱融着)ものは熱融着糸とし、これよりも結合力が弱い(合着)ものは熱合着糸とする。この区別は明確とは言えず曖昧模糊とした部分を含むが、要は、本発明では熱セットによって地糸331や導電性糸321の交差部を結合できるものであればよい。従って、伸縮性(弾性)に優れ、加熱によって熱融着し、かつ、熱融着部位においては伸縮性(弾性)が失われることなく、高度の伸縮性(弾性)が保有されるものを用いることができる。 Here, the difference between the heat-bonded yarn and the heat-bonded yarn may be distinguished by the strength of the bonding force generated by cooling from the semi-molten state. The one having a weaker binding force (bonding) than this is a heat-bonding yarn. Although this distinction is not clear and includes an ambiguous portion, in the present invention, what is necessary is that the intersection of the ground yarn 331 and the conductive yarn 321 can be combined by heat setting. Accordingly, a material that has excellent stretchability (elasticity), is heat-sealed by heating, and retains high stretchability (elasticity) without losing stretchability (elasticity) at the heat-sealed portion. be able to.
 熱融着糸や熱合着糸を構成する材料としては、代表例として低融点ポリウレタンを挙げることができる。その他、ポリエチレンやナイロン(6や66)、ポリプロピレン、ポリ塩化ビニル、ビニル系ポリマー、ポリアミド等の縮合系ポリマーなどを採用可能である。 As a material constituting the heat fusion yarn or the heat fusion yarn, a low melting point polyurethane can be given as a representative example. In addition, condensation polymers such as polyethylene, nylon (6 and 66), polypropylene, polyvinyl chloride, vinyl polymers, polyamides, and the like can be used.
 更なる具体例をとしては、低融点ポリアミド繊維糸、低融点ポリエステル系繊維糸(低融点ポリエステル共重合体繊維糸、低融点脂肪族ポリエステル繊維糸)等が挙げられる。なかでも、低融点ポリエステル系繊維糸が好ましい。 Further specific examples include low melting point polyamide fiber yarns, low melting point polyester fiber yarns (low melting point polyester copolymer fiber yarns, low melting point aliphatic polyester fiber yarns) and the like. Of these, low melting point polyester fiber yarns are preferred.
 上記低融点ポリエステル共重合体繊維糸を構成する低融点ポリエステル共重合体の好ましい共重合成分としては、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等のヒドロキ シカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタ エリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、 2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸、5-テトラブチルホスホニウムイソフタ ル酸等の分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。 Preferred copolymer components of the low melting point polyester copolymer constituting the low melting point polyester copolymer fiber yarn include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid. In addition to hydroxycarboxylic acids such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol, etc. In the molecule such as acid, fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium isophthalic acid, 5-tetrabutylphosphonium isophthalic acid Compounds or derivatives thereof containing the number of the carboxylic acid group.
 また、上記低融点脂肪族ポリエステル繊維糸を構成する低融点脂肪族ポリエステルとしては、例えば、ポリ乳酸、ポリグリコール酸、ポリ-3-ヒドロキシプロピオネート、ポリ-3-ヒドロキシブチレート、ポリ-3-ヒドロキシブチレートバ リレート、ポリカプロラクトン等が挙げられる。 Examples of the low melting point aliphatic polyester constituting the low melting point aliphatic polyester fiber yarn include polylactic acid, polyglycolic acid, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, and poly-3. -Hydroxybutyrate butylate, polycaprolactone and the like.
 また、熱融着糸の市販品としては、他に、80~130℃の乾熱や、50~100℃の湿熱で溶融する低融点ポリアミド繊維糸、例えば、フロール(ユニチカ社製)、エルダー(東レ社製)、ジョイナー(フジボウ社製)等を用いることができる。 Other commercially available heat-bonding yarns include low-melting polyamide fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Flor (manufactured by Unitika), Elder ( Toray Co., Ltd.), Joiner (Fujibo Co., Ltd.), etc. can be used.
 また、80~130℃の乾熱や、50~100℃の湿熱で溶融する低融点ポリエステル繊維糸、例えば、ソフィット(クラレ社製)、メルティ(ユニチカ社製)、ソルスター(三菱レイヨン社製)、ベルコンビ(鐘紡社製)、エステナール(東洋紡績社製)等を用いてもよい。 Also, low-melting polyester fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Sophit (Kuraray), Melty (Unitika), Solstar (Mitsubishi Rayon), Bel combi (manufactured by Kanebo Co., Ltd.), estenaal (manufactured by Toyobo Co., Ltd.), etc. may be used.
 また、地糸331又は導電性糸321に対して熱融着糸や熱合着糸を混用させる方法には、地糸331や導電性糸321を「芯」とし、熱融着糸又は熱合着糸を「カバー」とするカバリング糸(SCYでもDCYでもよい)を用いる方法や、地糸331や導電性糸321に熱融着糸又は熱合着糸を引き揃える(プレーティング編としてもしなくてもよい)方法などがある。 In addition, as a method of mixing a heat fusion yarn or a heat fusion yarn with the ground yarn 331 or the conductive yarn 321, the ground yarn 331 or the conductive yarn 321 is used as a “core”, and the heat fusion yarn or the heat fusion yarn is used. A method of using a covering yarn (which may be SCY or DCY) with the attached yarn as a “cover”, or a heat-bonded yarn or a heat-bonded yarn are aligned with the ground yarn 331 or the conductive yarn 321 (not as a plating knitting) There is a method).
10 導電性生地(導電パーツ)
12 導電部
121 導電性糸
13 非導電部
132 地糸
14 接続部
15 樹脂接着剤
Z 外部装置から導かれる接続端子(導電性の被着体)
20 導電性生地(導電パーツ)
21 繊維構造体
22 導電部
221 導電性糸
23 非導電部
231 地糸
25 パターン導電層
26 熱可塑性樹脂層
27 プリント電極体
28 被覆体
29 生地片
291 補強部材
30 導電性生地(導電パーツ)
30 繊維構造体
32 配線
321 導電性糸
33 非導電部
331 地糸
34 端子部
35 パターン導電層
36 熱可塑性樹脂層
37 プリント電極体
38 被覆体
39 生地片
391 補強部材
 
10 Conductive fabric (conductive parts)
DESCRIPTION OF SYMBOLS 12 Conductive part 121 Conductive thread 13 Non-conductive part 132 Ground thread 14 Connection part 15 Resin adhesive Z Connection terminal (conductive adherend) led from an external device
20 Conductive fabric (conductive parts)
21 Fiber structure 22 Conductive part 221 Conductive thread 23 Non-conductive part 231 Ground thread 25 Pattern conductive layer 26 Thermoplastic resin layer 27 Printed electrode body 28 Cover body 29 Fabric piece 291 Reinforcement member 30 Conductive fabric (conductive part)
30 Fiber structure 32 Wiring 321 Conductive thread 33 Non-conductive part 331 Ground thread 34 Terminal part 35 Pattern conductive layer 36 Thermoplastic resin layer 37 Printed electrode body 38 Cover body 39 Fabric piece 391 Reinforcing member

Claims (25)

  1.  導電性の被着体を重ねて固定される導電性生地であって、
     導電性繊維構造体により構成され、前記被着体と電気的に接続可能な導電部と、
     前記導電部が配設される領域の少なくとも一部分において含浸され、前記被着体を前記導電部に直接接触させた状態で接続固定する樹脂接着剤とを備える導電性生地。
    A conductive fabric that is fixed by overlapping conductive adherends,
    A conductive portion made of a conductive fiber structure and electrically connectable to the adherend;
    A conductive fabric comprising a resin adhesive that is impregnated in at least a part of a region where the conductive portion is disposed and that connects and fixes the adherend in direct contact with the conductive portion.
  2.  前記導電部は、前記導電性繊維構造体からなる編地構造を有することを特徴とする請求項1に記載の導電性生地。 The conductive fabric according to claim 1, wherein the conductive portion has a knitted fabric structure made of the conductive fiber structure.
  3.  前記導電部を構成する前記導電性繊維構造体において前記被着体と接触する部分の断面形状は、前記被着体の重ね合わせ方向に垂直な方向に沿う寸法が、該重ね合わせ方向に沿う寸法よりも大となる扁平形状であることを特徴とする請求項1又は2に記載の導電性生地。 The cross-sectional shape of the portion in contact with the adherend in the conductive fiber structure constituting the conductive portion is such that the dimension along the direction perpendicular to the overlay direction of the adherend is the dimension along the overlay direction. The conductive cloth according to claim 1, wherein the conductive cloth has a flat shape that is larger than that of the conductive cloth.
  4.  前記導電性繊維構造体は、複数の単繊維の集合体であることを特徴とする請求項1から3のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 1 to 3, wherein the conductive fiber structure is an aggregate of a plurality of single fibers.
  5.  前記樹脂接着剤は、変性ポリオレフィン系エラストマーを含有することを特徴とする請求項1から4のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 1 to 4, wherein the resin adhesive contains a modified polyolefin elastomer.
  6.  導電性糸を含む導電部を有する繊維構造体と、
     導電性材料及び樹脂を含むパターン導電層と、
     前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、
     前記熱可塑性樹脂層の少なくとも一部分は、前記繊維構造体に含浸されており、
     前記パターン導電層は、前記繊維構造体の露出表面に沿って配置され、前記導電部と電気的に接続されていることを特徴とする導電性生地。
    A fiber structure having a conductive portion including a conductive yarn;
    A patterned conductive layer containing a conductive material and a resin;
    A thermoplastic resin layer in contact with at least one surface of the pattern conductive layer,
    At least a portion of the thermoplastic resin layer is impregnated in the fibrous structure;
    The pattern conductive layer is disposed along the exposed surface of the fiber structure, and is electrically connected to the conductive portion.
  7.  前記繊維構造体は、前記導電部が設けられる生地本体と、部分的に突出する生地片とを備えており、
     前記熱可塑性樹脂層及び前記パターン導電層の少なくとも一部分が、前記生地片に配置されていることを特徴とする請求項6に記載の導電性生地。
    The fiber structure includes a fabric body provided with the conductive portion, and a partially protruding fabric piece,
    The conductive fabric according to claim 6, wherein at least a part of the thermoplastic resin layer and the patterned conductive layer is disposed on the fabric piece.
  8.  前記生地片は、前記生地本体の表面から外方に突出して形成されていることを特徴とする請求項7に記載の導電性生地。 The conductive fabric according to claim 7, wherein the fabric piece is formed to protrude outward from the surface of the fabric body.
  9.  前記生地片において、前記パターン導電層が配置される面とは反対側の面に補強部材が配置されていることを特徴とする請求項7又は8に記載の導電性生地。 The conductive fabric according to claim 7 or 8, wherein a reinforcing member is disposed on a surface of the fabric piece opposite to a surface on which the pattern conductive layer is disposed.
  10.  前記熱可塑性樹脂層は、前記パターン導電層に対して前記繊維構造体側に設けられていることを特徴とする請求項6から9のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 6 to 9, wherein the thermoplastic resin layer is provided on the fiber structure side with respect to the pattern conductive layer.
  11.  前記導電部の少なくとも一部分は、前記繊維構造体において前記パターン導電層が設けられた面とは反対側の面に露出していることを特徴とする請求項6から10のいずれかに記載の導電性生地。 The at least part of the said electroconductive part is exposed to the surface on the opposite side to the surface in which the said pattern conductive layer was provided in the said fiber structure, The electroconductivity in any one of Claim 6 to 10 characterized by the above-mentioned. Sex fabric.
  12.  前記繊維構造体は、編地構造を有することを特徴とする請求項6から11のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 6 to 11, wherein the fiber structure has a knitted fabric structure.
  13.  前記熱可塑性樹脂層は、ポリウレタンを含有する樹脂製であることを特徴とする請求項6から12のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 6 to 12, wherein the thermoplastic resin layer is made of a resin containing polyurethane.
  14.  前記熱可塑性樹脂層が導電性生地の前記露出表面とは反対側の表面より内側に存在することを特徴とする請求項6から13のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 6 to 13, wherein the thermoplastic resin layer is present inside a surface opposite to the exposed surface of the conductive fabric.
  15.  導電性生地の製造方法であって、
     導電性糸を含む導電部を有する繊維構造体を形成する繊維構造体形成ステップと、
     導電性材料及び樹脂を含むパターン導電層と、該パターン導電層の少なくとも一方の面側に配置される熱可塑性樹脂層とを有するプリント電極体を、前記繊維構造体における導電部の少なくとも一部分上に載置する載置ステップと、
     前記繊維構造体上の前記プリント電極体を加熱及び加圧することにより、前記熱可塑性樹脂層を溶融させて前記繊維構造体に含浸させつつ、パターン導電層を前記繊維構造体の露出表面に沿って配置して前記導電部に電気的に接続する加熱・加圧ステップとを備える導電性生地の製造方法。
    A method for producing a conductive fabric, comprising:
    A fiber structure forming step for forming a fiber structure having a conductive portion including a conductive yarn;
    A printed electrode body having a patterned conductive layer containing a conductive material and a resin and a thermoplastic resin layer disposed on at least one surface side of the patterned conductive layer is formed on at least a part of the conductive portion in the fiber structure. A placing step to place;
    By heating and pressurizing the printed electrode body on the fiber structure, the thermoplastic resin layer is melted and impregnated in the fiber structure, and a patterned conductive layer is formed along the exposed surface of the fiber structure. A method for producing a conductive fabric comprising a heating / pressurizing step that is arranged and electrically connected to the conductive portion.
  16.  端子部を有する生地本体と、該生地本体に設けられる配線とを備えており、
     少なくとも前記端子部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備え、
     前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、
     前記パターン導電層は、前記生地本体の露出表面に沿って配置され、前記配線と電気的に接続されていることを特徴とする導電性生地。
    A fabric body having a terminal portion, and wiring provided on the fabric body,
    At least the terminal portion includes a patterned conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the patterned conductive layer,
    At least a portion of the thermoplastic resin layer is impregnated in the fabric body;
    The conductive conductive fabric, wherein the patterned conductive layer is disposed along the exposed surface of the fabric main body and is electrically connected to the wiring.
  17.  前記配線および端子部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、
     前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、
     前記パターン導電層は、前記生地本体の露出表面に沿って配置されていることを特徴とする請求項16に記載の導電性生地。
    The wiring and the terminal portion include a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer,
    At least a portion of the thermoplastic resin layer is impregnated in the fabric body;
    The conductive fabric according to claim 16, wherein the pattern conductive layer is disposed along an exposed surface of the fabric main body.
  18.  前記配線は、第1配線部と第2配線部とを備えており、
     前記端子部及び第1配線部は、導電性材料及び樹脂を含むパターン導電層と、前記パターン導電層の少なくとも一方の面に接する熱可塑性樹脂層とを備えており、
     前記熱可塑性樹脂層の少なくとも一部分は、前記生地本体に含浸されており、
     前記パターン導電層は、前記生地本体の露出表面に沿って配置され、前記第1配線部と第2配線部とが電気的に接続されていることを特徴とする請求項16に記載の導電性生地。
    The wiring includes a first wiring portion and a second wiring portion,
    The terminal portion and the first wiring portion include a pattern conductive layer containing a conductive material and a resin, and a thermoplastic resin layer in contact with at least one surface of the pattern conductive layer,
    At least a portion of the thermoplastic resin layer is impregnated in the fabric body;
    The conductive pattern according to claim 16, wherein the pattern conductive layer is disposed along an exposed surface of the fabric body, and the first wiring portion and the second wiring portion are electrically connected. Cloth.
  19.  前記生地本体は、部分的に突出する生地片を備えており、
     前記端子部が、前記生地片に配置されていることを特徴とする請求項16から18のいずれかに記載の導電性生地。
    The dough body includes dough pieces that partially protrude;
    The conductive fabric according to claim 16, wherein the terminal portion is disposed on the fabric piece.
  20.  前記生地片は、前記生地本体の表面から外方に突出して形成されていることを特徴とする請求項19に記載の導電性生地。 The conductive fabric according to claim 19, wherein the fabric piece is formed to protrude outward from the surface of the fabric body.
  21.  前記端子部の少なくとも先端部において、前記パターン導電層が配置される面とは反対側の面に補強部材が配置されていることを特徴とする請求項16から20に記載の導電性生地。 21. The conductive fabric according to claim 16, wherein a reinforcing member is disposed on a surface opposite to a surface on which the pattern conductive layer is disposed at least at a tip portion of the terminal portion.
  22.  前記生地本体は、熱融着糸および熱合着糸の少なくとも一方を含むことを特徴とする請求項16から21のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 16 to 21, wherein the fabric main body includes at least one of a heat fusion yarn and a heat fusion yarn.
  23.  前記熱可塑性樹脂層は、前記パターン導電層に対して前記生地本体側に設けられていることを特徴とする請求項16から22のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 16 to 22, wherein the thermoplastic resin layer is provided on the fabric main body side with respect to the pattern conductive layer.
  24.  前記熱可塑性樹脂層は、ポリウレタンを含有する樹脂製であることを特徴とする請求項16から23のいずれかに記載の導電性生地。 The conductive fabric according to any one of claims 16 to 23, wherein the thermoplastic resin layer is made of a resin containing polyurethane.
  25.  端子部を有する生地本体と、該生地本体に設けられる配線とを備えており、
     前記端子部がフラットケーブル用コネクタと接続可能である導電性生地。
     
     
    A fabric body having a terminal portion, and wiring provided on the fabric body,
    A conductive fabric in which the terminal portion can be connected to a flat cable connector.

PCT/JP2016/078072 2015-09-28 2016-09-23 Conductive fabric and manufacturing method therefor WO2017057195A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-189825 2015-09-28
JP2015189825A JP6168568B2 (en) 2015-09-28 2015-09-28 Conductive fabric
JP2016164190A JP6168506B1 (en) 2016-08-24 2016-08-24 Conductive fabric and method for producing the same
JP2016-164190 2016-08-24
JP2016164196A JP6168507B1 (en) 2016-08-24 2016-08-24 Conductive fabric
JP2016-164196 2016-08-24

Publications (1)

Publication Number Publication Date
WO2017057195A1 true WO2017057195A1 (en) 2017-04-06

Family

ID=58423455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078072 WO2017057195A1 (en) 2015-09-28 2016-09-23 Conductive fabric and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017057195A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808780A (en) * 2021-08-06 2021-12-17 东华大学 Stretchable conductive elastomer with fold structure and preparation and application thereof
JP7429426B2 (en) 2020-01-24 2024-02-08 国立研究開発法人産業技術総合研究所 Base material with electronic components and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225499A (en) * 1984-04-24 1985-11-09 尾池工業株式会社 Electromagnetic wave shielding structure
WO1991014574A1 (en) * 1990-03-19 1991-10-03 Aeg Westinghouse Transportation Systems, Inc. Electrical insulation, manufacturing method, and use thereof
JPH11128187A (en) * 1997-10-24 1999-05-18 Gunze Ltd Electrode for electrocardiogram, clothes for electrocardiogram measurement, and electrocardiogram measuring system
JP2011054297A (en) * 2009-08-31 2011-03-17 Konica Minolta Holdings Inc Transparent electrode, manufacturing method of transparent electrode, and organic electroluminescent element
CN202786882U (en) * 2012-09-17 2013-03-13 曾凯熙 Composite material woven cloth with signal obstruction preventing metal coating film
JP2013191551A (en) * 2012-02-14 2013-09-26 Kuraray Living Kk Planar heating element, manufacturing method therefor, and electrode for planar heating element
JP3187265U (en) * 2013-09-06 2013-11-14 株式会社アテックス Cold protection
WO2014001577A1 (en) * 2012-06-29 2014-01-03 Smart Solutions Technologies, S.L. Electronic textile assembly
WO2015115440A1 (en) * 2014-01-28 2015-08-06 日本電信電話株式会社 Electrode member and device
WO2015115441A1 (en) * 2014-01-28 2015-08-06 日本電信電話株式会社 Vital sign detection garment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225499A (en) * 1984-04-24 1985-11-09 尾池工業株式会社 Electromagnetic wave shielding structure
WO1991014574A1 (en) * 1990-03-19 1991-10-03 Aeg Westinghouse Transportation Systems, Inc. Electrical insulation, manufacturing method, and use thereof
JPH11128187A (en) * 1997-10-24 1999-05-18 Gunze Ltd Electrode for electrocardiogram, clothes for electrocardiogram measurement, and electrocardiogram measuring system
JP2011054297A (en) * 2009-08-31 2011-03-17 Konica Minolta Holdings Inc Transparent electrode, manufacturing method of transparent electrode, and organic electroluminescent element
JP2013191551A (en) * 2012-02-14 2013-09-26 Kuraray Living Kk Planar heating element, manufacturing method therefor, and electrode for planar heating element
WO2014001577A1 (en) * 2012-06-29 2014-01-03 Smart Solutions Technologies, S.L. Electronic textile assembly
CN202786882U (en) * 2012-09-17 2013-03-13 曾凯熙 Composite material woven cloth with signal obstruction preventing metal coating film
JP3187265U (en) * 2013-09-06 2013-11-14 株式会社アテックス Cold protection
WO2015115440A1 (en) * 2014-01-28 2015-08-06 日本電信電話株式会社 Electrode member and device
WO2015115441A1 (en) * 2014-01-28 2015-08-06 日本電信電話株式会社 Vital sign detection garment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429426B2 (en) 2020-01-24 2024-02-08 国立研究開発法人産業技術総合研究所 Base material with electronic components and manufacturing method thereof
CN113808780A (en) * 2021-08-06 2021-12-17 东华大学 Stretchable conductive elastomer with fold structure and preparation and application thereof

Similar Documents

Publication Publication Date Title
JP6168507B1 (en) Conductive fabric
JP5186506B2 (en) Electrode sheet and method for producing electrode sheet
WO2017057195A1 (en) Conductive fabric and manufacturing method therefor
CN110115114A (en) Textile electronic devices for intelligent clothing
JP7352839B2 (en) Clothes-type electronic equipment and its manufacturing method
US7759264B2 (en) Textile sheet, method for manufacturing same, and use
JP2018138343A (en) Laminate conductive material and production method thereof
JP2019068901A (en) Bioelectrode and garment having the same
JP7068569B2 (en) Tension sensor
JP6168506B1 (en) Conductive fabric and method for producing the same
JP7297611B2 (en) electrical relay material
KR101092645B1 (en) Multilayered electronic fabric and preparing thereof
JP6532978B1 (en) Elastic circuit board
JP6575955B2 (en) Connection part forming method
CN113873943B (en) Bioelectrode and bioelectrode-attached assembly tool
WO2020009224A1 (en) Tension sensor and manufacturing method therefor
JP6168568B2 (en) Conductive fabric
JP2017025418A (en) Conductive knitted fabric
US20230010845A1 (en) Smart garment having a contact electrode
JP7218049B2 (en) Electrode connection structure for conductive knitted fabric and electrode connection method for conductive knitted fabric
JP2018115884A (en) Sensor unit
JP7088181B2 (en) Clothing for measuring biological information
JP2021190500A (en) Wiring-equipped fiber member and manufacturing method thereof
KR102502547B1 (en) Stretchable temperature sensor using carbon nanotube sheets and manufacturing method thereof
JP2019129938A (en) Sensor sheet, and clothing with sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851369

Country of ref document: EP

Kind code of ref document: A1